

Delft University of Technology

Federated Learning With Taskonomy for Non-IID Data

Jamali-Rad, Hadi; Abdizadeh, Mohammad; Sing, Anuj

DOI
10.1109/TNNLS.2022.3152581
Publication date
2022
Document Version
Final published version
Published in
IEEE Transactions on Neural Networks and Learning Systems

Citation (APA)
Jamali-Rad, H., Abdizadeh, M., & Sing, A. (2022). Federated Learning With Taskonomy for Non-IID Data.
IEEE Transactions on Neural Networks and Learning Systems, 34(11), 8719-8730. Article 9739132.
https://doi.org/10.1109/TNNLS.2022.3152581

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/TNNLS.2022.3152581
https://doi.org/10.1109/TNNLS.2022.3152581

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 34, NO. 11, NOVEMBER 2023 8719

Federated Learning With Taskonomy
for Non-IID Data

Hadi Jamali-Rad , Senior Member, IEEE, Mohammad Abdizadeh, and Anuj Singh

Abstract— Classical federated learning approaches incur
significant performance degradation in the presence of
non-independent and identically distributed (non-IID) client data.
A possible direction to address this issue is forming clusters of
clients with roughly IID data. Most solutions following this direc-
tion are iterative and relatively slow, also prone to convergence
issues in discovering underlying cluster formations. We introduce
federated learning with taskonomy (FLT) that generalizes this
direction by learning the task relatedness between clients for
more efficient federated aggregation of heterogeneous data. In a
one-off process, the server provides the clients with a pretrained
(and fine-tunable) encoder to compress their data into a latent
representation and transmit the signature of their data back to
the server. The server then learns the task relatedness among
clients via manifold learning and performs a generalization of
federated averaging. FLT can flexibly handle a generic client
relatedness graph, when there are no explicit clusters of clients,
as well as efficiently decompose it into (disjoint) clusters for
clustered federated learning. We demonstrate that FLT not only
outperforms the existing state-of-the-art baselines in non-IID
scenarios but also offers improved fairness across clients. Our
codebase can be found at: https://github.com/hjraad/FLT/

Index Terms— Federated learning, non-independent and iden-
tically distributed (non-IID) client data.

I. INTRODUCTION

FEDERATED learning is a new paradigm that offers
significant potential in elevating edge-computing capa-

bilities in modern massive distributed networks. While pre-
senting great potential, federated learning also comes with its
own unique challenges in practical settings [1], [2]. Recent
studies focus on systemic heterogeneity [3], communication
efficiency [2], [4], [5], privacy concerns [6], [7], and more
recently on fairness [8], [9] and robustness across the network
of clients [10], [11]. A defining characteristic of massive

Manuscript received 14 May 2021; revised 8 October 2021 and 2 January
2022; accepted 15 February 2022. Date of publication 22 March 2022; date
of current version 30 October 2023. An earlier version of this paper is
presented (and has won the Best Paper Award) at ICLR 2021 Workshop on
Distributed and Private Machine Learning (DPML). (Corresponding author:
Hadi Jamali-Rad.)

Hadi Jamali-Rad is with Shell Global Solutions International B.V., 1031HW
Amsterdam, The Netherlands, and also with the Department of Intelligent
Systems (INSY), Delft University of Technology (TU Delft), 2628 CD Delft,
The Netherlands (e-mail: h.jamalirad@tudelft.nl).

Mohammad Abdizadeh is with Myant Inc, Toronto, ON M9W 1B6, Canada
(e-mail: mohammad.abdizadeh@myant.ca).

Anuj Singh is with the Department of Intelligent Systems (INSY), Delft
University of Technology (TU Delft), 2628 CD Delft, The Netherlands
(e-mail: a.r.singh@student.tudelft.nl).

This article has supplementary material provided by the
authors and color versions of one or more figures available at
https://doi.org/10.1109/TNNLS.2022.3152581.

Digital Object Identifier 10.1109/TNNLS.2022.3152581

decentralized networks is stochastic heterogeneity of client
data, i.e., clients possess non-independent and identically
distributed (non-IID) data. Non-IIDness in client data can
be due to several factors, including the following two most
commonly considered aspects: 1) pathological non-IIDness,
where different clients can see different target classes, and
2) quantity skew, where different clients can have imbalanced
number of samples to train on [4]. Li et al. [12] identifies
statistical heterogeneity as the root cause for tension between
fairness and robustness constraints in federated optimization.
McMahan et al. [4], Li et al. [13] investigate the impact of het-
erogeneous data distributions on the performance of federated
averaging algorithm, FedAvg [4], and demonstrate significant
performance degradation in non-IID settings. Several avenues
have been explored in the literature to tackle the problem
of statistical heterogeneity in federated learning settings. Per-
sonalized federated learning tackles data heterogeneity by
forming personalized models for clients via meta-learning
or multi-task learning [12], [14]–[17]. Clustered federated
learning addresses this problem by iterative (or recursive)
assignment of clients to separate clusters based on model or
model update comparisons at the server side [18]–[22]. The
effectiveness of clustering approaches hinges upon the quality
of cluster formation through this iterative assignment process.
Besides, clustered federated learning approaches are sensitive
to initialization, as we will demonstrate later on. More details
on the related work will be provided in the next section.

Inspired by the idea of “taskonomy” [23], we explore the
task relatedness across client data distributions and cast it in
the form of a client relatedness graph. This is accomplished
in a one-off fashion based on contractive encoding of client
data followed by manifold learning (with UMAP) at the server
side. The proposed approach (FLT) can flexibly handle a
range of possibilities in incorporating this client relatedness
graph for federated averaging. It can be used in generic form
as an extension of FedAvg for non-IID data when there are
no explicit clusters of clients with similar data distributions
or, if need be, can be decomposed with hierarchical
clustering (HC) to disjoint clusters and transform into
clustered federated learning. Our main contributions can be
summarized as follows: 1) we propose federated learning with
taskonomy (FLT), which learns the task relatedness among
clients and uses it at the server side for federated averaging
of non-IID data, without requiring any prior knowledge about
data distribution correlations among clients or the number of
clusters they belong to; 2) FLT can flexibly discover generic
client relatedness and an underlying clustered formation in
non-IID scenarios; 3) we empirically show that FLT offers

© 2022 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.
For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0003-2254-6963
https://orcid.org/0000-0001-7550-1924

8720 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 34, NO. 11, NOVEMBER 2023

faster convergence compared with the existing state-of-the-art
baselines; 4) we provide convergence guarantees on FLT under
common assumptions required for convergence of FedAvg;
5) we demonstrate that FLT outperforms the existing state-
of-the-art baselines across several (synthetic and realistic)
federated learning settings by about 3%, 9%, 2%, and 40%,
on MNIST, CIFAR10, FEMNIST, and a newly introduced
“Structured Non-IID FEMNIST” dataset); and 6) finally,
we show that FLT offers improved fairness (least variance in
performance across clients), besides the improved accuracy.

II. RELATED WORK

A. Federated Learning of Non-IID Data

An early proposition to handle non-IID data in federated
learning was to create a globally shared dataset comprising
a small subset of data from each client [24]. However, the
validity of this approach has been debated from increased
communication costs, privacy, and security perspectives [3].
Li et al. [13] proposed to add a proximal term to local
optimization sub-problems to limit the impact of “variable”
local updates. This problem is phrased as “client drift” in [25],
and a set of control variates are communicated between the
clients and server to correct for this drift. In a somewhat related
context but on different type of data (such as medical), other
studies propose changing the global optimization cost function
or weighting the aggregation at the server side to account for
dissimilarities among data distributions [26]–[28].

B. Personalized and Multi-Task Federated Learning

This line of research tackles data heterogeneity by forming
personalized models for clients via meta-learning or multi-
task learning [14]–[16]. The work presented in [14] extends
multi-task learning to federated learning; however, it relies on
alternating bi-convex optimization which limits its applica-
bility to only convex objective functions. In meta-learning
setting [15], [16], first a single global model is obtained
at the server, based on which each client fine-tunes its
model. However, this global model would not serve as a
good initialization if client data distributions are considerably
different.

C. Clustered Federated Learning

Akin to our high-level approach, two iterative approaches
are proposed in [18] and [19] to assign clients to separate
clusters and train sub-models per cluster. However, several
rounds of communication are required until the formation of
clusters is solidified. More specifically, in [18] per iteration
the cluster sub-models have to be sent to all the other active
clients in that iterations, which is demanding in terms of
communication cost. The clustering methodologies proposed
in [20], [21], and [29] are based on recursive bi-partitioning
with cosine similarity between model updates as metric.
Owing to the recursive nature, their compute and communica-
tion overhead can become a bottleneck in large-scale settings.
A multicenter federated learning approach is proposed in [22]
where clients are clustered based on their model parameter

differences with randomly initialized cluster-level models.
We argue that model parameters are just an implicit proxy
of client data distributions, whereas our approach directly
exploits the client data itself and distills it into its signature
encoding for clustering. Notably, the approach of [22] is
sensitive to model initialization and also requires prior knowl-
edge about the number of clusters. The cited approaches are
mostly iterative and either slow in convergence or costly from
communication perspective. We instead propose a one-shot
solution based on client relatedness. In a concurrent work,
Dennis et al. [30] focuses on one-shot federated clustering.
After projecting client data onto a selected subspace, the
iterative Lloyd’s k-means clustering [31] is applied and the
outcomes is communicated to the server in a one-shot fashion
for cluster assignment. First, Dennis et al. [30] does not study
the impact of the proposed clustering on downstream federated
learning applications. Besides, linear subspace decomposition
is in practice less efficient than the non-linear (and fine-tuned)
autoencoders we use at the client side. Moreover, our manifold
learning approach with UMAP [32] at the server side has the
potential to approximate the underlying manifold of data in
a more generic fashion as we empirically demonstrate in the
following.

Notation: In the following, we use �X�l to denote norm-l of
matrix X and |X | to denote the cardinality of set X . We denote
the set {1, . . . , n} with [n]. We refer to the (i, j)th element of
matrix X as Xi, j and its i th row with Xi . 1n denotes a row
vector of size n containing all 1s.

III. FEDERATED LEARNING WITH TASKONOMY

In this section, we first formalize the classical federated
learning setting and objectives and then introduce FLT.

A. Preliminaries: Refresher on FedAvg

In a classical federated learning setting, we consider M
clients (in practice, hundreds) with nm local data samples and
communicate their learning regularly to a central server to
reach global consensus about the whole data composed of
N =∑

m nm samples. In most prior work, the goal is to solve

min
w

f (w) =
M∑

m=1

pm Fm(w) (1)

where pm = (nm/N) is the fraction of the total data client
m sees, and thus,

∑
m pm = 1. The local objective Fm is

typically defined by the empirical risk over local data Fm =
(1/nm)

∑nm
j=1 l j (w). Federated learning is conducted in regular

communication rounds (server to clients, and vice versa), and
per round t typically a subset of clients S t are randomly
selected to run stochastic gradient descent (SGD) for a given
number of local epochs. This local updating mechanism
is shown to be more flexible and efficient than mini-batch
methods [33]–[35]. Algorithm 1 summarizes FedAvg [4],
a pioneering method to solve (1) in a non-convex setting. The
protocol is simple: in T consecutive rounds, selected client m
runs E epochs of SGD (with learning rate η) on local data
and shares the local model wm with the server to be averaged

JAMALI-RAD et al.: FEDERATED LEARNING WITH TASKONOMY FOR NON-IID DATA 8721

Fig. 1. High-level architecture of FLT. Clients extract their data signature using the agreed ConvAE. They then apply k-MEANS to further condense their
signatures and transmit k embedding vectors to the server. The server then applies manifold learning using UMAP followed by a distance metric to form an
adjacency matrix. Finally, HC [36] is applied if formation of disjoint clusters is of interest as shown in Fig. 2.

Algorithm 1 Federated Averaging (FedAvg)

Require: M , T , w0, pm

for t = 0, . . . , T − 1 do
Server selects a subset S t of clients (M = |S t |).
Server sends wt to all the selected clients.
for each client m do

for epoch e = 1, . . . , E do
wm ← wm − η∇Fm(wm)

end
wt+1

m ← wm

end
Each client m sends wt+1

m to the server.
Server aggregates wms and updates w:

wt+1 ←∑M
m=1 pm wt+1

m
end

among M participating clients. For the sake of simplicity, the
client participation fraction ρ =M/M = |S t |/|S| is typically
considered to be constant.

B. Mechanics of FLT

The majority of the clustered federated learning
approaches [18]–[21], [29] enforce a hard membership
constraint on the clients to form disjoint clusters where
every client can belong to only one cluster. In contrast,
we allow for an arbitrary symmetric task relatedness matrix
with the possibility to be reordered and relapsed into disjoint
clusters. To form clusters, these approaches mostly compare
the clients based on their model parameters using a distance

metric (such as L2 norm or cosine similarity), which in
practice does not capture the underlying manifold of data
in the model parameter space or any other representation
space. We instead propose a one-shot method for learning the
task relatedness matrix (coined as FLT) that benefits from
manifold approximation (metric learning with UMAP [32])
at the server side before applying a distance metric. In the
following, we delve deeper into the mechanics of FLT.

1) Overview: A high-level sketch of the proposed approach
is depicted in Fig. 1. As can be seen, we consider three
abstraction levels: 1) data level, where data samples live in
R

d ; 2) encoder level, where a contractive latent space repre-
sentation of client data is extracted in an unsupervised fashion
(samples are nonlinearly projected to R

e); and 3) manifold
approximation level with UMAP, where samples live in R

u .
The encoder is provided by the server to the clients. This
allows them to apply one-shot contractive encoding on their
local data, followed by k-means on the outcome and return the
results to the server. At the server side, UMAP is applied to
approximate the arriving clients’ embeddings. This is followed
by applying a distance threshold to determine client dependen-
cies and form an adjacency matrix or a client (task) relatedness
graph. If forming disjoint clusters is of interest, we then
use HC [36] to efficiently reorder the adjacency matrix (or
corresponding client relatedness graph) into disjoint clusters
(see Fig. 2).

2) Learning Client (Task) Relatedness: The proposed
approach, FCR, is described in Algorithm 2. The server
broadcasts an encoder G(·) to all the M clients in S. Note
that this can also be an agreement (between the server and
the clients) on using an encoder pretrained on a standard
dataset (without virtually sending it), similar to the case of

8722 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 34, NO. 11, NOVEMBER 2023

Fig. 2. Forming C = 5 clusters for a network of M = 25 clients with HC. (a) Adjacency matrix and (b) corresponding client relatedness graph (both
reordered on the right).

Algorithm 2 Form Client Relatedness (FCR)
Require: MODE, S, G(·), �(·), k, C

1 Server broadcasts G(·) to all clients in S
2 for each client m in S do
3 if MODE = fine-tune then
4 Client runs F epochs to fine-tune
5 end
6 Client computes its own embedding:
7 Em ← G(Dm)
8 Client applies k-means clustering to Em’s:
9 Mm := {μ1, . . . , μk} ← kMEANS(Em)

10 Client sends Mm to the server
11 end
12 Server updates M := {M1, . . . ,MM}
13 Server (re)computes
14 Z := {Z1, . . . ,ZM } ← UMAP(M)
15 Server constructs the adjacency matrix:

Ai, j := minr,s �ui,r − u j,s�2,
16 ∀i, j ∈ [M] & ∀r, s ∈ [k]
17 Server applies thresholding Ã := �(A)
18 Server forms C clusters with hiearchical clustering:
19 C = {C1, . . . , CC} ← HC(Ã)

Return: Ã and C

local models being used by clients in FedAvg. Nonetheless,
this is one-off, and this downlink communication/agreement
does not have to be repeated unless in an exceptional case
where the server decides to change the architecture of the
encoder. Note that extracting the signature of client data based
on an encoder, instead of model weights for instance, is a
key component of FLT, and it is inspired by taskonomy [23].
While being a significant contributor to the performance of
FLT, the fact that in some scenarios this encoder has to
be fine-tuned on the client data can impose an extra bur-
den. On the other hand, since we only consider a simple
convolutional autoencoder (ConvAE) with its frozen encoder
section used for extracting latent embeddings, this fine-tuning
is a straightforward process with negligible added complexity
on the client side. In our experimentation (Section IV), this
model is as simple as the local client models designed for
the downstream task. ConvAE not only helps compressing
the information that has to be sent to the server but also
creates a less noisy representation of the client data. Upon
receiving G(·) clients compute Em := G(Dm), where Dm

denotes the dataset of client m (∈ [M]) and Em denotes its
embedding set of size |Dm|. The elements of Em live in R

e

with e referring to the latent embedding dimension. Even
though Em is compressed when compared with Dm , it turns
out that it can still be further distilled and yet capture enough
information for our downstream federated learning purpose.
Therefore, each client applies kMEANS(·) on Em and sends
the outcome Mm := {μ1, . . . , μk} (a set of size k) back to
the server. The fine-tune mode is provisioned to accommodate
encoders pretrained on a totally different dataset. In such a
case, clients will be asked to run F epochs of SGD from
their latest state on their most recent dataset. As we will
demonstrate in Section IV, this is to establish that the choice
of dataset for pretraining the encoder is not a bottleneck.

The server then constructs M := {M1, . . . ,MM } and
applies UMAP [32] to M and computes Z := {Z1, . . . ,ZM }
with Zm := {um,1, . . . , um,k}. Z contains k×M elements each
living in R

u , with u being typically 2 or 3. In most prior
work, a distance metric (L2 or cosine) is directly applied,
which could be a limiting factor for non-convex risk functions
and incongruent non-IID settings [20]. Instead, in FCR the
server first learns the manifold in which the embeddings live
using UMAP and then applies a distance metric to construct
an adjacency matrix Ai, j := minr,s �ui,r − u j,s�2, ∀i, j ∈ [M]
& ∀r, s ∈ [k], where the minimum pairwise distance among
the elements of Zi and Z j is taken into account. Here, for the
sake of simplicity, we consider a hard-thresholding operator
� applied on A leading to Ã, where Ãi, j = �(Ai, j) =
Sign(Ai, j − γ) with γ a threshold value. In practice, γ
can be tuned to return best performance in different settings.
If constructing explicit and disjoint clusters is of interest,
the servers apply HC [36] to reorder Ã into Ãr with C
disjoint clusters (diagonal blocks). Finally, the server extracts
cluster membership in C = {C1, . . . , CC } with Ccs being a
set of client IDs in cluster c. A flexibility that HC in [36]
offers is to propose the best fitting number of clusters, if the
maximum number of clusters is not specified. Ã and Ãr for
a toy setup with M = 25 clients are depicted in Fig. 2: a)
adjacency matrix and b) client relatedness graph. On the left,
the clients are arranged based on their IDs and on the right
they are re-ordered with HC [36] to form C = 5 clusters. It is
noteworthy that this one-shot client relatedness discovery of
FCR can also happen in a few stages, in case all the clients
are not available for cooperation at the initialization stage.
Besides, excluding a few clients from the process (for any
reason) will not impact the performance of FLT.

JAMALI-RAD et al.: FEDERATED LEARNING WITH TASKONOMY FOR NON-IID DATA 8723

Algorithm 3 FLT

Require: S, M , T , W 0, pm

1 Initialize Clustering:
2 Ã, C ← FCR(normal,S, G(·), �(·), k)
3 for t = 0, . . . , T − 1 do
4 wt

1, . . . , w
t
M ← W t

5 Server selects a subset S t of clients
6 Server sends wt

m to all clients m in S t

7 for each client m in S t do
8 for epoch e = 1, . . . , E do
9 wm ← wm − η∇Fm(wm)

10 end
11 wt+1

m ← wm

12 end
13 Each client sendswt+1

m and δ to the server
14 Server collects W t+1 = [wt+1

1 , . . . ,wt+1
M]

15 Server aggregates and updates W t+1:
16 Case I) Full adjacency matrix Ã:
17 W t+1 ←W t+1 Ã diag(pm/� Ãm�0)
18 Case II) Disjoint clusters based on C:
19 wt+1

c ← 1
|Cc|

∑
m∈Cc

pmwt+1
m , ∀c ∈ [C]

20 W t+1 = [1|C1|w
t+1
1 , . . . , 1|CC |w

t+1
C]

21 {Dynamic Clustering (optional):
22 Server updates � = [δ1, . . . , δM+M �];
23 if

∑
i δi > λ or (t mod μ = 0) then

24 S ← S ∪ {M + 1, . . . , M + M �}
25 Ã, C ← FCR(fine-tune,S, G(·), �(·), k)
26 �← [0, . . . , 0], M ← M + M �
27 end
28 }
29 end

3) Clustering Performance of FLT: Let us assume that
the data of each client are generated from a mixture of L
components, where L is the total number of target classes
(labels). The goal of the encoder is to transform the data into
a latent embedding such that separability among data labels is
maximized for clustering. Let us denote the classification error
of the encoder part of the pretrained ConvAE by Pcae

e . For sake
of simplicity, assume that latent embeddings are a mixture of
Gaussian components. In such a case, the following theorem
provides an upper bound on the total clustering error of FLT:

Theorem 1: The clustering error of FLT is upper bounded
by

P tot
err �

M∑
m=1

L∑
l=1

e∑
i=1

exp

(
−

(
nl

m × Q−1
(
Pcae

err

))2

2

)
(2)

where, Q represents the Q-function, nl
m denotes the total

number of samples with label l for client m, and e is the
dimension of the latent space.
This demonstrates that by increasing the sample size, the total
clustering error of FLT vanishes, as desired. The detailed proof
can be found in Appendix B-A in the supplementary material.

4) Federated Averaging With Taskonomy: FLT in
Algorithm 3 starts with an initialization stage by calling

the normal mode of FCR. This returns the adjacency (or
client relatedness) matrix Ã together with an optional cluster
membership set C for the case of disjoint clustering. Next,
the typical T rounds of communication akin to FedAvg will
be run. The server sends across a model corresponding to
each client in the (randomly) selected (time-varying) subset
S t (line 6). Similar to FedAvg, the client participation rate
is defined as ρ = |S t |/|S|. In case of disjoint clustering,
all the clients in cluster Cc will be given the same model
wt

c. Each client runs F epoch on its local data and sends
back the updated local model wt+1

m . The top bar notation
is used to denote client-side models. The server collects
all the local models in W t+1 = [wt+1

1 , . . . ,wt+1
M] and

updates them according to two possible cases. The first
option (Case I) uses the full client relatedness matrix Ã
to benefit from the all the related client models (line 17).
In this case, the server updates the local model weights using
W t+1 = W t Ã diag(pm/� Ãm�0). For notation simplicity,
each model parameter set wt+1

m is assumed to be reshaped
into a column vector. The second option (case II) is to
define an update rule per disjoint cluster according to cluster
membership in C. In that case, standard FedAvg will be
applied per cluster (line 19) and the aggregated model of the
cluster, wt+1

c , will be sent to all the clients in the cluster in
the next round (line 20).

Finally, we reflect on an optional dynamic clustering func-
tionality of FLT in lines 13 and 21–28 of Algorithm 3.
Here, we consider two possible circumstances: 1) the data
distribution of (some) clients varies suddenly or with time,
e.g., new classes are introduced and 2) newcomer clients join
the network. In such cases, the clients can optionally send a
flag of state change (δ := 1) along with their updated model
parameters (line 13) to notify the server of the change in their
data or the state of being a newcomer. The server keeps track
of these flags in �, and once a certain number of clients
have raised such flags (say λ clients), it calls for repeating
the cluster formation process. This needs further client coop-
eration and is prone to byzantine attacks. There are two other
possibilities to do this without any client contribution. This can
happen every μ round as denoted in line 18 or can happen on
the server side, by monitoring client model parameter change
as determining factor, similar to the main clustering approach
of [21] and [22]. In any case, if (e.g. M �) new clients are
introduced and/or some clients have experienced data change,
the server will update S accordingly (line 24) and calls FCR
with MODE set to fine-tune, possibly resulting in a new client
relatedness graph and cluster membership (Ã, C). The new
clients will then be incorporated in the next communication
round. Another possibility to handle newcomer clients is to
assign them to the existing cluster formation C based on
their distance to the (average) latent embeddings of the clus-
ters, i.e., w.r.t. an averaged representative cluster embedding.
In favor of limited space, these directions are left as our future
work.

5) Convergence of FLT: The following theorem generalizes
convergence characteristics of FedAvg to that of FLT under
same regularity assumptions. A detailed proof of this theorem
is provided in Appendix B-B in the supplementary material.

8724 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 34, NO. 11, NOVEMBER 2023

Theorem 2: Let GW(W t)
�= �W t − W t−1�2 represent the

optimality gap for the stationary solution of FLT, where W t

stands for the model parameters in communication round t .
Under common regularity assumptions [37], the iterative gra-
dient descent solution for FLT satisfies

1

T M

M∑
i=1

T∑
t=1

E
[
GW

(
W t

)]

≤ 1

T × M

F
(
W 1

)− F
(
W T

)
(

1
2η
− LW

2 − η
2 L2

W

∥∥IM −A
∥∥2

) (3)

where the cost function F is assumed to be LW -smooth,
IM is the M × M identity matrix, and A and η denote
the row-normalized adjacency matrix and the step size,
respectively.

This theorem proves that akin to FedAvg, the convergence
rate of FLT for a regular cost function is O(1/T) for T
communication rounds. In Appendix B-B in the supplementary
material besides the detailed proof of this theorem, we also
provide a more elaborate convergence analysis for FLT where
extra hyper-parameters such as the number of local epochs E
are incorporated.

IV. EVALUATION

We now present empirical evidence on the impact of the
proposed approach, FLT. We first describe our experimental
setup covering a suite of synthetic and realistic (large-scale)
non-IID scenarios. We then compare the performance (accu-
racy and fairness) of FLT against the existing state-of-the-art
baselines.

A. Experimental Setup

1) Datasets: We opt for image classification task as
our downstream application of federated learning. For
performance evaluation, we use four different datasets:
1) MNIST [38]; 2) CIFAR10 [39]; 3) Federated
EMNIST (FEMNIST) of LEAF [40] which is made out
of Extended MNIST (EMNIST) [41]; and 4) and our newly
designed Structured Non-IID FEMNIST. The latter is a
resampled version of EMNIST to assess the performance
in structured non-IID scenarios; see the supplementary
materials for more detailed description of this new dataset.
For experiments on MNIST and CIFAR10, we, respectively,
use 60 000 and 50 000 samples for training and 10 000
for testing. MNIST and CIFAR10 contain ten classes of
handwritten digits and objects with 6000 and 5000 samples
per class, respectively. FEMNIST is a standard federated
learning image classification dataset with 805 263 samples
that can accommodate up to 3550 clients. Based on EMNIST
and similar to FEMNIST, we build a new dataset with
(more pronounced) structured non-IID conditions and call it
Structured Non-IID FEMNIST. To do so, we consider the
“balanced” dataset of EMNIST, containing 131 600 samples
on 47 classes. We use 112 800 for training (2400 samples
per class) and the remainder 18 800 for testing. Depending
on the scenarios explained later on, we partition the data into
C = 5 or 10 clusters. For experiments on FEMNIST, there is

no predefined partitioning (or clustering) and we follow the
standard definitions of LEAF [40].

2) Encoders: To investigate the impact of encoder initial-
ization, we also make use of three other datasets: a subset
of CIFAR100 [42] (without any overlap with 10 classes of
CIFAR10), a 20-class dataset composed of CIFAR10 and
10 classes of CIFAR100 (we refer to this as “CIFAR20”),
and Fashion MNIST [43]. More concretely, we evaluate the
performance of the proposed method in two encoder scenarios.

1) Enc1: The encoder provided to the clients is pretrained
on a large set of targets that covers the client target
classes. This case is hoping for a holistic encoder on
the server side. More specifically, for federated learning
on MNIST we have used an encoder pretrained on
EMNIST, and for CIFAR10 we use CIFAR20 introduced
earlier.

2) Enc2: The encoder is pretrained on a totally different
dataset, and an initial fine-tuning per client would be
required. This case demonstrates that lacking the holistic
encoder (Enc1) is not a bottleneck for FLT. Note that in
this scenario the encoder (ConvAE) is fine-tuned (also
pre-trained) in an unsupervised way and independent
of the downstream federated learning task for J more
epochs based on a mean-squared-error (MSE) loss.
In this case, for federated learning on MNIST we use an
encoder pretrained on Fashion MNIST, and for CIFAR10
we use CIFAR100, which has no overlap with CIFAR10.
For experiments on EMNIST/FEMNIST and Structured
Non-IID FEMNIST, we only considered Enc2 pretrained
on Fashion MNIST.

3) Network Parameters: We consider two model architec-
tures for local client training, a multilayer perceptron (MLP)
and a convolutional neural network (CNN). We use an MLP
with ReLU activation and a single hidden layer of size 200.
We use the CNN of LEAF [40] with two convolutional layers
followed by two fully connected layers. The encoder section of
our frozen ConvAE has two convolutional layers followed by a
single fully connected layer. Note that the encoder is as simple
as the local client model. See the supplementary materials for
more details on model architectures. We set the number of
local epochs to E = 5, and the total communication rounds
to T = 100, unless otherwise mentioned. The local training
is a mini-batch SGD with a batch size of 10 and a learning
rate of η = 0.01. For FLT, the size of the latent embedding
is e = 128 and k in kMEANS is set to 5. Even though on the
client side k can be adjusted according to the number of client
classes. The number of fine-tuning epochs for Enc2 is set to
J = 5, and γ = 1. The client participation fraction ρ = 20%,
unless otherwise mentioned. For HC, we use Ward’s method
for linkage creation [36].

B. Evaluation Scenarios

According to [3] and [4], there are several possible sources
of non-IIDness in client data distributions. Among those, label
distribution skew, or the so-called “pathological” partitioning,
is the most commonly adopted approach in literature. In this
case, different clients will have different class labels, which

JAMALI-RAD et al.: FEDERATED LEARNING WITH TASKONOMY FOR NON-IID DATA 8725

together with quantity skew (varying number of samples across
clients) leads to most destructive impact on FedAvg [44].
We build the following scenarios upon these angles.

1) Scenario 1 [MNIST, CIFAR10]: We consider a network
of M = |S| = 100 clients clustered into C = 5 clusters.
The training data samples will be evenly distributed among
these clients, 600 samples each (500 for CIFAR10), and the
clients in each cluster will have samples only from two distinct
classes. For instance, for MNIST, clients in cluster 1 (C1)
will have only samples from digits “0” and “1” and those
in C2 from “4” and “7” without overlap with C1.

2) Scenario 2 [MNIST, CIFAR10]: This scenario is the same
as Scenario 1, except that the clients in two different clusters
can have one similar label/class. As an example, for MNIST,
clients in cluster 1 (C1) will have only samples from digits
“0”, “1,” and “2,” and those in C2 can have samples from
“2,” “3,” and “7.” This is to investigate the performance in
less extreme non-IID conditions.

3) Scenario 3 [FEMNIST]: We import the standard FEM-
NIST dataset of LEAF and construct a network of 200 clients
according to train and test data distributions defined in [40].
We run our experiments for a total of T = 100, 1000, and
1500 communication rounds. There are no predefined (or
structured) clusters in FEMNIST, and it is up to the federated
learning method to form clusters, if need be. Here, we consider
both the cases in Algorithm 3 and assess the performance of
FLT in the generic form (no clusters, case I) and with C = 2,
3, 5, and 7 clusters (case II).

4) Scenario 4 [Structured Non-IID FEMNIST]: As men-
tioned earlier, we introduced this dataset with the purpose
of imposing (more extreme) structured non-IIDness in FEM-
NIST. To this aim, we impose label distribution skew (across
clusters) and quantity skew following a power law for the
number of samples per client in each cluster, akin to [13].
We consider C = 10 clusters, each containing five distinct
character classes (a total of 12 000 data samples per cluster),
except the last one containing two classes (4800 samples),
resulting in a total of 47 classes and 112 800 samples. We also
consider even a larger network than Scenario 3 with M =
2400 clients (240 clients per cluster) for MLP and M =
600 clients (100 clients per cluster) for CNN. Notably, as a
result of our random sampling strategy, the clients in each
cluster will have a random subset of the labels assigned to
that cluster.

C. Baselines and Competitors

1) Baselines: We consider five baselines as described in
the following: 1) FedAvg [4] where a single global model
is trained for the whole network; 2) local where each
client trains its own model with its own local data; and
3) PCA + kM + HC Inspired by [30] (focused on federated
clustering), this method applies linear principle component
analysis (PCA) followed by kMEANS (at the client side) and
HC at the server side. The goal is to illustrate the impact of
the nonlinear encoder (convAE) and manifold learning (UMAP)
components of FLT for discovering task relatedness. iv, v) We
also compare our performance with two of the most recent

TABLE I

TEST ACCURACIES (%± STD. ERROR) FOR SCENARIO 1

state-of-the-art clustered federated learning approaches called
IFCA [18] and FedSEM [22]. Notably, FedSEM already
outperforms other recent baselines such as FedProx [13]
and CFL [20], and thus has been selected as the outstanding
approach. For the sake of reference though, we also report
the result of CFL in Scenario 3. FedSEM constructs multiple
clusters each building its own local cluster-level model. For
each cluster, a virtual cluster center is defined and its parame-
ters are updated in an iterative fashion. The key idea behind
cluster formation is measuring the distance between clients
and virtual cluster center model parameters. IFCA tries to
construct multiple clusters iteratively by alternating between
cluster identification estimation and loss function minimiza-
tion. It starts with initializing model parameters for cluster
centers which are then broadcast to the randomly participating
clients per communication round (a costly communication
overhead). The clients estimate their cluster identity by finding
the model that returns the lowest loss and send their cluster
identity along with the updated model. For both the methods:
1) the number of clusters has to be known a priori; 2) a
good initialization of cluster center model parameters is key
for convergence; and 3) they require several communication
rounds before clusters are formed. We will demonstrate in
Section IV-F that these characteristics can lead to slow con-
vergence and suboptimal performance in structured non-IID
scenarios.

2) Fairness in Federated Learning: Recently, fairness in
performance has become an important concern in federated
learning. In this context, being “fair” is to avoid dispropor-
tionately advantaging or disadvantaging some of the clients.
Among several interesting approaches to fairness, two recent
ones stand out in the federated learning literature: 1) best
worst case performance [8], [45], and 2) least variance across
clients [9]. We focus on the latter and report the variance of
model accuracies across clients as a measure of fairness.

D. Evaluation Results for Scenarios 1 and 2

Average model accuracies on test data (and their standard
errors) for Scenarios 1 and 2 after T = 100 communication
rounds are shown in Tables I and II, respectively. These
are accompanied by the variance of model accuracies across
clients which is serving as our fairness metric [9]. For MNIST,
the number of local epochs is set to E = 1 and for CIFAR10
is set to E = 5. Note that irrespective of the choice of the
encoder (Enc1 or Enc2), the proposed method (FLT) achieves

8726 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 34, NO. 11, NOVEMBER 2023

TABLE II

TEST ACCURACIES (%± STD. ERROR) FOR SCENARIO 2

roughly the same performance in terms of accuracy in both the
scenarios. This highlights that our method is reasonably robust
against the choice of the encoder and the fine-tuning idea
(starting from a totally different dataset and finetuning only for
J = 5 epochs) for Enc2 is functioning. As can be seen in both
the tables, even with E = 1, the differences between FLT and
FedSEM are relatively smaller on MNIST but this discrepancy
grows for CIFAR10. In summary, on MNIST and CIFAR10,
we improve upon the state-of-the-art approach FedSEM by
about 3% and 9% respectively, and way beyond that for the
case of FedAvg, local, and PCA + kM + HC. On top
of accuracy, FLT returns the least test accuracy variance (best
fairness) for almost all the settings in the two scenarios.

There are two reasons behind achieving reasonable per-
formance by local models: 1) in these two scenarios
clients have a reasonably high number of samples (600 for
MNIST and 500 for CIFAR10) and 2) the target classes
in different clusters are almost independent. Note that
extreme non-IIDness (total class independence across clus-
ters) in Scenario 1 helps local models score better than in
Scenario 2 where some correlation between labels is allowed.
A counter-argument applies to our method FLT because hard
thresholding (mapping cluster membership to 0 s and 1s) for
� in Algorithm 2 seems to be limiting the performance in
handling inter-cluster dependencies. Local models do not
illustrate competitive performance. Therefore, we omit them
in the following experiments.

E. Evaluation Results for Scenarios 3

Predefined data distribution of FEMNIST in LEAF [40] and
its adoption by other state-of-the-art methods helped us to also
benchmark our approach against IFCA [18]. Here, we present
the performance results based on both MLP and CNN net-
works for M = 200 clients, a setting commonly adopted in
literature. For FLT, we only present the more challenging
Enc2 case where the encoder is pretrained on Fashion MNIST,
and in a one-off process each client fine-tunes the encoder
(for only J = 5 epochs). Ghosh et al. [18] use a slightly
modified data sampling strategy; however, we use standard
data distribution of FEMNIST as in [40]. They also run for a
total of T = 6000 communication rounds to reach the nominal
performance, 2000 of which is initialization with FedAvg
for “weight sharing” for a smaller client participation rate
(ρ = 3%). For the sake of fair comparison, we run
500 rounds of initialization (with FedAvg) followed by
another 1000 rounds of IFCA itself, i.e., a total of

TABLE III

TEST ACCURACIES (%± STD. ERROR) FOR SCENARIO 3

1500 rounds. All the MLP experiments are run for T =
1000 communication rounds, and those for CNN are run for
only T = 100 rounds, except for IFCA which is again run
for 1500 rounds for both MLP and CNN. Remember that
FEMNIST does not introduce any predefined cluster structure,
and thus non-IIDness in the structured form. As such, this
is up to the methodology to define clusters. Both IFCA and
FedSEM must define clusters (C > 1) or with C = 1 they
would degenerate to FedAvg; however, thanks to FCR in
Algorithm 2, this is not the case for FLT. We adopt the
setting leading to the best performance reported by both IFCA
and FedSEM with C = 3 and C = 5 clusters, respectively.
For FLT, we present the results for both the cases described
in Section III: 1) where the full client relatedness matrix
will be used and 2) where we use HC to specifically extract
disjoint clusters (only if need be, as a special case). This is
shown in Fig. 3 where (a) shows the raw client relatedness
matrix, (b) illustrates how HC would reorder this to extract
cluster-level dependencies (dendrogram), and (c) shows the
flattened version with C = 2 disjoint clusters.

The test accuracies and fairness measures are summarized in
Table III. Using the full client relatedness matrix, FLT beats all
the competitors (by +2%, +12%, +1.5% for PCA + kM +
HC, IFCA, FedSEM) for MLP and (by +2%, +0.5%, +2%
for PCA + kM + HC, IFCA, FedSEM) in case of CNN
local models. As also reported in [22], FedSEM already beats
CFL, so does FLT by a siginificant margin of +6 (for CNN)
to +9% (for MLP). Notably, FLT significantly outperforms
IFCA in MLP setting and marginally outperforms in the
case of CNN. However, in case of CNN, all the models
except IFCA are run for only 100 communication rounds.
In practice, it took IFCA 1500 communication rounds to reach
a comparable performance regime. For this reason, we omit
IFCA in our next experiments. Note that PCA + kM + HC
(inspired by the line of thought in [30] and embedded in an
end-to-end federated learning setting) also performs in par
with the best methods and considerably better than IFCA
in MLP setting. For the sake of fair comparison, HC with
C = 3 clusters is applied here. The convergence graphs
of average test accuracies are illustrated in Fig. 4(a) and (b)
where FLT is the fastest in terms of convergence. We also
investigated the impact of creating disjoint clusters with FLT

JAMALI-RAD et al.: FEDERATED LEARNING WITH TASKONOMY FOR NON-IID DATA 8727

Fig. 3. Hierarchical clustering (HC) is used to reorder client relatedness graph (Ã → Ãr) and extract near-optimal block diagonal structures for disjoint
cluster formation. In (b), the dendrogram highlights the client dependencies leading to C = 2 disjoint clusters. (a) Raw adjacency matrix. (b) Reordered with
HC. (c) Flattened to C = 2 clusters.

TABLE IV

TEST ACCURACIES (%± STD. ERROR) FOR SCENARIO 4

(case II in Algorithm 3) in this setting. Introducing clusters
(C = 2, 3, and 5) in this dataset seems to be slightly degrading
the performance of FLT, even though it still remains to be in
par with the best performing models. See the supplementary
materials for more detailed results. Reflecting on the relatively
smaller performance margin in this scenario, we argue that
FEMNIST may not have a clear cluster structure, and thus,
cluster-based methods might not offer a significant gain. This
also concurs with that FLT using the full adjacency matrix
slightly outperforms its clustered variants. This was the main
motivation behind designing Scenario 4 to assess the potential
of these algorithms in a more challenging large-scale setting:
Structured Non-IID FEMNIST.

F. Evaluation Results for Scenarios 4

As explained earlier, Scenario 4 presents a large-scale fed-
erated learning setting with structured non-IIDness involving
both quantity and label distribution skews. For FLT, we only
present the more challenging Enc2 case where the encoder is
pretrained on Fashion MNIST, and in a one-off process each
client fine-tunes the encoder (for only J = 5 epochs). The
convergence graphs of average test accuracies are shown in
Fig. 5(a) and (b), for MLP and CNN networks, respectively.
The test accuracies (and their standard error) together with
the fairness measure (variance across clients) for the last
communication round T = 100 are summarized in Table IV.
Interestingly, the state-of-the-art competitor, FedSEM, suffers

TABLE V

ABLATION STUDY OF Test ACC. (%± STD.) FOR SCN. 2

in the MLP scenario and roughly scores as good as the
barebone FedAvg, which is not made to cope with structured
non-IID scenarios. The performance of FedSEM is noticeably
improved in CNN setting, but accordingly FLT is boosted
as well, reaching +93% test accuracy in this challenging
scenario. Here, we beat FedSEM by +40% and+17% in MLP
and CNN scenarios, respectively. The main reason behind
this downgrade in performance of FedSEM (compared with
Scenario 3) is the struggle to discover and form clusters
by relying on model parameter comparisons. This is in turn
due to two main factors: 1) significantly larger number of
models (per cluster and across) for this extreme non-IID
scenario leads to tremendous heterogeneity in model space and
thus considerable increase in complexity of pairwise model
comparisons and 2) the problem is exacerbated due to the
limited number of samples provided to some clients (down

8728 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 34, NO. 11, NOVEMBER 2023

Fig. 4. Convergence graph of test accuracies for Scenario 3, FEMNIST, M = 200 (left: MLP, right, CNN). On the right for CNN, note the different range
of communication rounds on the top horizontal axis associated with IFCA. (a) Test accuracies for MLP. (b) Test accuracies for CNN.

Fig. 5. Convergence graph of test accuracies for Scenario 4, Structured Non-IID FEMNIST, C = 10. (a) Test accuracies for MLP, M = 2400. (b) Test
accuracies for CNN, M = 600.

to 20 samples because of the power law) resulting in lower
quality local model training. An evidence confirming this
hypothesis is that these problems are even more pronounced
in the case of a simpler local model (MLP), where FedSEM
falls almost back to FedAvg. On the other hand, thanks
to FCR on client side, and UMAP and HC) on the server
side, FLT manages to automatically detect C = 10 clusters
(see Appendix A in the supplementary material for more
results). Both FedAvg and FedSEM can benefit from more
communication rounds in this scenario. Nonetheless, the main
message of this experiment is clear: the one-shot taskonomy-
based client relatedness helps FLT converge already in roughly
20 communication rounds and outperform the other baselines
by a significant margin, while also offering a lower variance
across clients (best fairness) compared with most competitors.

G. Impact of Hyper-Parameter Changes

We investigate the impact of a few remaining important
hyper-parameters on the performance of FedSEM and FLT
with both Enc1 and Enc2 initialization. We ran this experiment

on Scenario 2 due to being an intermediate case where label
overlap is allowed. Following this scenario, we set C = 5, and
focus on CIFAR10, the more challenging dataset. The results
are summarized in Table V. Here, we consider M = 100 and
500, client participation fraction per communication round
ρ = 20% and 50% (denoted as 0.2 and 0.5), E = 5,
and J = 5 (number of fine-tuning steps in Enc2 initializa-
tion), and we report the test accuracy after T = 50 and
100 communication rounds. As can be seen in the table,
changing the total number of clients M does not change the
performance significantly (by looking at the top and bottom
halves of the table), whereas increasing the communication
rounds T leads to better performance. Besides, for the same
M , increasing the client participation fraction ρ improves the
overall performance of both the methods. Furthermore, for
the same M and ρ, increasing the number of local epochs E
results in a superior performance, all of which are in line with
the more elaborate version of Theorem 2, in Appendix B-B
in the supplementary material. Without exception, our method
outperforms FedSEM by roughly 2%–8%.

JAMALI-RAD et al.: FEDERATED LEARNING WITH TASKONOMY FOR NON-IID DATA 8729

TABLE VI

COMMUNICATION COMPLEXITY ANALYSIS

V. CONCLUSION

A. Summary and Future Directions

We proposed FLT that comes with the following notable
advantages. First, it is one-shot and considerably faster in
convergence compared with its competitors, especially in
structured non-IID scenarios. Second, the problem formula-
tion of FLT can handle both generic client relatedness (no
specific clustering) and disjoint clusters, if need be. Third,
in contrast to most existing baselines, it does not require prior
knowledge about the number of clusters to form them. Fourth,
it performs slightly better than the state-of-the-art baselines
in standard federated learning settings and significantly out-
performs them in structured non-IID scenarios. Finally, FLT
offers improved fairness (least performance disparity among
clients) compared with the existing baselines in most presented
scenarios. Finally, in Appendix B in the supplementary
material, we also provide a detailed convergence proof for
FLT under common assumptions required for the convergence
of FedAvg. We are currently working on extending FLT
to handle dynamic clustering in the presence of newcomers
or time-varying data distributions, as is briefly discussed in
Algorithm 3. Another avenue to explore is removing the hard
threshold � and modifying HC to work with soft (non-binary)
adjacency matrices.

B. Complexity and Practical Considerations

FLT introduces a one-off overhead due to the client related-
ness discovery process (FCR, Algorithm 2). However, owing
to FCR, it is faster than the existing iterative baselines and
less prone to convergence issues, as we have demonstrated
throughout Section IV and Appendix A in the supplemen-
tary material. One can argue that this step can be prone to
security issues during uplink communication (akin to standard
FedAvg communications). A possible solution to address
this is adding encryption and client ID verification processes,
which are outside the scope of our work [6], [46], [47]. From
communication complexity perspective, this overhead requires
the server to send an encoder model (Wenc) to the clients and
the clients to send an array of size ke (with k in k-means and e
denoting the latent embedding dimension of the encoder) to the
server. A rough estimate of the communication complexity of
the proposed FLT and two discussed state-of-the-art competi-
tors (FedSEM and IFCA) is summarized in Table VI. As can
be seen, the communication complexity of FLT and FedSEM
is essentially the same except for the first two one-off terms
(without T for total communication rounds) which could be
neglected. Note that this is an initialization step and it can
also happen in multiple steps. Excluding a few clients from
this process due to, for instance, their unavailability does not

impact the performance of FCR and in turn FLT. On the other
hand, IFCA mandates roughly (C + 1)/2 times (C being the
number of clusters) more communication complexity. This
is because in every communication round, C virtual center
models will have to be sent to all the participating clients.
From compute complexity perspective, possible fine-tuning of
the encoder is only for a small number of epochs (J = 5 in
our experiments) on an encoder which is as simple as the local
client models, and this is yet another one-off process that can
be neglected over long runs. When the number of clients grows
to tens of thousands (in very large-scale networks), FLT has
the flexibility to decompose the client relatedness graph into
disjoint clusters and degenerate to the same complexity level
its competitors inflict.

ACKNOWLEDGMENT

The authors would like to thank Shell Global Solutions
International B.V. and Delft University of Technology (TU
Delft) for the support and for the permission to publish this
work. They would also like to thank Attila Szabó from the
University of Amsterdam (UvA) and Ahmad Beirami from
Meta AI for helpful discussions.

REFERENCES

[1] J. Konečnỳ, B. McMahan, and D. Ramage, “Federated optimization: Dis-
tributed optimization beyond the datacenter,” 2015, arXiv:1511.03575.

[2] J. Konečnỳ, H. B. McMahan, F. X. Yu, P. Richtárik, A. T. Suresh, and
D. Bacon, “Federated learning: Strategies for improving communication
efficiency,” 2016, arXiv:1610.05492.

[3] E. B. P. Kairouz and H. B. McMahan, “Advances and open problems
in federated learning,” Found. Trends Mach. Learn., vol. 14, no. 1,
pp. 1–210, 2021.

[4] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. Y. Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” in Proc. Artif. Intell. Statist., 2017, pp. 1273–1282.

[5] F. Sattler, S. Wiedemann, K.-R. Müller, and W. Samek, “Robust and
communication-efficient federated learning from non-IID data,” IEEE
Trans. Neural Netw. Learn. Syst., vol. 31, no. 9, pp. 3400–3413,
Sep. 2019.

[6] R. C. Geyer, T. Klein, and M. Nabi, “Differentially private federated
learning: A client level perspective,” 2017, arXiv:1712.07557.

[7] E. Bagdasaryan, A. Veit, Y. Hua, D. Estrin, and V. Shmatikov, “How
to backdoor federated learning,” in Proc. Int. Conf. Artif. Intell. Statist.,
2020, pp. 2938–2948.

[8] M. Mohri, G. Sivek, and A. T. Suresh, “Agnostic federated learning,”
in Proc. Int. Conf. Mach. Learn., 2019, pp. 4615–4625.

[9] T. Li, M. Sanjabi, A. Beirami, and V. Smith, “Fair resource allo-
cation in federated learning,” in Proc. Int. Conf. Learn. Represent.,
2020, pp. 1–27.

[10] A. T. Suresh, B. McMahan, P. Kairouz, and Z. Sun, “Can you really
backdoor federated learning?” 2019, arXiv:1911.07963.

[11] H. Wang et al., “Attack of the tails: Yes, you really can backdoor
federated learning,” in Proc. Adv. Neural Inf. Process. Syst., vol. 33,
2020, pp. 16070–16084.

[12] T. Li, A. K. Sahu, A. Talwalkar, and V. Smith, “Federated learning:
Challenges, methods, and future directions,” IEEE Signal Process. Mag.,
vol. 37, no. 3, pp. 50–60, May 2020.

8730 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 34, NO. 11, NOVEMBER 2023

[13] T. Li, A. K. Sahu, M. Zaheer, M. Sanjabi, A. Talwalkar, and
V. Smith, “Federated optimization in heterogeneous networks,” 2018,
arXiv:1812.06127.

[14] V. Smith, C.-K. Chiang, M. Sanjabi, and A. S. Talwalkar, “Federated
multi-task learning,” in Proc. Adv. Neural Inf. Process. Syst., vol. 30,
2017, pp. 4424–4434.

[15] Y. Jiang, J. Konečnỳ, K. Rush, and S. Kannan, “Improving feder-
ated learning personalization via model agnostic meta learning,” 2019,
arXiv:1909.12488.

[16] A. Fallah, A. Mokhtari, and A. Ozdaglar, “Personalized federated
learning with theoretical guarantees: A model-agnostic meta-learning
approach,” in Advances in Neural Information Processing Systems,
vol. 33, H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin,
Eds. Red Hook, NY, USA: Curran Associates, 2020, pp. 3557–3568.

[17] Q. Li, B. He, and D. Song, “Model-contrastive federated learning,”
in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2021, pp. 10713–10722.

[18] A. Ghosh, J. Chung, D. Yin, and K. Ramchandran, “An efficient
framework for clustered federated learning,” in Advances in Neural
Information Processing Systems, vol. 33. Red Hook, NY, USA: Curran
Associates, 2020, pp. 19586–19597.

[19] Y. Mansour, M. Mohri, J. Ro, and A. T. Suresh, “Three approaches
for personalization with applications to federated learning,” 2020,
arXiv:2002.10619.

[20] F. Sattler, K.-R. Müller, and W. Samek, “Clustered federated learn-
ing: Model-agnostic distributed multitask optimization under privacy
constraints,” IEEE Trans. Neural Netw. Learn. Syst., vol. 32, no. 8,
pp. 3710–3722, Aug. 2021.

[21] C. Briggs, Z. Fan, and P. Andras, “Federated learning with hier-
archical clustering of local updates to improve training on non-IID
data,” in Proc. Int. Joint Conf. Neural Netw. (IJCNN), Jul. 2020,
pp. 1–9.

[22] M. Xie, G. Long, T. Shen, T. Zhou, X. Wang, and J. Jiang, “Multi-center
federated learning,” 2020, arXiv:2005.01026.

[23] A. Zamir, A. Sax, W. Shen, L. Guibas, J. Malik, and S. Savarese,
“Taskonomy: Disentangling task transfer learning,” in Proc. 28th Int.
Joint Conf. Artif. Intell., Aug. 2019, pp. 3712–3722.

[24] Y. Zhao, M. Li, L. Lai, N. Suda, D. Civin, and V. Chandra, “Federated
learning with non-IID data,” 2018, arXiv:1806.00582.

[25] S. P. Karimireddy, S. Kale, M. Mohri, S. Reddi, S. Stich,
and A. T. Suresh, “SCAFFOLD: Stochastic controlled averaging
for federated learning,” in Proc. Int. Conf. Mach. Learn., 2020,
pp. 5132–5143.

[26] Y. Yeganeh, A. Farshad, N. Navab, and S. Albarqouni, “Inverse distance
aggregation for federated learning with non-IID data,” in Domain Adap-
tation and Representation Transfer, and Distributed and Collaborative
Learning. Cham, Switzerland: Springer, 2020, pp. 150–159.

[27] Y. Laguel, K. Pillutla, J. Malick, and Z. Harchaoui, “Device het-
erogeneity in federated learning: A superquantile approach,” 2020,
arXiv:2002.11223.

[28] Z. Zhao et al., “Federated learning with non-IID data in wireless
networks,” IEEE Trans. Wireless Commun., early access, Sep. 3, 2021,
doi: 10.1109/TWC.2021.3108197.

[29] M. Duan et al., “FedGroup: Efficient clustered federated learning via
decomposed data-driven measure,” 2020, arXiv:2010.06870.

[30] D. K. Dennis, T. Li, and V. Smith, “Heterogeneity for the win: One-shot
federated clustering,” in Proc. 38th Int. Conf. Mach. Learn., vol. 139,
Jul. 2021, pp. 2611–2620.

[31] S. Lloyd, “Least squares quantization in PCM,” IEEE Trans. Inf. Theory,
vol. IT-28, no. 2, pp. 129–137, Mar. 1982.

[32] L. McInnes, J. Healy, and J. Melville, “UMAP: Uniform mani-
fold approximation and projection for dimension reduction,” 2018,
arXiv:1802.03426.

[33] S. U. Stich, “Local SGD converges fast and communicates little,” in
Proc. Int. Conf. Learn. Represent., 2019, pp. 1–17.

[34] J. Wang and G. Joshi, “Cooperative SGD: A unified framework for the
design and analysis of communication-efficient SGD algorithms,” 2018,
arXiv:1808.07576.

[35] B. E. Woodworth, J. Wang, A. Smith, B. McMahan, and N. Srebro,
“Graph oracle models, lower bounds, and gaps for parallel stochastic
optimization,” in Proc. Adv. Neural Inf. Process. Syst., vol. 31, 2018,
pp. 8496–8506.

[36] D. Müllner, “Modern hierarchical, agglomerative clustering algorithms,”
2011, arXiv:1109.2378.

[37] S. Wang and T.-H. Chang, “Federated matrix factorization: Algorithm
design and application to data clustering,” 2020, arXiv:2002.04930.

[38] Y. LeCun. (1998). The MNIST Database of Handwritten Digits. [Online].
Available: http://yann.lecun.com/exdb/mnist/

[39] A. Krizhevsky, V. Nair, and G. Hinton. (2014). The CIFAR-10 Dataset.
[Online]. Available: http://www.cs.toronto.edu/kriz/cifar.html

[40] S. Caldas et al., “LEAF: A benchmark for federated settings,” 2018,
arXiv:1812.01097.

[41] G. Cohen, S. Afshar, J. Tapson, and A. van Schaik, “EMNIST: Extending
MNIST to handwritten letters,” in Proc. Int. Joint Conf. Neural Netw.
(IJCNN), May 2017, pp. 2921–2926.

[42] A. Krizhevsky et al., “Learning multiple layers of features from tiny
images,” Univ. Toronto, Toronto, ON, Canada, Tech. Rep. 2009-TR,
2009.

[43] H. Xiao, K. Rasul, and R. Vollgraf, “Fashion-MNIST: A novel
image dataset for benchmarking machine learning algorithms,” 2017,
arXiv:1708.07747.

[44] T.-M. Harry Hsu, H. Qi, and M. Brown, “Measuring the effects of
non-identical data distribution for federated visual classification,” 2019,
arXiv:1909.06335.

[45] T. Hashimoto, M. Srivastava, H. Namkoong, and P. Liang, “Fairness
without demographics in repeated loss minimization,” in Proc. Int. Conf.
Mach. Learn., 2018, pp. 1929–1938.

[46] K. Bonawitz et al., “Practical secure aggregation for privacy-preserving
machine learning,” in Proc. ACM SIGSAC Conf. Comput. Commun.
Secur., Oct. 2017, pp. 1175–1191.

[47] L. T. Phong, Y. Aono, T. Hayashi, L. Wang, and S. Moriai, “Privacy-
preserving deep learning via additively homomorphic encryption,” IEEE
Trans. Inf. Forensics Security, vol. 13, no. 5, pp. 1333–1345, May 2018.

[48] W. Hoeffding, “Probability inequalities for sums of bounded random
variables,” J. Amer. Stat. Assoc., vol. 58, no. 301, pp. 13–30, 1963.

[49] J. Bolte, S. Sabach, and M. Teboulle, “Proximal alternating linearized
minimization for nonconvex and nonsmooth problems,” Math. Program.,
vol. 146, nos. 1–2, pp. 459–494, Aug. 2014.

[50] Y. Nesterov, Introductory Lectures on Convex Optimization: A Basic
Course, vol. 87. London, U.K.: Springer, 2003.

http://dx.doi.org/10.1109/TWC.2021.3108197

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

