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A B S T R A C T   

Plastic pollution in water bodies is an unresolved environmental issue that damages all aquatic environments, 
and causes economic and health problems. Accurate detection of macroplastic litter (plastic items >5 mm) in 
water is essential to estimate the quantities, compositions and sources, identify emerging trends, and design 
preventive measures or mitigation strategies. In recent years, researchers have demonstrated the potential of 
computer vision (CV) techniques based on deep learning (DL) for automated detection of macroplastic litter in 
water bodies. However, a systematic review to describe the state-of-the-art of the field is lacking. Here we 
provide such a review, and we highlight current knowledge gaps and suggest promising future research di
rections. The review compares 34 papers with respect to their application and modeling related criteria. The 
results show that the researchers have employed a variety of DL architectures implementing different CV 
techniques to detect macroplastic litter in various aquatic environments. However, key knowledge gaps must be 
addressed to overcome the lack of: (i) DL-based macroplastic litter detection models with sufficient general
ization capability, (ii) DL-based quantification of macroplastic (mass) fluxes and hotspots and (iii) scalable 
macroplastic litter monitoring strategies based on robust DL-based quantification. We advocate for the explo
ration of data-centric artificial intelligence approaches and semi-supervised learning to develop models with 
improved generalization capabilities. These models can boost the development of new methods for the quanti
fication of macroplastic (mass) fluxes and hotspots, and allow for structural monitoring strategies that leverage 
robust DL-based quantification. While the identified gaps concern all bodies of water, we recommend increased 
efforts with respect to riverine ecosystems, considering their major role in transport and storage of litter.   

1. Introduction 

Plastic pollution in water bodies is a growing concern with the po
tential to cause environmental and economic damage, and possible ef
fects on human health (González-Fernández et al., 2021; Lebreton et al., 
2018; van Emmerik and Schwarz, 2020). Estimated global emissions of 
plastic waste to aquatic ecosystems range from 19 to 23 million metric 
tons in 2016 (Bellou et al., 2021; Borrelle et al., 2020; Jambeck et al., 
2015). Rivers are the main source of marine plastic pollution, with 
estimated riverine plastic emissions of 0.8 to 2.7 million metric tons into 

oceans each year (Lebreton et al., 2017; Meijer et al., 2021). Further
more, marine plastic litter may wash up on beaches and shores, and 
substantial amounts of discarded plastic litter has also been detected in 
lakes (Imhof et al., 2018; van Emmerik and Schwarz, 2020). 

Detecting and quantifying macroplastic litter (plastic items >5 mm) 
is necessary to assess water pollution levels and develop monitoring 
strategies for designing effective preventive measures, conducting tar
geted cleaning campaigns, and devising mitigation interventions (van 
Emmerik et al., 2022b). Common detection methods include in situ 
methodologies such as sampling and visual observations (Grøsvik et al., 

Abbreviations: AE, Artificial environment; AI, Artificial intelligence; AUV, Autonomous underwater vehicle; CNN, Convolutional neural network; COCO, Common 
Objects in Context; CV, Computer vision; DA, Data augmentation; DL, Deep learning; DSGC, Device setup generalization capability; EGC, Environmental general
ization capability; GGC, Geographical generalization capability; IC, Image classification; IoU, Intersection over union; IS, Image segmentation; mAP, mean average 
precision; ML, Machine learning; MLOps, Machine learning operations; MLP, Multilayer Perceptron; NGC, Non-aquatic generalization capability; OA, Overall ac
curacy; OD, Object detection; OSPAR, Oslo and Paris Conventions; ROV, Remotely operated vehicle; TL, Transfer learning; UAV, Unmanned aerial vehicle. 
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2018; Hardesty et al., 2017; van Emmerik and Schwarz, 2020). More 
recently, methods based on Computer Vision (CV) have been proposed 
to replace these accurate, but time-consuming and labor-intensive in situ 
methodologies with automatic detection from images (Kylili et al., 2020, 
2019; van Lieshout et al., 2020). In particular, researchers focused on 
Deep Learning (DL) methods, a subset of flexible machine learning (ML) 
techniques reaching state-of-the-art performances in many fields of 
science and technology, including water resources management and 
engineering (Sit et al., 2020). DL belongs to the family of representation 
learning techniques that replace manual feature engineering via auto
matic discovery of the representations needed for feature detection from 
raw data (LeCun et al., 2015). This allows DL models to reach 
state-of-the-art performances in all the generic computer vision (CV) 
tasks related to aquatic macroplastic litter detection, such as image 
classification (IC), object detection (OD) and image segmentation (IS) 
(Chai et al., 2021). While preliminary results are promising, this specific 
field is still in its infancy (van Emmerik and Schwarz, 2020). The re
searchers must increase their efforts to devise DL-based applications that 
can help tackling plastic pollution in water bodies at scale. To help build 
the road ahead, this paper presents a critical review outlining the 
state-of-the-art of DL-based detection of macroplastic litter in water 
bodies. The main purposes of this review are (1) to improve researchers’ 
understanding of DL-based macroplastic litter detection by conducting a 
thorough assessment of the current state of the field; (2) to identify key 
knowledge gaps and (3) to provide future research directions concerning 
promising methodologies and novel applications to address these gaps. 

The paper is structured as follows. The methodology used to select 
and analyze the reviewed papers is described in Section 2. Section 3 
thoroughly reviews the selected papers with critical discussion points. 
Section 4 identifies a series of knowledge gaps linked to suggested future 
research directions. Finally, Section 5 provides conclusions. 

2. Methodology 

2.1. Search methodology 

In this review, we analyzed 34 peer-reviewed journal papers and 
conference proceedings retrieved from the “Scopus” and “Web of Sci
ence” databases. We employed the following steps to identify these 
papers. Firstly, we searched for papers published until the end of 2021 
by employing three sets of keywords: (1) Deep learning-related key
words included “deep learning”, “neural network”, “artificial intelli
gence” and “machine learning”; (2) Macroplastic litter-related keywords 
included “plastic”, “trash”, “litter”, “debris” and “garbage”; (3) Water 
bodies keywords included “marine”, “sea”, “ocean”, “beach”, “shore”, 
“river”, “channel”, “canal”, “waterway” and “lake”. The literature search 
identified papers containing combinations of these terms in their titles, 
keywords, and abstract. After reviewing the abstracts of all papers 
matching the inclusion criteria, we selected 33 papers, with the first 
publication dating back to 2016 (Valdenegro-Toro, 2016). Finally, we 
conducted a snowball search by checking the citations of these publi
cations. The procedure yielded a total of 34 papers, which are listed in 
Table 1 along with the most important details. These papers are ordered 
by the type of water bodies and then by publication year within type in 
Table 1. If the study features different CV tasks, the review considers 
each of these tasks separately. When multiple architectures are tested, 
we report only the architecture achieving the highest performances, 
which is listed in the “Model architecture” column of Table 1. 

2.2. Review methodology 

Fig. 1 shows the most relevant factors used to classify and analyze the 
selected 34 papers. The factors are: (i) the water body(ies) polluted by 
macroplastic litter (reviewed and discussed in Section 3.1); (ii) dataset 
on macroplastic litter in water including the dataset source(s), dataset 
label(s), the dataset size and dataset split (Section 3.2); (iii) details on 

the CV task(s) performed to detect macroplastic litter, including the type 
of CV task(s) and model architecture(s) for each CV task (Section 3.3); 
(iv) whether the authors resorted to data augmentation (DA) and 
transfer learning (TL) techniques to improve model performances 
(Section 3.4); (v) the generalization capability of macroplastic litter 
detection models (Section 3.5); and (vi) details on the metric(s) used for 
performance evaluation (Section 3.6). 

3. Review and discussion 

3.1. Water bodies polluted by macroplastic litter 

Fig. 2 shows the distribution of water bodies and dataset sources in 
the reviewed literature. Some papers are counted multiple times since 
they either consider multiple water bodies (Jakovljevic et al., 2020; 
Kylili et al., 2020; Panwar et al., 2020; Watanabe et al., 2019; Wolf et al., 
2020) or employ multiple dataset sources (Hegde et al., 2021; Watanabe 
et al., 2019; Wu et al., 2020). Most studies dealt with macroplastic 
pollution in real settings, with the exception of two studies that 
considered a controlled artificial environment (AE). Valdenegro-Toro 
(2016a) and Wu et al. (2020) collected data in a water tank for model 
training and test, which is time-saving and cost-effective. However, they 
did not investigate the generalization capability of DL models from 
studies in AE to field case studies. Field applications are different from 
studies in AE, because it is generally difficult to replicate the wide va
riety of litter and environmental conditions (e.g., natural lighting) wit
nessed in real settings (Valdenegro-Toro, 2016). We encourage further 
studies to test the performance of DL models trained with AE data when 
applied to real scenarios to assess the overall suitability of this approach 
and to allow future benchmarking of different methods. 

We categorized the bodies of water examined in the reviewed papers 
into (i) beaches and shores, (ii) marine underwater, (iii) marine surface, 
(iv) rivers (including natural rivers, waterways, urban channels and 
their banks), and (v) lakes. Most of the studies (18 out of 34 papers) 
focused on macroplastic pollution in marine environments, including 
marine underwater (11 papers), marine surface (7 papers), and beaches 
and shores (12 papers). Fewer studies were concerned with river 
pollution (6 papers), and only one study dealt with macroplastic litter in 
lakes. This is somewhat expected since, contrary to the consolidated 
body of knowledge for macroplastic pollution in marine environments, 
the first scientific studies on the quantification of riverine macroplastic 
litter date only to the early 2010s (Blettler et al., 2018; van Emmerik and 
Schwarz, 2020); the first studies concerning lakes are even more recent 
(Imhof et al., 2018). 

3.2. Dataset on macroplastic litter 

3.2.1. Employed dataset sources 
Researchers collected input data using imaging devices such as 

standard digital cameras, underwater cameras, cameras mounted on 
unmanned aerial vehicles (UAVs) or manned aircrafts, cameras mounted 
on phones, as well as satellite cameras and sonar technologies. As shown 
in Fig. 2, camera images (12 out of 34 papers), underwater camera 
images (11 papers), and airborne imagery (8 papers) are the three most 
popular dataset sources, while 4 studies have used phone images and 
only 1 study resorted to sonar images or satellite imagery. 

Due to affordable costs and user-friendliness, digital cameras are 
popular data gathering devices regardless of the studied body of water 
(Mustafah et al., 2012). Fixed cameras are installed on bridges to 
monitor floating macroplastic litter on the river surface (van Lieshout 
et al., 2020). One disadvantage is the limited coverage due to their fixed 
positions and limited viewpoints. Cameras attached to a vessel can 
survey broader areas (de Vries et al., 2021; Kylili et al., 2019), although 
these surveying activities are time-consuming and labor-intensive 
compared to fixed installations. Five studies used camera images 
which were partially or completely retrieved from structured databases 
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Table 1 
Details of reviewed papers.  

Reference Water 
body 

Dataset Computer vision task TL DA GC Performance evaluation(1)   

Source Size (# 
images) 

Split 
(%) 

No. 
classes 

Type Model architecture Metric Performance 

Wu et al. (2020) AE phone, 
camera 
und.(2) 

1400 80/ 
0/20 

3 OD YOLO v4 ✓ ✓  mAP mAP=82.7% 

Valdenegro-Toro 
(2016a) 

AE sonar 22,446 70/ 
15/ 
15 

2, 6 IC CNN  ✓  OA, recall, 
confusion 
matrix 

OA=97.1% (6 
object classes)       

OD CNN with sliding 
windows    

recall recall=80.8% 
(binary OD) 

Xue et al. (2021b) marine 
und. 

camera 
und.(2) 

10,000 85/ 
0/15 

7 OD YOLO v3 with 
ResNet50 backbone(3) 

✓ ✓  mAP, AP, F1- 
score, kappa, 
confusion 
matrix 

mAP50=53.8% 

Bajaj et al. (2021) marine 
und. 

camera 
und.(2) 

2900 85/ 
0/15 

3 OD InceptionResNetV2 ✓     

Tian et al. (2021) marine 
und. 

camera 
und. 

6600 94/ 
6/0 

3 OD Improved YOLO v4(3)    mAP, AP  

Hegde et al. (2021) marine 
und. 

camera 
und.(2), 
camera(2) 

10,000 80/ 
20/0 

4 OD SSD MobileNet V2 ✓ ✓  precision, 
recall, F1-score  

Marin et al. (2021) marine 
und. 

camera 
und.(2) 

2395 80/ 
0/20 

6 IC InceptionResNetV2(3) ✓ ✓  OA, F1-score, 
kappa, 
confusion 
matrix, macro 
precision, 
macro recall, 
macro F1- 
score, weighted 
precision, 
weighted F1- 
score 

OA=91.4% 

Politikos et al. 
(2021) 

marine 
und. 

camera 
und. 

635 80/ 
15/5 

11 OD R-CNN with the 
MobileNetV1 
backbone CNN 

✓ ✓  mAP, AP mAP50=62% 

Xue et al. (2021a) marine 
und. 

camera 
und.(2) 

13,914 70/ 
15/ 
15 

7 IC Shuffle-Xception(3)  ✓  OA, average 
accuracy, 
precision, 
recall, F1- 
score, kappa, 
confusion 
matrix  

Deng et al. (2021) marine 
und. 

camera 
und.(2) 

7212  22 OD Improved Mask R- 
CNN(3)  

✓  mAP mAP50=65%       

IS      mAP50=60.2% 
Musić et al. (2020) marine 

und. 
camera 
und.(2) 

~2600 60/ 
20/ 
20 

5 IC VGG16(3) ✓ ✓  OA OA=85%       

OD YOLO v3      
Panwar et al. 

(2020) 
marine 
und., 
shores 

camera(2) 369 80/ 
0/20 

4 OD RetinaNet with 
ResNet-101-FPN 
backbone 

✓  N mAP, AP mAP88=81.48% 

Fulton et al. (2019) marine 
und. 

camera 
und.(2) 

6540 87/ 
0/13 

3 OD YOLO v2(3) ✓   mAP, AP, 
Average IoU 

mAP=47.9% 

Mifdal et al. (2021) marine 
sur. 

satellite(2)   2 IS U-Net  ✓  pixel accuracy, 
F1-score, kappa 

pixel 
accuracy=84.28% 

Garcia-Garin et al. 
(2021) 

marine 
sur. 

airborne 796 90/ 
0/10 

2 IC CNN  ✓  OA, precision, 
recall, F1-score 

OA=81% 

de Vries et al. 
(2021) 

marine 
sur. 

camera 100,000  2 OD YOLO v5(3) ✓     

Kylili et al. (2020) marine 
sur., 
shores 

camera(2) 1600 79/ 
20/1 

8 IC VGG16 ✓ ✓  OA OA=90% 

Battula et al. 
(2020) 

marine 
sur. 

camera(2) 2467  2 OD Resnet-50   N   

Watanabe et al. 
(2019) 

marine 
sur., 
shores 

camera, 
phone 

189 80/ 
0/20 

4 OD YOLO v3    mAP mAP50=77.2% 

Kylili et al. (2019) marine 
sur. 

camera 750 79/ 
20/1 

3 IC VGG16 ✓ ✓  OA OA=86% 

Kylili et al. (2021) shores camera(2) 2000 67/ 
16/ 
17 

7 OD YOLO v5 ✓ ✓    

(continued on next page) 
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(e.g., ImageNet dataset (Deng et al., 2009)) or via internet (e.g., Google). 
Two of these studies (Kylili et al., 2021, 2020) extracted images from the 
ImageNet dataset. Panwar et al. (2020) retrieved images from the TACO 
dataset (Proença and Simões, 2020), and directly utilized the images 
with annotations from the dataset. Battula et al. (2020) extracted images 
from a Kaggle dataset1 and labeled images with bounding boxes to train 
and test OD model. Hegde et al. (2021) retrieved unlabelled images from 
Google and manually created the annotations to develop and test their 
models. 

Researchers mainly used underwater cameras to collect images 
under the water surface, e.g., cameras attached to remotely operated 
vehicles (ROVs) (Wu et al., 2020) or vessels (Politikos et al., 2021). Nine 
studies used underwater camera images which were partially or 
completely retrieved from public databases or internet. This drastically 
reduces the cost of sampling activities in marine underwater environ
ments where sampling requires laborious diving operations, expensive 
ROVs and/or autonomous underwater vehicles (AUVs) (Valdene
gro-Toro, 2016). Five of these studies (Bajaj et al., 2021; Fulton et al., 

2019; Marin et al., 2021; Xue et al., 2021b, 2021a) extracted data from 
the deep-sea debris database2 provided by Japan Agency for 
Marine-earth Science and Technology. Four studies (Hegde et al., 2021; 
Marin et al., 2021; Musić et al., 2020; Wu et al., 2020) retrieved images 
from internet. While authors of these studies had to manually produce 
the annotations, one study (Deng et al., 2021) directly utilized the im
ages with annotations from the TrashCan dataset (Hong et al., 2020). 

Researchers collected airborne imagery using cameras mounted on 
UAVs (7 papers) or placed under manned aircrafts (1 paper). UAVs grant 
versatility since operators can easily customize the flight route and flight 
height to obtain images at different locations and with different ground 
sample distances (Fallati et al., 2019). Furthermore, UAVs allows 
surveying otherwise hard-to-reach locations (Zhang et al., 2017) and 
eliminate the limitations of fixing sensors on bridges or other infra
structure. However, no-fly zones restrict flying UAVs (e.g., nearby air
ports). Researchers may also need special training and licenses to 

Table 1 (continued ) 

Reference Water 
body 

Dataset Computer vision task TL DA GC Performance evaluation(1)   

Source Size (# 
images) 

Split 
(%) 

No. 
classes 

Type Model architecture Metric Performance       

IS YOLACT++

Song et al. (2021) shores phone 846 70/ 
17/ 
13 

7 OD YOLO v5   D AP, mAP  

Martin et al. (2021) shores airborne 750(4)  2, 14 OD Faster R-CNN   G precision, 
recall, F1-score 

F1-score=44.2% 
(binary OD) 

Papakonstantinou 
et al. (2021) 

shores airborne 22,760(4) 54/ 
13/ 
33 

2 IC VGG19(3) ✓ ✓ G OA, precision, 
recall, F1-score 

OA=77.6% 

Wolf et al. (2020) shores, 
rivers 

airborne 12,918(4) 80/ 
0/20 

6, 18 IC CNN ✓ ✓  OA, precision, 
recall, F1- 
score, 
confusion 
matrix 

OA=83% (6 class 
objects), OA=71% 
(18 class objects) 

Gonçalves et al. 
(2020) 

shores airborne   2 IC DenseNet   G precision, 
recall, F1-score  

Kako et al. (2020) shores airborne  64/ 
36/0 

2 IS MLP   G pixel accuracy  

Fallati et al. (2019) shores airborne   2 OD CNN   G, 
E 

precision, 
recall, F1-score 

recall=67% 

Thiagarajan and 
Satheesh Kumar 
(2019) 

shores camera 135  2 IC CNN  ✓  OA, precision, 
recall        

OD CNN with sliding 
windows      

Putra and Prabowo 
(2021) 

rivers phone  90/ 
10/0 

2 OD YOLO v3 with 
darknet-53 backbone 

✓   AP, mAP  

Lin et al. (2021) rivers camera 2400 91/ 
0/9 

8 OD FMA-YOLO v5s(3)  ✓  AP, mAP mAP=79.41% 

Tharani et al. 
(2021) 

rivers camera 13,500 93/ 
7(5) 

3 OD M2Det(VGG)(3) ✓   AP, mAP mAP=45.8%       

IS Improved U-Net(3)      

van Lieshout et al. 
(2020) 

rivers camera 1272 85/ 
0/15 

2 OD Faster R-CNN with 
Inception V2 

✓ ✓ G, 
D 

recall recall=68.7% 

Jakovljevic et al. 
(2020) 

rivers, 
lakes 

airborne 2608 80/ 
20/0  

IS ResUNet50(3) ✓ ✓  precision, 
recall, F1-score  

Acronyms: Transfer learning (TL), Data augmentation (DA), Generalization capability (GC), Artificial Environment (AE), Image classification (IC), Object detection 
(OD), Image segmentation (IS), Geographical generalization capability (G), Environmental generalization capability (E), Device setup generalization capability (D), 
Non-aquatic generalization capability (N), overall accuracy (OA), average precision (AP), mean average precision (mAP), Intersection Over Union (IoU). 

(1) The “Metric” column is not populated when the study does not report common CV metrics. The “Performance” column is populated with the test value of the most 
representative metric. 

(2) Part of or all the images in studies are retrieved from public databases or internet. 
(3) The study features multiple deep learning architectures for computer vision tasks. 
(4) The authors in studies cut the raw images into image tiles. In the “Dataset size” column, we report the total number of image tiles in datasets. 
(5) Tharani et al. (2021) split their dataset into 93% for training and validation and 7% for testing. 

1 https://www.kaggle.com/asdasdasasdas/garbage-classification 

2 Japan Agency for Marine Earth Science and Technology, “Deep-sea Debris 
Database”, available at http://www.godac.jamstec.go.jp/catalog/dsdebris/e/i 
ndex.html 
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operate UAVs, thus increasing the operational costs and, in some case
s/countries, making the use of UAVs difficult, if not impossible. As 
shown in Fig. 2, UAVs are particularly suitable for field sampling ac
tivities along beaches, since these present fewer flight restrictions and 
obstacles that can potentially interfere with the UAVs flight (e.g., 
buildings). 

Only four studies used mobile phones to collect images. Phones are 
easily available for citizens, thus could substantially contribute to citi
zen science initiatives for data collection. Modern smart phones with 
high-resolution cameras can obtain high-quality images and thus meet 
the needs of accurate sampling. 

While sonar devices are preferred instruments for target and object 
recognition in underwater environments, e.g., fish classification and 
fishery assessment (McCann et al., 2018), only one study in the reviewed 
literature applied sonar devices to collect underwater images (Valde
negro-Toro, 2016). Although the relatively higher sampling costs hinder 
the development of autonomous detection and classification directly 
using sonar images (Qin et al., 2021), sonar devices are promising for 
underwater plastic monitoring as suggested by a recent study (Broere 
et al., 2021). Sonar sampling can cover a larger area underwater where 
ROVs or divers cannot safely dive (Neupane and Seok, 2020) because 
sound waves travel further in water. For these reasons, we encourage 
further studies to assess their suitability for detecting macroplastic litter 
under water surface, especially in real-world settings. 

One study (Mifdal et al., 2021) retrieved Sentinel 2 imagery on 
floating marine macroplastic litter from the Google Earth Engine dataset 
catalog. These data are globally available and free of charge, but do not 
contain specific annotations for macroplastic litter. After collecting and 
labeling the satellite imagery, the authors trained DL models to detect 
floating objects on the sea surface. Compared with other dataset sources, 
satellite imagery can provide broader geographical coverage that is 
significant for hotspots monitoring and global environmental moni
toring. On the other hand, satellite imagery is not appropriate to detect 
small and isolated macroplastic litter floating on the vast sea surface, 
and cannot be used for observing underwater litter (Watanabe et al., 
2019). 

3.2.2. Dataset labels 
Authors do not usually categorize macroplastic litter and other types 

Fig. 1. Factors reviewed in the reviewed literature.  

Fig. 2. Distribution of water bodies and dataset sources. Some papers are 
counted multiple times since they either consider multiple water bodies or 
multiple dataset sources. 
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of litter in their datasets using labels that reflect international guidelines 
and standards. If we consider the categories defined by the Oslo and 
Paris Conventions (OSPAR) (Wenneker and Oosterbaan, 2010), we 
identify 12 categories of macroplastic litter (i.e., bags, bottles, nets, 
caps/lids, industrial packaging/plastic sheeting, cups, buckets, cutler
y/trays/straws, shoes/sandals, containers, rope, and floats/buoys), and 
5 categories of other litter (i.e., glass, paper/cardboard, rubber, metal, 
and cloth) across all surveyed datasets. When OSPAR defines multiple 
sub-categories of one plastic product and the specific sub-category is 
unclear in reviewed papers, we only report its general category. For 
example, while “bags” is categorized into 6 sub-categories in OSPAR (e. 
g., small plastic bags and fertilizer/animal feed bags), we only report 
“bags” in this paper. 

Several studies (13 out of 34 papers) detected plastic in a binary 
fashion. Among these, only three studies (Garcia-Garin et al., 2021; 
Kako et al., 2020; van Lieshout et al., 2020) specifically detected the 
presence of macroplastic litter in images. The remaining studies detec
ted macroplastic litter by including it in a generic “litter” or “trash” or 
“debris” category. A larger group of studies detected more than 2 classes 
(22 papers). Among these, one study (Kylili et al., 2019) detected 
different types of plastic products. Nine studies provided a refined 
categorization for other types of litter. For example, Panwar et al. (2020) 
categorized the objects into glass, metal, paper, and plastic. One study 
(Tharani et al., 2021) detected macroplastic litter by considering three 
different sizes, included in three generic categories (i.e., small trash, 
medium trash and large trash). The remaining studies (11 papers) 
detected different plastic products as well as other object categories. For 
instance, Watanabe et al. (2019) classified the objects as plastic bottles, 
plastic bags, drift wood, and other debris. Gathering a balanced dataset 
with accurate labels becomes challenging as the number of classes in
creases. We identify 9 studies (Marin et al., 2021; Martin et al., 2021; 
Musić et al., 2020; Politikos et al., 2021; Tharani et al., 2021; Thiagar
ajan and Satheesh Kumar, 2019; Tian et al., 2021; Wolf et al., 2020; Xue 
et al., 2021b) working with unbalanced datasets, featuring classes with 
very scarce data (e.g., shoes, plastic cups, string and cord). Depending on 
the sensor used and its resolution, small objects (e.g., straws, toothpicks, 
and cotton buds) may be far less visible than others (Tharani et al., 
2021). To improve detection of rare items or small items, we need to 
collect more data at higher resolutions (Wolf et al., 2020). 

3.2.3. Dataset size and split 
The “Dataset size” column of Table 1 reports the size of dataset used 

in the reviewed papers, not including the data generated via DA. For one 
study (Wu et al., 2020), only the dataset size including the data gener
ated with DA could be reported. Fig. 3 shows the distribution of dataset 
sizes (the number of images) per dataset source, as reported in 29 of the 
reviewed papers (see Table 1). The dataset size of phone images is small 
because two other datasets containing phone images and another kind of 
dataset source (Watanabe et al., 2019; Wu et al., 2020) are featured in 
the “multiple” category. The size of another dataset containing phone 
images (Putra and Prabowo, 2021) is unclear, thus it was not reported in 
Fig. 3. One dataset containing 100,000 images (de Vries et al., 2021) is 
much larger than all the others. These time-lapse images were collected 
at intervals between 2 s and 10 s during The Ocean Cleanup’s North 
Pacific Mission 3 research expedition. The average dataset length is of 
around 9000 images. According to Arya et al. (2020), IC generally re
quires more than 5000 labeled images for each class to train a model 
with acceptable performances. For binary detection problems, this en
tails that at least 10,000 images are needed to develop a sufficiently 
robust detection model. In the reviewed literature, 11 studies conducted 
IC tasks (see Table 1). Apart from two studies (Gonçalves et al., 2020; 
Thiagarajan and Satheesh Kumar, 2019), all other 9 studies reported 
both the specific dataset size and the number of classes in datasets. 
According to the suggestions of Arya et al. (2020), with the exception of 
(Papakonstantinou et al., 2021; Valdenegro-Toro, 2016), these studies 
did not collect sufficient raw data for model training and validation 

considering the number of classes. Therefore, all studies lacking suffi
cient data adopted TL and/or DA to improve the performances (see 
Section 3.4). Similar considerations may be drawn also for studies pre
senting OD and IS applications. 

Multiple researchers (e.g., Martin et al. (2021) and van Lieshout 
et al. (2020)) stressed the importance of a large-scale dataset for 
DL-based detection of macroplastic litter. Furthermore, three studies 
(Kylili et al., 2019; Musić et al., 2020; van Lieshout et al., 2020) showed 
that the increase of training dataset size leads to superior detection 
performance. For example, van Lieshout et al. (2020) developed a DL 
model to detect floating macroplastic litter in rivers across Jakarta, 
Indonesia using a binary classification approach. The precision (i.e., the 
proportion of objects correctly identified as macroplastic litter with 
respect to total detections) raised from 49.4% to 59.4% when increasing 
the number of labels in the training dataset from about 2000 to 10,000. 
This study also showed that increasing dataset size further (from 10,000 
to 24,000) resulted in smaller improvements (from 59.4%). Indeed, after 
training with sufficient data to learn basic representations, performance 
for CV tasks tend to grow logarithmically with dataset size (Sun et al., 
2017). Therefore, we suggest gathering and labeling training data with 
respect to the level of performance required to address the specific 
challenge. 

The “Dataset split” column of Table 1 reports the train/validation/ 
test splits of the dataset used. Among 26 papers reporting dataset split, 
10 reported the use of both a validation and a test dataset. The validation 
dataset is commonly used to select the best model by monitoring over
fitting during training; on the other hand, the test dataset is employed to 
assess the generalization capability of the model for “unseen” data. It is 
not clear whether the remaining studies used part of the training data for 
validation and model selection, or if they used the test dataset for that 
purpose. Similarly, some papers report the use of a validation dataset, 
but not that of a test dataset. In general, we recommend to split the 
dataset into training (~80%), validation (~10%) and test (~10%) 
datasets to facilitate robust model selection and unbiased estimation of 
the generalization error on unseen data. 

3.3. Computer vision tasks for macroplastic litter detection 

3.3.1. CV task types 
General CV tasks are image classification (IC), object detection (OD) 

and image segmentation (IS) (Chai et al., 2021). Fig. 4 shows an example 
of DL model architecture, the typical labeling procedure used, and the 
output of different CV tasks. All reviewed studies resorted to supervised 

Fig. 3. Distribution of dataset size (the number of images) per dataset source 
identified in 29 reviewed papers. Each different block identifies a different 
dataset. The label “multiple” identifies datasets obtained from multiple data
set sources. 
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learning for developing the detection models. In supervised learning, the 
model is trained to perform its task from examples of paired inpu
t/output data, where the output data is carefully labeled, or annotated, 
by humans. 

IC is the process of classifying the entire image into one category 
(single-label classification) or multiple categories (multi-label classifi
cation) (Wei et al., 2016). The labeling procedure of IC includes anno
tating a given image with one class label or multiple class labels (see 
Fig. 4, top panel). On the other hand, OD algorithms automatically 
identify the class and location of different objects in images. The labeling 
task of OD requires the annotation of objects with class labels and 
bounding boxes (see Fig. 4, middle panel). Consequently, the output of 
OD models are bounding boxes and class labels for each detected 
instance. IS divides an image into multiple segments with similar 
characteristics, enabling a pixel-by-pixel identification of objects of in
terest. The labeling task requires assigning corresponding labels and 
pixel-wise masks to target objects (see Fig. 4, bottom panel) (Chai et al., 
2021). We identify two types of IS among reviewed papers: semantic 
segmentation (Jakovljevic et al., 2020; Kako et al., 2020; Mifdal et al., 
2021; Tharani et al., 2021) and instance segmentation (Deng et al., 
2021; Kylili et al., 2021). Semantic segmentation assigns category labels 
to each pixel in images, while instance segmentation assigns category 
labels and instance identities to each object pixel (Chai et al., 2021). 
Thus, semantic segmentation is more suitable to quantify the area 
occupied by macroplastic litter, while instance segmentation is more 
appropriate to discriminate different macroplastic items. 

Table 1 shows that researchers prefer OD methods to detect macro
plastic litter in aquatic environments (23 out of 34 papers). OD can 
concurrently identify the type and location of objects in images, thus 
estimating the number of macroplastic items in an image (van Lieshout 
et al., 2020). IC (11 papers) is also popular since it is simpler to 

implement, especially by deploying one of the many successful archi
tectures already available from the CV literature. Only 6 studies resorted 
to IS, arguably because of the substantial amount of time required to 
properly label the datasets (Jabari et al., 2021). Referring to IC models, 
all reviewed papers employed single-label algorithms, i.e., binary clas
sifiers and multi-class classifiers. These methods can only process images 
containing one type of object at a time. On the other hand, multi-label 
classifiers can identify multiple categories of objects in one image (e. 
g., macroplastic litter, metal, and rubber) (Chai et al., 2021). Although 
these classifiers can better capture the diversity of litter in natural en
vironments, no reviewed paper resorted to multi-label IC. 

Although most studies (24 out of 34 papers) conducted CV tasks only 
for detection purposes, 10 studies also attempted the quantification of 
macroplastic litter. Of these, 9 papers quantified the number of macro
plastic items via OD (de Vries et al., 2021; Martin et al., 2021; Song et al., 
2021; van Lieshout et al., 2020), IC (Garcia-Garin et al., 2021; Gon
çalves et al., 2020; Papakonstantinou et al., 2021; Wolf et al., 2020) or IS 
(Kylili et al., 2021). For example, Gonçalves et al. (2020) cut one orig
inal image into small portions, and performed IC to classify each portion 
into “litter” or “no litter”. The number of macroplastic items in one 
image was then calculated by the sum of the number of “litter” portions. 
However, if there are portions containing more than one item, per
forming IC tasks will lead to the deviation between the predicted results 
and the ground truth. Some studies also post-processed the model results 
to compute spatial litter concentrations (in items/m2 or items/km2, 5 
papers), fluxes (in items/min/m, 1 paper), mass concentrations (in 
g/m2, 1 paper) or mass (in kg, 1 paper). For instance, Martin et al. 
(2021) computed the concentrations of plastic bottles in beaches by 
averaging the number of correctly detected bottles over the tested area, 
and computed its mass concentrations by multiplying concentrations 
with respect to the median weights of bottles retrieved from Martin 

Fig. 4. Labeling procedure, selected typical model architecture and output of different computer vision tasks. The “IC” row shows an example of binary classification, 
while the “IS” row shows an example of instance segmentation. Acronyms used: Convolutional layer (CONV), Pooling layer (POOL), Fully connected layer (FC), 
Bounding boxes (BBOXs), Convolutional neural network (CNN), Region Proposal Network (RPN), Image classification (IC), Object detection (OD), Image segmen
tation (IS). 
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et al. (2019). Kylili et al. (2021) computed the total mass of litter in 
beaches by tallying the known mass of all macroplastic items predicted 
by the DL model. van Lieshout et al. (2020) computed the macroplastic 
fluxes floating in rivers by dividing the number of items detected per 
time unit by the river width. Kako et al. (2020) computed macroplastic 
volumes via IS. They first detected the edges of macroplastic litter on 
images, which were then superimposed on a digital surface model 
containing location and altitude data over a beach. This allowed the 
litter volume to be computed from the heights and base area surrounded 
by the edges. 

3.3.2. Model architectures for each CV task 
Most reviewed publications (33 out of 34 papers) used Convolutional 

Neural Networks (CNNs) based architectures, such as YOLO networks 
(Xue et al., 2021b) and VGG networks (Kylili et al., 2020). Only one 
study (Kako et al., 2020) used a more conventional, three-layered 
Multilayer Perceptron (MLP) neural network. Compared with MLP, 
CNN can take advantage of the spatial patterns implicit in raw images. 
Besides, the properties of CNN (i.e., local connections and weight 
sharing) enable it to learn representations with fewer trainable param
eters than MLP (Ming and Xiaolin 2015).These characteristics have 
allowed CNN to outperform MLP (Zhang et al., 2018) and to be more 
widely used for CV. However, none of the reviewed papers featured 
current state-of-the-art architectures such as Vision Transformers, e.g., 
Swin Transformer (Liu et al., 2022a) and ConvNeXts (Zhuang Liu et al., 
2022b). 

In IC tasks, four studies employed the VGGNet architecture, probably 
because this architecture was proposed in 2014, and has been applied 
since then successfully in many fields (Ajit et al., 2020). Custom CNN 
architectures (4 papers) are also popular, mainly to develop parsimo
nious models with limited parameters that better match data availability 
and largely reduce computational efforts. For example, one study (Val
denegro-Toro, 2016) employed a custom 4-layered CNN with 930,000 
parameters, much less than the 143.47 million parameters of a deeper 
VGG model with 19 layers (Marin et al., 2021). 

CNN-based OD algorithms are divided into two-stage algorithms and 
one-stage algorithms. In two-stage algorithms, the first stage generates a 
set of bounding box proposals that are classified and detected in the 
second stage (Chai et al., 2021). On the other hand, one-stage algorithms 
perform classification and bounding box prediction concurrently in a 
single forward pass of the network. YOLO networks (11 papers) are the 
most frequently used OD architectures among the reviewed papers. 
YOLO networks are popular one-stage architectures thanks to their fast 
processing speed, which can reach the standards required for real-time 
video processing (Redmon et al., 2016). Although YOLO networks are 
faster than other architectures, its accuracy may be lower than that of 
some two-stage OD algorithms such as Faster R-CNN, which has been 
used in two reviewed papers. 

U-Net (3 papers) is the most frequently employed IS architecture 
(Huang et al., 2020). One study (Jakovljevic et al., 2020) employed 
ResUNet50, which is based on a hybrid between the popular ResNet (He 
et al., 2016) and U-Net architectures. Building blocks of ResNet 
pre-trained on the ImageNet dataset are added to the U-Net. 

Two studies deployed DL models, Resnet-50 neural network (Battula 
et al., 2020) and SSD MobileNet V2 (Hegde et al., 2021) to perform OD 
in edge computing devices, e.g., processing boards connected to fixed 
cameras or installed in ROVs. For example, Hegde et al. (2021) stored a 
trained detection model in a Raspberry Pi board. The device used the 
model to detect macroplastic litter from the surrounding environment as 
sampled by the attached underwater camera. 

Model complexity plays an important role for DL models that will 
eventually run in real-time or on edge computing devices. Researchers 
should thus further investigate the suitability of small architectures with 
good classification performances, such as MobileNetV2 (~2.4 million 
parameters) (Dong et al., 2020), and SqueezeNetV1 (~1.2 million pa
rameters) (Gholami et al., 2018). These “light” architectures can be 

easily transferred to edge devices and play a significant role in tackling 
macroplastic pollution in water bodies. Pruning algorithms can suc
cessfully reduce model complexity and enable edge computing. For 
instance, Tian et al. (2021) proposed a pruned YOLO v4 capable of ac
curate OD for underwater camera images with only 7% of the original 
parameters. 

3.4. Techniques to improve DL model performances 

3.4.1. Transfer learning 
Transfer learning (TL) involves the transfer of prior knowledge from 

a related task to a new task (Pan and Yang, 2010). When applied to DL 
models, TL entails reusing parts of a model pre-trained on very large 
datasets (e.g., ImageNet dataset) using computing clusters. This opera
tion improves learning of the new task by: (1) providing a better starting 
point for training and preventing the model from falling into local 
minima (Fulton et al., 2019); (2) limiting the number of parameters to be 
optimized to a subset of the layers of the network; and (3) reducing 
data-labeling efforts by reducing the amount of training data needed to 
reach satisfactory performances on the new task. 

Most of the reviewed papers (19 out of 34 papers) adopted TL, 
regardless of the CV task performed. For example, Musić et al. (2020) 
performed IC task to detect five categories of litter, i.e., plastic, glass, 
metal, paper and cardboard. They pre-trained the VGG16 on ImageNet 
dataset and fine-tuned the final layers of the VGG16 on a new dataset 
containing images from these five categories of litter. Although the 
objects in ImageNet are quite different from the detected litter, the 
pre-trained model improves detection because it recognizes generic 
features (e.g., edges, and basic shapes) in its early layers. 

Researchers usually used models pre-trained on the ImageNet data
set or the Common Objects in Context (COCO) dataset (Lin et al., 2014). 
ImageNet is preferred for IC (5 papers), but also applied for OD (2 pa
pers) and IS (2 papers). The COCO dataset is a common choice for OD (6 
papers). The CIFAR-10 dataset (Recht et al., 2018) and the PASCAL VOC 
dataset (Everingham et al., 2010) have also been used. 

While several authors resorted to TL to develop their models, with 
the exception of (Marin et al., 2021), no studies have thoroughly 
assessed its benefits with respect to training from scratch or fine-tuning 
the entire architecture (not just the classifier). Such investigations can 
be justified by the reported good performances of small architectures 
such as MobileNetV2 and SqueezeNetV1. Furthermore, the representa
tion learned on large open source datasets may not always reflect typical 
features of images with macroplastic litter (e.g., variety of litter, pres
ence of water in the background). 

3.4.2. Data augmentation 
Data augmentation (DA) reduces model overfitting by increasing the 

amount of available training data via augmentation or transformation of 
the images in the original training dataset (Shorten and Khoshgoftaar, 
2019). This technique can also improve the performances of models 
when dealing with imbalanced datasets by creating more samples of 
underrepresented classes. 

DA usually involves automatic procedures performing geometrical 
transformations as well as color space transformations on available 
images. The DA methods used in reviewed papers include flipping (11 
papers), rotation (10 papers), zooming in/out (4 papers), shifting (4 
papers), noise addition (3 papers), cropping (2 papers), shearing (2 
papers), copy-paste augmentation (2 papers), changes in brightness (1 
paper), and mosaic data augmentation (1 paper). Fig. 5 shows an 
example of several DA techniques. Copy-paste augmentation is an 
advanced DA technique, whose purpose is to copy objects from a source 
image and paste them to a target image (Ghiasi et al., 2021). For 
example, Lin et al. (2021) employed such technique to superimpose 
labeled target objects cropped from real-world images against realistic 
backgrounds. Mosaic data augmentation combines 4 cropped images to 
create a synthetic image, that is often used for data augmentation in OD 
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tasks (Lin et al., 2021). 
Flipping is the most popular choice as it preserves the original fea

tures of macroplastic litter in the images and maintains fidelity with 
respect to the original label. On the other hand, the addition of noise or 
changes in brightness may alter the original images too much, thus 
degrading model performances. Rotation, zooming in, shifting, crop
ping, shearing, and mosaic data augmentation may instead lead to the 
omission of some of the originals objects of interest in the new images, 
forcing relabeling and partially nullifying the benefits of DA (Shorten 
and Khoshgoftaar, 2019). 

While most studies (20 out of 34 papers) applied DA (see Table 1), 
only three studies have thoroughly evaluated the benefits of DA with 
respect to training the same architecture on the original dataset. van 
Lieshout et al. (2020) showed that model precision marginally raised 
from 59.4% to 63.4% when using flipping data augmentation methods. 
Lin et al. (2021) also showed the model performances increased slightly 
when employing mosaic data augmentation. Musić et al. (2020) used 
copy-paste augmentation by superimposing computer-generated mac
roplastic litter on realistic backgrounds. However, adding these images 
to the training dataset resulted in poorer prediction performances on the 
real-world dataset. Thus, researchers should discuss the benefits of 
different DA method for macroplastic litter detection models in more 
depth. 

3.5. Generalization capability 

DL models for CV exploit spatial inductive biases and shared weights 
to recognize features and objects regardless of their position in the image 
(Battaglia et al., 2018). While this favors generalization to unseen data, 
good detection performances at a single location or for similar envi
ronmental conditions do not guarantee that the model can be success
fully applied or “transferred” to other situations and case studies. 
Achieving satisfactory out-of-domain generalization capability is a 
prerequisite for deploying large scale monitoring strategies based on DL, 
especially with respect to transferability across different bodies of water, 
locations, and device setups. 

We identify four different forms of out-of-domain generalization 

capability in the reviewed papers: (1) geographical generalization 
capability, (2) environmental generalization capability, (3) non-aquatic 
generalization capability, and (4) device setup generalization capability. 
Geographical generalization capability represents the generalization 
capability of the model at different locations under roughly the same 
environmental conditions (such as weather, presence of waves, wind 
conditions, and terrain shading). Environmental generalization capa
bility refers model testing in different environmental conditions. Non- 
aquatic generalization capability involves models trained with data 
from non-aquatic environments and tested on aquatic environments (or 
vice versa). Lastly, device setup generalization capability represents the 
generalization capability for different device setups, such as the flight 
altitude of UAVs, or the setting angle between a fixed camera and the 
water surface. 

Despite the importance of generalization, only few studies (9 out of 
34 papers) directly addressed these aspects, with two studies (Fallati 
et al., 2019; van Lieshout et al., 2020) considering two different forms of 
generalization capability (see Table 1). The majority of these 9 studies 
are with respect to geographical generalization capability (6 papers). 
Five papers (Fallati et al., 2019; Kako et al., 2020; Martin et al., 2021; 
Papakonstantinou et al., 2021; van Lieshout et al., 2020) studied 
geographical generalization capability by training and testing on 
different case studies, respectively. For example, Papakonstantinou 
et al. (2021) trained DL models on UAV images captured from certain 
beaches, and tested it on UAV images collected from different beaches. 
Compared with geographical generalization capability, there are less 
studies concerning non-aquatic generalization capability (2 papers), 
device setup generalization capability (2 papers), and environmental 
generalization capability (1 paper). For instance, Panwar et al. (2020) 
trained a model on images of macroplastic litter gathered across streets 
and forests, and tested it on images with macroplastic litter under the sea 
surface and on beaches. Song et al. (2021) assessed device setup 
generalization capability by using a phone mounted on a tripod to 
collect training and test data from different heights at one beach. Fallati 
et al. (2019) evaluated environmental generalization capability by col
lecting training and test data at different time of the day. The authors 
also used a UAV to collect training and test data at different beaches to 

Fig. 5. Examples of data augmentation techniques used in reviewed papers to improve model performances. Left: original images; Right: images generated by 
performing geometrical transformations (e.g., flipping, rotation, zooming in, shifting, cropping, and shearing), and other basic (e.g., changes in brightness, and noise 
addition), or advanced transformations (e.g., copy-paste augmentation, and mosaic data augmentation). 
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assess the geographical generalization capability of the model. 
Among the 9 papers addressing generalization capability, 4 papers 

(Battula et al., 2020; Kako et al., 2020; Panwar et al., 2020; Song et al., 
2021) did not discuss the performances of DL models trained and tested 
in different conditions. Only 1 paper (Papakonstantinou et al., 2021) 
reported promising geographical generalization capability, with a pre
cision metric of 83%. The models in the remaining studies did not show 
satisfactory generalization performances when tested for different 
geographical, environmental, or device setup conditions with reported 
precision between 20% and 63.8%. For example, van Lieshout et al. 
(2020) showed that the performances of a trained model working 
reasonably well for one location deteriorated quickly for an unseen 
location, with a decrease in precision from 68.7% to 54%. These new 
images featured substantially more organic material (e.g., leaves and 
branches) than those used for training. The presence of organic material, 
unaccounted for during training, thus hindered robust detection of 
floating macroplastic litter. The authors also showed that the general
ization performances increased when including images from different 
locations in the training dataset. In general, we believe the community 
should increase efforts to develop DL models with robust generalization 
that can operate well across different conditions. 

3.6. Performance evaluation 

The “Metric” column of Table 1 reports the performance metrics used 
by the authors when these reflect common options used for CV (Padilla 
et al., 2020; Wambugu et al., 2021) and are unambiguous. 

For IC tasks, the majority of studies used the overall accuracy (OA) 
metric (9 out of 11 papers) to evaluate performances over all classes. 
Precision (6 papers), recall (7 papers), and F1-score (6 papers) were the 
most popular choices to evaluate performances for each class. These 
metrics should be preferred for imbalanced datasets since OA mis
represents the minority classes. For example, Wolf et al. (2020) worked 
on an imbalanced dataset including 18 categories of objects. Although 
good average performance were reported for all classes (OA=71%), 
minority classes such as carton (25 images in total) were poorly detected 
(F1-score=0.46). 

For binary OD, common metrics include recall (4 out of 8 papers), 
precision (2 papers), and F1-score (2 papers). For multi-class OD, the 
majority of studies employed average precision (AP, 8 out of 17 papers) 
and mean average precision (mAP, 11 papers) to assess performances for 
each class object and over all classes, respectively. The value of these 
metrics depends largely on the selected threshold for determining the 
Intersection Over Union (IoU), a number that quantifies the degree of 
overlap between the predicted and ground-truth bounding boxes. With 
some exceptions (Deng et al., 2021; Panwar et al., 2020; Politikos et al., 
2021; Putra and Prabowo, 2021; Song et al., 2021; Watanabe et al., 
2019; Xue et al., 2021b), these important thresholds are rarely reported 
in reviewed papers. Based on common benchmarks (e.g., COCO and 
PASCAL VOC), we recommend using a threshold IoU=0.5 when esti
mating fluxes (e.g., number of items across the river width per unit of 
time), while higher thresholds (e.g., up to 0.95) should be used to 
quantify mass concentrations (e.g., hotspot areas). 

For binary semantic segmentation tasks, two studies (Kako et al., 
2020; Mifdal et al., 2021) used pixel accuracy metrics to assess perfor
mances on detecting macroplastic litter. For multi-class semantic seg
mentation tasks, one paper (Jakovljevic et al., 2020) used precision, 
recall, and F1-score metrics to evaluate performances for each class. No 
papers reported results in terms of IoU or mean IoU, which are the 
preferred metrics for semantic segmentation as they account for un
balanced datasets. For multi-class instance segmentation, one paper 
(Deng et al., 2021) employed mAP to evaluate performances over all 
classes. 

The “Performance” column of Table 1 reports the test value of the 
most representative metric across all classes. However, since the pro
posed methodologies have been tested on different macroplastic 

datasets in disparate experimental settings, a direct comparison is un
feasible. More interestingly, some papers report encouraging evidence 
on the effectiveness of DL methods with respect to accurate, but time- 
consuming, sampling methods. For instance, de Vries et al. (2021) 
found a satisfactory correlation (R2=0.7) between DL-detected spatial 
concentrations of macroplastics on the sea surface and manta-trawling 
ground truth observations. Song et al. (2021) reported a small error 
(<5%) between the number of litter items on a beach yielded by actual 
counting and those detected by Yolo v5. Kako et al. (2020) reported 
similar figures (<5%) for the volumetric difference of beached plastic 
debris between surveys and MLP-based IS. These results suggest that 
using DL for automatic detection and quantification of macroplastic 
litter is a valid alternative to traditional sampling methodologies. 

4. Knowledge gaps and future directions 

Our review shows that the majority of reviewed papers focus on 
detecting macroplastic litter in marine environments, while less atten
tion is devoted to detecting freshwater macroplastic litter. Recent 
research indicated that most plastic debris leaking into the environment 
does not reach the oceans, but instead accumulates in river systems 
(Tramoy et al., 2020; van Emmerik et al., 2022a; Weideman et al., 
2020), resulting in damaged ecosystems (Blettler et al., 2018). Moni
toring the source, transport, and sink points of riverine macroplastic 
litter is thus essential to quantify global macroplastic pollution transport 
and effectively reduce pollution (van Emmerik and Schwarz, 2020). 
Therefore, we advocate for greater efforts on applying DL to tackle 
riverine macroplastic pollution problems in the future. 

Based on the findings reported in Section 3, we identify three major 
knowledge gaps regardless of the body of water: 

(1) There is a lack of DL-based detection models with robust gener
alization performances. This includes models that can detect 
macroplastic litter for a certain water body for different 
geographical/environmental/device setup conditions as well as 
models that can generalize across different case studies (e.g., 
waterway networks within a country).  

(2) The current literature mainly focuses on quantifying the number 
of macroplastic items. There is a lack of DL-based methods for the 
quantification of macroplastic (mass) fluxes and hotspots. Accu
rate quantification is essential to estimate pollution impacts, 
devise targeted cleaning interventions, and evaluate the success 
of mitigation efforts.  

(3) Stemming from the first two gaps, we emphasize the lack of 
research to inform the design of structural monitoring strategies 
exploiting robust DL-based quantification. 

Based on the above knowledge gaps, we propose three future 
research directions to bridge the corresponding gaps. These include (i) 
the development of a general DL model to detect macroplastic litter; (ii) 
future DL-based applications for the quantification of macroplastic 
(mass) fluxes and hotspots; and (iii) the development of DL-based 
monitoring strategies. 

While these knowledge gaps and research directions concern all 
bodies of water, we underline their importance with respect to riverine 
ecosystems. This consideration reflects their major role in transport and 
storage of macroplastic litter (van Emmerik et al., 2022a), as well as 
feasibility with respect to extensive monitoring of marine ecosystems. 

4.1. Development of a general macroplastic litter detection model 

Section 3.5 shows that, despite some promising initial efforts, 
research on the generalization capability of DL models for detecting 
macroplastic litter is insufficient. Most papers focus on detecting mac
roplastic litter on a specific case study, but lack an in-depth analysis on 
generalization. Besides, review results show that the models proposed so 
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far do not retain satisfactory performances under different geographical, 
environmental, or device setup conditions. Researchers should thus in
crease efforts to bridge this gap, possibly by exploiting new trends in ML 
such as data-centric AI and semi-supervised machine learning, as suggested 
in the following paragraphs. 

4.1.1. Data-centric artificial intelligence 
Regardless of the CV task, our review shows that several known 

model architectures perform reasonably well for detecting macroplastic 
litter in individual case studies. Further improvements can be obtained 
by resorting to the latest state-of-the-art models, such as Vision Trans
formers (Paul and Chen, 2022) or ConvNeXts (Liu et al., 2022b). How
ever, we suggest that achieving higher generalization performances may 
require shifting the focus from model architectures to data. This is the 
core idea behind the emerging field of data-centric artificial intelligence 
(AI), which aims to improve model performances by training on cleaner 
and more informative datasets (Motamedi et al., 2021). Several studies 
have shown the benefits of employing these approaches for a wide va
riety of CV-related industrial applications (Im et al., 2021; Tang et al., 
2021;Zhou et al., 2020b). These approaches usually entail improving the 
quality of existing data by resorting to pre-processing techniques, sys
tematic labeling, and expert knowledge. For instance, sun glints on the 
surface of rivers can lead to the misclassification of floating objects 
(Jakovljevic et al., 2020). Some pre-processing techniques, such as 
Contrast Limited Adaptive Histogram Equalization, can dilute the effects 
of these unwanted reflections and boost model performances, as shown 
already for applications in defect detection and eye tracking (Im et al., 
2021; Singvi et al., 2012). 

Enforcing consistency in the labeling procedure can results in similar 
improvements (Jain et al., 2021). Manual labeling may introduce sig
nificant human error and bias in data, which in turn may severely un
dermine model performances. Clear guidelines (with illustrative 
examples) and cross-checking between multiple labelers strengthen the 
consistency of labeled data towards achieving reliable performances 
(Lavitas et al., 2021). Similar to what discussed in Section 3.2.2, labels 
for DL-based litter detection should reflect OSPAR categories (Wen
neker and Oosterbaan, 2010) or plastic categories used in CrowdWater 
(van Emmerik et al., 2020) to facilitate their usage and allow for joining 
multiple sources to train models with better generalization 
performances. 

The data-centric approach also favors the collection of additional 
data from in-situ experiments whenever possible. In particular, we 
suggest gathering more training images at various sampling locations 
under different environmental conditions (van Lieshout et al., 2020), 
and extending the collection to different devices and instrumental set
tings for extensive monitoring applications (e.g., river networks, 
nation-wide initiatives). We also recommend collecting more data about 
rare and small items (e.g., straws, cups, shoes, strings, and cords). The 
choice of data gathering devices can refer to their characteristics re
ported in Section 3.2.1, the monitoring aims and available resources. 
The researchers should prevent privacy violation when using phones, 
cameras, or UAVs to sample in a public location (e.g., urban waterways). 
Researchers can resort some privacy-preserving approaches in human 
and human activity recognition, e.g., image style transformation, and 
differential privacy (Jung, 2020). Alternatively, researchers should 
resort to DA techniques to increase the number of the images collected in 
the field. Review results show that most authors employ traditional 
augmentation techniques (e.g., flipping transformation), with few 
studies assessing the benefits of advanced augmentation techniques such 
as copy-paste augmentation described in Section 3.4.2. Contrary to some 
traditional techniques, this augmentation procedure does not change the 
original features of target macroplastic litter or omits objects in the 
newly generated images. While Musić et al. (2020) did not report 
improved performances, studies form other fields suggest substantial 
benefits for different CV tasks (Dwibedi et al., 2017; Ghiasi et al., 2021; 
Xu et al., 2021). By following the data-centric approach, researchers can 

develop a large open dataset with carefully labeled images that can be 
used for model development, pre-training and fair benchmarking. 

4.1.2. Semi-supervised learning methods 
All reviewed studies employ supervised learning methods to detect 

macroplastic litter. To achieve good generalization performances, su
pervised learning requires large amount of labeled data obtained with 
substantial efforts, professional knowledge and skills. Recently, the AI 
researchers are increasing efforts to develop alternative methods based 
on semi-supervised learning that greatly reduce the need of costly su
pervision (Misra and van der Maaten, 2020). This approach entails a 
preliminary step based on self-supervised learning, e.g., the process of 
learning meaningful representations from images via pretext tasks that 
do not require annotations. After pre-training, the model is fine-tuned 
for prediction on a specific downstream task, which requires a limited 
amount of labelled data. 

Fig. 6 shows an example of semi-supervised learning for macroplastic 
litter detection adapted from Noroozi and Favaro (2016). Firstly, we 
need to carefully label a few images and keep the remaining unlabeled. 
These images are chosen to maximize the informative content of the 
labeled dataset (e.g., images with good representations of different 
macroplastic litter, different sampling locations and different environ
mental conditions). Next, a CNN is trained on a large number of unla
beled images by solving the jigsaw puzzle problem as a pretext task. In 
the jigsaw task, we randomly crop a window (red dashed box in Fig. 6) 
from an image, divide it into a 3 × 3 grid and randomly select a tile 
(yellow dashed box) in each cell. These tiles numbered from 1 to 9 are 
reordered by a randomly selected permutation (e.g., 9, 8, 7, 6, 1, 2, 3, 4, 
5) from a predefined permutation set. The training dataset for the pre
text task is generated by retaining a subset of all potential permutations 
(e.g., 100) for each image. The pretext task entails reconstructing the 
original image from its permutations. After training, the representations 
of unlabeled data learned by the CNN are transferred to the downstream 
task (i.e., macroplastic litter detection) by fine-tuning the CNN via su
pervised learning on a limited number of carefully labeled images. 
Semi-supervised learning can be a better alternative to supervised 
learning methods because of the lower cost of annotating data and the 
competitive model performances. 

4.2. Quantification of riverine macroplastic (mass) fluxes and hotspots 

Our review shows that the current literature mainly focuses on 
detecting macroplastic litter in water, and only few studies link DL- 
based detection to the quantification of macroplastic litter, mainly 
with respect to the number of macroplastic items. Only one study (van 
Lieshout et al., 2020) quantifies the floating macroplastic fluxes and no 
studies quantifies the extension of floating macroplastic hotspots, 
although stakeholders require this information to design cleaning 
campaigns, and mitigate the impact of pollution on the environment and 
human health (Tasseron et al., 2020; van Emmerik et al., 2018). 
Considering the significance of riverine macroplastic pollution, future 
studies should focus on the development of new methods for quantifying 
macroplastic (mass) fluxes and hotspots in riverine environments.  

(1) Macroplastic (mass) fluxes 

Macroplastic fluxes and mass fluxes can be expressed as the number 
and the mass of macroplastic items across the river width per unit of 
time, respectively (van Emmerik et al., 2018). To quantify them, we 
recommend gathering images by installing fixed cameras on hydraulic 
infrastructures (e.g., bridges) at various locations along the river (or 
river network), and train the DL model on these images. Performing OD 
tasks can precisely quantify the number of items by detecting each item 
in images with a bounding box (see Fig. 4). The latest versions of YOLO 
networks (e.g., YOLO v7 (Wang et al., 2022)) are the most promising 
architectures to detect litter fast and accurately. Then, a limited number 
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of experiments must be conducted by (i) sampling litter using nets, (ii) 
counting the number of samples, and (iii) weighing them. The sampled 
average densities can be computed by dividing the weight of litter by the 
number of items in experiments. Finally, we can predict the number of 
riverine litter on tested area, and then post-process the results to 
compute the fluxes by dividing by the recording time (van Lieshout 
et al., 2020). Mass fluxes can be obtained by multiplying fluxes with 
respect to sampled average densities (van Emmerik et al., 2018).  

(2) Mass of macroplastic litter in hotspots 

Macroplastic hotspots are locations where a large amount of mac
roplastic litter accumulates on the water surface due to favorable 
morphological and environmental conditions (Moy et al., 2018). We 
suggest collecting hotspot images at various locations along rivers using 
UAVs, that can provide an overview of pollution with low human labor 
costs and high-resolution images (Vriend et al., 2020), and train the DL 
model on these images. Studies from other fields suggest DL-based se
mantic segmentation methods can precisely quantify the area of target 
objects (Kang et al., 2020; Zhou et al., 2020a). Thus, we believe that 
semantic segmentation can provide reliable estimations of the area 
occupied by hotspots. Next, limited experiments are needed to (i) collect 
hotspot images and measure the true area of them, (ii) sample litter in 
these hotspots (e.g., using nets), and (iii) weigh litter. The spatial 
average densities of hotspots can be computed by dividing the weight of 
the litter by the true area occupied by them. After accounting for image 
resolution (e.g., pixel to area ratio), the mass of macroplastic litter in 

hotspots can be obtained by multiplying the pixels identified as hotspots 
by the IS algorithm by the spatial average densities. 

4.3. DL-based monitoring of riverine macroplastic litter 

Monitoring the source, transport, distribution, sink points and trends 
of riverine macroplastic litter is essential for decision-makers to devise 
mitigation strategies and conduct targeted cleaning campaigns (van 
Emmerik et al., 2022b; Vriend et al., 2020). Designing effective moni
toring strategies helps implement these activities more efficiently. 
Nonetheless, the review shows that no papers in the literature consid
ered the design and implementation of structural monitoring strategies 
exploiting DL-based quantification. 

To devise automated strategies for long-term monitoring of riverine 
macroplastic litter, we propose integrating robust DL-based macro
plastic litter quantification in the “Roadmap” proposed by van Emmerik 
et al. (2022b). The roadmap consists of three steps (or levels): (i) method 
development, (ii) baseline assessment, and (iii) long-term monitoring. 
The first step focuses on assessing available monitoring techniques and 
methodologies in order to lay the foundations for developing a suitable 
strategy. The second step aims at establishing baseline measurements to 
get a first estimate on the magnitude of the problem, as well as providing 
insights for improving the monitoring protocol in the long run. The 
latter step is concerned with the exploitation of structural monitoring for 
higher-level tasks, such as inferring trends, estimating the effects of 
policy changes on the level of pollution, or mapping transport pathways. 

While these steps are sequential, the roadmap is a cyclical approach 

Fig. 6. The schematic illustration of a semi-supervised learning method adapted from Noroozi and Favaro (2016). (a) Unlabeled images are subdivided in 9 tiles 
(yellow dashed box), which are extracted and shuffled randomly to create different permutations (b); the model (e.g., CNN) is pre-trained by solving the jigsaw puzzle 
problem of reordering the tiles (pretext task) (c); a limited amount of labeled images (d) is used to fine-tune the DL model to learn a specific plastic detection 
downstream task (e). 
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for continuous improvement of structural monitoring via incorporation 
of new insights, monitoring goals, priorities, and data. This iterative 
design can be successfully mapped to the continuous integration/ 
continuous deployment process implemented for ML-based solution, 
which is known as machine learning operations (MLOps) (Ruf et al., 
2021). MLOps enables long-term utilization and refinement of ML-based 
solutions by automating all key phases such as data management, model 
deployment, and model validation. The integration of MLOps into the 
roadmap of van Emmerik et al. (2022b) could results in the following 
steps leading to DL-based structural monitoring of macroplastic litter. 
The first step could include the selection of DL tasks (e.g., IC, OD, and 
IS), DL architectures (e.g., YOLO) and monitoring devices (e.g., cameras 
and drones) for the specific problem. In the second step, the MLOps 
infrastructure could be initially deployed on selected pilot projects to 
train baseline DL models and validate their performance. This will 
require systematic data gathering and ground truth measurements (e.g., 
visual inspection of recordings, comparison against visual counting, and 
sampling litter distributions from clean-up initiatives). After establish
ing a satisfactory baseline, long-term monitoring on the selected pilot 
study(ies) can start. Concurrently, the infrastructure can be strategically 
extended, employing the baseline DL models for monitoring at new lo
cations. Following the data-centric AI approach (see Section 4.1.1), we 
can add novel, accurately labeled images at these new (or existing) lo
cations to improve the generalization capability of the baseline models. 
This could also include adding litter categories of interests underrepre
sented in the training dataset or performing tailored ground truth vali
dation for more accurate quantification. As witnessed in other fields of 
application (Ruf et al., 2021), we believe several iterations of the pro
posed MLOps approach may lead to robust and automated structural 
monitoring of macroplastic litter. 

5. Conclusions 

This paper reviewed the current research concerning deep learning 
(DL)-based detection of macroplastic litter in water bodies, and pro
posed key knowledge gaps and future directions. The following knowl
edge gaps were identified based on the critical review and discussion of 
34 reviewed papers:  

(1) The lack of DL models with satisfactory generalization capability, 
that are able to detect macroplastic litter in a given water body in 
a robust manner under different geographical, environmental 
and device setup conditions.  

(2) In terms of applications, there is a lack of DL-based methods for 
the quantification of macroplastic (mass) fluxes and hotspots.  

(3) No reviewed papers perform the design of structural monitoring 
strategies exploiting robust DL-based quantification. 

To address above gaps, the following research directions are 
suggested:  

(1) Future research is required to develop a robust DL model that has 
better generalization capabilities, i.e. that is able to detect mac
roplastic litter in a more reliable and consistent manner irre
spective of geographical, environmental and other conditions. 
This can be done by exploiting new methods in machine learning, 
such as data-centric artificial intelligence (AI) methods and semi- 
supervised machine learning.  

(2) More efforts should go into developing better methods for 
quantifying macroplastic (mass) fluxes and hotspots. We identify 
potential methods of quantifying the macroplastic (mass) fluxes 
by performing object detection tasks, and quantifying the mass of 
macroplastic litter in hotspots by conducting semantic segmen
tation tasks.  

(3) The community should focus on developing and validating 
automated DL-based quantification for structural monitoring of 

macroplastic litter. We propose to approach this important task 
by integrating MLOps technologies in the general framework for 
long-term monitoring proposed by van Emmerik et al. (2022b). 

While the identified gaps and suggested research directions concern 
all bodies of water, we highlight their importance with respect to 
riverine ecosystems, which are currently understudied despite their 
major role in transport and storage of litter. This review has the 
following limitations: (1) comparing the performances across different 
studies was difficult since models are evaluated on different dataset, and 
results are reported with different metrics; (2) the code and data used in 
most studies are not open to the public, therefore we could not perform 
basic checks on their quality; and (3) this work considered only peer- 
reviewed journal papers and conference proceedings; as such, we did 
not take into account project reports or other type of publications (e.g., 
project blogs, conference abstracts) which may present interesting re
sults concerning the application in the field of reviewed (or other) DL 
models. 

We expect DL to be a promising method to advance automatic 
detection of macroplastic litter in all bodies of water. This is an emerging 
research field that requires more efforts, including multidisciplinary 
research, and data and technology sharing around the world. 
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