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Quantum signatures in quadratic optomechanics

J. D. P. Machado, R. J. Slooter, and Ya. M. Blanter
Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands

(Received 29 January 2019; published 1 May 2019)

We analyze quantum effects occurring in optomechanical systems where the coupling between an optical
mode and a mechanical mode is quadratic in displacement (membrane-in-the-middle geometry). We show that
it is possible to observe quantum effects in these systems without achieving the single-photon strong-coupling
regime. We find that zero-point energy causes a mechanical frequency shift, and we propose an experimental way
to measure it. Further, we show that it is possible to determine the phonon statistics from the cavity transmission,
and propose a way to infer the resonator temperature based on this feature. For completeness, we revisit the case
of an isolated system and show that different types of mechanical quantum states can be created, depending on
the initial cavity state. In this situation, mechanical motion undergoes collapse and revival, and we compute the
collapse and revival times, as well as the degree of squeezing.

DOI: 10.1103/PhysRevA.99.053801

I. INTRODUCTION

Creation and detection of quantum states of mechanical
motion have become an increasing topic of interest due to
their key role in tests of fundamental physics [1]. An ongo-
ing effort in the field of optomechanics is to reach regimes
where the coupling between a mechanical resonator and
an optical cavity mode enables quantum-state engineering.
Despite the variety of observed physical phenomena, direct
observations or creation of nontrivial mechanical quantum
states have not yet been achieved. One difficulty hindering
these realizations in optomechanical systems is the nature
of the radiation pressure coupling. For most experimental
realizations, the coupling is linear in displacement, which is
not suitable to directly measure the energy of the mechanical
resonator [2], nor to allow the creation of nontrivial quan-
tum states for the resonator via an unconditional evolution
from Gaussian states [3]. It has been proposed that mechan-
ical quanta could be directly observed if the coupling were
quadratic in displacement [4,5]. As the interaction between
light and mechanical motion depends on the system’s ge-
ometry, the coupling can be made quadratic by placing a
membrane at a symmetric point of a cavity mode (node or
antinode).

Quadratic couplings have already been implemented in
membrane-in-the-middle setups [6–8], ultracold atoms [9],
and levitating dielectric particles [10]. Due to the direct
dependence on the phonon number, this type of coupling is
particularly suited to observe quantum jumps of the phonon
number [4,5], as well as to characterize the phonon statistics
by a direct measurement of the cavity spectrum [5]. Other
quantum features associated with this type of coupling are
phonon shot noise [2], antibunching [11], and squeezing
[12–14]. Squeezing and antibunching reveal the potential
for the creation and manipulation of mechanical quantum
states.

Although this type of interaction enables many inter-
esting effects, its nonlinear nature has hampered extensive

theoretical analyses of the quantum behavior arising in this
regime. Theoretical approaches have focused on the resonant
form of the interaction [4] together with adiabatic elimination
of the optical mode [11,12], or linearized dynamics [15].
However, for an undriven cavity, an exact diagonalization
for this quadratic coupling is possible [13,14], as well as an
extension including the coupling to the environment [16]. The
exact solution reveals that the time evolution of the isolated
system naturally modifies the mechanical state, enabling the
creation of squeezed states and states with a star-shaped
Wigner function [14]. Another consequence of the quadratic
coupling is the photon state dependence of the mechanical
frequency, which leads to collapse and revivals of the me-
chanical motion for coherent cavity states [13], analogous to
cavity QED [17]. Collapse and revivals have been extensively
studied [17–23] and it was shown that a revival envelope
is characteristic of the quantum state [19,22,23], leading to
quantum state reconstruction methods based on the shape of
the revivals [24].

In this article, we explore the full potential of the quadratic
coupling and show that it enables quantum effects, such as the
shift of the mechanical frequency due to zero-point motion
and the characterization of the phonon statistics via the cavity
transmission. For completeness, we first review the isolated
system case in Sec. II, but provide previously unknown results
as well. In Sec. II A, we compute the mechanical displacement
and variance for a cavity coherent state, show that the mechan-
ical motion undergoes collapse and revivals for coherent and
squeezed cavity states, and obtain expressions for the revival
and collapse times. Sec. II B, we compute the time evolution
of the mechanical resonator’s state, and show that a variety
of mechanical quantum states can be created depending on
the initial cavity state. In particular, we find that mechanical
superposition-like states can be created.

Another interesting peculiarity of the quadratic cou-
pling is the effect of zero-point energy (ZPE). It has
been suggested that ZPE leads to an observable Casimir
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force1 in optomechanical systems in the quadratic coupling
regime [10], and an experimental proposal to measure this
effect based on the phase shift of a probe beam has been
advanced [26]. In Sec. III, we propose an alternative scheme
based on our findings that ZPE leads to a mechanical fre-
quency shift, which is enhanced by the presence of multiple
quadratically coupled optical modes. Our proposal consists of
measuring the mechanical frequency at different cavity points
and comparing it with the calculated frequency shifts. This
type of dynamical force measurement has the advantage of
using a static cavity and it is expected to be more precise than
phase shift or amplitude shift measurement techniques [27].
Further, we perform a feasibility analysis and conclude that
this proposal can be tested with the current technology [8,9].

Apart from enabling the creation of nontrivial quantum
states, the quadratic coupling also enables the identification
of the mechanical state. Besides the observation of mechan-
ical quanta through quantum jumps [4], it is also possible
to directly determine the phonon statistics. This feature is
possible due to the form of the resonant interaction, which
enables a quantum nondemolition measurement of the phonon
number. In Sec. IV, we compute the cavity transmission
for a weak probe laser, and show that the mechanical state
affects the transmission. In the single-photon strong-coupling
regime, the transmission profile enables the direct determina-
tion of the phonon statistics, because the cavity transmission
exhibits well-resolved peaks for each phonon Fock state,
whose relative height corresponds to the probability of find-
ing the resonator in that particular Fock state. Even outside
this regime, it is possible to distinguish between different
mechanical states by analyzing the transmission profile. For
a coherent state, the transmission presents a Gaussian-like
shaped profile, whereas for a thermal state, the cavity trans-
mission is asymmetric with a tail governed by the Boltzmann
distribution, and we propose a way to determine the resonator
temperature based on this feature. Finally, we present the
conclusions and discuss the range of applicability of our
results in Sec. V.

II. ISOLATED SYSTEM

An optomechanical system can be modeled as two coupled
harmonic oscillators (the mechanical resonator and the optical
cavity). When the mechanical element is placed at a node (or
antinode) of a cavity mode, the reflection symmetry ensures
that the coupling is quadratic in displacement for displace-
ments much smaller than the cavity length. If the mechanical
element is a linear dielectric, the coupling is proportional to
the cavity field intensity, and the Hamiltonian is given by
[4,6,11]

H = ωca†a + �b†b + g
(
a†a + 1

2

)
(b† + b)2 , (1)

1It has been remarked that ZPE does not couple directly to matter,
and that ZPE-like effects are an asymptotic limit of microscopic
models [25]. The scope of this manuscript is not to discuss the nature
of this frequency shift, but rather to propose an experimental scheme
to measure it.

where ωc and � are respectively the cavity and mechanical
frequencies, g the coupling constant, and a (b) the photon
(phonon) annihilation operator. As the interaction preserves
the photon number, Eq. (1) represents a quadratic form for the
phonon operators, whose eigenfrequencies and eigenstates de-
pend on the photon number. Thus, Eq. (1) can be diagonalized
via a photon-number-dependent squeezing operator

S(r̂(a†a)) =
∞∑

n=0

e
1
2 r(n)[(b† )2−b2]|n〉〈n|, (2)

where |n〉 refers to the photon Fock state. Using the short-hand
notation χ̂ = g(a†a + 1

2 ) and choosing r(n) to be real, the
action of the squeezing operator defined in Eq. (2) on Eq. (1)
leads to the diagonalized Hamiltonian

HD = ωca†a + (� cosh(2r̂) + 2χ̂e2r̂ )
(
b†b + 1

2

)
. (3)

Equation (3) is obtained by imposing that the nondiagonal
terms vanish (the ones with bb and b†b†), which implies

(� + 2χ̂ ) sinh(2r̂) + 2χ̂ cosh(2r̂) = 0, (4)

and determines the squeezing parameters to be (cf. [14])

r(n) = −1

4
ln

(
1 + 4g(n + 1/2)

�

)
. (5)

Combining Eqs. (3) and (5) leads to (cf. [13])

HD = ωca†a +
√

�2 + 4g�(a†a + 1/2)

(
b†b + 1

2

)
. (6)

It is seen from Eq. (6) that the resonant term of Eq. (1) is
the first order term in g of the energy spectrum, and that for
2gn � �, higher order terms overcome the resonant term.
This marks the point where the rotating-wave approxima-
tion (RWA) fails, and the full nonlinearity must be consid-
ered. With this transformation, it is possible to evaluate the
time-evolution of the quantum state for arbitrary coupling
strengths, as well as any physical observable, via the time-
evolution operator W (t ) = S†(r̂(a†a))e−iHDt S(r̂(a†a)).

A. Collapses and revivals of mechanical motion

It can be seen from Eq. (6) that the oscillating frequency
of each oscillator depends on the quantum state of the other.
This quantum-state dependence influences the time evolution
of the mechanical displacement x(t ), given by

x(t ) = W †(t )x(0)W (t ) = cos(� t )x(0) + �

�
sin

(
� t

)
p(0),

(7)

where � =
√

�2 + 4g�(a†a + 1
2 ), x = b + b†, and p =

i(b† − b). As � depends on the photon number, x(t ) has
a different frequency for each |n〉, with a relative weight
dependent on |〈n|ψ〉|2, where |ψ〉 is the cavity state. Thus,
measuring the resonator’s spectral density provides a direct
way to directly determine the photon statistics in the optical
domain. A consequence of this photon number sensitivity for
the mechanical displacement is that these frequencies inter-
fere, leading to collapses and revivals of mechanical motion.
This interference makes the resonator’s mean displacement
quickly drop to 0 (the collapse), only to reappear again at
a latter time (the revival) [13]. This behavior is displayed in
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FIG. 1. Expected mechanical displacement for the initial coher-
ent states |β = 2, α = 6〉, and coupling g = 0.01�. The mechanical
displacement rapidly decays to 0 (the collapse event) and after
≈78 periods, the oscillation reappears (the revival). The revivals
become smaller and broader with time, until interference between
successive revivals occurs.

Fig. 1 for the initial coherent states |β = 2, α = 6〉, where β

(α) is the phonon (photon) state.
In general, the mechanical motion is not periodic because

of the incommensurability of the frequencies [see Eq. (6)].
Consequently, each revival is smaller and broader than the
previous one, and after several revivals, these start to overlap
and interfere with each other. From that moment on, the mo-
tion exhibits a seemingly chaotic behavior. The collapse and
revival times can be estimated using well-known techniques
from cavity QED [18,21,22]. For large coherent photon states
(|α|2 � 1), the Poissonian distribution can be approximated
by a Gaussian distribution, and for g � �, � can be expanded
in powers of g. Replacing the sum in the Fock basis by an
integral via the Poisson summation formula, the mechanical
displacement can be expressed as an oscillation whose ampli-
tude is modulated by Gaussian envelops of the form

〈x(t )〉 ≈ 2β
∑

m

cos(�αt + 2π |α|2m)

× exp

[
−1

2

(
t − mTrev

Tcoll

)2
]
, (8)

where α is the initial cavity coherent state, the initial
phonon coherent state β is taken to be real, and �α =√

�2 + 4g|α|2�. The collapse and revival times (Tcoll and Trev,
respectively) are given by

Trev = 2π |α|Tcoll = π
√

�2 + 4g|α|2�
g�

. (9)

In contrast to cavity QED [18,21,22], the revival time in
these optomechanical systems depends on the average pho-
ton number; and for high photon numbers (4g�|α|2 � 1),
the collapse time becomes independent of the mean photon
number [Tcoll = (g�)−1/2]. This collapse and revival behavior
is not restricted to the displacement, and it is visible for any
mechanical observable as long as 2π |α| > 1. For example,
the displacement variance for a thermal phonon state and a

FIG. 2. Collapse and revival behavior of the displacement vari-
ance for an initial thermal state of the resonator, and for the cavity
states |α = 2〉 and |r = 0.8〉, where α and r denote coherent and
vacuum squeezed states, respectively. The shape of the revivals is
characteristic of the cavity state, and for a vacuum squeezed state,
the revival’s envelope changes with time.

coherent state α for the cavity is

〈x2(t )〉 ≈ (2n̄th + 1)

×
(
�+ 2g|α|2
�+ 4g|α|2 −e−|α|2

+∞∑
n=0

|α|2n

n!

2gn

�+4gn
cos(2�nt )

)
,

(10)

where n̄th is the average phonon number of the thermal state.
As seen from Fig. 2, for an initial coherent cavity state, the
interaction reduces the uncertainty of the mechanical motion,
which indicates squeezing. However, Eq. (10) shows that the
nonoscillating quadrature uncertainty can never be reduced to
less than half of the thermal uncertainty (or the zero-point
uncertainty if n̄th = 0). Nevertheless, the quadrature variance
is not bounded from below by half of the thermal uncertainty
at the peak of each revival. Further, Fig. 2 shows that the
appearance of collapse and revivals is not restricted to coher-
ent states, and that the temporal envelope is characteristic of
the cavity state. Particularly, for a vacuum squeezed photon
state |r〉, the shape of the revival is elongated due to the
superposition of the revival’s echoes [22], with an envelope
which changes in time.

B. Evolution of the quantum state

As shown in Eq. (10), the resonator experiences squeezing,
and so the quantum state does not remain static. The time
evolution of the mechanical state for the initial phonon state
|0〉 and cavity Fock state |100〉 is displayed in Fig. 3, where
the Husimi Q function for the resonator was computed using
QUTIP [28]. For an initial cavity Fock state, the mechanical
state is periodically squeezed, with the period determined
by the effective phonon frequency in Eq. (7). Note that this
feature solely depends on the initial cavity (Fock) state. The
reason for this effect comes from the interaction form [see
Eq. (1)], which comprises a photon-number-dependent me-
chanical frequency and a squeezing interaction.

Besides squeezed states, which have already been dis-
cussed in the literature [14], other interesting quantum states
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FIG. 3. Time evolution of Q function of the mechanical state for g = 0.01�, an initial cavity Fock state N = 100, and mechanical ground
state, after (1/4, 1/2, 3/4, 1) effective mechanical periods [panels (a), (b), (c), and (d), respectively]. The interaction produces a periodic squeezing
of the resonator.

can be created, depending on the initial cavity state. For a
coherent cavity state |α = √

40 〉 (and initial mechanical Fock
state |n = 2〉), the mechanical state evolves into a quantum
state resembling a superposition state after several periods
[Figs. 4(c) and 4(d)]. The state undergoes rapid changes even
within a period. As seen in Fig. 4, the quantum state in
Fig. 4(d) evolves into a state resembling a superposition of
four coherent states [Fig. 4(e)], and afterward to a seemingly
distorted Fock state [Fig. 4(f)].

Note that even though the existence of two peaks in the Q
function is insufficient to say that the resonator is in a super-
position state, it is clear from Fig. 4(d) that the quantum state
is not a statistical mixture of coherent states. For the statistical
mixture of coherent states ρ = 1

2 (|iβ〉〈iβ| + | − iβ〉〈−iβ|),
the Q function is

Qmixt (α) = 1

2π

(
e−|α−iβ|2 + e−|α+iβ|2), (11)

which has two separate peaks like the aforementioned figure,
but it is also Gaussian distributed along the line Im{α} = p =
0. On the other hand, Fig. 4(d) displays a small dip around
the origin and it has two maxima along the p = 0 line, and

so the state cannot be a simple statistical mixture. The overall
quantum state is quite complex because the mechanical state
is entangled with the light state, but since no dissipation or
noise are present, this state is expected to display quantum
correlations.

III. ZERO-POINT ENERGY EFFECTS

The analysis above considered only the coupling between
one optical mode and the resonator. However, even if there
are no photons for a given cavity mode, Eq. (6) reveals
that this optical mode still plays a role due to ZPE. As the
interaction preserves the photon number, the multimode case
can be easily approached for an arbitrary number of modes.
With the substitution g(a†a + 1/2) → ∑

j g j (a
†
j a j + 1/2), the

transformation in Eq. (2) can be generalized to diagonalize the
multimode Hamiltonian. Even though the coupling g is small
for most physical implementations of quadratic coupling, the
contribution of several cavity modes enhances the mechanical
frequency shift produced by ZPE.

A simple way to measure this frequency shift is to place
the membrane at a high symmetry point of the cavity (such
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FIG. 4. Time-evolution of Q function of the mechanical state for g = 0.01�, an initial phonon Fock state n = 2, and cavity coherent
state α = √

40, after (0, 11/2, 130, 260, 2601/4, 261) effective mechanical periods [panels (a), (b), (c), (d), (e) and (f), respectively]. After
1 1/2 periods, the Fock state (a) suffers a quadrature squeezing (b). Several periods later, the state evolves into a superposition-like state (c). The
mechanical state undergoes rapid transformations within a period. This is seen from the quantum state in (d) evolving to a state resembling a
superposition of four coherent states (e), and afterward to a seemingly distorted Fock state (f).

as the center of the cavity, where all optical modes couple
quadratically to the membrane) and measure its frequency
�center, and then shift the membrane to a point of low

symmetry (such as close to one of the end mirrors) and
measure the frequency �end at this position. Note that the
cavity should not be driven to prevent undesired contributions.
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Although it is not possible to monitor the membrane’s
position if the optics couples quadratically to the mechanics,
the mechanical frequency can still be determined by a laser
probe out of axes and independent of the cavity system,
or by a mechanical probe. In the multimode single-photon
weak-coupling regime, ZPE is responsible for the frequency
difference

�end − �center ≈ 2
∑
j,even

g j = G. (12)

It is possible to implement this proposal with the existing
technology [6–8], and it represents an alternative to force
or displacement measurements of ZPE. For this scheme to
be feasible, the frequency difference G must surpass the
mechanical linewidth �, which does not require achieving
the single-photon strong-coupling regime. So far, G has
never been determined, and the enhancement produced by
all the even cavity modes is yet unknown. Apart from rel-
atively high values for cold-atom implementations [9], the
quadratic coupling for a single mode is in general quite small
(≈35 μHz [7]). Although mechanical linewidths on the order
of a few μHz exist [29], such small frequency differences
may be difficult to detect. Nevertheless, the feasibility of
this proposal can be ensured by improving a few physical
parameters. For the setup of [7], a membrane with 380 kHz
was used. As the single-photon quadratic coupling increases
with decreasing mechanical frequency (g ∝ x2

ZPM ∝ �−1), the
use of low-frequency resonators can boost the coupling by
a few orders of magnitude. Moreover, the membrane of
[7] had a low reflection coefficient of R = 0.18. The use
of highly reflective membranes is expected to increase this
coupling by another 2 orders of magnitude [30]. The use of
a highly reflective (R ∼ 0.9999), low-frequency (∼3.8 kHz)
membrane would bring the single-photon quadratic coupling
to 1.4 Hz. Even though low-frequency resonators have lower
quality factors, a quality factor of 4 × 103 is already sufficient
to observe this effect.

IV. DRIVEN CAVITY

A ubiquitous obstacle hindering the observation of quan-
tum effects in optomechanical systems is dissipation. Since
the cavity decay rate κ can easily surpass the coupling
strength, after the short time scale of κ−1, the light stored
inside the cavity will have leaked out and it will no longer
interact with the mechanical resonator. Furthermore, the me-
chanical resonator also couples to its environment, which
causes the mechanical motion to relax (in a time scale of
�−1) and thermalize in a thermal state with Nθ phonons. To
ensure a steady interaction with light, the photon number
must be constant, and the cavity must be driven. For weak
driving (i.e., |α|2 � g−1�, with |α|2 the intracavity photon
number created by the probe laser), the off-resonant interac-
tion term a†a(bb + b†b†) is small and can be disregarded (see
Sec. II). Thus, using RWA and including a driving term in the
Hamiltonian, the effective Hamiltonian in the drive reference
frame is

H = −�a†a + �b†b + iE (a − a†) + 2ga†ab†b, (13)

where � = ωL − ωc − g is the detuning from the laser fre-
quency ωL and E the driving strength. Within RWA, b†b is a
constant of motion, which enables a quantum nondemolition
measurement of the phonon number. To take the effects of
dissipation into account, we make use of a Fokker-Planck
equation for the Husimi functions Qn(α) = 1

π
〈n, α|ρ|n, α〉,

where n refers to a phonon Fock state, α to a photon coherent
state, and ρ to the density matrix. Using standard master equa-
tion techniques [31], the Fokker-Planck equation governing
the behavior of the system is

∂t Qn = ∂α

{[κ

2
− i(� − 2gn)

]
α + κ∂α∗

}
Qn + c.c.

+ �

2
(Nθ + 1)[(n + 1)Qn+1 − nQn]

+ �

2
Nθ [nQn−1 − (n + 1)Qn], (14)

where c.c. stands for the complex conjugate. There are now
two competing relaxation mechanisms: the optical decay
(with a rate κ) and the mechanical thermalization (with a
rate �Nθ ). Thus, after the short time scale κ−1, the cavity
reaches its equilibrium state; but for κ � 1/t � �Nθ , the
resonator has not yet thermalized. Since the interaction does
not change the state of the resonator, for times much shorter
than (�Nθ )−1 and much longer than κ−1, we can focus on
the stationary properties of the cavity and assume that the
state of the resonator remains unchanged. Alternatively, the
steady-state condition can be achieved by waiting until
the resonator reaches thermal equilibrium and optically prob-
ing it afterward. For these situations, the steady-state solution
of Eq. (14) is

Qn,ss = 1

π
exp

(
−

∣∣∣∣α − E
κ
2 − i(� − 2gn)

∣∣∣∣
2
)

, (15)

which leads to the intracavity field amplitude

〈a〉ss =
∫

αTr[Qn,ss] d2α =
∑

n

E pn
κ
2 − i(� − 2gn)

, (16)

where pn is the probability to find the mechanical resonator in
the Fock state |n〉. Equation (16) features a set of peaks, each
corresponding to a specific phonon number, and with a relative
height of pn (the probability to find the mechanical resonator
in a given Fock state n). An interesting consequence of this
photon-phonon interaction is the fingerprint left by the phonon
statistics on the cavity field. It is then possible to determine the
phonon statistics by measuring the cavity transmission |t |2.
The transmission is defined as the ratio between the coherent
output power and the coherent input power

|t |2 =
∣∣∣∣ 〈aout〉
〈ain〉

∣∣∣∣
2

=
∣∣∣∣κe〈a〉

2E

∣∣∣∣
2

, (17)

where κe is the decay rate through the output mirror (taken
to be ≈κ onward). If the single-photon strong coupling is
reached (4g � κ), each of the Fock peaks in the transmission
is well resolved and the phonon statistics can be immediately
identified (see Fig. 5). The determination of the phonon
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FIG. 5. Cavity transmission for g = 4κ and a coherent me-
chanical state with |β|2 = 10. In the single-photon strong-coupling
regime, the relative height of the nth peak corresponds to the proba-
bility to find the mechanical resonator in a Fock state |n〉.

number is not possible with the standard radiation pressure
interaction a†a(b + b†), and it is a unique feature of the
quadratic coupling.

Although the single-photon strong-coupling regime is far
from being achieved experimentally, there are still interest-
ing features outside this regime. Particularly, one can still
characterize the state without the peaks being fully resolved.
In the multiphonon strong-coupling regime (defined here as
4gn̄b � κ , with n̄b the average phonon number), the trans-
mission exhibits a line shape characteristic of the mechan-
ical state, as shown in Fig. 6. Even if the average phonon
number is the same, the transmission for a coherent state
differs substantially from the transmission for a thermal state.
The phonon number distribution for a large coherent state
resembles a Gaussian, which is directly reflected in the trans-
mission profile (see Fig. 6 and note the deviation from � = 0),

FIG. 6. Comparison between the cavity transmission for a me-
chanical thermal state (thick yellow line) and for a coherent state
(blue dashed line), with g = 0.01κ and with an average of 50
phonons for both states. In this regime, the quantum state is not
fully resolved, but the transmission line shape still exhibits distinctive
features characteristic of the mechanical state.

whereas for a thermal state, there is a strong asymmetry in
the transmission. This asymmetry is a consequence of the
Boltzmann exponential trend, and it can be used to determine
the temperature of the resonator. For a thermal state, pn =
1

n̄th
( n̄th

n̄th+1 )
n+1

, and using Eqs. (16) and (17), the transmission
is found to be

|t |2 = κ2
e

κ2 + 4�2

×
∣∣∣∣2F1

(
1,−κi + 2�

4g
, 1 − κi + 2�

4g
,

n̄th

n̄th + 1

)∣∣∣∣
2

, (18)

where 2F1(a, b, c, z) is the hypergeometric function. This
transmission thermometry provides a simple method to deter-
mine the resonator temperature with the use of Eq. (18). This
asymmetry is in principle visible with a slight improvement
on the state-of-the-art setups, since for g ∼ 100 μHz and for
kHz resonators at room temperature, the multiphonon strong-
coupling regime can be achieved for cavity linewidths up to
the MHz range.

Although we are mostly concerned about the properties of
the mechanical resonator, the latter can also be used to change
the cavity properties. As the area below the transmission line
shape is independent of the quantum state, and higher n̄b lead
to broader and smaller transmission profiles, the mechanical
element can be used as a switch to control the light exiting the
cavity.

V. CONCLUSIONS

Summarizing, we analyzed the quantum features present
in optomechanical systems with a coupling quadratic in dis-
placement. For the isolated system case, we have shown the
possibility to create nontrivial mechanical quantum states,
such as superposition-like states. Although the interaction is
able to modify the mechanical state in a nontrivial way, the
same does not occur for the cavity state. As the interaction
preserves the photon number, the photon statistics remain
unchanged. We have also shown that collapses and revivals
of mechanical motion occur in these systems due to the
photon state dependence of the mechanical frequency, and
we calculated the characteristic collapse and revival times,
as well as the degree of squeezing. Further, we computed the
mechanical frequency shift induced by ZPE, and proposed a
way to measure this shift by placing the membrane at different
points of the cavity. For the case when the cavity is weakly
probed, we have shown that the cavity transmission can be
used to identify the phonon statistics, and proposed a method
to determine the resonator temperature based on the cavity
transmission profile. Both this transmission thermometry and
the ZPE mechanical frequency shift can be measured without
reaching the single-photon strong-coupling regime, and we
expect that they can be experimentally tested with the current
technology.
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