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A B S T R A C T   

Focusing on the effective configuration of emergency response systems in utility tunnels, this study proposes an 
innovative approach to optimize existing emergency response systems based on a consequence rapid prediction 
model and genetic algorithm. In the proposed approach, the interactions between different emergency response 
components are considered to perform a rapid gas dispersion prediction. Furthermore, the predicted gas con-
centration distribution is employed to estimate the quantitative explosion risks by combining the equivalent 
cloud method and the Baker-Strehlow model. Finally, the cumulative and cascading risk index are proposed and 
combined for systematic optimization by using a genetic algorithm. A case study is performed to demonstrate the 
feasibility of the proposed approach. The results indicate that the optimized emergency response systems 
effectively reduce both the cumulative and cascading risk level. This study provides technical support for 
emergency response system design and helps to improve the safety-risk-control capabilities of utility tunnels.   

1. Introduction 

The construction of utility tunnels has been promoted to meet the 
growing and urgent demand for sustainable city development, given its 
potential to facilitate energy supply and sustainable urban planning by 
housing and managing various municipal utilities in unified under-
ground tunnels [1]. As one of the most threatening safety hazards in 
urban tunnels, the natural gas pipeline has attracted significant concerns 
due to the possibility of causing catastrophic consequences after gas 
leakage [2,3]. “Safety barrier” is a widely-used term to present all kinds 
of preventive measures and mitigation measures that are used to prevent 
the happening of undesired accidents or mitigate their corresponding 
consequences [4]. In terms of unexpected gas leakage in utility tunnels, 
emergency response systems play an important role and work as miti-
gative safety barriers to reduce the gas leakage consequences and pre-
vent the happening of cascading events. Effective optimization of these 
emergency response systems helps manage accident risks in utility 
tunnels and improves emergency response efficiency. Therefore, the 
performance assessment and optimization of emergency response sys-
tems is an important research topic with practical significance for pro-
moting the safe operation and risk control of utility tunnels. 

According to the requirement of Technical Specification for Urban 

Utility Tunnel Engineering (GB 50838-2015) [5], emergency response 
systems for assuring the safety of natural gas compartments mainly 
include gas sensors, ventilation fans, and shut-down valves etc. Previous 
studies focused on the emergency response system optimization in 
utility tunnels based on experimental or numerical methods. Mi et al., 
[6] investigated the effectiveness of emergency ventilation and revealed 
that appropriate ventilation modes can create better evacuation condi-
tions. An et al., [7] studied the effect of inclination angle and longitu-
dinal ventilation on the temperature distribution. Li et al., [8] conducted 
a reduced-scale experiment with an analysis of the wind speed and 
pressure distribution to optimize the ventilation efficiency. Wang et al., 
[9] proposed a novel piston-wind ventilation strategy to improve the 
thermal environments and facilitate the safe operation of pipeline sys-
tems. The effectiveness of ventilation systems in diluting leaking gas was 
analyzed in terms of ventilation speeds [10,11,2]. Similarly, ventilation 
vent sizes [12] and ventilation mode design [13,14] were also 
investigated. 

Moreover, the optimization of gas sensor layouts is attracting more 
and more attention considering its effectiveness in the timely detection 
and alarm in case of gas leakage scenarios. Wu et al. [2] investigated the 
number of gas sensors required in the natural gas compartment for 
achieving source term estimation of gas leakage based on data 
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assimilation methods. Zhou et al., [15] conducted an optimization of gas 
sensor layouts considering their distribution at the cross-sections by 
using the CFD-adjoint-based method. With the introduction and inves-
tigation of the resilience of utility tunnels, Bai et al., [16] performed an 
optimization of sensor layouts and ventilation strategies based on nu-
merical simulations. To determine appropriate strategies for safety 
barrier allocation, previous studies mainly compared the performance of 
each strategy by using numerical simulations. The implementation of a 
large number of numerical simulations is inevitably computationally 
expensive; Meanwhile, the interaction between different safety barriers 
should also be well addressed to achieve a comprehensive improvement 
of the emergency response systems, instead of focusing on individual 
safety barrier optimization separately; Furthermore, previous studies 
have focused on optimizing safety barriers based on specific physical 
parameters such as temperature and concentration. However, the safety 
state of the utility tunnel cannot be adequately measured by a single 
physical quantity. 

To address aforementioned issues, worst-case scenarios are typically 
prioritized for numerical simulation analysis to reduce computational 
expense. And several index-based methods have been implemented in 
utility tunnels to evaluate the performance of safety barriers. Xu et al., 
[17] integrated Flame Acceleration Simulator (FLACS) with probability 
analysis to create an Exceedance frequency index. However, the possible 
intervention of various safety barriers was not fully considered. Bai 
et al., [16] conducted a study on the optimization of emergency stra-
tegies based on a proposed resilience assessment model. However, this 
study has some limitations in terms of modeling and evaluating the 
consequences of gas explosions. Most importantly, the search for the 
best configuration of safety barriers involves the solution of a combi-
natorial optimization problem, in which multiple choices of safety 
barriers are possible and accompanied by varying risk levels. This is a 
challenging issue because it is impractical to enumerate and evaluate 
every possible combination of safety barriers in practice. 

Recent advancements in risk management and safety optimization 
across various engineering domains highlight the integration of opti-
mization algorithms with traditional engineering principles. These 
studies include the development of multi-objective optimization model 
for gas detector placement [18,19], robust multi-objective optimization 
for safety barrier performance in NaTech scenarios [20], and 
cost-effective models for chemical risk reduction [21–23]. Additionally, 
mixed-integer linear programming for system resilience, goal pro-
gramming for firefighting strategies, and AI-driven robust optimization 
for tunnel construction demonstrate the trend towards more efficient, 
reliable solutions [24–26]. The introduction of the buffered optimiza-
tion and reliability method (BORM) further exemplifies progress in 
tackling complex reliability-based optimization challenges in diverse 
engineering systems [27,28]. But up to now, a systematic approach for 
risk-based optimization of utility tunnel emergency response systems is 
still lacking, particularly considering gas leakage and explosion sce-
narios. Targeting this gap, this study integrates a rapid consequence 
prediction model that considers interacting safety barriers, risk con-
straints, and the genetic algorithm within an optimization framework. 
This approach enables safety barriers to mitigate the magnitude of risk 
to the greatest possible extent and prevent the occurrence of cascading 
events in other compartments of utility tunnels. 

Regarding the methodological innovations and the relevance to the 
field of the safety of critical infrastructures, the main contributions of 
this study are concluded as follows: 

This study developed a consequence rapid prediction model (CRPM) 
by integrating a gas dispersion model, equivalent cloud method, Baker- 
Strehlow model, and emergency response systems modeling. Compared 
with previous methods, it has significant advantages in assessing the 
entire accident evolution process (from gas leakages to explosions) 
while considering the intervention of emergency response systems. This 
methodological improvement allows a more comprehensive and 
reasonable/accurate consequence assessment, contributing to an 

appropriate safety risk assessment of utility tunnels. Furthermore, a risk- 
based optimization approach has been proposed using the CRPM model 
to optimize existing utility tunnel emergency response systems, offering 
an exploratory attempt and practical solution for the risk-based design 
and optimization of safety-critical systems. This study helps to enhance 
the risk-control capability of emergency response systems regarding the 
safety of utility tunnels and boosts the safety of complex technological 
systems. The developed method may also be applied to the safety risk 
control and risk-based optimization of other critical infrastructures. 

The remainder of this study is organized as follows: In Section 2, the 
methodology for developing the risk-based optimization approach is 
presented. Furthermore, an illustrative case study in a typical utility 
tunnel scenario is presented in Section 3 to demonstrate the application 
of the proposed approach. Finally, Section 4 presents the concluding 
remarks of this study. 

2. Methodology 

This section presents an overall framework of the proposed approach 
first. The following Sections provide detailed explanations of the three 
steps involved in this approach. 

2.1. Overall framework 

The framework of the proposed approach is presented in Fig. 1. To 
model the evolution of the accident scenarios, we begin with identifying 
potential accident scenarios with the consideration of the intervention of 
safety barriers after gas leakage. After that, risk modeling should be 
conducted, in which the probability analysis and consequence analysis 
should be performed. Finally, the obtained risk indexes are used to 
configure the optimization functions, and thereby the optimization al-
gorithm can be implemented to identify an optimal strategy for the 
emergency response system allocation and reconfiguration. 

2.2. Accidents scenario building 

Fig. 2 demonstrates the possible accident scenarios and their evolu-
tion paths within the natural gas compartment. The accident evolution 
process can be divided into three main stages. Firstly, a catastrophic 
consequence begins with gas leakage. Subsequently, the flammable gas 
may disperse and accumulate in the compartment. If the accumulated 
gas was ignited, a gas explosion would happen. Finally, cascading events 
may occur if the overpressure exceeds the compressive strength of the 
concrete wall [29], which may induce damage to nearby compartments. 
It is assumed that emergency response systems, including combustible 
gas sensors, variable frequency fans, and gas pipeline shut-down valves, 
are allocated in a good manner to mitigate the consequences of gas 
leakage and prevent possible cascading events. To appropriately 
describe the accident evolution process and evaluate the corresponding 
consequences, the possible accident scenarios were identified with the 
consideration of the intervention of safety barriers on accident 
consequences. 

2.2.1. Accident scenario identification 
According to the evolution paths mentioned above, three main 

events of accident evolution are identified: (i) Gas leakage and disper-
sion; (ii) safety barrier interventions; (iii) Ignition and explosion. As a 
result, the possible scenarios associated with gas leakage events (i.e., 
initial events in the evolution paths) should be identified first. Typically, 
the leakage scenario set should be able to represent any possible leakage 
scenario to fully reflect the leakage and subsequent accident risk. The 
leakage scenario set is established by randomly combining the leakage 
source set (defined by leakage location, hole size, leakage direction, etc.) 
and the wind field set (defined by wind speed and direction). In this 
study, several main principles are proposed to reduce the scenarios to an 
acceptable level considering a balance between scenario integrity and 
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computational costs. First, the uncertainty of the wind field is not 
considered because the natural gas compartment has a predetermined 
ventilation mode, resulting in a relatively steady wind field. Second, the 
leakage direction can be simplified and not involved in the leakage 
scenario set since it has a relatively small effect on the gas leakage and 
dispersion process. This assumption is reasonable because the natural 

gas compartment in utility tunnels is designed as a long and narrow 
structure. When a gas leakage occurs, the leaking gas quickly mixes 
within the cross-section and is transported along the length direction of 
the utility tunnel due to mechanical ventilation [16]. Therefore, the 
leakage location and hole size are regarded as uncertain factors in the 
construction of the leakage scenario set. According to the 11th gas 

Fig. 1. The framework of the proposed approach.  

Fig. 2. Accident scenarios and corresponding evolution paths in utility tunnels.  
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pipeline incident report of the European Gas Pipeline Incident Data 
Group (EGIG), the leakage hole size can be divided into three categories 
[30]: (i) pinhole, the effective diameter of the hole is smaller than or 
equal to 2 mm; (ii) the effective diameter of the hole is larger than 2 mm 
and smaller than or equal to the diameter of the pipe (300 mm in this 
study); (iii) the effective diameter of the hole is larger than the pipeline 
diameter. Three representative hole sizes are selected to represent the 
three types of leakage hole sizes, namely, 20 mm for pinhole leakage, 
150 mm for hole leakage, and 300 mm for rapture leakage [18]. With the 
consideration of the randomness of leakage locations, we formulated the 
gas leakage locations as a uniform distribution with distance intervals of 
5 m. Finally, a total of 117 cases are generated and regarded as the 
leakage scenario set considering the uncertainties of leakage location 
and leakage hole size, as illustrated in Table 1. 

2.2.2. Operation mode of emergency response systems 
According to the regulation of Technical Specification for Urban Utility 

Tunnel Engineering (GB 50838–2015) [5], three primary components (i. 
e., gas sensors, ventilation fans, and shut-down valves) are accommo-
dated as emergency response systems in the natural gas compartment to 
cope with unexpected gas leakage accidents. Fig. 3 shows the operation 
mode of the emergency response systems. When an undesired leakage 
accident happens, the gas sensors first detect the leak as soon as the gas 
concentration reaches 1 % VOL. Subsequently, both the ventilation fan 
and shut-down valve are activated to execute their respective emergency 
actions at a concentration of 1.25 % VOL. In such conditions, the 
ventilation rate will increase from 6 times/h, in a normal situation, to 
12 times/h, in an emergency scenario. Moreover, the activation of the 
shut-down valve could cause a gradual pressure drop inside the natural 
gas pipeline and lead to a gradual leakage rate decrease. However, 
despite the safety barriers’ efficacy, the optimal configuration remains 
challenging as the distribution of gas clouds and corresponding risks 
vary during the gas dispersion process. Taking a specific safety barrier as 
an example, a large ventilation rate helps to decrease gas concentration 
but also might be beneficial to the mix of leaking gas, which inevitably 
forms a large volume of the explosive gas cloud. And the interaction 
between various components of the emergency response system further 
exacerbates the problem’s nonlinear features. Therefore, optimizing 
safety barriers is a nonlinear combinatorial problem that requires 
balancing the risk level, costs, and emergency decision-making. To 
address this issue, we propose defining a spatiotemporal risk-based 
index to represent these complex and interactive relations and use it 
for inverse optimization of safety barriers. 

2.3. Risk modeling 

In this section, probability analysis and consequence analysis are 
introduced to achieve the risk modeling of gas leakage scenarios. Two 
novel risk indexes (i.e., cumulative risk and cascading risk) are proposed 
to evaluate the effectiveness of emergency response systems considering 
the severity of gas accumulation and the probability of cascading events 
in multiple compartments. 

2.3.1. Probability analysis 
As mentioned in Section 2.2.1, the leakage scenario set mainly 

includes the uncertainty of leakage locations and hole sizes. With the 
consideration of a uniform distribution of the leakage location variable, 
it can be exempted from the probability calculation. When it comes to 
subsequent explosion of gas leakage accidents, the ignition probability 
should be involved. Therefore, we present the statistical data, obtained 
from the 11th gas pipeline incident report of the EGIG, in Table 2. And 
the specific scenario probability can be calculated by the Formula (1) as 
follows: 

PL(i) = Poccur(i) ∗ Pigni(i) (1)  

Where 
PL is the occurrence probability of any gas leakage scenario 

belonging to the leakage scenario set L, 
Poccur is the occurrence probability of the specific hole size, 
Pigni is the ignition probability related to the specific hole size, 
i is the number of leakage scenarios, ranging from 1 to NL = 117. 

2.3.2. Consequence analysis 
A consequence rapid prediction model (CRPM) is developed to 

quantitatively describe the interaction between the accident evolution 
and the safety barriers in utility tunnels, as well as evaluate its corre-
sponding consequences. 

Firstly, based on the previous work [16], a one-dimensional gas 
dispersion model is discretized by the finite volume method (FVM) to 
account for the gas leakage and dispersion process in the natural gas 
compartment, which can be seen in the Formula (2). 

∂ρc
∂t

+
∂(ρuc)

∂x
=

∂
∂x

(

D
∂c
∂x

)

+ S (2) 

Where 
c represents the volume fraction of leaking natural gas (v/v), 
ρ is the density of the leaking natural gas (kg/m3), 
u is the ventilation speed corresponding to the x-direction (m/s), 
D is the gas diffusion coefficient (m2/s), 
S is the leakage source term (kg/(m3⋅s)). 
Furthermore, the effect of safety barriers is modeled by qualitatively 

introducing their “Output” behavior (Fig. 3) into the gas dispersion 
model. For combustible gas sensors, the gas concentration predicted by 
the gas dispersion model would be recorded at all times. When the alarm 
value is reached at any gas sensor, the subsequent safety barriers can be 
activated, specifically, 1.00 %VOL for the ventilation fan and 1.25 % 
VOL for the shut-down valve. Concerning the ventilation fan, the 
ventilation rate is transformed from 6 times/h to 12 times/h dynami-
cally, which will be converted to ventilation speed in Formula (2) by 
Formula (3) shown as follows [31]: 

u =
n × V

3600 × F
(3)  

Where 
n is the ventilation rate (times/h), 
F is the area of the ventilation vent (m2), 
V is the volume of the utility tunnel (m3). 
With regard to the effect of the shut-down valve, the drop in the 

pressure gradient between the natural gas pipeline and external space 
cause a dynamic variation of leakage rate in the location of the leakage 
hole, which can be calculated by the Formulas (4)–(6) as follows [16,4]: 

QM = C⋅A⋅Pa

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

k⋅M
R⋅T

(
2

k + 1

)k+1
k− 1

√

(4)  

QE = QM⋅exp
(
− QM

m0
(t − tE)

)

(5)  

m0 = A⋅LD⋅ρ (6) 

Table 1 
Leakage scenario set within the natural gas compartment.  

No. of Leakage 
scenarios 

Leakage location 
/m 

Range of hole size 
/mm 

Representative 
diameter/mm 

1–39 [5, 10, 15, …, 190, 
195] 

Pinhole: 0–20 20 

40–78 [5, 10, 15, …, 190, 
195] 

Hole: 20~300 150 

79–117 [5, 10, 15, …, 190, 
195] 

Rapture: >300 300  
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Where 
QM is the initial leakage rate (kg/s), 
C is the release coefficient, ranging from 0.9 to 0.98 based on the hole 

shape, 
A is the area of the leakage hole (m2), 
Pa is the pressure of the natural gas pipeline (Mpa), 
k is the isentropic index and is equal to 1.29, 
M is the molar mass of the natural gas (g/mol), 
R is the molar gas constant (J/(mol⋅K)), 
T is the temperature of the natural gas (K). 
QE is the emergency leakage rate (kg/s), 
t and tE are the leakage time and the start time of emergency shut-

down (s), 
m0 is the residual mass of the natural gas (kg), 
LD is the distance between the shut-down valve and the leakage 

location. 
After the abovementioned configuration of the gas dispersion model, 

the gas leakage, dispersion, and safety barriers intervention can be well 
modeled and the spatiotemporal distribution of leaking gas concentra-
tion can be predicted. To validate the effectiveness of the simplified gas 
dispersion model, a three dimensional CFD simulation for gas leakage in 
utility tunnels is performed. Table 3 details the specific configuration of 
a three-dimensional CFD model (Ansys Fluent). The configurations 

applied in Ansys Fluent have been parameterized into our proposed gas 
dispersion model to maintain consistency in initial and boundary con-
ditions. Fig. 4 illustrates a comparison between the three-dimensional 
CFD model and our proposed one-dimensional gas dispersion model. 
The similar predictive trends of the two models demonstrate that the 
one-dimensional gas dispersion model can reflect the distribution and 
magnitude of gas concentration in utility tunnels. 

To evaluate the possible explosion consequence of gas leakage ac-
cidents and its destructive effect on the utility tunnel, the equivalent 
cloud method is employed to convert the inhomogeneous gas concen-
tration to vapor cloud volume of stoichiometric concentration, which 
can then be integrated to predict the explosion overpressure by using 
Baker-Strehlow model. In this study, a novel equivalent cloud method 
proposed by Zhang et al., [32] is utilized. The specific formulas and 
calculation process of this method are listed as follows: 

CV1(j) = CV0⋅
[

S0(ER)
S1(ER)

]2.945

(7)  

Vstoi =
∑N

j=1
CV1(j) (8)  

Where 
CV1(j) is the volume of equivalent gas cloud corresponding to the jth 

grid in the gas dispersion model (m3), 

Fig. 3. The operation mode of emergency response systems in case of gas leakage accidents.  

Table 2 
Occurrence and ignition probability for different accident scenarios [30].  

Range of 
hole size 

Occurrence probability 
/1000 km⋅yr 

Ignition probability 
/% 

Pinhole 0.088 4.7 
Hole 0.022 2.2 
Rapture 0.013 4.7 
Unknown 0.003 /  

Table 3 
Configuration of the three dimensional CFD model.  

Parameter Value 

Length of the utility tunnel (m) 200 
Width of the utility tunnel (m) 2 
Height of the utility tunnel (m) 2.4 
Location of leakage hole (m) (30, 0.9, 0.6) 
Diameter of leakage hole (mm) 50 
Diameter of the gas pipeline (mm) 500 
Ventilation rate (m/s) 1.6 
Leakage rate (m/s) 50 
Environmental temperature (K) 293  Fig. 4. Validation of the one-dimensional gas dispersion model.  
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CV0 is the volume corresponding to the jth grid (m3), 
ER is the equivalent ratio of corresponding gas concentration, Can-

tera tool is used to achieve this conversion [33], 
S0(ER) is the laminar burning velocity corresponding to the gas 

concentration at the jth grid (m/s), which can be obtained by a quan-
titative relationship between laminar burning velocity and ER in Fig. 5, 

S1(ER) is the laminar burning velocity corresponding to the stoi-
chiometric concentration of natural gas (m/s), 

Vstoi is the total volume of equivalent gas cloud corresponding to the 
stoichiometric concentration (m3), 

N is the total number of grids used in the gas dispersion model. 
Finally, the obtained Vstoi will be combined with the Baker-Strehlow 

model considering the structural features of utility tunnels [35,36]. The 
Baker-Strehlow model first determines the flame Mach numbers based 
on the fuel reactivity, obstacle density, and flame expansion, as shown in 
Table 4. Then, the explosion overpressure can be calculated by formulas 
(9) to (11). And the predicted overpressure can be taken as the reference 
for quantitatively evaluating the destructive effect on the utility tunnel. 

P = 0.411⋅R− 0.924 (9)  

R = R⋅
(

P0

E

)1/3

(10)  

E = Vstoi⋅f (11) 

Where 
P is the explosion overpressure and P0 is the atmospheric pressure 

(Mpa), 
R is the dimensionless distance and R is the distance to explosion 

center (m), 
E is the total energy released from the gas explosion (J), 
f is the combustion heat of the natural gas (KJ/m3). 

2.3.3. Risk index construction 
This section proposes two risk indexes that enable quantitative risk 

assessment of all-process accident scenarios in utility tunnels, including 
the cumulative risk and cascading risk index. These indexes will also be 
used to support risk-based barrier optimization, as described in the 
following section. The duration of the explosive gas cloud is a critical 
index to represent the risk level of gas leakage accidents in the natural 
gas compartment [10,2]. Based on the developed leakage scenario set 
and probability analysis in Section 2.2, the cumulative risk index, 
therefore, can be constructed by introducing the probability weight into 
the duration of the explosive gas cloud corresponding to the specific 

leakage scenario, as shown in the Formulas (12) and (13). 

RL(i) =

(

PL(i)

/
∑NL

1
PL(i)

)

⋅tD(i) (12)  

Rcum =
∑NL

1
RL(i) (13) 

Where 
RL(i) is the risk index corresponding to the leakage scenario i, 
tD(i) is the duration of the explosive gas cloud in the leakage scenario 

i, and it is used to represent the consequence of leakage accidents in this 
study, 

Rcum is the cumulative risk of the entire leakage scenario set. 
The cascading event is further defined to represent the unacceptable 

accident consequence in the natural gas compartment of utility tunnels. 
By referring to the failure pressures of structural building elements in 
Table 5 and previous study on the structural damage of utility tunnels 
under gas explosion loads ([38]b), we regard the overpressure of 0.25 
Mpa as the triggering condition of cascading events because concrete 
walls can suffer cracks or damage under this blast loading. Therefore, 
other compartments adjacent to the natural gas compartment will be 
affected. Meanwhile, the cascading risk is defined to indicate the pro-
portion of unacceptable events in the leakage scenario set, which is 
presented in Formula (14) as follows: 

Rcas =
Ncas

NL
(14)  

Rcas =

{
0, for prevention
a, for mitigation (15)  

Where 
Rcas is the cascading risk of gas leakage accidents in utility tunnels, 
Ncas is the number of unacceptable events in the leakage scenario set, 
a is a preset constant to represent an acceptable level of cascading 

risk decided by decision-makers or managers. When it equals zero, it 
signifies that any unacceptable events are rejected. Conversely, when it 
is set to a specific value, it indicates that cascading risk below that 
threshold is considered acceptable. 

2.4. Risk-based optimization 

The tradeoff between safety investment and risk-reduction perfor-
mance of safety barriers is always a critical issue that should be 
addressed in the decision-making phase [41,42]. In this section, the 
optimization objective and optimization constraints are analyzed and 
the implementation of the genetic algorithm helps to solve the 
well-defined optimization problem. 

2.4.1. Analysis of optimization constraints 
Typically, a safety optimization problem should satisfy one or mul-

tiple constraints, which may be a minimum safety level and/or the Fig. 5. Relationship between laminar burning velocity and ER [34].  

Table 4 
Flame Mach numbers Mw for various explosion scenarios [37].  

Flame expansion Fuel reactivity Obstacle density 

High Medium low 

1D High 5.200 5.200 5.200 
Medium 2.270 1.770 1.030 
low 2.270 1.030 0.294 

2D High 1.770 1.030 0.588 
Medium 1.240 0.662 0.118 
low 0.662 0.471 0.079  

3D 
High 0.588 0.153 0.071 
Medium 0.206 0.100 0.037 
low 0.147 0.100 0.037  
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maximum safety investment budget. According to the genetic algorithm, 
some key variables should be set to perform an optimization in practice, 
such as the objective function, constraints, and decision variables. In this 
study, the decision variables are the performance parameters of the 
emergency response systems (e.g., the layout of gas sensors, the venti-
lation rate of the variable ventilation fan, et al.). Concerning the costs of 
each safety barrier, we assume the requirement regulated by Technical 
Specification for Urban Utility Tunnel Engineering (GB 50838–2015) is the 
reasonable budget criterion: (i) the minimum installation distance be-
tween each combustible gas sensor is not smaller than 15 m. (ii) the 
maximum ventilation rate is not larger than 18 times/h. With such 
regulation, the costs associated with the installation investment of 
combustible gas sensors and the power consumption of ventilation fans 
are constrained. Based on the developed risk indexes, the objective 
function is set as minimizing the cumulative risk, and the constraint is 

set as the cascading risk. Therefore, the safety optimization problem 
becomes pursuing the minimum cumulative risk level inside the natural 
gas compartment, while preventing or mitigating possible cascading 
events in entire utility tunnels. 

2.4.2. Optimization algorithm 
The Genetic algorithm is a stochastic global search method that 

mimics the process of natural selection to find the optimal solution to an 
optimization problem. GA has been proven to be feasible and effective in 
solving multivariable, nonlinear, and combinatorial optimization 
problems, including those related to the tradeoff between safety risks 
and costs [19,23]. The intrinsic operations of selection, crossover, and 
mutation in GA effectively mitigate the common issue of local optima in 
optimization methods. This leads to quicker convergence with fewer 
iterations. GA’s ability to accommodate various constraints and 

Table 5 
Failure pressures of structural building elements under gas explosion conditions [39,40].  

Degree of 
destruction 

1 2 3 4 5 6 7 

Degree name Basically no 
damage 

Secondary mild 
damage 

Mild damage Moderate damage Secondary serious 
damage 

Severe damage Complete 
damage 

Overpressure, 105 Pa < 0.02 0.02–0.09 0.09–0.25 0.25–0.40 0.4–0.55 0.55–0.76 > 0.76 
Glass Accidental 

damage 
Little damage Most damage or 

smash 
Smash / / / 

Wooden window No damage Slightly damaged Mostly damaged Severely damaged All destroyed / / 
Wooden wall No damage No damage Panel 

deformation 
Broken wood 
sandalwood 

Accidental breakage 
of panels 

Partially collapsed All collapsed 

Tile roof No damage Little movement Mass movement All lift / / / 
Brick wall No damage Plaster falls 

slightly 
Plaster falls 
severely 

Small crack Large crack Severe crack, partially 
collapsed 

Most 
collapsed 

Reinforced concrete 
column 

No damage No damage No damage No damage No damage Tilt Large tilt  

Fig. 6. Logic flow chart of the genetic algorithm.  
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objective functions, such as the diverse risk indices in this study, facil-
itates its integration with other methods. 

Fig. 6 illustrates the scheme of the genetic algorithm used in this 
study. The GA starts by creating a population of potential solutions/ 
decision variables, which in this case are safety barriers. At each gen-
eration, GA iteratively improves this population through the operators 
of selection, crossover, and mutation. This algorithm evaluates the 
fitness of each potential solution, and those with higher fitness are more 
likely to be selected for reproduction, while less fit solutions are elimi-
nated. This process leads to the creation of subsequent generations of the 
examined population better suited to their environment than their 
parents. Through repeated generations of reproduction, the algorithm 
converges towards a solution that optimizes the objective function being 
minimized or maximized [43]. In this study, the GA minimizes the 
objective function (Rcum) under the risk constraint (Rcas) and de-
termines the optimal strategy of potential solutions, which can be found 
in the Formula (16). Meanwhile, the investment costs of safety barriers 
are implicitly involved in considering the specific requirements of 
Technical Specification for Urban Utility Tunnel Engineering (GB 
50838–2015) [5]. 
{

Min(Rcum

Rcas = 0 or < Rcas ≤ a
(16)  

3. Case study 

Based on the proposed approach, an illustrative case study is 
implemented to demonstrate the feasibility and advantages of the pro-
posed approach. This case study is elaborated in three parts: (i) con-
figurations of the proposed approach, (ii) comparison between current 
strategies and optimized strategies of safety barriers, (iii) advantage 
analysis of safety barriers optimization using the proposed approach. 

3.1. Configurations 

The physical model of a typical natural gas compartment of utility 
tunnels is illustrated first, along with the configuration of related safety 
barriers. As shown in Fig. 2, the natural gas compartment is built as a 
tunnel structure with a variety of facilities. The specific configuration of 
the natural gas compartment is determined by referring to the under-
ground utility tunnel of Changbin Road in Haikou City. The detailed 
parameters are presented in Table 6. 

In terms of risk modeling, the configurations of the developed rapid 
consequence prediction model are elaborated. Then, the risk modeling 
can be achieved by using the risk indexes proposed in Section 2.3. In the 
simulation of gas leakage and dispersion, the boundary conditions are 
configured and listed as follows: 

(i) Ventilation vent: a time-dependent Dirichlet boundary condition 
is employed to mimic the dynamic transformation of ventilation speed. 
Based on the Formula (3), the ventilation speed can be set as 1.6 m/s and 

3.2 m/s for normal and accidental scenarios respectively. 
(ii) Leakage source: a time-dependent Dirichlet boundary condition 

is used to mimic the decrease of leakage rate due to the shut-down valve 
activation. Based on the Formulas (4)–(6). 

In the simulation process of ignition and gas explosion, the predicted 
inhomogeneous gas cloud is converted to an equivalent vapor cloud 
volume of stoichiometric concentration using Formulas (7), (8). The 
maximum volumes of equivalent vapor clouds in the time series are 
assumed to be ignited at the center of this gas cloud, representing a 
worst-case in gas explosion scenarios. Based on the fuel reactivity (low), 
obstacle density (medium), and flame expansion (1D) of the natural gas 
compartment, a Flame Mach number Mw of 1.03 can be determined 
from Table 4. This number is used to obtain a deterministic relation 
between dimensionless distance and explosion overpressure according 
to Formulas (9)–(11). 

In terms of genetic algorithms, the ventilation rate and layout of gas 
sensors are considered to be optimized and improved simultaneously. 
The reason for the unavoidable ignorance of shut-down valves is that we 
only consider a 200 m compartment of the utility tunnel. But the dis-
tance between two shut-down valves usually exceeds several kilometers. 
Finally, a total of 14 decision variables are chosen to represent the 
performance parameters of safety barriers in utility tunnels, as shown in 
formula (16), the value of n and xi range from 12–18 to 0–200, 
respectively [5]. 

〈n, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13〉 (17) 

Where 
n is the ventilation rate of the ventilation fan in emergency scenarios 

(times/h), 
xi is the possible location of the specific gas sensor (m), a total of 13 

sensors are considered to be optimized. 

3.2. Sensitivity analysis 

In this section, we investigate the sensitivity of various factors in our 
proposed model. We examine the impact of different leakage locations 
and leak hole sizes on cumulative risks. Additionally, we incorporate the 
initial distribution of optimized variables and the constraints on 
acceptable cascading risk to demonstrate the robustness and effective-
ness of our model. Fig. 7 illustrates the influence of diverse leakage lo-
cations and sizes on cumulative risks. It is observed that the cumulative 
risk tends to decrease with an increase in the leakage location. This trend 
is attributed to the fact that a leakage location in the upwind direction 
represents a longer dispersion distance, increasing the likelihood of 
forming an explosive gas cloud. Furthermore, smaller leak hole sizes 
contribute to a relatively larger cumulative risk due to their higher 
occurrence and ignition probabilities. Tables 7 and 8 present the sensi-
tivity analysis of the initial distribution of optimized variables (namely, 
ventilation rate and sensor layout) and the constraint of acceptable 
cascading risk (defined as the permissible number of accidents in a total 
of 117 leakage scenarios). Despite varying initial distributions of opti-
mized variables and constraints on acceptable cascading risk, our pro-
posed approach consistently converges to a relatively low cumulative 
risk by optimizing the ventilation rate and sensor layout. This finding 
indicates that our approach is resilient to initial distribution variances 
and is capable of identifying a relatively optimal solution for mitigating 
accident risk under various leakage scenarios and decision-making 
preferences. 

3.3. Results and comparative analysis 

This section makes a comparison between the risk modeling results 
by using the proposed approach and by using current allocation and 
configuration strategies of emergency response systems in utility tun-
nels. Fig. 8 presents the optimization results by using the proposed 
approach, in which penalty values indicate the cumulative risk of 

Table 6 
Configuration of the natural gas compartment in the utility tunnel.  

Type Parameter Setup value 

Geometry Length of the utility tunnel (m) 200 
Width of the utility tunnel (m) 2 
Height of the utility tunnel (m) 2.4 

Gas properties 
(Pure 
methane) 

Natural gas temperature (K) 288 
Natural gas density (kg/m3) 0.7174 
Combustion heat (MJ/m3) 39.75 
Pressure (Mpa) 1.6 

Safety barriers Layout of gas sensors (m) [10, 25, 40, …, 
175, 190] 

Nomal ventilation rate (times/h) 6 
Evergency ventilation rate (times/h) 12 
Distance between leakage hole and shut- 
down valve (km) 

5  
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accident scenarios in genetic evolution. The best penalty value (i.e., the 
optimal strategy of the emergency response system) is 0.4767 and it 
takes approximately 70 generation iterations to converge. This demon-
strates a superiority over the mean penalty value of 1.376 at the end of 
generation iterations, with a relative improvement of approximately 
65.36 %. Table 9 presents the optimal strategy for safety barriers cor-
responding to the best penalty value, in which the optimal ventilation 

rate and layout of each gas sensor are provided. As shown in Table 9, the 
optimal ventilation rate is optimized to 17.71 times/h approaching the 
maximum ventilation rate (18 times/h) in the natural gas compartment. 
This is because a larger ventilation rate helps to accelerate the dilution 
efficiency of the leaking gas cloud. Meanwhile, the larger ventilation 
rate promotes the gas cloud to approach the downstream ventilation 
outlet quickly. This finally causes a shorter duration of the explosive gas 
cloud in the natural gas compartment, and therefore a smaller cumu-
lative risk. For the layout of gas sensors, a distinct strategy is found by 
using the proposed approach compared to the current strategy with 
uniform intervals between gas sensors. According to the optimization 
results, it is recommended to distribute more gas sensors upwind, and a 
non-uniform interval is deemed ideal. This strategy significantly im-
proves the effectiveness of risk reduction but without extra investment 
in gas sensors. The reason for this might be that an upwind leakage 
usually has a long dispersion distance in the natural gas compartment, 
due to being far away from the ventilation outlet. In the process where 
air and natural gas are mixed, it has a higher likelihood of the formation 
and persistence of an explosive gas cloud. Therefore, it is regarded as a 
more dangerous accident and should be timely detected by gas sensors. 
A similar non-uniform strategy of gas sensors was also investigated by 
Bai et al., [16] and an optimistic outcome was reported, which dem-
onstrates the feasibility of the proposed approach. 

Fig. 9 compares the effectiveness of risk reduction by employing the 
current strategy (Ventilation rate: 12 times/s; Sensor layout: uniform 
intervals) with the optimized strategy (Ventilation rate: 17.71 times/s; 
Sensor layout: non-uniform intervals). An obvious decrease in risk level 
can be observed when the optimized strategy is employed, with 41.06 % 
for cumulative risk and 66.71 % for cascading risk respectively. It means 
that a shorter duration of the explosive gas cloud and a lower probability 
of cascading events can be achieved across all considered leakage sce-
narios by using the optimized strategy, which indicates the effectiveness 
and practicability of the proposed approach. 

3.4. Advantage of the proposed approach 

In the above section, systematic optimization for both ventilation 
rate and sensor layout is conducted. To further demonstrate the ad-
vantages of risk reduction by using the proposed approach, two single 
improved strategies from the current strategy are designed, as shown in 
Table 10. In Case 1, the ventilation rate of the current strategy is 

Fig. 7. Sensitivity analysis of different leakage locations and leakage sizes.  

Table 7 
Sensitivity analysis of the variables under optimization.  

Case Initial configurations Cumulative risk 
before 
optimization 

Cumulative risk 
after optimization 

1 ① Ventilation rate: 6 times/h 0.8102 0.4796 
② Sensor layout: [10 m, 25 m, 
40 m, 55 m, 70 m, 85 m, 100 m, 
115 m, 130 m, 145 m, 160 m, 
175 m, 190 m]   

2 ① Ventilation rate:12 times/h 0.8102 0.4785 
② Sensor layout: [5 m, 15 m, 25 
m, 35 m, 45 m, 55 m, 65 m, 75 
m, 85 m, 95 m, 105 m, 115 m, 
125 m]   

3 ① Ventilation rate:18 times/h 0.8102 0.4791 
② Sensor layout: [75 m, 85 m, 
95 m, 105 m, 115 m, 125 m, 
135 m, 145 m, 155 m, 165 m, 
175 m, 185 m, 195 m]    

Table 8 
Sensitivity analysis of optimization constraints.  

Case Constraints regarding 
acceptable cascading risk 

Cumulative risk 
before optimization 

Cumulative risk after 
optimization 

1 0.0256 
(3 cascading event in 117 
leakage scenarios) 

0.8102 0.4767 

2 0.0427 
(5 cascading event in 117 
leakage scenarios) 

0.8102 0.4788 

3 0.0598 
(7 cascading event in 117 
leakage scenarios) 

0.8102 0.4786  
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improved based on the optimized strategy, while the sensor layout is 
improved in Case 2. The comparative results of these two cases are 
presented in Figs. 10 and 11. As shown in Fig. 10, the improved strategy 
contributes to the effective reduction of cumulative risk compared to the 
current strategy, but a larger cascading risk is observed. Finally, the 
optimized strategy also has a better performance in terms of cumulative 

risk and cascading risk. Fig. 11 shows some different phenomena that 
the improved strategy helps to reduce both cumulative and cascading 
risk. Its mitigation performance in cascading risk is superior to the 
optimized strategy but has some drawbacks in cumulative risk. This may 

Fig. 8. Optimization results of cumulative risk.  

Table 9 
Optimization results of safety barriers.  

Decision variables Optimized results Decision variables Optimized results 

n (times/h) 17.71 x7 (m) 66 
x1 (m) 22 x8 (m) 75 
x2 (m) 29 x9 (m) 83 
x3 (m) 33 x10 (m) 115 
x4 (m) 36 x11 (m) 135 
x5 (m) 46 x12 (m) 161 
x6 (m) 55 x13 (m) 195  

Fig. 9. Comparison between current strategies and optimized strategies.  

Table 10 
Optimization results of safety barriers.   

Improved strategy Optimized strategy 

Safety 
barriers 

Ventilation 
rate 

Sensor 
layout 

Ventilation 
rate 

Sensor 
layout 

Case 1 17.71 Uniform 
intervals 

17.71 Non-uniform 
intervals 

Case 2 12 Non-uniform 
intervals 

17.71 Non-uniform 
intervals  

Fig. 10. Comparison between improved strategies (Ventilation rate) and opti-
mized strategies. 

Fig. 11. Comparison between improved strategies (Sensor layout) and opti-
mized strategies. 
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be the case because we take a more tolerant criterion (“a” in the Formula 
(15) is set as 3) for cascading risk to avoid a too strict constraint, pre-
venting the comprehensive search for potential solutions. The optimi-
zation algorithm regards a cascading risk of 0.0256 (3 cascading events 
in a total of 117 leakage scenarios) as acceptance, and therefore put 
more effort to minimize cumulative risk as much as possible. From the 
perspective of the gas leakage and dispersion process, a relatively large 
ventilation rate (17.71 times/h) might help the mix of leaking gas and 
form a larger explosive gas cloud, which causes more possible cascading 
events. 

Overall, risk reduction by using the combination of various safety 
barriers is a complex and nonlinear problem. For example, increasing 
ventilation rates accelerates dilution efficiency but also increases the 
risk of producing a larger volume of explosive gas clouds. The in-
teractions between different safety barriers and the implementation 
degree of each barrier further add to the complexity of this optimization 
process. Therefore, the proposed approach has a significant advantage in 
addressing these issues, and it is recommended to use a systematic 
optimization instead of a single optimization. 

4. Conclusion 

This study proposed a risk-based optimization approach for various 
safety barriers in the natural gas compartment of utility tunnels. Based 
on the probability analysis and a newly developed consequence rapid 
prediction model (CRPM), two risk indexes are defined to represent the 
risk level of the natural gas compartment and multi-compartment. 
Finally, the systematic optimization of the ventilation rate and sensor 
layout is achieved with good feasibility and practicability. The main 
conclusions and new funding are summarized as follows: 

(i) The developed consequence rapid prediction model integrates the 
gas dispersion model, equivalent gas cloud model, and Baker-Strehlow 
model into one framework considering the structure characteristic of 
the natural gas compartment. The results indicate that it is applicable in 
the modeling of gas leakage and dispersion, safety barriers intervention, 
ignition and explosion. 

(ii) The cumulative risk index is defined based on the probability- 
weighted results obtained from the consequence rapid prediction 
model that simulated a total of 117 possible leakage scenarios. The 
cascading risk index is designed to describe the structure damage effect 
by referring to the failure pressures of structural building elements. With 
such two risk indexes, the risk level in the natural gas compartment and 
entire utility tunnels can be measured. 

(iii) Systematic optimization is recommended instead of a single 
optimization of the specific safety barrier considering the complex 
physical process and the interactions between different safety barriers. 
The optimization results show that the combination of a ventilation rate 
of 17.71 times/h and non-uniform distribution of gas sensors has good 
efficacy for risk reduction purposes. 
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