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Abstract

A common task in quality control is to determine a control limit for a product

at the time of release that incorporates its risk of degradation over time. Such a

limit for a given quality measurement will be based on empirical stability data,

the intended shelf life of the product and the stability specification. The task is

particularly important when the registered specifications for release and stabil-

ity are equal. We discuss two relevant formulations and their implementations

in both a frequentist and Bayesian framework. The first ensures that the risk

of a batch failing the specification is comparable at release and at the end of

shelf life. The second is to screen out batches at release time that are at high

risk of failing the stability specification at the end of their shelf life. Although

the second formulation seems more natural from a quality assurance perspec-

tive, it usually renders a control limit that is too stringent. In this paper we

provide theoretical insight in this phenomenon, and introduce a heat-map

visualisation that may help practitioners to assess the feasibility of

implementing a limit under the second formulation. We also suggest a solution

when infeasible. In addition, the current industrial benchmark is reviewed and

contrasted to the two formulations. Computational algorithms for both formu-

lations are laid out in detail, and illustrated on a dataset.

KEYWORD S

internal release limit, quality control, random coefficients model, release specification,
stability specification

1 | INTRODUCTION

Critical quality attributes (CQAs) are physical, chemical, biological or microbiological properties of a drug that are criti-
cal to patient safety and drug efficacy (see ICH Q8-R21). Determination of what attributes are CQAs depends on the
nature of the drug, knowledge gained through development and commercialisation, and regulatory recommendation.
Before a batch of drug products can be released to the market, these CQAs are measured on samples taken from the
batch, and ascertained to meet certain criteria. These are described in a release specification (RS). Sampling and mea-
surement are performed according to a registered laboratory procedure for every CQA. Since drugs may degrade over
time, separate criteria ensure that a drug meets its quality specification until the end of its shelf life, referred to as the
stability specification (SS). Failing to meet the SS can lead to recall of a batch from the market. If a CQA of a drug prod-
uct is expected to change significantly over time, its release and stability specifications are usually different. Although
in Japan and the US this may be true only for in-house criteria and the regulatory RS and SS are the same, in the
European Union there is a regulatory requirement for distinct specifications for release and shelf-life.2 A similar recom-
mendation is given by the WHO.3
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Typically, the specification for a CQA consists of an acceptable range for a measured sample (also called a reportable
value) of a batch, denoted as y, such as y⩾ γlow, y≤ γupp or γlow ≤ y≤ γupp, where γlow and γupp are registered specifica-
tions. Besides the theoretical “safe zone” for a CQA, the specification need to take account of inevitable random varia-
tion in the manufacturing process and laboratory measurements.

In this paper we are concerned with determining a control limit for a reportable value at release (i.e., time zero) that
incorporates potential degradation of the drug over time, given historical data, shelf life and stability specification (SS).
We make our objectives explicit in the next section. The control limit may serve as a reference to determine the release
specification for a stability-indicating CQA in the pre-commercial phase (e.g., based on data from a formal stability
study), or could be used as an internal release limit4 after commercialisation. The latter is useful in a situation that equal
RS and SS were registered, but non-negligible trend is observed in a larger dataset that becomes available after
commercialisation.

The paper is organised as follows. Two problem formulations are presented in Section 2. A widely used benchmark
approach, its probabilistic objective and its drawbacks, are discussed in Section 3. The underlying population model in
this benchmark approach is oversimplified. We hence proceed by first set up a more realistic population model in
Section 4, Then, in Sections 5 and 6, we present the probabilistic establishment of the two problem formulation in such
population model. Inference procedures based on a sample are provided in the same sections. These procedures are
illustrated on two example datasets in Section 7, and a brief conclusion is drawn in Section 8. Proofs of propositions
and theoretical justifications are collected in Appendix A.

2 | PROBLEM FORMULATION

Let Yit be a reportable value (i.e., sample measurement) of a CQA for batch i at time t, where i¼ 1, � � �, n and n is the
number of measured batches. We assume a decreasing trend of the CQA over time, and want to ensure a stability speci-
fication (SS) (i.e., ⩾ γ) at the end of shelf life T >0 by setting a lower limit (⩾η) at release (t¼ 0). Letting Ynþ1,t denote
a future reportable value, we make this precise in one of the following two objectives:

1. Conditional on Trend/CoT: A future batch passes the specification ⩾ γ at time T with at least the probability that it
passes the limit ⩾η at time 0, that is, P Ynþ1,T ⩾ γð Þ⩾Pr Ynþ1,0⩾ηð Þ.

2. Conditional on Individual/CoI: Given that it passes the limit ⩾η at time 0 a future batch passes the limit ⩾ γ with
high probability at time T, that is, P Ynþ1,T ⩾ γ j Ynþ1,0⩾ηð Þ is large.

It turns out to be an ambitious task to assure stability by controlling just a sample measurement at time 0. The key
premises are (a) the random measurement error is not high, and (b) a future batch has a similar stability trend as the
historical batches. The second premise is usually satisfied, because the drug batches are all manufactured and stored in
the same manner. However, in modelling it is too strong to assume all batches follow exactly the same degradation pat-
tern. More realistically, we expect that there is a typical pattern overall, while each individual batch still has a certain
idiosyncrasy. In Section 4, we shall incorporate this in a mixed model.

The CoT formulation establishes a RS that is consistent with the SS in terms of riskiness. The riskiness of a batch
with respect to the stability specification ⩾ γ can be quantified by its failing rate P Ynþ1,T < γð Þ, which depends on its
true quality level μT ¼EYnþ1,T (batch mean) at time T and laboratory measurement error. It is usually plausible that
the variance of the measurement error is constant over time, whence the riskiness of a batch changes only through its
true quality level μt. If RS and SS would be the same and a non-negligible degradation exists, then a batch might be
risky with respect to the SS but not to the RS. The choice of η in the CoT formulation prevents an increase in riskiness.
Tightening the stability specification by the average stability degradation (e.g., setting η¼ γ�bT, based on an assump-
tion of linear trend with slope b) can be viewed as a special case of the CoT formulation, see Section 5.1. Hence,
although this probabilistic formulation does not sound intuitive, in practice one encounters it more often than
expected.

The CoI formulation seems to give the most natural objective for quality assurance, which corresponds to filtering
out a correct proportion of batches at time 0 that are at greatest risk of failing at time T. However, when Ynþ1,0 and
Ynþ1,T are only weakly correlated, and hence Ynþ1,0 carries not much information about Ynþ1,T , the CoI formulation
becomes spurious. A weak correlation can be caused by large measurement error and/or large variation between the
individual batches. If the trends of the empirical batches vary vastly, then the quality level in the future will be hard to
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predict at time 0 even without measurement error, and the further the future, the less reliable the prediction. We dis-
cuss this further in Section 6.

In this study we consider a (linearly) decreasing trend and lower-bounded SS intervals. Generalisation to an
increasing trend and upper-bounded SS intervals is obvious. In the unlikely situation that the trend is in the
direction of improving CQA, there is no stability risk, and the problem of setting control limits becomes
spurious.

3 | BENCHMARK APPROACH IN THE INDUSTRY

There is a scarce literature on controlling stability risk by setting a specification limit at time 0. The most prevalent
approach seems to be due to Allen, Dukes and Gerger (henceforth referred to as the ADG approach).6 They pro-
posed, in the case that the trend in the CQA is linearly decreasing, to set the lower limit at time 0 of the interval
⩾ηADGð Þ equal to

ηADG ¼ γ�bbTþ t0:95,n�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2s2bbþbσ

2
e

k

s
, ð1Þ

where γ is the lower-sided SS, T is the shelf life (in months), bb is an estimate of the degradation slope across historical
batches in the data, sbb is the standard error of the estimator bb, bσ2e=k is an estimate of laboratory method (assay) vari-
ance, k is the number of replicates to be averaged for a reportable value, and t0:95,n� is the 95% percentile of the student
t distribution with n� degrees of freedom. Because the estimates bb and bσe may not come from the same fitted model and
may not be based on the same dataset, n� is calculated by the Satterthwaite approximation.

An intuitive interpretation of (1) is straightforward: increase the current SS (⩾ γ) by the amount of the average deg-
radation during shelf life (note that �bbT >0), and further tighten the interval by an error margin reflecting the uncer-
tainty in the estimated slope and the measurement error.

Because the original paper did not present a population model and objective function, a precise interpretation by an
associated probabilistic statement is tenuous, but our best understanding of the procedure is as follows. Assume that
the observation Ynþ1,T of a future batch at time T satisfies Ynþ1,T ¼ aþbTþ e, where a is the unknown true batch mean
at time 0, b is the batch slope of degeneration over time, and e is a residual error, assumed to possess a normal distribu-
tion N 0, σ2e=k

� �
. Assume that bb is an unbiased estimator of b with a normal distribution with variance σ2bb, and that sbb

and bσe are estimators of σbb and σe. Seeking the minimum value of a such that P Ynþ1,T ⩾ γð Þ⩾0:95, is equivalent to solv-
ing the following inequality for a:

P
Ynþ1,T �a�bbTffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

T2s2bbþbσ2ek
r ⩾ γ�a�bbTffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

T2s2bbþbσ2ek
r

0BB@
1CCA¼ 0:95, ð2Þ

where Ynþ1,T �a�bbT¼ b�bb� �
Tþ e is normally distributed with mean 0 and variance σ2bbþσ2e=k: By unbiasedness ofbb, the mean of b�bb� �

Tþ e is zero, while its variance is σ2bbT2þσ2e . Therefore, the statistic inside the probabilityshould
(approximately) follow the Student t distribution with n� degrees of freedom. Equation (2) is, therefore, solved for a, by
setting the quotient on the right of the inequality inside the probability equal to the 0.95-quantile of this Student
t distribution. In other words, the minimal value of a is the right side of (1).

Since a can be interpreted as the expectation at time zero, this reasoning suggests that the ADG approach sets a
lower limit for the population mean of the reportable value at zero. As this population quantity is not observable, this
may not be an attractive target. An alternative perspective on the method, which is in a similar spirit as the CoT formu-
lation, is elaborated in the next section. Differences are that (1) the ADG approach does not explicitly model the batch-
to-batch slope variation, thus underestimating estimation error as the number of empirical batches increases, and (2)
the ADG approach lumps the variation of the lab measuring method and trend variation among batches in a single
residual variance.
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4 | OUR POPULATION MODEL

In the remainder of the paper we adopt the following linear random-coefficients model, which is realistic in our indus-
trial setting.4 A reportable value (a sample measurement) Yi,t from batch i at time t follows

Yi,t ¼ aþαiþ bþβið Þtþϵi,t: ð3Þ

The overall coefficients a and b are fixed effects, showing the average trend across batches. Each batch i has a ran-
dom deviation in its individual intercept and trend introduced by

αi �N 0, σ2α
� �

, βi �N 0, σ2β
� �

:

The residual errors ϵi,t �N 0, σ2ϵ
� �

reflect measurement error. For simplicity we assume that all random effects
αi, βj, ϵi,t are mutually independent. The model is then parameterised by the vector θ≔ a, b, σα, σβ, σϵ

� �
.

We make two remarks to justify this population model, one on linearity and the other on normality. (1) To detect a
nonlinear pattern of degradation, we would need to measure the reported values on a fine time grid. However, in a for-
mal stability study a batch is typically observed at a total of 7 time points, or at 4 or 5 time points in a follow-up stability
study. This may not provide enough resolution to reliably distinguish a moderately nonlinear from a linear trend,
let alone to distinguish between two types of nonlinear trends. Thus a linear trend might be the best we can handle in
practice, unless some specific nonlinear trend is given strong scientific endorsement or is observed empirically during
development. (2) Only few CQAs are known to follow non-Gaussian distributions. One of the most important examples
is the relative potency for biologics (a ratio), which is known to follow a log-normal distribution. In such a case, one
may seek an appropriate transformation of the reportable value, so that it follows the model given by Equation (3).
Other CQAs with non-Gaussian distributions can be handled case by case, with appropriate modifications of the meth-
odology proposed in this paper.

5 | COT FORMULATION

5.1 | CoT in population model

The objective of CoT is to ensure that the passing rate for y⩾ γ at a future time T is at least the passing rate for y⩾η at
the time of release. Under the population model (3), trend and intercept are random effects, and hence we cannot
expect the objective to hold for every future batch. Instead we require it for at least a large proportion, say 100q% of the
future batches, where q� 0, 1½ � is left to the risk appetite in the specific setting.

In formula, the objective of CoT is then, given γ, to find η that fulfils

Pθ
Pθ Ynþ1,0⩾η j αnþ1, βnþ1

� �
Pθ Ynþ1,T ⩾ γ j αnþ1, βnþ1

� � ⩽ 1

" #
¼ q: ð4Þ

The probabilities in the quotient are conditional given the random effects, while the outer probability refers to the
random effects. The parameter θ is treated as given. By some rearrangements (see Section 8), one can show that the
batch intercept does not play a role in this inequality. In fact, the solution can be found explicitly and is given by

ηCoT ¼ γ� bþΦ�1 1�qð Þσβ
� �

T, ð5Þ

where Φ�1 1�qð Þ denotes the 1�qð Þth quantile of the standard normal distribution.
An intuitive interpretation of the formula is that it tightens the specification ⩾ γ by the expected degradation up to

time T assuming that the trend follows the qth steepest slope from the batch slope distribution. In the trivial case when
σβ ≈ 0, that is, all batches have almost the same trend, we find that η≈ γ�bT, which is the intuitive solution to balance
the stringency of specifications at time 0 and T given linear degradation.
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5.2 | Sample Inference for CoT

In formula (5), the quantities b and σβ are unknown population parameters. The simplest solution would be to replace
them by sample estimates bb and bσβ given the historical data, but this would not take into account the uncertainty due
to parameter estimation. Alternatively, in a Bayesian framework, a posterior distribution of ηCoT can be derived from
the joint posterior distribution of b, σβ

� �
in combination with formula (5). A suitable measure of location of that poste-

rior, say the posterior mean or median, may be used as the final estimate. For a conservative solution, we may use the
ξth posterior quantile for some ξ>0:5, the choice ξ¼ 0:5 leading back to the posterior median. In practice, these quanti-
ties may be computed from a large set of sample values ηCoT b, σβ

� �
obtained by applying the map (5) to a sample from

the posterior distribution of b, σβ
� �

.

6 | COI FORMULATION

6.1 | CoI in population model

The objective of CoI is to set a control limit ⩾η at time 0, so that the event Ynþ1,0⩾η indicates a high probability that
the event Ynþ1,T ⩾ γ will occur at the later time point T. This can be expressed in a formula as the requirement on the
conditional probability, for given γ:

Pθ Ynþ1,T ⩾ γ j Ynþ1,0⩾ηCoIð Þ⩾q, ηCoI ⩾ γ, ð6Þ

where θ¼ a, b, σα, σβ, σϵ
� �

, and q is a prescribed, desired level of assurance, which is typically set close to 1. The con-
straint ηCoI ⩾ γ ensures that the solution ηCoI is practically meaningful.

The function η 7!Pθ Yi,T ⩾ γ jYi,0⩾ηð Þ is increasing from Pθ Yi,T ⩾ γð Þ to (typically) 1 (see Lemma 6.2 below and
Figure 1). Hence a solution ηCoI to the equation will exist for q⩾Pθ Yi,T ⩾ γð Þ, and it will satisfy the restriction ηCoI ⩾ γ if
q⩾Pθ Yi,T ⩾ γ jYi,0⩾ γð Þ. For given ηCoI , a proportion Pθ Yi,0 < ηCoIð Þ of produced batches will be rejected. As illustrated in
Figure 1, this proportion may be large. We examine the practicality of the CoI formulation from this perspective in the
next subsection.

We now derive the solution ηCoI to (6), assuming that all the parameters in (3) are known. Under model (3), the pair
Yi,t1 ,Yi,t2ð Þ, for two given time values t1 < t2, follows a bivariate Gaussian distribution, given by

FIGURE 1 The curves ηCol 7!Pθ Yi,T ⩾ γjYi,0⩾ηCoIð Þ (solid) and ηCol 7!Pθ Yi,0⩾ηCoIð Þ (dot dash), with ηCoI on the horizontal axis, for two

different parameter settings and γ¼ 95. To obtain stability assurance at q¼ 0:95 the value of ηCol must be set to the value at the vertical

dotted line. The height of the dot dash curve on this line gives the proportion of accepted batches at time 0. Parameter settings: (Case I,

Modestly Big Noise): a¼ 98:69, b¼�0:0635, σα ¼ 1, σβ ¼ 0:05, σϵ ¼ 0:655, which gives intra-correlation ρint ¼ σ2α= σ2αþσ2ϵ
� �¼ 0:7,

P Y i,T ⩾ γð Þ¼ 0:9 and P Y i,0⩾ γð Þ¼ 0:999. (Case II, Modestly Small Noise): a¼ 98:45, b¼�0:0729, σα ¼ 1, σβ ¼ 0:03, σϵ ¼ 0:5, which gives

intra-correlation ρint ¼ 0:8, P Yi,T ⩾ γð Þ¼ 0:9 and P Yi,0⩾ γð Þ¼ 0:999; shelf life was T¼ 24 months in both cases.
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Yi,t1

Yi,t2

	 

�N

aþbt1
aþbt2

	 

,

σ2αþσ2βt
2
1þσ2ϵ σ2αþσ2βt1t2

σ2αþσ2βt1t2 σ2αþσ2βt
2
2þσ2ϵ

 ! !
: ð7Þ

Equation (6) is identical to, for t1 ¼ 0 and t2 ¼T,

Pθ Yi,t2 ⩾ γ,Yi,t1 ⩾ηCoIð Þ
Pθ Yi,t1 ⩾ηCoIð Þ ¼

Z ∞

ηCoI

Z ∞

γ
φ� s1, s2ð Þds2ds1Z ∞

ηCoI

φt1 sð Þds
¼ q, ð8Þ

where φ� is the density function of the bivariate Gaussian (7). In a different format,Z ∞

ηCoI

Pθ Yi,t2 ⩾ γ jYi,t1 ¼ sð Þφt1 sð Þds
Pθ Yi,t1 ⩾ηCoIð Þ ¼ q, ð9Þ

where φt1 is the marginal density function of Yi,t1 �N aþbt1, σ2αþσ2βt
2
1þσ2ϵ

� �
. Equation (8) has no apparent analytical

solution, but the terms in the quotient can be approximated numerically via an efficient algorithm. We use pmvnorm
from the R package mvtnorm 1.0–11 for this task. As for Equation (9), it is known that the variate Yi,t2 given Yi,t1 ¼ s fol-
lows the N μ�, σ2�

� �
-distribution with

μ� ¼ aþbt2þ
σ2αþσ2βt1t2

σ2αþσ2βt
2
1þσ2ϵ

s�a�bt1ð Þ, ð10Þ

σ2� ¼ σ2αþσ2βt
2
2þσ2ε �

σ2αþσ2βt1t2
� �2
σ2αþσ2βt

2
1þσ2ϵ

: ð11Þ

Hence the left side of Equation (9) can be rewritten as
R∞
η 1�Φ γ�μ�

σ�

� �� �
φt1 sð Þds, which involves an incomplete

Gaussian integral which also has no analytical solution. Nevertheless, (9) is a useful expression, because
Pθ Yi,t2 ⩾ γ jYi,t1 ¼ sð Þ is the answer to another common inquiry in quality assessment: given the release data of batch i,
what is the chance for this batch to pass the SS at time T?

Wei7 approached the problem in a similar way as (8) and called this the “unconditional rule.” However, he formu-
lated a different objective than (6) and focused on a 95% confidence limit of the predicted Yi,T (i.e., a future individual
reportable value), instead of on controlling Yi,T .

6.2 | Practicality of CoI

Unlike the CoT solution (5), the CoI solution has no clear analytical form that can be easily interpreted. Therefore we
make some extra effort to analyse its characteristics. This also facilitates to understand when the solution might not be
helpful in practice, even if its formulation is an honest translation of our interests.

We present a lemma and next three insights. A proof of the lemma can be found in the Appendix A.

Lemma 1. If Y 1,Y 2ð Þ is a bivariate normal random vector with strictly positive correlation ρ, then:

i. the map η 7!P Y 2⩾ γjY 1⩾ηð Þ is continuous and increasing from P Y 2⩾ γð Þ at η¼�∞ to 1 at η¼∞, for
any γ �ℝ.

ii. the map η 7!P Y 2⩾ γjY 1 ¼ ηð Þ is continuous and increasing from 0 at η¼�∞ to 1 at at η¼∞, for any γ �ℝ.
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iii. P Y 2⩾ γjY 1⩾ηð Þ⩾P Y 2⩾ γjY 1 ¼ ηð Þ, for any γ, η�ℝ.

iv. both P Y 2⩾ γjY 1⩾ηð Þ and P Y 2⩾ γjY 1 ¼ ηð Þ tend to P Y 2⩾ γð Þ as the correlation between Y 1 and Y 2 tends to
0, for any γ, η�ℝ.

v. the solution ηρ to P Y 2⩾ γjY 1⩾ηð Þ¼ q, for given γ and q with q> P Y 2⩾ γð Þ, satisfies
ηρ�μ1
� �

=σ1 ¼ ρ�1 Φ�1 qð Þþ γ�μ2ð Þ=σ2ð ÞþO 1ð Þ, as ρ # 0, where μi ¼EYi and σ2i ¼ varY i. The same is true
for the solution to P Y 2⩾ γjY 1 ¼ ηð Þ¼ q.

[Insight 1]: Under model (3), and hence (7) with t1 ¼ 0 and t2 ¼T, the correlation between Yi,0 and Yi,T is equal to

ρ 0,Tð Þ¼ σ2α=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2αþσ2ϵ
� �

σ2αþσ2βT
2þσ2ϵ

� �r
. It will approach 0 if any of, or a combination of, the following occurs: (1) pre-

dict a far future, that is, large T, (2) unpredictable individual batch trend, that is, large σβ, (3) big random noise from
measurement error, that is, large σϵ relative to the process variation σα. In every of these cases setting a limit at time
0 to control stability at time T is nearly impossible, due to the weak relation between the variables Yi,0 and Yi,T , in view
of (iv). By (v) the control limit tends to ∞ as ρ 0,Tð Þ # 0 at the rate 1=ρ 0,Tð Þ on the standard scale. This situation also
holds in the trivial case that all batches have almost the same mean value, that is, when σα is (nearly) zero.

[Insight 2]: If the passing rate P Y i,T ⩾ γð Þ at time T is higher than the desired assurance q, there is no stability risk.
This is because P Y i,T ⩾ γjYi,0⩾ηð Þ is lower bounded by P Yi,T ⩾ γð Þ, for every η, by (ii) of the lemma. Furthermore, the
minimal value permitted under the constraint η⩾ γ is P Yi,T ⩾ γjYi,0⩾ γð Þ and hence we may check if the latter condi-
tional probability exceeds q. If so, there is no stability risk, and we can set ηCoI ¼ γ.

[Insight 3]: An alternative criterion, but in the spirit of CoI, is to find the minimum reportable value of a batch at
time 0 that assures a passing rate of at least 100q% at time T, that is,

ηAlt ¼ min η⩾ γ :Pθ Yi,T ⩾ γjYi,0 ¼ ηð Þ⩾qf g: ð12Þ

By (ii) of the lemma, this limit solves the equation Pθ Yi,T ⩾ γjYi,0 ¼ ηAltð Þ¼ q unless it is on the boundary (ηAlt ¼ γ).
Part (iii) of the lemma shows that the limit will be tighter than the solution of (6) (i.e., ηAlt ⩾ηCoI), for every given q.
Since the conditional distribution of Yi,T given Yi,0 ¼ η is normal with mean μ�0 ¼ aþbTð Þþρint η�að Þ and variance
σ2�0 ¼ σ2αþσ2βT

2þσ2ϵ�ρintσ
2
α, for ρint ¼ σ2α= σ2αþσ2ϵ

� �
, the solution to (12) is

ηAlt ¼ max
γ�bT� 1�ρintð ÞaþΦ�1 qð Þσ�0

ρint
, γ

	 

:

This inflates quickly to ∞ as ρint # 0, in the same way as ηCoI , by (v) of the lemma.
Insights 1 and 2 are particularly relevant for implementation in practice. The former reveals that the CoI formulation

may be spurious, while the latter exhibits situations where setting the control ηCoI is not necessary. One can make a pre-
liminary check (e.g., one for ρ 0,Tð Þ and one for P Y iT ⩾ γð Þ) to decide the suitability and necessity of calculating ηCoI .

We now present an example analysis to illustrate how it can be assessed when the CoI formulation may be helpful.
A key consideration for implementation is the trade-off between the desired quality assurance, governed by q, and the
business sustainability, reflected by P Y i,0⩾ηCoIð Þ. Low P Yi,0⩾ηCoIð Þ means that, at the determined control limit ηCol, an
unacceptably high number of the manufactured batches will be rejected. From a business point of view this control is
disastrous, as the true quality of these rejected batches may be sufficiently high (at least during the beginning of the
period). As discussed, the tight limit in the CoI formulation could be due to the low correlation between Yi,0 and YiT ,
which makes controlling YiT via Yi,0 practically impossible.

Consider a hypothetical drug with CQA known to degrade over time, and with a registered SS of 95≤YiT ≤ 105.
Consider two different process averages (a¼ 100 or a¼ 98:5), two different degrees of degradation (bT ¼�2 or
bT¼�3), a process variation (i.e., variation of between-batch mean) fixed at σα ¼ 0:5, a batch slope variation σβT vary-
ing over a grid 0:3, 1½ �, and measurement error σε varying over 0:1, 1:5½ �. In practice these settings can come from prior
knowledge of the product and the laboratory method during development. For each scenario, we derived ηCoI for q¼
0:95 and q¼ 0:99, and calculated and visualised the stringency P Y i,0⩾ηCoIð Þ. Figure 2 gives a heat map of the stringency
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for the best process average (a¼ 100, in the middle of the SS), with the four panels referring to the four possible combi-
nations of bT and q. The same results for the less advantageous process average (a¼ 98:5) are given in Figure 3.

In practice, prior knowledge of the product and the laboratory method during development will yield appropriate
values for the preceding parameters. We can then assess the suitability of the CoI approach by mapping the parameter
values to the appropriate square in the heat maps. If this square is in a column of deep-pink colour, the measurement
error is too high, and we cannot effectively control the risk of Yi,T via the reportable value Yi,0. As a remedy, we may
improve the precision of the laboratory measurement, so that the status shifts to a column that has at least some green
cells. If the square is deep-pink, but in a column with a mix of green and deep-pink cells, we may consider shortening
the shelf life of the drug.

FIGURE 2 Stringency P Y i,0⩾ηCoIð Þ indicated by colour scale under different scenarios. In all cases a¼ 100. The four panels concern the

four combinations of the degradation (bT¼�2, �3) and required quality assurance (q¼ 0:95, 0:99). Each panel gives combinations of Tσβ
(indicated by T*s_b) and σe (indicated by s_e). Cells marked by a cross are situations in which P YiT ⩾ γð Þ⩾q and hence no ηCoI needs to be

calculated.
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In general, we find that the CoI approach quickly becomes impractical when the noise is large relative to the process
variation σα, or the process average a is small, as indicated by the abundance of deep-pink squares.

6.3 | Sample inference for CoI

In practice, the population parameters θ in the model (3) are unknown, and must be estimated from sample data. To
simplify the notation onwards, we fix t1 ¼ 0 and t2 ¼T, where T is the shelf life in months (typically

FIGURE 3 Stringency P Y i,0⩾ηCoIð Þ indicated by colour scale under different scenarios. In all cases a¼ 98:5. The four panels concern

the four combinations of the degradation (bT¼�2, �3) and required quality assurance (q¼ 0:95, 0:99). Each panel gives combinations of

Tσβ (indicated by T*s_b) and σe (indicated by s_e). Cells marked by a cross are situations in which P YiT ⩾ γð Þ⩾q and hence no ηCoI needs to

be calculated
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T � 18, 19, � � �, 60f g). We denote the empirical data by y¼ Yit : i¼ 1, 2, � � �, n; t¼ 0, � � �,Tf g, indexed by batch ID i and
observed time t.

From a frequentist perspective, we may utilise an estimator bθ yð Þ of θ, and seek a (minimal) ηCoI that fulfils

Eθ Pbθ yð Þ Ynþ1,T ⩾ γ jYnþ1,0⩾ηCoIð Þ
� �

⩾q, for all θ:

The expectation pertains to the sample distribution of y, which appears in bθ yð Þ. Because it seems complicated to

solve such a set of equations exactly, we may determine an approximate solution by plugging in an estimator bθ yð Þ of θ
into the solution ηCol θð Þ of Equation (6), for given θ. Thus the control limit becomes ηCol bθ yð Þ

� �
.

From a Bayesian perspective, there are two reasonable solutions, both based on the posterior distribution of θ given
y. The first, denoted B1, is to seek a (minimal) ηCoI that fulfils

E Pθ Ynþ1,T ⩾ γ jYnþ1,0⩾ηCoIð Þ j y½ �⩾q:

Here the expectation refers to the posterior distribution of θ given y. An alternative Bayesian solution, denoted B2,
is a measure of location of the posterior distribution of ηCoI θð Þ given y, which is induced by the posterior distribution of
θ given y and the solution map θ 7!ηCoI θð Þ of (6).

For computational purposes in both cases the posterior distribution of θ given y can be approximated by the empiri-
cal distribution of a sample θkf gBk¼1 of values obtained via an MCMC algorithm. The approximate solution B1 is then
given by

min η :
1
B

XB
k¼1

Pθk Ynþ1,T ⩾ γ jYnþ1,0⩾ηð Þ⩾q

( )
: ð13Þ

The posterior distribution of ηCoI θð Þ can be approximated by the empirical distribution of the values ηCoI θkð Þf gBk¼1,
and hence the B2 solution by the location (e.g., median or quantile) of these values.

The frequentist and two Bayesian solutions are all different, but for large sample sizes will be similar, under mild
conditions. The large sample properties of the three procedures are discussed in Section 8, where it is shown that the
estimated control limits differ by no more than a centred normal variable with dispersion equal to the inverse sample
size. For a conservative approach, the estimated control limit can be heightened by a quantile of the approximating nor-
mal distribution, thus yielding the limit ηCoI bθ yð Þ

� �
þbτ0Φ�1 ξð Þ= ffiffiffi

n
p

, in the notation of Lemma 8. The Bayesian
approach B2 that uses the ξth quantile of the posterior distribution of ηCoI with ξ>0:5 automatically incorporates a
tightening of the control limit. Lemma 8 shows that this is asymptotically equivalent to the tightening of the frequentist
procedure.

7 | CALCULATION WITH EXAMPLE DATASETS

We generated two datasets under the observational model (3), using two scenarios of parameter settings,
and calculated η via the different approaches. For each scenario we set the shelf life T to 36months, and SS equal to
⩾95, that is, r¼ 95. We generated 10 batches of data (i¼ 1,…, 10), each with one observation at t¼ 0, 6, 12, 18, 24
months.

The parameters governing (3) are a, b, σα, σβ and σe. We set ρ¼ σ2α= σ2αþσ2ε
� �

, and write ρ 0,Tð Þ for the correlation
between Yi,0 and Yi,T . The two parameter settings were:

• (Modest intra-correlation) P Yi,0⩾95ð Þ¼ 0:9999, P Y i,T ⩾95ð Þ¼ 0:9, σα ¼ 0:5, σβ ¼ 0:01, ρ¼ 0:8. This results in
a¼ 97:1, b¼�0:034, σϵ ¼ 0:25 and a modest correlation ρ 0,Tð Þ¼ 0:67.

• (Weak intra-correlation) P Y i,0⩾95ð Þ¼ 0:9999, P Yi,T ⩾95ð Þ¼ 0:9, σα ¼ 0:5, σβ ¼ 0:04, ρ¼ 0:4. This results in a¼ 100:9,
b¼�0:068, σϵ ¼ 0:6 and a weak correlation ρ 0,Tð Þ¼ 0:19.
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For each dataset, η was calculated by four methods:

1. The ADG approach (1) with q¼ 0:95. The estimator bb was taken equal to the ordinary least square estimator
based on the 10�5¼ 50 observations Yit with corresponding standard error sb, ignoring the mixed model struc-
ture of the simulation scheme, using the function lm from R basic. The error variance σe was estimated as the
sample variance of the regression residuals after correcting for a linear trend per batch. The value of k was set
to 1.

2. The CoT solution as in (5) with plug-in estimators. We estimated the parameters b and σβ by fitting a linear
mixed model, using the function lmer from the R package {lme4}.8 (Alternatively, Bayesian point estimators may
be derived using the package {blme}.9) The parameter q was set to q¼ 0:8, where it is noted that this parameter
has a different meaning than in the other two approaches. In the CoT formulation q indicates the proportion of
future batches for which the passing rate at time T is at least the passing rate at release, whereas in the other
approaches q refers directly to the passing rate of an individual product. Setting it to 0.95 would lead to a very
conservative CoT solution when the batch slope variation is not small. In practice, the values of q will be set
case by case.

3. The two Bayesian solutions B1 and B2 for the CoI formulation, described in Section 6.3, with q¼ 0:95. The pos-
terior distribution of the parameters was approximated via an MCMC algorithm implemented in R package
{brms},10,11 with 2 chains, 2000 burn-in samples followed by B¼ 3000 samples for each chain, using a
N 100, 302ð Þ prior for a, a N 0, 52ð Þ prior for b, and an half-Cauchy prior12 with scale 0:1 for σα, σβ and σϵ. The
convergence and quality of the chain was checked graphically based on a trace plot, an ACF plot, and a Geweke
diagnostic plot via R package {coda}13 and the launch_shinystan function in {brms}.14 The chosen priors are
weakly informative. Experiments with other prior settings (e.g., variance 1002 in the normal priors, and scale
0:01 in the half-Cauchy, which renders the priors even less informative), did not show significant changes in the
posterior means, and are not reported. In practice, one may form weakly informative priors based on other
empirical data or scientific expectation of model parameters. For CoI-B1, we used the average across the MCMC
sample in (13). For CoI-B2, Equation (6) had no solution for some MCMC iterates θk (see Insight 2 in sec-
tion 6.2), those ηCol θkð Þ were treated as some synthetic value <95, and the final estimate was taken to be the pos-
terior median of ηCol θkð Þf gk.

The example datasets and the calculated results are displayed in Figure 4. Data at 36 months are plotted for illustra-
tion, but were not included in the calculation of the control limits. One can see that with the dataset showing modest
ρ 0,Tð Þ, the three approaches result in implementable control limits at time 0. However, when ρ 0,Tð Þ is small, the CoI
limits become impractically high.

FIGURE 4 Graphical representation of data simulated using a scenario of modest ρ 0,Tð Þ¼ 0:67ð Þ and a scenario of weak

(ρ 0,Tð Þ¼ 0:19) correlation between reportable values at release and end of shelf life. Shown are also the control limits η at time 0 for four

methods, for stability specification set at ⩾ γ¼ 95. Data at 36months are plotted for illustration, but were not included in the calculation of

the control limits
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8 | CONCLUSION

Adopting a realistic population model for a reportable value of a drug, we have discussed two formulations for setting a
control limit at time 0 that incorporates stability risk. The two formulations correspond to different probabilistic objec-
tives, which we worked out in a realistic random-effects model setting. Both formulation intend to determine a limit at
release for an individual reportable value (of a CQA of a drug product). This is in line with how the limit will be applied
in practice, and hence can be viewed as an improvement over the ADG approach, which determines a limit for an
unobservable batch mean under a simplified population model, see Section 3.

The objective CoT seems to be generally appropriate. It determines a release specification that tightens the desired
stability specification by a conservative estimate of average degradation over the course of shelf life. The level of conser-
vativeness is controlled by choosing an appropriate quantile from the estimated distribution of the batch slope in a lin-
ear random-coefficients model. The CoT formula does not explicitly include the variability of individual measurements.
Its use as a limit for an individual reportable value is justified under the assumption that the stability specification has
already accounted for that source of variability. This assumption generally holds, since in practice the stability specifica-
tion is also applied to an individual reportable value. (One should of course check that the reportable value at the stabil-
ity test is consistent with the reportable value at the release test.)

The objective CoI is a natural translation of the aim of quality assurance, and focuses on filtering the batches at
release on their reportable value. However, this aim becomes unattainable when the correlation ρ 0,Tð Þ between the
reportable values at time 0 and time T is near zero. The control limit at release may then be so tight that the majority of
the batches will be rejected, as illustrated in Section 7.

We presented a visualisation by heat maps in Section 6.2 to help assess when the CoI approach will be helpful. The
essence is to assess if the signal-to-noise ratio in the data is sufficiently high. The heat maps can be navigated to infer
how to enhance the signal-to-noise ratio, by taking actions that lift the current status from a deep-pink cell to a green
cell (e.g., improve the precision of the laboratory measurement to a certain level, or shorten the shelf life of the product
by a certain number of months).
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APPENDIX A

A.1 | Proofs

Proof of formula (5). Under model (3), with a� ¼ aþα (drop the batch index i for brevity), Equation (4) can
be rewritten as

Pα,β 1�Φ
η�a�

σe

	 

⩽ 1�Φ

γ�a� � bþβð Þt
σe

	 
� �
¼ q

Pα,β Φ
γ�a� � bþβð Þt

σe

	 

⩽Φ

η�a�

σe

	 
� �
¼ q

Pα,β
γ�a� � bþβð Þt

σe
⩽ η�a�

σe

� �
¼ q

By some more algebra this can be rewritten further in the form

Pβ
γ�η�bt

σβt
⩽ β

σβ

� �
¼ q:

Because β is normally distributed by assumption, it follows that γ�η�bt¼Φ�1 1�qð Þσβt, which is
equivalent to Equation (5).

Proof of Lemma 1. Because P Y 2⩾ γjY 1⩾ηð Þ¼P Z2⩾ γ�μ2ð Þ=σ2jZ1⩾ η�μ1ð Þ=σ1ð Þ, for Zi ¼ Yi�μið Þ=σi, and
the same when conditioning on Y 1 ¼ η, the situation can be reduced to the case that Y 1 and Y 2 possess
mean zero and variance 1. Hence assume

Y 1

Y 2

	 

�N

0

0

	 

,

1 ρ

ρ 1

	 
� �
:

Then Y 1,Y 2ð Þ has density f y1, y2ð Þ/ exp � y21�2ρy1y2þy22
2 1�ρ2ð Þ

n o
, and the density of Y 2 given Y 1⩾η is given by
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f η yð Þ¼

Z ∞

η
f s, yð Þds

P Y 1⩾ηð Þ / exp � y2

2 1�ρ2ð Þ
 �Z ∞

η
exp

ρsy
1�ρ2

	 

dμ sð Þ

for dμ sð Þ¼ exp � s2
2 1�ρ2ð Þ

n o
ds. Hence

f η yð Þ
f η0 yð Þ/

Z ∞

η
exp τsyð Þdμ sð ÞZ ∞

η0
exp τsyð Þdμ sð Þ

, τ¼ ρ

1�ρ2
:

We first show that for η> η0, this function is increasing in y, or equivalently that its logarithm is increasing. The
derivative of the latter function is

d
dy

log
f η yð Þ
f η0 yð Þ¼

Z ∞

η
τsexp τsyð Þdμ sð ÞZ ∞

η
exp τsyð Þdμ sð Þ

�

Z ∞

η0
τsexp τsyð Þdμ sð ÞZ ∞

η0
exp τsyð Þdμ sð Þ

¼
τ

Z ∞

η0
exp τsyð Þdμ sð ÞZ ∞

η
exp τsyð Þdμ sð Þ

E1s⩾ ηS�E1s⩾ ηES
� �

for S a random variable with density relative to dμ sð Þ given by

p sð Þ¼ exp τsyð Þ1s⩾ η0Z ∞

η0
exp τsyð Þdμ sð Þ

:

The term in square bracket is cov 1s⩾ η, S
� �

and is non-negative, as s 7!1s⩾ η and s 7! s are both increasing functions
(see Lemma 8 below).

Now, for Y � f η0 .

P Y 2⩾ γjY 1⩾ηð Þ¼
Z∞
γ

f η yð Þdy¼Eη01Y ⩾ γ

f η Yð Þ
f η0 Yð Þ ⩾Eη01y⩾ γEη0

f η yð Þ
f η0 yð Þ¼Pη0 Y ⩾ γð Þ �1,

again by the covariance inequality. This finishes the proof of assertion (i).
Assertion (ii) is immediate from the form of the conditional distribution Y 2 jY 1 ¼ η�N ρη, 1�ρ2ð Þ.
Assertion (iii) follows from

P Y 2⩾ γjY 1⩾ηð Þ¼

Z ∞

η
P Y 2⩾ γjY 1 ¼ sð Þϕ sð Þds

P Y 1⩾ηð Þ ⩾

Z ∞

η
P Y 2⩾ γjY 1 ¼ ηð Þϕ sð Þds

P Y 1⩾ηð Þ ¼P Y 2⩾ γjY 1 ¼ ηð Þ,

where the inequality follows from (i).
Assertion (iv) is a consequence of the fact that the correlation coefficient completely determines the dependence

between multivariate Gaussian variables.
The assumption P Y 2⩾ γð Þ< q in the first part of (v) is equivalent to Φ�1 qð Þþ γ>0. If 0 < r<Φ�1 qð Þþ γ, then

Z∞
r= 2ρð Þ

Φ
sρ� γffiffiffiffiffiffiffiffiffiffiffiffi
1�ρ2

p !
ϕ sð Þds⩽

Zr=ρ
r= 2ρð Þ

Φ
r� γffiffiffiffiffiffiffiffiffiffiffiffi
1�ρ2

p !
ϕ sð Þdsþ1�Φ r=ρð Þ:
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We conclude that, as ρ # 0,

P Y 2⩾ γjY 1⩾ r= 2ρð Þð Þ⩽Φ
r� γffiffiffiffiffiffiffiffiffiffiffiffi
1�ρ2

p !
þ 1�Φ r=ρð Þ
1�Φ r= 2ρð Þð Þ!Φ r� γð Þ< q,

where the convergence of the second term to zero follows, because by Mills ratio, as ρ # 0,

1�Φ r=ρð Þ
1�Φ r= 2ρð Þð Þ�

ϕ r=ρð Þ
ϕ r= 2ρð Þð Þ

r= 2ρð Þ
r=ρ

⩽ e�3r2= 8ρ2ð Þ ! 0:

In view of the monotonicity (i), we conclude that ηρ⩾ r= 2ρð Þ, for sufficiently small ρ.
By similar reasoning, for any η< η,

Φ
ηρ� γffiffiffiffiffiffiffiffiffiffiffiffi
1�ρ2

p !
⩽P Y 2⩾ γjY 1⩾ηð Þ⩽Φ

ηρ� γffiffiffiffiffiffiffiffiffiffiffiffi
1�ρ2

p !
þ1�Φ ηð Þ
1�Φ ηð Þ :

For η¼ ηρ and η¼ ηρþ ffiffiffi
ρ

p
, another application of Mills ratio shows that the ratio on the right is bounded above by

e�ηρ
ffiffi
ρ

p
⩽ e�r= 2

ffiffi
ρ

pð Þ � ρ. We conclude that

Φ
ηρρ� γffiffiffiffiffiffiffiffiffiffiffiffi
1�ρ2

p !
⩽ q, Φ

ηρρþρ3=2� γffiffiffiffiffiffiffiffiffiffiffiffi
1�ρ2

p !
⩾q�ρ:

Solving this for ηρ gives the first assertion of (v).
The solution to P Y 2⩾ γjY 1 ¼ ηð Þ¼ q can be derived analytically, as η¼ Φ�1 qð Þ

ffiffiffiffiffiffiffiffiffiffiffiffi
1�ρ2

p
þ γ

� �
=ρ. This readily gives

the second part of assertion of (v).

Lemma 2. If f , g :ℝ 7!ℝ are non-decreasing functions, then cov f Uð Þ, g Uð Þð Þ⩾0, for any random vari-
able U .

Proof. By monotonicity f uð Þ� f vð Þð Þ g uð Þ� g vð Þð Þ⩾0, for any u, v. Applying this to independent copies U ,V
of U, we find E f Uð Þ� f Vð Þð Þ g Uð Þ� g Vð Þð Þ⩾0. The left side can be worked out as
2Ef Uð Þg Uð Þ �2Ef Uð ÞEg Uð Þ¼ 2cov f Uð Þ, g Uð Þð Þ.

A.2 | Asymptotics of the Bayesian estimators for CoI formulation
Let Θ	ℝd be open, and let H :Θ�ℝ!ℝ be a continuously differentiable map such that η 7!H θ, ηð Þ is strictly increas-
ing from a negative value to a positive value, for every θ�Θ. Let η :Θ!ℝ be defined by

H θ, η θð Þð Þ¼ 0:

We are interested in the plug-in estimator η bθ� �, given an estimator bθ of θ; in the induced posterior distribution of
η θð Þ, given a posterior distribution for θ; and in the solution to

R
H θ, ηð ÞΠ dθjYnð Þ¼ 0, for Π θ� � jYð Þ a posterior

distribution.
The intended application is the map H θ, ηð Þ¼ Prθ YT ⩾ γjY 0⩾ηð Þ�q, for a bivariate normal vector Y 0,YTð Þ with

positive correlation, and numbers γ and q such that Pr YT ⩾ γð Þ< q<1.
Write Hθ θ, ηð Þ for the d�1ð Þ vector of partial derivatives of H with respect to θ and Hη θ, ηð Þ for the partial deriva-

tive with respect to η. We set η0 ¼ η θ0ð Þ and assume throughout that Hη θ0, η0ð Þ>0.
Let bθn be estimators based on data Yn, for n¼ 1, 2…. The following lemma shows that asymptotic normality of these

estimators carries over onto the solutions η bθn� �
. Write ⟿ for convergence in distribution of random vectors. In par-

ticular, Zn ⟿N 0,Σð Þ means that P Zn ⩽ xð Þ!P Z ⩽ xð Þ, for every x �ℝd, and a vector Z�N 0,Σð Þ.
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Lemma 3. If
ffiffiffi
n

p bθn�θ0
� �

⟿Nd 0,Σ0ð Þ, for some θ0 �Θ and positive-definite matrix Σ0, thenffiffiffi
n

p
η bθn� �

�η0

� �
⟿N 0, τ20

� �
, for η0 ¼ η θ0ð Þ and τ20 ¼Hη θ0, η0ð Þ�2Hθ θ0, η0ð ÞTΣ0Hθ θ0, η0ð Þ.

Proof. Abbreviate bη¼ η bθn� �
. By the monotonicity of H in its second argument

Pr bη> η0þϵð Þ⩽Pr H bθn, η0þϵ
� �

⩽ 0
� �

, for any ϵ>0. Since H bθn, η0þϵ
� �

!H θ0, η0þϵð Þ in probability by
continuity of H, and H θ0, η0þϵð Þ>0, it follows that Pr bη> η0þϵð Þ! 0. Combined with a similar bound on
the left side, this shows that bη! η0, in probability.

Define a function R by

R θ, ηð Þ¼H θ, ηð Þ�H θ0, η0ð Þ�Hθ θ0, η0ð ÞT θ�θ0ð Þ�Hη θ0, η0ð Þ η�η0ð Þ
k θ�θ0 kþ j η�η0 j

:

Then R bθ,bη� �
! 0 in probability, by the continuous mapping theorem and because H is assumed differ-

entiable. By the definitions of bη and η0 we have

0¼H bθ,bη� �
�H θ0, η0ð Þ

¼Hθ θ0, η0ð ÞT bθ�θ0
� �

þHη θ0, η0ð Þ bη�η0ð ÞþR bθ,bη� �
kbθ�θ0 kþ bη�η0j j
� �

:

It follows that, with 0=0¼ 0,

ffiffiffi
n

p bη�η0ð Þ Hη θ0, η0ð ÞþoP 1ð Þ jbη�η0 jbη�η0

	 

¼�Hθ θ0, η0ð ÞT ffiffiffi

n
p bθ�θ0
� �

þoP 1ð Þ ffiffiffi
n

p kbθ�θ0 k :

The result follows by Slutzky's lemma and the fact that Hη θ0, η0ð Þ>0, by assumption.

Next assume that for a given prior distribution on Θ, we obtain a posterior distribution Π θjYnð Þ. Let k � k denote the
total variation norm. Under the Bernstein-von Mises theorem (cf. e.g., van der Vaart5, Chapter 10), the posterior distri-
bution permits a normal approximation as assumed in the following lemma.

Lemma 4. If kΠ θjYnð Þ�Nd
bθn,n�1Σ0

� �
k! 0 in probability, for estimators bθn such thatffiffiffi

n
p bθn�θ0
� �

⟿N 0,Σ0ð Þ, for some θ0 �Θ and positive-definite matrix Σ0, then kΠ η θð ÞjYnð Þ�
N η bθn� �

, n�1τ20

� �
k! 0 in probability, for τ0 as in the preceding lemma.

Proof. Fix arbitrary a2,…, ad �ℝd such that Hθ θ0, η0ð Þ, a2,…, ad are orthogonal in ℝd and a2,…, ad have
norm 1. Define a map H :Θ�ℝd !ℝd by

H θ, ηð Þ¼

H θ, η1ð Þ
aT2 θ�η2

..

.

aTd θ�ηd

0BBBB@
1CCCCA:

Then H is continuously differentiable with

∂H θ, ηð Þ
∂θ1� � �∂θd ¼

Hθ θ, η1ð ÞT
aT2

..

.

aTd

0BBBBB@

1CCCCCA,
∂H θ, ηð Þ
∂η1� � �∂ηd

¼

Hη θ, η1ð Þ 0 � � � 0

0 1 � � � 0

..

. ..
. ..

.

0 0 � � � 1

0BBBB@
1CCCCA:
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The second matrix at θ0, η0ð Þ, where η0 ¼ η θ0ð Þ, aT2 θ0,…, aTd θT0
� �

is the solution to H θ0, ηð Þ¼ 0, is invert-
ible. By the implicit function theorem there exists an open neighbourhood G of θ0 and a diffeomorphism η :
G! η Gð Þ	ℝd such that H θ, η θð Þð Þ¼ 0, for θ�G. Clearly η1 θð Þ¼ η θð Þ. Abbreviate bη¼ η bθ� � and η0 ¼ η θ0ð Þ.

By the same method as in the preceding lemma we find that
ffiffiffi
n

p bη�η0

� �
tends in distribution to a nor-

mal distribution. For a given bounded set B	ℝd, the probability of the event bηþB=
ffiffiffi
n

p 	 η Gð Þ therefore
tends to one. On this event we have that

ffiffiffi
n

p
η θð Þ�bη� �

�B if and only if θ� η�1 bηþB=
ffiffiffi
n

p� �
, where η�1 is

the (ordinary) inverse function of η. By assumption θ jYn is asymptotically distributed as bθþΣ1=2
0 Z=

ffiffiffi
n

p
, for

a standard normal vector Z. We thus have that, with ϕ the density of Z,

Pr
ffiffiffi
n

p
η θð Þ�bη� �

�B Ynj Þ ¼Pr θ� η�1 bηþB=
ffiffiffi
n

p� �
jYn

� �
¼Pr bθþΣ1=2

0 Z=
ffiffiffi
n

p
� η�1 bηþB=

ffiffiffi
n

p� �� �
þoP 1ð Þ

�
ðA1Þ

¼
Z

z:
ffiffi
n

p
η bθþΣ1=2

0 z=
ffiffi
n

p� �
�bη� �

� B

ϕ zð ÞdzþoP 1ð Þ

¼
Z
B
ϕ

ffiffiffi
n

p
Σ�1=2
0 η�1 bηþ y=

ffiffiffi
n

p� �
�bθ� �� �

jdz
dy

jdyþoP 1ð Þ,

ðA2Þ

where we have made the substitution
ffiffiffi
n

p
η bθþΣ1=2

0 z=
ffiffiffi
n

p� �
�bη� �

¼ y, and j dz=dy j is (the determinant of) the Jacobian
of the transformation. Here

ffiffiffi
n

p
Σ�1=2
0 η�1 bηþ y=

ffiffiffi
n

p� �
�bθ� �

!Σ�1=2
0 η�1

� �0
η0ð Þy¼Σ�1=2

0 η0 θ0ð Þ�1y,

dz
dy

¼Σ�1=2
0 η�1

� �0 bηþ y=
ffiffiffi
n

p� �
!Σ�1=2

0 η0 θ0ð Þ�1:

The convergence is uniform in y ranging over bounded sets. It follows that the integral tends toZ
B
ϕ Σ�1=2

0 η0 θ0ð Þ�1y
� �

jΣ�1=2
0 η0 θ0ð Þ�1 j dy:

We recognise this as the probability of the set B under the normal distribution N 0, η0 θ0ð ÞΣ0η0 θ0ð ÞT
� �

.
The first marginal of this distribution is the normal distribution in the lemma.

To complete the proof we argue that the convergence is valid in the sense of the total variation distance.
The approximation of Π θ� � jYnð Þ with a Gaussian distribution is valid uniformly in B by assumption. Thus
the approximation (A1) is valid uniformly, and it suffices to show that (A1) tends to the final equation, uni-
formly in B. Because the integrand in (A2) converges uniformly for y in bounded sets, the Gaussian proba-
bility in (A1) converges uniformly in bounded sets B. Since we can find a sufficiently large compact set that
contains most of the mass, this suffices.

As a consequence of the preceding lemma, the posterior median or posterior trimmed mean bη of Π η θð ÞjYnð Þ
satisfies

ffiffiffi
n

p bη�η θ0ð Þð Þ⟿N 0, τ20
� �

:

Convergence of the posterior mean would require some extra conditions, as the range of η θð Þ may be unbounded,
depending on H.

Finally given a posterior distribution Π θjYnð Þ, consider the solution eη Ynð Þ to E H θ, ηð ÞjYnð Þ¼ 0. Thus we first take
the average of the curves η 7!H θ, ηð Þ relative to the posterior distribution, and then determine a zero. Although in gen-
eral eηn will be different from any of the preceding, the following lemma shows that it is asymptotically very close to the
plug-in estimator using the posterior mean E θjYnð Þ as the estimator of θ.
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Strengthen the assumptions on H to: H is bounded and twice continuously differentiable. Write Hθθ for the second
derivative matrix of H relative to θ.

Lemma 5. Suppose that nCov θjYnð Þ!Σ0 in probability, and n2E k θ�bθnk4jYn

� �
¼OP 1ð Þ, forbθn ¼E θjYnð Þ. Assume that bθn, η bθn� �� �

! θ0, η0ð Þ in probability. Then
n eηn�η bθn� �� �

!�1
2Hη θ0, η0ð Þ�1tr Hθθ θ0, η0ð ÞΣ0ð Þ, in probability.

Proof. Write bη¼ η bθ� �. By the monotonicity of η 7!E H θ, ηð ÞjYnð Þ and the definition of eη we have
Pr eη> η0þϵð Þ⩽Pr E H θ, η0þϵð ÞjYnð Þ⩽ 0ð Þ, for every ϵ>0, which tends to zero since
E H θ, η0þϵð ÞjYnð Þ!H θ0, η0þϵð Þ>0, in probability. Combined with a similar argument for the left side,
this shows that eη! η0, in probability.

By definition E H θ,eηð ÞjYnð Þ¼ 0 and E θ�bθjYn

� �
¼ 0. Then for δ>0, by the assumed boundedness of H

and Markov's inequality,

jE H θ,eηð Þ1kθ�bθk ⩽ δ
jYn

	 

j ¼ jE H θ,eηð Þ1kθ�bθk> δ

jYn

	 

j ⩽ 1

δ4
E k θ�bθnk4jYn

� �
,

jE θ�bθ� �
1kθ�bθk ⩽ δ

jYn

	 

j ¼ jE θ�bθ� �

1kθ�bθk> δ
jYn

	 

j ⩽ 1

δ3
E k θ�bθnk4jYn

� �
:

For δ¼ δn # 0 slowly enough that δ4nn!∞, both expressions are oP n�1ð Þ, by the assumption on the
fourth moment.

Define bR θ, ηð Þ as

bR θ, ηð Þ¼
H θ, ηð Þ�H bθ,bη� �

�P2 θ, ηð Þ
k θ�bθk2þ η�bηj j2

,

where P2 θ, ηð Þ is the second order Taylor polynomial of H around bθ,bη� �
, i.e.

P2 θ, ηð Þ¼Hθ
bθ,bη� �T

θ�bθ� �
þHη

bθ,bη� �
η�bηð Þ

þ1
2

θ�bθ� �T
Hθθ

bθ,bη� �
θ�bθ� �

þ θ�bθ� �T
Hθη

bθ,bη� �
η�bηð Þþ1

2
Hηη

bθ,bη� �
η�bηð Þ2:

Since H bθ,bη� �
¼ 0 by definition of bη,

E H θ,eηð Þ1kθ�bθk ⩽ δ
jYn

	 

¼E P2 θ,eηð Þ1kθ�bθk ⩽ δ

jYn

	 

þE R θ,eηð Þ k θ�bθk2þ eη�bηj j2

� �
1kθ�bθk ⩽ δ

jYn

	 

:

By the preceding the left side is oP n�1ð Þ, if δ # 0 sufficiently slowly. Since the supremum of R over a
shrinking neighbourhood of θ0, η0ð Þ tends to zero, we can bound R out of the conditional expectation and
that the remainder term gives a contribution of the order oP n�1ð Þ. The term involving P2 contributes five
terms. The term that is linear in θ�bθ was already seen to be oP n�1ð Þ, while the mixed term in θ�bθ and eη�bη is even smaller due to the presence of eη�bη. Th quadratic term in eη�bη is negligible relative to the linear
term in this variable. Thus rearranging the terms yields

eη�bηð Þ Hη θ0, η0ð ÞþoP 1ð Þ� �¼�1
2
E θ�bθ� �T

Hθθ
bθ,bη� �

θ�bθ� �
1kθ�bθk ⩽ δ

jYn

	 

þoP n�1

� �
:
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The indicator within the conditional expectation can be removed, and Hθθ
bθ,bη� �

replaced by Hθθ θ0, η0ð Þ,
at the cost of another oP n�1ð Þ-term, The expectation can next be computed as the trace of the matrix
Hθθ θ0, η0ð ÞCov θjYnð Þ. This matrix times n tends to Hθθ θ0, η0ð ÞΣ0, by assumption.

The intended application is to find a “control limit” η such that Prθ YT ⩾ γjY 0⩾ηð Þ¼ q. If θ is unknown, it is replaced
by a data-based approximation. The following corollary shows that estimation leads to a random error of order
OP n�1=2
� �

in the control level q.

Corollary 1. Assume that the conditions of the preceding lemmas hold and let bη be either the plug-in estimator
η bθ� �, or the median or trimmed mean of the posterior distribution of η θð Þ, or the solution to E H θ, ηð ÞjYnð Þ¼ 0.
Then

ffiffiffi
n

p
H θ0,bηð Þ�H θ0, η0ð Þð Þ⟿N 0,Hθ θ0, η0ð ÞTΣ0Hθ θ0, η0ð Þ

� �
.

Proof. This is an immediate consequence of the three lemmas and the Delta-method.
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