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Abstract
Data-driven Reynolds-averaged Navier–Stokes (RANS) turbulence closures are increasing 
seen as a viable alternative to general-purpose RANS closures, when LES reference data is 
available—also in wind-energy. Parsimonious closures with few, simple terms have advan-
tages in terms of stability, interpret-ability, and execution speed. However experience suggests 
that closure model corrections need be made only in limited regions—e.g. in the near-wake of 
wind turbines and not in the majority of the flow. A parsimonious model therefore must find 
a middle ground between precise corrections in the wake, and zero corrections elsewhere. We 
attempt to resolve this impasse by introducing a classifier to identify regions needing correc-
tion, and only fit and apply our model correction there. We observe that such classifier-based 
models are significantly simpler (with fewer terms) than models without a classifier, and have 
similar accuracy, but are more prone to instability. We apply our framework to three flows con-
sisting of multiple wind-turbines in neutral conditions with interacting wakes.

1  Introduction

Aerodynamic models for wind farms are essential to optimize energy yield and turbine 
loading both during the design and the operational stage of wind farms. The simplest mod-
els are algebraic engineering models, and the most complex large-eddy simulations (LES) 
(Stevens and Meneveau 2017). While the former do not give meaningful results if strong 
wake interaction is present, the latter are too expensive to be used for engineering purposes 
(Breton et al. 2017; Ghaisas et al. 2017). Reynolds-averaged Navier–Stokes (RANS) offers 
a possible middle path: they require about two orders-of-magnitude less computational 
time than LES, while incorporating much of the physics, but they have significant accuracy 
deficits caused by turbulence closure modelling.
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For quasi-steady atmospheric conditions around wind farms, the most commonly used 
RANS model is the k − � model (van der Laan et al. 2014; Rethore 2009), which has sig-
nificant structural shortcomings. It over-predicts the eddy viscosity in the near wake which 
leads to an accelerated wake recovery; it fails to account for the effects of turbulence ani-
sotropy (Luan and Dwight 2020; Sanderse et  al. 2011); and the direct effect of the tur-
bine on the turbulence mean quantities is not modeled (Rethore 2009). Modifications have 
been proposed in literature, notably anisotropy corrections (Gómez-Elvira et al. 2005); and 
corrections to the dissipation rate ( � ) equation in the near-wake (El Kasmi and Masson 
2008); and modelling the effect of the turbine with a volume forcing not local to the physi-
cal turbine (Cabezón et al. 2011). Prospathopoulos et al. (2010) compare a four separate 
model corrections in the context of turbines in series. In all these works improvements in 
mean-flow predictions are made, but these are test-case specific, require non-general tun-
ing parameters, the models are not numerically robust, and atmospheric stratification is 
not considered (van der Laan and Andersen 2018). Additionally, most of these models do 
not directly consider the effect of actuator forcing on the turbulence equations. In our view 
the most successful modification proposed so far is the k − � − fP model of van der Laan 
and Andersen (2018), who use an eddy-viscosity limiter that is only active in regions with 
high-velocity gradients. A summary of possible modifications can be found in our previ-
ous publication (Steiner et al. 2022). The perspective for further improvements by expert 
modellers is in our opinion limited, given the complexity of the modelling task—especially 
when stratification is considered.

1.1 � Data‑Driven Turbulence Modelling

It is for this reason that we propose data-driven modelling as an tool for devising more accu-
rate closures. In our previous work (Steiner et al. 2020, 2022) we extended the data-driven 
framework Sparse Regression of Turbulent Stress Anisotropy (SpaRTA) first introduced by 
Schmelzer et al. (2019). The framework introduces two nonlinear corrections to the baseline 
k − � or k − � equations: (i) an anisotropy correction and (ii) an additive correction to the 
transport equation for the turbulent kinetic energy. This has the benefit of separately correct-
ing both the directionality and the magnitude of the Reynolds stress tensor (RST), as well as 
accounting for model-form errors in the transport equation for k. To model these corrections 
SpaRTA uses deterministic symbolic regression, for which the search space is constrained 
towards parsimonious algebraic models using sparsity-promoting regression techniques 
(Brunton et  al. 2016; Rudy et  al. 2017). The idea of obtaining simple model expressions 
follows the work of Weatheritt and Sandberg (2016, 2017) who pioneered Gene-Expression 
Programming (GEP) as a means of obtaining similar concise models.

While the SpaRTA framework worked well for our turbine wake-interaction problems 
(Steiner et  al. 2020), leading to significantly improved wake-evolution predictions, the 
experience highlighted two effects. Firstly, that closure model corrections were necessary 
only in limited spatial regions. In particular, while the majority of the domain consisted 
of an undisturbed Atmospheric Boundary Layer (ABL), corrections to the baseline k − � 
model were needed only in the turbine wakes, and especially the near-wakes. Our SpaRTA 
model therefore was forced to find a middle ground between precise corrections in the 
wake, and zero corrections elsewhere. This lead to the second effect: the model became 
quite complex, involving 25 terms to represent the anisotropy correction alone. Many of 
these terms were observed to cancel outside the wakes, in which way the model achieved 
an effect localized to the wakes.
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1.2 � Classifiers in Turbulence Models

To resolve this issue—and the novelty of this work—we introduce a logistic classifier to 
the framework. A classifier is a function that yields values between zero and one, and is 
used here to switch the closure corrections off and on, so they are active where needed, and 
elsewhere the unmodified k − � model is used. This is analogous to sensors in traditional 
closures, which detect specific physical effects and active relevant terms locally. Our clas-
sification target is based on the magnitude of the required model correction (a quantity 
derived from the LES data), rather than being a manually defined target, or being based 
on metrics estimating the significance of RANS modelling assumptions as in Ling and 
Templeton (2015); Gorlé et  al. (2014). As such the classifiers trained to predict this tar-
get directly pertain to the need-for-correction within the SpaRTA framework. The logistic 
classifier by its nature gives a smooth transition between “off” and “on”, reducing spuri-
ous numerical effects due to switching. A side-effect of using a classifier is also reduced 
computational costs for both training and prediction (as a result of reduced data and sim-
pler models respectively). The classifiers, and the regression models for the corrections, are 
based on the feature-set detailed in Wang et al. (2017); Wu et al. (2018), with the addition 
of a feature describing the actuator forcing used to model the wind turbines.

While classifiers have been explored in the context of RANS modelling before, e.g. Ling 
and Templeton (2015), this work is—to our knowledge—the first example of a learned 
classifier forming an integral part of a RANS closure. The classifier is itself parsimonious 
(based on sparse regression), straightforward to construct, and is shown to generalize well. 
The correction models obtained in combination with the classifier are significantly simpler 
(with fewer terms) than correction models based on the full field, but have similar or bet-
ter accuracy in a predictive setting. One significant issue arising with our classifier-based 
models is that—in limited regions of high velocity-gradients, they tend to remove too much 
turbulence energy. We analyze the mechanism behind this instability, and introduce simple 
limiters to prevent these small areas from destabilizing the predictive simulations.

While there are a multitude of publications on data-driven turbulence modeling with vari-
ous approaches as summarized in Duraisamy et al. (2019), only few use classifiers or markers 
to identify regions in the flow field with high uncertainty due to the turbulence model. Gorlé 
et al. (2014) developed a simple nonlinear marker for RANS simulations to identify regions 
in which the flow field deviates from parallel shear flow. Ling and Templeton (2015) defined 
three separate markers that pertain to different ways in which the Boussinesq hypothesis 
fails: (i) the negativity of the eddy viscosity, (ii) turbulence anisotropy, and (iii) the difference 
between a linear and nonlinear eddy-viscosity model prediction. The markers were derived 
by solving a classification problem using different supervised machine-learning approaches, 
namely support vector machines (SVMs), Adaboost decision trees, and random forests (RFs).

However, none of these publications integrate these markers with either a turbulence 
correction or more accurate turbulence models in regions with positive indication. The 
authors are aware of one publication publication by Longo et al. (2017) where the marker 
from Gorlé et al. is used to blend a LEVM model with a NLEVM in regions of non-paral-
lel shear flow around buildings. A blending function is used to further smooth the marker 
properties, because the marker itself can have very sharp gradients. The general approach 
of selectively modifying the closure model depending on the local flow properties has par-
allels in the Generalized k − � (GEKO) models of Menter et  al. (2019). Both these are 
hand-designed models, with some similarities with the approach presented in this paper, 
whereas our models result from a data-driven approach targeted at a specific class of flows.
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1.3 � Overview

This publication is structured as follows. In Sect. 2 we specify the methodology. Additive 
model-form error terms within the k − � LEVM model are identified via the introduction of 
corrections to the stress-strain relation and the turbulence transport equations. The k-cor-
rective-frozen-RANS approach to identify the optimal model correction is explained, and 
the target for the classifier is defined. The modelling of both the correction term and the 
classifier using an elastic net is introduced. In Sect. 3, the results of the frozen approach, 
the training, and cross-validation of the classifier and the correction terms, as well as the 
inclusion of the weighted correction terms in the flow solver are displayed. Some thoughts 
on numerical stability are also presented. A comparison between models derived with and 
without the classifier is also shown. Finally, conclusions are drawn in Sect. 4.

2 � Methodology

2.1 � Ground‑Truth Data Generation (LES)

Our database comprised three cases: A, B and C shown in Fig. 1. All cases use the same 
surface roughness and an inflow velocity profile modelling a neutrally stable atmospheric 
boundary-layer. The cases vary in the turbine constellations. The turbine and inflow prop-
erties were taken from the wind-tunnel experiment of Chamorro and Porté-Agel (2010). 
Table  1 presents the parameters related to the inflow profiles, turbine dimension and 
domain size.

For both LES and RANS OpenFOAM-6.0 was used in conjunction with the SOWFA-6 
toolbox (Churchfield and Lee 2022). For the RANS solver, a modified k − � model is the 
baseline closure; for the LES solver, the WALE model was used to model the unresolved 

Fig. 1   Case constellation, turbine 
diameter is to scale
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scales (Nicoud and Ducros 1999; Sanz Rodrigo et al. 2017). Table 2 presents the specific 
closure coefficients used. Actuator-disc models of the turbines are used in both LES and 
RANS, this avoids additional differences resulting from e.g. using actuator-line models in 
the LES. Details of the numerical setup such as boundary conditions and mesh resolution, 
as well as a validation of the CFD models with respect to wind tunnel measurements, can 
all be found in Steiner et al. (2022).

Throughout this work, turbulence models will be trained using the data from Case A 
only. LES data for Cases B and C is used exclusively for validation of the resulting models.

2.2 � Optimal RANS Corrections Using the Frozen Approach

Given a reference LES field, finding a corrective field for the RANS equations is not triv-
ial. In particular simply injecting the LES (or DNS) RST into the equations does not neces-
sarily improve the correctness of the RANS mean-field (Thompson et al. 2016).

In this section we address this problem with the “frozen approach”: we take an LES 
time-averaged flow-field of a statistically stationary flow, including mean velocity U⋆ , 
turbulent kinetic energy k⋆ , and Reynolds stresses 𝜏⋆

ij
 (where an LES quantity is denoted 

Table 1   Case setup paramters

Turbine

Diameter D = 0.15m

Hub height hhub = 0.125m

Rotation speed Ω = 1190 rpm

 Inflow boundary layer

Velocity U
(
hhub

)
= 2.2m/s

Turbulence intensity �U
(
hhub

)
= 1.0%

 Mesh

Domain size 5.4 × 1.8 × 0.46m3

Resolution 360 × 120 × 64

Table 2   Turbulence model parameters

WALE model

Ce 0.93
Ck 0.0673
Cw 0.325

k − � model

C� 0.03
C�1 1.42
C�2 1.92
�� 1.3
�k 1.3
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by a ⋆ ). If we inject these quantities into the k − � equations with appropriate BCs, 
the only remaining unknown is the turbulence dissipation rate � . We can solve the �
-equation (from k − � ) to obtain an approximation to the dissipation rate, but the other 
equations (for k and U) will not be satisfied. This is due to the modelling assumptions 
required to obtain these equations—notably the Boussinesq assumption, and the model-
ling of the various terms in the k equation. As a direct consequence: solving the k − � 
equations can not lead us to the LES mean-solution.

If we wish to have a solution that corresponds to the LES mean flow, it is therefore 
necessary to modify the equations such that when LES data is injected they are satis-
fied. The way we do this is by adding spatially varying corrective fields, and since both 
the momentum equation and the k-equation are not satisfied, we need to add corrections 
to both these equations. We choose an additive correction R̃(�) in the k-equation:

and interpreting this as a modification to the production leads to a corresponding change in 
the � equation:

where the production term is known exactly from the LES data:

The above coupled equations consist of a PDE for � and an algebraic expression for R̃ 
(since all ⋆ quantities are known), and may be solved iteratively yielding the unknown 
fields � and R̃.

We must also address the momentum equation, which we do by a correction to the 
Boussinesq approximation:

so that the tensor-field b̃Δ
ij
(�) can be computed algebraically from (4) using the definition 

of the eddy-viscosity 𝜈t ∶= C𝜇k
⋆2∕𝜀 . The resulting fields � , R̃ and b̃Δ

ij
 , satisfy the modified 

k − � equations with the LES data as an exact solution.

2.3 � Specification of the Classification Target

The corrective fields b̃Δ
ij
(�) and R̃(�) defined above are non-zero everywhere, but 

negligible in large regions of the flow. We define a single classification target 
𝜎̃(�) ∶ Ω → {0, 1} , a function of the spatial coordinate � taking the value 0 when no 
model correction is required, and 1 where correction is required—this assessment is 
based on the values of the corrective fields. Specifically we define

(1)
Dk⋆

Dt
= P

⋆

k
+ R̃(�) − 𝜀 +

𝜕

𝜕xj

[(
𝜈 + 𝜈t∕𝜎k

)𝜕k⋆
𝜕xj

]
,

(2)
D𝜀

Dt
=
[
C𝜀1

(
P
⋆

k
+ R̃(�)

)
− C𝜀2𝜀

]
⋅
𝜀

k⋆
+

𝜕

𝜕xj

[(
𝜈 + 𝜈t∕𝜎𝜀

) 𝜕𝜀
𝜕xj

]
,

(3)P
⋆

k
∶= 2k⋆b⋆

ij

𝜕U⋆
i

𝜕xj
.

(4)b⋆
ij
∶=

𝜏⋆
ij

2k⋆
−

1

3
𝛿ij = −

𝜈t

k⋆
S⋆
ij
+ b̃Δ

ij
(�).
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where P⋆

k
 is the LES T.K.E. production, and

is the extra T.K.E. production (beyond Boussinesq) due to b̃Δ
ij
 . This marker is thus active 

when the correction due to either R̃ or b̃Δ
ij
 exceeds 20% of the reference T.K.E. production. 

Note that P̃Δ
k
 may be zero, even when other measures of the tensor-valued correction bΔ

ij
 are 

significant. This choice of classification target was made based on the observation that bΔ
ij
 

tends to have the biggest effect on the mean-flow via the production term.
A small threshold � ∶= 0.01 is added to avoid division by zero. Finally multi-dimen-

sional Gaussian smoothing with a filter width of two cells has been applied to all the fields 
in the marker expression before using them to calculate the marker. This mitigates noise in 
the input data.

The implied frozen corrections with classification then become:

i.e. the same classification is applied to both corrections, and to all components of b̃Δ
ij
 . The 

effect is simply to switch corrections off when they fall below the threshold given in (5).
Note that the evolution of the incoming ABL does not match exactly between RANS 

and LES, and hence an additional correction is required (a function of wall-distance only), 
the details of which are identical to those of Steiner et al. (2022).

2.4 � Modelling the Correction Terms and the Classifier

The objective of this section is to take the corrective fields b̃Δ
ij
(�) and R̃(�) , and the clas-

sification target 𝜎̃(�) (which are all functions of space), and make generalizable models 
for them in terms of local flow quantities available to RANS. This is the point at which the 
methods of supervised machine learning are valuable.

The input features we use are as comprehensive as we can achieve – later sparse regres-
sion will eliminate features that are not informative. We closely follow Wu et al. (2018), 
and use an integrity basis based on the set {S,�,Ap,Ak} where:

(5)𝜎̃(�) ∶=

⎧
⎪
⎨
⎪
⎩

1 if

� ���P̃
Δ

k

���
�P⋆

k �+𝜖
> 0.2

�
∪
� �R̃�
�P⋆

k �+𝜖
> 0.2

�

0 otherwise,

P̃
Δ

k
∶= 2k⋆b̃Δ

ij

𝜕Ui

𝜕xj

(6)R̃𝜎(�) ∶= 𝜎̃(�) ⋅ R̃(�), b̃
Δ,𝜎

ij
(�) ∶= 𝜎̃(�) ⋅ b̃Δ

ij
(�),

S ∶=
1

2

k

�
(∇U + ∇UT ),

� ∶=
1

2

k

�
(∇U − ∇UT ),

Ap ∶= −

√
k

�
I × ∇

�
p

�

�
,

Ak ∶= −

√
k

�
I × ∇k,
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all of which are non-dimensional. We obtain a generalization of the Pope basis (Pope 
Nov 1975) augmented with pressure- and k-gradients, resulting in 47 scalar invariants 
� ∶= [I1,… , I47] . In addition we supplement the feature set with 11 non-dimensionalized 
physical features such as actuator forcing, � ∶= [q1,… , q11] . We use all these features 
when approximating both the corrective fields and the classification target. The full list of 
features can be found in Steiner et al. (2022).

Where approximating b̃Δ
ij
 , we employ the first four Pope basis tensors T (n)

ij
 , and by con-

struction guarantee Galilean and rotational invariance:

An analogous modelling approach is taken for approximating R̃:

In the above �n(⋅) , �n(⋅) and �(⋅) are arbitrary scalar-valued functions of the features.
In (8) we allow two types of terms: those that mirror a correction to the turbulence pro-

duction, and those that represents a correction to the dissipation rate. Since the production 
term should already be correct (due to knowledge of the RST from LES), we expect most 
corrections to take the latter form. Nonetheless the former form allows us to capture other 
model-form errors - in our case notably the omission of the effect of the rotor forcing on 
the turbulence.

For the modelling the classification target 𝜎̃(�) the sigmoid function 
s(x) ∶= 1∕(1 + exp(−x)) is used in conjunction with a scalar-valued function of the fea-
tures, �(⋅):

where—by construction—� ∈ [0, 1] for arbitrary �(⋅).

2.4.1 � Sparse Regression

Any function representation can be used to parameterize the scalar-valued functions �n , �n , 
� , and � . We use a library approach with sparse regression (Schmelzer et al. 2019).

The 47 + 11 = 58 input features are used to build a large library of L ∈ ℕ candidate 
(basis) functions (�1,…�L) . This is done by recombining features with each other (up to 
a maximum of three features), and applying exponentiation by 1

2
 and 2. This results in a 

library cubically larger than the feature set. Each scalar function is then represented as:

i.e. a linear representation with coefficients � ∈ ℝ
L . An elastic net is then used to identify 

an optimal regressor with sparsity (most of the coefficients are zero) (Zou and Hastie Apr 
2005).

Logistic regression is appropriate for the problem of discovering a classifier � matching 
the classification target 𝜎̃ . In this case �(⋅) takes the form (10), and we solve:

(7)b̂Δ
ij
(�, �) ∶=

4∑

n=1

T
(n)

ij
𝛼n(�,�).

(8)R̂(�, �) ∶= 2k
𝜕ui

𝜕xj

[
4∑

n=1

T
(n)

ij
𝛽n(�, �)

]
+ 𝜀 ⋅ 𝛾(�, �),

(9)�(�, �) ∶= s(�(�,�))

(10)�(I, q) ∶=

L∑

k=1

�k�k(I, q),



Flow, Turbulence and Combustion	

1 3

where 1 ≤ k ≤ N indexes the mesh-points of the training data, and � ∈ [0, 1] and � ∈ ℝ
+ 

control the level of sparseness, and coefficient magnitude respectively.
Given a classifier �(�,�) for the anisotropy correction we solve

where ‖ ⋅ ‖F is the Frobenius norm, and we have 4 × L coefficients in total (due to the four 
functions �1,… , �4 in (7)). The presence of the multiplicative �(⋅) term in the sum, limits 
training to locations where the (previously trained) classifier is active. The model for R is 
trained similarly.

Note that in the above � is a placeholder for the regression coefficients, and takes differ-
ent values for R, bΔ

ij
 and � . Similarly the values of � and � may be different for each model. 

The final correction models are then:

analogously to (6).
The outline of the full procedure is: 

1.	 Preprocessing: Use a mutual-information criterion to remove features that have no rela-
tionship to the target. Then build the library, and reduce it by cliqueing (identifying and 
removing clusters of multi-colinear functions).

2.	 Train a classifier: Match the classification target with a model expression �(⋅).
3.	 Data reduction: Use the classifier � from the previous step as a condition for inclusion 

of a point in the training dataset.
4.	 Model discovery: Use the elastic net to identify model forms. By varying regularization 

parameters � and � , obtain an array of models with a variety of non-zero terms.
5.	 Model re-calibration: For each model from the previous step, recalibrate the non-zero 

model terms using Ridge regression (i.e. L2 regularization only). Select a regularization 
parameter � to encourage small coefficients.

The preprocessing step makes use of two probabilistic procedures: Mutual information 
(MI) (Moon et al. 1995; Ver Steeg and Galstyan 2013) and cliqueing (Alba 1973). MI can 
identify nonlinear relations between input features and correction terms and can hence 
help reduce the input feature set. Cliqueing checks if there is multi-collinearity in the input 
library and is thus useful for discarding co-linear input functions. Both of these procedures 
are vital for bringing for making the learning procedure manageable for our dataset.

3 � Results and Discussion

For purposes of comparison in the following discussion we will use the LES data, as well 
as the predictions of the baseline k − � model, and the predictions of model we derived in 
Steiner et al. (2022). That latter model was obtained using the same elastic-net methodology 

(11)min
�∈ℝL

�
N�

k=1

log
�
𝜎̃(�k) − 𝜎(�(�k), �(�k))

�
+ 𝜆𝜌‖�‖1 + 0.5𝜆(1 − 𝜌)‖�‖2

�
.

min
�∈ℝ4×L

�
N�

k=1

𝜎(�k, �k)‖b̃Δij (�k) − b̂Δ
ij
(�k, �k)‖2F + 𝜆𝜌‖�‖1 + 𝜆(1 − 𝜌)‖�‖2

�
,

R(�,�) ∶= 𝜎(�,�) ⋅ R̂(�,�), bΔ
ij
(�, �) ∶= 𝜎(�, �) ⋅ b̂Δ

ij
(�,�),
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as used in this paper, but without the use of a classifier, and is given in Appendix A. It con-
sists of 25 terms for bΔ

ij
 and 11 terms for R. Our objective is to obtain similar accuracy and 

generalizability with classified-models, with significantly fewer terms.

3.1 � Injection of Frozen Correction Terms

We first inject the frozen corrections of (6) into a RANS simulation. The fields R̃𝜎(�) 
and b̃Δ,𝜎

ij
(�) are calculated using the procedure of Sect. 2.2 for Case A, and are thereafter 

injected into a RANS simulation of the same case. This is therefore not a predictive test, 
but is useful for assessing the best-case scenario that can be obtained using our methodol-
ogy. In the next subsection, our models for the correction terms will introduce additional 
errors.

Figure 2 shows the wall-normal profiles of the flow velocity and the turbulent kinetic 
energy (TKE) (non-dimensionalised by their values at the turbine hub height) as a func-
tion of non-dimensional height, at different stream-wise locations in the domain: from a 
distance of −1D upstream of the first turbine T1 to a distance of 10D downstream of the 
second turbine T2, where D is the turbine diameter. The locations of the turbines and the 
locations of the profiles are indicated in the figure. Wake profiles are shown for the LES, 
the baseline RANS ( k − � ), and the frozen RANS simulations.

Fig. 2   Vertical velocity and T.K.E. profiles for Case A; positions of the two turbines, and the profile loca-
tions are shown in gray. Comparison of LES; RANS baseline; RANS with injected frozen corrections; and 
RANS with injection of R̃𝜎 and b̃Δ,𝜎

ij
 separately
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The results in the figure show that—in terms of these quantities—indeed the frozen cor-
rection terms lead to an almost perfect match between the LES mean and frozen RANS 
velocity, and only localized mismatch of k near the wall. In particular we see that restrict-
ing the corrective fields based on the threshold of (5) has not significantly harmed the qual-
ity of the fit. On this basis we progress to discovering models for the corrections.

As an aside: we can assess the relative importance of the two corrective fields by inject-
ing only one or the other—see Fig. 2. The anisotropy correction term b̃Δ,𝜎

ij
 is significantly 

more important than the k-equation correction R̃𝜎 . In fact, if only a correct prediction of the 
velocity field is necessary, then R could be neglected completely. However, it does yield a 
significant improvement in the prediction of the turbulent kinetic energy, suggesting that in 
a predictive context it might become important.

3.2 � Training of the Classifier

Based on the mutual information analysis, the feature set for the classifier was reduced to 
only four variables, listed in the first four rows of Table 3. Other features did not express 
significant correlation with the classification target. Varying the regularization parameters 
of the elastic net resulted in the identification of a large number of classifiers, of which five 
were selected for further testing based on complexity and achieved fit. These are denoted 
�1 to �5 in the following. The complexity of the chosen classifiers ranges from one to nine 
terms; and notably more much complex models do not show a significant increase in accu-
racy. Figure 3 is a visualization of the terms used. There is significant overlap between the 
terms used by the classifiers, notably turbulence intensity, velocity shear and eddy viscos-
ity ratio are dominant in all. Note that not all features we used are Galilean invariant, nota-
bly turbulence intensity qTI and actuator forcing qF rely on a reference-frame fixed with the 

Fig. 3   Visualization of non-zero terms in the five discovered classifier models, �1 to �5 . Model coefficients 
are not shown
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ground. As such the developed models cannot be considered general-purpose, but specific 
to wind-farms.

In order to investigate the effect of the classifier models in isolation from the correction 
models, all five were implemented in the RANS solver in combination with the frozen cor-
rection terms. I.e. the corrections implemented were:

and the classifier was updated at every iteration of the flow solver until the system 
converged.

Figure 4 shows T.K.E. profiles and the classifier fields (velocity profiles are almost iden-
tical for all classifiers and are not shown in the figure). There is minimal variation in the 
T.K.E. profiles, except close to the wall. The classifier values themselves show significant 
spread in the bottom part of the wake and towards the wall which does not seem to affect 
the mean-fields significantly. This could be an consequence of the corrections being gener-
ally small in the lower part of the wake. On this basis classifier �1 is considered the most 
promising candidate as it is the simplest, with a single term. We also retain �3 , of interme-
diate complexity and slightly higher accuracy.

Note that the classifiers themselves might be considered not a particularly good fit to the 
classification target. There are two main reasons for this: 

1.	 The classification target contains global information such as transport within the flow, 
whereas the the classifiers are function of local features only. As such there are regions 
in the lower part of the wake that cannot be effectively distinguished from regions in 
the upstream boundary-layer. Thus the classification problem is harder than it appears.

2.	 Our objective is to obtain good models that are as simple as possible—a better fit (of the 
classifier or the corrections) must be traded-off with model complexity. Increasing the 

R(�, �) ∶= 𝜎l(�,�) ⋅ R̃, bΔ
ij
(�,�) ∶= 𝜎l(�,�) ⋅ b̃

Δ
ij
, l ∈ {1,… , 5}.

Table 3   Non-dimensional features used in the discovered models of the classifiers and corrective fields. 
Other features not listed, while included in the model discovery process, were ultimately not part of any 
model

ID Description Expression Normalization

q� Shear parameter ‖‖‖‖
�Ui

�xj

‖‖‖‖

�

k

q� Ratio of total to normal Reynolds stresses ||u�
i
u�
jBoussinesq

|| k

q� Viscosity ratio �t 100�

qTI Turbulence intensity k 1

2
UiUi

qF Actuator forcing ‖‖Fcell
‖‖ 1

2
�0Acell‖U‖2

q
⟂

Nonorthogonality of U and ∇U |UiUj
�Ui

�xj
|

√
UlUlUi

�Ui

�xj
Uk

�Uk

�xj

I1 – tr S2 –
I2 – tr�2 –
I19 – tr�AkS

2 –
I25 – tr A2

k
S�S

2 –
I35 – tr ApAkS

2 –
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number of terms involved in our symbolic classifier dramatically did not significantly 
improve the fit, and was therefore not considered. It is perhaps the case that by using 
a random-forest, ANN or other very highly parameterized model, a better fit may be 
possible—but at the cost of significant model complexity.

3.3 � Training of Correction Models

We now train correction models for the regions of the flow for which the classifier is active. 
The classifier is always trained first (see previous section), and used to discard points from 
the training data-set. As such the correction model only has to reproduce the frozen correc-
tion where the classifier is active, potentially allowing for a better fit with simpler models. 
Experiments with �1 and �3 showed no benefits of using the more complex �3 , as such all 
models here are trained with data selected using �1.

3.3.1 � Anisotropy Correction

All features were used in the model discovery phase resulting in a large number of 
candidate models. We used the procedures described in Sect.  2.4 to select a small 
set of promising models, and in addition we preferentially selected models without 

Fig. 4   LES; RANS baseline; and corrected RANS simulations of Case A. Correction terms are frozen and 
classifiers are coupled with the solver. The figures depict vertical slices the TKE (top) and classifier (bot-
tom)
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T (2),… , T (4) terms—i.e. linear eddy-viscosity models. Table  3 lists the features that 
were ultimately part of the resulting models.

Figure  5 visualizes the nonzero terms of the selected model formulations for the 
anisotropy correction term. We denote the models bΔ

1
 to bΔ

6
 in order of increasing 

model complexity, which ranges from 6 to 15 terms. Models bΔ
1
 to bΔ

4
 use only T (1)

—making them linear EVMs—whereas bΔ
5
 and bΔ

6
 also use higher-degree base ten-

sors, so we refer to them as non-linear EVMs. Four terms are used by all models (the 
first four rows of Fig. 5): these use T (1) combined with qTI and qF , and/or the invariant 
I1 . In the remaining terms, the physical features q� and q

⟂
 are most often represented, 

followed by the invariant I2 . The most frequently used feature overall is I1 . For the non-
linear eddy viscosity models a large overlap between the terms with nonlinear tensors 
is seen. The reference SpaRTA model without classifier is shown in the figure as “ref”, 
and can be seem to be significantly more complex.

We assess the models for bΔ
ij
 independently of the classifier and R models, by using 

the frozen R̃ and 𝜎̃ , and coupling only the model for bΔ
ij
 . Figure 6 shows the effect of 

these partially coupled models for Case A. Again, the spread between the models is 
significantly larger for the k profiles than for the velocity profiles. Further, there is no 
significant spread between the models for the first turbine’s wake, while the models 
differ for the second turbine—though all represent a significant improvement over the 
baseline model. Remarkable is is the simplest linear model bΔ

1
 and the simplest nonlin-

ear model bΔ
6
 which yield the most consistent improvement over the baseline model, 

with the latter having a slight edge in the wake of T2.

3.3.2 � T.K.E. Equation Correction

The nonzero terms of the correction models discovered for R are shown in Fig.  7, 
and in this case the models are denoted R1,… ,R7 . The first observation is that terms 
describing a correction of the dissipation rate � dominate these models, compared to 
terms describing a modification of production. Two terms are used in all models (the 
first two rows of Fig. 7): (i) a modified linear production and (ii) a dissipation associ-
ated with actuator forcing. When compared to the anisotropy correction models, the 
TKE production correction models use a wider range of features, most likely because 
this correction term is more complex and not as strongly related to velocity shear.

Once more, in Fig. 8 we visualize the effect of coupling these models with the flow 
solver using frozen b̃Δ

ij
 and 𝜎̃ . The models are not distinguished in the plot in since their 

predictions are largely consistent with each other, with very little spread. Indeed, since 
this correction term mainly affects the turbulent kinetic energy, there is no visible dif-
ference in the velocity profiles. There is some spread in the turbulent kinetic energy 
profiles which is largest in the near wake of the second turbine. The most complex 
model yields the most consistent improvement over the baseline model, but the dif-
ferences between models is not significant, so again we select the simplest model for 
further investigation.
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Fig. 5   Visualization of non-zero terms in the six discovered anisotropy-correction models, bΔ
1
 to bΔ

5
 , as well 

as bΔ
ref

 from Steiner et al. (2022). Terms based on T (1) only are gray, while terms involving T (2−4) are black. 
The model coefficients are not shown
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3.4 � Robustness of Correction Terms

We observe the introduction of the classifier makes the data-driven SpaRTA models 
more prone to instabilities. NLEVMs are typically less stable than linear EVMs, and 
models produced by SpaRTA are no exception. However the classifier exacerbates this 
problem. The authors suspect this is because models derived in conjunction with clas-
sification are not required to be zero in non-wake regions. As such the models have 
become more sensitive to changes in the input features and tensors.

The instabilities manifest themselves as divergence of the anisotropy correction in 
the near wake of the turbines, and the R correction close to the rotor disk. Both manifes-
tations are based on the same underlying effects: 

1.	 The baseline k − � model tends to over-predict k in the wake, and the actuator disc model 
does not remove turbulence energy from the flow. As a result in the near-wake our cor-
rection terms act mainly to remove energy.

2.	 The discovered models depend the shear strain invariant I1 , which increases in magnitude 
as shear increases.

Fig. 6   LES, RANS baseline, and RANS coupled with different anisotropy correction models for Case A. 
The TKE production correction R̃ and the classifier 𝜎̃ are frozen. Only two of the six bΔ models are distin-
guished with color; the remaining are all gray (not distinguished) in order to visualize the spread of predic-
tions
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As a consequence, a model removing too much energy in the near wake results in larger 
velocity gradients there (not seen during training), which leads to larger I1 and increasing 
amounts of energy removed.

To break this positive feedback loop, in as flow-agnostic a way as possible, two limiters 
are proposed for the two corrective terms:

•	 Eddy viscosity limiter: Inspired by the k-�- fP model (van der Laan et al. 2013) the lin-
ear components of our anisotropy models were limited to a proportion of Boussinesq: 

•	 Form error limiter: This address tendency of the correction models to aggressively 
remove energy near the actuator discs. This limiter is only active in areas where 

(12)�1 = min
(
0.8 ⋅

�

k2
⋅ �t, �1

)
.

Fig. 7   Visualization of non-zero terms in the seven discovered R models, R1 to R7 . Light-gray indicates a 
dissipation-rate correction; gray indicates the use of T (1) ; and black the use of T (2−4)
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actuator forcing is applied, and is chosen based on the Boussinesq turbulent kinetic 
energy production as: 

The thresholds were derived based on an analysis of the available data-set and are cho-
sen sufficiently low that limiters are only active during the convergence of the solver.

3.5 � Predictive Simulations

Any meaningful test of these models must be in a predictive setting on unseen cases, in 
this work Cases B and C. Based on the partially coupled results of Sects. 3.2 and 3.3, 
we select models composed of the following components:

•	 The simplest �1,
•	 The simplest linear bΔ

1
 and nonlinear bΔ

5
 models,

•	 The simplest R1 and medium complexity R4.

(13)R = sgn(R) ⋅min
(
0.5P

Boussinesq

k
, |R|

)
.

Fig. 8   LES, RANS baseline, and RANS coupled with seven different models for R for Case A. The TKE 
production correction R̃ and the classifier 𝜎̃ are frozen. The seven R models are all gray (not distinguished) 
in order to visualize the spread of predictions
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All four model combinations were implemented in a fully coupled manner in the simulation 
code, and predictions compared with LES data for Cases B and C. Figure 9 shows the predic-
tions for Case C. Additional figures for Case B (and Case A, not predictive) are presented in 
Appendix B and give broadly similar conclusions. All but the simplest model results are not 
distinguished in the figure, for the benefit of visualization.

Examining the predictions, firstly all the correction models yielded a significant improve-
ment over the baseline k − � model. The variability in the predictions of the four models did 
not increase significantly beyond the variability observed in the partially coupled results. This 
suggests that there is no apparent strong interaction between the two correction terms which is 
reassuring. Given the similar performance of all four models, we again use our bias for parsi-
mony to select a single “best” model consisting of bΔ

1
 , R1 and �1 . Explicitly this model is: 

(14a)

bΔ
1
∶= [1.62 ⋅ 10−1 ⋅ q

1∕2

TI
⋅ q

1∕2

F

+4.84 ⋅ 10−3 ⋅ q
1∕2

TI
⋅ I

1∕2

1

−1.90 ⋅ 10−11 ⋅ qTI ⋅ I
4
1

+2.51 ⋅ 10−2 ⋅ q
1∕2

F

+2.00 ⋅ 10−3 ⋅ I
1∕2

1

+1.49 ⋅ 10−15 ⋅ I
9∕2

1
] ⋅ T

(1)

ij

Fig. 9   LES, RANS baseline, and SpaRTA RANS models for Case C
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 The magnitude of the coefficients of the terms can be misleading, because the range of 
magnitude of the features is quite large. For example, although the first term of R1 has a 
small coefficient, it is one of the largest terms in the near wake. Similarly the tiny coeffi-
cient of the last term of bΔ

1
 is counteracted by the high power of I1 , leading to this term hav-

ing an effect in regions of high shear. Of course it is to be supposed that such high-powers 
and small coefficients may not generalize to other cases well—although they generalize to 
our Cases B and C here.

The ability of our procedure to produce many diverse models, all with similar perfor-
mance, suggests on the one hand that procedure is reasonably robust, but on the other hand 
that perhaps the space of models is not being sufficiently explored. For example none of the 
discovered models come close to matching the frozen correction results (which themselves 
match LES well), even for the training Case A. It would be expected that with sufficiently 
many terms, an overfit model for Case A could be developed—but this was not achievable 
with less than 50 terms. There may be a case to be made for very highly parameterized 
models such as neural networks in this context.

In these results, the eddy viscosity limiter was active on average in about 1500 cells 
mainly in the upper part of the near wake, and the form error limiter was active on aver-
age in about 4000 cells mainly in the center of the rotor disk. Given that the total number 
of cells in the domain is around 3 million, the limiter is seldom used, which is deemed 
acceptable.

3.5.1 � Comparison with Corrective Model Without Classifier

Figure 10 presents a comparison between the simplest model with classifier above, a the 
reference SpaRTA model discovered without classifier in Steiner et  al. (2022), whose 
expression is given in Appendix A. In both cases the training data is Case A only, and pre-
diction is for Case C.

There are some minor differences between predictions of the reference and the model 
with classifier, although overall the reference model performs slightly better. However, 
the reference model contains a total of 36 terms, 25 for bΔ

ij
 and 11 for R, including terms 

involving T (2),… , T (4) . On the other hand our simple classifier model of (14) contains only 
12 terms total—including the classifier, and does not exploit base tensors beyond T (1) . If 
our premise is accepted, that—all else being equal—simple models should be preferred to 
complex ones, then the use of the classifier has been seen to have the potential to simplify 
the resulting models for similar predictive accuracy.

Admittedly, it is indeed the case that in our previous work (without classifiers), we were 
able to find models that worked without limiters, and that here (with classifiers) that was 

(14b)

R1 ∶= 8.06 ⋅ 10−5 ⋅ I
1∕2

1
⋅ q3

�
⋅ k ⋅ T

(1)

ij

�ui

�xj
+

[−2.91 ⋅ 101 ⋅ q
1∕2

TI
⋅ qF ⋅ I

1∕2

1

+4.28 ⋅ 10−1 ⋅ q2
⟂
⋅ qF ⋅ I

1∕2

1

−1.22 ⋅ qF ⋅ q�

+2.30 ⋅ q2
F
⋅ I2] ⋅ �

(14c)�1 ∶= 1∕
(
1 + exp

(
−205.041112 ⋅ q

1∕2

TI
⋅ q1∕2

�
⋅ q� + 9.01862802

))
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not possible. We believe that the reason for this is as follows: when training corrections 
without a classifier, the correction model is encouraged to predict zero, or very small, cor-
rections in large regions of the flow—as a result it is often less aggressive everywhere. 
When training with a classifier, all regions of small correction have been filtered out by 
the classifier, and the corrector only has to match what remains. It can therefore be more 
aggressive, and matches the correction better with fewer terms. This aggressive fitting 
is what leads to the instabilities we observe. We expect to see a similar correspondence 
between goodness-of-fit and stability whenever the power of the fitting method increases—
as we see in other work with random forests (Kaandorp and Dwight 2020), which also fit 
training corrections very well, and are often unstable in prediction.

To be clear: in general issues of instability are not restricted to our classifier-correc-
tion framework—in our experience they are a problem for data-driven RANS modelling in 
general, and our SpaRTA approach without classifier in particular. Although we were able 
to find stable SpaRTA models, by selecting them from the multiple models we generate, 
the more complex the cases studied, and in particular the more significant the corrections 
needed, the more difficult it becomes to find stable models. This is one of the main moti-
vating factors behind so-called CFD-consistent modelling approaches (Holland et al. 2019; 
Waschkowski et al. 2022), in which the CFD code is inside the training loop, automatically 
making unstable models unfit. Our work attempts to achieve as much as possible without 
CFD-in-the-loop (Zhao et  al. 2020) in order to build methods that are more scalable to 
expensive simulations and work without adjoints.

Fig. 10   LES, RANS baseline, SpaRTA model with classified, and a reference SpaRTA model without clas-
sifier for Case C
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4 � Conclusions

We introduced a data-driven RANS closure framework, that decomposes models for cor-
rective terms into two stages: need for correction or not (a classifier), and magnitude of 
correction (regression model). This was motivated by the excellent performance of base-
line RANS closures for attached flows, and their localized failure in—for example—wakes. 
We showed how to construct a need-for-correction measure by the frozen approach, of 
injecting reference data into the RANS equations. We went on to demonstrate that models 
resulting from this classifier-augmented approach could be made significantly simpler than 
similar models without classifier, while maintain similar predictive accuracy.

We also saw that the addition of the classifier has a significant drawback: it has a ten-
dency to make the resulting models less numerically stable. We addressed this by limit-
ing the model corrections to some proportion of the Boussinesq quantities—and made 
some effort to identify the source of the instabilities, which are likely the high-powers of 
the velocity-gradient in the discovered models. Future work must address this more thor-
oughly, perhaps by integration of the CFD solver into the training loop, so that unstable 
models are eliminated at the training stage.

The framework introduced does not rely on prior knowledge of where the turbulence 
model fails , and could be applied outside the wind-farm context investigated here . We 
demonstrate its power on the three-dimensional flow about multiple wind-turbines in an 
ABL, as a scenario where a customized turbulence closure may have engineering applica-
tions. We saw significant improvements compared to the baseline k − � closure—so that 
RANS has the prospect of becoming a useful tool for this application in the future.

Appendix A Reference SpaRTA Model

The reference model with no classifier is taken from Steiner et al. (2022), and is:

and

(15)

Rref = 2k
�ui

�xj
[ 1.4771 ⋅ 10−4 ⋅ I0.5

1
⋅ q3.0

�
⋅ T

(1)

ij
− 1.9183 ⋅ q0.5

TI
⋅ q1.5

F
⋅ T

(4)

ij
]

+� [ 1.0970 ⋅ 101 ⋅ q0.5
TI

⋅ qF ⋅ I0.5
1

+ 6.1657 ⋅ 10−5 ⋅ qTI ⋅ I
2.0
1

⋅ I34

+ 8.3864 ⋅ 10−3 ⋅ q1.5
TI

⋅ I25 − 1.7888 ⋅ 102 ⋅ q2.0
TI

⋅ I25

− 1.3956 ⋅ 101 ⋅ qF ⋅ q0.5
�

+ 2.5231 ⋅ 10−7 ⋅ q2.5
TI

⋅ I2.0
25

− 2.2330 ⋅ qF ⋅ q� − 5.2367 ⋅ 10−6 ⋅ I2.0
1

⋅ q4.0
�

− 5.5597 ⋅ 10−2 ⋅ q3.0
�
, ]
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Appendix B Additional Figures: Cases A and B

Figures 11 and 12 show the results for the training data-set A. Figures 11 and 12 in the 
appendix show the results for the test data-set B.

(16)

bΔ
ref
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TI

⋅ I0.5
1
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1
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TI
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Fig. 11   LES, RANS baseline, and corrected RANS model predictions for Case A

Fig. 12   LES, RANS baseline, and corrected RANS model predictions for Case B
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