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Abstract

Tabular data is one of the most common forms of
data in the industry and science. Recent research on
synthetic data generation employs auto-regressive
generative large language models (LLMs) to cre-
ate highly realistic tabular data samples. With the
increasing use of LLMs, there is a need to govern
the data generated by these models, for instance,
watermarking the model output. While the state-
of-the-art Soft Red List watermarking framework
has shown impressive results on standard language
models, it can not be seamlessly applied to models
fine-tuned for generating tabular data due to i) col-
umn permutation and ii) the task’s nature of gener-
ating low entropy sequences. We propose Tabular
Red GrEen LiST (T-REST), an adaptation of the
Soft Red List watermarking algorithm on tabu-
lar LLMs that is agnostic to column permutation
and improves detection efficiency by employing a
weighted count method that favors columns with
higher entropy. Our experiments on 4 real-world
datasets demonstrate that T-REST introduces a non-
significant drop of 3% in the synthetic data qual-
ity compared to the non-watermarked data, using
the resemblance and downstream machine learning
efficiency metrics, while achieving high detection
accuracy with AUROC of over 0.98. T-REST is in-
susceptible to any column or row permutation and
is robust against post-editing attacks on categori-
cal columns by maintaining a True Positive Rate
(TPR) of over 0.85 when 50% of categorical values
are modified.

1 Introduction
The area of natural language processing has been revolu-
tionized by self-attention-based neural networks [26]. Large
language models (LLMs) like GPT-3 [7] have have demon-
strated remarkable capabilities in various generative tasks,
such as creative writing [18], automated code generation [10],
and complex problem solving [7]. Given these rapid ad-
vances, transformer-based neural networks have been pro-
posed for generating synthetic tabular data [6; 24]. There
is a need to generate realistic tabular data due to i) pri-
vacy requirements, as multiple datasets containing sensitive
information cannot be shared publicly [2; 20], and ii) is-
sues related to data quality, such as missing values [17;
3], and class imbalanced [8]. The use of transformer-based
methods for generating tabular data overcomes the chal-
lenge of data encoding for heterogeneous tabular data sets
while effectively leveraging contextual information [6] com-
pared to generative adversarial networks [28; 9]. Further-
more, data generated by transfomer-based models can suf-
ficiently replace real data in down-stream machine learning
tasks [6], as opposed to diffusion-based models [29]. Re-
cent works on GPT-like tabular models involve fine-tuning
auto-regressive generative LLMs to generate tabular data [6;
24]. These “tabular LLMs” are typically fine-tuned using

(a)

(b)

Figure 1: Illustration of T-REST application on GReaT [6], a state-
of-the-art tabular LLM. The watermark is exclusively applied to col-
umn values. Column names are used as seed for partitioning the
red/green lists since generated rows do not follow a fixed struc-
ture (a). Green tokens in each column are boosted using a different
weight based on column’s entropy (b). The example data are taken
from the Adult [4] (b) and Diabetes [25] (a) datasets.

a natural-language-like representation of tabular rows. The
generated text are subsequently converted to tabular format.

With the increasing use of LLMs in generative tasks, it is
necessary to regulate the data generated by these models[5],
especially in distinguishing AI-generated text from human-
generated text and tracing malicious usage [30]. Watermark-
ing model output is an essential and reliable strategy to mit-
igate the risks of misuse and manipulation. The objectives
of watermarking methods are to maintain the synthetic data
quality while remain detectable by algorithms. The recent
state-of-the-art Soft Red List (SRL) watermarking framework
introduced by Kirchenbauer et al., [13] embeds the water-
mark into the output text by partitioning the vocabulary into
red/green lists and sampling tokens from the green list with a
bias. Although this watermarking algorithm can be applied to
a standard language model, it exhibits two major challenges
when being adapted to a tabular LLM:
Random column permutation: SRL uses the previous to-
ken(s) in the current sequence as the seed for partitioning the
red/green lists during next token sampling. However, tabular
data synthesis employs an arbitrary column order during gen-
eration. For instance, the columns are intentionally shuffled
at training time to facilitate “arbitrary conditioning” [6], as
depicted in Figure 1a.
Low entropy sequences and columns: As mentioned in [13],
SRL is susceptible to low entropy sequences. During the gen-
eration of sequences with low entropy, biasing the output to-
wards the green list requires a sufficiently high bias that dras-
tically distorts the quality of output text. As illustrated in Fig-
ure 1a, the textual representation of the output data generated
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by a tabular LLM contains repeated low entropy sequences,
such as the the column, the “ is ” and , tokens, where ‘ ‘
shows the whitespace character without ambiguity. Further-
more, a table might contain columns that have a limited num-
ber of distinct values (i.e. low entropy columns). For ex-
ample, the “marital-status” column of the “Adult” dataset [4]
mostly contains only 3 values: “Divorced”, “Never-Married”,
and “Mariried-civ-spouse”.

Given the aforementioned limitations, a question emerges:
How to adapt the Soft Red List watermark to tabular LLMs
that is insusceptible to permutation and minimize the impact
of low entropy sequences and columns on detection efficiency
while preserving synthetic data quality? Our focus in this
work lies on the Soft Red List watermark [13] thanks to its
better trade-off of synthetic data quality and detection ef-
ficiency compared to other watermarking strategies demon-
strated in section 5. We propose a tabular-specific Soft Red
List algorithm, namely Tabular Red GrEen LiST (T-REST),
which addresses the aforementioned challenges and offers the
following contributions:
Column-based seeding: We use column name and a secret
key as the seed for partitioning the red/green list while sam-
pling that column’s values, making the detection insuscepti-
ble to any column permutations.
Watermarking high entropy sequences: We exclusively ap-
ply the watermark on column values while avoiding low en-
tropy sequences (e.g. column names, the tokens “ is ” and
“, ”). We show that the synthetic data quality, evaluated us-
ing resemblance metrics and downstream machine learning
efficiency, drops by a non-significant amount of 3% on aver-
age across 4 real-world datasets.
Entropy-based detection: To mitigate the impact of low
entropy columns on detection efficiency, we employ a
“weighted count” method that selectively boosts the num-
ber of green tokens in columns with higher entropy, leading
to higher detection efficiency across all hyper-parameter set-
tings of the Soft Red List algorithm.
Robust against post-editing attacks: We demonstrate that
T-REST is insusceptible to column or row permutation and
achieves strong robustness against attacks on categorical
columns. T-REST maintains a True Positive Rate (TPR) of
over 0.85 when 50% of categorical values are modified.

2 Related studies
Watermarking LLMs: Recent state-of-the-art watermark-
ing algorithms typically embed a detectable signal in the out-
put text by either modifying the logits of the model [13; 12;
30] or changing the sampling process [1; 15] during each
token generation step. The former line of work typically
pseudo-randomly partitions the pre-defined vocabulary into
disjoint sets, using the hash of previous tokens and a secret
key as seed. Logits in one “preferred” set are boosted by a
constant, increasing the likelihood of being chosen during the
sampling step. Consequently, the generated text by the model
contain a higher number of the tokens in the preferred set than
a natural source. The synthetic text can be detected using a
statistical test, as the probability of a human-text containing

a high number of tokens from the preferred set is diminish-
ing small [13]. These above methods are susceptible to low
entropy sections [13]. A recent work minimizes the impact
of the low entropy sections by selectively applying the water-
mark on positions where the entropy of the tokens probability
distribution is higher than a threshold [16].

In contrast, the later branch of studies preserves the tokens
probability distribution and manipulates the sampling proce-
dure instead. The exponential scheme (EXP) introduced by
Aaronson [1] deterministically chooses a token that maxi-
mizes a pseudorandom function on previous token(s). Cal-
culating the sum of this function applied on tokens in the
generated text then gives a higher value than human-text. A
threshold is determined to differentiate between a synthetic
and a natural source. While the Soft Red List watermark al-
gorithm is often combined with multinomial sampling and
multi-way beam search sampling, the EXP scheme deter-
ministically chooses a token given the same seed, typically
leading to outputs containing repeated tokens. Moreover,
Kirchenbauer et al. [13] proposes a framework to analyze the
trade-off between watermark strength and output degradation
of the Soft Red List watermark, whereas Aaronson [1] does
not explicitly address this trade-off.
Tabular generative models: The field of synthetic tabular
data generation has experienced substantial advancements in
recent years. Multiple generative models have been applied
to generate highly realistic tabular data, including genera-
tive adversarial networks [28], diffusion models [14], and
transformer-based language models [6]. Solatorio et al., [24]
investigates generating relational data by first leveraging an
auto-regressive model to generate parent tables and subse-
quently using a Seq2Seq model to generate children tables
conditioned on the parent tables.

Our work is the first, to the best of our knowledge, to embed
a watermark in both numerical and categorical columns of a
synthetic table generated by tabular LLM.

3 Background
This section presents an overview of the Soft Red List wa-
termarking framework and a summary of the process of fine-
tuning a tabular LLM to generate synthetic tabular data.

3.1 Soft Red List watermark
Language model basics: Large language models are de-
signed to understand and generate human language by pre-
dicting the next token in a sequence given its preceding tokens
(i.e. prompt), where tokens are segmented units of text, such
as characters, subwords, or words, that make up a vocabulary
V . Formally, a language model, often parameterized by a
neural network θ, is trained as a maximum likelihood estima-
tor that predicts the next token s(t) conditioned on a sequence
of preceding tokens s(−N), . . . s(0) . . . , s(t−1)):

P (s(t) | s(−N), . . . s(0) . . . , s(t−1)),

where s(−N), . . . , s(−1) represents a prompt of length N and
s(0), . . . , s(t−1) represent the generated tokens. The model
first computes a logits vector l, where each logit corresponds
to a token in the vocabulary V and transforms this logits
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vector into a probability distribution using a softmax oper-
ator. Subsequently, the next token s(t) is sampled from this
distribution, often using multinomial sampling or greedy de-
coding.
Soft Red List watermark A watermark is a pattern embed-
ded in text that is imperceptible to humans but detectable by
an algorithm as generated by machines. The Soft Red List al-
gorithm proposed in [13] embeds a watermark by modifying
the sampling distribution when generating each token. Dur-
ing the generation of the next token in the sequence, the vo-
cabulary is partitioned into 2 lists Green/Red lists using the
previous token(s) and a secret key as seed, where the size of
the Green list is γ · |V | . A constant bias δ is added to the
green tokens’ logits, resulting in strongly biasing the output
towards the green list:

p
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k =


exp(l

(t)
k +δ)∑

i∈R exp(l
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i )+
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i∈G exp(l

(t)
i +δ)

, k ∈ G,

exp(l
(t)
k )∑

i∈R exp(l
(t)
i )+

∑
i∈G exp(l
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, k ∈ R.

Given that a natural sentence of arbitrary length T in the
expectation contains ∼ γ ·T green tokens, an ‘all-green’ sen-
tence likelihood diminishes as its length grows. Therefore, a
watermark embedded in a synthetic text can be detected using
a one-proportion z-test. Assume a null hypothesis H0: “the
text is generated without knowledge of the red list” [13], the
z-statistic is calculated as follows: z = (g−γT )√

Tγ(1−γ)
, where g

is the number of green tokens in the text. The null hypothesis
is rejected if the z-score is higher than a z-threshold.

3.2 Fine-tuning and generation of tabular LLM
Recent generative tabular models [6; 24] leverage a pre-
trained auto-regressive generative LLM (GPT-2) to generate
non-relational tabular data. These models use a textual en-
coding scheme that transforms the ith row in a tabular dataset
into a meaningful text sentence ti in the following ”subject-
predicate-object” [6] format where f1, f2, . . . , fm are the col-
umn names and vi,j , i ∈ {1, . . . , n}, j ∈ {1, . . . ,m} are the
corresponding column entries. Note that this textual encod-
ing scheme is specific to GPT-2’s tokenizers and might vary
depending on pre-trained models.

ti,j = [fj , “ is ”, vi,j , “, ”] ∀i ∈ {1, . . . , n}, j ∈ {1, . . . ,m}

ti = [ti,1, ti,2, . . . , ti,m] ∀i ∈ {1, . . . , n}

It is important to note that before using these sentences for
fine-tuning a pre-trained model, a “random feature permuta-
tion” is employed to facilitate “arbitrary conditioning” [6].
For each ti sentence, a random permutation k is applied, re-
sulting in ti(k) = [ti,k1, ti,k2, . . . , ti,km]. Subsequently, rows
are sampled using feature name preconditioning and name-
value pair preconditioning [6]. In other words, each row is
generated as a sentence containing column name-value pairs,
separated by a “, ” token. Generated rows might have a dif-
ferent order of column-name value pairs and are re-ordered
when converted back to the original tabular format.

Algorithm 1 T-REST Row Generation

1: Input: input sequence S, green list ratio γ ∈ (0, 1), bias
δ > 0, column names f1, f2, . . . , fm, language model fθ,
secret key Kpriv

2: for t = 0, 1, . . . do
3: Compute logits vector l(t) = fθ(S)
4: if Is generating a column value vj then
5: Extract column name fj
6: Seed an RNG with hash(fj ,Kpriv)
7: Use the RNG to partition the vocabulary V into a

green list G of size γ|V |
8: Add δ to each green list logit in G
9: end if

10: p(t) = softmax(l(t))
11: Sample the next token s(t) from the distribution p(t)

12: Append s(t) to S
13: end for

4 The T-REST watermark
We propose Tabular Red GrEen LiST (T-REST), a water-

marking method specifically designed for tabular LLM, lever-
aging the Soft Red List watermark. In Figure 2 we highlight
the two main components of T-REST: column-based seeding
with selective watermarking and entropy-based detection. In
the following sub-sections, before divulging into the details
of T-REST, we underscore the key challenges of applying the
principle of the Soft Red List watermark on tabular LLM at
the generation and detection phases, respectively.

4.1 Generation
The Soft Red List watermark requires the preceding to-
kens in the current sequence as the seed for partitioning the
Green/Red list during next token sampling. In sharp contrast,
tabular data synthesis employs an arbitrary column order dur-
ing single-row generation, as depicted in Figure 1a. To ad-
dress this column permutation issue, T-REST uses the column
name as seed for partitioning while sampling the correspond-
ing column value. Furthermore, the Soft Red List watermark
is susceptible to low entropy sequences [13]. More specif-
ically, while generating the next token in the sequence, the
logits vector might contain a small number of “high likely”
logits that have significantly higher values than the others.
To bias the output towards the green list, a sufficiently large
bias δ is required, which drastically distorts the output text
quality. In the context of tabular LLM, the textual represen-
tation of the generated data typically contains considerably
low-entropy sequences. For instance, the text generated by
GReaT [6] includes the words: ‘ is ”, “, , and the column
names, which are repeated in every row. T-REST mitigates
this problem by exclusively applying the watermark on col-
umn values while ignoring all other tokens.

The pseudocode of the generation process for a tabular
row is provided in Algorithm 1. Given the sequence S rep-
resenting the given or generated tokens in a row contain-
ing column name-value pairs, the language model calculates
a logits vector. We apply the watermark on the column
values while ignoring repetitive sequences, such as column
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Figure 2: T-REST: Tabular Red GrEen LiST. The Soft Red List rule is applied on column values while using the column name and a secret
key as seed. At detection, green tokens count from columns with higher entropy are boosted with weights corresponding to their entropy
values, leading to higher detection efficiency.

names. The algorithm determines whether the next token is
a column value by decoding the immediate previous tokens
and identifying whether the decoded text is a column name
fj ∈ f1, f2, . . . , fm. When value generation is detected, the
corresponding column name fj , together with a secret key, is
passed as the seed to a random number generator (RNG). The
RNG is then used to partition the vocabulary into Green/Red
lists with a fixed green token ratio γ. Subsequently, a constant
bias δ is added to the logits of tokens in the green list, thereby
increasing the likelihood of being chosen during the sampling
step. We note that the use of the secret key in seeding pre-
vents a malicious user from reproducing the Green/Red lists
and intentionally removing tokens in the green list to bypass
the watermark, i.e., “private mode” [13] in which only the
watermark owner can identify an embedded watermark.

4.2 Entropy-based detection
Detection is performed through hypothesis testing, i.e., test-
ing whether to reject the null hypothesis H0: “the textual
representation of table is generated by a natural source”. A
naturally-generated table is expected to include ∼ γ ·T green
tokens, where T is the total number of tokens representing
all tokenized cells in the table. The probability of such a
naturally-generated table containing more than γ · T green
tokens is diminishing small, which enables the detection of a
synthetically-generated table with an one-proportion z-test.

Here we highlight a further consequence of the Soft Red
List algorithm’s limitation on watermarking low-entropy se-
quences. A table might contain columns that have a limited
number of distinct values (i.e. low entropy), especially cat-
egorical columns. For example, Figure 1b shows that the
“class” column in the Adult dataset is binary; either “<=50k”
or “>50k”. If the watermark is applied too strongly, the qual-
ity of the output table would be severely affected (e.g, all rows
become “<=50k” for one secret key, while “>50k” for oth-

ers). This results in an insufficient number of green tokens
in a synthetic column, hindering the detection performance.
To address this issue, we leverage the differences in entropy
values of columns in a table and employ a “weighted count”
method that boosts the number of green tokens in columns
with higher entropy. We note that our work is similar to the
watermark for low entropy code generation [10] such that a
watermark is selectively embedded on sections with higher
entropy. However, while Chen et al., strictly ignore sections
with entropy below a pre-determined threshold, we apply a
“softer” method where the tokens in a column contribute to
the total tokens count relative to the entropy value of that col-
umn.

We provide the detection process in Algorithm 2. Given a
to-be-tested table with k rows r1, r2, . . . , rk and m columns
with names f1, f2, . . . , fm, we first compute the entropy
value hj of each column fj using the Shannon entropy [23],

hj = −
n∑

i=1

p(vj,i) log p(vj,i), (1)

where each vi,j is a distinct value of the column fj . We then
calculate the column weight vector w (|w| = m) by nor-
malizing the entropy values to the range [0, 1], followed by
a softmax and a multiplication with the number of columns
m: w = softmax(norm(h)) · m, where the use of softmax
enforces that re-weighting is relative to other columns, pre-
venting favoring a column when all others have similar en-
tropy values. Subsequently, each value (i.e. cell) in the table
is tokenized into a sequence of tokens Let T be the total num-
ber of tokens and gj be the number of green tokens in each
column fj , then we compute the adjusted total green token
count of the table Gadj as follows:

Gadj =

m∑
j=1

wj · gj .
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Finally, the z-score of a sample is obtained using the adjusted
total green tokens count Gadj and the total tokens count T .

z =
(Gadj − γ ∗ T )√

Tγ(1− γ)
. (2)

Algorithm 2 T-REST Detection with Weighted Count

1: Input: table of k rows and m columns f1, . . . , fm, green
list ratio γ ∈ (0, 1), bias δ > 0, secret key Kpriv

2: T = 0
3: Compute entropy vector h by Equation 1
4: Compute weight vector w = softmax(norm(h)) ·m
5: for j = 1, 2, . . . ,m do
6: gj = 0
7: Seed an RNG with hash(fj , Kpriv)
8: Use the RNG to partition the vocabulary V into a green

list G of size γ|V |
9: for i = 1, 2, . . . k do

10: Tokenize the tabular value at row i, column j into a
token sequence y1, . . . , yN

11: T = T +N
12: gj = gj+ number of tokens in y1, . . . , yN that are

in green list G
13: end for
14: end for
15: Gadj =

∑m
j=1 wj · gj

16: Compute z-score by Equation 2

5 Evaluation
Datasets and models: We evaluate the watermark on 4 dif-
ferent real-world datasets with different properties (summa-
rized in Appendix A). We leverage the GReaT model [6]
as a representative example of an auto-regressive generative
tabular model thanks to its state-of-the-art performance. We
fine-tune a GReaT model using 100 epochs for each dataset.
Evaluation Metrics: We investigate the synthetic data qual-
ity with 2 groups of metrics: resemblance to the real data and
downstream machine learning efficiency (MLE). We use the
synthcity library [22] to run statistical resemblance tests.
More details regarding the specific metrics can be found in
the Appendix B Regarding downstream MLE, the synthetic
data should be able to adequately substitute real data in the
training process. Therefore, we train several machine learn-
ing models, including Linear/Logistic Regression and Ran-
dom Forest, using synthetic datasets while evaluating them
with real data. We leverage the scikit-learn library [21]
and compare the performance of these machine learning mod-
els by either the Area Under the Receiver Operating Charac-
teristic curve (AUROC) value (for classification task) or the
R2 score (for regression task). Finally, to evaluate the detec-
tion efficiency of our watermark method, we use the AUROC
and True Positive Rate (TPR) values of the detection methods
and compare the z-scores distributions of our weighted count
method against non-weighted Soft Red List.

Baselines: Aaronson’s EXP scheme [1], column-based non-
weighted-count Soft Red List [13] (NW-SRL) and our pro-
posed weighted-count T-REST. We note that using previous-
tokens seeding instead of column-based seeding results in a
red/green list partitioning mismatch between generation and
detection due to column permutation, causing detection to
be unfeasible. Alternatively, the GReaT model can be ad-
justed to generate the column name-value pairs in a fixed or-
der, i.e. avoiding “arbitrary conditioning”. However, Borisov
et al., [6] have extensively shown that refraining the use of
column permutation results in a significant drop in synthetic
data quality. Therefore, we consider evaluating our method
assuming the application of column-based seeding and high-
light the improvement in detection efficiency using weighted
count.

5.1 Detection efficiency vs. data quality
We summarize the difference in data quality of the real data,
the non-watermarked data generated by GReaT, and the data
watermarked by different algorithms in Table 1. Firstly, using
the recommended hyper-parameters (γ = 0.25 and δ = 2.0)
by Kirchenbauer et al. [13], our watermark T-REST intro-
duces a negligible drop in data quality (3% on average) com-
pared to the data generated without the watermark. Note that
T-REST only affects the detection performance while preserv-
ing identical data quality to NW-SRL. In contrast, the EXP
watermark has a significant impact on the data quality due to
its deterministic sampling [1]. The watermarked textual rep-
resentation of the Abalone dataset using EXP suffers from
significant distortion, making conversion to tabular format
unfeasible. Regarding detection efficiency, in Table 2, our
watermark shows strong performance by achieving AUROC
scores of over 0.98 for all datasets. We assume a detection
threshold of z ∼ 3.0, which gives a maximum False Posi-
tive Rate (FPR) of 5×10−2 and take 500 samples per dataset
(250 real samples, 250 synthetic samples), each has length
T = 125 ± 10 tokens. In terms of the trade-off between wa-
termark strength and detection efficiency specifically for the
Soft Red List-based algorithms, our findings are consistent
with [13] that a combination of lower δ and higher γ results
in a weaker watermark and better synthetic data quality. Note
that higher z-scores indicate a stronger watermark. Figure 3
demonstrates that using a low γ value of 0.25 and high δ value
of 5.0 drastically distorts the data quality while resulting in
significantly higher z-scores than other hyper-parameters.

5.2 Weighted count vs non-weighted count
Here we highlight the impact of the weighted count method
on detection efficacy in terms of AUROC and the differences
between z-score distributions. Table 3 shows that T-REST
increases the AUROC values for all hyper-parameter set-
tings compared to NW-SRL. The hyper-parameters include
the size of the green list γ and the bias added to green log-
its δ. We compute the results by taking 2000 samples across
all 4 datasets (1000 real samples and 1000 watermarked syn-
thetic samples), each with length T = 125 ± 10. Further re-
sults regarding detection efficiency on individual dataset for
each hyper-parameter can be seen in subsection C.1 As a rep-
resentative example, Figure 4 illustrates that employing the
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Real No-watermark EXP T-REST

Adult Resemblance (↑) 1.000 0.835±0.009 0.37±0.01 0.779±0.003
MLE (AUROC) (↑) 0.834±0.027 0.839±0.027 0.561±0.026 0.820±0.029

California Resemblance (↑) 1.000 0.826±0.005 0.364±0.01 0.808±0.006

MLE (R2) (↑) 0.589±0.115 0.264±0.039 -7.667±4.204 0.279±0.032

Abalone Resemblance (↑) 1.000 0.847±0.006 - 0.779±0.008

MLE (R2) (↑) 0.522±0.028 0.493±0.03 - 0.398±0.026

Diabetes Resemblance (↑) 1.000 0.831±0.0 0.333±0.0 0.787±0.0
MLE (AUROC) (↑) 0.775±0.025 0.709±0.039 0.5±0.0 0.722±0.036

Table 1: Data quality of different watermark methods on 4 real-world datasets. The “-” symbol indicates that the data generated using EXP
is drastically distorted and cannot be converted to the tabular format.

EXP NW-SRL T-REST

Adult AUROC (↑) 1.000 0.972 0.983
TPR (↑) 1.000 0.808 0.948

California AUROC (↑) 1.000 1.000 1.000
TPR (↑) 1.000 1.000 1.000

Abalone AUROC (↑) - 1.000 1.000
TPR (↑) - 1.000 1.000

Diabetes AUROC (↑) 1.000 1.000 1.000
TPR (↑) 1.000 1.000 1.000

Table 2: Detection efficiency of different watermark methods on 4
real-world datasets. The False Positive Rate is limited at 5× 10−2.
The “-” symbol indicates that the data generated using EXP is dras-
tically distorted and cannot be converted to the tabular format. 500
samples per dataset (250 real samples, 250 synthetic samples), each
has length T = 125± 10 tokens

γ = 0.25 γ = 0.25 γ = 0.5 γ = 0.5
δ = 5.0 δ = 2.0 δ = 1.0 δ = 2.0

NW-SRL 1.000 0.999 0.966 0.994
T-REST 1.000 1.000 0.982 0.998

Table 3: AUROC values of detection on different hyperparameter
settings using non-weighted count (NW-SRL) and weighted count
(T-REST).

weighted count method on the Adult and Diabetes datasets
results in a larger difference between the z-scores of real and
synthetic samples, thus increasing the AUROC value of the
detection on both datasets. Figure 1 shows that the “fnlwgt”
column of the Adult dataset is heavily favored during count-
ing due to its high entropy compared to other columns while
tokens from columns with limited values such as “sex” or
“race” are counted with significantly lower weights. We note
that while the detection efficiency on the two datasets both
benefits from weighted count, T-REST introduces the most
impact on datasets which columns have significantly differ-
ent entropy values. Table 4 shows the mapping from entropy
value to column weights of 5 columns with the highest en-
tropy values from Adult and Diabetes datasets.
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Figure 3: Trade-off between the average z-scores and average syn-
thetic data quality of T-REST. A combination of lower bias δ and
higher green list ratio γ results in a weaker watermark and higher
synthetic data quality

Adult Col Entropy 14.48 3.29 2.93 2.93 2.16
Col Weights 4.42 0.94 0.90 0.90 0.82

Diabetes Col Entropy 8.83 7.59 6.75 5.03 4.79
Col Weights 2.20 1.53 1.26 0.85 0.81

Table 4: Entropy values and corresponding weights of 5 columns
with highest entropy values in the Adult and Diabetes datasets,
sorted by entropy value from left to right.

5.3 Robustness against post-editing attacks
We consider the robustness of the watermark against post-
editing attacks. Firstly, our watermark is insusceptible to
any row or column permutations since the partitioning of
Green/Red lists at any token uses the corresponding column
name (and a secret key) as seed. We consider 2 groups of
post-editing attacks on categorical columns and numerical
columns since realistic attacks on the two types of columns
require different strategies. For categorical column attacks,
we consider randomly replacing a categorical value by an-
other value in that column. For attacks on numerical columns,
we consider rounding float values and adding random noise.
Table 5 shows the detection efficiency of each watermark
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Figure 4: z-score distributions of 2 datasets Adult (left) and Diabetes (right), using γ = 0.25 and δ = 2.0. Employing weighted count
results in a larger difference between real and synthetic z-score distributions on both datasets, thus increasing AUROC of the detection.
The improvement can be seen more significantly in Adult due to the high difference in its columns’ entropy. 500 samples per dataset (250
negatives, 250 positives), each has length T = 125± 10 tokens.

.

Type Attack
Strength

EXP SRL T-REST

AUC TPR AUC TPR AUC TPR

Random re-labelling
(% of values)

25 1.00 1.00 0.97 0.67 0.99 0.98
50 1.00 1.00 0.92 0.56 0.97 0.87

Rounding
(no of digits)

2 0.99 1.00 0.99 0.53 0.99 0.63
0 0.99 1.00 0.85 0.20 0.78 0.25

Random noise
(noise std)

0.01 0.95 0.66 0.84 0.16 0.84 0.27
0.05 0.81 0.17 0.67 0.08 0.63 0.10
0.10 0.69 0.08 0.65 0.08 0.60 0.05

Table 5: Robustness against post-editing attacks. Higher AUC and
higher TPR is better. We assume a detection threshold of z ∼ 3.0,
which limits all FPR at 5× 10−2.

method against the attacks. The results are computed us-
ing 1000 attacked synthetic samples and 1000 real samples
from all 4 datasets. While EXP allows for accurate detection,
its data quality remains impaired, as observed in Table 1.
Therefore, our focus lies on the comparison between the two
SRL-based methods. We evaluate their robustness using the
recommended hyper-parameter: γ = 0.25 δ = 2.0 and a z-
threshold of 3.0. The results show that T-REST maintains a
strong detection performance against categorical column at-
tacks with a TPR of over 0.85 even when 50% of categori-
cal values are modified. Categorical columns generally have
lower entropy values, making the weighted count method as-
sign lower weights to them. Consequently, the modifications
in categorical columns do not have a large impact on the
detection. Regarding numerical column attacks, our water-
mark is susceptible to numerical pertubations through round-
ing and small Gaussian noise. We consider this as the main
limitation of our method. Adding a small random noise to a
number can result in a large change in its textual represen-
tation. For example, increasing the number 6.33431 by 1%
results in 6.39765, which contains drastically different to-
kens. We suggest future research to employ non-token-based
watermark methods to mitigate this limitation.

6 Conclusion
In this paper, we identify two major challenges when adapt-
ing the Soft Red List watermark framework on GPT-like tabu-
lar models, namely column permutation and low entropy sec-
tions and columns. We propose Tabular Red GrEen LiST
(T-REST), an adaption of the Soft Red List that is agnostic
to any column permutations by using column names as seed
for partitioning the Green/Red lists. To mitigate the impact of
low entropy sections and columns, we exclusively embed the
watermark on column values and employ an entropy-based
detection method that favors green tokens from columns with
relatively higher entropy values. We demonstrate the perfor-
mance of our method by leveraging GReaT, a state-of-the-
art auto-regressive tabular model, on 4 real-world datasets.
T-REST achieves strong detection efficiency with high AU-
ROC values of over 0.98 while preserving the synthetic data
quality with a negligible decrease of 3% in machine learn-
ing efficiency and resemblance metrics compared to non-
watermarked data. Our watermark is insusceptible to any
column or row shuffling and is robust against post-editing at-
tacks on categorical columns by maintaining a True Positive
Rate (TPR) of over 0.85 even when 50% of categorical values
are modified. Future research could focus on improving the
robustness of the watermark against post-editing attacks on
numerical columns by employing non-token-based methods.

7 Limitations
We identify the main limitations of our work and suggest po-
tential solution to mitigate them. Firstly, our T-REST wa-
termark shows limited robustness against post-editing attacks
on numerical columns due to the fact that a reasonably small
change to a numerical value can significantly modify its tex-
tual representation, resulting in drastically different tokens.
We suggest mitigating this issue by employing a non-token-
based watermark method for numerical columns. Secondly,
our method’s effectiveness is evaluated specifically on the
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GReaT model. Further research is needed to explore the ap-
plicability of W-SRL on other models. Lastly, the mapping
function columns’ entropy values to column weights involve
manually adjusted hyperparameters, such as the temperature
of softmax and the normalization process. Although the cho-
sen hyperparameters result in an improvement in detection ef-
ficiency, a comprehensive empirical study on the effects and
trade-offs of varying this mapping function is essential.

8 Responsible Research
We address the ethical concerns of our work and discuss the
measures taken to ensure that our study adheres to the best
practices for scientific integrity [11] and is reproducible.

8.1 Scientific integrity and ethical concerns
We place a strong emphasis on the implications of the detec-
tion of a watermark. We explicitly state the main limitations
of our method and acknowledge that not all possible attacks
have been extensively considered. We do not design and test
the watermark under scenarios wherein legally definite proof
is required, such as evidence in a court. Furthermore, we miti-
gate the risk of falsely accusing a naturally-generated sample
as synthetic, i.e. the False Positive Rate, by using a detec-
tion threshold that limits this rate at 5 × 10−2 in all experi-
ments. Regarding the use of real-world datasets in the study,
we leverage 4 real-world datasets, including Adult [4], Cal-
ifornia [19], Abalone [27], and Diabetes [25], which are all
publicly accessible and do not contain personally sensitive
information. Finally, in terms of reliability and transparency,
we provide detailed explanations of the methodology, algo-
rithms, and implementation of the watermark algorithms in
Section 4, as well as open-source our code on GitHub.

8.2 Reproducibility
We publicly open-source our code on GitHub, including the
implementation of the algorithms and the evaluation pro-
grams, as well as the fine-tuned weights of all models used
for evaluation. We also upload the synthetically generated ta-
bles for each watermark algorithm and the real tables used
during training. A clear explanation and setups of the ex-
periments in are provided in Section 5, including the training
process. Furthermore, we note that several procedures require
randomization and are non-deterministic, such as the multi-
nomial sampling of a language model and the random weight
initiation when training scikit models for machine learn-
ing efficiency evaluation. We mitigate this by performing the
evaluation tests a number of times and reporting the average
and the confidence intervals of the results. Finally, we pro-
vide a list of required packages and libraries, including the
corresponding versions and compatible devices to ensure re-
producible and consistent results.
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A Datasets
We provide more details regarding the 4 datasets used in the evaluation. A summary of the key properties of each dataset is
given in Table 6

• Adult dataset [4] contains the demographic and employment information from multiple adults in the U.S. extracted from
the 1994 U.S. Census database. The target column is whether an individual earns more than $50,000 per year (binary
classification task).

• Abalone dataset [27]: contains physical measurements of abalones (also known as marine snails), The target column is the
number of rings on the abalone’s shell, which correlates with its age.

• California dataset [19] (also known as the California Housing dataset): contains information about housing prices in
multiple areas of the California state, extracted from the 1990 U.S. Census database. The target variable is the median
house value in each area.

• Diabetes dataset [25]: contains medical data from female patient of at least 21 years old at Pima Indian heritage. This
dataset is originally owned by the U.S. National Institute of Diabetes and Digestive and Kidney Diseases. The target
column is whether the patient developed diabetes within five years of the initial measurements.

Name Domain # Rows # Cat # Num Task Target Column

Adult Social Science 48842 8 6 Classification “class”
Abalone Biology 4177 1 7 Regression “Rings”

California Housing 20640 8 8 Regression “Median House Value”
Diabetes Medical 768 1 8 Classification “Outcome”

Table 6: Properties of datasets used in the evaluation. # Rows, # Cat, # Num indicate the number of rows, the number of categorical columns,
the number of numerical columns, respectively.

B Evaluation Metrics
Here we provide more details of metrics used to evaluate the quality of the generated tabular data. We divide the metrics into 2
groups of metrics: resemblance to the real data and downstream machine learning efficiency (MLE).
Resemblance: measures the correlations between the real and synthesized data and the similarity between their distributions.
We leverage the synthcity library [22] to perform a number of statistical tests. The final resemblance score is calculated as
the average of the following metrics, which are all in the range [0, 1]:

– Jensen-Shannon Distance: measures the similarity between two probability distributions (each table represents a distribu-
tion of data points). A lower Jensen-Shannon distance indicates a higher resemblance.

– Feature Correlation: measures the correlation between pairs of features in one table compared to another.
– PRDC: precision, recall, density, and coverage
– Alpha-prescision: measures how individual synthetic samples match their closest point in the real data distribution.

Downstream Machine Learning Efficiency: The synthetic data should be able to replace real data in the training process. In
order to evaluate this, we train several machine learning models with synthetic datasets while evaluating them with real data,
then compare the performance with respect to models trained using real data. We leverage the scikit-learn library [21] and
compare the performance of these machine learning models by either the AUROC value (for classification task) or the R2 score
(for regression task)

C Additional results
C.1 Weighted count vs. non-weighted count
We further demonstrate the impact of employing weighted count. Figure 5 shows that for all hyper-parameter settings of the
green list ratio γ and the bias δ, our weighted count algorithm pushes the z-scores distributions of the real and synthetic datasets
further away from each other, resulting in higher AUROC of detection. We show these improvements in detection AUROC in
Table 7, considering the individual detection efficiency of each hyper-parameter setting on each dataset.
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Figure 5: z-score distributions of real and synthetic samples, using weighted count vs. non-weighted count. 1000 real samples and 1000
synthetic samples are taken from 4 datasets, each of length T = 125± 10 tokens.

γ = 0.25 δ = 5.0 γ = 0.25 δ = 2.0 γ = 0.5 δ = 2.0 γ = 0.5 δ = 1.0
NW-SRL T-REST NW-SRL T-REST NW-SRL T-REST NW-SRL T-REST

Adult AUROC 1.000 1.000 0.972 0.983 0.928 0.956 0.825 0.885
TPR 1.000 1.000 0.808 0.948 0.616 0.756 0.352 0.524

California AUROC 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.994
TPR 1.000 1.000 1.000 1.000 1.000 1.000 0.996 0.984

Abalone AUROC 1.000 1.000 1.000 1.000 1.000 1.000 0.984 0.991
TPR 1.000 1.000 1.000 1.000 1.000 1.000 0.928 0.964

Diabetes AUROC 1.000 1.000 1.000 1.000 1.000 1.000 0.997 0.998
TPR 1.000 1.000 1.000 1.000 1.000 1.000 0.988 0.988

Table 7: Detection efficiency of non-weighted Soft Red List (NW-SRL) vs. T-REST on each dataset using different hyper-parameter settings.
T-REST’s detection achieves higher (or equal) True Positive Rate (TPR) and AUROC in all settings. The False Positive Rate (FPR) is limited
at 5× 10−2. The result of each test (i.e. cell) is obtained using 250 real samples and 250 synthetic samples.
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