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1 Introduction

In the field of bulk chiral magnetism, helical, cycloidal or skyrmion lattice
magnetic structures and textures have been to a great extend unravelled by
neutron scattering. The focus has been on the members of the B20 family,
which are spontaneously chiral like MnSi (see e.g. Grigoriev, 2005; Pappas
et al., 2009; Kindervater et al., 2014) or on mutliferroic systems such as
MnWO4, where magnetic chirality is induced by applying electric fields
(Finger et al., 2010a). In this topical field of research, where fundamental
research is often driven by potential applications in spintronics (Fert et al.,
2013; Sampaio et al., 2013), the scattering of polarized neutron beams has
been an invaluable tool as it provides a direct and unique insight on the
specific topology of magnetic correlations. This is due to the vector nature
of the (dipole) interaction between the neutron beam polarization and a
magnetic sample, which has been the subject of extensive literature
(Halpern and Johnson, 1939; Blume, 1963; Maleyev, 1962, Maleyev et al.,
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1963; Brown, 2001; Simonet et al., 2012); since the pioneering experiment
by O. Frisch et al., where for the first time a polarized neutron beam was
produced and Larmor precessions were induced (Frisch et al., 1938).

In this review, we focus on the scattering of a polarized neutron beam by
magnetic correlations only and will thus neglect any nuclear and nuclear
magnetic interference contributions. Almost all previous work (see e.g. Brown,
2001; Simonet et al., 2012) dealt with magnetic Bragg scattering which is well
localised in the reciprocal (Q) space. However, a different situation arises when
dealing with diffuse chiral scattering which spreads over the reciprocal space
and may even overlap with other non-chiral contributions.

In the following, we discuss the effect of magnetic chirality on the cross
section and polarization of the scattered beam and derive simple relations that
compare with experiment, on the example of the archetypal system MnSi.

Finally we discuss the way chiral scattering affects the results of Neutron
Spin Echo spectroscopy (NSE), both in the paramagnetic and the ferromagnetic
neutron spin echo modes. For this purpose we introduce and compare the
paramagnetic and the ferromagnetic Neutron Spin Echo methods, as the latter
has not been discussed in the literature so far. At last, we discuss the insight
provided by the vector nature of the (dipole) interaction between the neutron
beam polarization and a magnetic sample on the Quantum Mechanical
description of Larmor precession based methods.

2 Magnetic scattering of a polarized neutron beam

2.1 Cross section

The starting point is the Fourier transform of the long ranged dipole-dipole
electromagnetic interaction potential between a neutron with magnetic moment
scattered with a momentum transfer given by the scattering vector Q by

electrons with spin si, momentum pi and at respective positions ri :

µ= × × ×

=

U Q Q s Q
i

Q
Q p exp iQ r

M

( ) 2 ˆ ( ˆ) ( ˆ ) ( )M B
i

i i i0

0 (1)

with γ= 1.91, µB the Bohr magneton and ρ0 = μ0 μn, where μ0 is the vacuum
permeability and μn the nuclear magneton. The magnetic interaction vector M

is the projection perpendicular to Q of the Fourier transform of the magnetic
moments distribution, both spin and orbital, created by the unpaired electrons
of the scatterer. This relation is at the origin of the vector properties of mag-
netic neutron scattering, which are nowadays explained in textbooks and
widely used to discriminate the magnetic from nuclear scattering contributions.
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The implications for chiral magnetism were first discussed by Overhauser
(1962) and Izyumov (1962) and led to the complete formalism developed
almost simultaneously by Blume (1963) and Maleyev (1962). Following
Blume, in the most general case, the magnetic scattering neutron cross section
can be written as:

= +

+ ×( )
S Q E E h

p q M q q M q i P q M q q M q

( , ) ( ) ( )

,* *

M o

k

k f i

q q
q i f f i i i f f i

2

,

f

i

i f
i

(2)

where the subscripts i and f indicate the initial (before scattering) and final
(after scattering) states, k and E label the momentum and energy of the neutron

respectively, hω is the energy transfer, Pi the polarization of the incoming beam
and the quantum numbers q label the states of the scatterer which occupies an
initial state qi with a probability pqi

.
The first term in the sum of Eq. (2) is the magnetic scattering cross section

for an unpolarized neutron beam, SM , which is independent of the chiral
magnetic properties of the scatterer:

= +S Q
k

k
E E h p q M q q M q( , ) ( ) ( ) * .M

f

i
f i

q q
q i f f i0

2

,i f

i
(3)

The second term in the sum of Eq. (2) is non-zero only if a polarized neutron
beam interacts with chiral magnetic correlations, and is the dot product

between Pi and a quantity that we will call the chiral scattering vector:

= + ×H Q
k

k
E E h i p q M q q M q( , ) ( ) ( ) * .

f

i
f i

q q
q i f f i0

2

,i f
i

(4)

Thus, H Q( , ) is collinear with Q̂, antiparallel for a right handed and parallel
for a left handed chirality, and its modulus can take any value between 0 and

S Q( , )M depending on the degree of chirality of the probed magnetic corre-
lations. Consequently, we introduce two parameters: ζ for the handedness of
the chiral magnetic correlations, with ζ= −1 for right and ζ= +1 for left, and
η for the degree of chirality, or chiral fraction, defined as:

=Q
H Q

S Q
( , )

( , )

( , )
.

M

(5)

Therefore, 0 ≤ η ≤ 1 with η= 0 for non-chiral and η= 1 for completely chiral
magnetic correlations as it is the case e.g. for MnSi at low temperatures
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(Grigoriev, 2005; Pappas et al., 2009; Kindervater et al., 2014). Hence, without
any loss of generality the chiral scattering vector can be written as:

=H Q S Q Q( , ) ( , ) ˆ ,M (6)

and the general relation for the cross section of Eq. (2) reduces to the simple
generic form (Pappas et al., 2009):

= +S Q S Q P Q( , ) ( , )(1 ˆ).M M i (7)

This equation highlights the vector properties of the interaction between a
polarized neutron beam and chiral magnetic correlations, which also affects the
cross section and as shown below for the extreme case, where η= 1 and

= ±P Q̂i , the cross section may be either doubled, with respect to the unpo-
larized case, or completely vanish. In other words, depending on the direction

of Pi there can be constructive or destructive interference between the non-
chiral and chiral scattering, an effect observed in several systems including
MnSi (Roessli et al., 2002; Grigoriev et al., 2005; Pappas et al., 2009;
Grigoriev et al., 2013; Moskvin et al., 2013; Bannenberg et al., 2017; Pappas
et al., 2011; Pappas et al., 2021):

= = =
= = =

S Q S Q P Q

S Q P Q

( , ) 2 ( , ) for ˆ and 1,

( , ) 0 for ˆ and 1.

M M

M

i

i

2.2 Polarization

Following the formalism of Blume the polarization of the scattered neutron
beam, Pf , is given by:

= +

+

×( )

P S Q E E h p q M q q P M q

q P M q q M q P q M q q M q

i q M q q M q

( , ) ( ) ( ) *

* *

* .
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i f f i

2

,

f

i
i f

i

(8)

The first three terms of the sum describe the general interaction between a
neutron beam and magnetic correlations as derived by Halpern and Johnson
(1939). This formalism shows that in the absence of chiral magnetic scattering
the incoming beam polarization rotates or precesses by π around M . The last
term is specific to chiral magnetism and creates a polarization along Q. The
repercussions of this term are most clearly seen if the incoming beam is
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depolarized, in which case, the scattered beam is polarized along the chiral
scattering vector:

= =P P S Q H Qfor 0 ( , ) ( , ).i f m (9)

And by using Eq. (6):

= =P P Qfor 0 ˆ.i f (10)

This result is always valid independently from e.g. the existence of a
quantisation axis defined by a magnetic field. This is a striking difference from
usual neutron polarizers, ferromagnetic single crystals or magnetic multilayers,
which create a polarization collinear to the quantisation axis defined by a
magnetic field.

In the most general case, for a well defined direction of M , induced e.g. by
magnetocrystalline anisotropy, the scattered beam polarization is given by
Brown (2001) and Lelièvre-Berna (2024):
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(11)

with Pi,α the x, y, z components of the incoming beam polarization, mα =Mα/M⊥,
the normalised components along y, z of the Fourier transform of the magnetic

moments distribution perpendicular to Q, =m m m*2 and the symbol ℜ
standing for the real part of a complex quantity. The normalisation by the cross
sections has been overlooked in the literature so far and is a direct consequence

of Eq. (8) ensuring that the modulus of Pf does not exceed 1. For comprehensive
simulations the reader is referred to Lelièvre-Berna (2024).

As mentioned above, if the direction of M is well defined, the non-chiral
term leads to a π rotation of the polarization vector around M . In this case the
modulus of the polarization does not change and =P Pf i . A different
situation occurs when the magnetic moments are homogeneously distributed in
the plane perpendicular to Q, as e.g. for Heisenberg magnets or helices. In this
case the direction of M is not well defined and the scattering results from all
possible directions of M . Consequently, the polarization of the scattered
neutron beam simplifies to:

= + +P Q P Q P Qˆ [ ˆ ] / [1 ˆ].f i i (12)
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Thus, in the absence of chirality, only the component of Pi along Q is pre-
served, although flipped. In this case the modulus of the final polarization can

be reduced and in the extreme case where P Qi the scattered beam is com-

pletely depolarized with =P 0f .
Experimentally it is impossible to distinguish between a rotation of the

polarization vector and a loss of polarization as long as a magnetic field is
applied at the sample, in which case only the projection of the beam polar-
ization along this magnetic field can be measured. The way out is a zero
magnetic field polarimeter such as e.g. Cryopad (Tasset, 1989; Lelièvre-Berna,
2005, 2007) or MuPad (Janoschek et al., 2007), consisting of a zero mag-
netic field area around the sample and modules that allow to control the
direction of Pi and Pf , thus providing full information on both the direction
and modulus of Pf .

3 The case of MnSi

In his original publication, Blume (1963) illustrated the non-trivial interplay
between polarized neutron beams and chiral magnetism using the most
simple example of a magnetic helix. This structure is the ground state at zero
magnetic field of the skyrmion hosting system MnSi, and other systems of the
B20 family, where single magnetic chirality results from the handedness of
the crystal structure (Dyadkin et al., 2011). The effect of magnetic chirality,
left handed in the case of MnSi, was first seen on the scattering of polarized
neutrons at the helical satellites around structural Bragg peaks (Roessli, 2002)
and soon after by polarized small angle neutron scattering (SANS)
(Grigoriev, 2005).

The left handed helical arrangement, as it is the case in MnSi, of the spin
unit vector ŝ in the ŷ−ẑ plane propagating along x̂, is given by:

= =
= + +
s x y cos x r z sin x r

y i z e y i z e

ˆ ( ) ˆ (2 ˆ / ) ˆ (2 ˆ / )

[( ˆ ˆ) ( ˆ ˆ) ],i x r i x r1

2
2 ˆ / 2 ˆ /

(13)

with ℓ the pitch of the helix. The perfect helix is thus a special case with the

real and imaginary parts of M being equal to each other and leading to the
utmost manifestation of magnetic chirality in polarized neutron scattering.

We will in the following focus on the SANS geometry schematically shown
in Fig. 1 and note that these considerations also apply around any other
equivalent Bragg peak. We chose a coordinate system such that x̂ is parallel to
Q, ŷ points along the neutron beam propagation vector ki and ẑ complements
the cartesian coordinate system. This implies that the coordinate system varies
with Q and thus it is not the same when neutrons are scattered to the right or
left of the neutron beam.
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In the SANS geometry considered here, the coordinate systems of all
possible reflections share the same ŷ but rotate around this axis following the
scattering vector while =Q 0 is a singular point.

3.1 Ordered helical phase

The resulting scattering pattern from an unpolarized neutron beam is illu-
strated by Fig. 2A and has two satellite peaks at = = ±Q x̂, with τ = 2π/
ℓ, i.e. left and right respectively of Q = 0, or any other equivalent Bragg
peak. If the beam is polarized, the effect of magnetic chirality becomes
visible and as a consequence of Eq. (7) the peak for which =Q Pˆ ( ) 1i is
enhanced whereas the one for =Q Pˆ ( ) 1i is extinct, as shown in Fig. 2B
and C respectively.

In the presence of a ferromagnetic component, e.g. induced by an external
magnetic field in the so-called conical phase of chiral magnets, the spin unit
vector is given by:

= +s r x cos sin y cos x r z sin x rˆ ( ) ˆ ( ) ( )( ˆ (2 ˆ / ) ˆ (2 ˆ / )) (14)

with ϕ the angle between the magnetic moments and the propagation vector of
the helix as illustrated in Fig. 2. In this case chiral satellites coexist with a non-
chiral ferromagnetic peak at Q = 0. Of course, as neutrons “see” only the

components of the spin perpendicular to the scattering vector Q, in the geo-
metry considered here this ferromagnetic component would have been invisible
and the scattering patterns would have been the same as in Fig. 2A and B.

FIG. 1 Geometry for the magnetic small angle neutron scattering by helices propagating along x̂ ,
which is collinear with Q . The other coordinates are chosen such that y kˆ i, the neutron beam
propagation vector, and ẑ complements the cartesian system. As the coordinate system varies with
Q it is not the same when neutrons are scattered to the right and left of the neutron beam.
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However, in the presence of several equivalent crystallographic directions, as
e.g. in the tilted spiral phase of Cu2OSeO3 (Qian et al., 2018; Chacon et al.,
2018), the scattering patterns should include a ferromagnetic peak as shown in
Fig. 2D–F with a weight given from the specific magnetic structure and the
angle ϕ.

3.2 Paramagnetic phase

In the case of MnSi, just above TC the helical Bragg (satellite) peaks are
replaced by a broad diffuse scattering, which concentrates on the sphere with

FIG. 2 Small angle neutron scattering patterns originating from a chiral helical (A–C) and a
conical structure (D–F). In both cases, the helical component, perpendicular to the helix propa-
gation vector along x̂ , leads to chiral Bragg peaks – satellites – around the position Q = 0. The
interaction with a polarized neutron beam leads, according to Eq. (7), to the patterns B–C and D–E.
The existence of a ferromagnetic component leads to a non-chiral ferromagnetic Bragg peak at
Q = 0, the intensity of which is independent from the polarization of the incoming beam as
illustrated by the patterns (D–F).
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radius τ= 2π/ℓ, as shown in Fig. 3A (Grigoriev, 2005; Pappas et al., 2009,
2011; Hamann, 2011; Janoschek, 2013b). At higher temperatures, this diffuse
scattering broadens and its centre moves towards Q = 0 (Ishikawa, 1985;
Hamann, 2011).

In the following, for the sake of simplicity and without any loss of gen-
erality, we adopt the Ornsten-Zernicke formalism and describe this diffuse
scattering by simple Lorentzian functions centred at Q = τ for the chiral and at
Q = 0 for a non-chiral ferromagnetic component.

The pattern of Fig. 3A implies that all local helical propagation vectors are
homogeneously distributed in space and only the correlation length along the
direction of the helix is important. In the absence of any non-chiral (e.g. fer-
romagnetic) contribution the cross section for an unpolarized neutron beam
becomes:

+
+

+ +
= + +

+ + +
S Q

C

Q

C

Q
C

Q

Q Q
( )

( ) ( )
2

( ) 2 ( )
,M 2 2 2 2

2 2 2

2 2 2 2 2 2 4

(15)

where C is a quantity reflecting the physics of the scattering process
(including the magnetic form factor) and κ= 2π/ξ with ξ the characteristic
correlation length. We note that Eq. (15) is a simplified version of Eq. (7) in
Grigoriev (2005).

The resulting scattering patterns for unpolarized and polarized neutron
beams are given in Fig. 3A–C with the corresponding Q-dependent intensities
depicted in Fig. 3D–F. Consequently, the scattering is fully chiral despite the
finite correlation length.

At high temperatures, however, ξ becomes significantly shorter than the
helical pitch in which case a crossover to non-chiral (e.g. ferromagnetic)
correlations may occur as observed e.g. in MnSi (Ishikawa, 1985; Hamann,
2011). Consequently over an intermediate region the scattering would be a
superposition of chiral scattering centred at Q = τ and a non-chiral scattering
centred at e.g. Q = 0:

+
+ + +

+ + +
S Q

C

Q

C Q

Q Q
( )

cos ( ) 2 sin ( )( )

( ) 2 ( )M

2

2 2

2 2 2 2

2 2 2 2 2 2 4 (16)

where ϕ is the average angle between the magnetic moments and the local helix
propagation vectors, defined as in Fig. 2.

Following Eq. (7), the interaction with a polarized neutron beam leads to
the scattering patterns of Fig. 4C–F. Figs. 3 and 4 illustrate the simplest way to
determine experimentally the magnetic vector chirality: by measuring the
intensity of a scattered polarized neutron beam, while reversing the incoming
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FIG. 3 Small angle neutron scattering patterns originating from chiral correlations (A–C), i.e.
with an average angle between the spins and the helical vector 〈ϕ〉 = 90°. The helical component
(blue and red dotted curves in D–F for the right and left satellites respectively), perpendicular to the
helix propagation vector along x̂ , leads to chiral scattering around Q = τ, which for a polarized
neutron beam is direction-dependent (left/right). The patterns are derived from Eq. 17 assuming
κ= 2τ.
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FIG. 4 Small angle neutron scattering patterns originating from chiral conical correlations, i.e.
with an average angle between the spins and the helical vector 〈ϕ〉 < 90° (A-C). The helical
component (blue and red dotted curves for the right and left satellites respectively in D-F), per-
pendicular to the helix propagation vector along x̂ , leads to chiral scattering around Q = τ as
before, and is superimposed on the non-chiral ferromagnetic scattering (black dotted curve) centred
at Q = 0. The patterns are derived from Eq. 17 assuming κ= 2τ and 〈ϕ〉 < 45°.
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neutron beam polarization, which should be parallel/antiparallel to the scat-
tering vector Q. Indeed in this case:

=
+

+
+

+
+ +

=
+

P Q S Q
C

Q

C

Q

C

Q

P Q S Q
C

Q

for ˆ ( )
cos ( )

sin ( )
( ) ( )

and for ˆ ( )
cos ( )

.

M

i M

i

2

2 2

2
2 2 2 2

2

2 2

(17)

If the intensities at e.g. Q = τ are designated as I+ and I− respectively, as shown
in Figs. 3 and 4, following Eq. (7) the chiral fraction is given by the ratio:

= = =
+

+

+
Q

I I

I I
( ) (18)

where η= 1 for 〈ϕ〉 = 90°, the case illustrated in Fig. 3, while η= 0.848 for
〈ϕ〉 = 45° and ξ= ℓ/2, thus κ= 2τ, the situation of Fig. 4.

At Q = τ Eq. (17) leads to:

= + + +
+

sin ( ) 1
1 [2 ( / ) ] [1 ( / ) ]

( / ) [4 ( / ) ]
.2

2 2

2 2

1

(19)

Thus, in this case, the magnetic chirality probed by polarized neutrons reflects
the topology of magnetic correlations and provides a direct measurement of the
average angle between the magnetic moments and the (local) helical propa-
gation vectors. In the following section we discuss the consequences in the
specific case of MnSi.

Eq. (17) shows that there is no simple relation between the correlation length and
the chiral fraction η. The simple relation between κ and η suggested in Grigoriev
(2005) is inconsistent with the Blume (1963) and Maleyev (1962) formalism (and
Eqs. (17) and (18)), which explains the disagreement between the predicted values
and our experimental data shown here and in Pappas et al. (2009, 2011).

Finally, we would like to point out that the case of MnSi and other systems of
the same family (e.g. Bannenberg et al., 2017; Dyadkin et al., 2011; Grigoriev
et al., 2013; Moskvin et al., 2013; Pappas et al., 2021) and beyond (e.g. Marty
et al., 2008; Dally et al., 2020), is special in that they are characterised by single
magnetic chirality induced by the chiral structure of the lattice. When this is not
the case, a reduction of η at the helical satellite position may reflect the coex-
istence of domains with opposite chirality as e.g. in mutliferroics, where an
imbalance between domains with opposite chirality can be induced and con-
trolled by electric fields (Brown et al., 1998, 2002; Ishiwata et al., 2010;
Hearmon et al., 2012; Yamasaki et al., 2007; Rodríguez-Velamazán et al., 2018;
Baum, 2013; Holbein, 2016; Finger et al., 2010b; Hutanu et al., 2014).
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3.3 Chiral fraction in the paramagnetic phase

Our very accurate measurements of chirality with spherical polarimetry (Pappas
et al., 2009, 2011) revealed that the magnetic correlations of MnSi are chiral
also in the paramagnetic phase reaching η= 1 within a limited temperature
range between TC ∼ 29 K and ∼ TC + 1 K. This observation led to a debate on
the nature of this highly correlated phase, that has strong characteristics of a
spin-liquid-like phase with particular topology. Pursuing the analysis of the
previous sections, we will in the following analyse existing data, complemented
by additional measurements, using Eq. (19) and will deduce the evolution of the
topology of magnetic correlations, while these build up above TC.

The experiment reported in Ref. Pappas et al. (2009, 2011) was performed on
the neutron spin echo spectrometer IN15 of the ILL, which has a polarized cold
neutron beam, λ ≥ 0.7 nm, and a highly efficient polarization analyser (efficiency
∼ 99%) in front of a 32× 32 cm2 position sensitive detector at a distance of
4.6 m from the sample. At a wavelength of λ= 0.9 nm used for these experi-
ments, the detector covers only a fraction of the whole scattering pattern illu-
strated by the blue dotted rectangle of Fig. 5. For the chirality analysisQ must be
well defined and for this reason the intensity was integrated over an area inside
the red rectangle illustrated in Fig. 5.

For a reliable determination of η it is also crucial to obtain a good signal
over background ratio and reach an accurate determination of the background.
For these measurements, which were done with the sample in a shielded zero-
magnetic-field chamber (thus minimising any spurious effects of the

FIG. 5 Small angle neutron scattering patterns originating from chiral conical correlations, i.e.
with an average angle between the spins and the helical vector 〈ϕ〉 < 90∘. The helical component,
perpendicular to the helix propagation vector leads to chiral scattering around Q = τ, reflected in
the difference between the patterns of A and B. This is superimposed on the non-chiral ferro-
magnetic scattering centred at Q = 0. The angular coverage by the IN15 detector in the experiment
discussed in the text is also indicated by the black rectangle whereas the red rectangle depicts the
area over which the scattered intensity was integrated.
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demagnetisation field on the neutron beam polarization) the background was
determined at high temperatures using neutron polarization analysis.

Figs. 6 and 7 depict (over the whole temperature range investigated and
close to TC respectively) an information on the topology of magnetic moments
that is directly obtained by polarized neutron scattering. Chirality increases
with decreasing temperature and saturates at TC + 1 K where ϕ = 90∘, i.e. at
this highly correlated and chiral fluctuating phase above TC the magnetic
moments are locked in the plane perpendicular to the local helix propagation
axes, which are homogeneously distributed in the space.

A surprising result is that helical correlations persist even at temperatures
as high ∼ 2TC, where η ∼ 0.2 leads to an average angle of ϕ ∼ 25∘. At this
temperature however the correlation length does not exceed 0.7 nm (Hamann,
2011), which is only ∼ 4% of the helical pitch, spanning only a couple of Mn
atoms. This indicates that in MnSi, the Dzyaloshinskii-Moriya interaction
is not just a perturbation that shows up only close to TC as often assumed
(e.g. Grigoriev, 2005, 2010; Janoschek et al., 2013a), but its influence on the
magnetic correlations extends over an extremely wide temperature range. The
robustness of these chiral correlations against thermal fluctuations is remi-
niscent of the behaviour of low dimensional magnets and could be related to
the one-dimensional character of helices.

FIG. 6 Chiral fraction (A) of the left-handed helical/conical correlations and average angle ϕ (B)
between the magnetic moments and the local helix propagation axis deduced using Eq. (19) in the case of
MnSi.
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4 Neutron spin echo spectroscopy (NSE)

In Neutron Spin Echo spectroscopy (NSE) the Larmor precession of a neutron
beam polarization in a magnetic field is used to directly measure the energy
transfer at the sample. In this way the energy resolution is decoupled from
other beam characteristics like monochromatisation and collimation and the
highest resolution in energy transfer (of the order of some neV) can be reached
while keeping the high intensity advantage of a beam, which is only 10–20%
monochromatic. This method has been the subject of numerous books and
reviews (see e.g. Mezei, 1980; Mezei et al., 2003) and for this reason we will
refrain here from an extensive introduction but will focus on the interplay with
chiral magnetic scattering. The starting point is the paramagnetic NSE and after
a short mention of polarimetric NSE we will discuss the ferromagnetic NSE
method, which has not been addressed in the literature so far. Finally, we
discuss the insights that the vector nature of the (dipole) interaction between
the polarization of the neutron beam and a magnetic sample provides for the
quantum mechanical description of methods based on Larmor precession.

4.1 Paramagnetic NSE

NSE uses a polarized neutron beam, consequently polarization analysis is
inherent to this method. As a general introduction to the terminology, the

FIG. 7 Same data as in Fig. 6 for the chiral fraction (A) of the left-handed helical/conical cor-
relations and the average angle ϕ (B) in the case of MnSi highlighting the behaviour close to TC.
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classical neutron spin echo (NSE) setup consists of a sequence of 3 flips
(π/2-precessions-π at the sample position-precessions-π/2) as schematically
shown in Fig. 8A and is equivalent to the Hahn echo sequence in NMR. The
echo condition requires the magnetic field integrals over the neutron beam
trajectory before and after the π flip, B1ℓ1 = B2ℓ2, to be equal.

For the paramagnetic NSE the π flip, which marks the reversal point of
Larmor precessions (before and after the scattering process), is realised by the
(para) magnetic scattering of the sample as schematically shown in Fig. 8B and
explained in Fig. 9, after Murani and Mezei (1980), and where as in Fig. 1,
Q is along x̂ and the neutron beam propagates along ŷ. The (precession)
magnetic field B is applied along ŷ and the precessions take place in the x− z
plane which also contains Q, a condition for paramagnetic NSE.

At the sample position the finite wavelength spread of the beam leads to a
distribution of precession angles, given that the precession angle is directly pro-
portional to the wavelength, and thus the neutron beam appears to be depolarised.

FIG. 8 Schematic representation of a Neutron Spin Echo setup, consisting of a sequence of 3
flips π/2-precessions-π at the sample position-precessions-π/2 (A), which is equivalent to the Hahn
echo sequence in NMR. For the paramagnetic NSE, (B), the π flip, which marks the reversal point
of Larmor precessions (before and after the scattering process), is realised by the (para) magnetic
scattering of the sample. The ferromagnetic NSE shown in (C) consists of a sequence of four π/2
flips (π/2-precessions-π/2-sample area-π/2-precessions-π/2) and is equivalent to the stimulated
echo sequence in NMR. The two π/2 flippers around the sample stop and resume precession
labelling respectively and thus decouple the sample area from the NSE measurement. The echo
condition for all cases requires the magnetic field integrals over the neutron beam trajectory in the
precession areas to be equal, which in the simple case (constant magnetic field) considered here
leads to B1ℓ1 = B2ℓ2.
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Here we consider a subsection of the neutron beam with a well defined (delta
function ideally) precession phase, such that the incoming polarization at the

sample is well defined and equal to Pi, which is in the precession x − z plane.
Assuming isotropic non-chiral scattering and following Eq. (12), the polar-

ization of the scattered beam will be given by =P Q Q Pˆ ( ˆ )f i , which implies

the component along Q x̂, will flip and =P Pf i, , . On the other hand, the com-

ponent along ẑ , which is perpendicular to Q, will become depolarized by the scat-

tering process and = =P P P0 /2 /2f i i, , , .
Consequently the components of the scattered polarization along x̂ and ẑ can be

recombined to give two vectors of equal magnitude, =P P P( ) /2NSE i i, ,

and = + =P P P P( ) /2 /2depol i i i, , with =P x P xˆ ( ˆ)i i, and =P z P zˆ ( ˆ)i i, .

With respect to Pi, PNSE has undergone a precession of π around ẑ . Through
this precession the z-axis becomes a mirror symmetry axis, where the order of
the phases is mirrored/reversed (those in front go behind), as required for the
echo condition. On the other hand Pdepol has only undergone a 180° phase shift
with respect to Pi and this component will keep precessing and will be depo-
larized at the last π/2 flipper. In this way it is possible to explain why magnetic
scattering plays the role of a π flipper in NSE, under the condition that Q is in
the precession plane, and why only half of the magnetic cross section gives an
echo. The other half is depolarized and half of it (thus 1/4 of the magnetic cross
section) is transmitted by the polarization analyser in front of the detector and
contributes to the background of the NSE measurement.

If the magnetic moments are not homogeneously distributed in the y− z
plane but point along ẑ following Fig. 9 the totality of the magnetic cross
section will lead to an echo. On the other hand, if the magnetic moments are
along ŷ the final result will be a 180° phase shift for the totality of the magnetic
scattering. In this case an additional π flipper is needed which implies that the
paramagnetic NSE method fails and there is no discrimination of the magnetic
scattering from other contributions. In the case of a homogeneous distribution
of the magnetic moments, the result is a mixture of these two extreme cases,
with 50% of the cross section giving an echo and 50% a 180° phase shift, as
discussed above. However, in this case it is not possible to distinguish between
M⊥,y and M⊥,z because the spin flip of the polarization component along x̂
results from all components of M .

The paramagnetic NSE method is very powerful because it leads to an
unambiguous discrimination of magnetic dynamics from all other contribu-
tions. As (para) magnetic scattering acts as a π flipper an echo obtained without
the π-flipper at the sample is the fingerprint of magnetic scattering. The
drawback of this straightforward distinction between magnetic and non-mag-
netic scattering comes with the cost of a reduced by 2 echo amplitude and
increased background. The advantage is enormous as this method allows for
measuring weak magnetic signals even on top of an intense (but not modu-
lated) background.
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These considerations hold also in the presence of chiral scattering. In this
case, the scattered beam polarization is given by Eq. (12) and results from the
normalised sum of the non-chiral Q Q Pˆ ( ˆ )i and chiral Q̂ terms. As
mentioned above, the latter creates a polarization, which however is not along B
but along Q̂. It is thus in the precession plane and contributes to NSE. As
schematically shown in Fig. 10 also the combination of these two terms gen-
erates a π flip, leading to echo condition, but with a phase shift in comparison to
the non-chiral case (seen in the difference of the angles ψ and ψ′). Averaged over
all possible orientations of Pi this shift leads to a reduced echo amplitude by a
factor that is a function of η and the scattering geometry. On the other hand, the
chiral polarization leads to an overall echo phase shift with respect to a reference
(e.g. equatorial plane) when measuring diffuse scattering with a position sensi-
tive detector as shown in Fig. 5.

Thus the paramagnetic NSE method accesses the combined dynamics of
both the chiral and non-chiral cross sections. These two terms can be disen-
tangled by the polarimetric NSE method, which combines NSE with a zero

FIG. 10 Similar drawing as in Fig. 9 highlighting the effect of chiral scattering on paramagnetic
NSE. The polarization along Q created by the chiral correlations affects the final result by
introducing a phase shift, seen in the difference of the angles ψ and ψ′.

FIG. 9 Schematic drawing of the change of the beam polarization due to the (para)magnetic
scattering at the sample, on the example of one subsection with a well defined (delta function
ideally) precession phase. Due to the paramagnetic scattering the component of the incoming beam
polarization which is along the scattering vector Q undergoes a spin flip, whereas the component
perpendicular to it depolarizes. As a result, in average, half of the signal precesses by π around the
axis perpendicular toQ and leads to an echo, without the need of any additional π flipper, whereas
the other half undergoes a phase shift of 180∘ and contributes to the depolarized background.
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magnetic field polarimeter around the sample (e.g. Cryopad Tasset, 1989;
Lelièvre-Berna, 2005, 2007) and has been described in detail in Pappas et al.
(2008, 2009) and Lelièvre-Berna et al. (2009). This method has been applied to
MnSi, where within the experimental accuracy, the same dynamics has been
found for the chiral and non-chiral scattering (Pappas et al., 2009, 2011). This
in retrospect is not surprising given the single chirality and simple helical
correlations of this system. There is however no reason that this should always
be the case and different dynamics for the two cross sections could be found in
more complex magnets than MnSi.

4.2 Ferromagnetic NSE

In the following we focus on ferromagnetic NSE, which consists of a sequence of
four π/2 flips (π/2-precessions-π/2-sample area-π/2-precessions-π/2) schemati-
cally shown in Fig. 8C and is equivalent to the stimulated echo sequence in NMR.
The two π/2 flippers around the sample stop and resume precession labelling
respectively and thus decouple the sample area from the NSE measurement. In this
way it is possible to either incorporate additional elements in the setup including
re-polarizers, as required for the intensity modulated (Farago and Mezei, 1986)
and polarimetric NSE (Pappas et al., 2008, 2009; Lelièvre-Berna et al., 2009), or
apply high magnetic fields at the sample independently of the precession field, as
in the case of ferromagnetic NSE.

Similarly to the paramagnetic NSE, also the four π/2 sequence leads to an echo
for only half of the scattering cross section whereas the other half is depolarized
and is seen as background. In the following we look more closely into the fer-
romagnetic NSE and also explain why the echo persists and with the same
amplitude independently of whether the two π/2 flips around the sample add to a π
flip or subtract, which would correspond to no flip at all (Ross Stewart).

The principle of ferromagnetic NSE has not been discussed in the literature
so far, and for this reason we start by considering the simple case of coherent
nuclear scattering (A in Fig. 11) before moving to the non-chiral and chiral
magnetic scattering (B and C respectively in Fig. 11).

We use again the same cartesian system of coordinates as above (see also
Fig. 1), where ŷ is along the beam propagation vector and x̂ perpendicular to it
and along Q. We will further assume that a (strong) magnetic field is applied
along Q and will consider the scattering geometry in the x− y plane at four
characteristic points of the setup as shown in Fig. 11: (I) just after the 2nd π/2
flip, which stops the precession labelling required for NSE, (II) and (III) just
before and after scattering at the sample respectively and finally (IV) just
before the 3rd π/2 flip, which resumes precession labelling. We further assume
that the π/2 flips at I and IV subtract, which highlights the π flip generated by
the ferromagnetic NSE. Nevertheless, our approach is also valid when these
two π/2 flips add to a π flip, in which case the components Pf ,NSE and Pf ,depol

are simply swapped.
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Before the sample, i.e. at the points I and II, the configuration is the same for
all three cases considered here. The π/2 flip at the point I brings the polarization
components, which were previously distributed in the x− z precession plane, as
in the paramagnetic NSE case and shown in Figs. 9 and 10, into the x− y plane.
Here we consider again a subsection of the neutron beam with a well defined
(delta function ideally) precession phase, such that the polarization at
the point I is known and equal to Pi.

The component Pi, , which is along x̂ and parallel to B , will be preserved
while the component Pi, , which is along ŷ and perpendicular to B , will
precess incoherently (due to magnetic field inhomogeneities) and will
depolarize. Thus at the position II, as for the paramagnetic NSE, the
recombination of the polarization components leads to two vectors:

=P P P( ) /2i i i,NSE , , and = +P P P( ) /2i i i,depol , , . The former is mirror sym-
metric to Pi whereas the latter is equal to Pi/2. If the polarization is not modified by
the scattering at the sample, as it is the case for coherent nuclear scattering shown in
Fig. 11A, Pi,NSE will be the component that will satisfy the condition for echo while
Pi,depol will lead to a depolarized background.

FIG. 11 Schematic drawings, similar to those of Figs. 9 and 10, of the evolution of the beam
polarization (on the example of one subsection with a well defined – delta function ideally –
precession phase) for the ferromagnetic NSE, in the case of (A) nuclear coherent, (B) paramagnetic
and (C) chiral magnetic scattering (see text).
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Isotropic paramagnetic scattering will flip the component of the polarization
along Q and as shown in Fig. 11B this flip introduces a phase shift of 180°
for both Pf ,NSE and Pf ,depol with respect to the case of coherent nuclear scat-
tering.

In the presence of chiral scattering this result must be complemented with
the polarization created by the chiral correlations, which, as for the para-
magnetic NSE, when averaged over all possible orientations of Pi, leads to a
reduced amplitude of the echo. On the other hand, similarly to paramagnetic
NSE, for measurements on a position sensitive detector the chiral term intro-
duces an overall phase shift of the echo group with respect to a reference (e.g.
equatorial) plane.

Besides the similarities, there is a substantial difference between the
paramagnetic and the ferromagnetic NSE (including all other methods using
the four π/2 configuration such as polarimetric and intensity modulated NSE),
as in the latter case it is not possible to disentangle the magnetic part from but
all other contributions to scattering (nuclear – coherent and spin incoherent –
and background). Thus, it is very difficult to extract reliable information when
the magnetic signal is weak with respect to the rest. This is a major drawback,
which also applies for the MIEZE (Gähler et al., 1992) variant of resonant NSE
and limits the applications to cases of strong magnetic diffuse scattering. MnSi
is one of these exceptional cases due to intense ring of diffuse scattering that
appears above TC and is schematically shown in Fig. 3A. In this case it was
possible to use ferromagnetic NSE and follow the evolution of the chiral
fluctuating correlations as the ring of scattering weakens and the scattering
concentrates along the magnetic field direction with increasing magnetic field
up to B = 0.4 T (Pappas et al., 2017).

4.3 Quantum Mechanical description of NSE

Larmor precession results from the coherent superposition of the spin-“up” and
spin-“down” eigenstates and is the basis of NSE spectroscopy, which can be
seen as a longitudical, Ramsey or Talbot-Lau, interferometry method (Rauch
and Werner, 2015). This implies that after the first π/2 flip (Fig. 8), where the
polarization of the neutron beam along the magnetic field is zero, the transverse
polarization components are finite. One may draw parallels between this state
and the S=0 state of a triplet, where the spin is zero but the angular momentum
finite, in contrast to the singlet S=0 state, where both the spin and the angular
momentum are zero, and which would be the equivalent of an incoherently
depolarized neutron beam.

An alternative approach is that of a Mach-Zehnder interferometer by
(Felber et al., 1999; Golub et al., 1994) who coined it “semi-classical” as it
involves classical trajectories for wave packets of the two spin eigenstates.
These separate and recombine in time for NSE including the resonance
variant of it (Gähler et al., 1992) or in space for Spin Echo SANS (SESANS)
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(Bouwman et al., 2000; Pynn, 1980; Rekveldt, 1996, 2000). It is still a point
of debate which of the two approaches catches correctly the physics of
Larmor precession based methods, see e.g. (de Haan et al., 2014; McKay
et al., 2024) in the “Quantum Mechanical world”, i.e. before the measurement
(at the analyser-detector system) and the collapse of the eigenfunction to its
eigenstates.

The Mach-Zehnder interferometer or two eigenstates approach has been
very successful in visualising the evolution of the precession phase and opti-
mising complex setups such as the combination of NSE and triple-axis spec-
troscopy (TAS) (Habicht et al., 2003). However, we argue that this approach
does not catch the full complexity of the Quantum Mechanical problem as the
neutron spin is a more complex entity than its eigenvalues and cannot be
reduced to them. From that point of view and as discussed below the precession
picture considered here and in (Mezei, 1980), involving Quantum Mechanical
expectation values, appears to be more correct.

The decomposition in eigenstates and wave packets implies that in NSE and
SESANS the result depends on the spread of these wave packets, thus on beam
characteristics, a feature that has not been confirmed experimentally. In
addition, as explained below, this approach does not account for both the
paramagnetic NSE and SESANS nor for the ferromagnetic NSE methods.

The interaction of a precessing neutron beam polarization with a magnetic
sample (which takes place in the “Quantum Mechanical world”) requires Q to
be in the precession plane in order to have half of the magnetic scattering
acting as a π flipper, as shown in Fig. 9. This feature has been confirmed for
both the paramagnetic NSE and the paramagnetic SESANS (Grigoriev et al.,
2007; Rekveldt et al., 2006). However, if the neutron spin were decomposed to
its eigenvalues, which would then be along the precession magnetic field and
thus perpendicular to Q, following Eq. 12 a homogeneous distribution of the
magnetic moments in the plane perpendicular to Q would have led to Pf = 0.
Thus, the magnetic scattering would have been depolarized leading to zero
echo/modulation for both the paramagnetic NSE and SESANS cases. In
addition, this decomposition cannot explain the difference between magnetic and
spin incoherent scattering, as the latter only introduces a phase shift of π but does
not act as a π flipper. We note that our approach here is complementary to the one
of section IIIC, where by knowing Pi we deduced the topology of the magnetic
moments in MnSi. Here, by knowing the distribution of the magnetic moments in
the sample, we deduce the topology of the neutron beam polarisation. In both
cases the conclusions do not involve any assumptions but are a direct con-
sequence of the vector nature of the (dipole) interaction between the neutron
beam polarization and a magnetic sample.

The two eigenstates approach also cannot explain why in the ferromagnetic
NSE configuration the result depends only on the magnetic field integral
between the first two and the second two π/2 flippers (see Fig. 8), but not on
the magnetic field at the sample. In fact, following the argumentation line of
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(Grigoriev et al., 2003), the additional flippers in the ferromagnetic NSE setup
should affect substantially the outcome and lead to high order correlation
functions, an assumption which would however violate Born’s rule and was not
confirmed experimentally (Franson, 2010; Sinha et al., 2010).

Over the last years the two eigenstates approach is gaining ground among the
SESANS community. A notable example is the investigation of the effect of
gravity on a neutron beam (de Haan et al., 2014) where a comparison between
the two approaches was undertaken with no conclusive outcome. However, this
work does provide an answer or at least a very important hint. Neutron beams
bend under the influence of gravity, because neutrons are heavy particles. This
bending was experimentally observed also in the setup of (de Haan et al., 2014)
but is correctly taken into account only in the precession approach not the two
eigenstates one, which thus implicitly assumed zero gravitational effect. In fact
the effect of the beam separation in the two eigenstates, if relevant, would have
been seen as a deviation between the experimental results and the precession
approach, which however was not detectable.

To conclude, the robustness of both NSE and SESANS hints to the long-
itudinal Talbot-Lau type interferometer description. This also explains why
similar results can be obtained without a polarized neutron beam but with slits
and gratings, a feature that led A. Ioffe to suggest using moving gratings, in the
form of rotating discs such as choppers, in a setup, which he named “Neutron
Speed Echo”. This device could be used in combination with high magnetic
fields as an add-on for TAS instruments (Ioffe, 2003) for high resolution
studies of magnetic excitations.

Finally, an interesting question concerns the transition from one description to
the other, which is more relevant to SESANS where a longitudinal separation of
beams (Stern Gerlach effect) takes place. Based on experiments with photons, this
would occur when the separation between the beams is comparable to their size.
Thus for a separation of some μm and a beam height of some mm, as achieved
nowadays with SESANS, the effect should be negligible.

5 Conclusions

Polarized neutron scattering provides direct and unique insight on the topology of
magnetic correlations. In addition, Larmor labelling such as in Neutron Spin Echo
(NSE) spectroscopy allows for reaching the highest energy resolution in neutron
scattering while maintaining a high intensity beam. However, only a small number
of experts worldwide are nowadays using the full power of these techniques. We
expect this to change as the new generation high brilliance sources and the
developments in neutron optics and polarizing devices (Böni, 2008; Jullien et al.,
2021; Petukhov et al., 2016) make polarized neutrons an attractive option on
almost all neutron scattering instruments, including for inelastic scattering (Arbe
et al., 2020). It is thus anticipated that polarized neutron options will be available
on almost all neutron scattering instruments on an every-day basis as an easy to
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use and transparent tool serving a broad scientific community. This ambitious goal
relies on the existence of a broad knowledge of this field with emphasis in
magnetism, where subtleties of the interaction with a polarized neutron beam,
especially when it comes to magnetic chirality can easily be overlooked or mis-
interpreted. The general but simple expressions and considerations we have
derived here pinpoint to the particularities of chiral magnetic scattering and can be
easily used to plan experiments and interpret their outcome.
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