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Summary

P ost­processing has become a major component in movie and image production.
This step is no longer a simple cleanup and cutting step, but it involves important

manipulations that contribute to the atmosphere of a movie and the perception of
a still image. Several movie studios spend a great part of their budget on it, as
managing the post­processing parameters is a cumbersome task, requiring costly
and specialized tools and skills. For photography, while several software packages
provide automatic adjustments and filters, the fine grained editing is difficult to
achieve for novice users.

The reason for post­processing is that many parameters are difficult to set cor­
rectly during the actual capture of the scene. An example is exposure time. Imagine
you are in a car race and want to register that moment. To convey a sense of mo­
tion in your photograph, you adjust the camera exposure time: not too short to
freeze all cars, nor too long to blur the image completely. To find the threshold,
other camera parameters such as aperture and sensor sensitivity must be taken
into account. Even the speed of the cars needs to be considered.

A much more suitable solution would be to adjust the motion blur after the
acquisition. Nevertheless, this is not a simple task. Typically, it requires skill and
involves manipulating the image by hand, which is time consuming and highly prone
to artifacts. For videos, such edits are even more complex as the spatio­temporal
coherence must be observed, especially when temporal warping occurs. In this
dissertation, we present efficient solutions for exposure control in post­production
to enable high­quality visual content generation.

Next to image­manipulation algorithms, we explore acquisition­based solutions
and intuitive interaction metaphors to support expressive content production. Our
outcome is not only intended for professionals to reach their design visions regard­
ing atmosphere and storytelling, but also includes semi­automatic approaches to
enable novice users to achieve impactful and realistic images. Consequently, the
presented results have the potential of inspiring new artists, while the methods
described can also be employed to simplify complex visual content creation tasks.
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Samenvatting

N abewerking is een belangrijk onderdeel geworden van de productie van films
en afbeeldingen. Waar deze stap vroeger bestond uit het wegwerken van onef­

fendheden of het bijsnijden en aan elkaar knippen van beelden, omvat het vandaag
de dag uiteenlopende bewerking die bijdragen aan de sfeer en perceptie van het
beeld. Filmstudio’s besteden er een groot deel van hun budget aan: het beheren
van het nabewerkingsproces is een omslachtige taak. Hiervoor zijn gespecialiseerde
instrumenten en vaardigheden nodig, die dikwijls zeer kostbaar zijn. Hoewel er
softwarepakketten zijn die automatische aanpassingen en filters aanbieden, blijft
gedetailleerde bewerking moeilijk voor beginnende gebruikers.

Beelden worden vaak nabewerkt, omdat camera­instellingen moeilijk af te stel­
len zijn tijdens de opname van een beeld. Een voorbeeld is de belichtingstijd. Stel
je voor dat je bij een autorace staat en je dat moment wilt vastleggen. Om een
gevoel van beweging in je foto over te brengen, pas je de belichtingstijd van de
camera aan: niet te kort, zodat de auto’s niet bevriezen, maar ook niet te lang,
zodat het beeld niet compleet vervaagt. Om de juiste waarde te vinden, wordt
ook rekening gehouden met andere camera­instellingen zoals het diafragma en de
sensorgevoeligheid. Zelfs de snelheid van de auto’s moet worden overwogen.

Een betere oplossing zou zijn om bewegingsonscherpte na de opname aan te
passen. Dit is echter geen eenvoudige taak en vereist een hoge mate van bedreven­
heid. Daarnaast moet de afbeelding handmatig worden aangepast, wat tijdrovend
is en makkelijk kunstmatige fouten oplevert. Voor video’s zijn dergelijke bewerkin­
gen nog complexer, omdat de samenhang van ruimte en tijd in acht moet worden
genomen, vooral wanneer vervorming in de tijd optreedt. In dit proefschrift pre­
senteren we efficiënte oplossingen voor het aanpassen van belichting tijdens de
postproductie om het scheppen van hoogwaardige visueel materiaal mogelijk te
maken.

Naast algoritmen voor beeldmanipulatie verkennen we manieren die gebaseerd
zijn op het werven van beelden en intuitieve interactievormen om de productie van
beeldend materiaal te ondersteunen. Ons resultaat is niet alleen bedoeld voor pro­
fessionals om hun ontwerpvisie voor sfeer en verhaal te realiseren, maar omvat
ook halfautomatische benaderingen die beginnende gebruikers in staat stellen om
indrukwekkende en realistische afbeeldingen te maken. Hiermee hebben de gepre­
senteerde resultaten de potentie om nieuwe kunstenaars te inspireren, terwijl de
beschreven methoden ook kunnen dienen om complexe taken voor het maken van
visueel materiaal te vereenvoudigen.
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Preface

This work is one of the outcomes of the not­initially­planned academic journey
started in 2015. One week after my master defense, I decided to focus on my
industry job. My former advisor, Prof. Dr. Soraia Musse, shared an email sent by
Dr. Rafael Bidarra talking about the possibilities of academic collaboration between
Brazil and The Netherlands via different scholarships. Reading about the exciting
research done in the Computer Graphics and Visualization group at TU Delft, the
industry focus became blurred. Should I stay or should I go?.

I contacted Dr. Bidarra, sharing my research interests on image processing,
which put Prof. Dr. Elmar Eisemann in the loop. After a skype meeting with Prof.
Eisemann, we started working on a project proposal for a scholarship from the
Brazilian government. I recall the last minute iteration, with several changes that
I had just a few hours to translate and submit. Apparently, it worked! I got the
scholarship and, in 2016, moved to Delft to pursue the doctorate degree.

After four hard­working years, I returned to Brazil to finish writing this disserta­
tion. During the valuable time there, I learned a lot working on different projects.
The main projects, which now compose this dissertation, describe several experi­
ments, tools and evaluations I implemented. While some projects branched from
the original proposal due to the research findings, all still address the main research
topic by exploring post­processing parameters towards image and video editing and
content creation.

Furthermore, I also had the opportunity to assist on several courses and super­
vise bachelor and masters students. While these projects are not presented here,
the ones resulting in publications are listed at the end of the dissertation. This
certainly contributed positively to my experiences.

Without further ado, I would like to thank everyone who participated in this
journey. I now let you with the pretty pictures I have been staring at for so long.
Hope you enjoy the reading.

Nestor ZILIOTTO SALAMON
Porto Alegre, November 2020
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1
Introduction

V isual content is the major element of the modern internet. Traffic predictions
indicate that the future data transfer will be governed by images and videos.

Cisco pointed out that annual individual network traffic (per IP) will exceed three
zettabytes by 2021, with video viewing being responsible for 73­82% of this traffic1.

Not only the availability of higher bandwidth, but also the tremendous amount
of visual information that users can choose from and produce today contributed to
the increased media consumption. Indeed, whole communities started to provide
content, which is distributed over the web. These communities often consist of
non­professionals, yet the produced content can sometimes rival professional pro­
ductions, which is achieved by improved software and widely diffused by services
such as Instagram and TikTok. Still, not all aspects of image processing are equally
well captured and a large variety of challenges remain, in particular the adjustment
of exposure time in a post­process. This existing gap becomes even more evident
when looking at videos. For the most recent display trends, such as high framerate
devices, even the professional movie industry relies on costly in­house develop­
ments and no suitable tools are accessible to common users. It might not come as
a surprise that most of the budget of a movie is spent in post­production.

A major challenge is that many adjustments should have been addressed dur­
ing acquisition. Hence, it becomes important to rethink the capture process and
provide solutions to allow the artist to perform a large amount of post­production
steps. For example, a standard 2D movie recorded at 24 frames per second, there
is little room for temporal adjustments, while a higher frame rate might have been
a better choice to give more freedom in post­production. Mid­range cellphones
nowadays already record high framerate videos and can, therefore, be used to ac­
1https://newsroom.cisco.com/press­release­content?type=webcontent&articleId=1853168
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quire extended data. On the technical and artistic knowledge to adjust and create
visual content, the wide freedom in the choice of parameters makes it possible to
also imagine novel interaction metaphors. In this realm, we are able to explore how
novice user interact with editing tools, learning patterns and improving the pipeline
for easier manipulations. Nonetheless, to better deal with the increased amount of
visual information, there is a strong opportunity for developing optimization meth­
ods aiming real­time response rates.

Overall, we observe that: i) we have inflexible input (often the post­production
has to work with standard videos as input in which the recording parameters are
already fixed), ii) insufficient understanding and solutions to perform the intended
manipulations (tools are non­existent or adhoc and the usage is cumbersome)
and/or iii) the process is strongly linked to artistic skills (whereas the computer
should actually provide support and suggestions).

This dissertation investigates visual­content processing and production methods
based on virtual exposure control. Exposure, in photography, together with ISO and
Aperture, influences the sensor response to light. A short exposure is able to freeze
moving elements on the scene, whilst a longer exposure will capture the movement
of such elements, creating blurred trails. In cinematography, the exposure behavior
is analogous, and also related to frame rate. Together, both can be used to influence
motion perception and the viewer’s direction. During the shooting, however, the
exposure setting is defined on the camera per take, i.e., different exposures need
to be recorded with multiple equipment and/or multiple shots. Such constraints
cause non­experienced photographers to often fail capturing a shot. We focus on
new and accessible image­based exposure control methods that shift the creative
control to post­processing.

Globally, we examine approaches to record additional information in order to
give more artistic freedom to the users during post­production. Thus, the recording
itself does not have to be perfect, but it should provide information that can then
be exploited to adjust the final shot. Artistic choices, like shutters, lighting, etc.,
which usually require careful design already during the recording stage, can be later
adjusted and mixed in real time to create a tailored result.

Further, we explore alternative pipelines to facilitate content authoring for non­
professional users. For example, complex tasks such as Light Painting, which are
developed on a trial­and­error basis even by professional artists, can be created in
post­process by amateurs, delivering professional results. Combining different ex­
posures in a single shot also requires complex masking and compositing tasks. Here
we tackle such problems by developing tools to assist users during post­processing.
For a widespread use, all images and videos that serve as input can be acquired on
commodity hardware, such as cellphones and low­tier cameras.
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1.1. Dissertation Overview
During my studies, we developed exposure control tools for synthesizing both still
images and videos. Targeting still­image creation, we focus on Light Painting and
Motion Blur control. For videos, we explore how to integrate different exposure
times in the same video stream, as well as with a time­editing approach. An
overview of the tools and personal contributions is presented in the following. The
main chapters of this dissertation are based on articles written for each approach.

Computational Light Painting

Light painting is an artform, where a light source is moved during a long­exposure
shot, creating trails resembling a stroke on a canvas. The first uses of light painting
date back to the 1880s and gained significant attention in early 1900s, including
works of Pablo Picasso. Even with the advanced technology of today, light paintings
are still very difficult to create because the light source needs to be moved at the
intended speed and along a precise trajectory. Moreover, it usually involves many
attempts to get the desired result: the user cannot see the past stroke and there
is no feedback during the drawing.

We developed a computational light painting solution, where the actual painting
is performed in a post­process by directly drawing on the screen. Consequently, the
precision is high and it is easy to control the output, which makes even animations
possible. We make use of an extended acquisition, using as input to our approach
a video of a person moving a light source along arbitrary trajectories through the
scene. Our method processes this input to derive a structure which allows for query­
ing an approximation of the relit environment for any given light position. Further
processing also removes artifacts such as the person moving the light source and
specularities on reflective surfaces. In consequence, it becomes possible to paint
virtual light trajectories using our real­time interface and manage extra exposure
controls, as well as precisely pick colors and create animated sequences. Fig. 1.1
shows light paintings created in real time using our solution.

Figure 1.1: Light Paintings created with our approach. The data acquisition requires a light source to
be moved through the scene ­ a process that takes only a minute. All drawings and color adjustments
are performed in real time, avoiding the cumbersome trial and error usually employed for creating light
paintings.
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This project started from an idea by Prof. Elmar Eisemann and Dr. Marcel
Lancelle and I implemented the methods and extensions during my first year. The
final article, written as a collaborative effort, was published on Computer Graphics
Forum (Vol 36, No 2) and I presented it at Eurographics 2017. Chapter 2 is verbatim
of the publication, describing the whole project.

Controllable Motion­Blur

Motion blur in a photo is the result of object motion during the image acquisition.
It creates a visible trail along the motion of a recorded object and can be used
by photographers to convey a sense of speed and of how dynamic a scene feels.
A photographer can create such effects by opening the camera shutter for an ex­
tended period of time, while potentially moving the camera to balance out object
motion. This, however, is very challenging to acquire as intended and requires
experience: faster objects require the camera to follow the focus point and use a
short exposure time whilst slower objects need to be exposed for a longer period
of time, while avoiding over­ and under­exposure. To achieve actual control over
the motion blur, one could add it in a post­process, but current solutions require
complex manual intervention and can lead to artifacts that mix moving and static
objects incorrectly.

We developed a novel method to add motion blur to a single image that gen­
erates the illusion of a photographed motion. Here, we aim at making the editing
intuitive while relying on a standard image captured by any consumer camera. On
a given image, from the user point of view, minimal input is required to create a
blur effect: a rectangle defines the fore­ and background segmentation and a mo­
tion vector defines the desired blur intensity and direction. Internally, the motion
vector is converted to a blur kernel, convolved with the segmented area. Arti­
facts raised from the naive kernel­image convolution (e.g. color leakage and sharp
edges) are automatically handled by our approach. The method was also extend
to accept multi­directional blur, allowing an extra level of expressiveness with indi­
vidual motion per­pixel. Additional effects, such as HDR blur and motion trails were
also implemented. Fig. 1.2 illustrates the usage of our solution as an alternative
to directly capturing the intended real­world motion blur: given the shot obtained
with automatic settings, we enable fine­grained control of the motion­blur effect
for each object or element in the scene.

This project started as a master thesis research from Xuejiao Luo, who I co­
supervised together with Prof. Elmar Eisemann during her internship at TU Delft.
After the thesis report was written, we wrapped up the project as a submission to
Graphics Interface 2018. In this step I assisted the implementation and validation
of the blur methods. The paper was accepted and I presented it at the conference.
Our work was selected among the best papers, and we were invited to submit
an extended journal version. For this extension, I contributed by developing the
original multi­directional blur method and its effects, as well as creating manifold
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Figure 1.2: Given a single input image (left) captured with short exposure (usually also on automatic
mode), users can segment content with scribble annotations (center­left). Next, a motion­blur effect
is created to give the illusion of object motion during capture, also using different photo techniques
(movable (center­right) and static (right) cameras). Original image source: pixabay.com

results, comparisons and tests. The extension was published on Transactions on
Visualization and Computer Graphics (Vol 26, No 7). Chapter 3 is based on these
publications and fully describes the method.

Spatio­temporal Exposure Control for Videos

The exposure time in a camera is defined by the shutter device. A faster shutter
creates a short exposure, while the opposite yields a long exposure. In cinematog­
raphy, shutter speed is intrinsically related to frame rate when dealing with motion
control. While controlling the shutter has been established as a useful measure to
influence the perception of a video sequence and to enable different visual styles, a
physical camera is limited to a single shutter setting at any given moment. To com­
bine different shutters on the same scene (mix different motion patterns together),
the available options are rather limited and require multiple cameras and laborious
compositing techniques.

We developed a novel technique to virtually simulate and combine different
exposures over space and time with shutter functions. Here, we again make use
of the extended acquisition process: a footage with higher frame rate can lead
to more freedom on controlling the exposure. We built upon the observation that
combining two neighboring frames is basically equivalent to a doubling in exposure
time. Thus, we let artists define spatio­temporally­varying virtual shutters in a post­
process using a simple user interface and ensure seamless interpolation of these.
All results are presented in real time, which supports the shutter design process.
Unlike previous work that require masking and compositing steps, a key advantage
of our solution is that only sparse spatial and temporal annotations are needed,
which then define varying per­pixel shutter functions for the entire video. The
result is a mixed exposure video, as illustrated in Fig. 1.3.

This project began as a branch from our main goal of providing directors with
intuitive techniques for spatio­temporal exposure control on videos, which I started
researching in my second year. The results were published on Computer Graphics
Forum (Vol 38, No 7) and I presented it at Pacific Graphics 2019. For this project, I
developed the framework and evaluation and created the results, being helped by

http://pixabay.com
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Figure 1.3: Left: single frame from a 240Hz short­exposure video and a simulated long exposure at 30Hz
by averaging 8 frames. Middle: Using the 240Hz input, our method enables mixing a long exposure
in the periphery with a short exposure for the details on the pendulum. Via user annotations in the
video, different shutter functions can be defined (top right). Annotations and shutter functions can be
keyframed over time. Based on the annotations, our method defines an interpolated shutter function
for each pixel (bottom right).

Dr. Markus Billeter on the GPU acceleration methods. Writing was a collaborative
effort and the entire approach is presented on Chapter 4.

Video Editing with Spatio­temporal Object Control

Video editing is a very time­consuming task: raw material is edited and combined
until it matches the director’s vision. As re­shoots are expensive, temporal edit­
ing operations such as looping, repeating or speeding up/slowing down existing
sequences are common ways to better match the narrative in post­production.
However, such operations can become overly complicated if applied to selected
elements rather than the whole frame, as spatio­temporal conflicts such as over­
laps and disocclusions start arising.

We developed an end­to­end solution for assisted spatio­temporal video editing
and conflict resolution. Given an input video, users can segment objects of interest,
which are automatically identified throughout the sequence. To allow a user to
influence the timing of a video locally, we rely on an intuitive user­interface with
real­time feedback, which enables even novice users to author new scenes using
a few annotations. Inconsistencies introduced during the editing process, both
spatial and temporal, are visualized and resolved using our tailored methods. In
Fig. 1.4 we illustrate the selective time editing by slowing down the basketball and
reconstructing the disoccluded area below its original position.

Figure 1.4: Left: A user segments the objects in the input video (bottom­left inset) and adjusts their
timing. Middle: Real­time previews and visualizations support the editing process. Right: real­time
synthesis of the final video with an adjusted basketball throw.
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In this project we re­introduced the concept of objects and temporal manip­
ulation from our original spatio­temporal exposure control goal, coupled with an
interactive end­to­end pipeline for video editing. I acted as the main developer
and the final text was written as a collaborative effort. The complete project is
presented on Chapter 5.

The projects described here summarize the main results during my doctoral
studies. All together, we developed solutions to virtually control exposure in im­
ages and videos, from simplified acquisition pipelines to real­time post­processing
methods.
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Computational Light Painting

Using a Virtual Exposure

N. Z. Salamon, M. Lancelle and E. Eisemann

Though I’m going, going,
I’ll be coming home soon,

Long as I can see the light.

Light painting is an artform where a light source is moved during a long­
exposure shot, creating trails resembling a stroke on a canvas. It is very
difficult to perform because the light source needs to be moved at the in­
tended speed and along a precise trajectory. Additionally, images can be
corrupted by the person moving the light. We propose computational light
painting, which avoids such artifacts and is easy to use. Taking a video of
the moving light as input, a virtual exposure allows us to draw the intended
light positions in a post­process. We support animation, as well as 3D light
sculpting, with high­quality results.

This chapter has been published on Computer Graphics Forum, 36, 2 (2017) [1].

9
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2.1. Introduction
In recent years, light painting has gained significant popularity in photography.
There are two variants, both sharing a slow shutter speed to capture light trajec­
tories on the image plane. One option is to move the camera, while keeping light
sources fixed ­ known as Kinetic Light Painting, e.g., Lorenzi and Francaviglia [2]
installed a large set of light sources during the Generative Art 2007 conference. In
this paper, we focus on the second option, where the camera is static and the lights
are dynamic. While some large­scale attempts have been made with hundreds of
people [3], most creations are performed by a single person, who needs to skillfully
move the light source with the goal of producing a target light trail on the camera
sensor. Such a process is tedious, requires high precision, and usually involves
many attempts because the user cannot see the past stroke and there is no feed­
back while drawing. Moreover, artists usually wear black cloth and move fast to
not corrupt the result by appearing in the background. We propose computational
light painting, where the light painting is made in a post­process by drawing on the
screen. Consequently, the precision is high and the output is easy to control, which
makes precise animation possible.

The input to our approach is a video of a person moving a light source along
arbitrary trajectories through the scene, which is usually captured within a minute.
Our method processes the input to remove artifacts caused by the artist and re­
moves the light source. The latter allows us to replace it by a smaller synthetic
light, which can then be drawn at any position. Removing the person from the
background avoids ghosting effects, which are typical for real light paintings. We
then produce a data structure to query an approximation of the relit environment
for any light position. It is, hereby, possible to paint light trajectories and accu­
mulate the illumination contributions. We show various results, including simulated
professional light brushes [4].

Specifically, our work makes the following contributions:

• a simple video acquisition methodology;
• a preprocess to remove acquisition artifacts;
• a robust light interpolation method; and
• a design interface for light painting.

2.2. Background and Related Work

Light painting dates back to 1880: the Pathological Walk From in Front by Étienne­
Jules Marey and Georges Demeny. The authors, both psychologists, used the tech­
nique to understand human motion. Only in the early 1900s, the first artistic light
drawings were produced by Man Ray and later Picasso. The theoretical background
was presented in 1940 by Leslie Walker [5]. Afterwards, the artform gained mo­
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mentum, as summarized by Lance Keimig [6]. Today, we see a renewed interest in
the topic. The availability of digital cameras makes it cheap to rely on trial­and­error
attempts, which motivated many hobby artists. Nonetheless, the process remains
time consuming and requires a high level of skill for convincing results.

The most recent development has been presented by the Austrian company
FilmSpektakel. They propose a light painting pipeline named Holopainting [7]. They
first acquire a subject with a ring of 24 connected cameras, which serves as a 3D
scanner to recover a moving subject. The imagery is then transferred to an LED
stick, which illuminates the 3D scene automatically during the long­exposure shot.
From recording to final result, the process takes days, including manually cropping
each captured image to fit the subject in the LED stick.

Faster, but less accurate applications (e.g., [8, 9]) simplify the process by accu­
mulating many short exposed images to a single long­exposure shot. The principle
is similar to Telleen et al. [10], who introduced the virtual exposure, which also
forms the basis of our approach. Given this collection of frames, the user can
delete or replace time periods. Nonetheless, artifacts due to the user’s presence in
the scene remain and the painting still needs to be performed actively. The latter
also holds for recent approaches using virtual reality [11].

Related to our approach are also relighting scenarios. In virtual environments,
it has been a long established concept [12], but similar principles of basis images
for lighting can also be found for real­world applications. An image­based approach
to light design was presented in [13]. Manders and Mann [14] proposed a solution
to add light on the fly by employing an adapted flash equipment that triggers the
camera shutter to accumulate the lit results. Similarly, Boyadzhiev et al. [15] capture
a set of flash photographs with distinct light positions, then used in a composition
method guided by the user. Product relighting is addressed analogously in [16].
The authors record a video, illuminating a product from different angles and find
image snippets, which match design principles. Later, the user can choose and
compose them.

Low­frequency environmental lighting can be achieved via Bayesian relight­
ing [17], which involves a light probe to estimate the environmental illumination.
Knowing the illumination can be useful for scene reconstruction (e.g., [18]), and
material estimates (e.g., [19]), as well as composition [20]. An advanced light
installation, supporting precise capture and relighting, is the light stage [21]. An
overview of image­based lighting can be found in [22].

Our work is inspired by the effectiveness of low­cost image­based relighting
solutions. It requires no calibration and provides access to a difficult­to­master art­
form. This latter aspect, we share in spirit with work around spray­can images[23].
Nonetheless, a major difference is that our solution is compatible with the entire
image­processing toolbox, such as Photoshop, or even advanced supporting solu­
tions, such as ShadowDraw [24].
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input right

light source replacement

pos: 354, 242

input left

pos: 354, 242
pos: 354, 242

pos: 354, 242

ambient light

pos: 354, 242

pos: 354, 242

light source positions

pos: 354, 242

pos: 14, 635
pos: 354, 242

lookup structure... ... artist input
virtual light painting

+

Figure 2.1: Overview: The input frames are from a static scene with a moving light source. For each
frame, the light position is obtained and its illumination of the scene extracted. These contributions are
stored in a lookup structure, which can be queried to design light paintings in real time.

In the following, Sec. 2.3 describes our approach, including acquisition and
processing (Sec. 2.3.1), light interpolation (Sec. 2.3.2), and the user interface
(Sec. 2.3.3). We will then present our results (Sec. 2.4) before concluding (Sec. 2.5).

2.3. Our Approach
An overview of our approach is shown in Fig. 2.1. The input is a video recorded
with a moving light source. First, we process the video to remove artifacts related
to the capturing process; we want to obtain lighting images, which encode the
illumination of the scene. Neither the light source nor the person carrying the light
source should be included (Sec. 2.3.1). Next, these frames are organized to provide
a basis for new light positions, which are approximated by interpolation (Sec. 2.3.2).
Finally, we will explain our interface and how the actual light painting is performed
(Sec. 2.3.3).

2.3.1. Acquisition and Processing

The acquisition process is simple and allows for a robust derivation of the scene
illumination. We use a white light source, which allows us to tint the illumination
in different colors in a post­process. The user is asked to move through the scene
from left to right and then back, waving the light source in front. In our setup, we
relied on a standard light bulb attached to a stick or a flashlight in a thin plastic cup
acting as a diffuser. To avoid automatic camera adjustments, the recording camera
is in manual mode.

Our goal is to transform each frame of the input sequence into an image that
only encodes the light added by the moving source and free of artifacts from the
person moving it. The first step linearizes the response curve of the camera [25].
We convert our images by fitting a gamma correction followed by a normalization
step. The so­linearized images are then processed further.



2.3. Our Approach

2

13

Ambient Lighting

In order to obtain only the added light, we subtract the ambient lighting 𝐴 from
each frame. To determine 𝐴, we rely on the first few frames of the video ­ before
the moving light source appears in the scene. Accumulating these frames gives a
good estimate of 𝐴 for an exposure time equivalent to the summed frames [10]. In
consequence, we need to divide by their number to obtain the background illumina­
tion per frame. Subtracting 𝐴 from all frames then gives us a new video containing
only the added light.

Removing the Light Source

We are very forgiving when estimating light­source sizes, shape, and positions.
Hence, even if the captured source is slightly larger or some positions have not been
properly sampled, we can produce a convincing result by interpolating between the
images. Nonetheless, leaving the light source (or the person manipulating it) visible
in the image produces unrealistic ghosting. We first focus on light­source removal
before addressing the person ghosting in Sec. 2.3.2.

Light­source tracking

In all of our experiments the directly visible light source fully saturates the sen­
sor. This greatly simplifies the detection. We employ a high threshold (1.0 on all
channels) and then grow these regions up to a threshold of 0.9 before applying
a morphological closure to remove noise. Still, this process is insufficient in the
presence of reflections. To robustly estimate the light position, we leverage the
temporal coherency of the video with a consistently moving light source. In conse­
quence, we perform a tracking over time to derive a mask that we can use for the
light­source removal.

We choose a standard tracking solution for the light position. The tracking is
initialized on each detected region in the thresholded image. Next, we match each
region to the following frame and verify i) a low size variation Δ𝑠 < 20% and ii)
a small­distance movement Δ𝑑 < 5%𝑠, where 𝑠 is the light’s estimated size; the
numbers have been determined experimentally. As the user is asked to move from
left to right during acquisition, we can trigger the tracking when the light enters the
scene from the left. Further, the movement being parallel to the image plane, the
light will keep a constant size. To match two succeeding frames, we rely on a sum
of squared differences and determine the best translation vector. Tracking results
are illustrated in Fig. 2.2.

Light­source replacement

Having a mask that covers the light source, we now inpaint the corresponding region
to remove the light source from each frame. While a standard inpainting [26] could
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Figure 2.2: Our tracking algorithm automatically finds the center of the light sources with different sizes,
occlusions and reflections.

Figure 2.3: Methods to compute a neutral image for light source replacement. From left to right: Mean,
median and trimmed mean.

be used, it is only a coarse estimate because the light source bleached all structural
information. Instead, we inpaint the region based on the input­video frames.

To recover the image structure behind the light source, one could compute a
mean over all images, but this process causes strong ghosting artifacts due to the
high­contrast light source. A second option is a median, but it is generally too dark
due to the short illumination of each part. We found that a trimmed mean (10% of
the darkest and brightest samples removed) provides a robust trade­off between
the artifacts in the mean and the darkness of median (Fig. 2.3).

Copying the patch directly from the trimmed­mean image 𝑇 would result in
visible seams. A solution to this problem is a Poisson reconstruction with the pixels
around the masked region serving as constraints and 𝑇 as the guide image [27].
Hereby, elements that are lit, extend their illumination naturally into the uncovered
region. In practice, we use Tanaka et al.’s variant [28], which leads to less color
bleeding. Still, the solution exhibits smaller artifacts because the gradients in 𝑇
might not have a consistent magnitude. To adapt 𝑇, we need to scale it with a
correcting factor. As the patch lies directly underneath the light position, it would
appear fully illuminated, if the view was not blocked by the light source. For this
reason, we are interested in the maximal possible magnitude of gradients for this
area. We estimate it by using the average magnitude of the top 1% gradients in this
region over all images, excluding the ones covered by the source. We then scale 𝑇
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Figure 2.4: Light source replacement. Top: Poisson without and with guide [27]. Bottom: Tanaka et
al. [28] and our result.

Figure 2.5: Shepard interpolation of captured sources varying 𝜀.

to have its gradients match the result. A comparison of the inpainting processes is
shown in Fig. 2.4. We refer to the resulting images as the lighting images.

2.3.2. Light Interpolation
The pre­processing results in a set of lighting images {𝐿𝑖} corresponding to the
added light of the moving source at position 𝑝𝑖. Here, we describe how to ap­
proximate the lighting image 𝐿𝑛 of a new virtual point light at position 𝑝𝑛 with an
emission 𝐸. 𝐸 is assumed to be given relative to the light source used in the cap­
turing process. If the virtual light is at a captured position, there is a 𝑝𝑘 equal to
𝑝𝑛, and we obtain 𝐿𝑛 ∶= 𝐸∗𝐿𝑘. If not, we will define 𝐿𝑛 ∶= 𝐸∗∑𝑖 𝑤𝑖𝐿𝑖, for a suitable
set of weights {𝑤𝑖}.

One weight definition is the inverse distance metric (Shepard interpolation);
𝑤𝑖 = 𝑤̂𝑖/∑𝑖 𝑤̂𝑖, where 𝑤̂𝑖 = 1/(|𝑝𝑛 − 𝑝𝑖| + 𝜀). The parameter 𝜀 has a strong impact
on the outcome and can lead to a diffuse solution (Fig. 2.5).
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Figure 2.6: A Delaunay triangulation of light centers defines the weights to interpolate the captured
light images.

A more suitable and local interpolation uses a Delaunay Triangulation of {𝑝𝑖},
where the weights are defined via barycentric coordinates (Fig. 2.6). Hereby, only
the surrounding three vertices are used for interpolation. Consequently, locality is
increased, while being continuous over the entire domain.

Person­aware weights

While the interpolation allows us to define new light positions, we still need to
handle the artifacts caused by the person moving the light source. To this extent,
we introduce person­aware weights.

As the capturing process is executed twice (from left to right and vice versa), it
is easy to determine the side (left/right) of the image contaminated by the person.
Please notice that also all shadows cast by this person lie on this side. Consequently,
we can remove the part of the image that contains the contaminations, resulting in
the sets {𝐿̂𝑙𝑖} and {𝐿̂𝑟𝑖 }. 𝐿𝑙𝑖 is equal to the original input frame, except that all pixels
left of 𝑝𝑙𝑖 are zero. Unfortunately, we cannot assume that the light source will visit
the exact same locations during both passes, i.e., for a position 𝑝𝑟𝑘 there might not
be a corresponding position 𝑝𝑙𝑖 . Thus, we cannot directly combine the image parts
to produce one artifact­free set.

To fuse the images, we rely on the weights. First, we perform the Delaunay
triangulation for the right {𝑝𝑟𝑖 } and left pass {𝑝𝑟𝑖 } independently, and derive corre­
sponding weights {𝑤𝑟𝑖 } and {𝑤𝑙𝑖 }. Next, we compute two result images using only
left (𝐿𝑙𝑛 ∶= ∑𝑤𝑙𝑖𝐿𝑙𝑖 ) and right image parts (𝐿𝑟𝑛 ∶= ∑𝑤𝑟𝑖 𝐿𝑟𝑖 ). Additionally, we produce
corresponding weight images 𝑊𝑟 = ∑𝑤𝑟𝑖 𝜒𝑟𝑖 and 𝑊𝑙 = ∑𝑤𝑙𝑖𝜒𝑙𝑖 , where 𝜒𝑥𝑖 is the
characteristic function that is one if the pixel lies in the valid part (left/right) of the
image. For example, 𝑤𝑙𝑖𝜒𝑙𝑖 is an image where all pixels left to the light position 𝑝𝑙𝑖
contain 𝑤𝑙𝑖 , while the rest is zero. We define 𝐿𝑛 ∶= (𝐿𝑟𝑛+𝐿𝑙𝑛)/(𝑊𝑙 +𝑊𝑟), which is a
blended image without gaps. To avoid seams, we define 𝜒𝑙𝑖 (𝜒𝑟𝑖 ) not as a step but
as a smooth ramp function to blend the image contributions. Fig. 2.7 shows the
result before and after person­aware weights.
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Figure 2.7: Ghosts by the light­handling person (left) are avoided by our approach (right).

Figure 2.8: Intensity (left) and color (right) variation along a stroke.

2.3.3. Light Painting Interface
We have seen how to query a lighting image 𝐿𝑛 for a virtual point light. Based on this
result, we can reconstruct an approximation of the corresponding illuminated scene
by 𝐿𝑛 + 𝐴, where 𝐴 is the ambient light image. To extend the principle to general
virtual sources, we exploit the linearity of light transport; we approximate the stroke
via a set of point lights and sum the corresponding light images. Consequently, we
can use arbitrary pixel input.

Our interface enables the user to define strokes of varying thickness, color, and
intensity. Intensity is defined with respect of the exposure time of a frame. If
one wants to simulate a different exposure time, all intensities and the ambient
image should be scaled before addition. Strokes can either be drawn as sampled
freeform curves (represented by dense polylines) or splines. We support a special
drawing mode, which keeps track of the speed at which the mouse moves ­ slow
meaning brighter, which mimics the effect during a real exposure. The properties
and control points of the curve can still be modified after its creation and values are
interpolated between the control points (exemplified by a color gradient in Fig. 2.8,
right). Additionally, vector or bitmap images are supported (Fig. 2.9).

Our interface also allows the user to define key­framed animation and path
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Figure 2.9: Vector input (based on Whitaker and Halas [29]) and the resulting light painting.

definitions. The light is then interpolated according to the user­provided animation.
There are two options for the output: assuming a short­exposure in each frame, or
an accumulation (resulting in an increasingly long exposure) along the trajectory.

Extensions

There are several extensions to our basic approach, explained so far, which are also
exposed in the interface of our prototype implementation. They can improve the
quality of the results drastically.

Lens Flare and Starburst Pattern. To increase realism and an increased
sense of light [30], we can add common camera artifacts [31–33]. To this extent,
we convolve a starburst pattern [31] induced by the aperture with the stroke input.

Depth Capture. Our approach can be extended to 3D light sculpting. The
capturing process acquires one depth layer at a time. These layers are combined
in form of a 3D Delaunay triangulation to enable 3D interpolation. To determine
the 3D position of each light source, we rely on its relative size. This depth/size
parameter is then exposed in the interface. A user can choose a value for each key
point of a stroke and also animate these values.

Specularities. For very specular objects, we require a detailed acquisition to
avoid undersampling artifacts. Or existing algorithms for artifact­free specularity
interpolation [34] could be applied. As an alternative, we propose to remove spec­
ularities by thresholding the images again, while excluding the light source, followed
by our inpainting algorithm.

GPU Acceleration. We mapped the light painting accumulation efficiently on
the GPU. We first precompute two images, a weight image, where each pixel con­
tains the barycentric weights of the triangle that contains it, and an index image,
which contains the indices of the triangle’s vertices. For each input pixel on the
stroke, we can thus retrieve the weights and index of the light images that need to
be accumulated. The composition can then be achieved via alpha blending.
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2.4. Results
Aside from the GPU painting interface, we implemented our method in Matlab. The
GPU painting interface runs at 60 fps for 960x540 images on a GTX 980 but the
pre­processing takes around 5/20 seconds per frame (960x540/full HD). The latter
could be improved but our focus was on showing the high potential of computational
light painting. We provide many examples, ranging from indoor scenes, to outdoor
examples, on a large and small scale. The scenes were captured by different artists
with different equipment. The videos were recorded at frame rates from 24 to
30 fps and with manual focus; ISO and aperture parameters were set according
to environmental characteristics (strong/weak environment light, distance camera­
light source, etc.). All videos were processed as obtained and recorded in a single
attempt.

While light painting animations can take months [35], our approach can provide
results in the order of seconds, using key frame animation coupled with a path
trajectory (Fig. 2.10).

Figure 2.10: Frames of an animation.

Predefined drawings or single strokes (Fig. 2.11), potentially augmented with
flares for more realism (Fig. 2.12), are basically done instantly (no example took
more than a minute of design).

Complex drawings with layers, several shapes, or strokes took us up to five
minutes to design. A layered result is shown in Fig. 2.13. The same has been
applied for the Eurographics logo in the theatre (Fig. 2.18, top left).

For cases where the scene was not consistently sampled or recorded from only
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Figure 2.11: Using drawings and fonts as input points.

Figure 2.12: Different strokes with and without lens flare.

one side, our approach still produces convincing results, but cannot remove all
artifacts. Fig. 2.14 (left) shows our result for a person standing behind the light
source and, Fig. 2.14 (right), uses only few light samples. Moreover, if the light
source is weak, we cannot scale the brightness without introducing noise. These
artifacts occur also in traditional light paintings. Similarly, the behavior for non­
static scenes is identical and results in motion blur. As an example, Fig. 2.18 (top,
right) was recorded with a strong wind moving the leaves and Fig. 2.18 (bottom,
right) shows a moving cow in the background.

Fig. 2.15 illustrates a challenging example and shows the effectiveness of our

Figure 2.13: 3D drawing in different layers.
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Figure 2.14: Results with inputs recorded from one side, with the person stands behind the light source
or in a sparsely sampled scene.

solution in handling specular surfaces. The coarse sampling could lead to artifacts,
but our work removes these problems via inpainting of the specularities. Large
mirrors can still lead to problems and ghosting effects cannot be completely avoided.
In the future, using polarized filters could help detect such cases.

Figure 2.15: Ghost removal (top) and specularity treatment (bottom).

Besides light painting, our method can also be used for product light design
or relighting. In Fig. 2.16, an artificial lamp is placed in an apartment scene and
the illumination steered with our solution. The wide variety of scenes that can be
handled is also illustrated in the overview (Fig. 2.18).

To examine precision, we tested a synthetic scene. Fig. 2.17 (top, left) shows
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Figure 2.16: Virtual placement of a wall lamp with different positions and color temperatures.

Figure 2.17: Top: synthetic ground truth (left), a sparse (150 points, middle) and a dense (480 points,
right) light sampling. Bottom: our results and its respective absolute differences to the ground truth
(differences increased 800% for better visualization).

the reference long exposure for a light source moving horizontally in the middle
of the scene. Fig. 2.17 (bottom) shows the results obtained using our approach
interpolated via Delaunay Triangulation.

2.5. Conclusion
We have presented an easy­to­use pipeline for light painting. It usually requires
skill and is tedious but our solution simplifies the creation process. Our method
addresses common artifacts with a novel inpainting solution, and avoids ghosts
resulting from the artist being present in the scene. It requires a minimal and
low­cost hardware setup, while delivering high­quality results and increased artistic
freedom by moving creative choices to post­production.
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Figure 2.18: Several challenging examples illustrating our solution.
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In the future, we would like to investigate new ways of scene capture, e.g., via
a drone. Alternatively, an accelerometer can lead to good position estimates, even
when the source is occluded. Further, polarization filters could help in removing
reflections in mirror surfaces, for which we could then recompute the light reflection
during reconstruction.
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3
Controllable Motion­Blur

Effects in Still Images

X. Luo, N. Z. Salamon and E. Eisemann

Sprinkled by the trappings of words that make the outlines;
Blur on the showplace of made history.

Motion blur in a photo is the consequence of object motion during the image
acquisition. It results in a visible trail along the motion of a recorded object
and can be used by photographers to convey a sense of motion. Neverthe­
less, it is very challenging to acquire this effect as intended and requires
much experience from the photographer. In this paper, we propose a novel
method to add motion blur to a single image that generates the illusion of a
photographed motion. Relying on a minimal user input, a filtering process is
employed to produce a virtual motion effect. It carefully handles object bound­
aries to avoid artifacts produced by standard filtering methods. We illustrate
the effectiveness of our solution with various complex examples, including
multi­directional blur, reflections and multiple objects. Our post­processing
solution is an alternative to capturing the intended real­world motion blur
directly and enables fine­grained control of the motion­blur effect.

This chapter has been published on Transactions on Visualization and Computer Graphics (2020) [1],
and is an extended version of the conference paper published at the Graphics Interfaces (2018) [2].
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3.1. Introduction
Motion blur, as an artistic effect, is able to convey a sense of motion in still im­
ages. A photographer can create such effects by opening the camera shutter for an
extended period of time. During the exposure, moving objects with respect to the
camera will result in a different projection location on the camera sensor, which pro­
duce visible trails in the final image [3]. While being an important technique [4], it
is very challenging to control or acquire an intended result. Parameters such as the
shutter speed, camera motion, illumination, lens and filter configurations strongly
influence the result but their effect is difficult or even impossible (e.g., if the object
is moving irregularly) to estimate. Further, capturing slowly moving objects, such
as stars or clouds, requires a very long exposure to convey even a small sense of
motion. In some other cases, a photographer might want to keep a fast moving
object in focus, which results in only the background being affected by the motion
blur. To achieve this, the photographer needs to precisely follow the object with
the camera to keep the position perfectly stable, which is very challenging. Simi­
larly difficult is the production of a precise camera/object trajectories on the image
plane.

Easier than capturing the result directly, is to produce it in a post­process. How­
ever, current image editing software provides mostly blur tools for general purposes,
which requires users to manually extract regions of interest and experiment with
different effects. Additionally, standard filters typically result in artifacts at object
boundaries, such as undesired color leakage.

Our method enables a user to easily add motion blur to a single still image with
only little user intervention. To this extent, we propose a segmentation tool to select
objects of interest to then define the intended motion blur. Multiple objects can be
extracted and motion paths freely chosen. Our method relies on an edge­aware
filtering to deliver convincing results, while keeping the user interaction simple and
avoiding additional scene information. The algorithm in this paper builds upon our
original method presented in [2]. This extended version provides a user evaluation
and several new contributions, namely, a multi­directional motion blur to support
more complex object and camera motions, as well as several approaches to produce
artistic effects based on commonly applied shutter techniques.

This article is organized as follows. In the next section, we revisit previous work.
We then describe our approach (Sec. 3.3), including methods to produce various
artistic effects (Sec. 3.4), before presenting the results of our method (Sec. 3.5)
and concluding (Sec. 3.6).

3.2. Related Work
Blur in photography is often used for artistic purpose, to guide the observer, em­
phasize important elements, or achieve a desired look and composition. The two
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most common sources of camera blur are motion blur and depth of field.

Depth of field has received much attention and is also a perceptually well ex­
plored effect [5]. Several hardware and algorithmic solutions have been proposed.
Light­field cameras [6], special sensors [7], coded apertures [8], stereo setups [9],
or synthetic reconstruction [10], enable post­processing of the depth­of­field effect.

Motion blur conveys a sense of motion but is often considered an undesirable
artifact, as it can result from camera shake. In consequence, modern cameras
usually involve stabilization systems [11] to avoid the effect. Our goal is to allow a
user to control motion blur for artistic purpose.

For an image sequence, a computational solution to reconstruct motion blur has
been proposed in form of the virtual exposure [12]. Here, short exposure shots
are combined to simulate a long­exposure result. Originally conceived to simulate
high­dynamic range photography, the work addresses also moving objects. Direct
accumulation of the images would result in ghosting artifacts due to an exposure
gap between the individual shots. They rely on an optical flow algorithm to fill in
the missing transitions to obtain a motion­blurred output. Commercial systems,
such as Reel Smart Motion Blur [13] rely on optical flow to estimate the movement
between images to then apply a directed blur kernel. A virtual exposure was also
used for light painting, which is able to describe the motion blur caused by a moving
light source [14].

When relying on video input, a pixel­wise blur can be generated from an esti­
mated motion trajectory of the object [15]. The authors create a blur kernel from
the disparity along motion vectors in the stabilized video. However, background
and camera motion cannot be decoupled and the blur is limited to moving areas.
Moreover, the video input can grow significantly when dealing with slow moving
objects, such as clouds or stars. Our method can be applied to any object/region
in a single image.

Commercial solutions for computational motion blur on a single image exist. One
example is the GIMP [16] motion blur tool and the Adobe Photoshop [17] motion­
blur effect. These require significant manual intervention; object segmentation,
inpainting and manual organization of layers need to be performed beforehand.
Our integrated solution works directly on a single image and facilitates control and
definition of motion blur.

Motion depiction has also been investigated for virtual scenes, even with a pro­
grammable interface for expressive results [18]. For efficient motion blur computa­
tion, perceptual factors can be integrated in the computations [19]. Most real­time
3D applications, such as [20–23], make use of deferred shading [24] to derive in­
formation such as per­pixel motion, depth, or object id, which are used in a filtering
process. Our method shares ideas regarding post­processing but relies on a single
photograph.
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3.3. Our Approach
Our algorithm adds motion­blur effects to a single image based on a few simple
user annotations. Fig. 3.1 shows an overview of our solution.

Figure 3.1: Overview. From left to right: the user can select target regions of an input image using
simple annotations (bounding box, scribbles). A motion can be defined for the desired target region,
which launches a filtering process to add plausible motion blur. (Input image source: pixabay.com)

The user can select objects via an image­segmentation method (Sec. 3.3.1) and
can then define the motion of the selected object or area. The algorithm produces a
motion­blurred result while avoiding artifacts around object boundaries (Sec. 3.3.2).
First, we will describe our solution for linear motion per object before addressing
general motion paths per pixel (Sec. 3.3.3). Additionally, we present several exten­
sions of our approach to add high dynamic range (Sec. 3.4.1), and artistic effects
inspired by photographic techniques (Sec. 3.4.2 and Sec. 3.4.3).

3.3.1. Object Selection
A moving object in the foreground blends with the background, while a moving
background does not blend into a static foreground. The differing visibility rela­
tionships lead to very different outcomes; a static foreground object will cover the
background during the entire exposure and will maintain crisp boundaries, while a
moving foreground object will result in a fuzzy boundary. This difference makes
it necessary to distinguish the order of the objects present in the image. Conse­
quently, we will first focus on how to extract objects from the image.

For the segmentation of objects, a variety of methods could be used. Recently,
machine learning techniques (e.g. [25–27]) are increasingly successfully employed
for segmentation tasks. Still, for creative content creation, users might desire seg­
mentation masks that differ from the typical automatic segmentation inferred from
a learning process. For this reason, we opted for a constrained segmentation based
on user annotations. One of the most user­friendly segmentation methods is Grab­
Cut [28]. The user defines a rectangle containing the potential foreground object.
Additional scribbles can be provided to refine the mask segmentation. GrabCut then

http://pixabay.com


3.3. Our Approach

3

31

partitions the image into foreground and background pixels. We then separate the
foreground pixels into connected components [29] to define the different objects.

Fig. 3.2 shows two examples of the GrabCut extraction. The user defined an ob­
ject’s bounding box and, if necessary, scribbles, which assign potential foreground
and background regions. The extracted mask defines the foreground object (the
thumbnails in the lower right corner).

Figure 3.2: GrabCut foreground extraction. (Images source: pixabay.com)

In case that foreground objects overlap, the algorithm can be recursively applied
by running the GrabCut on the previously extracted foreground regions. In each
step, the output results in a fore­ and a background label, which induces an ordering
of the objects, which can be adapted by the user. These objects can then be
processed individually with their own motion path.

During our experiments, we found that we rarely need to distinguish more than
four objects. Hence, we allow the user to determine directly four levels of ordering
in the interface by drawing corresponding scribbles. Fig. 3.3 illustrates a multi­
object labeling.

In order to ease explanations, we will drop the foreground and background
labels and refer to all extracted regions as objects, which are ordered from back to
front.

3.3.2. Uniform Motion Blur

A linear motion can be defined by a motion direction and length. We simulate
the motion blur by convolving an object with a motion­blur kernel (psf) defined by
the motion trajectory. For example, a horizontal translation by 𝑛 pixels results in
a horizontal kernel of 𝑛 pixels, which is normalized such that its integral (sum of
all pixels) is equal to one. The latter avoids creating energy when convolving the
input. To compute the kernel for a general linear motion we use the formulation
proposed in Matlab. First the bounding box of the provided segment indicating the
motion is determined and extended by two pixels. Then, for each bounding­box
pixel, we compute one minus the distance of the pixel center to the segment. Next,

http://pixabay.com
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Figure 3.3: Multiple objects segmentation. Distinct target regions can be segmented, allowing localized
and distinct effect control. (Images source: pexels.com (top) and pixabay.com (bottom))

all values are clamped between zero and one to eliminate negative values. Finally,
the resulting kernel is normalized by the total sum of all pixels. For general motion
paths, the provided path is decomposed into linear segments, which are individually
handled as before.

Having derived a blur kernel per object, it seems tempting to visit every pixel
of the labeled input image and simply apply the corresponding psf kernel. Unfor­
tunately, this results in color bleeding artifacts, as illustrated in Fig. 3.4.

Figure 3.4: Color leakage when not respecting object boundaries.

Similarly, when applying edge­aware filtering, which avoids blurring across ob­
ject boundaries, the result is unrealistic. Sharp boundaries are maintained for mov­
ing foreground objects (Fig. 3.5), while one would have expected a fuzzy boundary.

For a more plausible result, we will derive blending masks to composite the
objects from back to front, one by one. In other words, a given object is motion

http://pexels.com
http://pixabay.com
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Figure 3.5: Unrealistic sharp edges from edge­aware filtering.

blurred, and then composed with the current background, which handles the prob­
lems in Fig. 3.5. After explaining the corresponding details, we will show how to
address the issues of Fig. 3.4.

Composing Fore­ and Background

To describe the algorithm to compose fore­ and background, we will focus on the
steps for a single object. Let 𝐵𝑘 be the current background image (𝐵0 is initialized
with zero). For an object 𝑂𝑘, we produce an image 𝐼𝑘, which is a black image
into which we copy all pixels labeled with 𝑂𝑘 from the input. Further, we produce
a mask 𝑀𝑘, which is black except having ones in pixels that correspond to those
labeled with 𝑂𝑘 (one can interpret this step as adding an alpha channel). We then
convolve both images with the psf of 𝑂𝑘. Intuitively, the image 𝑝𝑠𝑓 ∗ 𝑀𝑘, where
∗ denotes the convolution, corresponds to a mask that indicates how much the
foreground will occlude the background. For example, if the object is not moving,
psf is by construction a Dirac (a single pixel equal to one), which implies that the
mask describes exactly the pixels of the original object. Given the convolved results
and the background 𝐵𝑘, we compute the new background 𝐵𝑘+1 as 𝐵𝑘+1 = 𝑝𝑠𝑓 ∗
(𝑀𝑘𝐼𝑘) + (1 − 𝑝𝑠𝑓 ∗ 𝑀𝑘)𝐵𝑘.

In practice, it is possible to avoid the actual derivation of the masks by perform­
ing an integration along the kernel directly on the input image. Further, we do not
need intermediate background images and it is enough to incrementally compose
the motion­blurred objects in a single resulting image.

While conceptually simple, the above approach is still imperfect. It relies on the
assumption that each object is entirely visible in the original input image. Unfortu­
nately, this is rarely the case. As soon as an object is moving, visibility relationships
change and parts previously­occluded by the object will be revealed. A challenge
is to estimate the content that is disoccluded. Neglecting disoccluded regions and
assuming that they look like the original image will result in the artifacts shown in
Fig. 3.4. Similarly, assuming the disoccluded pixels are simply black results in a
dark halo.
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Handling Disocclusions

To correct for the disocclusion artifacts, we propose an inpainting procedure. While
more advanced solutions could be employed (i.e. [30–32]), we found the simpler
strategy usually sufficient. The reason is that the part will either be in motion itself
or overlapped by a moving element, which naturally hides many of the details in
the inpainted area.

Adding inpainting to our solution, the main algorithm remains the same; objects
are treated front to back, but before filtering with their psf, an inpainting procedure
is applied. For an object 𝑂𝑘, we will examine its boundary to find pixels adjacent
to an object 𝑂𝑗 that is nearer (i.e., 𝑗 > 𝑘, as objects are ordered). If there is
none, 𝑂𝑘 does not require any inpainting. If there is an overlap, we want to extend
𝑂𝑘 beneath the potentially uncovered region of 𝑂𝑗. Inspired by recent real­time
methods [23], we mirror the content of 𝑂𝑘 into the area that is covered by 𝑂𝑗. We
choose the mirror direction 𝑑 based on the motion direction of 𝑂𝑘 (or of 𝑂𝑗 in case
that 𝑂𝑘 is static). The value of a pixel 𝑝 in 𝑂𝑗 is then defined by finding a pixel 𝑞
from which we copy the value. We determine the position of 𝑞 by walking from
𝑝 towards 𝑂𝑘 along 𝑑, one pixel at a time. On the way, we maintain a counter,
initialized at one, that is incremented whenever an encountered pixel is inside 𝑂𝑗
and decremented when outside 𝑂𝑗. When the counter reaches zero, we have found
𝑞. The zero counter indicates that we have traveled the same distance inside 𝑂𝑗 as
outside, it is then located at a reflected position with respect to the object bound­
ary. If we encounter an object 𝑂𝑙 (𝑙 > 𝑗) while following 𝑑, we reverse 𝑑, which
performs a ping­pong inpainting. Using this simple inpainting leads to a significant
improvement (Fig. 3.11).

3.3.3. Multi­Directional Motion Blur

Now that we have discussed the case of per object motion, more complex motion
paths for each pixel are addressed with our multi­directional motion blur. This ex­
tension increases the expressiveness of the algorithm significantly. For example,
when photographers move a camera forward or sideways, the perspective fore­
shortening leads to blur effects that can enhance the impression of depth, yet they
cannot be described with a single linear path per object. In other cases, such as a
spinning wheel, a linear motion trajectory fails in reproducing a plausible motion­
blur effect. In this section, we propose an extension to the previous principle. Here,
unlike convolving the original image region with a single motion­blur kernel, each
pixel will receive its own motion direction. In order to facilitate the annotation, the
user defines a few motion paths, whose properties are propagated throughout the
image using a diffusion process [33, 34]. This diffusion process results in an image
with minimal gradient variation, under the constraint that the original annotations
are maintained.

To describe this process formally, we will derive an image, in which each pixel will
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contain a motion vector defined by a length 𝑙 and a direction 𝑑 ∶= (cos(𝜃), sin(𝜃))
for a given angle 𝜃. Initially, the user will only sparsely annotate a few pixels. Let ℐ
be the set of pixels for which the user provided an input. For an index (𝑖, 𝑗) ∈ ℐ, we
denote the user­defined motion annotation as 𝑚𝑖,𝑗. The image 𝑀 containing the
diffused three­component motion vectors is defined by Δ𝑀 = 0 𝑤𝑖𝑡ℎ 𝑀(𝑖, 𝑗) =
𝑚𝑖,𝑗 ∀(𝑖, 𝑗) ∈ ℐ

The resulting image𝑀 is smooth, as the equation Δ𝑀 = 0 implies that the gradi­
ent is minimized, while the user annotations are maintained. This equation system
can be solved with an iterative process. To this extent, one can iteratively average
neighboring pixels via 𝑀(𝑖, 𝑗) = (𝑀𝑖−1,𝑗+𝑀𝑖+1,𝑗+𝑀𝑖,𝑗−1+𝑀𝑖,𝑗+1)/4, while maintain­
ing the values of the pixels in ℐ, until convergence. More efficient solutions involve
using multi­grid [33], sparse­system solvers [34], or even optimized methods for
diffusion curves [35].

The initial user annotations of the pixels in ℐ are done using a special annota­
tion tool. The user defines the motion direction by drawing a line segment whose
orientation and length define the desired values (𝑑, 𝑙). By default, the pixels below
the segment will be added to ℐ but it is also possible to mark an area, or single
pixel, with a brush to then associate the drawn segment to this area.

Given the diffused motion vectors𝑀, the next step is to derive the corresponding
motion­blurred image 𝐼𝑚 from the input image 𝐼. The idea is to start in each pixel
and walk along the defined motion trajectory. This path line integration is similar
to the process of visualizing flow [36]. For each pixel 𝑝, we compute the motion­
blurred result 𝐼𝑚(𝑝) by averaging the values along a path of the motion length
⌊𝑀(𝑝).𝑙⌋ over the input image 𝐼, guided by the direction 𝑀(𝑝).𝑑:

𝐼𝑚(𝑝) =
1

⌊𝑀(𝑝).𝑙⌋

⌊𝑀(𝑝).𝑙⌋

∑
𝑖=0

𝐼(𝑝𝑖),

where
𝑝0 = 𝑝
𝑝𝑖+1 = 𝑝𝑖 +𝑀(𝑝).𝑑

Disocclusions during this multi­directional motion blur are handled similarly to
before, only now the mirror­padding is applied according to the motion path. Fig. 3.6
shows a result (bottom row, right). The user­provided motion paths and the dif­
fused result are illustrated as well.

3.4. Extensions
Our method is able to add the illusion of a standard motion blur to a still image.
In this section, we will describe extensions of our solution. First, we show how
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Figure 3.6: Multi­directional motion blur. Top row: the input image with user scribbles and multiple
motion paths (left) and the segmentation mask (right). Bottom row: the diffusion map 𝑀 with the
colors encoding the direction and length of each motion path (left), and the final result (right). (Image
source: pixabay.com)

to increase the realism of the motion blur for very bright sources by hallucinating
high­dynamic range content, then we propose two artistic additions, which are often
used in practice, the Harris shutter and addition of motion trails.

3.4.1. High Dynamic Range Motion Blur

For strong light sources exceeding the range of the sensor sensitivity and thus the
pixel values, the impact on the appearance of the motion blur can be easily under­
estimated. In real­world environments luminance can span a wide range. While
our human eyes can adapt to large intensity variations, with standard photography,
values in the sensor might saturate. Bright and glowing elements are often clipped,
e.g., a bright car headlight in a night scene. High­dynamic­range (HDR) imagery
is produced by recording several images with different exposure times, which are
fused to capture a larger range of intensities. Working with a high­dynamic range
representation has a significant effect on the result. A clipped value when blurred
will lead to a dimmed result in comparison with its original version. Having values
that exceed the limits of the display will still be dimmed by a blur, but will maintain
a higher intensity and potentially even still saturate after the blur is applied. To
achieve this effect, we propose to virtually produce HDR content.

http://pixabay.com


3.4. Extensions

3

37

In our solution, a user can indicate regions in which values were potentially
clipped by placing a bounding rectangle around them. Then our solution expands
the values in this region from the range of [𝑡, 1] to a range of [𝑡, 2𝑇], where 𝑡 and
𝑇 are user­defined thresholds (per default, 𝑡 = 0.98, 𝑇 = 2) using the function
𝑓(𝑥) = 𝑡 ∗ 𝑝𝑜𝑤(1 + (𝑥 − 𝑡)/(1 − 𝑡), 𝑇). While very coarse, the accuracy of such an
expansion is of lower perceptual significance, still advanced conversions would be
possible [37].

Fig. 3.7 shows an example of hallucinated HDR content created with our solution.
The light blue rectangles illustrate the selected the region for the HDR expansion.
The change affects the look of the motion blur, which results in a more realistic
effect (right) compared to the standard approach (middle).

Figure 3.7: Hallucinated HDR expanding high intensity values. The bright lights of the car create vis­
ible trails (top), as does the sun when applying a strong background blur (bottom). (Images source:
pixabay.com)

3.4.2. Harris Shutter using Motion Blur

To show the flexibility of our solution and ability to also reproduce artistic effects
used in photography, we added support for the simulation of a Harris shutter effect.
The effect conveys an appealing and colorful outcome by masking certain channels
over time. Typically, the shutter effect consist of capturing the scene in different
time intervals, using only a single channel for each exposure [38]. Alternatively, it
can also be achieved by recording a video and using the complementary channels
from different frames to composite the final image. In other words, motion in a
scene will result in several differently­colored projections.

In our solution, the motion blur is used to create the time­shifted frames. The
target region is defined by the user and we manipulate each channel separately.
The green channel is used as reference (middle) point. The red and blue channels

http://pixabay.com
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contain the result after following half the length of the provided motion blur in
opposite directions. Results of the Harris shutter simulation are shown in Fig. 3.8.
With this artistic effect, one can steer attention to scene composition.

Figure 3.8: Harris shutter motion blur results in a colorful outcome to steer attention. (Images source:
pixabay.com)

3.4.3. Motion Trails

Another artistic means to illustrate movement are motion trails. These are used
in photography but usually shot in front of a dark background. Here, a flash or
strong light is used at the end of the capturing process. Hereby, the object in
its final position will be more visible than during the previous time frame. As a
consequence, it seems as if the object leaves a trail behind that is easily understood
by the observer as a displacement. We can simulate such an effect by compositing
the foreground object on top of the motion­blurred result.

An example is shown in Fig. 3.9, using the multi­directional blur to create motion
trails simulating the punch impact. Please notice that this effect can also be selec­
tively applied on different parts of an object by using the diffused multi­directional
motion blur.

3.5. Results
We have implemented our framework using OpenCV/C++. All results were created
on a laptop with an Intel i5 2.2GHz and 8GB RAM. We did not optimize the per­

http://pixabay.com
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Figure 3.9: Motion trails indicating the action while keeping the final position on focus. (Image source:
pixabay.com)

formance of our solution. The uniform motion blur is linear in terms of complexity
with respect to the image dimensions. It takes 3 seconds to segment the content
and apply a motion path on a 960 × 540 image. Since the input is simple, novice
users can create convincing results in less than 10 seconds. For the multi­directional
motion blur, the computation time is directly linked to the diffusion process. The
image size, number of motion paths, and number of iterations until convergence
do govern the cost. While it would be possible to use hierarchical [33] or advanced
solvers [34, 35] on the GPU , which can run at interactive rates, we use a standard
CPU solver to increase compatibility. In practice, users took around 2 minutes to
obtain the results shown in this paper.

A large variety of examples are illustrated in Fig. 3.25. The top row (a­b) shows
a boy with a ball, where the motion blur on the ball adds activity to the scene and
guides the observer’s focus. The same row (c­d) adds a clear sense of speed to
the horse movement that was missing from the original shot. On the second row,
a similar result is obtained: in (a­b) the background was blurred to underline the
stormy sea and sky, which leads to an increased focus on the surfer; (c­d) show that
the gradient in the sky remains almost perfectly unaltered. Row three illustrates
how motion blur can emphasize actions to underline the semantics of a photo. The
fourth row (a­b) illustrates the smoothness of the motion­blurred results, even in the
presence of a complex path, which adds to the calm atmosphere of the photo. The
same row (c­d) shows how our HDR effect can add to the apparent brightness of
the back lights. The motion blur is used to add a sense of danger with regard to the
slippery road in the image. The fifth row, illustrates the effects of the Harris Shutter,
where the originally simple scenes are enriched by the vivid color additions. Finally,
the sixth and the seventh rows show applications of the multi­directional motion
blur involving diffused motion vectors. In the sixth row, we show how the motion
blur can support the emphasis on the main character (a­b), or create the impression
of vertigo (c­d). The seventh row shows a subject emphasized using motion lines
(a­b) and also a spinning motion to illustrate the generality of the solution (c­d).
The images exemplify the large variety of options for the controlled use of motion

http://pixabay.com
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Figure 3.10: Background motion blur results. Rows differ on the motion vector chosen by the user for
the same objects.

blur. In the following, we demonstrate key features of our algorithm.

The user defines objects with very little effort, as evidenced by the simple input
previously shown in Figs. 3.2 and 3.3. To apply motion blur to the background, a
user can draw a motion vector over the desired area. The color leakage artifacts
seen in Fig. 3.4 are minimized by our approach, creating a natural transition along
object and background edges, as shown in Fig. 3.10 (top). The user can decide
to change the motion path at any time to explore the resulting effect and also
can apply to more cases, such as in Fig. 3.10 (bottom). Fig. 3.11 illustrates cases
where objects are set in motion, like the car (left) and eagle (right). Fig. 3.11 (top)
illustrates the corrected result from Fig. 3.5. For a matter of comparison, Fig. 3.11
(bottom) shows a different motion direction applied to the target objects.

For scenes with more than one object, each object can be motion blurred with
different motion paths and intensities. Fig. 3.12 (left) shows one motion­blurred
target (one balloon, one dice), while Fig. 3.12 (right) shows the result when sim­
ulating different motion directions and speeds. Analogously, Fig. 3.13 illustrates
how the impression of a scene can be influenced when switching the motion tar­
gets; here, either to the player (left) or to the ball (right). Similarly, motion blur
can be used to guide an observer, such as in Fig. 3.14, where the hand motion
influences the way an observer analyzes the scene.

When using general motion paths, they can be treated as several linear seg­
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Figure 3.11: Foreground motion blur results. Our artifact minimization blending is applied to all results.
Rows differ on the motion vector chosen by the user for the same objects.

Figure 3.12: Multiple objects with distinct motion directions. (Images source: pixabay.com)

http://pixabay.com
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Figure 3.13: Motion blur on different targets, changing scene impression. (Image source: pixabay.com)

Figure 3.14: Motion blur indicating the semantics of the scene. (Image source: pixabay.com)

ments. In practice, it is typically sufficient to directly apply a convolution with the
whole path and only perform a vertical and horizontal occlusion handling, depend­
ing on the local orientation, which is more efficient to evaluate. General motion
curves are well suited to simulate a long exposure with non­linear motion, e.g., due
to a hand­held acquisition. Fig. 3.15 demonstrates a curved motion paths on the
ball to simulate a non­linear bounce (top) and a time­lapse sequence (bottom).

Fig. 3.16 shows multi­directional motion blur results with a complex motion per
pixel. The purple arrows indicate the different directions of the motion paths. The
results artistically emphasize the character (top), increase the perception of speed
(middle), and simulate the spinning motion on a time­lapse (bottom).

Fig. 3.17 uses hallucinated HDR content to maintain the brightness of the sun.
Fig. 3.18 adds the Harris shutter effect, while Fig. 3.19 shows expressive motion
trails.

Discussion

Our approach introduces novel effects that are not easily reproducible in standard
software. Motion blur can also be applied to an object using Photoshop, but it
requires an extended workflow explained in the following. Fig. 3.20 shows the
outcome of our method and a manual manipulation in Photoshop. Here, the back­
ground received a linear motion blur. Just applying Photoshop’s Motion Blur and

http://pixabay.com
http://pixabay.com


3.5. Results

3

43

Figure 3.15: Uniform motion blur with a non­linear path. (Images source: pixabay.com (top) and
freegreatpicture.com (bottom))

Path Blur tools (left, center­left) leads to similar artifacts as in Figs. 3.4 and 3.5. In
consequence, an artist needs to first derive layers, which can be non­trivial. Fur­
ther, each layer requires manual inpainting, which can be a difficult task and require
experience, especially for complex content. After processing the layers, a manual
compositing is needed to derive an acceptable result (center­right). Our approach
leads to similar results (right), while avoiding manual layering and compositing au­
tomatically.

Despite its simplicity, our method’s inpainting typically enables natural looking
motion­blurred result for moderately strong motion blur and requires no user in­
teraction for occlusion handling. The inpainting mechanism provided by Photoshop
[30, 39] is more general and often provides a very detailed infilling. Nevertheless,
it does not take the motion direction into account and might create unwanted struc­
tures that cannot be found in close proximity of the inpainted area. A comparison
is shown in Fig. 3.21.

A direct comparison of our method to manually recreating motion blur effects in
professional software tools is difficult, as the expertise of the users plays a signifi­
cant role. To still provide some insights on practical usage, we chose to perform a
simple evaluation with 10 users. These users had varying degrees of expertise in
Photoshop, but used our solution for the first time. We gave them three photos that
were relatively easy to segment and decompose in Photoshop to not require much
expertise. They were asked to mimic a motion­blurred result. Overall, our system
was still considered easier to use (4.3 (our) vs. 2.9 (PS) on a Likert scale of 5 ­
higher being better). Less time was spent using our method to create the desired

http://pixabay.com
http://maxpixel.freegreatpicture.com
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Figure 3.16: Multi­directional motion blur results. (Images source: unsplash.com (top), pexels.com
(middle), and pixabay.com (bottom))

http://unsplash.com
http://pexels.com
http://pixabay.com


3.5. Results

3

45

Figure 3.17: High Dynamic Range motion blur keeping high intensity values. (Image source: pix­
abay.com)

Figure 3.18: Harris Shutter motion blur results creating subtly colored motion and vintage effects.
(Images source: pixabay.com)

http://pixabay.com
http://pixabay.com
http://pixabay.com
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Figure 3.19: Motion trails simulating distinct movements while keeping the subject on focus. (Image
source: pixabay.com)

Figure 3.20: Comparison with Photoshop tools for the background motion blur. From left to right,
Photoshop results using Motion Blur, Path Blur, Content Aware Fill with layer compositing, and our
approach. (Image source: pixabay.com)

Figure 3.21: Inpainting results from Photoshop (center) and our solution (right) when a large object is
removed. (Image source: pixabay.com)

http://pixabay.com
http://pixabay.com
http://pixabay.com
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Figure 3.22: Motion blur with overlapping objects. Arbitrary depth assignment with artifacts (left) and
our back­to­front ordering (right). (Image source: pixabay.com)

results (average: 6 minutes 13 seconds (our) vs. 15 minutes 25 seconds (PS)) and
the users were more satisfied with their results (4.4 (our) vs. 3 (PS), on a Likert
scale of 5 ­ higher being better). While giving an indication, this evaluation did not
even cover all aspects of our solution. A more extensive study remains future work.
The user­evaluation details are presented on Appendix A.1.

While our approach can produce convincing results, it also has its limitations.
When moving objects overlap, a decision is needed to determine which element is
to be considered in front, as illustrated in Fig. 3.22. However, our solution does
not support object motion that would lead to several encounters of two objects
changing their respective order.

Very strong motion is problematic because the area behind the moving object
can become entirely visible (in the limit, the moving object would be completely
transparent). A second problem can also occur when a moving object is initially
partially covered. If the object has a shape that is easy to estimate for an observer,
a discrepancy might arise. Fig. 3.23 illustrates such case. The head of the soccer
player (left), for example, was enlarged in the inpainting, which darkens the motion
trail. However, extreme motion blur is rarely attractive and usually not employed
by a user. For most other cases, our inpainting is sufficient, as evidenced by the
examples in this paper.

Finally, a challenge when applying motion blur is to deal with transparent and
reflective surfaces. Fortunately, a human observer is typically not very strong in
interpreting physical effects correctly and with ease. Regarding reflections, if the
blur of the original object and its reflected counterpart do not perfectly match, the
illusion might still be sufficient. To facilitate adding plausible reflections, we use also
created a simple extension to our interface that allows a user to scribble a mirror
axis, which is used to copy the annotations from one side of the reflection to the
other when using uniform motion blur. An example is shown in Fig. 3.24.

http://pixabay.com
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Figure 3.23: Inpainting artifacts with strong motion and small occluded areas. (Images source: pix­
abay.com)

Figure 3.24: Motion applied to target object and its reflection. (Image source: pixabay.com)

http://pixabay.com
http://pixabay.com
http://pixabay.com
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Figure 3.25: The diversity of scenes exploit by our framework. Blue and purple arrows indicate, re­
spectively, the motion path of uniform and multi­directional motion blur. (Images from: unsplash.com,
pexels.com, pixabay.com and easylife­online.com)

http://unsplash.com
http://pexels.com
http://pixabay.com
https://easylife-online.com


3

50 References

3.6. Conclusion
We presented a solution to add motion­blur effects to a single image in a post­
process. It allows for a simple user interaction and requires only little user effort.
Despite the method’s simplicity, convincing results can be obtained in seconds and
the outcome is easier to control than with a real­world capture. We illustrate that
our solution provides support for complex motion paths and is able to reproduce
several motion­blur­related photographic effects. Our algorithm can be applied to
any image and does not require a specialized acquisition routine, which eases its
use and increases its applicability.
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4
Spatio­temporal Exposure

Control for Videos

N. Z. Salamon, M. Billeter and E. Eisemann

Another time, another place;
A hollow universe in space.

A camera’s shutter controls the incoming light that is reaching the camera
sensor. Different shutters lead to wildly different results, and are often used
as a tool in movies for artistic purpose, e.g., they can indirectly control the
effect of motion blur. However, a physical camera is limited to a single shutter
setting at any given moment. ShutterApp enables users to define spatio­
temporally­varying virtual shutters that go beyond the options available in
real­world camera systems. A user provides a sparse set of annotations that
define shutter functions at selected locations in key frames. From this input,
our solution defines shutter functions for each pixel of the video sequence
using a suitable interpolation technique, which are then employed to derive
the output video. Our solution performs in real time on commodity hardware.
Hereby, users can explore different options interactively, leading to a new
level of expressiveness without having to rely on specialized hardware or
laborious editing.

This chapter has been published on Computer Graphics Forum, 38, 7 (2019) [1].
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4.1. Introduction
In photography, the shutter controls when incoming light reaches the image sen­
sor. Together with sensor sensitivity (ISO) and lens opening (aperture), the shutter
speed defines the image exposure. In the first cameras, the shutter was a simple
mechanic device manually moved in front of the lenses. Later, shutter devices with
different shapes were created, from rotary­discs to blinds and diaphragms. Nowa­
days, most digital cameras implement an electronic shutter, which simply blocks or
lets photons pass to an active sensor element.

In cinematography, many directors still use rotary­disc shutter devices for cre­
ative choices, typically turning synchronously to the 1/24th of a second frame time.
The exposure of a frame is then controlled by an angular cut on the rotary­disc,
while its spinning speed controls the video framerate. The ratio between the open
and closed angles influences how sharp or smooth the scene motion is registered.
A common practice is to use a 180∘ angle cutout, which is typically perceived as
a natural motion blur by the audience [2]. A faster shutter (smaller open angle)
leads to crisp content and sharp motion. A good example is the movie Saving Pri­
vate Ryan, which uses a 45∘ shutter to convey a frightening ambiance [3]. Smaller
angles mimic the effect of newsreels. Slower shutters (large open angle) result in
motion blur, often used to give a sense of fast motion. Longer exposure can also
smooth perceived motion, as used by David O. Russell’s in The Fighter to subtly
correct jittery movements [4]. Finally, ramping shutter speeds contributed to the
energetic atmosphere of Mad Max: Fury Road [5].

While controlling the shutter has been established as a useful measure to in­
fluence the perception of a video sequence and to enable different visual styles,
the available options are rather limited. Even mixing different motion patterns on
the same take requires multiple cameras and compositing techniques. Our solu­
tion addresses this topic and we provide a novel technique to virtually simulate and
combine different shutters in space and time. Unlike previous work, we let artists
define spatio­temporally varying virtual shutters in a post­process using a simple
user interface.

All results are presented in real time, which supports the shutter design process.
A key advantage of our solution is that only sparse spatial and temporal annotations
are needed, which then define varying per­pixel shutter functions for the entire
video sequence. We demonstrate the reproduction of common real­world shutters
and illustrate various options for artistic choices. In this context, we made the
following technical contributions:

• an efficient shutter interpolation procedure;

• a technique to extend sparse shutter definitions; and

• a real­time interface for shutter design and compositing.
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4.2. Related Work
The impact of shutter functions depends greatly on the motion in the captured
scene, which can be spatially varying. When combining sharp and blurred objects
in the scene, it is natural to consider matting to define target areas and to composite
shots from different cameras. While recent approaches (e.g. [6–8]) can segment
the masks, the process is still costly and challenging, as motion blur trails will jut out
of the masks. Because of this, a single­frame motion blur requires inpainting to fill
in the partially visible background underneath the motion trails [9]. Consequently,
such spatial mixing is difficult to obtain for real­world footage.

Glassner [10] investigated the behavior of different shutter shapes on synthetic
scenes, including a virtually­simulated “Slit Scan” shutter used in the iconic stargate
scene from Stanley Kubrick’s 2001: A Space Odyssey [11]. The slit scan effect is
analogous to nowadays electronic camera sensor: the image is composed by partial
sensor scans. The scan occurs line by line and in fractions of a second, i.e., while
the sensor is exposed to light at a given shutter speed. If the speed is not as fast
as the moving objects in the scene, the rolling­shutter effect is observed. While
such effect is occasionally applied for artistic reasons, for many applications it is
not desirable and spatial and angular warpings have been proposed to correct for
image distortions [12].

When the scene has little motion, the effects of varying shutters can be subtle,
and their perception varies with different viewers’ preferences and expertise [13].
Nevertheless, it has been shown that spatially varying exposure times can influence
gaze motion [14]. Further, extreme examples, such as a stop­motion look, as seen
in Cooper and Schoedsack’s King Kong, is perceived as very unnatural. The effect
is due to the complete lack of motion blur, as the ape model was recorded via still
imagery. Interestingly, Brostow and Essa [15] proposed a solution to simulate fast
shutter speeds and create a stop­motion look from blurred videos.

Post­processed motion blur simulates a long exposure shutter by accumulat­
ing video frames. Such frame aggregation has been explored by tracking image
features to backproject the motion onto a single background image [16] or by sta­
bilizing the video on the focus object and averaging the moving pixels [17]. In both
cases, the blur effect is created from camera motion. Other approaches use opti­
cal flow and/or 3D motion vectors to globally track and create a per­pixel motion
blur [18]. Spatially­varying blur requires masking and layer compositing via external
software [18] or soft brushes [17]. Nonetheless, the temporal motion blur strength
is constant after each keyframe. Our method not only supports frame aggregation
for motion blur, but uses a general shutter function description that allows us to
achieve many more effects (including rolling shutters, stuttered motion, or ghost­
ing). In addition, we allow shutter functions to change both over space and time,
and ensure seamless interpolation of these.

When processing high frame rate videos, another prominent context of shutter
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design is temporal filtering. Downsampling can be used for display on conventional
screens [19] or to adapt framerate according to image content [20]. Nonethe­
less, the process has to be carefully applied, as framerate was shown to be more
appreciated than resolution under budget constraints [21]. Disney’s short movie
Lucid Dreams of Gabriel [22] experiments with different spatio­temporal expressive
effects to enhance storytelling. Our solution enables a wealth of temporal manipu­
lations via its shutter­design interface.

4.3. Our Approach
For our algorithm, we assume an input video that is fully exposed, meaning that
the shutter is open during the whole frame time and no delay is induced from one
frame to the next. While such input is not standard, modern devices and computa­
tional approaches enable the construction of such a sequence relatively easily. For
standard videos, we prepare in­between frames using optical flow [23]. Unlike the
remaining steps of our method, this preparation is an offline pre­processing step
and we discuss the details in Appendix B.1.

Given the input video, users can interact in real time to add simple shutter
annotations in form of scribbles, defining regions that will be using the according
shutter. Shutter definitions are interpolated over time and space using a diffusion
mechanism, creating a shutter function for each pixel of the video. See Fig. 4.1 for
an illustration of the full pipeline.

Figure 4.1: Our system accepts an input video. If this video is not already fully exposed, the full exposure
is created in a pre­processing step. The user can then design custom shutter functions, create shutter
areas and define keyframes for temporal changes. The resulting multi­exposed video is immediately
visible, as the back­end pipeline runs in real time.

In the following, we first explain the mathematical model to simulate and inter­
polate shutter functions (Sec. 4.3.1 and Sec. 4.3.2). We then discuss the imple­
mented user interface (Sec. 4.3.3) and how to provide sparse input to create shutter
definitions for the entire video sequence. The latter is achieved via a diffusion pro­
cess and an interpolation of the diffused shutter information. The efficiency of these
two important steps is crucial for achieving real­time feedback and the details are
described in Sec. 4.3.4.
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Figure 4.2: Different shutter functions yield distinct results on the same input video of a horizontally
moving sphere. Left: A shutter function equal to 𝛿0𝜏 reproduces the original video (top). By changing
the location of the delta function, the video is time shifted (bottom). Right: a simulated shutter device
with two cuts (top) results in a compositing of two frames, while a constant exposure (bottom) creates
a motion­blurred result.

4.3.1. Image formation with a Virtual Shutter

The traditional camera image­formation model defines a frame as the integration of
the incoming light over time while the shutter is open. For a virtual shutter defined
on a video with a fixed frame rate, time is discretized. The shutter function becomes
a set of weights, one for each discrete quantum of time.

Formally, the input is a fully­exposed video 𝑉 consisting of 𝑇 ∈ ℕ frames, such
that 𝑉 (𝑡) , with 𝑡 < 𝑇 ∈ ℕ0, is the 𝑡𝑡ℎ frame. For a frame 𝑡, a shutter function 𝑠𝑡
acts as a filter and attributes weights to Τ+1 frames of the input video from frame
𝑡 onwards, leading to a filtered frame 𝐹 (𝑡):

𝐹 (𝑡) =
Τ

∑
𝜏=0

𝑠𝑡 (𝜏) 𝑉 (𝑡 + 𝜏) .

The simple case of reproducing the input video 𝑂 (𝑡) = 𝑉 (𝑡) would define 𝑠𝑡 (𝜏) =
𝛿0𝜏, where 𝛿𝑖𝑗 is the Kronecker delta (one if both indices match, otherwise zero).
Fig.4.2 illustrates the result of different shutter functions for the same video input.
As the frame rate of an output video 𝑂 does not have to match the frame rate of
the input video 𝑉, a monotonic frame­mapping function 𝑀 ∶ ℕ0 → ℕ0 can be used
to define the 𝑖𝑡ℎ output frame 𝑂(𝑖) = 𝐹(𝑀(𝑖)). The video 𝑂 can then be played
using the suitable frame time.

4.3.2. Shutter­function Interpolation

In our approach, shutter definitions will be specified on a per­pixel basis, thus en­
abling different shutters in different frame locations and at different times. To tran­
sition between the shutter definitions, we need to provide an interpolation among
them. A trivial choice would be a linear value interpolation. Unfortunately, this
solution does not result in a meaningful outcome.
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Figure 4.3: Comparison of displacement and value interpolation. Interpolating the input shutter functions
(displayed in the top row) at roughly 50­50 results in the images in the bottom row, depending on the
interpolation method. Displacement interpolation (bottom left) smoothly shifts time across the transition,
resulting in a sharp output image constructed from the in­between frames. Value interpolation of the
shutters results in a shutter function that just mixes the input images (bottom right). Video source:
pixabay.com.

Consider the shutter functions 𝑠1 (𝜏) = 𝛿0𝜏 and 𝑠2 (𝜏) = 𝛿(15)𝜏 (see Fig. 4.3,
top), which means that 𝑠2 results in a frame that occurs 15 frames after the frame
produced by 𝑠1. The linearly interpolated shutter function (Fig. 4.3, bottom right)
would just blend both frames. For a natural transition, one would expect that
intermediate frames between both time steps are obtained (Fig. 4.3, bottom left).
This can be achieved via displacement interpolation [24].

Displacement interpolation is typically applied to probability distribution func­
tions and can be done by value interpolation of their inverse cumulative distribution
functions [25]. We will present our efficient implementation in Sec. 4.3.4.

http://pixabay.com
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4.3.3. Interface
In order to define and apply different shutter functions to an input video, we need
to indicate their regions of influence, both spatially and temporally. Our application
provides a graphical interface (Fig. 4.4) to support users in this task.

To apply shutter effects to the video, the first step is to define a default shutter
function that will be applied to all frames, unless additional shutters are defined.
To this extent, the user first chooses the number of shutter weight entries Τ, which
triggers a graph­bar editor. Here, the individual shutter­function values are set by
dragging the corresponding bars up and down, representing values between zero or
one. Alternatively, the user can choose among shutter functions from a predefined
library.

To create an additional shutter, the user draws a scribble on a wanted frame.
Again, the user defines a corresponding shutter function. The new shutter is then
active for this frame and applied to the area covered by the scribble. To use the
shutter over several frames, the user advances in the video and can place key
frames. A keyframe enables the user to redefine the scribble (position, size, ori­
entation) or the shutter function. For all intermediate frames between keyframes,
the shutter is interpolated (meaning its shutter function, as well as the defining
scribbles attributes). Once the shutter definition is complete, the procedure can be
repeated.

For now, the shutter definitions would only be applied directly to the pixels
underneath the scribble annotation. Instead, we actually want to extend the shutter
definitions to the entire frame. To this extent, we first collect all active shutters at
time 𝜏 and derive their interpolated representation from the user defined keyframes.
Using their scribble annotations, a diffusion process is executed to find shutter
interpolation weights for all pixels in the frame. We express this diffusion process
as the solution to a heat transport problem, where the shutter annotations are
used as local constraints, similar to the work of Orzan et al. [26]. In each pixel, the
resulting interpolation weights define a shutter function that is used to process the
input video. We rely on an efficient implementation, which we detail in Sec. 4.3.4,
such that all steps can be executed in real time. Hereby, the user has immediate
feedback and can then adjust, delete or add new shutters until the desired result
is obtained.

An illustration of the interface is shown in Fig. 4.4, which contains the graph­bar
edit of a shutter function, as well as scribble annotations for several shutters. Here,
a shutter with a longer exposure time is applied to the wood block that is moving
towards the characters, where a short exposure is used.
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Figure 4.4: Interface for interactively defining shutter functions and their influence regions. Users design
shutter functions using the bar graph editor, whilst additional details, such as the number of frames in
the function, can be changed using one of the collapsed fold­outs. Influence regions are defined by
drawing scribbles using the corresponding color. The results are immediately visible. The sequence is
from the Big Buck Bunny movie by the Blender Institute [27].

4.3.4. Efficient Implementation

To achieve real­time performance with high accuracy, our solution relies on suit­
able algorithmic choices and an efficient GPU implementation. The two main per­
formance bottlenecks are the interpolation of shutter functions and the diffusion
of the shutter annotations. While diffusion accelerations exist [28, 29], we opted
for an alternative solver that is easy to implement, does not require geometric or
curve primitives, and extends to more complex diffusion annotations [30] without
sacrificing quality.

Efficient Shutter­Function Interpolation

To describe the interpolation procedure, given 𝑁 shutter functions 𝑠𝑖, we define the
total exposure 𝑒(𝑠𝑖) = ∑

Τ
𝑘=0 𝑠𝑖 (𝑘) and the normalized accumulation, denoted by a

capital letter: 𝑆𝑖 (𝜏) = ∑
𝜏
𝑘=0 𝑠𝑖(𝑘)/𝑒(𝑠𝑖).

Given the interpolation coefficients 𝑐𝑖 for shutter 𝑠𝑖 (∑𝑐𝑖 = 1 and 𝑐𝑖 ≥ 0),
we wish to find the interpolated shutter 𝑞. We make use of the observation that
𝑞(𝜏) = (𝑄(𝜏 + 1) − 𝑄(𝜏))𝑒(𝑞), where 𝑒(𝑞) = ∑𝑁𝑖=1 𝑐𝑖𝑒(𝑠𝑖). Hence, having 𝑄 allows
us to find 𝑞. 𝑄 is indirectly defined via its inverse, which is, in turn, given by
a linear combination of the inverses of the accumulated shutter functions [25]:
𝑄−1 = ∑𝑁𝑖=1 𝑐𝑖 𝑆−1𝑖 . This relationship provides a solution to determine 𝑞 (Fig. 4.5):
first compute all 𝑆𝑖, invert them to derive 𝑄−1, then invert this function to find 𝑄
and use it to determine 𝑞.
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Figure 4.5: The process of interpolating shutter functions 𝑠1 and 𝑠2 to produce a new shutter function
𝑞 requires several steps. First, the respective accumulation functions are derived (𝑆1 , 𝑆2). Next, these
functions are inverted and then interpolated. The resulting function represents 𝑄−1, which is inverted
so 𝑞 can be obtained by deriving and discretizing the representation.

The functions 𝑄 and 𝑄−1 depend on the per­pixel and per­frame coefficients
𝑐𝑖, requiring an efficient method for evaluating these functions in real time. In the
following, we describe our approach. To simplify, but without loss of generality, we
will assume that for all shutter functions 𝑒(𝑠𝑖) = 1.

We consecutively determine the value for 𝑞(𝜏), with 𝜏 = 0…Τ, retrieve each
time the corresponding frame pixel, apply the weight and accumulate the result.
In this way, the full function 𝑞 does not need to be stored in memory. As 𝑞(𝜏) =
𝑄(𝜏 + 1) − 𝑄(𝜏), we can instead solve for 𝑄(𝜏), with 𝜏 = 0…Τ and only need the
previous and current value of 𝑄 in memory. For now, we will assume that we have
access to 𝑄−1. If we localize 𝑧 such that 𝜏 = 𝑄−1 (𝑧), we have 𝑧 = 𝑄(𝜏). As
𝑄 < 1, we can deduce that 𝑧 ∈ [0, 1] and as 𝑄−1 is monotonically increasing, we
can employ a bisection method to solve for 𝑧. By default, we use a fixed number
of nine search iterations on this interval, which, due to the interval search, yields
an error of at most 2−10. This error is sufficiently small, as the precision loss of an
8 bit video is magnitudes larger. However, the iterations can be adapted for higher
dynamic range content.

To complete the calculation of the values of 𝑞, we still need to be able to compute
𝑄−1(𝑧) during the bisection method. We recall 𝑄−1 = ∑𝑁𝑖=1 𝑐𝑖 𝑆−1𝑖 , which thus means
that we need to invert 𝑆𝑖. We can again solve an equation of the form 𝑧 = 𝑆𝑖(𝜏).
Instead of a bisection, a binary search over discrete elements is more suitable, since
𝑆𝑖 is efficiently represented by an array of Τ elements.

For numerical robustness, we consider the function 𝑆𝑖 to be piecewise linear. In
fact, this reflects that the values of 𝑆𝑖 stem from an integration of constant exposure
over the frame time. Based on this, we first search for the first element 𝑤+1, such
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that 𝑆(𝑤 + 1) > 𝑧. The value 𝑆(𝑤) is guaranteed to be smaller or equal to 𝑧. We
then compute the refined result 𝜏 = 𝑤 + (𝑧 − 𝑆(𝑤))/(𝑆(𝑤 + 1) − 𝑆(𝑤)), linearly
interpolating 𝑤 and 𝑤 + 1 based on 𝑧.

To reduce the average cost of the searches, we successively shrink the search
space. In each iteration 𝑘 of the bisection method, a 𝑧𝑘 will be updated to a new
location 𝑧𝑘+1. Assume in iteration 𝑘, we found the set of 𝑤𝑘,𝑖 in the binary searches.
Due to monotonicity, if 𝑧𝑘+1 ≥ 𝑧𝑘, then each 𝑤𝑘+1,𝑖 ≥ 𝑤𝑘,𝑖 and if 𝑧𝑘+1 < 𝑧𝑘, then
𝑤𝑘+1,𝑖 ≤ 𝑤𝑘,𝑖. Hereby, the search space for the next 𝑤𝑘+1,𝑖 shrinks.

A similar optimization can be applied when evaluating consecutive values of
𝑄. We can restrict the lower bound of 𝑤0,𝑖 based on the previous values after
convergence because 𝑄(𝜏) ≤ 𝑄(𝜏 + 1). In principle, a last option exists to shrink
the interval during the bisection but this case turned out to be inefficient because
we already apply the method with only a few steps. A pseudo­code of our efficient
shutter interpolation implementation is presented in Appendix B.2.

Efficient Shutter Diffusion

To extend the shutter annotation scribbles to the entire frame, we rely on a diffusion
process. Similar to Orzan et al. [26], we express the diffusion as a heat transport
problem, where user annotations are local constraints. We follow their approach
and rely on a multi­grid solver but perform a customized downsampling to achieve
a high quality diffusion only from the pixel image, without resorting to geometric
primitives.

Specifically, we use two images, a mask image identifying the constraint loca­
tions, and an image defining the values of the constraints at those locations. We
reduce the problem size by consecutively halving the resolution until we reach a
size of 2 × 2. For the smallest image, the solution can be solved immediately and
it is then repeatedly upsampled and recombined with the constraints at the next
resolution level, while applying a small number of diffusion steps (Jacobi iterations).
This process is repeated until we reach the original image size.

To faithfully maintain the constraints during downsampling, we analyze each
2×2­pixel block before collapsing and actually store four values representing an ap­
proximation of the accumulated values that are emitted into the four axis­directions.
We refer to the four values along the axis as an influence block. The first influence
blocks are formed by 2 × 2­pixel groups (Fig. 4.6, left). Starting from an edge of
this block, if both adjacent pixels are filled, they both contribute evenly and we
average their values. If one pixel is empty but the next behind is filled, the closer
one contributes with a weight of one, the farther one with a weight of 0.5. If there
are no constraints in the nearby pixels but both farther pixels contain constraints,
then they contribute evenly. If there is only one pixel, it contributes alone. If the
block contains no constraints, it does not emit anything.

In the following steps, 2 × 2 groups of influence blocks are combined safely by
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Figure 4.6: On the left, we show the diffusion influences arising from the 2 × 2 pixel block containing
a red, a green and a blue constraint as well as one constraint­free location. On the right, we illustrate
the downsampling of influence regions. In particular, the four fully­enclosed red pixels do not affect the
outside at all, and their contribution disappears after downsampling once.

maintaining their outward influences and discarding interior ones (Fig. 4.6, right).
We employ the same weighting scheme as in the initial step. However, instead of
relying on the single color value at each location in the block, we fetch the location’s
influence in the currently­considered direction.

During the diffusion process, we naively upsample without any filtering, repli­
cating pixel values across whole blocks. Upsampling with linear filtering would
introduce additional complexity due to having to consider surrounding constraints.
We are able to limit the number of Jacobi iterations performed at each level sig­
nificantly: we perform six iterations for sizes up to 64 × 64, two iterations for
higher resolutions. The Jacobi iterations must consider both constraint influences
(if present) and the diffused values. Intermediate images storing diffused values
use 16 bits of precision per channel, as an 8 bit color depth results in small gra­
dients vanishing very early. Fig. 4.7 illustrates a set of user constraints along with
diffused results. We compute the results for up to four color channels (RGBA) si­
multaneously; constraint locations are stored in a separate binary map. Note that
constraints in close proximity remain properly separated without bleeding into each
other.

4.4. Results
We implemented the described system as a desktop software that enables users
real­time editing and exploration of different shutter functions in various video clips.
All our experiments were performed on a standard desktop system running Win­
dows 7, with a Intel i7 3820 CPU, 16GB of RAM, and a NVIDIA GTX 1080 GPU with
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Figure 4.7: The input image (left) shows the user­drawn scribbles that create the constraints. The
mask (white inset at the bottom) defines the locations of the constraints. Note the zero­valued (=black)
constraint in the top­left of the input. The result of the diffusion process (right) form the per­pixel
coefficients for the shutter interpolation. Importantly, the red influence is fully contained by the outer
blue constraint, and the green and pink regions stay well separated.

8GB of VRAM. Our input videos were acquired in­house (using a Samsung Galaxy
S8, recording at 120­240Hz), unless a different source is noted in the image cap­
tions (typically recorded at 24­30Hz). While the usage of high frame rate videos is a
desirable choice to improve the physical accuracy of the time integration, this is not
a requirement. Hence, the input frame rates vary depending on the video source.
The output frame rate is determined from the input video and user selections, such
as the size of the shutter function.

We can achieve a number of different effects with our system. For example, an
object or region can be highlighted by applying a short shutter, producing a sharp
output, while the rest of the image can use a long shutter that results in motion
blur. Fig. 4.8 shows an example where the movement of one hand is made less
visible, to focus on the precise movements of the right hand. For these effects, the
user draws annotations on the image around the areas of interest; the results are
shown in real time.

The effect can be extended to vary over time. In the video sequences shown
in Fig. 4.9, keyframes are used to change the shutter functions and areas over
time. At different moments, a single moving individual is made sharp to produce a
contrast against the background, which is abstracted using a long exposure. The
sharp areas are further keyframed to follow the subjects. Before switching to a new
person, the shutter function fades out to smoothly merge the previously highlighted
person into the crowd, illustrating the advantage of our interpolation method. The
effect can be reversed, and attention can be removed from a person instead.

In Fig. 4.10 we demonstrate a time­varying rolling shutter. As the car drives
past, the direction of the rolling shutter switches, causing the skewing arising from
the rolling shutter to reverse. We realize the rolling shutter in our framework by
defining two shutter functions at the top and bottom of the image, selecting the
first and last frames inside the shutter function’s window, respectively. The spatial
interpolation ensures that the shutter function shifts smoothly across the window



4.4. Results

4

65

Figure 4.8: Top: Original frame (left) and user­drawn annotations (right). Bottom: Diffused per­pixel
coefficients and the resulting frame after applying the shutter functions. Note the blur on the left hand
contrasting with the sharp motion on the right side. Video source: pixabay.com at 25Hz. Rendering
time (avg): 0.59ms in 960×540.

Figure 4.9: A motion blur shutter can be applied selectively to different regions of the image. Here, the
keyframed regions track a person in the images. In the left images, we keep one moving person sharp
over a short time span, while blurring the rest. This highlights and draws attention to the person. On the
right, we do the opposite, and remove attention from the person crossing the hall. Left video source:
pixabay.com at 25Hz. Rendering time (avg): 1.93ms in 960×540. Right image sequence captured in
house at 240Hz. Rendering time (avg): 1.58ms in 1280×720.

http://pixabay.com
http://pixabay.com


4

66 4. Spatio­temporal Exposure Control for Videos

Figure 4.10: Rolling shutters are realized by defining two time­shifted shutter functions and interpolating
between these. Shutters spans 64 frames. By keyframing the shutter functions, we can cause the effect
to flip midway, reversing the skewing as the car drives past. Black squares added for anonymization.
Video captured in house at 240Hz. Rendering time (avg): 2.24ms in 1280×720.

Figure 4.11: Light trails created with a long exposure shutter (spanning 0.5 seconds = 120 frames).
The remainder of the background and the person holding the fire pole are kept sharp. Video captured
in house at 240Hz. Rendering time (avg): 8.71ms in 1280×720.

size. Another artistic effect is illustrated in Fig. 4.11, where the light trails were
composited to resemble a light painting while keeping the person sharp.

We list the per­frame total rendering time for all results in their respective figure
captions. Total time measures wall­time, and thus includes overheads from other
processing. For the shown results, we defined two shutter functions of varying size.
The number of shapes and keyframes vary across examples.

To isolate performance on the two core steps of our approach (Diffusion and
Interpolation), we specified a set of shapes (two lines and two lassos) and up to four
shutters. The results are evaluated in 1920× 1080 (full HD) and 3840× 2160 (4K)
resolution. Tables 4.1 and 4.2 present our results for different numbers of shutter
functions (𝑁) and different lengths (Τ) under Ours (full resolution). We compare our
method to a simplified interpolation implementation (see column Naive Histogram
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Naive Hist. Interp. Ours (full resolution) Ours w/ aggreg. (2 × 2)
fu
ll
H
D

Diffusion – 0.88ms 0.35ms
Other – 0.42ms 0.39ms

Shutter
Interp.
& Comp.

𝑁 Τ 8 16 8 16 8 16
2 5.69ms 12.85ms 3.50ms 6.88ms 0.92ms 1.79ms
3 8.05ms 17.94ms 4.91ms 9.87ms 1.35ms 2.71ms
4 10.40ms 23.20ms 6.48ms 12.95ms 1.74ms 3.46ms

4K

Diffusion – 3.04ms 0.90ms
Other – 0.57ms 0.44ms

Shutter
Interp.
& Comp.

𝑁 Τ 8 16 8 16 8 16
2 22.86ms 51.01ms 14.04ms 27.22ms 3.59ms 6.96ms
3 31.76ms 72.04ms 19.78ms 39.07ms 5.36ms 10.59ms
4 39.39ms 88.53ms 25.32ms 51.37ms 6.83ms 13.68ms

Table 4.1: Run­time performance at full HD and 4K on shutters of sizes 8 and 16.

Naive Hist. Interp. Ours (full resolution) Ours w/ aggreg. (2 × 2)

fu
ll
H
D

Diffusion – 0.88ms 0.35ms
Other – 0.42ms 0.39ms

Shutter
Interp.
& Comp.

𝑁 Τ 32 64 32 64 32 64
2 28.69ms 64.80ms 13.85ms 28.10ms 3.57ms 7.31ms
3 40.07ms 88.84ms 20.33ms 42.05ms 5.54ms 11.61ms
4 52.26ms 117.35ms 27.49ms 57.13ms 7.27ms 15.01ms

4K

Diffusion – 3.04ms 0.90ms
Other – 0.57ms 0.44ms

Shutter
Interp.
& Comp.

𝑁 Τ 32 64 32 64 32 64
2 107.82ms 244.04ms 54.47ms 111.13ms 13.77ms 28.37ms
3 154.93ms 365.18ms 80.15ms 167.51ms 21.50ms 44.83ms
4 203.04ms 456.94ms 108.50ms 226.09ms 28.36ms 58.46ms

Table 4.2: Run­time performance at full HD and 4K on shutters of sizes 32 and 64.

Interpolation), i.e. one without our search­space optimizations. For completeness,
times for intermediate steps (shape and shutter interpolation for key frames (CPU)
and shape rasterization) are aggregated and listed as Other. Since the diffusion
process is image­based, performance only depends on resolution, and is listed as
Diffusion.

The shutter interpolation step is further sped­up by aggregating coefficients.
Here, we rasterize shapes and compute diffusion in half resolution, giving each
2 × 2 block of pixels the same coefficients for interpolation. We perform the in­
terpolation only once for such a block, which significantly reduces the computation
time for the interpolation step (see column Ours w/ aggregation (2x2) in Tables 4.1
and 4.2). We thereby achieve real­time performance even at 4K resolution, while
minimally impacting image quality: we obtained SSIM [31] differences of 0.9982
(average) and 0.9777 (worst) compared to the full­resolution results (this difference
is considered high quality for video compression [32]).
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4.5. Conclusion
We presented a novel method to influence the shutter functions of a video in a
post­process as well temporally, as also spatially. We propose a real­time inter­
face, which allows artists to preview their modifications. It is possible to produce
a large variety of results with little user interaction, making it possible to explore
many alternatives before settling on the desired effect. The quick feedback being
key, we propose optimized algorithms to achieve spatial interpolation of the shutter
definitions. Our solution enables even novice users to explore many different op­
portunities to enhance, stylize and also impact the gaze of observers. ShutterApp is
a step forward in shifting typical settings that need to be defined during recording
to a post­process and even offers many more possibilities beyond standard shutter
systems.
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Video Editing with

Spatio­temporal Object
Control

N. Z. Salamon, M. Billeter, S. Lee and E. Eisemann

Every year is getting shorter
never seem to find the time.

We present a real­time end­to­end solution for spatio­temporal assisted video
editing to allow a user to influence the timing of a video locally and even fuse
content from different moments spatially. Such operations are common in
movie productions but often involve tedious and manual intervention, in par­
ticular due to inconsistencies that arise during themanipulation. Our solution
facilitates this task with a targeted interface and algorithms to manipulate
time, track objects, and handle inconsistencies.

This chapter was submitted to a peer­reviewed conference and is currently under review.
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5.1. Introduction
Editing can be time­consuming; raw material is recorded in segments, which are
combined into a movie. For example, First Man’s editor Tom Cross says the movie
editing process took almost a year with extended work shifts [1]. Nevertheless,
the final product must match the director’s vision [2]. As re­shoots are expensive,
looping, repeating or speeding up/slowing down existing sequences are common
ways to better match the narrative in post­production. In a scene in Star Wars
Episode IV ­ A New Hope, a Tusken raider attacks the protagonist Luke Skywalker.
The raider celebration was too short and had its movement looped to emphasize
the successful attack [3]. However, editing operations can be much more complex
if applied to selected elements rather than the whole frame and spatio­temporal
conflicts can arise. For example, imagine a choreographed scene, where the move­
ments are perfectly aligned in post­production. Yet, if two protagonists overlap,
using different moments in time for the final composite leads to inconsistencies.
Even just manipulating the speed of a single scene object requires infilling of its
original locations.

This paper presents a real­time end­to­end framework to support interactive
spatio­temporal editing and compositing of videos. Users can influence the timing
in a video locally on selected elements or the whole video. Simple editing exam­
ples include time­shifts or speed­ramping of scene elements. We support additional
editing options to shift/clone elements and to handle object overlap. Our approach
enables quick experimentation and involves specialized tools and visualization solu­
tions to facilitate the workflow. To this extent, our contributions can be summarized
as follows:

• a solution for localized spatio­temporal adjustments in videos;

• a set of tools and visualizations for common edits; and

• an interactive implementation for a quick iterative workflow.

5.2. Related Work
Our work builds upon advances in image and video processing. In this section, we
give a short overview of related work.

Expressive video editing A recent trend goes towards synthesizing videos from
small input sets, such as still images or semantic maps [4, 5]. The photorealistic
results are impressive but there is little room for artistic control.

Several methods aid users with editing the overarching video structure and time­
line, primarily by placing cuts and transitions [6–8], combining different shots [9]
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or summarization [10, 11]. In contrast, we focus on adjustments and edits that are
applied to a single segment of consecutive frames.

Past video manipulations target people’s behavior [12], object transfer [13] and
compositing from different time quanta into a single image [14, 15]. When dealing
with spatio­temporal modifications inside a video stream, time can be warped at
distinct locations, both accelerating [16] and de­animating spatial segments[17].
Templin et al. [18] explore spatially and temporally varying framerates employed
independently of the actual display frame rate. Stengel et al. [19] propose a per­
ceptual and localized motion blur that takes the predicted eye motion into account.
ShutterApp [20] models shutter functions and allows a user to define them at key
points over space and time; functions for remaining frames and positions are then
interpolated and applied to each pixel in each frame. Despite fine­level controls,
making adjustments to specific elements is not possible and may result in artifacts
and spatio­temporal conflicts.

Segmentation Objects need to be identified and masked, which is an active
research area [21] and many commercial packages exist (e.g., [22]). The yearly
DAVIS challenges [23–25] provide excellent comparisons between video segmen­
tation methods in realistic settings, but none has perfect accuracy. We settled on
SiamMask [26], which uses a pre­trained neural network and bases the segmen­
tation on an initial bounding rectangle. It does not require a pre­segmented initial
mask and its interactive processing rates enable on­the­fly segmentation for the
entire video.

Reconstruction Modifying video content, e.g., shifting an object, can lead to
disocclusions and holes. Video reconstruction addresses this longstanding prob­
lem [27]. Recently, the focus is on machine­learning approaches that automatically
infill content [28–30] and patch­based solutions [31–33]. Specialized approaches
can remove static objects from videos in real time [34]. However, our focus lies on
enabling fast experimentation with different user­driven editing choices in general
scenes.

5.3. Our Framework
Our method enables users to influence the timing of objects in a video sequence.
Starting with an input video, objects of interest are segmented semi­automatically
(Section 5.3.1). Each of these objects forms its own video, to which users can
apply temporal adjustments (Section 5.3.2). Resulting conflicts are highlighted in
a visualization tool and can be resolved by, for example, infilling disoccluded frame
content using our semi­automated tools (Section 5.3.3).

Each step and tool is designed with simple interaction (i.e., brushing, selections),
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Figure 5.1: Overview. The user segments objects in the input video and manipulates their timings.
Resulting conflicts are visualized and resolved with reconstruction tools. The new video is rendered in
real time. Hand icons indicate interventions, dashed boxes optional steps.

interactivity and real­time feedback in mind. A majority of the intermediate results
are computed on the fly, and do not have to be stored in memory, which is helpful
for high­resolution videos. Fig. 5.1 shows an overview of the complete pipeline.

5.3.1. Video Object Selection
Initially, the objects of interest are identified and isolated. To select an object, users
navigate to the time when the object first appears in the input video 𝑉 and draw a
bounding rectangle around the object. The rectangle is passed to SiamMask [26]
to perform an automatic video segmentation using this selection.

Users can make corrections to the returned segmentation, either directly, or at
any future frame by pausing the video. For this, we provide a brushing metaphor,
as well as a lasso­tool for free­form used­defined segmentations with GrabCut [35].
The adjusted masks can optionally be fed back to segment the following frames,
effectively propagating the corrections. Fig. 5.2 illustrates this process. As propa­
gation methods, we support ROAM [36], VS­ReID [37] or CapsuleVOS [38]. Lassos
can also be keyframed to define morphing segmentation regions over time.

Segmentation is repeated for all objects of interest, resulting in the segmentation
masks 𝑀𝑜 for each object 𝑜. Conceptually, each segmented object forms its own
video 𝒱𝑜 that only contains the pixels selected by 𝑀𝑜 (a binary image; 1 on object
𝑜, 0 otherwise). Nevertheless, the video 𝒱𝑜 can be computed on the fly from the
input video 𝑉 and the mask 𝑀𝑜, and is therefore never explicitly materialized in
memory.

5.3.2. Video editing
Next, users edit the timing of the masked object videos 𝒱𝑜 independently. The
resulting transformed per­object videos, ℱ𝑜, are then fused to create the final output
video 𝐹.
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Figure 5.2: Segmentation. Top left: a user­provided rectangle to select the object. Right: masks
are automatically generated for the current and following frames; red and green rectangles indicate,
respectively, miss­segmented areas and corrected ones after adjustments. Bottom left: users can correct
masks via brushing tools. Adjusted annotations are fed back to segment subsequent frames. Source:
pixabay.com

Temporal Object Control

For each object, users may define a time mapping function, 𝜏𝑜(𝑡). This function
specifies, for each output frame 𝑡, a corresponding input frame time in the source
video 𝒱𝑜. The transformed frames ℱ𝑜 and alpha masks 𝒜𝑜 are then defined as:

ℱ𝑜 (𝑡) = 𝒱𝑜 (𝜏𝑜(𝑡)) , 𝒜𝑜 (𝑡) = 𝑀𝑜 (𝜏𝑜(𝑡))

The transformation can be evaluated on the fly, meaning that neither ℱ𝑜 nor 𝒜𝑜
needs to be pre­computed and stored in memory. Fig. 5.3 (top left) illustrates a
frame from a time­shifted video ℱ𝑜.

The function 𝜏𝑜(𝑡) is represented as a piecewise linear function. Users define

https://pixabay.com/videos/cars-motorway-speed-motion-traffic-1900/
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the function by selecting keyframes 𝑡𝑜,𝑘 and specifying a time shift 𝛿𝑜,𝑘 and playback
speed 𝜌𝑜,𝑘 for the segment following the keyframe:

𝜏𝑜(𝑡) = 𝛿𝑜,𝑘 + 𝑡 𝜌𝑜,𝑘 if 𝑡𝑜,𝑘 ≤ 𝑡 < 𝑡𝑜,𝑘+1

The resulting function 𝜏𝑜(𝑡) can be discontinuous.

Time edits can also be created on­the­fly by dragging objects around the scene.
After clicking on an object, the mouse movement direction is compared to the optical
flow to define, together with moving distance, the parameters 𝜌 and 𝛿.

Compositing

To create a final video frame 𝐹(𝑡), we need to carefully recombine the transformed
object video frames ℱ𝑜(𝑡) together with a suitable background 𝐵 and reconstructed
content 𝑅. The reconstructed content 𝑅 is used to fill in disocclusions created when
the transformed object frames do not cover the same regions of the original input.

The background mask 𝐴𝐵 is 𝐵 = ∏𝑜𝑏𝑗𝑒𝑐𝑡𝑠(1 − 𝑀𝑜), in order to avoid duplicate
object instances (Fig. 5.3 (top­right)). We generate the mask 𝐴𝐵 just in time for
each frame, meaning that we do not need to store more than one background
instance at any time.

For an early preview (𝑃(𝑡)), we composite the transformed object frames ℱ𝑜(𝑡)
using the masks𝒜𝑜(𝑡) directly onto the incomplete background 𝐵 = 𝐴𝐵∗𝑉 (showing
black regions, where objects were originally located). As, during compositing, the
order matters, we follow a user­defined order that, by default, equals the order in
which the objects were extracted. However, users can change the order, if needed,
for a different editing narrative. The preview frames 𝑃(𝑡) are rendered in real time,
enabling users to quickly experiment with different parameters (Fig. 5.3, bottom).
For each pixel 𝑝, we loop over the objects in composition order. We take ℱ𝑜(𝑡)(𝑝)
of the topmost object 𝑜 for which 𝒜𝑜(𝑡)(𝑝) is one. If there is no object, we use
𝐵(𝑡).

Mismatch Visualization

Mismatches correspond to pixels that are missing due to occlusion, such as those
in 𝐵, where 𝐴𝐵 was zero, but might also stem from an occlusion of a chosen object
itself. These gaps require filling. To help users locate and identify mismatches in
the edited video, we create a 3D visualization. It shows a volume, where Z­slices
correspond to a frame at time 𝑡. Mismatches are drawn in red. To give some context
of the whole scene, the objects’ 𝒜𝑜(𝑡) are shown in light gray. Users can optionally
highlight a specific object by selecting it, which is then shown in green (Fig. 5.4).
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Figure 5.3: Compositing. Top: frame from the edited object video 𝐹𝑜 (left). Direct fusion with the
original sequence 𝑉 creates a duplicate (right). Bottom: Real­time preview in our interface. The current
instance is removed, and the black pixels on the removal region represent a mismatched region whose
content must be reconstructed.

5.3.3. Mismatch Reconstruction

Mismatches are resolved by reconstructing the disoccluded areas. The best choice
of reconstruction method varies depending on the target area. While static back­
ground can be filled with still content from a different frame, filling parts of de­
formable objects will require content to be warped at the destination position. The
desired infilled content might depend on user­preferences and artistic directions.
Further, we want to achieve a fast feedback loop to support the timing adjustments.
We therefore provide semi­automatic tools to reconstruct areas by replicating con­
tent from different places in time and space. These tools create an image 𝑅, which
contains content to fill regions with mismatches. In each frame, 𝑅 and 𝐵 are com­
bined via Poisson inpainting [39] to achieve a seamless fill of the mismatches. In
the following, we describe our tools to build 𝑅. For now, we will focus on a single
frame. Users select the reconstruction method and paint annotations over the mis­
matches at the current frame. We will discuss how annotations can be propagated
to the following frames in the next subsection.

All tools start with the user choosing a mismatch area. The most simple solution
is to directly copy background pixels from the nearest moment in time, when they
became visible at this location. If a mismatch is short (around one second), this
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Figure 5.4: Mismatches. Original objects are gray, a scene preview is shown in the bottom­left inset.
Left: three cars in the foreground were segmented; the red car is shifted back in time, creating a
mismatch (highlighted by the red mask) and a projection of its new positions (green mask). Right:
By slowing down one person on the right, it is removed from its original position (red), delaying the
encounter in the authored scene. Note that the yellow color stems from green and red areas from
different frames/slices overlapping in the 3D view.

simple approach can produce good reconstruction results in a variety of scenes,
as illustrated in Fig. 5.5 (bottom). Alternatively, users can select source data on
any frame at any position in the input video. For this, the outline of the selected
area is shown as a mouse cursor and the user can navigate the video to place it
(Fig. 5.6). Such solutions fall short for complex, non­static, and deformable content.
For example, if an object is occluded in the original sequence but then disoccluded
due to a timing adjustment, the exact information cannot be found in the sequence
and we want to offer the possibility to choose a plausible source.

For complex cases, we enable users to specify a few locations within the mis­
match and associate them to other locations in a different location and moment in
time in the video. These correspondences form pairs of points that work as anchors,
allowing us to derive a per­pixel offset map that interpolates these constraints to
define the necessary infill operation. To this extend, we create an image 𝐷 of the
same resolution as 𝑅, where each pixel will hold a spatio­temporal offset (𝑜, 𝑠) such
that for a pixel 𝑝 in frame 𝑡, we would fetch the value of pixel 𝑝 + 𝑜 in frame 𝑡 + 𝑠.
Initially 𝐷 is set to zero, then the anchor points will be filled with the corresponding
offsets and used as constraints. Next, we find a smooth interpolant respecting these
hard constraints using a multi­grid solver [20], which robustly solves the Poisson
equation. The resulting map 𝐷 then contains in each pixel the information from
where to copy.

Fig. 5.7 shows the use of the anchor­point method to easily incorporate a per­
spective change in scale. In general, anchor points 𝐼𝑠 and 𝐼𝑑 can optionally be
keyframed and propagated to following frames to track movement and deforma­
tions in the source or destination images, respectively. A suitable propagation ap­
proach is presented in the next subsection.

For all tools, users can select the pixels that are considered valid during the
copy operation. They can be restricted to pixels of a segmented object (e.g., to
reconstruct partially occluded selected objects) or to background pixels avoiding
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Figure 5.5: Temporally­driven hole filling. Top: original frames (cropped). Bottom: our approach
recovers the background information for the disoccluded area when the red car is moved forward (left)
and the person on the right is removed from the scene (right).

Figure 5.6: Patch­based filling. Left: temporally­driven filling fails to find a suitable background content
due shadow cast by the car. Middle: the user clicks on the area to be reconstructed and the mouse
cursor takes the shape of the patch needed for filling. The source patch can now be selected from any
position inside the video stream. Right: the mismatch is resolved by replicating the asphalt patch from
a previous frame.
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Figure 5.7: Anchor­point filling. Left: car in the background is removed. Middle: white car is replicated
to reconstruct the mismatch area. A patch copy causes perspective artifacts. Right: using anchor points
adjust the source content to the appropriated scale.

selected objects (e.g., to infill gaps in the background). One catch is that objects
with filled­in holes still write the missing content in 𝑅 for efficiency. To correctly
composite, the mask 𝐴𝑜(𝑡) is extended with a special value that indicates to directly
use the value in 𝑅.

Reconstruction Propagation

The reconstruction tools operate on a single frame. To aid with editing of a se­
quence of frames, we provide an automated method to map user­defined recon­
struction operations to future frames. Users can manually intervene if adjustments
are necessary. Multiple tools can be combined and the feedback is immediate, as
the reconstruction is performed in real time.

In the simplest case, operations can just be replicated as­is to future frames.
However, when matching patches or using anchor points, it is often desirable that
the user­defined annotations move with the content. To do so, we allow the user
to specify that annotation points are moved based on optical flow [40].

Users can define whether both or only destination or source points are moved.
Additionally, if segmentations masks are defined using the keyframed lasso­tool,
annotations can be set to follow the keyframes. For patches, we rely on the aver­
aged optical flow of the region; for anchor points, the average flow in a 5 × 5 pixel
region around them is applied.

5.3.4. Framework and Interface Extensions

In addition to the temporal editing, we provide a few additional options for manipu­
lating objects. In particular, we allow the user to specify spatial shifts to individual
objects 𝑜, which translate ℱ𝑜(𝑡) and 𝒜𝑜(𝑡). Spatial shifts can be keyframed such
that the translation changes over time, making it possible to introduce additional
movements in the video. Similarly, we support duplications with potentially timing
adjustments and object removals (𝒜𝑜(𝑡) ∶= 0)

Besides direct time adjustments, we also support shutter functions [20, 41] to
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control exposure parameters per individual objects. When using a shutter function,
𝐹𝑜(𝑡) and mask𝒜𝑜(𝑡) are virtually filtered ­ the images are not stored but computed
on the fly with a modified compositing process; objects are alpha­blended onto
the (reconstructed) background in the composition order using 𝒜𝑜(𝑡) as blending
weights.

5.4. Results
Our implementation has a modular architecture bridging 𝐶++ and 𝑃𝑦𝑡ℎ𝑜𝑛, running
on a Windows 10 laptop with a Intel i7­7700 CPU and GTX1070/8GB GPU. Timings
were measured for full HD (1920x1080) resolution videos, which were recorded
with a Samsung S8 and a GoPro Hero 3 or downloaded (see captions).

Segmentation [26] and optical flow [40] run at 8 and 6 frames per second,
respectively, and both can be pre­loaded. We also experimented with ground­
truth masks to evaluate the editing process separately (see captions). The editing
interaction and final result computation ran above 60 frames per second for all
results in this paper. In the following, we present a variety of scenes authored
using different time editing choices. For most examples, the users took from one to
two minutes to perform the intended time adjustments and reconstructions, with
edge cases of 20 seconds for Fig. 5.13 and 8 min for Fig. 5.10.

In Fig. 5.8, the patient originally looks back at the camera then looks away when
noticing the camera. The scene is edited for two different narratives. First, we skip
the frames when she looks at the camera, aiming to focus on the conversation
(left). Skipping frames, however, would shorten the video and, to compensate, we
slow down later movements. We can also make the patient hold the look at the
camera by looping the movement, for the opposite narrative, as asking the camera
operator to stop recording (right).

Scene narrative can be further manipulated by changing the speed of objects.
In Fig. 5.9 (top), impression of two people crossing the road together is voided
when we modify the walking speed of one individual. The same editing choice is
applied to Fig. 5.9 (bottom), where the kart on the inside is accelerated to take
over the position.

In Fig. 1.4, the basketball is slowed down, while the scene keeps its timing. The
original ball positions are filled in with the simple filling approach from neighboring
frames. A more challenging example is Fig. 5.10. We want to remove the person
in a blue shirt. A simple filling approach is not enough (top, right). Instead, we
recreate the occluded person using anchor points from previous frames; at the
torso, leg and feet positions. We set the propagation to shift the annotated points
using only the flow of the source anchor. This warps the content and replicates the
movement hidden by the occluder from previous frames (bottom, left). With the
same steps, we can also change the relative depth and bring the background person
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Figure 5.8: When the scene is cut shorter to focus on an event, slowing down or looping the content fills
the necessary time. Top: the same output frame of the two authored narratives, slowing down (left)
and looping (right) exclusively the patient. Bottom: time mapping function used for the examples. Lines
describe the mapping between output time (x­axis) and the input time (y­axis) from where the frame’s
data is sourced. Blue marks indicate the current frame, which is a compositing of the edited and original
video stream cuts. Source: pixabay.com.

Figure 5.9: Narrative manipulation. Left: original scenes. Right: the couple now walks apart at different
speeds (top); the kart on the inside is sped up so that positions are changed after the turn (bottom).
Video sources: DAVIS dataset[23].

https://pixabay.com/videos/doctor-corona-covid-covid-19-34619/
https://davischallenge.org/davis2017/code.html
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Figure 5.10: Editing multiple scene objects and their depth order. Top: original frame (left); the person
in blue is removed from the scene, revealing information not originally acquired, which is temporally filled
with background pixels (right). Bottom: the correct reconstruction is performed to keep a single person
in the scene (left); a new narrative is created by switching relative depth between persons (right).

forward (bottom, right). A similar edit in Fig. 5.11 moves the clownfish behind the
black fish.

Keyframes can change the trajectory of scene objects. In Fig. 5.12, we dispel
one skydiver by drawing a lasso around the original position and keyframing the
destination as the video’s border. Inside the lasso, anchor points guide the recon­
struction and shift along with the keyframes. Original positions are infilled using
our temporally­driven approach.

Effects with custom shutter functions, such as motion blur, can be added seam­
lessly. For example, in order to guide the gaze direction onto the players, in Fig. 5.13
(left), a motion blur is applied to the referee. In Fig. 5.13 (right), a Harris shutter is
applied to expressively highlight the attack. In both examples, the proper segmen­
tation and compositing ensures a valid output, which was previously not handled
by other approaches ([20]).

Other temporal effect particularly difficult to illustrate on paper is a time adjust­
ments of the framerate for single objects. Such an appearance has been used in
movies for artistic purposes (e.g., Spiderman: Into the Spiderverse, where the in­
experienced protagonist was rendered with only 12 fps, while its alter ego appeared
at 24 fps). Our approach makes such manipulation possible, on real­world footage.
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Figure 5.11: The clownfish is originally on top of the black fish (left), which can be changed by switching
the compositing order and applying reconstruction (right). Source: Need for Speed dataset[42].

Figure 5.12: Left: original frame. Right: the same frame, with a new trajectory created for the person
on top by using interpolated keyframes upon reconstruction. Source: Need for Speed dataset[42].

Figure 5.13: Motion blur (left, on the referee in the background) and Harris Shutter (right, on the player
in the foreground) effects applied to single elements in the scenes at different depths. Video and
masks source: DAVIS dataset[23].

http://ci2cv.net/nfs/index.html
http://ci2cv.net/nfs/index.html
https://davischallenge.org/davis2017/code.html
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5.5. Conclusion
Post­production is complex because one needs to work mostly with the footage
that has been already captured with fixed parameters. Our solution allows a user
to make more out of the original sequences and enables a large variety of tim­
ing adjustments. With real­time preview and visualization capabilities, we enable
efficient exploration of different narratives and editing options.

Specifically, our solution supports adjusting the timing of individual objects via
spatio­temporal video editing. The laborious correction of inconsistencies during
editing is simplified by our semi­automatic reconstruction and visualization tools.
Edits work with sparse annotations and only a few parameters, which facilitates
fast prototyping and exploration of temporal adjustments for both novice and ex­
perienced users.
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6
Conclusion

T his work presented several methods and corresponding tools to control expo­
sure in a post­process for both images and videos. The tools are optimized

to achieve real­time response rates and designed to support novice users. Using
simple acquisition steps, involving no special equipment, our approaches can assist
the fast­growing visual content producing communities.

In Chapter 2, our virtual light painting approach changes the trial­and­error
capturing process into a controlled process, allowing artists to test parameters and
create new light arts without recording a new scene. Improvements over tradi­
tional light­painting methods, such as person and specularity removals were also
presented. In Chapter 3, we introduced an easy­to­use motion­blur tool in which
a single image is given and, with a few clicks, long­exposure blur effects can be
added to different objects in the scenes. Artifacts that raised from disocclusion and
composition are automatically handled. A multi­directional motion blur method, not
achievable with common hardware, was also presented. In Chapter 4, we smoothly
propagate and integrate different exposures in a single video scene. In addition to
the optimized shutter interpolation and the image­based diffusion process, the in­
tuitive annotations make the compositing easier, whereas the real­time feedback
allows for new stylizing at no cost. Finally, in Chapter 5, we presented an end­to­end
pipeline for spatio­temporal control of individual objects in videos. An interactive
implementation allows for segmenting the objects of interest and applying time and
space adjustment functions. The inconsistencies raised during the editing process
are visualized and resolved in real time with our tailored reconstruction tools.

Together, we believe that the developed tools and methods can bring a new
level of expressiveness to novice users and also contribute to speed up the post­
processes in the visual­content industry. We showed several results of high­quality,
created in a matter of seconds on commodity hardware and without special acqui­
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sition hardware. This is a step forward on moving the creativity control to post­
processes instead of relying on multiple captures and real­world adjustments.

In the future, we would like to study how different parameters influence per­
ception on photos and movies. To that extent, one can classify scenes and camera
parameters to derive presets and mimic style choices manually set by photogra­
phers and directors. The styles can later be replicated to different scenes with
similar content, smoothing the learning curve for the final user.



Epilogue

It’s a long way to the top. The hilly PhD journey comes to an end with this disser­
tation. Apart from the valuable experience I gained, I believe this work can inspire
other researchers and also be employed on different fronts.

In practice, our findings can be further deployed to help novice producers re­
alizing their creative visions. Together with the Brazilian Culture Incentive Law
(#8.313/91)) fostering audiovisual productions, for example, our methods can en­
courage movie producers and artists to post­process their artworks and also author
novel content. In this sense, it can assist smaller and middle­sized companies in
catching up with the quality level of large enterprises and giving access to modern
cinematic technology.

Last but not least, the most important aspect of this work is to give many users
the possibility to express themselves in form of self­made visual content, which will
be the central content of the internet evolution. It is my sincere hope that you, the
reader, feel inspired and can also take part in this. In the end, research needs to
meet the final user.

The italic highlights on the preface and here are, respectively, from the songs
“Should I stay or should I go?” by The Clash and “It’s a long way to the top (If
you wanna Rock ’n’ Roll)” by AC/DC. The epigraph quotes on Chapters 2 to 5 are
from: “Long as I can see the light” by Creedence Clearwater Revival (Chapter 2),
“Thousandfold” by Eluveitie (Chapter 3), “Speed of light” by Iron Maiden (Chapter
4) and “Time” by Pink Floyd (Chapter 5).
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A
Motion Blur Evaluation

This Appendix contains additional information to Chapter 3.

A.1. User Evaluation
To evaluate our method in practice, we carried out an evaluation against a workflow
of adding motion blur using Photoshop. Users were provided input images and
asked to mimic the provided output using both methods. Our focus is on evaluating:
i) time to execute the task, ii) user interaction, and iii) satisfaction with the outcome
of each method.

It is important to highlight that a comparison among different tools can always
be affected by the user expertise. To ensure a fair comparison, we tried to avoid
the requirement for a high level of expertise in Photoshop. For this reason, we
selected three test scenarios that are relatively easy to segment and decompose in
Photoshop and exhibiting a single object to add motion blur to. Further, we provided
each user with tutorials of the workflow, which they could reference at any time if
needed (see Sec. A.2 and Sec. A.3).

The instructions were given as follow:

“Given the input images below, mimic the given result. The process
should be done twice: using Photoshop and the proposed tool, in any
order. Explore the tools and use prior knowledge. If the desired result
cannot be achieved, follow the given tutorials. At the end, indicate
whether or not tutorials were used and fill in the questionnaire. Time
will be measured during the experiments.”
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Background
motion blur

Foreground
motion blur

Multi­directional
motion blur

Input: Input: Input:

Result: Result: Result:

Table A.1: Inputs (top) and the desired results (bottom) for the user evaluation.

In total, 10 users participated in our experiment. They had varying levels of
experience with Photoshop, but have not used our tool before the experiment. We
measured the total time to create all three results. At the end of the experiment,
they answered the evaluation questionnaire on Sec. A.4. The results are shown
in Table A.2 (being our approach CMB and Photoshop PS). The evaluation metrics
were defined as a 5 point scale as follows.

• Previous Experience: from 1 = No experience to 5 = Professional.

• User Interaction: Very unsatisfied: 1; Unsatisfied: 2; Moderate: 3; Satis­
fied: 4; Very satisfied: 5.

• Result Quality: Very unsatisfied: 1; Unsatisfied: 2; Moderate: 3; Satisfied:
4; Very satisfied: 5.

We notice that the average time to obtain the results is substantially reduced
when using our approach. Despite one similar time (user #9), all users drastically
improved their total manipulation time, including the single user who reported that
performing motion blur in Photoshop provides a better user interaction (#6). On
average, users also rated the interaction of our method as higher. From free re­
sponses the users provided on the questionnaire, the main reason is the fact that
the main tasks of segmenting the content and defining the motion vectors were
easier in our approach.

Table A.2 also shows that the quality ratings of our results is more homogeneous,
with all users reporting that they are either satisfied or very satisfied with their
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User

PS
previous
Experi­
ence

PS time
(in

minutes)

CMB time
(in

minutes)

Score on
PS Inter­
action

Score on
CMB In­
teraction

Score on
PS

Results
Quality

Score on
CMB

Results
Quality

1 3.5 10:38 03:30 4 4 4 4
2 2 12:40 07:30 3 4 2 4
3 1 18:10 03:56 1 5 1 5
4 2 19:25 04:37 1 5 2 5
5 2 14:21 02:56 3 5 4 5
6 1 11:59 05:29 5 4 3 4
7 3 08:29 05:20 3 3 3 4
8 3 28:00 07:00 3 4 4 4
9 3 06:43 06:10 4 4 4 4
10 3 23:44 15:43 2 5 3 5

Average 2.35 15:25 06:13 2.9 4.3 3 4.4

Table A.2: Evaluation results. Numerical scores are on a 5 level Likert scale, where higher means better.

results. Upon further evaluation of each produced image, we noticed that imprecise
initial segmentation and inpainting on Photoshop caused most artifacts that users
complained about, which resulted them to give on average a lower score. 30% of
the users stated that they were unsatisfied or very unsatisfied with their results in
Photoshop.

Moreover, we received valuable feedback on improving the overall user experi­
ence. Users stated that they would like additional features such as highlighting the
segmented areas, keeping the tool selected after interaction, and adding hints to
the action buttons. The incorporation of these improvements is left as future work.

While a more elaborate user study with a greater number of participants would
be necessary to better evaluate the user interaction and experience, we believe
that this preliminary evaluation already shows that the users can benefit from our
approach and are able to create convincing results within less time using our method
than relying on alternatives.

A.2. Controllable Motion Blur Tutorial
1. Open an image: File, Open;

2. To extract the foreground/target object, use a rectangle to draw a frame contain­
ing the object. Use scribbles of “background/fore” to improve the segmentation;
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3. Select the Motion Path (Line, Curve, or Diff), and draw the motion inside the
region to be blurred;

4. Press the button “Process” to obtain the final result;

5. Save the resulting image.

A.3. Photoshop Tutorial
1. Open an image: File, Open;

2. Select Lasso, Polygonal Lasso or Magnetic Lasso tools to extract the foreground/­
target object;
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3. Copy the extracted object to a new layer by (Ctrl+C) and (Ctrl+V);

4. If you want to apply motion blur to the foreground (segmented object), go
directly to step 8;

5. If the selection disappeared after the copy, press (Ctrl+Shift+D) to recover;

6. Go back to the layer “Background” and press Delete to remove the segmented
object;

7. A popup should appear asking how to fill the deleted part. Choose Content­
Aware;

8. With the layer to be blurred selected, go to Filter, Blur, and Motion Blur;

9. Define the desired Angle and Distance and press OK;
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10. If not satisfied with the result, press Ctrl+Z and repeat steps 8­9;

11. Save the resulting image.

A.4. Questionnaire
Fill the questions denoted by *. Other questions are counted/timed by
the applicants.

1. Did you use the provided tutorial? *
Photoshop: Controllable Motion Blur:

1a. If tutorial is not used, how many steps does it take to get the desired result?
Photoshop: Controllable Motion Blur:

2. How long does it take to get the desired result?
Photoshop: Controllable Motion Blur:

3. Please score on user interaction/ease to use. *
(Very unsatisfied: 1; Unsatisfied: 2; Moderate: 3; Satisfied: 4; Very satisfied: 5)
Photoshop: Controllable Motion Blur:

Optional: Comments on the process. Which steps do you think is complicated or
time consuming?

4. Please rate the perceived quality of the result you obtained. *
(Very unsatisfied: 1; Unsatisfied: 2; Moderate: 3; Satisfied: 4; Very satisfied: 5)
Photoshop: Controllable Motion Blur:

Optional: If your rate is 3 or below, which part of the result do you think is not
good enough?

5. From 1 to 5, being 1 = No experience and 5 = Professional, rate your previous
experience with Photoshop: *
Your rate:



B
Full Exposure and Shutter

Interpolation Code

This Appendix contains additional information to Chapter 4.

B.1. Full Temporal Exposure
We assume as input a video with full temporal exposure, i.e., where the shutter
of the recording camera does not close. Standard videos will not always fulfill this
requirement, e.g., a 180∘ shutter only records half of the frame time. Nevertheless,
digitally recorded high framerate videos often come close.

Furthermore, if the sequence consists of short exposed frames, one can also rely
on optical flow [1–3] from neighboring frames to form virtual intermediate images
that fill the gaps. Telleen et al. [4] compute the in­between frames by aligning
images and calculating pixel movement to simulate different photo exposures. Jiang
et al. [5] train and employ an encoder­decoder network that can create a virtually
unlimited number of plausible intermediate frames.

Combining the original video frames (Fig. B.1, top left) with the computed in­
termediate frames (Fig. B.1, bottom) results in a fully exposed video (Fig. B.1, top
right). The frame rate of the fully exposed video dictates the discretization of the
shutter functions for which videos may be reconstructed.

For longer exposures, motion blur can occur. Here, a direct interpolation is
insufficient to produce frames with a full temporal exposure, as the time intervals
of the frames might overlap after adding the intermediate frames. A remedy can
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Figure B.1: Top: Shutter open (red): 180∘ (left) and 360∘ (right). Bottom: neighboring frames used to
create the in­between frames (blue).

be deblurring technique [6, 7] that can transform the long exposure frame into an
approximate short exposure.

B.2. Shutter Interpolation Method Implementation
Pseudo code for evaluation of the functions 𝑄, 𝑄−1 and 𝑆−1𝑖 , introduced in Sec. 4.3.4.
We use the same notation and names for variables and functions here and in the
text. Arrays of size 𝑁 (the number of shutter functions) are denoted with a []­
postfix. Values relating to the search space optimization are highlighted in color.
Our implementation placed the values of 𝑆𝑖 in shared memory for better random­
access performance.

𝑄( 𝜏 , 𝑐[] , searchBoundsLo[] )
−> ( f loat , uint [])

{
// Define the search bounds. Lower bounds are based on previous evaluations of 𝑄. Upper

bounds always start at the maximum value (Τ+1). The bounds are updated each iteration
of the bisection (below).

l o s = searchBoundsLo[] ;
h i s = [Τ+1, . . . , Τ+1] ;

// Bisection. The bisection performs a fixed number of steps, halving the remaining search
interval each iteration. After 9 steps ⇒ 𝑑𝑧 = 2−11, and the ”true” |𝑧∗ − 𝑧| ≤ 2𝑑𝑧.

bounds = [] ;
𝑧 = 0.5 f , dz = 0.25 f ;

f o r ( j = 0 ; j < SEARCH_ITERATIONS; ++j )
( val , bounds) = 𝑄−1 ( 𝑧 , 𝑐 , los , h i s ) ;

i f ( val ≤ 𝜏 )
𝑧 += dz ;
l o s = bounds ; // Adj. lower search bounds

e l s e
𝑧 −= dz ;
h i s = bounds ; // Adj. upper search bounds
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dz ∗= .5 f ;

// Return result and indices (bounds) at which the value was found. The next call to 𝑄
(with 𝜏 ≥ the current 𝜏) will receive the returned bounds as searchBoundsLo.

return (𝑧 , bounds) ;
}

𝑄−1 ( 𝑧 , 𝑐[] , searchBoundsLo[] , searchBoundsHi[] )
−> ( f loat , uint [])

{
res = 0. f ;
bounds = [] ;

// 𝑄−1 = ∑𝑁𝑖=0 𝑐𝑖 𝑆−1𝑖 . Evaluate each 𝑆−1𝑖 in turn, using the restricted search space. In
addition, propagate the indices from the search in order to update the search space.

f o r ( 𝑖 = 0 ; 𝑖 < 𝑁 ; ++𝑖 )
( t , k) = 𝑆−1𝑖 ( 𝑧 , searchBoundsLo [ 𝑖 ] ,

searchBoundsHi [ 𝑖 ] ) ;

res += 𝑐 [ 𝑖 ] ∗ t ;
bounds [ 𝑖 ] = k ;

return ( res , bounds) ;
}

𝑆−1𝑖 ( 𝑧 , searchBoundLo , searchBoundHi )
−> ( f loat , uint )

{
// Binary search. Find the index of the first element greater than or equal to 𝑧, The search

is restricted to the range [searchBoundLo, searchBoundHi]. Compare to, e.g., the C++
standard function std::upper_bound.

l o = searchBoundLo ;
hi = searchBoundHi ;

while ( lo < hi )
mid = ( lo+hi )/2 ;
i f ( ! (𝑧 < 𝑆𝑖 [ mid ] ) ) lo = mid+1;
e l s e hi = mid ;

// Linear interpolation. Interpolate between the found value (≥ 𝑧) and the previous value
(< 𝑧). If the search converges to 0, return 0.f (avoid out-of-bounds accesses).

i f ( lo == 0 ) return ( 0 . f , 0) ;

vhi = 𝑆𝑖 [ l o ] ;
vlo = 𝑆𝑖 [ lo−1 ] ;
vinterp = ( lo−1) + (𝑧−vlo )/( vhi−vlo ) ;

// Return the linearly interpolated value and the index at which it was found. The latter is
used to restrict the search space in future searches.

return ( vinterp , lo) ;
}

Usage (e.g., in the body of a fragment or compute shader):

// ... (initialization, etc.) ...
boundsLo = [ 0 , . . . , 0 ] ;
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𝑄𝜏 = 𝑄𝜏−1 = 0. f ;
f o r ( 𝜏 = 1 ; 𝜏 ≤ Τ ; ++𝜏 )
𝑄𝜏−1 = 𝑄𝜏 ;
(𝑄𝜏 , boundsLo) = 𝑄( 𝜏/Τ , 𝑐 , boundsLo ) ;
contr ib𝜏 = (𝑄𝜏−𝑄𝜏−1 ) ∗ texelFetch ( . . . ) . rgb ;
// ... (use/accumulate contrib𝜏) ...

// ... (finalize and output) ...
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