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A B S T R A C T

In this paper, we build and compare multiple speech systems for the automatic evaluation of the severity
of a speech impairment due to oral cancer, based on spontaneous speech. To be able to build and evaluate
such systems, we collected a new spontaneous oral cancer speech corpus from YouTube consisting of 124
utterances rated by 100 non-expert listeners and one trained speech-language pathologist, which we made
publicly available. We evaluated the systems in two scenarios: a scenario where transcriptions were available
(reference-based) and a scenario where transcriptions might not be available (reference-free).

The results of extensive experiments showed that (1) when transcriptions were available, the highest
correlation with the human severity ratings was obtained using an automatic speech recognition (ASR)
retrained with oral cancer speech. (2) When transcriptions were not available, the best results were achieved
by a LASSO model using modulation spectrum features. (3) We found that naive listeners’ ratings are highly
similar to the speech pathologist’s ratings for speech severity evaluation. (4) The use of binary labels led to
lower correlations of the automatic methods with the human ratings than using severity scores.
1. Introduction

Oral cancer is a type of cancer where a tumour is located inside
the oral cavity, most typically the tongue or floor of the mouth.
Approximately 530,000 people get diagnosed with this condition every
year worldwide (Shield et al., 2017), of which 53,000 in the USA
alone (Foundation, 2019). To treat oral cancer, (part of) the tissues
surrounding the tumour are removed during an operation, which sub-
sequently affects the articulation abilities of the oral cancer patients.
Moreover, problems with voice quality often occur due to the radiation
treatment these patients may receive (Jacobi et al., 2010; Woisard
et al., 2022; Balaguer et al., 2019). In certain cases, patients are able to
learn articulatory compensation techniques to adjust for the lost tongue
tissue (Ward and van As-Brooks, 2014). Learning these compensation
techniques as part of speech therapy can alleviate speech problems in
oral cancer speakers.

To evaluate the success of speech therapy for pathological speech,
many types of perceptual speech evaluation measures can be used.
Two of the most often used measures are intelligibility measures and
voice quality measures. Intelligibility measures quantify the extent
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E-mail addresses: b.halpern@nki.nl (B.M. Halpern), s.feng@tudelft.nl (S. Feng), r.v.son@nki.nl (R. van Son), m.vd.brekel@nki.nl (M. van den Brekel),

o.e.scharenborg@tudelft.nl (O. Scharenborg).

to which the speech could be transcribed by a naive or an expert
listener (see for an application: Meyer et al. (2004)). Intelligibility
measures are often preferred over other measures because the exper-
imental setup is relatively easy, does not require expert listeners, and
is often deemed sufficient for the evaluation of articulation disorders.
However, intelligibility alone cannot measure all important aspects
of pathological speech. For example, the speech could be completely
intelligible while having a creaky voice quality. Evaluation of voice
quality is usually done by speech-language pathologists (SLPs) through
standardised questionnaires such as the Grade-Roughness-Breathiness-
Astenicity-Strain Scale (GRBAS) (Hirano, 1981) and the Consensus
Auditory Perceptual Evaluation of Voice (CAPE-V) (Zraick et al., 2011).
However, evaluations with SLPs are costly. The availability of a speech
evaluation measure that gives a non-rigorous impression of the speech
at both the level of intelligibility and voice quality provided by naive
listeners (see Dagenais et al. (2006)) would therefore be quite useful.

Here we aim to develop a method to automatically evaluate the
severity of the speech (in short: severity), which is defined as the degree
of the overall deterioration of the audible signal (Balaguer et al., 2019), a
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global measure that aims to quantify all speech severity properties -
including intelligibility and voice quality.

There are a few existing methods that propose objective evalu-
ation of oral cancer speech. Typically these methods focus on the
intelligibility estimation of the speech (Windrich et al., 2008; Quintas
et al., 2020; Bin et al., 2019) rather than voice quality estimation.
Furthermore, these methods have only been validated with clean data
and read speech. Evaluation on the basis of clean data and read speech
is not necessarily ecologically valid, because, e.g., spontaneous speech
is more indicative of the actual voice severity (Wolfe et al., 1995; Revis
et al., 1999). Furthermore, an ideal objective evaluation method should
be insensitive to channel noises and the type of recording devices.

Towards our ultimate aim to develop a more ecologically cor-
rect, robust, and objective automatic severity evaluation method for
oral cancer speech, we collected an oral cancer speech dataset from
YouTube with a wide variety of realistic speech conditions, which is
more representative of oral cancer speakers’ everyday speech than a
read speech corpora. To the best of our knowledge, this corpus, which is
an extension of our previous oral cancer dataset (Halpern et al., 2020),
is the first publicly available oral cancer speech evaluation dataset. Two
other datasets exist, a French and a German dataset; however, these are
not publicly available (Windrich et al., 2008; Quintas et al., 2020).

The automatic speech severity evaluation task can be roughly de-
scribed as a speech processing task where either one or multiple speech
signals are fed into a processing function to obtain a single scalar
number (�̂� ∈ R) which is the estimate of the speech severity. This
stimate can be compared against a ground truth severity score (𝑥),

which we obtained from both a speech-language pathologist and naive
human listeners. The estimated speech severity is then correlated with
the ground truth severity score, where a correlation of 1 indicates the
perfect method for speech severity estimation.

The main aim of this work is to compare existing and new tech-
niques for the automatic evaluation of the severity of the speech
impairment due to oral cancer treatment (in short, oral cancer speech)
to find the system that achieves the highest correlation with human
ratings of the severity of the oral cancer speech. Therefore our main
research question is the following: RQ1: What automatic approach
achieves the highest correlation with the ground truth severity
scores for oral cancer speech severity evaluation?

There are several paradigms for the objective evaluation of patho-
logical speech. We divide these paradigms into two groups, i.e.,
reference-based and reference-free approaches. Reference-based meth-
ods use either a transcription of a speech signal (ASR-based methods) or
a reference speech signal (comparison-based methods), while reference-
free methods do not. In this work, we will compare both kinds of
reference-based and several reference-free methods on the task of oral
cancer speech severity evaluation.

ASR-based methods (Tripathi et al., 2020; Windrich et al., 2008;
Maier et al., 2009) use the mistakes of speech recognisers to assess the
speech intelligibility, which is often a good enough proxy for measuring
severity of the speech. In other words, it is assumed that an ASR
makes similar errors as an expert. Some transcription error measure
(e.g., phoneme error rate, word error rate, Levenshtein distance) is
used as an intelligibility estimate. ASR-based methods are often deemed
the most useful methods because practitioners can directly inspect
what words or phonemes the ASR system did not recognise. Their
main disadvantage, though, is that a ground truth transcription of
the pathological speech is required, which is often difficult to obtain,
especially when the speech is unintelligible.

Comparison-based methods measure the distortion of a speech sig-
nal compared to a reference speech signal. These approaches origi-
nate from the speech enhancement (blind source separation) literature,
where the distorted signal is a noised signal, which is compared to
a clean signal (Vincent et al., 2006). Pathological speech, then, can
85

be seen as a distortion of the healthy speech signal. An often used
distortion measure in speech enhancement is the Short Time Objec-
tive Intelligibility method (STOI), and its variant ESTOI (Taal et al.,
2010). STOI is not directly applicable to pathological speech as STOI
assumes that the distorted (here: pathological) signal and the reference
signal have equal duration, which is seldom the case. Janbakhshi
et al. (2019) proposed a modification of STOI and E-STOI, called P-
STOI and P-ESTOI, which performs time alignment of the pathological
and reference signals, and which can estimate severity with a high
correlation to listener scores for two separate databases of dysarthric
speech. Therefore, we include P-STOI and P-ESTOI in our comparison.

Recognising that advancements in speech enhancement evaluation
can be applied to the evaluation of speech severity, we are also inter-
ested if we can apply techniques used in synthetic speech evaluation
(i.e., naturalness evaluation) to oral cancer speech severity evaluation.
Specifically, we investigate whether the most common objective ap-
proach used in synthetic speech evaluation, the Mel-cepstral distortion
(MCD), can be used for the oral cancer speech severity estimation
task (Kubichek, 1993).

Reference-free methods perform objective evaluation without the
need for a transcription of the pathological speech signal or the need for
a reference (healthy) speech signal (Woisard et al., 2022; Quintas et al.,
2020; Bin et al., 2019; Zhou et al., 2012). Instead, they use a statistical
model (e.g., a deep neural network or a LASSO model) and a feature
representation to provide the severity estimate �̂�. We investigated the
following possible features: (1) long-time average spectrum (LTAS),
which has been used in the detection of pathological speech (Smith
and Goberman, 2014; Master et al., 2006) and for the evaluation
of the effect of speech therapy or surgery on the speech (Tanner
et al., 2005). Moreover, in our previous studies, LTAS was success-
fully used to differentiate between oral cancer speech (Halpern et al.,
2020) and healthy speech; and between dysarthric speech and healthy
speech (Halpern et al., 2021). (2) Speaker embeddings, which have
attracted a lot of attention recently (i-vector Martínez et al., 2013;
Laaridh et al., 2017, 2018, x-vector Quintas et al., 2020, d-vector Wan
et al., 2018), and seem to be useful for oral cancer speech intelligi-
bility estimation (Quintas et al., 2020). (3) In our previous studies we
found that naive listeners perceive high severity samples as having low
naturalness (Halpern et al., 2021; Illa et al., 2021). Therefore, we in-
vestigate how reference-free synthetic speech evaluation methods that
measure naturalness perform on the severity evaluation task, i.e., global
variance (GV) (Toda and Tokuda, 2007) and modulation spectrum
(MS) (Takamichi et al., 2014). We will compare each feature using
a LASSO-based statistical model. The LASSO model is used to predict
the severity measure �̂� from the feature representation after training
on the ground truth severity scores. We believe that using LASSO (1)
allows for a fairer comparison of features than neural networks, where
performance might be dependent on tuning, initialisation seeds, or
the chosen network architecture, (2) and it is an explainable machine
learning technique which is a common desire in clinical practice.

Both the reference-free and the reference-based approaches need
large amounts of training data. Along with the reference transcriptions
mentioned before, ASRs require large amounts of speech data, which
are not available for all languages. Comparison-based approaches re-
quire a reference healthy speech signal. Reference-free approaches
also require some form of human labelling, namely, the judgement of
severity from the listeners. These resources are typically difficult to
obtain. Therefore, it is important to consider whether we can reduce
the cost of labelling. The secondary research question of the work is
the following: RQ2: Are other approaches available that require less
labelled training data while giving a similar performance on the
speech evaluation task?.

We investigate two possible approaches: (1) Instead of predict-
ing the severity directly, we could predict the probability of ab-
sence/presence (classification/detector task) of oral cancer speech. In
our clinical experience, we find that lighter cases of oral cancer speech

are difficult to tell apart from healthy speech. We hypothesise that
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this would appear as a lower probability score during classification
which could be correlated with the severity scores. This classifica-
tion/detector task only needs binary labels, which are substantially
easier and cheaper to acquire as no expert annotators are needed.
In other words, we are interested in knowing whether detectors can
achieve comparable performance to regressors. (RQ2.1). (2) We pro-
pose to use severity ratings from naive listeners instead of expert
listeners. There is a growing amount of evidence that crowdsourcing
could be a cost-effective tool to collect data from non-expert listen-
ers (Lansford et al., 2016; Lansford and Borrie, 2017; Carvalho et al.,
2021). To that end, we investigate how far ratings from naive, non-
expert listeners recruited through a crowdsourcing platform agree with
those of expert listeners (RQ2.2).

The paper is organised as follows. In Section 2, we define the ter-
inologies concerning speech quality. In Section 3, we explain how we

athered the oral cancer dataset used in this research, and we perform
n initial exploratory analysis on the reliability of the collected ratings.
he section ends with a comparison of naive and expert listeners where
e answer RQ2.2. Section 4 explains the experimental design to answer

the research questions and includes a methodological summary for each
technique. Finally, Section 5 presents and discusses the results from the
perspective of each research question. The dataset in this paper and the
evaluation recipes are publicly available.1

2. Terminological remarks

In the present study, we will use four terms to describe different
aspects of the evaluated pathological speech: intelligibility, severity of
the voice disorder, severity of the speech (severity), and naturalness.

Intelligibility: Following Duffy (2005), intelligibility is defined
here as the extent to which speech can be transcribed by (naive) listeners
solely based on acoustic cues. .

Severity of the voice disorder: Following American Speech Lan-
guage Hearing Association (2023), a voice disorder is present when an
individual expresses concern about having an abnormal voice that does
not meet daily needs—even if others do not perceive it as different or
deviant. The standard evaluation for the severity of the voice disorder
is the GRBAS (Hirano, 1981) and the CAPE-V (Zraick et al., 2011). The
GRBAS and the CAPE-V are standardised questionnaires, which ask to
rate well-defined acoustic properties of the voice, such as roughness or
breathiness. These questionnaires can only be completed by SLPs who
receive training on the evaluation of these speech properties.

Severity of the speech disorder: The present study will focus on
estimating the severity of the speech disorder (in short: severity). We
follow the definition of Balaguer et al. (2019): severity is the degree
of the overall deterioration of the audible signal. It is a measure aiming
to combine both intelligibility and voice quality. Our usage of the term
severity does not refer to the severity of the disease (e.g. the TNM stage
of the tumour O’Sullivan and Shah, 2003) nor to the severity of the
voice disorder.

Naturalness: Naturalness refers to the quality of computer-
generated (synthesised) speech as defined by the International Telecom-
munications Union standard (Union, 1996). In other words, naturalness
refers to the indistinguishability of human speech from computer
speech. We think that naturalness is a closely related concept to
the severity of the speech disorder based on the authors’ previous
studies, which showed that natural pathological speech received low
naturalness scores (Illa et al., 2021; Huang et al., 2022). Therefore,
we investigate the applicability of objective naturalness estimation
techniques to objective severity estimation.

To summarise, severity of the speech disorder (severity for short) is
the overall sense of ‘‘disordered’’ or ‘‘pathological’’ speech, and refers
to disorders of voice and voicing specifically. A high severity of the

1 https://karkirowle.github.io/oral_cancer_corpus/.
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speech disorder often correlates with a low ‘‘intelligibility’’ of speech
and low ‘‘naturalness’’ of the speech.

To further clarify the distinctions between the terminologies, we
interpret the definitions on a few examples:

• A pathological speaker with an extremely creaky or breathy voice
quality whom is well understood by others would be classified as
high intelligibility, high severity of the voice disorder, and high
severity of the speech disorder.

• A nasalising pathological speaker has a very high level of intelligi-
bility – as his/her speech remains understandable to the listener –
but will be associated with an equally high level of speech severity
because the speech signal will be strongly altered at the acoustic
level (and perceptually). Given that the loudness and pitch of
the nasalising speaker is not affected, the severity of the voice
disorder is low.

• When the speaker is not understood by others, the speaker has
a low intelligibility and high severity of both the voice and the
speech disorder.

3. Dataset collection and analysis of the rating study

The following sections present the oral cancer database, its col-
lection and the oral cancer speech severity rating by naive listeners
obtained through crowd-sourcing and by speech-language pathologists
(SLPs). This will be followed by an exploratory analysis of the collected
ratings, which aims to investigate the reliability of the ratings. More-
over, we will answer research question (RQ2.2) whether the severity
cores from naive listeners are comparable to those of speech-language
athologists.

.1. Collection of the dataset

We manually collected 3 h of audio data containing English oral
ancer speech from YouTube. The dataset includes 16 speakers. The
resence of oral cancer speech was determined by the content of the
ideo and the authors’ (B.H., R.V.S., M.v.d.B.) clinical experience with
uch speakers. The audio was then manually cut to exclude music,
ealthy speakers, and non-American English speakers. All utterances
ere downsampled to 16 kHz, loudness normalised to −0.1 dB, and

inally mixed from stereo to mono using the sox tool. Transcriptions
ere created manually starting from baseline transcriptions generated
y the Baseline ASR system explained in Section 4.3.1.

We distinguish the utterances based on whether the annotator (B.H.)
as able to transcribe the utterance (intelligible) or not (unintelligible).
he unintelligible utterances will only be used for the reference-free
echniques.

After preprocessing and splitting, the dataset contains a total of 840
ranscribed 10-s (140 min) long utterances, and an additional 936 5-
long utterances (78 mins) of speech that are not transcribed. The

ataset is partitioned into four different sets: a training and an evalua-
ion set for both approaches (Reference-based and Reference-free). The
eference-based evaluation set consists of the transcribed (intelligible)
tterances while the reference-free evaluation set also includes un-
ranscribed (unintelligible) utterances. The reference-free approaches
re also evaluated on the reference-based evaluation, to compare all
pproaches once using the same test set. Please be reminded that all
he utterances in the reference-based test set are individually rated and
ranscribed thus the discrepancy in the duration tested.

Table 1 provides the details of the training and evaluation sets such
s the amount of audio and the number of utterances in each of the
ata sets. The selection of speakers in the reference-free evaluation
as identical to the setup used in Halpern et al. (2020), except for

he addition of three new speakers to the evaluation set. Identical
o Halpern et al. (2020), for each speaker in the oral cancer dataset,

atched (in terms of gender and number of audio recordings per

https://karkirowle.github.io/oral_cancer_corpus/
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Table 1
Partitioning of the speakers into the training and evaluation set. RF stands for reference-free, and RB stands for reference-based. The red colour indicates female speakers, while
the blue colour indicates male speakers. The column ‘‘Phonetic cover(age)’’ indicates the percentage of the different phonemes in the lexicon (CMUDict) that is present in the
utterance by that speaker. The column ‘‘VoxCeleb control’’ contains the id of the control speaker from the VoxCeleb dataset, which is used only during the detection task. In the
case of the reference-free models, scores are extrapolated (see Section 4.2.1) and trained with all available audio, therefore the number of rated utterances (parentheses) differs
from the number of utterances used for training. Note that id006, id009 and id012 are speakers that are part of our dataset but not used in this paper. Best viewed in colour.

Speaker Training RF Training RB Evaluation RF Evaluation RB Utterances included Phonetic cover VoxCeleb control

id001 ! ! 10 79.49%
id002 ! 8 Unintelligible id10571
id003 ! ! 8 82.05% id10078
id004 ! 8 Unintelligible id10111
id005 ! ! 10 94.87%
id007 ! ! 8 87.18% id11250
id008 ! ! 8 92.31%
id010 ! ! 3 74.36%
id011 ! ! 8 92.31% id10242
id013 ! 10 Unintelligible
id014 ! ! 2 87.18%
id015 ! ! 3 74.36%
id016 ! ! 10 84.62%
id017 ! ! 10 92.31%
id018 ! ! 10 71.79%
id019 ! ! 8 84.62%
Total speakers (16) 5 4 11 9 – – –
Total utterances (124) 1632 (40) 636 (32) 84 66 – – –
Total audio used 2 h 16 min 1 h 46 min 54 min 7 min – – –
w
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n
o
w
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speaker) controls from the VoxCeleb dataset were used (Nagrani et al.,
2020). We chose VoxCeleb as the control because, similar to our oral
cancer corpus, it was collected from YouTube. This allows exclusion of
potential YouTube characteristics as a confounding factor in the healthy
speech vs. oral cancer speech detection task. The selection of speakers
in the reference-based evaluation follows the setup used in Halpern
et al. (2022).

In this study, we have refrained from using k-fold validation because
the speakers have wildly varying total recording durations, meaning
that the results of the individual folds would depend too much on the
presence of speakers with more audio recordings in the training dataset.

3.2. Selection of stimuli for questionnaire

In order to determine which approach works best for the oral
cancer speech severity evaluation task, we need ground truth ratings.
Because it would be too costly to get ratings for all oral cancer speech
utterances, we selected a subset of the oral cancer speech utterances
for rating by the naive listeners and the expert listener.

The subset of utterances for rating was created by adhering to the
following:

1. (whenever possible), of the speakers in the evaluation set, 10
utterances will be rated;

2. (whenever possible), of the speakers in both training sets, 8
utterances will be rated

3. sentences are selected such that they cover the highest number
of different phonemes for each speaker (phonetic coverage);

4. if there are multiple recordings available for a given speaker,
at least one utterance from each recording is used to maximise
channel variability for the speaker (recording diversity). It is im-
portant that a recording is the whole stretch of speech recorded
at once, it is not the same thing as an utterance, i.e., a recording
can have multiple utterances.

Please note that the recordings that do not have transcriptions, can-
ot be optimised for phonetic content. These recordings are manually
ut without taking phoneme coverage into account. On the other hand,
he recordings with transcriptions are optimised for phonetic content.
n order to do so, first, all the words in the utterances were mapped to
RPABET phonemes (stress markers were ignored) using the CMUDict.2

2 http://www.speech.cs.cmu.edu/cgi-bin/cmudict.
87
In order to select for each speaker the set of utterances that has the
largest phonetic coverage, a greedy algorithm is used to obtain an
approximate solution in each step. The greedy algorithm selects the
utterance which maximises the loss function:

(𝐴,𝐵,new) = |𝐴 ⧵ 𝐵| + 𝛼 ⋅ Inew,

here 𝐴 is the set of phonemes in an utterance and 𝐵 is the set
f already covered phonemes. In other words, the difference of the
umber of elements (cardinality) in each set is calculated at each step to
btain the new phonemes. The parameter 𝛼 ∈ R+ is a hyperparameter,
hich can be tuned for each speaker separately. Inew is an indicator

unction, which takes on the value 1 if the recording is new, otherwise
t is 0. This parameter controls the importance of new recordings over
he importance of new phonemes: an 0 < 𝛼 ≤ 1 means: given an equal
umber of new phonemes in two different candidate utterances, the
tterance coming from a new recording is preferred. Extending this
ogic, we can see that for any arbitrary 𝛼 where 𝛼 is 𝑘 ≤ 𝛼 ≤ 𝑘 + 1
𝑘 ∈ Z+), the increase of 𝛼 allows for losing 𝑘 additional phoneme(s),
f the selected recording is new in the other candidate utterance. For
ost speakers, we could obtain a selection that has all the recordings
ith 𝛼 = 0.1, in other words, there is no trade-off between the phonetic

overage and the recording diversity, with the exception of one speaker
id011), where we used 𝛼 = 1.1, this is equivalent of losing one
honeme.

The final selection for rating by the naive and expert listeners
onsisted of 98 intelligible utterances and 26 unintelligible utterances.
hese 124 utterances are henceforth referred to as ‘‘the stimuli’’.

.3. Distribution of questionnaires

The rating study was administered via Qualtrics.3 The 124 utter-
nces were randomly assigned to one of five questionnaires (with one
uestionnaire containing only 24 utterances). We then distributed the
ive questionnaires through Prolific.4 Prolific users could complete any
umber (i.e., between 1 and 5) of the questionnaires, but each only
nce. In total, we recruited 100 participants for each questionnaire,
btaining a total of 500 responses. The stimuli in each questionnaire
ere randomised for each participant in order to average out possible

3 https://www.qualtrics.com/.
4 https://www.prolific.co/.

http://www.speech.cs.cmu.edu/cgi-bin/cmudict
https://www.qualtrics.com/
https://www.prolific.co/
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Table 2
Mean (�̄�) and standard deviation (𝑠) of naive listener scores (top) and speech-language pathologist scores (bottom) obtained for each recording (multiple utterances are rated for
ach recording) and speaker rated in the rating study. Spk stands for the speaker id, Rec stands for the recording id.
Naive listener scores

Spk id001 id002 id003 id004 id005 id007 id008

Rec 1 3 8 12 14 16 19 25 10 11 15 27 29 18 21 23

�̄� 3.03 4.28 1.05 1.13 1.38 1.16 1.12 1.79 1.98 1.18 1.06 1.11 1.08 4.90 4.26 2.39
𝑠 0.78 0.75 0.22 0.34 0.60 0.56 0.47 0.59 0.66 0.38 0.24 0.42 0.27 0.33 0.74 0.80

Spk id008 id010 id011 id013 id014 id015 id016 id017 id018 id019

Rec 24 31 4 5 6 7 13 22 28 17 30 32 33 34 35 36

�̄� 2.60 4.21 4.06 4.08 4.66 4.21 4.31 3.73 3.59 1.29 4.57 3.28 3.84 4.75 2.44 3.90
𝑠 0.75 0.73 0.76 0.72 0.53 0.78 0.74 0.95 0.83 0.48 0.57 1.09 0.86 0.67 0.71 0.75

Speech-language pathologist (SLP) scores

Spk id001 id002 id003 id004 id005 id007 id008

Rec 1 3 8 12 14 16 19 25 10 11 15 27 29 18 21 23

�̄� 3.5 4.5 1.0 1.0 1.5 1.0 1.0 1.0 2.24 1.0 1.0 1.0 1.0 5.0 3.91 2.33
𝑠 0.5 0.5 0.0 0.0 0.5 0.0 0.0 0.0 0.65 0.0 0.0 0.0 0.0 0.0 0.68 0.47

Spk id008 id010 id011 id013 id014 id015 id016 id017 id018 id019

Rec 24 31 4 5 6 7 13 22 28 17 30 32 33 34 35 36

�̄� 2.6 4.67 5.0 5.0 5.0 5.0 5.0 4.0 5.0 1.2 4.5 4.0 4.40 4.9 2.8 4.0
𝑠 0.8 0.47 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4 0.5 0.0 0.49 0.3 0.6 0.0
learning effects. We found only one American English expert SLP to rate
the audio samples, which further emphasises the need for automatic
evaluations. The SLP rated all 124 utterances using the same method
as the naive listeners.

The task for each participant (both the naive and expert listeners)
was to rate the severity (as defined in Section 2) of each utterance
on a 5-point Likert scale. Participants received instructions before the
study on how to rate the severity of the speech, which can be found
in Appendix.

As the partial aim of the study was to investigate whether naive
listeners could carry out evaluation of speech severity, we kept training
of the listeners to a minimum, and only familiarised listeners with
the task (and not the type of speech). Each questionnaire started with
an example of a completely healthy utterance taken from the CMU
Arctic corpus (Kominek and Black, 2004) (score 5), and an example of
a particularly pathological utterance taken from the TORGO (Rudzicz
et al., 2012) corpus of dysarthric speech (score 1). The speech severity
of these utterances was discussed with an SLP to ensure that these
examples were appropriate. Please note that due to the lack of publicly
available oral cancer speech corpora and the need for ethical approval
when using clinical data, we resorted to using a pathological speaker
from the TORGO corpus. Another option would have been to exclude
a speaker from our corpus. However, we did not want to exclude a
speaker from our corpus as we already had a low number of speakers.

3.4. Results of the naive listener rating study

In this section, we carry out a preliminary analysis of the rating
study. We start the analysis of the rating study results by assessing the
consistency of the ratings, i.e., how similar are the raters to each other.
Then, we investigate whether we can observe any global tendency
of the ratings, e.g., whether the raters had a tendency to choose the
extremities of the scales. Finally, we look at the consistency of the
ratings on the speaker-level, i.e., for different recordings of the same
speaker, did the raters give different scores?

For investigating the consistency or agreement in naive listeners’
ratings we first calculated the interrater correlation (IRR) by averaging
all pairwise Pearson’s correlations for all pairs of raters. As the raters
might be overlapping between the questionnaires, we calculate the IRR
for each questionnaire separately. A high IRR means a high level of
agreement in the ratings. Second, we carried out a principal component
analysis (PCA) to visualise any clusters of raters who might have
followed similar rating strategies. For example, if we were to find two
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visually separable clusters, we could conclude that the raters rated the
samples according to two different interpretations of the rating task.
Fig. 3 shows the interrater correlations and the results of the principal
components analysis. The IRRs vary between 0.83 and 0.87, indicating
good consistency between ratings. Furthermore, the PCA does not show
multiple clusters of ratings, meaning that the raters did not follow
substantially different rating strategies.

A commonly heard criticism of uneven Likert scales is that the
‘‘neutral’’ (3 in our case) score is used as a fall-back option and hence
has the highest frequency. To assess if there is any global tendency
within the results, we looked at the mean scores for each recording in
Table 2 and the histogram of the dataset, see Fig. 1. The lowest mean
score was for recording 8 (1.05), while the highest was for recording
18 (4.90), which indicates that participants used the full extent of the
rating scale. Furthermore, the histogram in Fig. 1 shows that a rating of
5 (healthy speech) was most commonly used. It is true that the obtained
ratings do not seem to exhibit a completely uniform distribution, but
this is more likely due to the fact that the severity of the utterances was
not controlled when selecting the utterances.

We then carried out an analysis of the range of the means of the
ratings of the recordings per speaker. The upper part of Table 2 lists
all the mean scores for each recording, grouped by speakers. There
are 5 speakers (id001, id002, id004, id008, id011) who have multiple
recordings. Three of them have a score range of more than 0.5: id001
(range = 1.25), id011 (range = 1.07), id002 (range = 0.74). In the
case of id002, there are two recordings (Recording 14 and 25) that
seem to receive noticeably higher scores (1.79 and 1.38) than the other
recordings of the speaker.

A Wilcoxon signed-rank hypothesis test (see Table 3 for the p-
values) showed a significant difference between the distribution of
scores for most speakers except id004. In the case of id002, most
recordings were consistent, except recordings 14 and 25.

There might be multiple reasons why there were inconsistencies
for different recordings, however, the scores seem to be well aligned
with the scores of the expert listener (see Section 3.5), therefore, we
think these differences reflect actual differences in speech severity,
and that some of these differences might be explained by differences
in time of the recordings rather than inconsistencies in the ratings
by the naive listeners. For example, speakers id011 and id001 self-
report that their videos were recorded at different moments in time,
where they have a different speech severity, which might explain the
rather large range for these two speakers. In the case of id002, informal
listening by author B.H. confirmed that recordings 14 and 25 indeed
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Table 3
Adjusted p-values of the Wilcoxon signed-rank between the naive score distributions of the recordings. Adjustment was done using the Dunn–Sidak correction with 𝛼 = 0.05, 𝛼𝑎𝑑𝑗 =
.00024. We denote 𝑝𝑎𝑑𝑗 < 𝛼 as *. Highlighted cells indicate score distributions for recordings of the same speaker. Best viewed in colour.

id001 id002 id004 id008 id011

1 3 8 12 14 16 19 25 11 15 27 29 23 24 4 5 6 7 13 22 28

1 Same * * * * * * * * * * * * * * * * * * * *
3 * Same * * * * * * * * * * * * * * * 1.0 1.0 * *
8 * * Same 0.96 * 1.0 1.0 * 0.063 1.0 1.0 1.0 * * * * * * * * *
12 * * 0.96 Same * 1.0 1.0 * 1.0 1.0 1.0 1.0 * * * * * * * * *
14 * * * * Same * * * * * * * * * * * * * * * *
16 * * 1.0 1.0 * Same 1.0 * 1.0 1.0 1.0 1.0 * * * * * * * * *
19 * * 1.0 1.0 * 1.0 Same * 1.0 1.0 1.0 1.0 * * * * * * * * *
25 * * * * * * * Same * * * * * * * * * * * * *
11 * * 0.06 1.0 * 1.0 1.0 * Same 0.11 1.0 0.32 * * * * * * * * *
15 * * 1.0 1.0 * 1.0 1.0 * 0.11 Same 1.0 1.0 * * * * * * * * *
27 * * 1.0 1.0 * 1.0 1.0 * 1.0 1.0 Same 1.0 * * * * * * * * *
29 * * 1.0 1.0 * 1.0 1.0 * 0.32 1.0 1.0 Same * * * * * * * * *
23 * * * * * * * * * * * * Same * * * * * * * *
24 * * * * * * * * * * * * * Same * * * * * * *
4 * * * * * * * * * * * * * * Same 1.0 * * * * *
5 * * * * * * * * * * * * * * 1.0 Same * * * * *
6 * * * * * * * * * * * * * * * * Same * * * *
7 * 1.0 * * * * * * * * * * * * * * * Same 1.0 * *
13 * 1.0 * * * * * * * * * * * * * * * 1.0 Same * *
22 * * * * * * * * * * * * * * * * * * * Same 0.20
28 * * * * * * * * * * * * * * * * * * * 0.20 Same
Fig. 1. Histogram of all the ratings in our dataset. The 𝑥-axis shows the ratings given,
being the most severe, 5 being the least severe or healthy, the 𝑦-axis shows the

ormalised counts.

ere a lot more intelligible than the other recordings from speaker
d002. We hypothesise that this is because the recordings were done at
ifferent times, however, this is not obvious from the content nor the
orresponding metadata of the recordings. As we had metadata for six
ecordings of id011, we decided to quantify the Pearson’s correlation
etween the number of weeks since the surgery and the obtained
atings, and visualised the temporal evolution of these ratings in Fig. 2.
e found that in the case of naive listeners, there was a moderate but

nsignificant (𝑟 = 0.51, 𝑝 = 0.3) correlation between the weeks and
he severity score, while the expert listener gave a rating of 5 to all
ecordings. Taken together, there is no correlation between the weeks
nd the ratings.

.5. RQ2.2: Comparison of naive and expert listeners

In order to compare the naive and expert listener scores, we used
Pearson’s correlation between the mean of the scores from the naive

isteners and the mean of the scores from the SLP. The strength of the
89

orrelation was 𝑟 = 0.92 (p < 0.001), which is very high. This strongly
Fig. 2. Temporal evolution of the ratings of id011 according to the naive listeners
(blue, with circular markers) and the expert listeners (orange, with square markers).
One out of the seven recordings of id011 did not have temporal metadata, which was
omitted from this analysis.

indicates that we can use ratings from naive listeners obtained through
crowdsourcing to rate the severity of the speech reliably on a 5-point
scale. For the rest of this paper, we will use the naive listener scores as
ground truth severity scores to validate our different methods, as these
scores are based on more raters and are thus more granular than that
of a single SLP.

Please note, in general, we expect that differences between the
ratings of the naive listener and SLP would be much more apparent
in evaluation questionnaires that ask for explicit voice qualities such
as breathiness, (i.e., as in GRBAS Oates, 2009), as naive listeners have
little understanding about the acoustic cues corresponding to these
terminologies.

4. Methods

4.1. Experimental design

Table 4 lists all models that were compared in order to find the best
technique for oral cancer speech severity evaluation. For each model,
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Fig. 3. Principal component analysis of the raters for each questionnaire. Note that the 𝑦-axis is different on the first plot to show certain outliers. The IRR in the upper right
corner stands for the intrarater correlation.
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Table 4
Overview of all systems evaluated in this paper. ✗ means reference-free, ! means
reference-based. Reference-free models are trained with the reference-free dataset, and
reference-based models are trained with the reference-based dataset.

Model Reference Reference type

GV-detector ✗ No
GV-regressor ✗ No
MS-detector ✗ No
MS-regressor ✗ No
LTAS-detector ✗ No
LTAS-regressor ✗ No
xvec-detector ✗ No
xvec-regressor ✗ No
dvec-detector ✗ No
dvec-regressor ✗ No
Baseline ! Transcription
Baseline+OC ! Transcription
DNN for AM Retraining ! Transcription
fMLLR ! Transcription
MCD ! Synthetic
P-STOI ! Synthetic
P-ESTOI ! Synthetic

we indicate whether it uses a reference (see column ‘‘Reference’’),
and if so, what type of reference (column ‘‘Reference type’’). For the
ASR reference-based experiments (Baseline, Baseline+OC, DNN for AM
Retraining, fMLLR), there are additional variants that we have not
listed in the table for the sake of clarity, please see Section 4.3.1 for
more details.

All models will be compared on the reference-based evaluation set
while the reference-free models will also be compared on the reference-
free evaluation set. In order to find the best technique for oral cancer
speech severity evaluation, the severity estimate �̂� obtained for each
model is correlated with the average severity rating obtained from the
naive listeners.

Note that data augmentation could be potentially used to improve
the performance of some models, however, this would have prohibited
a fair comparison of approaches in our study. For example, the MCD
would hardly benefit from the data augmentation as it does not use any
training data. Therefore, we consider such modifications out of scope
for the present study.

4.2. Reference-free approaches

To evaluate the reference-free approaches in a consistent way, we
will use a LASSO-based detection and regression model (Section 4.2.1).
The LASSO model will be tested with the d-vector (dvec), x-vector
(xvec) (Section 4.2.2), LTAS (Section 4.2.3), and the global variance
and the modulation spectrum (Section 4.2.4) features.

4.2.1. Reference-free experimental setup
LASSO is a variant of linear regression (Tibshirani, 1996), which

performs feature selection and regression simultaneously. Potentially,
for a given linear regression task, some features do not contain any
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relevant information to make predictions or contain information that
is collinear with the other features, causing overfitting. In LASSO,
coefficients of regression are encouraged to be close to zero if they do
not provide useful information. Zeroing (pruning) some features means
that the model requires only a subset of all predictors, making the
statistical model parsimonious and easier to interpret.

There are two variants of LASSO that we will use, one for regression
and one for detection. For regression, we will use the vanilla LASSO.
At inference time, vanilla LASSO’s computation is identical to linear
regression (Eq. (1)), however, at training time the coefficients (𝐰 ∈
R𝑚 where m is the dimensionality of the feature) are obtained in a
slightly different way by adding the sparsity penalty to the ordinary
least squares loss function (see Eq. (2)):

̂ 𝑖 = 𝐰𝑇 𝐡𝐩(𝑖), (1)

�̂� = argmin𝐰‖𝐰𝑇 𝐡𝐩(𝑖) − 𝑥‖22 + 𝜆‖𝐰‖1. (2)

Pruning of the features is facilitated by setting the parameter 𝜆 =
0.1: the larger this parameter is, the closer the coefficients are to zero.

For detection, we will use a logistic LASSO, which is similar to
LASSO with two key differences: (1) the addition of the sigmoid func-
tion to obtain the detection probability; (2) instead of 𝑥, binary labels
are used, which we denote with 𝑥𝑏 ∈ {0, 1}. Chunks in the VoxCeleb
dataset take on 𝑥𝑏 = 1, while chunks in the oral cancer corpus take on
𝑥𝑏 = 0.

̂ 𝑖 = 𝜎(𝐰𝑇 𝐡𝐩(𝑖)) 𝜎(𝑥) = 1
1 + exp(−𝑥)

, (3)

�̂� = argmin𝐰‖𝜎(𝐰𝑇 𝐡𝐩(𝑖)) − 𝑥𝑏‖
2
2 + 𝜆‖𝐰‖1. (4)

Note that this model is effectively a perceptron with 𝐿1 regularisa-
tion. The addition of the sigmoid function does not cause any problems
with the optimisation, as the sigmoid function is differentiable with
respect to 𝐰.

In order to compute the different reference-free features, we first
chunk the utterances into 5 s segments (𝐲𝑝(𝑖), 𝑖 ∈ [1, 𝑇 ], where 𝑖 is the
chunk index, and 𝑇 is the total number of chunks) – note that the
last chunk duration can be shorter than 5 s. Subsequently, different
features are extracted (see the later sections in Section 4.2) for each
of these 5-s chunks, where we obtain 𝐡𝑝(𝑖) ∈ R𝑑 , where 𝑑 depends
on the kind of feature we are using, and 𝑖 denotes the chunk index.
Therefore a training pair consists of the chunk of the recording 𝐡𝑝(𝑖),
and the corresponding severity score 𝑥.

The final prediction scores are obtained on the level of the record-
ings. Using recordings instead of utterances is more sound from a
clinical linguistic perspective, as this approach takes into account the
fact that the impact of oral cancer surgery on pronunciation is differ-
ent for different sounds. Therefore, the perceived severity should be
also different for the different parts of the recordings as they contain
different sounds.

To reflect this, we create a recording-level score �̂� from all the avail-

able utterance chunks within a recording. The final score is obtained
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as the weighted average of the scores for each utterance, i.e., for a
recording that has 𝑛 utterances with a number of chunks 𝑇1, 𝑇2 and
𝑛:

̂ = 1
𝑇1 + 𝑇2 +⋯ + 𝑇𝑛

( 𝑇1
∑

𝑖=1
�̂�1,𝑖 +

𝑇2
∑

𝑗=1
�̂�2,𝑗 +⋯ +

𝑇𝑛
∑

𝑘=1
�̂�𝑛,𝑘

)

. (5)

Each reference-free LASSO model was trained with the Reference-
free training set, which includes both the intelligible and the unintelli-
gible utterances. As only a selection of the utterances in the corpus, and
thus of the reference-free training set, was rated by human listeners,
we extrapolated these ratings for those utterances without ratings in
order to increase our training set size. All utterances without a rating
received the average rating calculated over all rated utterances of the
same recording of that speaker. The extrapolated ratings were also used
as ground truth ratings, and are referred to as 𝑥.

4.2.2. Speaker embeddings
The two speaker embedding features tested in this work are the

angular x-vector (xvec) (which is an improved version of the x-vector)
and the d-vector (dvec) (Bredin et al., 2020; Coria et al., 2020). To
extract a speaker embedding, the 𝐲𝑝(𝑖) was fed through a deep neural
network (DNN). Instead of the class labels, the activations of one of the
intermediate layers were extracted and used as the speaker embeddings
feature 𝐡𝑝(𝑖) in our LASSO model.

Angular x-vectors differ from the conventional x-vector model (Sny-
der et al., 2018) by using an angular softmax function instead of
the normal softmax function, and using SincNet features instead of
MFCCs (Ravanelli and Bengio, 2018). The d-vector uses the gener-
alised end-to-end loss (GE2E) as its loss function, while having 40-
dimensional Mel filterbank features. For both of these models, we used
(previously) publicly available implementations5

4.2.3. LTAS
In order to obtain the LTAS features, we extracted a (so-called)

Kaldi spectrogram from the audio chunk 𝐲𝐩(𝑖) with a 25 ms length
Povey window, 10 ms frame shift and 256 frequency bins using the
PyTorch torchaudio library. The obtained spectrogram is denoted by
𝐒𝑝 ∈ R256×𝐿, where 256 is the number of frequency bins and 𝐿 is the
number of analysis frames in the spectrogram, which is dependent on
the duration of the individual chunks. We obtain the LTAS vector by
stacking the mean and standard deviation for all 256 frequency bins
which results in a 𝐡𝑝 ∈ R512 LTAS vector:

𝐡𝑝 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1
𝐿
∑𝐿−1

𝑗=0 𝐒𝑝(0, 𝑗)
⋮

1
𝐿
∑𝐿−1

𝑗=0 𝐒𝑝(255, 𝑗)
√

∑𝐿−1
𝑗=0 𝐒𝑝(0,𝑗)−𝐡𝑝(0)

𝐿−1
⋮

√

∑𝐿−1
𝑗=0 𝐒𝑝(255,𝑗)−𝐡𝑝(255)

𝐿−1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(6)

.2.4. Global variance and modulation spectrum
Both the global variance (GV) and modulation spectrum (MS) are

ommonly used to evaluate synthetic speech objectively. For the GV
alculation, we first calculated 20-dimensional librosa MFCC trajecto-
ies (𝐜𝑝(𝑖) ∈ R20×𝑀 ) from the audio chunks 𝐲𝑝(𝑖). From each MFCC
rajectory, we calculated a time-axis variance estimate, which resulted
n the 20-dimensional GV features, using:

𝑝(𝑖) =
1
𝑀

𝑀−1
∑

𝑗=0
𝐜𝑝(𝑖)(𝑗) − 𝐜𝑝(𝑖) 𝐜𝑝(𝑖) =

𝑀−1
∑

𝑗=0
𝐜𝑝(𝑖)(𝑗). (7)

5 https://huggingface.co/hbredin/SpeakerEmbedding-XVectorMFCC-
oxCeleb. https://github.com/resemble-ai/Resemblyzer.
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For the MS, we used the implementation from nnmnkwii (Ya-
mamoto et al., 2021). First, we extracted 60-dimensional
Mel-generalised cepstrum coefficients (MGC), and ignored the 0th
order MGC. Subsequently, we took the power of the discrete Fourier
transform of the MGC parameter trajectory across the time-axis. To
obtain a duration-independent feature, we took the time-axis average,
which resulted in the final 59-dimensional MS feature, which was
computed using:

𝐡𝑝(𝑖) =
1
𝑀

𝑀−1
∑

𝑖=0
(

{

𝐜𝑝
}

)2(𝑖). (8)

4.3. Reference-based

4.3.1. Word-level ASR systems
We used four different ASR systems from our previous work (Na-

grani et al., 2021) to generate word-level transcriptions for oral cancer
speech recordings: (1) Baseline; (2) Baseline + oral cancer (Baseline
+ OC); (3) DNN for AM retraining; and (4) feature-space maximum
likelihood linear regression (fMLLR) based system (see Section 4.3.1).
All four ASR systems were trained by leveraging data from Wall Street
Journal (WSJ) speech corpus (healthy speech) and oral cancer speech
except the baseline system, which was trained only on WSJ speech.
We wanted to use a spontaneous corpus for pretraining, however we
were only aware of the Switchboard corpus, which consists of telephone
conversations between speakers of American English. However this
dataset has a lower sampling rate (8 kHz) than our audio (16 kHz),
which would have likely affected the results. For example, in Halpern
et al. (2020), we found that sibilants are important indicators of oral
cancer speech, which often have acoustic cues in the high frequency
range.

For each system, we created a variant with a tri-gram language
model and an RNN (LM). The Levenshtein distance has previously been
found to perform well for speech severity evaluation using ASR sys-
tems (Tripathi et al., 2020). Therefore, here we used this same measure.
The Levenshtein distance was calculated between the ground truth tran-
scription and decoded transcription of each utterance, and subsequently
correlated with the average rating from the naive listeners.

Baseline: The baseline system is a standard hybrid DNN-HMM ASR
system which is trained exclusively on healthy speech using the si284
set of the WSJ corpus (Paul and Baker, 1992). The acoustic model
(AM) of the baseline system consisted of 5 feed-forward hidden layers
of dimension 1500 and a softmax output layer of 3431 (equal to the
number of HMM states). The input features to the DNN AM were 23
dimensional filterbank plus 3 dimensional pitch features (FB+P). The 3
dimensional pitch feature consists of a probability of voicing, pitch and
delta-pitch feature (Ghahremani et al., 2014). We followed the Kaldi
recipe6 in training the baseline DNN AM.

Baseline + OC: The system baseline + OC followed a similar
training pipeline as the baseline system, with the exception of using
both the WSJ si284 data and the oral cancer training data to train
the DNN AM.

DNN for AM retraining: The DNN for AM retraining system
was based on the baseline system (in Section 4.3.1) and sequently
retrained. Specifically, the baseline DNN-HMM AM was used to gen-
erate forced-alignments for the oral cancer training data using its
reference transcriptions. Next, the oral cancer training speech and its
corresponding alignments were taken as training data and labels to
re-train the DNN-HMM AM.

fMLLR: The fMLLR system aimed at leveraging the success of
the fMLLR algorithm in speaker adapted feature (named fMLLR fea-
ture) generation (Gales, 1998). In the context of oral cancer speech
recognition, the use of fMLLR features could suppress pathological

6 kaldi/egs/wsj/s5.

https://huggingface.co/hbredin/SpeakerEmbedding-XVectorMFCC-VoxCeleb
https://huggingface.co/hbredin/SpeakerEmbedding-XVectorMFCC-VoxCeleb
https://github.com/resemble-ai/Resemblyzer


Speech Communication 149 (2023) 84–97B.M. Halpern et al.

R
t
i
i
a
R
u
i
o

𝑥

5

5
t

s

speech sound characteristics in oral cancer speech, encouraging oral
cancer speech representations to be more similar to those of normal
speech, hence improving the recognition performance (Halpern et al.,
2022). Similar to the baseline + OC system, the fMLLR system was
trained using both the WSJ and oral cancer speech data, with the only
difference being of applying fMLLR features (40 dimensions) instead
of FB+P features during DNN AM training. The fMLLR features were
estimated during GMM-HMM training, also using the merged WSJ and
oral cancer speech data. The initial inputs of the fMLLR features were
39-dimensional MFCC+𝛥 + 𝛥𝛥 features.

4.3.2. Comparison-based approaches
The comparison-based approaches require a reference, healthy

speech signal (𝐲𝑟 ∈ R𝑑𝑟 , where 𝑑 is the duration of the reference signal)
along with the pathological signal (𝐲𝑝 ∈ R𝑑𝑝 where 𝑑𝑝 is the duration
of the pathological signal). Because there are no healthy references
available, synthetic healthy references are generated using a highly
natural Tacotron-2 text-to-speech synthesis (TTS) system.7 (Shen et al.,
2018)

P-STOI and P-ESTOI: Both P-STOI and P-ESTOI are modifications
of the STOI technique, commonly used in the speech enhancement
field (Taal et al., 2010). STOI does not account for the different tempi
of healthy and pathological speech and assumes time-aligned speech
signals. To account for the time-alignment issue, P-STOI and P-ESTOI
extend the STOI technique with dynamic time warping (DTW). The
calculation of the P-STOI/P-ESTOI scores is as follows. First, we extract
the 1/3 octave band time-frequency (TF) representation 𝐇𝑝 and 𝐇𝑟
from 𝐲𝑟 and 𝐲𝑑 , where we align 𝐇𝑟 and 𝐇𝑝 using DTW. We estimate
the cross-correlation between the aligned representations. As these
representations are two-dimensional, the cross-correlation can be done
along either the temporal or the spectral axis. The temporal estimate
is called the P-STOI score, while the spectral estimate is called the P-
ESTOI score (Janbakhshi et al., 2019). The estimated scores are used
as our severity measure �̂�.

MCD: The Mel-cepstral distortion (MCD) metric is usually used to
measure the difference between a synthetic and a natural speech signal
in order to objectively evaluate synthesis quality in TTS development.
Here, the MCD metric is used to measure the difference between the
pathological speech signal 𝐲𝐩 and the reference speech signal 𝐲𝐫 in
order to predict the severity score �̂�. To calculate the MCD, we first
extracted 20-dimensional Mel frequency cepstral coefficients (MFCCs)
from 𝐱𝐩 and 𝐱𝐫 using the librosa Python library (McFee et al., 2020).
We denote the obtained representations with 𝐇𝐩 ∈ R20×𝑀 and 𝐇𝐫 ∈
20×𝐿 where 𝐿 and 𝑀 represent the number of analysis frames in

he MFCC. The reference and pathological MFCCs have to be aligned
f they have different lengths, otherwise calculation of the MCD is
mpossible. Therefore dynamic time warping (DTW) is performed to
lign the MFCCs. The aligned reference MFCC is denoted as 𝐇𝐫𝐩 ∈
20×𝑀 . Following standard procedure, the 𝛼 scaling coefficient was
sed (Mashimo et al., 2001). Note that the zeroth-order MFCC is
gnored following standard practice because it is dependent on the gain
f the speech, which can be sensitive to noise.

̂ = MCD(𝐇𝐩,𝐇𝐫𝐩) =
𝛼
𝑀

𝑀−1
∑

𝑖=0

√

√

√

√

√
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∑

𝑗=1
(𝐇𝐩(𝑖, 𝑗) −𝐇𝐫𝐩(𝑖, 𝑗))2 𝛼 =

10
√

2
ln 2

(9)

. Results

.1. RQ1: Comparison of all approaches on the speech severity evaluation
ask

Table 5 lists the Pearson’s correlations of the estimated severity
core of all approaches with the average human rating of the naive

7 https://github.com/NVIDIA/tacotron2.
92
Table 5
Pearson’s correlation of all the approaches evaluated on the reference-based evaluation
set, rounded to two decimals. A cyan background colour marks the ASR acoustic
models which use oral cancer data during training. ‘‘TTS reference’’ indicates whether
a synthetic speech ground truth is used. The best performing model is emphasised with
a bold typeface. Best viewed in colour.

Reference-free approaches

Model Pearson’s r p Language model TTS reference

LTAS-detector −0.25 *** N/A N/A
LTAS-regressor 0.52 *** N/A N/A
dvec-detector 0.55 *** N/A N/A
dvec-regressor 0.47 *** N/A N/A
xvec-detector 0.13 0.02 N/A N/A
xvec-regressor 0.11 0.057 N/A N/A
GV-detector 0.28 *** N/A N/A
GV-regressor 0.28 *** N/A N/A
MS-detector 0.29 *** N/A N/A
MS-regressor 0.64 *** N/A N/A

Reference-based approaches (ASR-based)

Baseline 0.72 0.02 n-gram ∅

Baseline + OC 0.75 0.005 n-gram ∅
DNN for AM Retraining 0.80 0.006 n-gram ∅
fMLLR 0.62 0.06 n-gram ∅

Baseline 0.68 0.03 RNN ∅

Baseline + OC 0.67 0.03 RNN ∅
DNN for AM retraining 0.72 0.02 RNN ∅
fMLLR 0.49 0.15 RNN ∅

Reference-based approaches (comparison-based)

MCD 0.27 0.45 N/A Yes
P-STOI −0.25 0.49 N/A Yes
P-ESTOI 0.13 0.72 N/A Yes

***Indicates 𝑝-value < 10−3, otherwise 𝑝-value is provided.

Table 6
Pearson’s correlation of the reference-free approaches on both the RB and RF evaluation
sets. Of each detector/regressor pair, red background indicates a worse correlation
while green indicates a better correlation than the other member of the pair. The
best performing model is emphasised with a bold typeface for each evaluation type
(reference-free and reference-based). Note that the data in the right column of the
table is identical to the top part of Table 5, we present the data twice for ease of
understanding. Best viewed in colour.

Reference-free approaches

Model Reference-free evaluation Reference-based evaluation

Pearson’s r p Pearson’s r p

GV-detector 0.64 *** 0.28 ***
GV-regressor 0.72 *** 0.28 ***

MS-detector 0.68 *** 0.29 ***
MS-regressor 0.76 *** 0.64 ***

LTAS-detector 0.27 *** −0.25 ***
LTAS-regressor 0.66 *** 0.52 ***

dvec-detector 0.46 *** 0.55 ***
dvec-regressor 0.70 *** 0.47 ***

xvec-detector 0.55 *** 0.13 0.02
xvec-regressor 0.53 *** 0.11 0.057

***Indicates p-values < 10−3, otherwise 𝑝-value is written.

listeners. All results are obtained on the reference-based evaluation set.
The table is divided into three blocks. The upper part of the table shows
the reference-free, the lower part of the table shows the reference-based
approaches in two blocks: one block is for the ASR models, the other
block includes the comparison-based approaches. When a model has
a higher Pearson’s correlation than another model, we will say that it
outperforms the other model.

Comparing all approaches, we see that the DNN for AM retraining
models performed the best on the reference-based evaluation set. This

https://github.com/NVIDIA/tacotron2
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means that reference-based approaches seem to outperform reference-
free approaches in determining oral cancer speech severity when a
reference is available for evaluating the speech severity. We will further
discuss the possible reasons for the performance differences of the ASR
models in Sections 5.3 (data differences), and 5.4 (language model
differences).

The reference-free approaches achieved low to moderate correla-
tions with the average listener scores on the reference-based evaluation
set: the best approach was the MS-regressor, followed by the dvec-
detector and the LTAS-regressor. We did not observe any obvious
patterns in these results, so these will not be further discussed. Finally,
most comparison-based approaches performed quite poorly on the
reference-based evaluation. We will discuss these results in Section 5.5.

Table 6 shows the results for the reference-free detector and regres-
sor approaches on the reference-free evaluation set. The left column
shows that the best approach on the reference-free evaluation set was
the MS-regressor, followed by the GV-regressor and the dvec-regressor.
(RQ1). For both the regression and the detection task, the best features
are those that are used in the evaluation of synthetic speech. We will
further discuss the general implications of this in Section 6.

5.2. RQ2.1: Can detectors achieve comparable performance to regressors
on the speech severity evaluation task?

Comparing the correlations of the regressors with the detectors
on the reference-based evaluation set (right columns of Table 6) and
reference-free evaluation set (left columns of Table 6), we observe that
the regressors generally achieved higher correlations than the detectors,
with the following exceptions: the xvec on the (both evaluation), dvec
detector (reference-based evaluation), GV (reference-based evaluation).
Overall (combining the reference-free and reference-based evaluation)
the regression experiment was better in 60% of the cases.

These results show that the regressor models which were trained
on the severity scores rather than the binary scores as the detectors
were, are more informative for and better at the oral cancer severity
evaluation task. Therefore, using binary class labels instead of severity
scores is not a good solution when one wants to build automatic
methods to evaluate the severity of oral cancer speech that have a good
correlation with human ratings of the severity of the oral cancer speech.

5.3. Oral cancer data seems to help in ASR-based oral cancer severity
evaluation

From Table 5 we can see that the model that has the highest
correlation with the human ratings is a model that uses oral cancer
data during training of the acoustic models (DNN AM Retraining),
irrespective of the type of language model used. We expect that adding
some oral cancer data to the training material is beneficial to the
ASR models because the acoustic models then capture some of the
mild disfluencies due to oral cancer speech in a vein that is similar
to how human listeners quickly adapt to mild disfluencies in healthy
speech (Kim and Nanney, 2014; Kim, 2015). It is interesting to note
that even though the fMLLR uses oral cancer speech, it always achieves
worse performance than the Baseline. We hypothesise that fMLLR
adapts to the severity of the speaker and as such is able to learn the
deviant pronunciations of an oral cancer speaker. Since fMLLR takes
into account the entire recording of the speaker, this may result in
an ‘‘overadaptation’’ to the oral cancer speaker. On the other hand,
human listeners only hear a single utterance of a speaker at any given
time, which is not enough to adapt to the deviant pronunciations of the
oral cancer speaker. Consequently, the scores provided by the fMLLR
models do not correlate that well with the human ratings compared to
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the models without fMLLR.
5.4. Weaker language models seem to lead to improved correlations

It is often implicitly assumed that language modelling will affect
the intelligibility estimation, however, we are only aware of the study
of Maier et al. (2009) which reports that some language modelling
is beneficial for severity estimation, but the performance saturates
after 𝑛 = 2 with an n-gram. In our case, we can see that n-gram
based language models outperformed the RNN-based language models
in all cases. A more complex language model thus does not gener-
ally improve the correlation with listener scores. This makes sense: a
stronger language model (here the RNN) will help the ASR to decode
the acoustic signal using stronger lexical and semantic information than
a weaker LM. This means that a model that uses a stronger LM will rely
less on acoustic cues, while these acoustic cues are more helpful for
severity evaluation. The results are consistent with the result of Maier
et al. (2009) mentioned above. Therefore, we think that only language
models with low complexity should be considered in speech severity
evaluation, if considered at all.

5.5. Comparison-based methods seem to be lacking in performance

In general, we can see that the comparison-based approaches,
i.e., MCD, P-STOI, and P-ESTOI, performed poorly compared to the
other approaches. We hypothesise that this might be due to the DTW,
which is used in all of the comparison-based techniques. We think that
the DTW might not be a robust aligner in the noisy conditions that
are sometimes present in the dataset. In the case of the comparison-
based approaches, we align TTS speech (trained on read speech) with
pathological speech (spontaneous speech). However, in the original P-
STOI method, read speech was aligned with read speech. Potentially,
the alignment is more difficult when the speech types do not match.
Therefore, future work should look at other alignment methods (such
as attention), and use multiple references to test their robustness under
noisy conditions. It is likely that at least the P-STOI and P-ESTOI would
improve when using multiple references as these methods are normally
used with more references, however, that would have been an unfair
comparison in the current study.

6. Discussion

In this paper, we built and compared multiple automatic speech
evaluation systems for the evaluation of the severity of a speech im-
pairment due to oral cancer, based on spontaneous speech.

Our main research question concerned finding the best method for
the automatic evaluation of oral cancer speech. The best method for
the automatic evaluation of oral cancer speech was the modulation
spectrum regressor, for which no reference transcription is needed. If
reference transcriptions are available, then automatic speech recognis-
ers can be used, which showed the highest correlation with the naive
listener ratings on the reference-based evaluation.

The majority of the methods showed a moderate to high cor-
relation with the naive listener ratings, depending on the type of
evaluation (reference-based, reference-free) used. These scores are,
however, considerably lower than one would normally find for clean,
read pathological speech (Janbakhshi et al., 2019; Windrich et al.,
2008; Quintas et al., 2020). Our less good results are most likely
due to the spontaneous nature of the speech used in our experiments
and the fact that the recordings were obtained from YouTube and
contained substantial background noise. Therefore, for a clinical use
case, we would recommend using these models in tandem with the
more predictive read-speech approaches (such as Quintas et al. (2020))
to obtain a more complete picture of the patients’ speech difficulties.

While intelligibility is a factor in severity of the speech disorder
(and also part of our questionnaire), the magnitude of the observed
correlations indicates that there might be something more going on,

i.e., the ASR systems might also be able to capture some aspects of
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Fig. 4. Screenshot from the graphical user interface of the questionnaire.
voice quality. This would actually be in line with previous findings
from our lab that showed that although ASR-based measures are often
said to measure the intelligibility, we observed that extralinguistic cues
can also influence ASR performance (Feng et al., 2021). Therefore,
this study would like to also communicate that there is an interesting
direction in testing ASR tools for estimating voice quality or naturalness
tools for estimating severity of the speech disorder.

Having been influenced by the idea of testing naturalness measures
for evaluating severity, we tested three methods that are traditionally
used for synthetic speech evaluation: the GV detector/regressor, the
MS detector/regressor, and the MCD. In our results, we found that
the GV and the MS feature based models both performed very well in
comparison to the other features that we have tested: On the reference-
free evaluation, the MS-regressor had the highest correlation with the
listener ratings, and the GV-regressor had the second highest correla-
tion. On the reference-based evaluation, the MS-regressor was also the
best performing. These results indicate that speech synthesis evaluation
approaches are working well for the evaluation of speech severity.
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Based on this, we think naturalness measures could be used for eval-
uating speech severity. To further improve speech severity evaluation
measures, we believe that a better understanding of the concepts of
severity and naturalness would be needed. In our previous studies we
found that this distinction is often not clear for naive listeners (Halpern
et al., 2021; Illa et al., 2021). It would be interesting to compare how
the ratings of listeners would differ when rating the same set of stimuli
both for severity and naturalness, i.e., would there be statistically
significant difference in the ratings? If not, that means that the psy-
chometric questionnaires measuring these values should be rethought,
as naturalness and severity should be rated differently.

Our second research question concerned whether there are other
approaches available that require less labelled training data while
giving similar performance on the speech evaluation task. The naive
listener experiment in Section 3.5 showed that the severity ratings of
naive listeners have a very high correlation with the expert listener’s
severity ratings. These results imply that it is possible to reliably,
and cost-efficiently scale up the annotation of oral cancer speech for
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the prototyping of data-driven automatic objective speech severity
evaluation approaches. An obstacle towards using crowdsourcing in
clinical scenarios is that informed consent will have to be obtained
from patients for these rating studies. Currently no speech data needs
to be shared with strangers other than the hospital staff, who rate these
utterances internally. Some patients might feel uncomfortable sharing
their speech with strangers participating in these studies.

The high correlation of expert and naive listener scores are partially
contrary to the findings of Carvalho et al. (2021) who found that
expert listeners were significantly better at transcription of dysarthric
utterances. The differences in the findings could be explained by the
difference in the transcription task. The study of Carvalho et al. (2021)
used a transcription task to quantify intelligibility while we chosen a
more impressionistic severity measure where the perceived intelligibil-
ity was just one of the factors to be rated. It could be that our raters
overestimated their ability to transcribe oral cancer speech as they have
not been explicitly asked to transcribe the utterances.

We also found that using binary labels indicating the presence or
absence of oral cancer speech led to a reduced labelling effort but also
nearly always resulted in a lower correlation with the human ratings
than using the full 5-point scale ratings. For severity ratings, we thus
advice to use a graded scale rather than binary labels.

Apart from the possible clinical application of our method out-
lined above, we think that our results are potentially good enough for
use in smartphone applications: (1) The ASR and the LASSO models
presented here have relatively low computational complexity com-
pared to fully deep learning based methods such as Quintas et al.
(2020), which is important due to the low memory requirements of
smartphone devices. (2) In a smartphone use case, various noises and
unexpected (conversational, spontaneous) speech modalities can be
present. As our approaches have been tested with these scenarios, we
are confident that performance will not deteriorate significantly in
these conditions. Still, a more controlled test would be imminent, where
similar speech recordings should be tested under different, real life,
controlled noise conditions. For these smartphone scenarios, we suggest
using the modulation spectrum regressor, if no reference transcription
is available, and the DNN AM Retraining+ngram ASR model when a
reference transcription is available. We assumed that all the features
were already extracted in the present study. However, these would
have to be extracted on-device in a smartphone. Taking the extraction
into consideration, the MS and the GV features would be faster on
a smartphone than the x-vector or the d-vector. Extraction of the
latter two features would require an additional pass through the neural
network on top of the spectrogram calculation.

Finally, the ASR-based methods in this paper could be potentially
further improved by considering a spontaneous dataset in the pre-
training stage. During the time of experimentation, we were only
aware of the Switchboard dataset, however this had a lower sampling
frequency than the WSJ, which we have deemed more important
than the matched modality of the speech. Pretraining with, e.g., the
HUB4 dataset, which consists of prepared and spontaneous journalistic
speech, could be a lucrative direction for improvement.

7. Conclusion

In this paper, we aimed to find the best method for the automatic
evaluation of the severity of oral cancer speech. To do that, we collected
a publicly available spontaneous oral cancer speech corpus. We com-
pared two sets of reference-based methods and one set of reference-free
methods.

Our extensive experiments showed:
(1) an ASR model was found to have the highest correlation with

the human ratings, when we have access to a transcription (reference-
based): the DNN AM retraining model, an ASR model which uses oral
cancer data during training and an n-gram based language model. (2)
When we do not have access to a transcription a LASSO regression
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model was found to be the best using modulation spectrum features.
(3) In an effort to reduce labelling effort, we found that naive listeners’
ratings, e.g., obtained through crowd-sourcing, can be used instead
of those of an expert listeners as their ratings were highly similar.
Therefore, we encourage the usage of naive listener scores for speech
severity labelling to reduce data collection costs, and therefore proto-
type automatic speech severity evaluation systems more efficiently. (4)
We found that the use of binary labels led to lower correlations of the
automatic methods than using the severity scores.
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Appendix

A.1. Questionnaire instructions used in the rating study

Dear Sir/Madam

In this task, you will listen to recordings containing one utterance each.
The speakers in these recordings all had oral cancer. They are going to talk
about their experience with oral cancer.

We ask you to rate each utterance according to the severity of the
oral cancer impact on the spoken utterance, i.e., we ask you to rate how
‘‘pathological’’ the utterance is.

A ‘‘healthy’’ utterance is a 5, by which we mean:

∙ The utterance is easy to understand.

∙ You could write down the utterance, if asked, without any

difficulties.

∙ The speaker has a clear articulation with a normal speaking

rate.

A severely ‘‘pathological’’ utterance is a 1, by which we mean:

∙ The utterance is impossible to transcribe, even after repeated

listening attempts.

∙ The speaker has articulation problems.
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∙ The speaker might speak slower or faster than normal.

In total, you are going to listen to 258 utterances. Each utterance is about
0 s long. You can listen to the utterances as many times as you want. Your
ask is to rate the severity of the pathology of the utterances.

On the next page, we are going to present you with a ‘‘healthy’’ and a
‘pathological’’ utterance (see Fig. 4).
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