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Abstract

Internet Service Providers (ISPs) are getting involved in remediating Internet of Things (IoT) in-

fections of end users. This endeavor runs into serious usability problems. Given that it is usually

unknown what kind of device is infected, they can only provide users with very generic cleanup ad-

vice, trying to cover all device types and remediation paths. Does this advice work? To what extent

do users comply with the instructions? And does more compliance lead to higher cleanup rates?

This study is the first to shed light on these questions. In partnership with an ISP, we designed

a randomized control experiment followed up by a user survey. We randomly assigned 177 con-

sumers affected by malware from the Mirai family to three different groups: (i) notified via a walled

garden (quarantine network), (ii) notified via email, and (iii) no immediate notification, i.e. a control

group. The notification asks the user to take five steps to remediate the infection. We conducted a

phone survey with 95 of these customers based on communication–human information processing

theory. We model the impact of the treatment, comprehension, and motivation on the compliance

rate of each customer, while controlling for differences in demographics and infected device types.

We also estimate the extent to which compliance leads to successful cleanup of the infected IoT

devices. While only 24% of notified users perform all five remediation steps, 92% of notified users

perform at least one action. Compliance increases the probability of successful cleanup by 32%,

while the presence of competing malware reduces it by 54%. We provide an empirical basis to

shape ISP best practices in the fight against IoT malware.

Key words: IoT security, cleanup IoT malware, user compliance on IoT notifications

Introduction

The number of connected Internet of Things (IoT) devices will soon
exceed the world’s population [1]. On different continents, more than
half of households already have at least one IoT device [2]. Although
IoT is bringing convenience to people’s lives, the devices also in-
troduce serious security concerns. For a few years now, they have
been compromised at scale and recruited into botnets: networks of
malware-infected devices under the control of an attacker.

Many of the compromised IoT devices were put on the market
without even the most basic security controls in place [3]. This puts
the onus of protecting them on their users. Like with regular botnets,
most compromised IoT device users are located in Internet Service
Provider (ISP) networks [4]. RFC6561 states that ISPs should notify
users and ask them to remediate the threat [5]. Researchers [6] also
argued that notifying users is an important intervention to diminish
the growing number of infected devices.

1C© The Author(s) 2021. Published by Oxford University Press. This is an Open Access article distributed under the terms of the Creative Commons
Attribution-NonCommercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium,
provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com

D
ow

nloaded from
 https://academ

ic.oup.com
/cybersecurity/article/7/1/tyab015/6321977 by guest on 28 O

ctober 2022

mailto:e.r.turciosrodriguez@tudelft.nl
http://creativecommons.org/licenses/by-nc/4.0/
mailto:journals.permissions@oup.com


2 Rodríguez et al.

A core challenge for cleanup of infected IoT is designing us-
able mitigation advice. Remediating infections has already been
proven to be difficult for PC-based malware, where users are more
likely to have workable mental models as well as effective tools,
most notably antivirus software and automatic update mecha-
nisms. In the IoT space, the conditions for user action are much
worse.

First of all, ISPs can typically not ascertain what exact device, or
even what general device type, has been infected. Academic research
also struggles with this problem. Antonakakis et al. [6] could only
identify 31.5% of the 1.2 million infected devices and they acknowl-
edge that their method has an unknown error rate. Other approaches
rely on intrusive traffic inspection [7] or internal network scanning
[2], which are technically or legally infeasible for most ISPs. The lack
of visibility into the exact device type will persist for the foreseeable
future. Thus, cleanup advice has to fit, by necessity, all potential de-
vice types and remediation paths. This restricts ISPs and others to
recommending a generic set of steps to the users. Each individual
step may or may not be applicable and may or may not be effective
in remediating the actual infection at hand.

Second, the absence of accessible user interfaces makes it difficult
to perform the recommended actions or apply updates—assuming
such updates are even available in the first place, which is often not
the case. Combined with the lack of visibility on what device type
is affected, this means that the cleanup advice cannot even tell users
how to access the device to implement the required steps.

Notwithstanding these challenges, we know from recent work
that providing IoT malware notifications with generic cleanup steps
does in fact lead to improved remediation rates [4]. It is unknown,
however, what users actually did in response to the generic and hard-
to-implement instructions. No prior study has measured compliance
with the recommended steps.

We present the first empirical study to measure compliance di-
rectly and improve our understanding of what users do in response
to IoT malware mitigation advice. Thus, our study is able to address
three key research gaps: (i) We do not know to what extent users
comply with IoT cleanup instructions; (ii) We do not know if no-
tifications cause higher compliance (compared with a control); and
(iii) We do not know if compliance causes higher cleanup rates. The
latter issue is critical in light of the grave usability problems associ-
ated with IoT cleanup advice. We cannot simply assume that trying
to follow the advice actually leads to better remediation. To estab-
lish evidence-based practices in the field of IoT security, a field with
growing societal impact, we need to measure two relationships. First,
to what extent does user notification lead to user compliance? And
second, to what extent does user compliance lead to user remedia-
tion? Prior work could not empirically estimate these relationships,
because compliance has never been measured, let alone within a ran-
domized control trial together with notification and remediation.

This paper presents a field study on self-reported user actions fol-
lowing an IoT malware notification. It combines a randomized con-
trol trial involving 177 customers of a broadband ISP with a follow-
up survey with 95 customers (54% response rate). We studied users’
compliance with the suggested actions in the notification and how the
amount of compliance affected cleanup. In sum, the contributions of
this paper are as follows:

� We present the first empirical analysis of user compliance with
a notification asking them to conduct generic remediation steps
for infections on any type of IoT device. We find that 92% of all
notified users complied with at least one of the recommended five
remediation steps. Only 24% of all notified users complied with

all steps. Most users pick and choose their own path from the
recommended steps. Many users also reported taking additional
actions not mentioned in the notification. Even in the email-only
group users comply, while they lack the incentive that quaran-
tined users have.

� We model the impact of notifications and other predictors on
user compliance and find that certain user motivations reduce
compliance, while the notification comprehension did not seem
to have an effect.

� We also model the impact of the amount of compliance on
cleanup success. Implementing all five recommended steps in-
creases the probability of cleanup by 32%. The notification itself
has a stronger impact on cleanup than the amount of compliance.
This suggests that many users chart their own course, rather than
following all recommended steps. We also find evidence that the
presence of competing malware in the home network reduces the
probability of cleanup by 54%.

� We present insights from our survey data on how consumers
would like to be approached with notifications regarding IoT in-
fections.

Context

Our study partners with an ISP and its subsidiary in the Netherlands.
One of the authors was embedded as an intern in the abuse depart-
ment in order to conduct the study. The ISP has been mitigating IoT
infections of the Mirai family based on the abuse data it receives. We
briefly discuss Mirai and then describe the notification mechanisms
of the ISP, as well as the remediation steps that the users are asked to
perform.

� Mirai malware. Mirai emerged in 2016 and became the malware
family that demonstrated the threat posed by insecure IoT [6].
Although new families have arisen [8–10], Mirai still has a dom-
inant presence. According to Symantec [11], Mirai was the third
most common IoT threat in 2018, accounting for 16% of IoT at-
tacks. Kaspersky mentions that Mirai families were responsible
for 21% of the infected devices in that year [12]. A more recent
report by IBM X-Force mentions that in the first quarter of 2019,
Mirai activity doubled compared with 2018 [13]. In short, Mirai
is still a relevant threat and it provides a representative case study
for understanding if and how end users can perform remediation.

� Notification mechanisms. Our partnering ISP and its subsidiary
brand have slightly different user populations and their own
abuse handling procedures. Consumers in the subsidiary brand
are notified manually on a best-effort basis, while the ISP has an
automatic procedure using abuse feeds they receive from third
parties to notify consumers. Users can be notified in two ways:
walled garden or email-only. (We use the term notification inter-
changeably with treatment. In other words, notification refers to
the whole treatment that users receive.)

Walled Garden. This mechanism moves consumers into a quar-
antined network, also called a “walled garden,” which controls the
internet access of the users. Our partners use a so-called “strict” ap-
proach, which limits all internet access except for a set of white-listed
domains [5]. Users who want to access the internet get redirected to a
landing page. The page tells them about the detected infection and in-
structs them to take five steps in order to solve the issue and restore
internet access. When users are quarantined, the ISP also sends an
email containing the same notification content to the user-registered
contact email. Apart from notifying consumers, this process also dis-
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rupts the communication between the malware command and con-
trols and infected IoT devices.

There are three ways by which consumers can be released from
the quarantine environment. First, consumers can release themselves.
To achieve this, they can fill a form explaining the steps they have
taken to solve the infection and then click a button to leave the
walled garden (submitting an empty form also releases them). The
self-release option disappears if the customer suffers two subsequent
quarantine events in 30 days, to avoid people releasing themselves
without taking any action. The second way is to contact the ISP’s
abuse department and request a release. Finally, if users did not self-
release or contact the abuse department, they are automatically re-
leased after 30 days.

Email-only. The second mechanism used by our partners is to
warn customers only through an email. The email provides con-
sumers with the same notification content and set of five remediation
steps. The user’s internet connection remains unaffected. The main
reason to use this mechanism is that the capacity of the quarantine
network and the abuse department support is limited.

Examples of the notifications that consumers received are illus-
trated in Appendix D. The appendix first shows an example of the
landing page users saw when they were notified via walled garden.
The same content was also sent as the email notification to con-
sumers in this treatment group. For the email-only group, the ap-
pendix shows an example notification sent to consumers in this sec-
ond group. The email-only notification essentially contains the same
content except that it omits statements about consumers having been
placed in a quarantine environment.

� Remediation steps. Both notification mechanisms, walled garden
and email-only, ask the user to comply with the instruction to un-
dertake five generic remediation steps that aim to cover as many
remediation paths as possible (Fig. 1; also see Appendix D). Step 1
is to identify the smart device(s) connected to the home network.
The explanation mentions that likely candidates for the infected
device(s) are IP cameras, digital video recorders (DVRs), or simi-
lar devices, not personal computers, laptops, or tablets. Step 2 is
to change the password of the smart device(s). Step 3 is to restart
the device(s). Since Mirai malware is not persistent, step 2 and
step 3 will wipe the malware from the infected device(s) and pre-
vent immediate reinfection via the abuse of factory-default cre-
dentials. Step 4 is to reset the modem or router to factory settings.
This removes port forwarding that exposes IoT devices to the
public internet, as well as a possible infection of the router itself.
Finally, step 5 is to change the password of the modem or router.
These five steps are generic enough to deal with the fact that the
ISP cannot reliably identify what generic device type is infected,
let alone the exact model number. Therefore, the ISP cannot ex-
plain to the user how to exactly change the password or install
an update—or even whether such an update is actually available
for their device. Also, these steps are seen as the steps that are
most likely to help, but the ISP cannot know whether they are in
fact effective for each notified user.

Related Work

As pointed out by Cetin et al. [4], infected IoT devices are located
in broadband networks managed by ISPs. Our research is motivated
by the role that ISPs can take in notifying and warning users infected
with IoT malware. Nevertheless, the warnings and notifications only
work if users are able to comply and this compliance actually results
in remediating the infection. We first look at the literature related

to botnet mitigation by ISPs. Next, we look at work on abuse and
notification and security warnings. Finally, we discuss relevant work
on security behavior of users.

� Botnet mitigation by ISPs. Security literature highlights ISPs as a
critical control point against botnets [14], and it highlights that
ISPs can make a difference. Although ISPs are a critical actor to
fight botnets, Asghari, Ciere and Van Eeten [15] also looked at
the impact of anti-botnet initiatives on the cleanup success of
botnets and concluded they have no impact. Nevertheless, they
conclude that anti-botnet initiatives need to engage ISPs in tak-
ing action. Also, Pijpker and Vranken [16] developed a model
with measures that ISPs can implement to fight botnets. They
found that ISPs mainly focus on prevention and notification. In
addition, RFC6561 recommends best practices that can be im-
plemented by ISPs to notify users, so they can remediate botnets
[5]. Moreover, the recent RFC8520 [17] proposes to whitelist IoT
traffic through a manufacturer usage description (MUD). There
are discussions on how MUDs can help ISPs pinpoint abuse when
devices show a different behavior than that specified in the MUD
[18].

The literature has highlighted that ISPs are a relevant actor to
fight botnets. Nevertheless, little attention has been paid to so far to
understand whether notifying or warning users about infected IoT
devices leads to user compliance with the remediation advice and
whether this, in turn, leads to successful mitigation of IoT infected
devices.

� Abuse and vulnerability notifications. There is a large body of
work on the effectiveness of abuse and vulnerability notifications
by measuring the presence or absence of the security issue, with-
out actually observing the user’s behavior. Vasek and Moore [19]
studied the effect of notification content and found that verbose
notifications caused more remediation of compromised websites
than brief notifications. Li et al. [20] studied notification con-
tent and mechanisms in terms of webmasters cleaning up com-
promised servers. They found that direct communication with
the webmaster substantially increased the likelihood of cleanup.
Cetin et al. [21] studied the effect of the reputation of the no-
tification sender and found that a better reputation did not im-
prove cleanup rates. Durumeric et al. [22] sent notifications for
servers vulnerable for Heartbleed and found a positive impact
in patching. In addition, Li et al. [23] notified thousands of dif-
ferent network operators about security issues in their networks
finding that notification has a positive impact on remediation. In
contrast, Stock et al. [24] and Cetin et al. [25] sent notifications
to thousands of domains with vulnerabilities and found very low
remediation rates. The experiment highlighted the shortcomings
of email notifications and the gap between awareness of the prob-
lem and actually taking action.

Our work directly relies on two notifications mechanisms (email
and walled garden) to inform infected users about the Mirai infec-
tion. Although the related work has shown that such notifications
sometimes work, in certain cases low remediation rates are observed
[24, 25]. A few studies looked specifically at walled garden mecha-
nisms. Cetin et al. [26] found high remediation rates for Windows-
based malware cleanup. The only research on end-user remediation
of IoT compromise, closest to our current study, found that a walled
garden was also effective in cleaning up IoT malware [4]. However,
these studies treat the user behavior that translates notification into
remediation as a black box. No prior work has tried to observe what
users actually do with the cleanup instructions, nor whether better
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Figure 1: Recommended steps in the notification mechanisms.

compliance actually results in better cleanup. Our work wants to con-
tribute to this literature by performing a real-world experiment with
users who have been notified.

� Security warnings. Notifications are also related to the work on
security warnings. Previously, Egelman et al. [27] studied how tol-
erant individuals were with delays in their activities when they are
informed that they were due to security purposes; it was found
that users were likely to not wait when they were not properly
informed that the delay was due to security purposes. Also, Egel-
man and Schechter [28] studied web browser warnings on phish-
ing websites manipulating the background and color of the warn-
ing to observe if users obeyed the warning. They found that text
and color did not have an effect on users actually following the
warning. Felt et al. [29] undertook the task of designing a new
SSL warning, so that they were not disregarded by users. More-
over, Akhawe and Felt [30] assessed if security warnings were
effective for malware and phishing websites, and they demon-
strated its effectiveness in practice. Moreover, Krol, Moroz and
Sasse [31] looked at how users reacted to PDF download warn-
ings and showed that these might get ignored by the user because
of the exposure to false positives, incorrect mental models, or not
understanding that PDFs can also contain viruses. Bravo-Lillo et
al. [32] used mental models to understand how advanced and
novice computer users responded to computer warnings. They
reported that the groups differ in terms of how they perceive the
risk they might be facing.

These studies show that user responses to notifications and warn-
ings are highly variable and we do not yet know all the factors at play.
In our study design, we incorporate factors from communication–
human information processing (C–HIP) [33] theory to test if they
help explaining user compliance and cleanup success (see more de-
tails in the “Methodology” section).

� User security behavior. Notification mechanisms rely on con-
sumer behavior to be effective. Fagan and Khan studied users’
motivation to follow security advice; they found that individual
concern of following advice is rated higher than how this can af-
fect other [34]. Redmiles [35] looked up the immediate response
of Facebook users who receive warnings about suspicious login
incidents defining the common process of users to respond to the
incident as consisting of incident awareness, mental model gen-
eration, and behavioral response. Vaniea, Rader and Wash [36]
studied how users’ negative experiences of software updates im-
pacted their willingness to update software.

As the literature expresses user’s security practices might be based
on wrong mental models, yet we need to rely on the fact that users
need to learn on how to react on notifications, especially in the area
of IoT devices, which present very different challenges, e.g. because
of lack of a web interface on devices.

The related work has shown that notifications might work, but
that their effectiveness is highly variable. The work on warnings un-
derlines that users might ignore them. Behavioral research, more-
over, has highlighted the gap between awareness and actual behav-

ior. To the best of our knowledge no prior study, including [4], has
measured compliance with IoT cleanup instructions send in a no-
tification. As we describe in the introduction, IoT cleanup advice
has huge usability problems. So, we cannot assume that following
the advice actually leads to better remediation. Also, our study dif-
fers from this prior work on abuse notifications by providing the
first study that opens up the black box of user behavior, most no-
tably compliance, after receiving a notification in the area of IoT
malware.

Methodology

Our data collection was carried out between May and June 2019.
To answer our research questions, we combined a randomized con-
trol experiment with a survey among participants. We first randomly
assigned 177 Mirai-infected customers of our partners to one of the
treatments (walled garden or email-only) or to the control group.
We then conducted a short phone survey based on C–HIP theory
[33]. Of the 177 participants, 95 were reachable via phone within
three attempts and accepted to respond the survey. Finally, we tracked
the infections of these customers during the experiment and for two
additional months, to see if the infected devices were successfully
cleaned.

� Sampling and random assignment. Our partner ISP receives a
daily feed from Shadowserver containing IP addresses of Mirai-
infected users in its network and that of its subsidiary brand.
In collaboration with both, we used additional infection data by
identifying scans that matched the Mirai fingerprint (as described
by Antonakakis et al. [6]) in a /15 network telescope. All iden-
tified infected users were randomly assigned to a treatment or
the control group. The latter received a notification delayed by
2 weeks, so as to have a baseline against which to measure the
impact of either notification mechanism.

Consumers detected as having infected devices during the week-
ends were not included in the random assignment to the treatments.
This decision was made because the abuse department of the ISP does
not work during weekends. So, if users needed immediate support
after receiving a notification in the weekend, it would not have been
possible to respond to their inquiries.

We also excluded users who had been notified about an IoT infec-
tion prior to our study. Their behavior might be different from users
who were notified for the first time due to previous exposure to the
remediation process. Only nine users were excluded here.

In total, the sample consisted of 177 customers. Of these, 128
have a contract with the ISP and 49 with the subsidiary. Our de-
sign was to randomly assign customers to three equal groups: walled
garden, email-only and control. However, during the experiment we
discovered that there was a malfunction with the mail server at the
ISP.

Consequently, users assigned to the email-only group did not get
the intended email notification at the ISP. This meant that 43 users in
the originally intended email-only group had to instead be assigned
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Table 1: Overview of group assignments and survey respondents

Group Control Email Walled garden Total

Internet Service Provider Participants 85 0 43 128
Survey respondents 35 (41%) 0 28 (65%) 63 (49%)

Subsidiary Participants 17 16 16 49
Survey respondents 10 (59%) 11 (68%) 11 (65%) 32 (65%)

Total Participants 102 16 59 177
Survey respondents 45 (44%) 11 (68%) 39 (66%) 95 (54%)

to the control group. At the subsidiary however, email notifications
functioned properly.

This company is smaller however, as is the number of infected
users, so the email-only group consisted of 16 users. All in all, this
meant that our study had a larger control group than originally in-
tended and an email-only group that was too small to allow for
strong statistical inference about its differences with the other groups.
We retain the group in our analysis however for qualitative compar-
isons.

Table 1 provides an overview of the overall group assignments. It
also reports the portion of each group that responded to the survey.
We had high response rates in all groups.

� Survey framework. We used C–HIP theory as a basis to develop
our survey. To maximize the response rate, we limited the survey
to require only around 10 min to complete. This was tested dur-
ing 17 pilot interviews, which are not included in the final sample
on which this study is based.

C–HIP was originally proposed as a stage model for information
processing, allowing for feedback loops among stages, in which an
entity tries to communicate a message to change the behavior of the
receiver [33]. In our case, the ISP and its subsidiary brand are the
sources of the notification which are trying to get their customers to
comply with the recommended cleanup steps.1

We chose the C–HIP theory because it includes the source of the
notification. Different sources can have different consequences on
how users react. In our case, the email and walled garden seemed
likely to be received quite differently. Since we had to make a trade-
off between maximizing responses and the length of the survey, we
study only the comprehension and motivation of the users to under-
stand their behavior, compliance. The model includes attention, com-
prehension, beliefs and attitudes, and motivation. Due to the real-life
settings, we could not measure the attraction that the notification
caused to the users when they received it. We only notified users who
were not previously notified, so this reduced the familiarity that users
had regarding doing the steps and they did not have an accumulation
of knowledge about the tasks. Hence, we did not measure users’ atti-
tudes and beliefs either. We cannot assume that all users comprehend
the notifications, since the notifications reach users of different back-
grounds with different abilities and experiences. So we have to check
first whether users understand what they were asked to do. If users do
not understand the notifications, they cannot correctly act upon it. In
addition, motivation is key because it can activate people to comply
with any directive [33]. The cost of compliance should be lower than
the benefits that the users perceive by taking the recommended steps.

1 According to later versions of the model [37], the message needs to create
an attention switch and attention maintenance in its receiver. This stage was
not included in our adapted theoretical framework, since due to the real-
life setting of the experiment, we were not able to measure it. Nevertheless,
the notification method can trigger the users’ attention.

In our theoretical framework, we also included the type of devices
and demographics to control for other variables that could influence
behavior that might not be related to comprehension and motiva-
tion. For instance, if the device the users’ own has a web interface
this could influence how easily the user can change the password
of the device versus when the device does not have a web interface.
Demographics can also play a role in compliance since research has
shown that characteristics such as gender and age can influence tech-
nology acceptance [38], and thus how users could handle IoT devices.
Hence, we want to control for these variables. This model covers two
important aspects of the related work: (i) the role of the ISPs as inter-
mediaries and how the different types of notifications can influence
compliance and cleanup in the IoT domain; and (ii) drivers of user
behavior, in this case comprehension and motivation, to understand
the degree of compliance.

Due to the structure of sequential stages, C–HIP can be an easy
tool to pinpoint where an end user drops out of the process of compli-
ance. Each stage can be a potential bottleneck to comply. An interest-
ing notion within the C–HIP model is that notification effectiveness
can also be measured based on other stages, in this case comprehen-
sion and motivation, than the binary distinction between compliance
and noncompliance.

Our survey addressed the following:

Comprehension of the notification. Customers were asked if they re-
called receiving the notification and if they read them. Also, they
were asked if they understood the notification. The answers re-
lated to reading and understanding the notification were coded as
dummy variables to measure comprehension of the notifications.

Motivation of users. The notification must motivate customers to per-
form the desired behavior, in this case, to comply with the five rec-
ommended steps. Customers were asked about their motivations
to comply, or not, with the notification, and their replies coded as
categorical variables. After the pilot survey, these categories were
refined based on the most common responses.

Compliance and additional steps. Customers were asked which steps,
if any, they followed to resolve the IoT infection. The question
was open-ended, so that they could tell us what they remembered
doing, rather than prompting their answers by mentioning the
recommended steps. We precoded the five steps from the notifi-
cation. Steps were a binary variable that took a value of 1 if the
consumer performed any of the five recommended steps or a value
of 0 if the consumer did not perform a step. We define compliance
as the number of steps that consumers took to clean their IoT de-
vices, out of the five recommended steps. As such compliance is
expressed as a ratio from 0/5 steps to 5/5 steps.

Sometimes customers would mention taking additional steps, that
were not mentioned in the notification. This was registered as un-
structured text describing an additional step. After the survey was
concluded we coded these answers in several recurring additional ac-
tions.
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Figure 2: Experimental setup drawing on adaptation of C–HIP model

described in [33].

Figure 2 depicts the adapted theoretical framework used as a
guide to study consumers’ compliance and cleanup. We also wanted
to control for demographic differences and for different device types
when measuring compliance and cleanup. In the survey, we also asked
the type of IoT device the user thought was infected, so as to control
for how device type might impact compliance and cleanup success.
Furthermore, we included demographic characteristics of the cus-
tomers, recorded in the ISP customer data, to control for differences
among users. Finally, we measured cleanup success independently, to
see if the self-reported compliance is predictive of remediation.

Device type. Survey respondents were asked if they could identify
the infected IoT device(s). Answers might be influenced by spec-
ulation or incorrect mental models. While we have no ground
truth to compare these answers against, we did lookups for the
customer IP addresses in Shodan [39]. Shodan is an IoT search
engine, and it indexes IoT devices which means these devices are
exposed to the open internet, and compared the results with the
answers.

Age and gender. We used the data of the respondent as recorded by
the ISP. When we reached someone at the listed phone number,
we asked them if the subscription was in their name. In some
cases, the respondent reported that they were small businesses.
We coded them as such. Six users reported that someone else did
the steps for them and so we coded based on their description.

Attitudes and beliefs. We did not address these because of time con-
straints in the phone call, although we did try to minimize the dif-
ference in customers’ beliefs and attitudes by not including users
who had been notified before.

� Survey process. The survey was developed and tested in 17 pilot
interviews. The pilot survey was carried out also with real con-
sumers to check if they understood the questions, how long the
survey could take, and to refine some potential answers for the
open questions. Feedback to improve the protocol was obtained

and incorporated in the final design of the survey. The data of the
pilot survey were not included in our results. Finally, the ques-
tions were adapted slightly, depending on if the consumer was in
the control group or the treatment group. The questionnaires are
included in Appendix C.

We conducted the survey 2 weeks after the notification was sent.
For the control group, since they did not receive a notification, the 2
weeks were counted from the first day of their detection as infected.
The survey call was the first notification the control group received,
and for users in the control group that we could not reach by phone,
we sent an email. These users, of course, were not included in the
survey study, and they were not included in the measurement of the
remediation rate of the control group. We set the time to contact
all participants to 2 weeks because we want to obtain as much reli-
able information as possible regarding what actions a consumer took,
while also giving the user time to conduct the remediation steps with-
out being prompted to do so by the survey request. To ensure that
the protocol would be consistently carried out, one person did the
survey.

Survey respondents were explicitly reminded of the right to opt
out from the survey. One responded chose to opt out. The survey
respondents did not receive any incentive to participate in the survey.
Out of 177 calls we placed, 95 respondents accepted to respond the
survey, one person opted out and 81 customers could not be reached.

Because of privacy concerns, the ISP did not allow us to record
the phone survey. A script was developed to log the answers of the
survey respondents. For the closed questions, the possible answers
were already precoded. For the open questions, we added potential
answers that had been given during the pilot survey and had the in-
vestigator enter manually any additional information given by the
respondent.

Email logs from the abuse department were used to check if con-
sumers contacted them for additional information. Moreover, the
quarantine forms that users filled out in order to leave the walled
garden were used to check if they were reporting the same device
types as mentioned during the response to the survey. We used this
information to validate our results.

� Cleanup and competing malware. We collected data during the
experiment and for 2 additional months (July and August 2019)
to see whether the infection was successfully removed after the
experiment. We monitored the Shadowserver abuse feeds re-
ceived by the ISP [40], the Global Cyber Alliance IoT honeypot
data [41], IoTPot data [42], and also a network telescope of 300
K IP addresses.

We coded the infection as cleaned when the user’s IP address was
absent from the abuse reports, honeypot logs and not scanning the
network telescope, either with the Mirai fingerprint [6] or without it.
We included the latter to measure cleanup conservatively. It suggests
there is still an infection on the device(s) in the home network, since
we would not expect a normal subscriber to aggressively scan large
network blocks. We coded these cases as “no cleanup.” This analysis
revealed a surprise where sometimes we found both scanning pat-
terns for the same customer. This pattern might reveal the presence
of competing malware in the home network. It has been well doc-
umented that various IoT malware families actively compete with
each other for control over devices [43]. To take this factor into ac-
count, we created a dummy variable called “competing malware”
to capture when we saw other scanning patterns than Mirai for the
same customer. To reiterate: all scanning patterns were coded as “no
cleanup.”
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Table 2: Summary of findings

No steps One or more steps Odds

Control 33 12 0.36
Notifications (email-only and walled garden) 4 46 11.5

Still infected Successfully cleaned Odds
Control 22 23 1.04
Notifications (email-only and walled garden) 7 43 6.14

� One or multiple devices infected. We were aware that the Mirai
infection could be present on just one device, but also on multi-
ple devices in the home network. Also, the “competing malware”
that we observed could have been present on the same device as
the Mirai infection (but at a different time) or on another de-
vice. Since neither we nor the ISP could know if one or more
devices are infected, the notification was designed to handle both
scenarios. It told users that one or multiple devices could be in-
fected with Mirai. In terms of observing cleanup success, we can-
not differentiate partial cleanup from no cleanup, i.e. one device
was actually remediated, but another device is still infected. As
long as we observed any malware scanning behavior coming from
the customer IP address, we coded that case as “not clean” in or-
der to have a conservative measurement of the remediation rate.
In sum, while we lack visibility into the number of infected de-
vices in the customer home network, we designed both the noti-
fications as well as the measurement of cleanup to handle both
scenarios.

Ethical Considerations

Our study follows the ethical principles set forth within the Menlo
Report [44], namely that of respect for persons, respect for the law,
justice, and beneficence. We additionally followed legal guidelines
and policies set forth by our partner ISP regarding the study and the
collection of empirical data to understand consumer behavior with
respect to IoT malware cleanup.

In light of the first two ethical principles (respect for persons and
law), we operated within the privacy policies of our partner ISP. One
of the researchers was embedded as an intern and processed the cus-
tomer data on the ISP premise.

The survey was also conducted by the intern from within the ISP.
Consumer contact details were looked up every time prior to each
phone interview and are not part of our collected study data. All re-
spondents were first asked for their consent to respond the survey and
for the survey data to be anonymously used for the purpose of this
study. The possibility to opt out of the survey was explicitly men-
tioned. Only one person declined to participate in the survey. (The
rest of the nonresponse was caused by not being able to reach the
respondent.)

In terms of the latter two ethical principles (justice and
beneficence), we believe that our study does not create harm and it
treats individuals fairly. Our study follows a randomized control trial
design (see more details in the “Methodology” section). All ISP sub-
scribers affected by Mirai-like malware were notified of the infection.
The notification for the subscribers in the control group was delayed
by 14 days. Since Mirai attacks first and foremost target third parties,
not the owners of the infected devices, this delay is unlikely to expose
the subscriber to substantial harm. We evaluate the downsides of this
delay to be outweighed by the fact that our study aims to improve the

mechanisms for users, and society at large, to combat IoT malware
and prevent attacks to third parties in the future.

Findings

To reiterate, our question is: to what extent do users comply with
the instructions? And does more compliance lead to higher cleanup
rates? We will model both relationships in light of the factors dis-
cussed in our adapted theoretical framework (see the “Methodology”
section).

Table 2 summarizes the findings; the notifications seem to be ex-
traordinarily effective. We calculate the odds of customers who re-
ceived the notification and customers in the control group. Then we
look for the odds ratio of doing one or more steps and remediation.
We can observe that notified customers had 31.9 times the odds ratio
of doing more than one step than customers who were not notified.
Also, we can observe that customers notified had 5.9 times the odds
ratio of successfully cleaning their infected device.

Before turning to the explanatory models, we will discuss these
factors more descriptively.

Age and gender

To check for potential bias in the sample of participants who were
reached for a survey, we compare the age and gender of survey re-
spondents against the other participants. Table 3 shows the distri-
butions. The groups are very similar across treatment conditions and
demographics. Except for a bit lower proportion of female customers
among the survey respondents in the control group, we see no evi-
dence for potential bias.

Overall, the age of customers with an infected device ranges from
25 to 87 years old, with a median age of 47.5. As explained in the
“Methodology”section, when participants were reached for a survey,
we asked them if the subscription was in their name. In seven cases,
the survey respondents indicated it was actually owned by a small
business. We coded these users separately.

We also compared the age of the Mirai-infected customers versus
the total subscriber population of the ISP and the subsidiary brand.
We find a right-skewed distribution for the infected customers com-
pared with the distribution of all subscribers (Fig. 3). The mean age of
Mirai-infected consumers is 6 years younger (μ= 48) than the mean
age in the total subscriber population of the ISP and the subsidiary (μ
= 54). Welch’s unequal variance t-test estimates this difference to be
significant (P < 0.0001). In short, Mirai-infected consumers are rel-
atively young. This fits with the speculation that younger consumers
are more likely to buy IoT devices.

Device type

We asked survey respondents which of their devices they thought was
infected. Table 4 shows the type of devices consumers reported as the
offender. It is possible to notice that surveillance cameras make up a
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Table 3: Study participant demographics

Group Control Email Walled garden

Survey respondent Yes No Yes No Yes No

Age Range 29–76 25–77 30–69 26–67 26–83 29–87
Median 47 46 47 45 46 46

Gender F 7 (15.5%) 14 (24.5%) 0 (0%) 0 (0%) 2 (5%) 2 (10%)
M 31 (69%) 38 (67%) 11 (100%) 5 (100%) 32 (82%) 14 (70%)
N/A 2 (4.5%) 2 (3.5%) 0 (0%) 0 (0%) 3 (8%) 3 (15%)

Business 5 (11%) 3 (5%) 0 (0%) 0 (0%) 2 (5%) 1 (5%)

Figure 3: Age distribution—infected consumers vs all subscribers.

Table 4: Infected IoT devices

Device type
No. of
consumers

Surveillance camera 36 (37.8%)
Raspberry Pi 33 (35%)
NAS 9 (9.5%)
Unknown device 8 (8.4%)
DVR 2 (2.10%)
Router 2 (2.10%)
Printer 2 (2.10%)
Linux embedded system 1 (1%)
Smart meter 1 (1%)
Power consumption monitor 1 (1%)

large portion of devices (36; 37.8%). This is consistent with prior
studies [4, 6]. Next, 33 users mentioned a Raspberry Pi (35%). This
is different from previous research. The high percentage can be un-
derstood by the fact that during our experiment, a new Mirai-based
attack vector emerged targeting a known vulnerability in Domoticz
software [45]. Domoticz is an open-source software that can man-
age home automation systems. It is often run on a Raspberry Pi.
The Mirai variant exploited an “unauthenticated remote command
execution” vulnerability, which allowed the malware to bypass the
authentication mechanism of the devices. This was detected in April
2019. Although a new version of the software was released on 9 May
2019 [45], users reported a peak of infected IoT devices with this
variant of Mirai during the study.

Nine users (9.5%) reported a network attached storage device
(NAS) as the culprit, which is again consistent with other stud-
ies. Next, we find a list of devices such as DVRs, routers, print-
ers, Linux embedded systems, smart meters, and power consumption
monitors.

Surprisingly, only a small portion of the survey respondents (8;
8.4%) felt unable to identify the offending device. This could mean
that most users have a pretty good understanding of their comput-
ing environment or it could mean that users are overconfident in
their expertise. For example, one survey participant mentioned the
“smart meter” as the compromised device. The Dutch smart meters
are locked-down devices that have been rolled out and maintained
by the distribution grid operators. So far, there is no known attack
against these devices. Some of the answers from the survey respon-
dents might be triggered by socially desirable behavior, as they might
want to convince the investigator that they are technically savvy.

We have no ground truth against which to test the accuracy of
the answers. We did conduct two crosschecks, however. First, we
compared the survey answers against the submitted user forms from
the walled garden. We found no inconsistencies. Second, we looked
up the IP addresses of the infected IoT devices in Shodan [39]. For
36 of the 95 survey respondents (38%), we found a device listed in
Shodan. Interestingly enough, 35 of these 36 (97%) survey respon-
dents had reported the same device during the survey as was observed
by Shodan. While this is hardly conclusive evidence, it does give cre-
dence to the idea that users have honestly answered our question and
that they have at least a plausible speculation about the offending de-
vice. The fact that Shodan can observe it means it is exposed to the
open internet, which implies a high level of risk for poorly secured
devices.

Comprehension

In the survey, we asked whether participants received, read and un-
derstood the notification. In the walled garden group, 37 out of the
39 users (95%) remember receiving and reading the notification ei-
ther via the landing page or the corresponding email. However, only
25 (67.5%) indicated they understood the notification. Interestingly,
all users who acknowledged that they did not understand the mes-
sage had emailed the ISP’s abuse department. In other words, even
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Table 5: Customer motivations to comply with notifications

Treatment Motivation
No. of
consumers

Email-only Safe internet is important 7 (78%)
Malfunctioning device 1 (11%)
No answer 1 (11%)

Walled garden Internet back 19 (51%)
Internet back and safe internet is important 9 (24%)
Safe internet is important 3 (8%)
No answer 3 (8%)
Malfunctioning device 1 (3%)
Need the device 1 (3%)
Privacy concern and safe internet 1 (3%)

though they did not understand the notification, they all took action
to find out how to solve the problem. For example, they asked for
more technical information or they stated that they did not under-
stand the cause of the infection. Of the 25 people who did claim to
understand the message, 22 also emailed the ISP. Their messages were
typically stating the actions they took and then asking for confirma-
tion whether that was enough to solve the problem.

While the email-only group was too small to make robust state-
ments (see the “Methodology” section), it is worth noting that 9
of the 11 (82%) acknowledged receiving and reading the notifi-
cation. Of these, eight declared that they understood the notifica-
tion. Again, the one person who did not understand emailed the
ISP’s abuse department. The consumer was asking for more technical
details.

In total, these results indicate that for 46 out of the 50 notified
users (92%), the message was successfully delivered and read. Those
recipients who did not understand the message, contacted the ISP and
asked for further details and advice. Even among people who said
they did understand the message, the majority contacted the abuse
department to state the actions they took.

Motivation

We asked users an open question regarding what drove them to com-
ply with the recommended steps.

We found some recurrent topics in the answers to this question.
Table 5 presents an overview.

In the walled garden group, 19 users (51%) said that they were
driven by the fact that they did not have an internet connection. Nine
users (24%) mentioned not only the lack of an internet connection,
but also that safe internet is important.

In the email-only group, no one loses their internet connec-
tion, which shifts the answers more toward more intrinsic motiva-
tions to improve security. Seven consumers in the email-only group
(78%) expressed that they complied because a safe internet is im-
portant. One consumer said that a malfunctioning device was the
motivation.

Similar to Fagan and Khan [34], of all notified customers only
11 (22%) expressed some social motivation to comply. Hence, it is
clear that most users were thinking about how the infection affects
themselves rather than others. The email-only group differs in this
respect. While it is too small to draw firm conclusions, it does hint
at the possibility that security practices in the IoT domain would
benefit from relying on the users’ social considerations regarding how
infections could affect others.

Table 6: Participants’ self-reported compliance (1) or not (0) with

each step in the notification (listed in Fig. 1)

Followed steps

Group 1 2 3 4 5 Freq.

Walled garden 0 0 0 0 0 2
1 0 0 0 0 9
1 0 0 1 0 1
1 0 0 1 1 4
1 0 1 0 0 1
1 0 1 1 0 3
1 0 1 1 1 1
1 1 0 0 0 2
1 1 0 1 1 1
1 1 1 0 0 3
1 1 1 0 1 1
1 1 1 1 0 2
1 1 1 1 1 9

Email 0 0 0 0 0 2
1 0 0 0 0 1
1 0 0 1 0 1
1 0 0 1 1 1
1 1 1 0 0 1
1 1 1 0 1 2
1 1 1 1 1 3

Control 0 0 0 0 0 33
1 0 0 0 0 10
1 1 0 0 0 2

Compliance

We asked the participants an open-ended question about compliance
and then coded the answers in terms of which of the recommended
steps were mentioned. We also recorded when users mentioned other
steps than those recommended in the notification.

Table 6 displays the results for the recommended steps. Each row
is one pattern of steps complied with, or not. The end of each row
contains the number of users who reported this pattern. Of the 50
users who were notified and accepted to respond the survey, 12 no-
tified users (24%) fully complied with all five steps (9 in the walled
garden group and 3 in the email-only group). At the other extreme,
four people in the treatment groups reported taking none of the rec-
ommended actions (two in the walled garden group and two in the
email group). Taking no action whatsoever was, for obvious reasons,
the dominant pattern in the control group, since they had not been
notified of the problem. We will discuss this group later.
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The overwhelming majority (92%) of participants in the treat-
ment groups reported taking at least one of the recommended steps
(95% of the walled garden group and 82% in the email-only group);
10% took two steps in the walled garden group and 9% in the email-
only group; 26% took three steps in the walled garden group and
18% in the email-only group; and 13% took four steps in the walled
garden group and 18% in the email-only group. All the steps were
taken in various combinations.

Even in the control group, we found that some users also re-
ported having taken certain steps in the 2 weeks before, even though
they had not been informed about the infection. Some users with
Domoticz devices identified that their device had a security update,
which they applied. In total, ten users (22%) followed step 1. Of
course, as they had not received any notification, this means that
even identifying the device was a step they followed without com-
plying with a notification. We did code it as a compliance step, to
capture the degree in which users to take security actions for other
reasons. Two users (4.4%) followed step 1 and step 2. In the conver-
sation with these consumers, we learned that they were prompted to
take action either because of the malfunctioning of their devices or
the type of device they owned.

Some combinations of steps occurred more often than others. We
used Spearman’s rank correlation to measure the strength and direc-
tion of the association among the steps. We observed that there is
a high correlation (rs = 0.74, P < 0.001) between step 2 (change
the password of the device) and step 3 (restart the device). Similarly,
there is a correlation (rs = 0.73, P < 0.001) between step 4 and step
5: reset the modem to factory settings and change the password of
the modem. This might indicate that although not all consumers did
the five steps, there is some pattern to how they proceeded to mit-
igate the infection. Steps 2 and 3 are focused on the compromised
device, while 4 and 5 are more oriented at preventing new infections.
Some users focus on one, rather than the other. In Appendix A, the
complete correlation table is presented.

We also looked at what other actions people reported, beyond the
five steps. Table 7 summarizes the extra steps that users mentioned.
As with compliance, we also include the actions taken in the con-
trol group. Interestingly, 25 (64%) of the consumers who were in the
walled garden did extra steps versus 4 (44%) of the consumers in the
email-only group.

Even among the users who had fully complied with the notifica-
tion, some reported taking extra steps. One user, for example, de-
scribed doing a software update. Among users who did not do all the
steps, we found that they did report taking other actions to resolve
the issue. For example, one customer reported identifying the device
and also doing a software update. Other customers reported more
drastic actions. After identifying the offending device, they discon-

Table 7: Additional steps consumers performed

Treatment Additional steps
No. of
consumers

Email-only Only followed notification steps 5 (55.5%)
Disconnected device 2 (22.5%)
Software update 1 (11%)
Disable port forwarding 1 (11%)

Walled garden Only followed notification steps 12 (31%)
Disconnect device 9 (24%)
Stop using the device 6 (16%)
Software update 5 (13.5%)
Disable port forwarding 3 (8%)
Ask for help 2 (5.5%)

Control group Software update 8 (18%)
Stop use 2 (4.4%)
Disconnected device 1 (2%)

nected it or stopped using it altogether. One person even mentioning
that he had brought the device to the recycling center.

Of the 12 customers who took actions in the control group, some
also reported extra steps. Eight customers reported doing a software
update, two customers said they stopped using the device, and one
customer described disconnecting the device.

Modeling compliance

Almost all users in the treatment groups (92%) took some steps,
though in many different combinations. Figure 4 shows the distri-
bution of the count of steps taken by the users. When notified users
do take action, they report on average 2.9 steps recommended by the
notification, while the control group report on average 0.3 steps on
their own initiative, without being notified.

Before turning to the models, we also did a chi-square test to val-
idate that customers who responded were not more diligent or moti-
vated than those who did not respond to our survey. The test result
was X2(4, N = 177) = 0.032, P = 0.99. The test suggests that there
is no relationship between interviewed/non interviewed and clean/no
clean outcomes. Also, we carried out a chi-square test to compare if
the ISP and the subsidiary had differences in the compliance steps. We
only checked the walled garden group of the ISP and subsidiary. The
test result was X2(12, N = 39) = 5.69, P = 0.93. The test suggests
that ISP and the subsidiary have no significant differences in terms of
performed steps.

We want to understand which causal factors are associated with
user compliance. We operationalized compliance as a ratio of the
number of steps divided by five, the number of steps recommended

Figure 4: Distribution of the count of steps taken by the users.
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Table 8: Summary of variables

Reference category Variables Explanation

|Control group |Walled garden True if in walled garden group and not in email and control group
|Email-only True if in email-only group and not in walled garden group and control group

||Female :: Age Discrete variable
|| Small business True if it is a small business and not male and female
|| Male True if male and not small business and female

|||No Domoticz ||| Domoticz True if the device type is Domoticz
||||Did not understand |||| Understood notification True if consumer understood the notification
|||||Internet back ||||| Safe internet True if motivation is not to get internet back and other motivations

||||| Other motivations True if motivations are others motivation and not internet back and safe internet.

Note for Model (4) and Model (5) in Table 9, the reference category for the walled garden group is the email-only group. For Models 1–3, N = 95 and for Models
4–5, N = 50. The vertical bars are to visually group the independent variables with their reference category (since “Age” does not have a reference category we
used :: as symbol).

in the notification (see the “Methodology” section). Since it is a pro-
portion from 0 to 1, this type of data can be analyzed with a beta re-
gression. However, beta regressions assume that the ratio is between
0 and 1, excluding the extremes. Since we also have scores of 0 and 1
in our data, we have to transform these extreme values as suggested
in [46, 47]. The distribution of the dependent variable did not change.

We model the driving factors of performance using the explana-
tory variables from our adapted theoretical framework. Hence, we
have five groups of independent variables. The first category is the
treatment consumers received: walled garden notification, email-only
notification, no notification (control). Second, we include as control
variables the user characteristics age, gender and status as a small
business. Since there were three observations in the walled garden
group and two observations in the control group with missing val-
ues for gender, we used as imputation method the most frequent
value, meaning we replaced the missing values with the most com-
mon value.

Next, we control for device types. In the subsection “Device type”
of the section “Findings,” we discussed the range of devices reported
by the user. We cannot use the reported device types as explanatory
factors, since many of them are used by only a few people, so the
samples would be way too small to register any effect on compli-
ance. The key difference in the population of device types lies be-
tween the Raspberry Pis and the other IoT devices like cameras and
DVRs. The Raspberry Pis were specifically targeted by attackers via
a known vulnerability in Domoticz (CVE-2019-10664, CVE-2019-
10678). Hence, we created a categorical variable called Domoticz to
distinguish between device types.

Next, we have comprehension of the notification, coded as: Un-
derstood or Did not understand. When we asked this question, there
were two missing values from the walled garden group, so similar to
gender, we used the most frequent value as imputation method. We
ran the model with and without using the most frequent value impu-
tation method for gender and comprehension variables, and the re-
sults did not change. And finally, we include the different motivations
that were reported by users to comply. Similarly to device type, many
of the motivations had a small size, so they would be way too small to
register any effect on compliance. Therefore, we grouped motivations
into three categories. The first category was users who wanted their
internet back. The second category was composed by users whose
motivations were to have the internet back and safe internet, only
safe internet, and privacy concern and safe internet. Finally, other
motivations include malfunctioning device, the need of the device,
and no answers. Table 8 provides a summary of the variables that
will be included in the regression model as well as the corresponding
reference categories.

Table 9 presents the estimated coefficient values, significance lev-
els, and additional goodness-of-fit indicators of interest. We decided
to take a stepwise approach in adding each group of variables, so
we can assess their effects on compliance. Model (1) shows that the
treatments—that is, the fact that users were notified—already explain
50% of the variance in compliance (R2 = 0.501). Simply put, no-
tifications do get many people to take action. This holds even for
email-only. This is somewhat surprising, as earlier work [4] found
that sending an email was indistinguishable from the control group,
in terms of cleanup at least. In contrast, we find that emails are not
ignored by users, even though they easily could do so.

From Model (4), it is also possible to observe that understand-
ing the notification does not have a significant impact on compliance
compared with consumers who did not understand since this vari-
able only explains 6.4% of the variance in compliance (R2 = 0.064).
As visible in Model (5), comprehension does not have a significant
impact on compliance compared with consumers who did not un-
derstand the message, though the positive coefficient is in the ex-
pected direction. In terms of the different motivations, “other moti-
vations” have a significant negative impact on compliance compared
with users who want their internet back. Users whose motivations are
related to the need to use a device or to the malfunctioning of it, or
users who did not give an answer to this question, comply less. Note
that Models (4) and (5) do not include the control group, as com-
prehension cannot be measured for this group because they did not
receive a notification. For these models, the email-only group is the
reference group. Other goodness-of-fit indicators, such as log likeli-
hood, are reported for all models. Higher log-likelihood values are
preferred, although they alone cannot be used to determine the fit
of the model. See Appendix B for more details on the likelihood ra-
tio test of the models. We will proceed to interpret our final model,
Model (3), as the best fit for the data.

To interpret intuitively the coefficients of Model (3), the coeffi-
cients were converted to average marginal effects, Fig. 5 presents a
summary of the average marginal effects of the predictor variables on
the compliance ratio, which is to say, the average expected change in
compliance ratio for a change in a predictor.

We will interpret only the significant coefficients of Model (3).
Model (3) suggests that being in the walled garden increases the av-
erage compliance ratio by 0.39. Since the dependent variable is a pro-
portion of the five steps that users took, we should multiply the coef-
ficient 0.39 times five. Meaning that consumers in the walled garden
do 1.95 steps more on average relative to the control group, which
compliance ratio is on average 0.3. Similarly, receiving an email in-
creases the average expected compliance ratio by 0.36 respective to
the control group. Meaning consumers in the email group do 1.8
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Table 9: Estimated coefficients beta regression on compliance ratio

Dependent variable: Compliance Ratio (Transformed)

Beta Regression—link = ‘logitʼ

(1) (2) (3) (4) (5)

Walled garden 2.037∗∗∗ 2.036∗∗∗ 2.035∗∗∗ 0.129 − 0.295
(0.287) (0.292) (0.292) (0.449) (0.461)

Email-only 1.928∗∗∗ 1.897∗∗∗ 1.874∗∗∗

(0.416) (0.429) (0.433)
Age − 0.004 − 0.004 − 0.007 − 0.007

(0.009) (0.010) (0.014) (0.013)
Small business − 0.270 − 0.233 − 0.769 − 1.028

(0.754) (0.759) (1.475) (1.443)
Male 0.008 − 0.023 − 0.878 − 1.082

(0.412) (0.421) (0.948) (0.892)
Domoticz 0.095 − 0.044 0.099

(0.258) (0.379) (0.380)
Understood notification 0.610 0.340

(0.396) (0.378)
Safe internet − 0.303

(0.451)
Other motivation − 1.807∗∗∗

(0.515)
Constant − 1.608∗∗∗ − 1.393∗∗ − 1.438∗∗ 1.035 2.278∗

(0.195) (0.624) (0.635) (1.213) (1.201)
Observations 95 95 95 50 50
Pseudo R-squared 0.501 0.503 0.505 0.064 0.277
Log likelihood 95.155 95.267 95.332 15.630 22.185

Note: ∗P < 0.1; ∗∗P < 0.05; ∗∗∗P < 0.01.

Figure 5: Average marginal effect of each predictor variable.

steps more on average respective to the control group. Although
Model (5) explain less variance having other motivations rather than
wanting the internet back decreases the average compliance ratio by
−0.38. Meaning that consumers in the group with other motivation
do 1.9 steps less on average than consumers who want their internet
back.

In summary, our model finds clear evidence for the impact of the
notification and of user motivation. Comprehension seems to have
less effect, which is somewhat puzzling, since the notifications have
to rely on rather generic advice, rather than clear-cut and actionable
instructions. Perhaps the generic advice is easy to understand so users
do not see the subsequent questions and difficulties (“how can I ac-
tually change the password on my IP camera of brand X?”) as a part
of the message itself, but rather as a challenge separate from under-
standing the message. In that case, they would answer that they un-

derstood the message, even if they had trouble understanding how to
comply with it.

Modeling cleanup

Now we turn to the actual goal of the notifications and compliance:
cleanup of the infected devices. Figure 6 shows how many devices
were cleaned up after 2 weeks of being notified or assigned to the
control group, distributed over the number of steps the user report-
edly took. As expected, cleanup rates are higher when the number of
compliance steps increases.

An important finding is that cleanup also happens in the con-
trol group—mostly concentrated in the column with zero steps. In
line with earlier work [4], we also found that 33% of the survey re-
spondent users in the control group, who reported not taking any
step, also got clean. It is unclear how this happens. We did find that
around 26% of the users in that group also undertook action, even
though they were not informed. Certain security behaviors are trig-
gered by other mechanisms, such as update notifications. While our
study added a new piece to this puzzle because users reported no
action, we still cannot present a satisfying answer.

Compared with the control group, remediation rates in the two
treatment groups are significantly higher. In the walled garden group,
90% got cleaned up versus 73% in the email group.

The final part of our research question is to estimate the effect of
compliance on cleanup. We do this via a binomial logistic regression
model. Binomial logistic regression is used when the dependent vari-
able is binary—in this case, whether a device has been cleaned up or
not.

Table 10 presents the estimated coefficient values, significance lev-
els, and additional goodness-of-fit indicators. The primary focus is on
the relationship between compliance and cleanup. We also look at the
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Figure 6: Cleaned versus infected devices after 14 days.

Table 10: Estimated coefficients binomial logistic regression on

cleanup

Dependent variable: clean

Binomial Logistic Regression∗—link = ‘logitʼ

(1) (2) (3)

Compliance ratio 2.197∗∗∗ 1.524∗ 1.627∗

(0.806) (0.849) (0.859)
Domoticz 0.316 0.648

(0.498) (0.541)
Did extra step 0.869 0.802

(0.592) (0.602)
Competing malware − 1.576∗∗∗

(0.552)
Constant 0.220 − 0.037 0.776

(0.292) (0.348) (0.474)
Observations 95 95 95

Log likelihood − 53.782 − 52.219 − 47.618
Akaike Inf. Crit. 111.565 112.437 105.237
McFadden R2 0.07 0.10 0.18

Note: ∗P < 0.1; ∗∗P < 0.05; ∗∗∗P < 0.01.
∗Also known as binary logistic regression.

effect of the extra steps that consumers reported performing, at the
device type, and at the issue of whether we observed scanning activity
from competing malware variants for the customer. We define three
models in which we estimate the effects of each additional variable
on remediation.

An intuitive way to represent the results of binary logistic regres-
sion models is converting the coefficients into a relative risk (RR).
This will capture the change of the probability of remediation after
the exposure to each predictor variable. From Model (1), once con-
verting the coefficient (2.197) to RR, we can observe that an increase
in the compliance ratio increases the probability of remediation by
37% as compared with the control group. In Model (2), we checked
the influence of device type, and it does not have a significant effect.
Figure 7 shows the relative risk of the coefficients of our final Model
(3). An increase in compliance ratio increases the probability of reme-
diation by 32%. Extra steps and the device type have no significant
effect. Competing malware presence in the home network decreases
the probability of remediation by 54%.

Customer Experience

The survey ended with two questions about their experience as cus-
tomers of the ISP and the subsidiary brand. There was an open ques-

Figure 7: Relative Risk Model (3) on remediation.

tion asking about what consumers thought of ISP reaching out to
infected customers, and 24 (61%) of the survey respondents in the
walled garden group were satisfied with this approach versus 11
(100%) in the email-only group. These results are more encourag-
ing than in [4], in which only 17 respondents out of 76 expressed
satisfaction. A possible explanation for this difference is that in our
study, we asked specifically about a customer’s opinion of the service,
rather than analyzing the logs of people contacting the support cen-
ter. The latter is likely biased toward customers being frustrated and
struggling with resolving the infection. In our study, some consumers
expressed frustration with losing their internet access, but they were
also glad to be contacted.

Customers were also asked for suggestions to improve the no-
tification and remediation mechanism. Five customers in the email-
only group and 24 in the walled garden group gave an answer. From
the email-only group, two customers suggested that more informa-
tion on the offender device is needed. One customer expressed that
a more personalized email would help to avoid users thinking it is a
phishing email. Another customer expressed the necessity of a higher
availability of the abuse team, since they do not work during week-
ends. Finally, a customer suggested giving more publicity to the abuse
team, so users would be aware of their role. From the walled garden
group, 12 customers suggested that a warning prior to being in a
walled garden was necessary. Along the same lines, five customers
expressed that a call before putting them in a walled garden was a
way to improve. Seven customers expressed that more availability of
the abuse team was necessary. Other suggestions from the walled gar-
den respondents were to explain more clearly the quarantine process
and how to get out, to provide more information on the malware, to

D
ow

nloaded from
 https://academ

ic.oup.com
/cybersecurity/article/7/1/tyab015/6321977 by guest on 28 O

ctober 2022



14 Rodríguez et al.

work on the authenticity of the warning, and to include information
on what device type was actually infected.

Limitations and Future Work

We discuss the main limitations of our study. First, there is the issue
that there could potentially be multiple infections in the same home
network. The ISP notification did tell users that there could be more
than one infection. As long as we saw signs of an infection, we coded
the user as “not clean,” though the user might have cleaned up one of
the infected devices. This means we cannot measure partial cleanup,
only full cleanup. Second, our data is on self-reported actions. Users
might have forgotten what they did or give socially desirable answers.
We cannot rule out these effects, but we did see that the devices that
participants mentioned as being the culprits were, in fact, the same
ones were found by Shodan at those IP addresses. We also observed
that more than half of all users reported taking no action or only one
step (excluding the control group, the count is one in four users). At
the other extreme, only around one in four people stated doing all
the steps. This pattern suggests that the tendency to provide socially
desirable answers was limited.

A third limitation is the limited sample size: 177 participants in
the whole study and 95 participants in the survey sample. This sam-
ple is large enough to find robust results for certain effects and causal
factors. That being said, we were still left with a large portion of un-
observed effects in the study on the impact of compliance on cleanup.

Finally, the experiment was carried out in one ISP and its sub-
sidiary brand in the Netherlands. It is unclear how well these results
will generalize beyond this ISP and country.

Future work might pursue a study with a larger sample size and
in other ISPs and countries. Laboratory experiments might be an al-
ternative, but they have their own methodological weaknesses com-
pared with a field study with a sample of real and heterogeneous
users. An important direction for future work is also to test various
approaches in terms of how to actually provide usable as well as ef-
fective cleanup advice or understand why users do not take some of
the suggested steps in the notification. This might need future work
to collect actual ground-truth on the infected devices on customer
premises, in order to have an empirical basis for remote device iden-
tification and identifying the best cleanup advice, as well as better
understanding of users’ mental models.

Discussion and Conclusion

ISPs are asked to implement best practices to notify consumers about
IoT infections. Is cleaning IoT something that consumers can actually
do? While earlier work [4] suggests that the answer is Yes, we actu-
ally knew little about the underlying mechanism. Without that un-
derstanding, we cannot design better interventions. For this reason,
we measured, first, whether ISP customers complied with the cleanup
advice and, second, whether this compliance improved cleanup rates.

We identified that only 24% of all survey respondents and noti-
fied participants succeeded in performing all remediation steps. The
overwhelming majority of notified users, however, took at least some
action upon receiving the notification. Even in the email-only group,
which only received an email and had no further incentive to act,
over 80% took some action. This finding suggests, differently than
[24, 25], that a less intrusive notification could be effective. However,
due to the sample size, more research is needed. In short, we found
significant evidence that when consumers are informed about com-
promised IoT, they are willing to act. Users notified via email do 1.8
steps on average, while users in the walled garden do 1.95 steps on

average, both compared with the control group, where users only do
0.31 steps.

When analyzing the impact on cleanup, an increase in the compli-
ance ratio increase the probability of remediation by 32%. However,
if the home network was infected with competing malware, this re-
duced the probability of remediation by 54%. It suggests that user
compliance with the recommended steps might not apply to all types
of malware. Some devices remain infected or are being reinfected. IoT
malware analysis has confirmed that some families fight for control
over vulnerable devices. Another explanation for the effect of com-
peting malware might be that the user owned more than one infected
device. Both explanations are consistent with our finding of that com-
peting malware are correlated with worse remediation rates.

If the impact of compliance is limited, it does not mean that the
notifications as such are ineffective. Rather, it signals that the rec-
ommended remediation steps are not a sure way to get rid of the
infection. Users who receive the notification might comprehend their
IoT devices well enough to chart their own course out of the problem.
This is supported by the fact that the impact of the notification on
cleanup is higher than the impact of compliance. Cleanup rates are
high in both treatment groups: 90% in the walled garden group and
73% in the email-only group. This suggests that users, once aware
of the problem, are often able to resolve it, irrespective of the grave
usability problems plaguing the recommended steps and IoT secu-
rity in general. Putting this into the context of the C–HIP model, the
notification acts as an attention switch that triggers users to com-
ply. Comprehension does not play a role in changing user behavior
(compliance), while the type of motivation that users expressed can
negatively influence compliance compared with users who want their
internet back. Its effect is not as big as the notifications. Perhaps we
are seeing an effect of early IoT adopters being also more technically
competent than average users. In that case, we would expect to see
diminishing cleanup rates with the wider adoption of IoT.

Consistent with Fagan and Khan [34], we have observed how
users’ motivations are related to how the infection could affect them-
selves rather than how the infected IoT devices could affect others.
Similar to Redmiles [35], we take a step forward on understanding
compliance with users fixing a real infection in their home network,
giving ecological validity to these findings.

These findings clearly underline the recommended best practice
for ISPs to notify infected users. Walled gardens perform the best in
terms of cleanup. However, they have achieved only limited adoption
among ISPs, because of cost considerations and the fear of customer
pushback. Bad luck caused our email-only group to end up too small
to make robust inferences. That being said, contrary to [4], users in
this group had high compliance rates and high remediation rates.
Since email is a cheap and easily available option for ISPs, this could
be a good second-best notification mechanism. Future work should
test whether our findings for this group hold up with larger samples.
In the end, though, the lion’s share of the burden is not borne by the
ISP. The good news from our study is that consumers are willing and
able to take action, even in the absence of usable security advice and
solutions.
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Appendix A: Correlation between the steps performed by customers

Figure A1: Correlation between the steps performed by customers.

Appendix B: Likelihood ratio test compliance models

Table B1:

Likelihood ratio test Models 1–3
Model 1: Compliance ratio ∼ Walled Garden + Email-only
Model 2: Compliance ratio ∼ Walled Garden + Email-only + Age + Small business + Male
Model 3: Compliance ratio ∼ Walled Garden + Email-only + Age + Small business + Male + Domoticz #Df LogLik Df Chisq Pr(>Chisq)
1 4 95.155
2 7 95.267 3 0.2240 0.9736
3 8 95.332 1 0.1319 0.7165

Likelihood ratio test Models 4–5
Model 1: Compliance ratio ∼ Walled Garden + Age + Small business + Male + Domoticz + Understood notification
Model 2: Compliance ratio ∼ Walled Garden + Age + Small business + Male + Domoticz + Understood notification + Safe

internet + Other motivation #Df LogLik Df Chisq Pr(>Chisq)
4 8 15.630
5 10 22.185 2 13.11 0.001423∗∗

Significance codes: 0 ‘∗∗∗ʼ 0.001 ‘∗∗ʼ 0.01 ‘∗ʼ 0.05 ‘.ʼ 0.1 ‘ ʼ 1.
Note: Models 1–3 are not different with respect to likelihood value, and Model 5 shows improvement with respect to likelihood value of Model 4.
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Appendix C: Survey protocol
These are the survey protocols that were used to conduct the survey with the users in the different treatment groups. The survey was conducted in Dutch. We
translated the questions as accurately as possible to English.

Figure C1: Survey protocol control group.
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Figure C2: Survey protocol walled garden group.
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Figure C3: Survey protocol email-only group.
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Appendix D: Notifications

Walled garden
Illustration of walled garden landing page displayed to consumers who were randomly assigned to the walled garden treatment group. The same content was also
sent to consumers via email.

Figure D1: Landing page of walled garden.
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Email-only
Example of notification email sent to consumers randomly assigned to the email-only treatment group. The notification content essentially only differs with the
previous example in that it omits statements about placing the recipient in a quarantine environment.

Figure D2: Notification email sent to consumers in email-only treatment group.
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