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Abstract

Entanglement can be used as a resource to support a wide range of quantum
applications. However, the scarcity of efficient entanglement distribution pro-
tocols poses a significant challenge for the deployment of large-scale quantum
networks. Losses in the media prevent the direct transmission of quantum
states over large distances, but the use of quantum repeaters presents a possi-
ble alternative for long-distance quantum communication. Here, we focus on
homogeneous quantum repeater chains and provide some guidelines based
on heuristic methods that allow the design of entanglement swapping policies.
For instance, delaying simultaneous swaps on adjacent nodes can reduce the
probability of losing entanglement. Whereas previous work mainly focused on
chains with few nodes only, we present three different policies that are easy
to implement and scalable to longer chains. We evaluate these policies us-
ing Monte Carlo simulations, comparing their performance to the well-known
swap-asap policy. When classical communication time is neglected, our poli-
cies provide lower delivery time than swap-asap for probabilistic swaps and
large entanglement generation probability. When classical communication
time is large, only one of our policies is in most cases faster than swap-asap
for both probabilistic and deterministic swaps.
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Physics is very muddled again at the moment;
it is much too hard for me anyway,

and I wish I were a movie comedian or something like that
and had never heard anything about physics..

—Wolfgang Pauli
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1
Introduction

Quantum networks are distributed and interconnected systems that enable
the transmission, processing, and storage of quantum information. By utiliz-
ing the principles of quantum mechanics, they offer the possibility of estab-
lishing secure communication, performing quantum computing in the cloud,
as well as building sensor networks or conducting fundamental scientific
tests [1]. For most of these applications, bipartite [2] or multipartite [3] en-
tanglement is required, so great efforts have been put in the past few decades
to devise reliable methods to distribute entanglement in quantum networks.
Even though a fully functional global-scale quantum network is still far from
becoming a reality, recent experimental demonstrations of long-distance en-
tanglement distribution and entanglement purification [4, 5, 6] are paving the
way towards building scalable quantum networks and ultimately the so-called
quantum internet [7].

The main challenge of long-distance quantum communication is that losses
scale exponentially with distance. This is critical for quantum communication
protocols, where information is often encoded into single photons or entan-
gled photon pairs. Moreover, the no-cloning theorem [8] prevents creating
copies of an arbitrary quantum state, so classical amplification techniques
are generally not suitable for quantum applications. Given the high scatter-
ing and absorption by particles in the atmosphere, sending photons through
free space is not practical for large distances, so reducing the attenuation of
the physical medium has been one of the priorities in the telecommunications
industry. In the last five decades, optical fibers have attained a drastic reduc-
tion of their losses, practically reaching their fundamental limit [9]. However,
even for the current lowest achieved losses (0.142 dB/km at 1560 nm [10]),
transmission of single photons is not feasible for long distances. For instance,
the time required for transmitting one entangled photon pair over 2000 km,
with a 1 GHz source exceeds the age of the universe [11].

Two main approaches have been proposed to enable the transmission of quan-
tum states over long distances. The first, involving the use of satellite plat-
forms and space-based links, has motivated highly sophisticated experiments
in which teleportation of quantum states over distances up to 1400 km was
reported [12]. The second approach is to effectively break down the trans-
mission distance into shorter, more manageable segments through the use
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of quantum repeaters [13]. Instead of directly attempting entanglement gen-
eration between two distant parties, shorter-distance entangled pairs are dis-
tributed between neighbouring nodes. Then, entanglement can be extended
to longer distances employing swaps [14], which are a set of local operations
that allow the transfer of entanglement between distant parties without direct
interaction between them. A mathematical description of this phenomenon
is described in Section 2.1. In practice, entanglement distribution through
quantum repeater chains is only possible if the rate of entanglement gen-
eration between nodes exceeds the states’ decoherence rates. Surpassing
this threshold [15] enabled the first realization of a three-node quantum net-
work [16], showing promising perspectives for future repeater-based quantum
communications. Whereas satellite communication experiments have suc-
cessfully demonstrated long-distance entanglement distribution, quantum
repeaters seem a better alternative for achieving high entanglement distribu-
tion rates in metropolitan-scale (1 km− 100 km) quantum networks. Future
global-scale quantum networks may also combine these two elements, for ex-
ample, by employing satellites as quantum repeaters [17] or by connecting
satellites through ground repeater stations [11].

In this thesis, we are mainly interested in studying bipartite entanglement
between qubits. An equivalent term to describe the existence of entanglement
between two particles is to say that they share an entangled link. We define
an entanglement distribution policy π as the set of rules that determines which
actions should be performed by the nodes given the existing entangled links in
the chain. An example is the swap-asap policy, in which swaps are attempted
as soon as a node shares two entangled links. Our goal is to shed light on
how to design these entanglement distribution policies for an arbitrary num-
ber of nodes using heuristic methods. Depending on the particular policy,
the classical communication costs may vary. Whereas in local-knowledge
policies nodes only communicate with their nearest neighbours, in global-
knowledge policies all-to-all communication is necessary. In this work, we
focus on chains of equidistant and identical nodes, which in our model are
parametrized by the number of nodes n, the probability of generating entan-
glement between neighbouring nodes p, and the probability of successfully
swapping two links into a longer one ps. For simplicity, we assume that each
repeater holds two memories, one to be used towards each side of the chain.
A representation of a repeater chain with five nodes is shown in Fig. 1.1. We
benchmark our policies using two performance measures: the expected end-
to-end delivery time, and the end-to-end fidelity. The first accounts for the
average time it takes to generate entanglement between the two end nodes,
and the second is the average fidelity of the end links. It is expected that
both metrics for all policies should be monotonic on the parameters p and ps,
which means that if the hardware specifications of the devices are improved,
the performance of the policy should increase.



3

Figure 1.1: Illustration of a quantum repeater chain. In our model, end nodes store a
single memory qubit (represented by orange circles), while intermediate nodes store two.

Our main contributions are the following:

• We consider classical communication between nodes and show that fully
local-knowledge policies do not exist for chains with five or more nodes.

• We study the monotonicity of the end-to-end delivery time and end-to-
end fidelity with respect to the entanglement generation probability p and
the amount of classical information required in the swap-asap policy.
From this, we extract heuristics for designing new policies.

• We propose three entanglement distribution policies, and benchmark
their expected entanglement delivery time and end-to-end fidelity with
respect to the swap-asap policy.

Our main findings are the following:

• The proposed policies reduce the end-to-end delivery time for probabilis-
tic swaps and large p, up to a factor of ∼ 6 (for n = 10, p = 1 and ps = 0.5)
compared to swap-asap, when classical communication times are ne-
glected. For very large classical communication time, our nested policy
is faster than swap-asap for ps = 0.5, and for ps = 1 when p is small. Im-
provements over swap-asap in the end-to-end fidelity are not observed.

• The swap-asap policy requires global-knowledge, and its end-to-end de-
livery time exhibits a non-monotonic behaviour for some range of values
of p when swaps are probabilistic.

• Avoiding swapping many adjacent links simultaneously can reduce the
expected delivery time when swaps are probabilistic.

• Enforcing the last swap to be performed at the center of the chain can
reduce the classical communication time.

This thesis is structured in six chapters. In Chapter 2, we introduce the the-
oretical basis of quantum networks and present our quantum repeater chain
model. We also present the measures of performance used to benchmark our
policies. In Chapter 3, we define the basic principles on which we base our
search for entanglement distribution policies and extract heuristics from the
study of the swap-asap policy. In Chapter 4, we propose our three candi-
date policies and show our results in Chapter 5. Finally, in Chapter 6, we
conclude the dissertation by summarizing our main findings and suggesting
future lines of research.



2
Background

In this thesis, we approach quantum repeater chains from a theoretical point
of view, providing a general framework applicable to different platforms but
without delving into the particular properties of each one. Nevertheless, to
design policies that can be implemented in a real setup, certain fundamental
aspects of the hardware and protocols must be considered. In Section 2.1, we
distinguish between communication and flying qubits, and we depict the basic
characteristics and limitations of entanglement generation and entanglement
swapping protocols. Then, we discuss how depolarizing noise affects the fi-
delity of quantum states and introduce our quantum repeater chain model
in Section 2.2. Finally, in Section 2.3, we introduce the four different perfor-
mance measures which will be used to compare our entanglement distribu-
tion policies, distinguishing between “one-time” and “continuous” end-to-end
entanglement delivery.

4



2.1. Quantum networks 5

2.1. Quantum networks
The building blocks of quantum networks are quantum nodes, which are
physical devices capable of generating, manipulating, storing, and transmit-
ting quantum states. Nodes typically have two types of qubits: communica-
tion qubits which can be used to generate entanglement with their neighbours
and memory qubits that store quantum information. The physical platforms
for each type of qubit can vary, even within the same node. Next, we present
the main protocols for entanglement generation and entanglement swapping.
These are the key functionalities that allow long-distance entanglement dis-
tribution in quantum networks.

2.1.1. Entanglement generation
Entanglement generation can be defined as the process of creating entangled
states between quantum systems. If two or more particles are entangled, the
quantum state of any of the particles cannot be described independently from
the state of the others, even if they are spatially separated [18]. To become
entangled, particles need to physically interact, so entanglement generation
between distant parties cannot be achieved only by local operations.

For quantum applications, it is necessary to be able to perform logical quan-
tum operations across the network. This means that the physical qubits
must be ideally easily addressable and robust to decoherence. In most phys-
ical implementations, it is not feasible to use the same qubits to perform
quantum gates and to transmit quantum information. Instead, there are gen-
erally two types of qubits involved: local operations are generally performed
on the so-called “stationary” qubits, while information is sent through “fly-
ing” qubits. In order to generate entanglement between two distant locations,
nodes should be able to interconvert between stationary and flying qubits
[19]. Photons are great entanglement mediators (flying qubits), as they can
transmit quantum states at high velocities. Furthermore, they do not require
low temperatures to preserve their quantum properties, so they can be trans-
mitted through the existing low-loss optical fibers. However, qubits with long
coherence time must have a weak interaction with the environment and con-
sequently, it is difficult to transfer their quantum state into photons. For this
reason, quantum networks commonly employ two different classes of station-
ary qubits: communication qubits, which must have an efficient photonic
interface to transfer their quantum states into photons, and memory qubits,
which are more resilient against decoherence.

The interaction between stationary and flying qubits has been extensively
studied, and several experiments have demonstrated remote entanglement
generation using different platforms such as trapped ions [20], color centers
in diamond [21, 15], quantum dots [22, 23] and neutral atoms [24, 25]. The
implementation of entanglement generation is highly dependent on the spe-
cific platform, but it is still possible to find common features between different
protocols [26]. In the context of quantum communications, it is particularly
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relevant to consider heralded entanglement generation protocols. That is,
entanglement generation is conditional on the detection of a specific event.
Consequently, given a particular measurement outcome, it is possible to de-
termine if two qubits are entangled or not. Note that this does not imply that
entanglement generation is always deterministic, since the events that herald
entanglement can occur with a certain probability. This probability is limited
by the specific entanglement generation protocol and photon losses. Essen-
tially, the most common bipartite entanglement generation protocols can be
summarized in three steps:

• Within each node, stationary and flying qubits interact selectively (through
an optical transition), which generates entanglement between them. This
interaction can be interpreted as a C-NOT gate with control on the sta-
tionary qubits and target on the flying qubits.

• Nodes send their flying qubits (photons) to a measurement device (typi-
cally a midpoint station). For certain measurement outcomes, the joint
state of the stationary qubits will be maximally entangled. In the rest of
the cases, the state of the stationary qubits will be fully separable.

• Nodes receive a flagged signal communicating the measurement out-
come.

2.1.2. Entanglement swapping
Short-distance entangled links can be fused into longer-distance ones via en-
tanglement swapping. This operation has some rather counterintuitive im-
plications, as particles that may have never directly interacted can become
entangled [14]. Let us consider two parties, Alice and Bob, that want to share
an entangled state. Each of them shares a maximally entangled link with one
of the qubits of Charlie, who is in an intermediate station. Figure 2.1 shows
the quantum circuit representation of one of the possible implementations of
this scheme. We will assume that the joint states between Alice and Charlie
and Bob and Charlie are the following:

|ψ⟩AC1 = |Φ+⟩AC1 =
1√
2
(|0A0C1⟩+ |1A1C1⟩) . (2.1)

|ψ⟩C2B = |Φ+⟩C2B =
1√
2
(|0C20B⟩+ |1C21B⟩) . (2.2)

Where the subscripts A, B, and Ci represent Alice, Bob, and each of Charlie’s
qubits, respectively. The full state of the system is given by:

|ψ⟩AC1C2B = |Φ+⟩AC1 ⊗ |Φ+⟩C2B =

1

2
(|0A0C10C20B⟩+ |0A0C11C21B⟩+ |1A1C10C20B⟩+ |1A1C11C21B⟩) . (2.3)

In this situation, Charlie can perform a Bell state measurement, which is an
operation that reveals in which of the four Bell states two qubits are [27]. A
possible implementation consists of applying a C-NOT gate between the two
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Figure 2.1: Entanglement swapping circuit diagram. Entanglement is first generated
between Alice and Charlie and between Bob and Charlie. Then, Charlie performs a Bell
state measurement on his qubits and classically communicates the measurement outcome to
Alice and Bob, who perform local operations on their qubits based on Charlie’s measurement
outcomes. At the end of the protocol, Alice and Bob share an entangled pair despite having
never directly interacted.

qubits (it is irrelevant which of the qubits is the control and which the target)
followed by a Hadamard gate on the control qubit and the measurement of
both qubits. Before Charlie’s qubits are measured, the state of the system is
the following:

|ψ⟩AC1C2B =
1

2
√
2
(|0A0C10C20B⟩+ |0A1C10C20B⟩+ |0A0C11C21B⟩+ |0A1C11C21B⟩

+|1A0C11C20B⟩ − |1A1C10C20B⟩+ |1A0C10C21B⟩ − |1A1C11C21B⟩) . (2.4)

The measurement of Charlie’s qubits projects Alice and Bob’s qubits state into
one of the four possible Bell states, depending on the measurement outcome:

|Φ±⟩ = 1√
2
(|00⟩ ± |11⟩) , |Ψ±⟩ = 1√

2
(|01⟩ ± |10⟩) . (2.5)

Then, Charlie communicates classically the outcome of his measurements so
Alice and Bob can perform local operations to ensure that they share the de-
sired Bell state. At the end of the protocol, Alice and Bob share the maximally
entangled state |Φ+⟩:

|ψ⟩AB = |Φ+⟩AB =
1√
2
(|0A0B⟩+ |1A1B⟩) . (2.6)

As we had anticipated, Alice and Bob’s qubits are now entangled despite never
having directly interacted. In the described entanglement swapping protocol,
it is assumed that the same qubits are used for generating entanglement
and for performing the entanglement swap. In a more realistic scenario, en-
tanglement would be first realized between communication qubits, and then
swapped to memories. This way, quantum states can be stored for longer pe-
riods without decohering. If all quantum gates are ideal, Alice and Bob always
share a maximally entangled pair at the end of the protocol. This is achieved
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at the cost of an additional gate overhead, which translates into longer opera-
tion times and more complex experimental setups. On the other hand, linear
optic setups provide a simpler approach and achieve higher speeds, but are
typically limited by a 50% success probability [28]. This limit can also be ex-
ceeded by introducing ancillary qubits [29]; if N ancilla qubits are used, the
maximum success probability for linear optics setups scales as 1− 1

N+2
[30].

2.2. Quantum repeater chain model
In this section, we present our quantum repeater chain model, which is
adapted from [31]. The first physical property that defines the nodes is the
entanglement generation probability p, defined as the probability of creating
an entangled link between two neighbouring nodes. Newly generated links
will be called elementary links. State-of-the-art quantum devices are far from
being ideal due to several factors such as the photonic interface efficiency
of communication qubits and photon losses. This causes extremely low val-
ues for the probability of a successful entanglement generation attempt (e.g.,
10−5 for trapped ions over a distance of 520 m [32]). However, it is expected
that improvements in the hardware, and exploration of new qubit platforms,
jointly with the use of multiplexed memories can significantly increase this
probability in the future. In addition, if multiple entanglement generation at-
tempts per time step are considered, the entanglement generation probability
can remarkably grow, at the expense of a longer time step duration. In this
project, we will consider values of p ranging from 0.1 to 1.

The second parameter of interest is the entanglement swapping probability ps,
which is the probability that a swap succeeds, generating a longer-distance
entangled link from two shorter-distance ones. After a swap, both shorter-
distance links are consumed, irrespective of the success or failure of the op-
eration. We will consider either ps = 1 or 0.5, which is in agreement with
current experimental demonstrations.

Memory qubits should be stable to achieve large coherence times. Although
techniques such as dynamical decoupling can extend the lifetime of qubits
by several orders of magnitude [33, 34], current quantum memories are still
noisy. We consider a worst-case noise model [35] and describe the quantum
states of memory qubits as Werner states [36], which are subject to a depolar-
izing channel at every instant and whose fidelity with respect to a maximally
entangled state (e.g., |Φ+⟩) evolves as follows [31]:

F (t) =
1

4
+

(
F (t−∆t)− 1

4

)
e−

∆t
τ . (2.7)

Here ∆t represents an arbitrary time interval and τ is the decay rate caused
by noisy memories. We would ideally want to guarantee that the fidelity of the
entangled links shared between the two end nodes in the repeater chain, i.e.,
the end-to-end fidelity, satisfies the requirements for a particular application:
Fe2e ≥ Fmin. One way of ensuring this is by applying hard cutoffs. That is, all
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links used to generate an end-to-end link must be generated within a time
window of fixed size. In practice, this is done by tracking the ages of links
(time passed after they have been generated). Then, entangled links are de-
terministically removed if they exceed a certain age tcut. In [31], authors take
the post-swapping age of a link to be the age of the oldest link involved in the
operation. They show the end-to-end fidelity always exceeds the threshold
Fmin for cutoffs that satisfy

tcut ≤ −τ ln

(
3

4F0 − 1

(
4Fmin − 1

3

) 1
n−1

)
, (2.8)

where n is the number of nodes in the chain, F0 is the fidelity of elementary
links and τ is the decay rate. The age of a newly generated link is set to zero.
At the end of each time step, the ages of all existing links are increased by
one. If a link is the result of one or more swaps, its age will be the age of
the oldest link that was involved in the swap. Note that this rule does not
accurately describe the decrease in fidelity caused by the swaps, but it is a
useful approach to define the cutoff time. In Appendix A, a more precise rule
for the post-swapping ages will be introduced.

Next, we list all the additional assumptions of our model:

• All nodes in the chain have identical physical properties. This means
that every node has the same entanglement swapping probability ps and
that all pairs of neighbouring nodes generate elementary links with equal
probability p. Moreover, all states decohere at the same rate τ .

• All nodes are arranged in a one-dimensional array, separated by a con-
stant distance of l meters.

• Each node possesses one communication qubit and one memory qubit
for each side of the chain. This assumption is consistent with the expec-
tations for the early-stage quantum networks [16, 37].

• All nodes are capable of: (i) generating entanglement with their neigh-
bours with probability p; (ii) successfully performing entanglement swap-
ping with probability ps; (iii) communicating and processing classical in-
formation; (iv) deterministically discarding entangled links older than
tcut.

Time in our model is discretized into time steps. The length of a time step
depends on the speed of the operations and the time needed to communicate
classical information. An in-depth discussion about the time step length can
be found in Section 3.2.1. Within each time step, nodes sequentially perform
the following operations (Fig 2.2):

1. Attempt entanglement generation with neighbouring nodes. Neighbour-
ing nodes can only attempt entanglement generation if they have free
qubits. A heralding signal is classically transmitted to communicate
whether entanglement has been generated.
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Figure 2.2: Diagram of the sequence of operations within each time step. At the begin-
ning of each time step, neighbouring nodes attempt entanglement with success probability
p. Next, classical communication can be transferred between the nodes to communicate the
(partial) state of the system. Then, nodes can perform entanglement swaps with probability
ps, after which classical communication is again transmitted. All links with an age larger
than tcut are then removed. Finally, at the end of each time step, the ages of all existing links
are increased by one. Both classical communication rounds and entanglement swapping are
policy-dependent, while the rest of the operations are not.

2. Classical information can be transmitted between nodes, depending on
the policy π, to communicate the (partial) state of the system.

3. If both memory qubits of a node hold entangled links, the node can
perform a swap, freeing both memory qubits and generating a longer
link with probability ps.

4. The success or failure of the swaps and the post-swapping age of the
links are communicated classically between nodes. Which nodes are
allowed to communicate depends on the specific policy π.

5. Remove existing links with an age larger than tcut.

Under the conditions described above, every quantum repeater chain in our
framework can be characterized by the parameters p, ps, n and tcut. The latter
also depends on the noise of the model, given by F0 and τ , and the specific
threshold fidelity for our application Fmin.

2.3. Measures of performance
In classical communication systems, there exist some extensively studied per-
formance metrics used to assess the efficiency of communication, such as
the bit error rate (BER) or the signal-to-noise ratio (SNR). However, current
general-purpose communication protocols and infrastructure are already ca-
pable of significantly mitigating errors caused by factors like noise or inter-
ference. At present, the main efforts in general-purpose classical communi-
cation are put to increase its transmission rates to satisfy the demands of a
growing number of users. In quantum networks, high communication speeds
are not only desirable from the users’ perspective, but for some quantum ap-
plications, a large entanglement distribution rate is compulsory [38]. For this
reason, the primary measure of performance that will be studied is the ex-
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pected end-to-end delivery time, which determines the average time needed to
generate end-to-end entanglement. In this work, we consider both “one-time”
and “continuous” entanglement delivery. In the first case, two users attempt
to generate a single entangled pair starting from an empty chain and stop
after it is generated. In the latter, users demand a new end-to-end entangled
link immediately after the previous one has been generated. The “continu-
ous” scenario reflects more faithfully a situation in which two parties must
share entanglement for a specific quantum application, where many copies
of a quantum state are needed. The “one-time” case provides an estimate of
the transient state until the first end-to-end link is generated. It is also more
commonly used in literature as it simplifies the description of the system in
terms of a Markov decision process and it sets a fixed starting state for every
reinforcement learning episode.

Current state-of-the-art quantum networks are at a very primitive stage com-
pared to classical communication networks, as quantum devices are subject
to high losses and depolarizing errors, among others. It is then expected that
in the near term, the utility of quantum applications will be limited not only
by the rate but also by the quality of the generated entanglement. In our re-
peater chain model, strict cutoffs ensure a minimum fidelity of the end-to-end
links. Still, a higher fidelity translates into more reliable and secure commu-
nication, so the average fidelity of the end links will be another quantity of
interest in our simulations. Similarly to the previous case, we will consider
“one-time” and “continuous” entanglement delivery.

Another alternative to compare the performance of different policies could
have been to consider a combined measure such as the secret key rate, which
implicitly included the entanglement delivery time and fidelity. Nonetheless,
we opted to study these two quantities separately, as it enables us to un-
derstand how different heuristics individually affect each measure of perfor-
mance.



3
Heuristic strategy

In multi-objective optimization of quantum networks, there exist trade-offs be-
tween different measures of performance (e.g., end-to-end delivery time and
end-to-end fidelity), so policy optimality is often described through “Pareto-
efficiency” [39]. This refers to the cases in which it is not possible to improve
the performance over one metric without negatively affecting the others. Poli-
cies that are not on the Pareto front are called suboptimal. A policy can also be
optimal or suboptimal with respect to a single metric, depending on whether
it provides the maximum achievable performance for that metric or not. The
authors of [31] observed that finding optimal policies is an infeasible task
when the chain length or the cutoff time becomes very large. This motivates
the search for heuristic methods for finding new policies. These heuristics,
from Ancient Greek heurísko (to discover), do not guarantee to produce op-
timal solutions to our problem, but they can be used as a shortcut to reach
sufficiently good policies without exploring the whole search space.

In this chapter, we outline our approach towards generating close to opti-
mal entanglement swapping policies. In Section 3.1, the general premises
that were used to design candidate policies are listed. Then, a general dis-
cussion about communication times is presented in Section 3.2, where we
conclude that fully local-knowledge policies cannot exist in our model. Fi-
nally, in Section 3.3, we provide an in-depth analysis of the swap-asap policy
to extract heuristics that can be used to improve some of its drawbacks. For
example, the non-monotonic behaviour of its delivery time with respect to the
entanglement generation probability.

3.1. Basic principles
The number of states in our repeater chain model of n nodes and cutoff time
tcut grows at least as Ω

(
(tcut)

n−2)[31], so the number of possible policies quickly
becomes intractable as the length of the repeater chain increases. It is then
convenient to narrow down the search to a subset of solutions that contains
the potentially more relevant cases. Here we present the main five principles
that were used to that end.

12
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3.1.1. Scalability
In the near future, physical imperfections of devices may restrict the size of
practical quantum networks to only a few nodes. Nevertheless, the develop-
ment of entanglement distribution policies for networks with several repeaters
will become necessary to build a global quantum internet. The most common
current approach for finding entanglement distribution policies is to formu-
late the problem as a Markov decision process (MDP), in which the future
state of the system depends exclusively on the current state and the actions
taken by an agent [40]. Previous work has focused on finding exact solu-
tions [41, 31] or using deep reinforcement learning techniques [42, 43, 44] to
obtain optimal or close-to-optimal entanglement distribution policies. Such
approaches are only feasible for a small number of nodes in the network, due
to the exponential growth of the state space. In contrast, we aim to design
policies deployable on a repeater chain with an arbitrary number of nodes.

Our approach consists of extracting heuristics from optimal policies calcu-
lated for a small number of nodes and extrapolating them to generate policies
that are sufficiently good for larger chains. Similarly, analyzing the features
of far-from-optimal policies can help us prevent undesired behaviour of the
system.

3.1.2. Robustness
Entanglement swapping policies should in principle be tailored for a given set
of parameters (p, ps, n, etc.). However, even small fluctuations in the physical
properties of the devices can significantly decrease the performance of the
system, as will be discussed in Section 3.3. In order to overcome this, the
parameters of the system should be regularly calibrated and policies should
be adjusted accordingly. However, these efforts can be relaxed by designing
policies that are valid for wide ranges of parameter values, rather than for
unique points in the parameter space.

3.1.3. Determinism
In Section 3.2, we will discuss how policies can be classified according to
the amount of information accessible to the nodes. For scenarios in which
nodes do not have complete knowledge about the state of the system, the
problem can be formulated as a partially observable Markov decision process
(POMDP) [45]. In such situations, agents typically encounter the exploration-
exploitation dilemma, in which choosing the best-known option based on past
experiences may not be the optimal strategy. Instead, probabilistic policies,
which include assigning probabilities to different actions given the current
belief state (the agent’s subjective probability distribution over the possible
states of the system), are shown to enable better payoffs [46].

Nonetheless, describing the state of the system as a belief state involves keep-
ing track of the probability distribution of possible states and updating the
probabilities of the agents’ actions consistently, yielding large computation
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and memory costs. For this reason, we chose to limit our search to those
policies in which actions are taken deterministically.

3.1.4. Monotonicity
The development of quantum repeaters is currently in an early stage. No
experiments have shown successful performance of quantum repeaters over
large distances to date. On the other hand, recent experimental progress in
many of the proposed platforms instills optimism regarding the viability of
constructing large-scale quantum networks.

It could be anticipated that by gradually improving the specifications of quan-
tum devices, faster and more efficient communication will be achieved. That
is, we expect the performance of our policies to increase monotonically with
respect to improvements in the hardware (higher p and ps). Despite the ap-
parent triviality of this argument, in Section 3.2, we show that the swap-asap
policy does not satisfy this condition. We then use this observation to devise
better-performing policies.

3.1.5. Symmetry
For any state of the system s, we can find the mirrored version of that state
s⊥ by relabeling the nodes in opposite order. In our model, all nodes are
considered to be homogeneous and equidistant from each other, so there is
no physical difference between a state and its mirrored version. The action of
a policy π in a given state s is equivalent to the action of a mirrored version
of that policy, π⊥, in the state s⊥: π(s) ≡ π⊥(s⊥) (we can arbitrarily label the
nodes from right to left instead of from left to right). Since the repeater chain
is symmetric, it is expected that policies are invariant with respect to mirror
inversion. That is, the actions of a policy π in the states s and s⊥ should be
the same if labeled in opposite order.

π(s) =
(
π(s⊥)

)⊥
. (3.1)

Despite symmetry not being a necessary condition for optimality, it can effec-
tively reduce the search space.

3.2. Communication time
Classical communication between nodes is often disregarded in performance
analysis of entanglement distribution policies [31, 43]. Here we acknowledge
that in large-scale quantum networks, the time allocated for classical commu-
nication may be non-negligible. We propose a classification of policies based
on the maximum distance that classical information needs to travel in each
of the two communication rounds for every time step.
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3.2.1. The effect of communication
In ourmodel, as discussed in Section 2.2, time is discretized into non-overlapping
time steps. During each time step, nodes can sequentially: attempt entangle-
ment generation with their neighbouring nodes, perform entanglement swap-
ping, and discard all links with age t > tcut. The time required for these
operations is denoted by Tgen, Tswap, and Tcut, respectively. These values de-
pend on the physical implementation of the quantum repeaters, but they are
independent of the chosen policy.

Entanglement swapping and link discarding are local operations that do not
depend on the distance between nodes. On the other hand, heralded en-
tanglement generation typically entails generating and distributing entangled
particles between the involved nodes. Also, a flagged signal must be received
by the nodes to herald if entanglement has been generated or not. Therefore,
the time required for this operation depends on the speed at which entangled
particles and classical signals are sent (which we assume to be the speed of
light in an optical fiber c ∼ 2 · 108m/s), and on the distance l between nodes.
Some time is also required to perform local operations. It is important to note
that the entanglement generation time depends on the number of sequential
attempts performed at each time step. Fewer attempts can reduce Tgen, at the
expense of reducing the entanglement generation probability p. Furthermore,
there exists a trade-off between number of attempts and fidelity of the new
links, as the memory qubits experience decoherence. Overall:

Tgen = NA

(
l

c
+ Cgen

)
, (3.2)

where NA is the number of sequential generation attempts in each time step
and Cgen is the time required for local operations (e.g., measurements) in each
attempt. Here we assume that nodes send their heralding photons to a mid-
point station. Therefore, each attempt requires a time of l

2c
to send the herald-

ing photon and the same amount to receive the flagged signal back (plus local
operations). Note that this analysis can be extended to other protocols by sim-
ply introducing a different prefactor in the term l

c
.

In addition, timemust be reserved for the two classical communication rounds
in each time step. During the first round, nodes can share the information
regarding successfully generated links. In the second round, nodes can com-
municate the success or failure of their swaps, the age of the links they hold,
and signal that end-to-end entanglement has been achieved. Communication
time is only determined by the maximum distance that classical information
can travel within a time step in each of the communication rounds: dπcc1 (classi-
cal communication round one) and dπcc2 (classical communication round two),
which are dependent on the policy π:

T π
comm =

dπcc1 + dπcc2
c

. (3.3)
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In general, dπcc1 and dπcc2 are proportional to the chain length and can be written
as dπcci = Cπ

i · (n − 1) · l, where Cπ
i is the fraction of the total distance that

classical information can travel in the policy π during communication round
i. The duration of a time step can then be split into two terms: the operations
time Top ≡ Tgen + Tswap + Tcut, and communication time T π

comm. The first term is
policy-independent while the second one is not.

T π
step = Tgen + Tswap + Tcut + T π

comm = Top + T π
comm. (3.4)

The ratio between operations and communication time is given by

Top
T π
comm

=
(NACgen + Tswap + Tcut)c

(Cπ
1 + Cπ

2 ) (n− 1)l
+

NA

(Cπ
1 + Cπ

2 ) (n− 1)
. (3.5)

From (3.5) we can distinguish two different regimes of parameters:

• If the distance between nodes is sufficiently small, the communication
distance becomes negligible and consequently Top ≫ T π

comm.

• If l is sufficiently large, the distance-dependent contribution of the en-
tanglement generation time becomes significantly larger than the rest of
the operations: Top ≈ Tgen ≈ NA

l
c
. Then, from (3.5):

T π
comm ≈ (Cπ

1 + Cπ
2 ) (n− 1)

NA

Top for l ≫ 1. (3.6)

Let us consider the realization of a three-node quantum network [16] as an
example. In this work, nitrogen-vacancy center (NV) electronic spin is used
as a communication qubit, and carbon-13 nuclear spin as a memory qubit.
Remote entanglement generation is attempted between nodes separated 30 m
and 2 m. The resulting experimental times for entanglement swapping and
link discarding (memory reset) are 1 ms and 0.6 ms, respectively. Replicat-
ing the authors’ choice of limiting the number of entanglement generation
attempts (NA) to 450 to avoid dephasing errors, the resulting entanglement
generation time is approximately 2.6 ms. Given the short distances of the
setup, it can be assumed that the heralded signals’ contribution to the total
operations time is negligible and thus Tgen = NACgen ≈ 2.6 ms. Altogether, the
total operations time is Top ≈ 4 ms. The distance between nodes for which
the time contribution of all heralding signals becomes of the order of local
operations is l ≈ Topc

NA
≈ 103 m.

From the previous example it is clear that for small l and largeNA, communica-
tion time can be neglected. However, we are ultimately interested in studying
the role of classical communication in metropolitan and global-scale quantum
networks, where the distances between nodes are of the order of kilometers.
Moreover, multiplexed quantum memories and parallel entanglement genera-
tion protocols [47], jointly with an improvement in the efficiency of repeaters,
can reduce the number of (sequential) attempts in every time step NA. Overall,
it is expected that as the number of nodes grows, the communication time will
have an increasingly more significant impact on the networks’ performance.
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3.2.2. Local, global, and minimum-knowledge policies
Entanglement distribution policies can be classified according to the maxi-
mum distance at which nodes are allowed to communicate classically within
each communication round, dπcci. This distance could, in principle, vary from
node to node, as will be illustrated in Section 4.3, or even be modified in be-
tween time steps. However, for simplicity, dπcci will be considered constant in
time and equal for all nodes unless explicitly stated otherwise for the rest of
the manuscript.

Let us consider the two extreme cases: policies in which nodes do not com-
municate with any other node (heralding entanglement generation enforces
at least communication between adjacent nodes, but that contribution is in-
cluded in the operations time Tgen) and policies in which all-to-all commu-
nication within one time step is allowed. We will refer to the first type as
local-knowledge policies and to the latter as global-knowledge.

Definition 3.2.1 An entanglement distribution policy π is a local-knowledge
(LK) policy in a given classical communication round i if it satisfies dπcci = 0.

Definition 3.2.2 An entanglement distribution policy π is a global-knowledge
(GK) policy in a given classical communication round i if it satisfies dπcci = (n− 2)l.

Communication time is an important factor in the design of entanglement
swapping policies, but ultimately the main quantity of interest is the expected
end-to-end delivery time. For a given policy π, this is calculated as the product
of the average number of time steps required to generate end-to-end entan-
glement Nπ, and the duration of each time step:

T π = NπT π
step. (3.7)

GK policies consider the whole state of the system and thereby can take ac-
tions that result in better payoffs in terms of Nπ, at the expense of longer time
steps. On the contrary, in LK policies time steps are shorter, but they poten-
tially require a larger number of them to generate end-to-end entanglement.
Another design option can be found midway between these two alternatives,
allowing some but not all communication between nodes. As discussed be-
low, a certain amount of classical information in the second communication
round is always needed to satisfy the constraints of our model:

• Firstly, the adopted cutoff policy, consisting of removing all links that
were generated before a time window of length tcut, presumes that both
nodes sharing a link agree on discarding it. This means that nodes
should know the post-swapping ages of their links to perform cutoffs.
Otherwise, undesired situations in which nodes mistakenly believe they
share entanglement may arise.

• Secondly, most quantum communication applications where entangle-
ment is needed (e.g., quantum teleportation [48], E91 [2]) require that
the involved parties know that they share an entangled pair before the



3.2. Communication time 18

Figure 3.1: Illustration of classical information transfer in a repeater chain. If nodes i
and k share an entangled link with a node j, which performs an entanglement swap. Infor-
mation needs to be transmitted from node j to nodes i and k to communicate the success or
failure of the operation and the post-swapping age of the link.

rest of the protocol is executed. In our case, both of the end nodes must
receive a confirmation that end-to-end entanglement has been achieved.

For these reasons, classical information must be transmitted at some point
between remote nodes and therefore fully local-knowledge policies (LK in both
communication rounds) are not implementable in our quantum repeater chain
model. To determine the minimum communication distance dπcc2 that satisfies
the restrictions of our model, let us consider an entangled link between two
nodes i and k (i < k). Let us assume that such a link is the result of a swap
in node j (i < j < k), as shown in Fig. 3.1. If the age of the link is larger than
tcut, it must be removed. As a consequence, nodes i and k must have informa-
tion regarding the existence of this link and its post-swapping age, which are
conditional on the success of the swap in node j. Therefore, communication
between node j and nodes i and k is necessary. The most extreme scenario
occurs when i and k are the end nodes (i = 0, k = n− 1) that are waiting for a
confirmation that end-to-end entanglement has been achieved. In this case,
the maximum distance that information needs to travel during the second
communication round depends on the position of node j:

dπcc2 = max(n− 1− j, j)l. (3.8)

(3.8) can be used to set a lower bound on dπcc2, by setting j = n
2
or n−1

2
(de-

pending on whether n is even or odd). We will denote policies with minimum
dπcc2 as minimum-knowledge (MK) in communication round two. By extension,
the policies that also satisfy the minimum value of (3.8) for dπcc1, will also be
called minimum-knowledge (in the communication round one). Note that in
this case dπcc1 is not the minimum possible since policies can be LK in the first
communication round. A necessary condition for MK policies is that they
must enforce that the last swap before achieving end-to-end entanglement
occurs exactly in the middle of the chain (or one of the middle nodes if the
number of nodes is even).

Definition 3.2.3 An entanglement distribution policy π is aminimum-knowledge
(MK) policy in a given classical communication round i if it satisfies:

dπcci =

{
n−1
2
l if n odd

n
2
l if n even.

(3.9)
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Note that the same policy can have different communication distances for
each communication round, so we use the notation AK-BK to describe the
total communication time required within a time step. A and B define the
type of policy (local, global, minimum, etc.) during the first and second com-
munication rounds, respectively. For example, if a policy is local-knowledge
during the first communication round and global-knowledge in the second, it
will be denoted LK-GK, and GK-GK if it requires global information in both
rounds.

The policies with the smallest classical communication distance are LK-MK
(local-knowledge in the first communication round and minimum-knowledge
in the second). Therefore, the minimum value for a time step is given by:

T π
step ≥ T LK-MK

step = Top

(
1 +

dMK
cc2

Topc

)
. (3.10)

Here dMK
cc2 is the corresponding communication distance of an arbitrary MK

policy in the second communication round. If policies allow the last swap
to be performed in one of the nodes adjacent to the extremes (j = 1 or j =
n − 2), dπcc2 will be maximum and we recover the expression for GK policies
(dπcci = (n − 2)l). For repeater chains with three and four nodes, there is no
difference between GK and MK policies, so all policies are global-knowledge
during the second round of communication. Note that the physical rate at
which memory qubits decohere is the same in all settings. However, having
shorter time steps implies that cutoff times can be larger, as links need more
time steps to reach the same fidelity threshold.

3.3. The swap-asap policy
The swap-asap policy is the simplest entanglement distribution policy. It per-
forms entanglement swaps as soon as possible. That is, nodes perform swaps
whenever they share two entangled links, one towards each end of the chain
(see Fig. 3.2). Due to its simplicity, this policy has been used as a base-
line to design cutoff policies using deep reinforcement learning [42], and is
commonly used as a benchmark to evaluate the performance of other entan-
glement distribution policies [43, 31]. In addition, in the case of low hardware
quality, swap-asap has been shown to produce higher end-to-end fidelity than
the “nested-with-distill” protocol considered in [49], and faster entanglement
rates than entanglement purification protocols [50].

Swapping links as soon as possible presents certain advantages. Firstly, per-
forming swaps in a node always frees up its qubits, irrespective of the suc-
cess or failure of the operation. Those qubits can then be used to resume
entanglement generation in the following time steps. Secondly, by minimiz-
ing the waiting time of the existing links, high fidelity end-to-end links can be
achieved. This allows to employ swap-asap even when the end-to-end fidelity
requirements are very strict (i.e., when Fmin is close to 1). The main drawback
of the swap-asap policy emerges when swaps are probabilistic. Two swaps
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Figure 3.2: Example of swap-asap actions. Nodes perform swaps whenever they share
two entangled links, one towards each side of the chain. Nodes that perform a swap are
represented in color red.

are adjacent if they share a common link. In case simultaneous adjacent
swaps are attempted, a new longer link will only be generated if all swaps are
successful. That is, the probability of producing a new link is pxs , being x the
number of adjacent nodes simultaneously attempting swaps. With probabil-
ity 1− pxs , all entanglement will be lost.

In the swap-asap policy, nodes do not need to know any information about
the system besides that they share elementary links with their neighbours
(which is always known from the heralding signals in the entanglement gener-
ation step). Consequently, swap-asap is local during the first communication
round. Nevertheless, as discussed in Section 3.2.2, the maximum distance
that information can travel during the second communication round depends
on the position of the last swap before generating end-to-end entanglement.
In the case of swap-asap, there are no restrictions on the order of swaps,
so the last swap could happen neighbouring to either end node. Therefore
dswap-asapcc2 = (n − 2)l and we can conclude that swap-asap is a LK-GK policy.
Incorporating global-knowledge of the state of the system usually entails bet-
ter decision-making. Nonetheless, swapping actions taken by swap-asap are
independent of the full state of the system, which implies that this policy is
in many cases not optimal.

A deeper insight into the swap-asap policy can be obtained through simula-
tion results. Figure 3.3 shows the one-time delivery time for a repeater chain
of eight nodes as a function of the entanglement generation probability p for
probabilistic swaps (ps = 0.5). In most cases, increasing the value of p corre-
sponds to a decrease in the delivery time. However, beyond a certain value
of p (approximately 0.8 in our example), the delivery time does not decrease
further. In fact, it starts increasing again when p approaches one.

The reason of this counterintuitive behaviour for probabilistic swaps is the
number of adjacent swaps that are attempted simultaneously. As the entan-
glement generation probability p grows, it becomes more likely that adjacent
nodes swap in the same time step, losing all entanglement with a high prob-
ability. This increases the expected end-to-end delivery time, especially in
larger chains, where more adjacent swaps can occur simultaneously. We
show in Theorem 1 that if the end-to-end delivery time of a policy is not
monotonically decreasing in p for a given interval p ∈ [p1, p2], that policy is
suboptimal in terms of delivery time in that interval. The basic idea behind
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Figure 3.3: The end-to-end delivery time for the swap-asap policy is non-monotonic
with respect to p. Expected one-time delivery time T0 (measured in number of time steps)
versus entanglement generation probability p for the swap-asap policy in a chain of 8 nodes
with swapping probability ps = 0.5. Data points correspond to averaging over 100000 shots
in a Monte Carlo simulation. Error bars are not displayed since they are smaller than the
symbol size.

this statement can be elucidated by considering a simple example. Given two
entanglement generation probabilities p1 and p2 (p1 < p2), let us assume that
a certain policy π shows a better performance for p1 than for p2. If this is the
case, a naive strategy to increase the performance of the policy at p2 would
be to artificially decrease the entanglement generation probability to p1. This
could be done by systematically removing a fraction of the generated links im-
mediately after being generated. We will denote the new policy as πλ, where π
refers to the entanglement swapping policy, and 1 − λ is the fraction of links
that are discarded after being generated.

Definition 3.3.1 The preserved link fraction (λ) is the probability of newly
generated elementary links being kept. With probability (1− λ), they will be
immediately discarded after generation.

In the current definition of time step, discarding links immediately after being
generated is not considered. However, note that this is equivalent to defining
an “effective” entanglement generation probability peff ≡ λp (Fig. 3.4). In gen-
eral, it is not desirable to reduce the entanglement generation probability of
quantum repeaters in this manner, but the preserved link fraction is a con-
cept that will be helpful in the following discussion. Unless otherwise stated,
it will always be assumed λ = 1, so all links are kept after being generated.

Lemma 1 Given two entanglement distribution policies with an identical en-
tanglement swapping policy π and preserved link fractions λ1 and λ2 (λ1 ≤ λ2),
the following holds:

T πλ1

s (n, p, ps, tcut) = T πλ2

s

(
n,
λ1
λ2
p, ps, tcut

)
∀s ∈ S, (3.11)
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Figure 3.4: Introducing a link discarding stage in the time step is equivalent to con-
sidering an effective entanglement generation probability peff.

where T π
s (n, p

eff, ps, tcut) is the average time required to reach end-to-end entan-
glement from the state s using the policy π, for a chain of n nodes, effective
entanglement generation probability peff, swapping probabilities ps, and cutoff
time tcut.

Proof. Generating a link and immediately discarding is equivalent to failing
to generate it in the first place, so two systems with the same effective entan-
glement generation probability and all other parameters equal are identical.
The effective entanglement generation is peff = λp. Therefore:

T πλ1

s (n, p, ps, tcut) = T π
s (n, λ1p, ps, tcut) = T πλ2

s

(
n,
λ1
λ2
p, ps, tcut

)
. ■ (3.12)

Theorem 1 Given two entanglement distribution policies πλ and π′λ′, if ∃ p, p′

s.t. p ≥ λ′p′ and T π′λ′

0 (n, p′, ps, tcut) < T πλ

0 (n, p, ps, tcut), then, πλ is suboptimal for
the set of parameters (n, p, ps, tcut).

Proof. Consider the entanglement distribution policy π′λ̃, where λ̃ = λ′p′

p
≤ 1.

Using Lemma 1
T π′λ̃

0 (n, p, ps, tcut) = T π′λ′

0 (n, p′, ps, tcut). (3.13)

Then, by assumption, T π′λ′

0 (n, p′, ps, tcut) < T πλ

0 (n, p, ps, tcut), so

T π′λ̃

0 (n, p, ps, tcut) < T πλ

0 (n, p, ps, tcut), (3.14)

and finally we conclude that πλ is suboptimal in terms of end-to-end deliv-
ery time for the given set of parameters, as there exists at least one pol-
icy ( π′λ̃) with better performance: ∃ π′λ̃ s.t. T π′λ̃

0 < T πλ

0 , for the parameters
(n, p, ps, tcut). ■
In particular, Theorem 1 holds when πλ = π′λ′, and therefore any entanglement
distribution policy with an end-to-end delivery time that is not monotonically
decreasing with respect to p in an interval p ∈ [p1, p2], is automatically subop-
timal (in terms of end-to-end delivery time) in that interval.

Resuming the discussion on the non-monotonicity of swap-asap, we had spec-
ulated that a possible cause for this effect could be that this policy allows
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Figure 3.5: Illustration of the actions taken by the central nodes in the middle-last
policy for a chain with an even number of nodes. Figure represents the three types of
states in which at least one central node performs a swap. A central node performs a swap
(represented in color red) only if it shares a link with its closest end node and any other link
towards the other end of the chain. Both central nodes swap simultaneously only if they
both share an entangled link with their respective closest end node (bottom state).

multiple adjacent swaps in each time step. To test this hypothesis, we can
study if preventing some of these swaps at every time step has a positive or
negative impact on the average end-to-end delivery time. In particular, we will
use a naive policy in which all nodes except the central one attempt swaps as
soon as possible. On the other hand, the central node, in the case of an odd
number of nodes, will wait until it shares an entangled link with each of the
end nodes to perform the swap. In the case of an even number of nodes in the
chain, both of the central nodes will wait until they share entanglement with
their respective closer end node (shown in Fig. 3.5). In either scenario (even
or odd number of nodes), the central repeater(s) must wait until the rest of
the swaps in the chain have been successful, consequently limiting the max-
imum number of adjacent swaps that can happen in a single time step to n−3

2

(odd n) or n−4
2

(even n). This policy will be denoted “middle-last” (it enforces
that the final swap happens in the middle of the chain).

One notable attribute of swap-asap and middle-last is that the number of
possible states of the system does not grow with n under the condition of de-
terministic entanglement generation, p = 1 (and infinite cutoff time in the case
of middle-last). This allows us to solve the Bellman equations (3.15) analyti-
cally to find a closed-form expression for the end-to-end delivery time. Let us
first consider the swap-asap case.

The Bellman equations describe the relation between the delivery times of
different states for a given policy π [31]:

T π
s = 1 +

∑
s′∈S

P (s′|s, π)T π
s′ , (3.15)
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Figure 3.6: Possible states in the swap-asap policy when entanglement generation is
deterministic (p = 1). The state s0 represents the empty chain (no entanglement links) and
in the state s1, the two end nodes share an entangled link.

where T π
s is the average number of time steps needed to achieve end-to-end

entanglement starting from state s under policy π, S is the state space, and
P (s′|s, π) is the transition probability of reaching state s from state s′ when
following policy π.

If entanglement generation is deterministic, there are only two possible states
for a chain under the swap-asap policy after each time step (see Fig. 3.6): the
empty chain (s0), and the state with an end-to-end entangled link with age
0 (s1). The probability of transitioning from s0 to s1 is the probability that all
n − 2 swaps simultaneously succeed: P (s0|s1, πswap-asap) = pn−2

s . With proba-
bility 1 − pn−2

s , the system will go back to s0. Substituting in (3.15) we find
the expression for the expected delivery time of the swap-asap policy from the
empty state, T swap-asap(s0):

T swap-asap
s0

= 1 + pn−2
s T swap-asap

s1
+ (1− pn−2

s )T swap-asap
s0

if p = 1. (3.16)

Solving (3.16) using that s1 is already an end-to-end entangled state and there-
fore T swap-asap

s1
= 0 yields:

T swap-asap
s0

=
1

pn−2
s

if p = 1. (3.17)

The previous expression is consistent with the probability of generating end-
to-end entanglement in one time step (pn−2

s ), as it is needed, on average, to
perform 1

pn−2
s

attempts before achieving end-to-end entanglement. Note also
how this result is independent of the cutoff time tcut. From (3.17), it is evident
that small changes in swapping probability can produce significant variations
in the delivery time. This makes the swap-asap policy particularly susceptible
to fluctuations in the swapping probability, which is in general not desirable
(as explained in Section 3.1.2).

Using the same procedure, similar expressions can be found for the aver-
age end-to-end delivery time for the middle-last policy, Tmiddle(s0). The full
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(a) Middle-last is faster than swap-asap for low ps. (b) Intersection between swap-asap and middle-last.

Figure 3.7: Comparison between swap-asap and middle-last when entanglement gener-
ation is deterministic. Figure (a) shows the one-time end-to-end delivery time (measured in
number of time steps) versus the swapping probability ps for the middle-last and swap-asap
policies in a chain of five nodes. Communication time is neglected, so the time step length
of both policies is assumed to be equal. Figure (b) shows the value of ps at which the inter-
section between the two policies occurs, as a function of the number of nodes.

derivation is provided in Appendix B:

Tmiddle
s0

=
3− pn−3

s

2p
n−1
2

s − pn−2
s

if p = 1, tcut = ∞ and n odd. (3.18)

Tmiddle
s0

=
1 + 2ps + p

n−4
2

s − p
n−2
2

s − pn−4
s + p3n−11

s − p
3n−12

2
s

2p
n
2
s − pn−2

s − p
3n−4

2
s + p

3n−2
2

s

if p = 1, tcut = ∞ and n even.

(3.19)

Figure 3.7a shows the expected delivery time for the middle-last and swap-
asap policies when the entanglement generation is deterministic in a chain
of five nodes. As expected, swap-asap shows a better performance for high
entanglement swapping probabilities, but it is slower for low ps. Note that in
the limit of ideal parameter values (p = ps = 1), T swap-asap

s0
= 1 while Tmiddle

s0
= 2.

That is, swap-asap is the optimal policy for chains of any length when p =
ps = 1. However, the minimum value of ps for which swap-asap outperforms
middle-last is dependent on the chain length (see Fig. 3.7b). In particular, for
chains with a large number of nodes, middle-last produces a lower average
end-to-end delivery time for almost every value of ps < 1. It can then be
concluded that for non-deterministic swaps (ps ̸= 1) and sufficiently large
chains, preventing too many adjacent simultaneous swaps can decrease the
average end-to-end delivery time with respect to swap-asap. This idea, jointly
with minimizing the communication time between nodes, will be the main
elements of design for our proposed policies in the next chapter.



4
Policy Candidates

In previous chapters, we have explored the main challenges for designing en-
tanglement distribution policies for an arbitrary number of nodes in a repeater
chain. In particular, the state space of our repeater chain model increases
exponentially with the number of nodes [31], which renders an increase in
the number of design choices for our policies. To narrow down our search we
follow the principles described in Section 3.1: scalability, robustness, deter-
minism, monotonicity, and symmetry. We will also incorporate the strategies
found in Section 3.3 to avoid some of the undesirable features of the swap-
asap policy, such as the non-monotonicity of its end-to-end delivery time with
respect to p. Moreover, we are interested in reducing the classical communi-
cation time in our policies by ensuring that the last swap before achieving
end-to-end entanglement occurs in one of the central nodes in the chain.

Depending on the specific application of interest and hardware available, it
may be convenient to focus on one or more of the principles mentioned above
and relax some of the other constraints, yielding distinct policies suitable for
different ranges of parameters. In this chapter, we propose three policy can-
didates: the “nonadjacent”, the “nonadjacent-middle-last” , and the “nested”
policies. We will also describe the main differences and similarities between
them and consider particular examples of their implementation. The perfor-
mance of these policies will be discussed in Chapter 5.

4.1. The nonadjacent policy
Our first candidate is the “nonadjacent” policy. In this policy, all nodes per-
form their swaps as soon as possible, unless there is a “large enough” group
of adjacent links in the chain. In that case, some of the nodes holding those
links will wait instead. This prevents the loss of all entanglement within the
group in case of a failed swap. In this policy, nodes must know the full state of
the system before swapping, and there is no fixed position for the last swap be-
fore generating end-to-end entanglement. Therefore, the nonadjacent policy
is GK-GK. In principle, better performing GK-GK policies can be found using
dynamic programming or deep reinforcement learning techniques, but com-
puting them becomes exponentially more expensive as the number of nodes
in the chain grows. Moreover, the simplicity of this policy enables an easier
implementation in real experimental setups.

26
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Figure 4.1: Diagram of a connected component. Nodes colored in blue are part of the
same connected component, despite not being physical neighbours. To know the size of their
connected component, classical information needs to be transmitted between all intermediate
nodes.

Note that in this policy there are a few additional parameters that should
be considered, such as the maximum number of adjacent swaps that are al-
lowed within one time step and how the waiting nodes are distributed along
the chain. We will discuss our choice of these parameters in Sections 4.1.2
and 4.1.3 respectively. Before that, we will define exactly what a connected
component and adjacent swaps mean in our context.

4.1.1. Connected component
The concept of connected component is widely used in graph theory. For
every pair of vertices in a connected component, there must exist a path that
connects them [51]. We adapt this definition to describe the sets of nodes
that are connected by entangled links. Formally:

Definition 4.1.1 A connected component is a group of nodes in which every
pair of nodes can share an entangled link through a sequence of success-
ful swaps. In addition, every node in the connected component must share
two entangled links (one towards each side of the chain). The length of the
connected component is determined by its number of nodes.

Note that according to this definition, nodes can be part of a connected com-
ponent despite not being physical neighbours of any of the other elements
in the chain (see Fig. 4.1). In particular, any pair of nodes can in principle
share an entangled link, becoming part of the same connected component.
In our model, nodes can only share one entangled link with each extreme of
the chain, and therefore any given node belongs, at most, to one connected
component. Given a connected component of size k ≤ n− 2, we can label the
nodes with indices ranging from 0 to k−1 (from leftmost to rightmost). To avoid
confusion, we will denote “relative” index to the position of a node within a
connected component and “absolute” index to the position of a node within
the full chain. Adjacent swaps were previously introduced in Section 3.3, but
can also be defined as follows:

Definition 4.1.2 A set of adjacent swaps is a collection of entanglement swap-
ping attempts performed by two or more nodes with consecutive relative in-
dices within the same connected component.

In the nonadjacent policy, at every time step, nodes need to be aware of the
size of their connected component before attempting swaps. This involves
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communication during the first communication round between nodes in the
same connected component, as illustrated in Figure 4.1. The maximum sepa-
ration between two nodes in a connected component is (n− 3)l. This does not
exactly correspond to the communication distance of a GK policy, dGKcci = (n−2)l.
However, since this difference does not have a major impact in the perfor-
mance of the policy, for simplicity we define this policy as GK in the first
communication round. The last swap before achieving end-to-end entangle-
ment can happen in any node of the chain. Hence, the nonadjacent policy
falls into the category of GK-GK policies.

4.1.2. Number of allowed swaps
The maximum number of allowed adjacent swaps can critically affect the per-
formance of the nonadjacent policy. For instance, if n− 2 adjacent swaps are
allowed, we recover the swap-asap policy. The optimal value of this parameter
may depend on the entanglement swapping probability ps, the chain length
n and the entanglement generation probability p. However, for simplicity, we
opted to keep the maximum number of allowed swaps as a constant. Af-
ter analyzing the optimal solutions found by using the dynamic programming
methods described in [31], we decided to set the maximum number of allowed
adjacent swaps to two, as the nonadjacent policy, in this case, is shown to
be optimal for chains of length three, four and five nodes for deterministic
entanglement generation (p = 1) and ps = 0.5. For the rest of the discussion, it
will be always assumed that the maximum number of allowed adjacent swaps
is two. However, the implementation of the nonadjacent policy is equivalent
to other choices of this parameter.

4.1.3. Distribution of waiting nodes
For a given connected component of size k, there are multiple choices for
placing the waiting nodes in a way such that the maximum number of ad-
jacent swaps does not exceed a certain quantity. There are two degrees of
freedom for this choice: the number of waiting nodes and their position in
the connected component. We opted to use the minimum possible number
of waiting nodes, since adding “unnecessary” waiting actions can reduce the
performance of the policy in terms of end-to-end delivery time and end-to-end
fidelity. For a connected component of length k and a maximum number of
allowed adjacent swaps M ≤ n− 2, the minimum required number of waiting
nodes nw is given by:

nw =

⌊
k

M + 1

⌋
. (4.1)

To increase the probability of preserving entanglement after swapping, we
also found appropriate to minimize the number of times exactly M adjacent
swaps occur simultaneously. This can be done by evenly spacing the waiting
nodes (separating their relative indices by a distance of M + 1) and placing
them symmetrically within their connected component.
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Figure 4.2: Position of waiting nodes in a connected component. We consider a con-
nected component of length six, with M = 2, nw = 2 and dw = 3. Each row corresponds to
the first waiting node having index 1, 2 and 3, respectively. Nodes that perform a swap are
colored in red. Whereas in the first and last case, there exist two groups of two adjacent
swaps occurring simultaneously, in the case with S = 2, there is only one group of two simul-
taneous adjacent swaps. Note that in this case waiting nodes are placed symmetrically with
respect to the connected component.

Figure 4.3: Examples of nonadjacent policy actions in a chain of nine nodes. Nodes
perform swaps (represented in color red) as soon as possible, except when there is a connected
component with length larger than M = 2. In that case, waiting nodes are placed according
to Eqs. (4.1), (4.2) and (4.3).

The distance dw between the first and last waiting nodes that minimizes the
number of times M simultaneous adjacent swaps happen is given by:

dw = (M + 1) (nw − 1) . (4.2)

Figure 4.2 illustrates different choices of the position of the waiting nodes in
the connected component. To impose symmetry, we enforce that the number
of nodes of the connected component placed to the left of the first waiting
node is equal (or as close as possible) to the number of nodes to the right of
the last waiting node. Then we chose the following relative index of the first
waiting node within the connected component S:

S =

⌊
k − dw − 1

2

⌋
. (4.3)

Figure 4.3 shows the actions taken by the nodes for amaximum of two allowed
adjacent swaps; the relative index of the first waiting node is given by (4.3).
Note that for two connected components of the same size, the actions of the
nodes with equal relative index will be identical in both cases, irrespective of
the state of the rest of the chain or its length.
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4.2. The nonadjacent-middle-last policy
The second proposed candidate is the nonadjacent-middle-last (nml) policy,
which can be considered as a mixture of the nonadjacent policy and the
middle-last policy described in Section 3.3. Similarly as in the nonadjacent
policy, there is a maximum number of allowed adjacent swaps. But in this
case, the last swap before generating end-to-end entanglement must occur
in the middle node of the chain (or one of the two middle nodes if the chain
length is even). This entails that the middle nodes wait until they receive
confirmation that they share an entangled pair with both end nodes (or the
closest end node for an even number of nodes in the chain).

This seemingly minimal change with respect to the nonadjacent policy can
have deep implications on the end-to-end delivery time and fidelity, as well as
on the required communication time. Firstly, since the middle node(s) have
to wait until the rest of the swaps have been performed, no entangled links
can be shared between nodes at different sides of the chain (to the left or right
of the middle node(s)). Therefore all connected components must be located
at either side of the chain. This means that no classical information needs to
cross from the left to the right of the middle node(s) in any communication
round, so nml is a MK-MK policy. In addition, enforcing the last swap to hap-
pen in the middle of the chain has some further implications. Intuitively, in-
cluding an extra waiting step may decrease the end-to-end fidelity and should
increase the average end-to-end delivery time. On the other hand, the “value”
of an entangled link depends on its length (and on its age to a lesser extent)
as longer links require more time and resources to be generated. For this rea-
son, losing a long-distance entangled link typically involves a larger increase
in delivery time than losing elementary links. In the nml policy, middle nodes
only swap simultaneously if the chain length is even and both achieve entan-
glement with their respective closest end nodes in the same time step. In all
other cases, only a single swap is attempted in the last time step, minimizing
the risk of losing long entangled links. Some examples of the actions taken
by this policy for different states of the system are illustrated in Figure 4.4.

4.3. The nested policy
Our last candidate for entanglement distribution policy is the nested policy.
In particular, this policy can be understood as a generalization for an arbitrary
number of nodes of the “doubling” policies considered in [44] and originally
proposed in [13, 52] in the context of entanglement purification. Unlike the
nonadjacent policy, actions of the nodes are exclusively determined by their
absolute position in the chain. For each node in the chain, the nested policy
assigns two quantities: the node distance and the node type, which ultimately
define the actions of the policy.
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Figure 4.4: Examples of nonadjacent-middle-last policy actions in a chain of nine nodes.
States A, B, and C represent possible configurations of the system. The central node must
wait until it shares an entangled link with each end node before performing a swap (repre-
sented in color red), the rest of the nodes perform the same actions as in the nonadjacent
policy, provided that all connected components are located at one particular side of the chain
(left or right of the central node).

Definition 4.3.1 In a chain with n nodes and entanglement policy π, the node
distance of a node with absolute index i is defined as dπi = |i− k|, k being the
absolute index of the most distant node with which node i can communicate
classically within a single time step.

For a chain with n nodes separated by a distance l and a policy π, the relation
between dπi and the maximum communication distance dπcc2 defined in section
3.2.2 is the following:

dπcc2 = max(dπi=0,1,...,n−1) · l. (4.4)

In the nested policies, we can distinguish five different types of nodes.

• Type E (end nodes): cannot perform any swap operation.

• Type S (swap-asap nodes): perform swaps as soon as possible.

• Type W (wait-symmetric nodes): perform swaps if and only if they share
entangled links with two nodes at distance dπi .

• Type L (wait-left nodes): perform swaps if and only if they share their
left link with a node at distance dπi − 1.

• Type R (wait-right nodes): perform swaps if and only if they share their
right link with a node at distance dπi − 1.

TypesW , L, and R nodes will be denoted as waiting nodes in contrast to type S
or swap-asap nodes. The actions of a node i are completely defined by its type
and communication distance. The actions of the whole chain can therefore
be described using the nested vector ν⃗(n), which depends on the chain length.
We will use the following notation for each component.

νi(n) = Aid
π
i , for 0 ≤ i ≤ n− 1, (4.5)

where Ai ∈ {E, S,W,L or R} classifies the node with absolute index i. Note
that the actions of the nodes in the nested policy depend on the success of
previous swapping operations, but not on the generation of new links (except
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for swap-asap nodes, which by definition do not require any classical informa-
tion during the first communication round). Then, classical information only
needs to be transmitted during the second classical communication round.
Since the last swap before achieving end-to-end entanglement always occurs
in the central node(s), the nested policy is LK-MK, so it has the shortest possi-
ble time step length. Next, we will specify the algorithm to compute the nested
vector ν for a chain of arbitrary length n.

4.3.1. Nested algorithm
Our nested algorithm uses a recursive relation to generate the nested vector
ν⃗(n) from the nested vectors ν⃗(n

2
) or ν⃗(n

2
− 1) for even and odd n, respectively.

For the smallest possible repeater chains, with three and four nodes, the
nested vectors need to be determined a priori. In three and four-node re-
peater chains, GK and MK policies have the same maximum communication
distance, so swap-asap, being LK-GK, yields the minimum possible time step
length. In those cases, swap-asap is also close to being optimal in terms of
delivery time (it is optimal for the three-node chain) and therefore we opted to
set all middle nodes as type S. For example, in a chain of length three, nodes
with index 0 and 2 are end nodes, and the node with index 1 is a swap-asap
node. In all cases, the node distance is 1. The complete expression of the
nested vector for chains of three and four nodes can be found in Eqs. (4.6)
and (4.7), respectively.

ν⃗(3) = [E1, S1, E1]. (4.6)

ν⃗(4) = [E2, S2, S2, E2]. (4.7)

We can now define the algorithm to describe the nested vector of a chain with
an arbitrary number of nodes n. The cases n even and odd will be considered
separately.

Odd n

1. Define the label of the central node m =
n− 1

2
.

2. Set νm(n) = Wm.

3. Set ν0(n) = νn−1(n) = Em.

4. Calculate ν⃗(m+ 1).

5. Set νi(n) = νn−i−1(n) = νi(m+ 1) for i = 1, . . . ,m− 1.

Even n

1. Define the label of the central nodes m1 =
n

2
− 1, m2 =

n
2
.

2. Set νm1(n) = Lm2, νm2(n) = Rm2.

3. Set ν0(n) = νn−1(n) = Em2.

4. Calculate ν⃗(m2).

5. Set νi(n) = νn−i−1(n) = νi(m2) for i = 1, . . . ,m1 − 1.
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Figure 4.5: Examples of nested policy actions in a chain of nine nodes. States A, B,
and C represent possible configurations of the system. Swaps are represented in color red.
Nodes perform their actions based on the nested vector, in this case given by Eq. 4.12. For
example, the node with index two must wait until it shares links with nodes with indexes
zero and four before performing a swap.

Equations below show the explicit expression of the nested vectors for chain
lengths ranging from five to ten. A step-by-step derivation of ν⃗(10) is presented
as an example in Appendix C.

ν⃗(5) = [E2, S1,W2, S1, E2] (4.8)

ν⃗(6) = [E3, S1, L3, R3, S1, E3] (4.9)

ν⃗(7) = [E3, S2, S2,W3, S2, S2, E3] (4.10)

ν⃗(8) = [E4, S2, S2, L4, R4, S2, S2, E4] (4.11)

ν⃗(9) = [E5, S1,W2, S1,W5, S1,W2, S1, E5] (4.12)

ν⃗(10) = [E5, S1,W2, S1, L5, R5, S1,W2, S1, E5] (4.13)

The intuition behind nested policies is to recursively split the chain into re-
gions of swap-asap nodes separated by nodes of type W , L, or R. These wait-
ing nodes act as a barrier that prevents more than two adjacent entanglement
swapping attempts in the same time step. To a certain extent, the nested pol-
icy can be considered as a less flexible version of nml, since it fixates the
position of the waiting and swap-asap nodes along the chain. This causes
that in some scenarios like the one described in Figure 4.5, the nested policy
decides to wait even when there is no risk of performing multiple simultane-
ous adjacent swaps. In general, including these “unnecessary” waiting stages
has a negative impact on both fidelity and delivery time, as will be shown in
Chapter 5. However, in the nested policy, nodes can be separated into layered
segments with different communication distances. This becomes an interest-
ing feature especially when communication time overheads are relevant.

In our nested policy, every waiting node is surrounded by swap-asap nodes
with a smaller node distance, as can be corroborated in the expressions for
ν⃗(n). Since the actions of the waiting nodes are conditional on the success of
the swaps of their neighbouring nodes, there is a predetermined order of the
entanglement swapping operations. Figure 4.6 shows the dependency graph
of the performed swaps for a chain of nine nodes. We can divide the nodes
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Figure 4.6: Dependency of the swaps in the nonadjacent policy in a nine-node chain.
Nodes 2 and 6 (layer L1) can only perform swaps after the swapping operations of their re-
spective neighbouring nodes in layer L0 are successful. Similarly, node 4 (layer L2) performs
a swap after nodes 2 and 6 confirm that their operations were successful.

in the repeater chain into different layers according to their dependency rela-
tions. Actions of nodes in the bottom layer (L0) do not depend on any other
previous action, nodes in the immediately upper layer (L1) only depend on ac-
tions of nodes in L0 and so on. The actions of each node exclusively depend
on the success of the swaps from the immediately lower layer (note that the ac-
tion of a node does not necessarily depend on all the swaps of the lower layer,
but only on a group of relevant ones). Also, all the nodes within one layer
have the same node distance. Then, it is possible to define different commu-
nication distances and therefore different time step lengths for the nodes in
each layer. Nevertheless, discarding links requires some agreement between
nodes that do not necessarily belong to the same layer and therefore setting
variable time step lengths may give rise to synchronization issues.

We propose an alternative approach that overcomes such obstacles and is
still able to reduce the time step duration below the limit for constant and
global time steps given by (3.10). Instead of equal time step lengths, waiting
nodes now have two independent and dynamic time step durations, one for
every communication qubit. Initially, the time step duration of all nodes is set
to τ0, which is the time corresponding to the communication distance of the
layer L0. Before attempting any swap, waiting nodes shall receive confirma-
tion that all the swaps on which its action depends on have been successful.
When all the relevant swaps at one side of the chain have been successful, the
time step of the communication qubit in that part of the chain is changed to
τi (τ0 < τ1 < τ2 ...), corresponding to the communication distance of the layer of
the waiting node. After performing entanglement swapping, the length of the
time step is again switched to τ0. This way, waiting nodes can synchronously
generate entanglement and discard links with nodes of lower layers, and com-
municate the success or failure of the swapping operation with the nodes of
higher layers. Note that a node cannot perform entanglement swap and dis-
card a link within the same time step.

Separating the nodes in the repeater chain in layered segments does not only
achieve a much higher efficiency in terms of classical communication time,
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but it also paves the way for considering entanglement distribution policies
in which nodes can have different hardware specifications, and optimize over
those. For instance, it may be advisable to impose stricter constraints on
the entanglement generation probability for nodes in the lowest layers. In
the top layers, where failed swaps involve a much higher risk, a larger swap-
ping probability could be preferred, at the expense of reducing the generation
probability. These questions are however left open for future research.



5
Results

The main goal of this work is to compare our heuristic policy candidates with
the swap-asap policy, which we use as a baseline. From the data collection
and analysis employing the methods described in Appendix D, we present in
this chapter the key results of our study. We will focus on one-time entangle-
ment distribution and continuous entanglement distribution in Sections 5.1
and 5.2, respectively. In both cases, we will examine repeater chains with
deterministic and probabilistic swaps, while varying the length of the chain
from five to ten nodes. We will first assume that classical communication
time is negligible and hence the time step length will be equal for all policies.
If the number of nodes in the chain is equal to or less than eight, the nml and
nested policies yield the same actions for all states and consequently we will
only consider one of them. From the observed data, if cutoffs are sufficiently
large (so that all policies have a finite end-to-end delivery time), the precise
value of the cutoff does not have a significant impact on any of the measures
of performance and therefore the cutoff time will be arbitrarily set to ten time
steps.

Motivated by the study of future global-scale quantum networks, in which
distances between nodes can be very large, we discuss in Section 5.3 how
classical communication can affect the end-to-end delivery time and end-to-
end fidelity of the swap-asap (LK-GK), nonadjacent (GK-GK), nml (MK-MK)
and nested (LK-MK) policies. Finally, in Section 5.4, we comment on the gen-
eral results obtained and propose how to further improve the performance of
our policies.

5.1. One-time entanglement distribution
5.1.1. Deterministic swaps
We first consider one-time entanglement distribution assuming that swaps
are deterministic. Figure 5.1 shows how the average end-to-end delivery time
varies with respect to p for chains of five, seven, and ten nodes. As expected,
the expected delivery time decreases for increasing probability p for all policies,
and increases as the number of nodes becomes larger. For low p, the prob-
ability of the system encountering states with more than two adjacent links
becomes very low, and therefore swap-asap and nonadjacent show similar
performance. However, whereas the swap-asap policy requires a minimum of
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(a) Five nodes. (b) Seven nodes. (c) Ten nodes.

Figure 5.1: The delivery time of swap-asap is lower than that of the other policies
when ps = 1. End-to-end delivery time T0 (measured in time steps) versus entanglement
generation probability p when swaps are deterministic and communication time is negligible.
We simulate one-time entanglement generation for repeater chains of five (a), seven (b), and
ten (c) nodes. Each data point was computed by averaging 105 Monte Carlo shots. Error bars
are not displayed since they are smaller than the symbol size.

(a) Five nodes. (b) Seven nodes. (c) Ten nodes.

Figure 5.2: The fidelity of swap-asap is higher than that of the other policies when
ps = 1. End-to-end fidelity F versus entanglement generation probability p when swaps are
deterministic and communication time is negligible. We simulate one-time entanglement
generation for repeater chains of five (a), seven (b), and ten (c) nodes with a decoherence rate
τ = 50. Each data point was computed by averaging 105 Monte Carlo shots. Error bars are
not displayed since they are smaller than the symbol size.

one time step to achieve end-to-end entanglement, all of our proposed policies
need at least two. Thus, in the ideal scenario p = ps = 1, swap-asap is two
times faster than the rest of our policies. In particular, none of our policies
outperform swap-asap for any value of p.

The average end-to-end fidelity increases for higher values of p in the swap-
asap and nested policies, as shown in Figure 5.2. However, the fidelity of
the nonadjacent policy (and nml for ten nodes) stagnates, and even decreases
in some cases, when the p approaches one. The intuition behind this rather
strange phenomenon is the following: for low p the nonadjacent policy is al-
most equivalent to swap-asap, and nodes rarely wait instead of swapping. As
p increases, elementary links are generated more frequently. Consequently,
the average waiting time before links are swapped decreases, in principle re-
sulting in higher fidelity. Nevertheless, if p becomes too large, the system
will often encounter states with large connected components. This will cause
some nodes to wait to prevent many adjacent swaps, thus decreasing the av-
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erage fidelity. In any case, we observe that under deterministic swaps, swap-
asap always performs better than our proposed policies.

5.1.2. Probabilistic swaps
We now consider the case with probabilistic swaps (ps = 0.5). From Figure 5.3,
we observe that the situation is radically different from deterministic swaps.
To start with, the nonadjacent policy now yields a lower end-to-end delivery
time than swap-asap for all values of p. Moreover, the nested and nml policies
also show better performance than swap-asap when p is sufficiently large. No-
tably, the difference between the proposed policies and swap-asap becomes
even more evident for a larger number of nodes. For the extreme case of
n = 10 and p = 1, all the proposed policies yield an end-to-end delivery time
almost six times smaller than the swap-asap policy. It is also remarkable how
whereas the swap-asap policy shows a non-monotonic behaviour on p when
n is seven or larger, none of the proposed policies exhibit that feature, as we
intended. Also interestingly, nested and nml are slower than nonadjacent
for low p, but this tendency is reversed for high p. This is because, in the
nonadjacent policy, it is more common that the last action before reaching
end-to-end entanglement is to perform swaps in two adjacent nodes. This
yields a failure probability of 1 − p2s = 0.75. However, nml and nested reduce
the frequency at which two adjacent swaps are performed in the time step
previous to reaching end-to-end entanglement. This effect is particularly rel-
evant for repeater chains with an odd number of nodes, in which there exists
only a single central node.

On the other hand, the average end-to-end fidelity does not present any note-
worthy difference with respect to the deterministic swaps scenario. Swap-
asap still provides significantly higher fidelity than any of the other policies.
This is consistent with our expectations, since imposing that some nodes wait
before they swap inherently increases the average time that states need to be
subject to depolarizing noise while in storage.

5.2. Continuous entanglement distribution
One may a priori guess that the continuous and one-time cases should be
strongly correlated, and that optimal policies in the first scenario should per-
form equally well in the second. However, some additional considerations
make this a non-trivial question. If we consider the rate at which two parties
can share entanglement, it becomes relevant to consider the “remaining links”
(links are still in the chain after the end-to-end link is consumed), since these
can also be used to generate the following end-to-end link and so on. In prin-
ciple, being able to reuse those links should imply faster rates, but we will
show that this is not always the case. Moreover, the end-to-end fidelity can
be negatively affected as well.
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(a) Five nodes. (b) Seven nodes. (c) Ten nodes.

Figure 5.3: Our policies improve the delivery time of swap-asap when swaps are prob-
abilistic and p is large. End-to-end delivery time T0 (measured in number of time steps)
versus entanglement generation probability p when swaps are probabilistic (ps = 0.5) and
communication time is negligible. We simulate one-time entanglement generation for re-
peater chains of 5 (a), 7 (b), and 10 (c) nodes. Each data point was computed by averaging 105

Monte Carlo shots. Error bars are not displayed since they are smaller than the symbol size.

(a) Five nodes. (b) Seven nodes. (c) Ten nodes.

Figure 5.4: The fidelity of swap-asap is higher than that of the other policies when
ps = 0.5. End-to-end fidelity F versus entanglement generation probability p when swaps
are probabilistic (ps = 0.5) and communication time is negligible. We simulate one-time
entanglement generation for repeater chains of five (a), seven (b), and ten (c) nodes with a
decoherence rate τ = 50. Each data point was computed by averaging 105 Monte Carlo shots.
Error bars are not displayed since they are smaller than the symbol size.

5.2.1. Deterministic swaps
Figure 5.5 shows the comparison in terms of fidelity and rate between one-
time and continuous entanglement generation for deterministic swaps. We
observe that all policies yield higher rates and fidelity as p increases, with
swap-asap providing the best results for both performance measures. The
only exception is the nonadjacent policy, for which we observe decreases in
entanglement rate and end-to-end fidelity when p = 1 and n = 10. If en-
tanglement generation is deterministic, the average number of waiting nodes
significantly increases compared to the case with p = 0.9.

Continuous entanglement generation typically yields faster rates than one-
time generation, as the “remaining links” have a larger probability of forming
new end-to-end links. For small p, nevertheless, those links have a very small
probability of reaching end-to-end entanglement. This is detrimental to the
rate, since nodes cannot generate elementary links if their qubits are occupied.
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(a) Five nodes. (b) Seven nodes. (c) Ten nodes.

Figure 5.5: Swap-asap shows the best performance when ps = 1. End-to-end fidelity
F versus entanglement generation rate (measured in the inverse of number of time steps)
when swaps are deterministic and communication time is negligible. We simulate continuous
entanglement generation for repeater chains of five (a), seven (b), and ten (c) nodes with a
decoherence rate τ = 50. Each data point was computed by averaging 106 Monte Carlo shots.
Error bars are not displayed since they are smaller than the symbol size. We consider ten
equally spaced entanglement generation probability values ranging from 0.1 (leftmost and
bottommost data points of each policy) to 1.

(a) Five nodes. (b) Seven nodes. (c) Ten nodes.

Figure 5.6: Our proposed policies are faster than swap-asap when ps = 0.5 and p is large,
but they show a lower fidelity. End-to-end fidelity F versus entanglement generation rate
(measured in the inverse of number of time steps) when swaps are probabilistic (ps = 0.5) and
communication times are negligible. We simulate continuous entanglement generation for
repeater chains of five (a), seven (b), and ten (c) nodes with a decoherence rate τ = 50. Each
data point was computed by averaging 106 Monte Carlo shots. We consider ten equally spaced
entanglement generation probability values ranging from 0.1 (leftmost and bottommost data
points of each policy) to 1.

Moreover, reusing pre-existing (and hence older) links to generate end-to-end
entanglement generally also negatively affects fidelity. These effects become
more evident for long chains, where the number of “remaining links” is higher
on average.

5.2.2. Probabilistic Swaps
When swaps are probabilistic, the number of “remaining links” after end-to-
end entanglement is achieved is typically very low, so the differences between
one-time and continuous entanglement generation become much less signif-
icant than for deterministic swaps. From Figure 5.6, we arrive at the conclu-
sions previously discussed in Section 5.1.2: swap-asap produces higher end-
to-end fidelity than all of our policies, but these reach lower end-to-end deliv-
ery times for large p. For chains with seven or more nodes, swap-asap exhibits
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a non-monotonic behaviour in the rate, and nonadjacent is non-monotonic
in the fidelity, both with respect to p.

5.3. Non-negligible communication time
In the previous examples, classical communication time did not have a signifi-
cant contribution to the overall time step length. Nonetheless, in global-scale
quantum networks, where distances between nodes are potentially large, clas-
sical communication delays ought to be considered. We will focus on the case
in which classical communication is the main contribution to the time step
length, and study quantum repeater chains under the following conditions:

• The time required for performing cutoffs and swaps is negligible com-
pared to the entanglement generation time. This assumption can be
justified if the distance between nodes l is very large, since entangle-
ment generation requires the transmission of heralding signals. On the
other hand, cutoffs and swaps are local operations that do not depend
on l.

• There is only one entanglement generation attempt per time step (NA = 1).

Then, from Eqs. (3.4) and (3.6):

T π
step = Top + T π

comm = Top (1 + (Cπ
1 + Cπ

2 ) (n− 1)) = Top

(
1 +

dπcc1 + dπcc2
l

)
. (5.1)

Using the expressions for the classical communication distance dπcci for MK
(3.9) and the definition of LK (3.2.1) and GK (3.2.2), we can write the time
step length in each of our policies as a function of the number of nodes (recall
that swap-asap is LK-GK, nonadjacent is GK-GK, nml is MK-MK and nested
is LK-MK):

T LK-GK
step = Top (n− 1) , (5.2)

TGK-GK
step = Top (2n− 3) , (5.3)

TMK-MK
step =


Top(n) if n odd

Top (1 + n) if n even,
(5.4)

T LK-MK
step =


Top
(
1 + n−1

2

)
if n odd

Top
(
1 + n

2

)
if n even.

(5.5)

To compare our policies, we take the time step length of swap-asap (LK-GK) as
a baseline and scale the time step length of our candidate policies accordingly.
E.g., to find the ratio between GK-GK and LK-GK we divide (5.3) by (5.2). This
yields TGK-GK

step = 2n−3
n−1

T LK-GK
step . Note that the nested policy (5.5) yields the shortest

time steps while nonadjacent (5.3) has the longest. For a fair comparison
between all policies, the cutoff must also be scaled (inversely to the time step
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Policy Swap-asap Nonadjacent Nonadjacent-middle-last Nested
Classification LK-GK GK-GK MK-MK LK-MK

Rπ
step(5) 1 1.25 1.75 0.75
Rπ
cut(5) 1 0.8 0.57 1.33

Rπ
step(10) 1 1.22 1.89 0.67
Rπ
cut(10) 1 0.82 0.53 1.5

Table 5.1: Scaling factors for the time step lengths and cutoff times for the different
policies. Rπ

step(n) and Rπ
cut(n) are the ratios between the time step lengths and cutoff times of

policy π and swap-asap for a chain of n nodes, assuming communication time is the main
contribution to the time step length.

(a) Five nodes. (b) Ten nodes.

Figure 5.7: Nested is faster than swap-asap when ps = 1 and p is small. End-to-end
delivery time T0 (measured in number of time steps of the swap-asap policy) versus entangle-
ment generation probability p when swaps are deterministic and communication times are
the main contribution in the length of the time steps. We simulate one-time entanglement
generation for repeater chains of five (a), and ten (b) nodes. Each data point was computed
by averaging 105 Monte Carlo shots. Error bars are not displayed since they are smaller than
the symbol size.

length) to guarantee the same end-to-end fidelity threshold. In our case, we
consider repeater chains with five and ten nodes. The time step length and
cutoff time scaling for all policies are summarized in Table 5.1.

Figure 5.7 shows the (scaled) end-to-end delivery time for all different policies
taking tLK-GKcut = 10 when ps = 1. Contrarily to the case in which communication
time is negligible, our nested policy improves the end-to-end delivery time of
swap-asap when p is sufficiently small. This is an important result, as swap-
asap is often naively considered the best policy when swaps are deterministic.
On the other hand, the nonadjacent and nml policies always provide larger
delivery times than swap-asap. For probabilistic swaps, the delivery time of
the nested policy is significantly smaller than the rest of policies for all values
of p, even being up to 12 times faster than swap-asap for n = 10 and p = 1 (see
Fig. 5.8). For large p and n, all of our policies provide a lower delivery time
than the swap-asap policy.
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(a) Five nodes. (b) Ten nodes.

Figure 5.8: Nested is faster than swap-asap when ps = 0.5. End-to-end delivery time T0

(measured in number of time steps of the swap-asap policy) versus entanglement generation
probability p when swaps are probabilistic (ps = 0.5) and communication times are the main
contribution in the length of the time steps. We simulate one-time entanglement generation
for repeater chains of 5 (a), and 10 (b) nodes. Each data point was computed by averaging 105

Monte Carlo shots. Error bars are not displayed since they are smaller than the symbol size.

(a) Five nodes. (b) Ten nodes.

Figure 5.9: The fidelity of swap-asap is higher than that of the other policies when
ps = 1. End-to-end fidelity versus entanglement generation probability p when swaps are
deterministic and communication times are the main contribution in the length of the time
steps. We simulate one-time entanglement generation for repeater chains of 5 (a), and 10 (b)
nodes with a decoherence rate τ = 50. Each data point was computed by averaging 105 Monte
Carlo shots. Error bars are not displayed since they are smaller than the symbol size.

The end-to-end fidelity is also affected when considering classical commu-
nication time. Varying the time step length implies that memory qubits will
decohere at different rates (in terms of time steps). In policies with shorter
time steps, the loss in fidelity in each time step is smaller, but links are al-
lowed to be stored for more time steps. Overall we observe that policies with
longer time steps (nonadjacent and nml) show a decrease in fidelity compared
to the negligible communication time case, unlike the nested policy. Still,
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(a) Five nodes. (b) Ten nodes.

Figure 5.10: The fidelity of swap-asap is higher than that of the other policies when
ps = 0.5. End-to-end fidelity versus entanglement generation probability p when swaps are
probabilistic (ps = 0.5) and communication times are the main contribution in the length of
the time steps. We simulate one-time entanglement generation for repeater chains of 5 (a),
and 10 (b) nodes with a decoherence rate τ = 50. Each data point was computed by averaging
105 Monte Carlo shots. Error bars are not displayed since they are smaller than the symbol
size. Similarly as in the case with deterministic swaps, swap-asap yields the highest end-to-
end fidelity for all values of p.

swap-asap remains the policy that better performs in terms of this measure
(Figures 5.9 and 5.10).

5.4. Remarks
From our observations, we can conclude that for negligible communication
time, our proposed policies produce lower end-to-end delivery times than
swap-asap when swaps are probabilistic and p is large. Delaying simulta-
neous adjacent swaps is only justified if it reduces the probability of losing
entanglement. Therefore, our policies do not provide any advantage with re-
spect to swap-asap in terms of delivery time or fidelity for deterministic swaps.
However, if communication time is considered, LK-MK policies such as nested
are often faster than policies that require global knowledge, like swap-asap
or nonadjacent, even when ps = 1.

Our heuristic search was restricted to entanglement swapping policies. To
improve the delivery times of swap-asap for ps = 1, small p, and negligible
communication time, it may be convenient to consider also different cutoff
policies. For example, short and relatively old links have a large probability
of being discarded before end-to-end entanglement is achieved. Therefore, im-
posing dynamic cutoffs according to the length of entangled links may be an
alternative to effectively reduce the delivery time. Increasing the fidelity with-
out negatively affecting the delivery time is not always possible, since there
exists a trade-off between these two quantities. For instance, the maximum
fidelity is obtained if the cutoff time is set to one time step. In this case, swap-
asap is trivially the optimal policy. Setting tcut = 1 involves that all elementary
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links must be generated simultaneously, and all swaps must be successful.
The probability that this occurs in a single time step is pn−1pn−2

s , otherwise,
all entanglement will be lost. As a consequence, the expected delivery time
will be 1

pn−1pn−2
s

. Lastly, increasing the rate can indirectly result in higher fi-
delities, since entanglement distillation protocols allow to use multiple copies
of a noisy entangled state to extract fewer highly entangled states. This is
nevertheless out of the scope of this thesis.



6
Conclusion

In this work, we propose some guidelines to design scalable and easy to imple-
ment entanglement distribution policies in quantum repeater chains that aim
to reduce the delivery time of the swap-asap policy. For example, we show that
the risk of losing entanglement is reduced by avoiding simultaneous adjacent
probabilistic swaps. In addition, we introduce classical communication time
in our model and demonstrate that in our framework, fully local-knowledge
policies (in which nodes only have information about the state of the qubits
they hold) do not exist for repeater chains with more than three nodes. We
also found that monotonicity is a necessary condition for optimal policies, and
that swap-asap does not satisfy it.

We use the end-to-end delivery time and end-to-end fidelity as measures
of performance to evaluate the proposed policies (nonadjacent, nonadjacent-
middle-last, and nested), considering the cases of one-time and continuous
entanglement distribution. Our policies are significantly faster than swap-
asap for probabilistic swaps and large entanglement generation probability.
This effect is enhanced as the number of nodes in the chain is increased.
For deterministic swaps, swap-asap requires on average less number of time
steps than our proposed policies. However, if the contribution of classical
communication to the total time step length becomes very large, our nested
policy is often faster than swap-asap. Delaying swaps typically entails lower
fidelity end links, and none of our policies was found to improve over the end-
to-end fidelity of swap-asap.

This project also opens future lines of research. We can design more flexi-
ble policies by tuning the maximum number of simultaneous adjacent swaps,
as well as considering alternative cutoff policies. This way, we could poten-
tially outperform swap-asap over a wider range of hardware parameters. Fur-
thermore, a similar analysis to the one presented in this work can be used
to explore non-homogeneous repeater chains, in which distances between
nodes (and therefore entanglement generation probabilities and communica-
tion time) are not constant. Finally, some of the heuristics discussed in this
work could also be extended to networks with different topologies.
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Link post-swapping age

In this Appendix we show that the post-swapping age of two Werner states
subject to a depolarizing process can be computed as

tswap = t1 + t2 − τ ln

(
4F0 − 1

3

)
, (A.1)

where t1 and t2 are the ages of the involved links in the swap, τ is the depolariz-
ing rate introduced by noisy memories and F0 is the fidelity of newly generated
links. In [31], authors show that the fidelity of a Werner state experiencing a
depolarizing process evolves as

F (t) =
1

4
+

(
F (t−∆t)− 1

4

)
e−

∆t
τ , (A.2)

where ∆t is an arbitrary interval of time. In particular, we can set ∆t = t, so
from (A.2) we can write

F (t) =
1

4
+

(
F0 −

1

4

)
e−

t
τ . (A.3)

Therefore the relation between the age of a link and its fidelity can be found
in (A.4):

t = −τ ln
(
4F (t)− 1

4F0 − 1

)
. (A.4)

Afer swapping two Werner states with fidelities F1 and F2, the resulting link
is a Werner state with fidelity [53]

Fswap(F1, F2) = F1 · F2 +
1

3
((1− F1) (1− F2)) . (A.5)

Then, inserting (A.3) into (A.5):

Fswap(t1, t2) =
1

16

((
1 + (4F0 − 1) e−

t1
τ

)(
1 + (4F0 − 1) e−

t2
τ

)
+

1

3

(
3− (4F0 − 1) e−

t1
τ

)(
3− (4F0 − 1) e−

t2
τ

))
(A.6)

=
1

4

(
1 +

(4F0 − 1)2

3
e

−(t1+t2)
τ

)
. (A.7)

Finally, from the post-swapping fidelity we can find the post-swapping age of
a link by using (A.4)

tswap(t1, t2) = −τ ln

(
(4F0 − 1)2 e

−(t1+t2)
τ

3 (4F0 − 1)

)
= t1 + t2 − τ ln

(
4F0 − 1

3

)
. (A.8)
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End-to-end delivery time of middle-last

Here we demonstrate the equations for the single-shot end-to-end delivery
time of the middle-last policy assuming p = 1 and infinite cutoff time:

Tmiddle
s0

=
3− pn−3

s

2p
n−1
2

s − pn−2
s

if n odd. (B.1)

Tmiddle
s0

=
1 + 2ps + p

n−4
2

s − p
n−2
2

s − pn−4
s + p3n−11

s − p
3n−12

2
s

2p
n
2
s − pn−2

s − p
3n−4

2
s + p

3n−2
2

s

if n even. (B.2)

We will use the Bellman equations (B.3) to express the delivery time of the
empty chain in terms of the rest of states.

T π
s = 1 +

∑
s′∈S

P (s′|s, π) · T π
s′ . (B.3)

Here T π
s is the average number of time steps needed to achieve end-to-end

entanglement starting from state s under policy π, S is the state space, and
P (s′|s, π) is the transition probability of reaching state s from state s′ when
following policy π. For the rest of the discussion, we will omit the superscript
π as we will always consider the middle-last policy.

A significant number of states can be removed from the Bellman equations
taking into account the following considerations. Firstly, link ages do not play
a role since the cutoff is infinite. Moreover, since p = 1, states that differ only
in the existence of elementary links are equivalent. Middle-last is a symmet-
ric policy, so the delivery time of a state and its mirrored version must be the
same. Then, we will only consider half of the non-symmetric states.

B.1. Odd n
We first consider an odd number of nodes. Figure B.1 shows the four possible
different states in the system. Given that p = 1, all nodes except the central
one will perform swaps in the first time step. If all swaps are successful, the
system will reach state s1. State s2 will be reached instead if all of the swaps
on one of the sides of the chain are successful, but at least one swap on the
opposite side fails. Finally, if swaps fail at both sides of the chain, the system
returns to state s0. The end-to-end delivery time can be computed as:

Ts0 = 1 + p2ms Ts1 + 2pms (1− pms )Ts2 + (1− pms )
2Ts0 , (B.4)

where we have introduced the variable m = n−3
2

for clarity. Similarly, we can
find the equations for the end-to-end delivery time of the rest of states. In
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Figure B.1: States in the middle-last policy when n is odd, p = 1, and tcut = ∞.

(B.5) we have used that Ts3 = 0 since it is already an end-to-end entangled
state.

Ts1 = 1 + psTs3 + (1− ps)Ts0 = 1 + (1− ps)Ts0 . (B.5)
Ts2 = 1 + pms Ts1 + (1− pms )Ts2 . (B.6)

Solving (B.6) yields
Ts2 =

1

pms
+ Ts1 . (B.7)

Substituting Eqs. (B.5) and (B.6) in (B.4)

Ts0 = 1+p2ms +(1−ps)p2ms Ts0+2(1−pms )+2pms (1−pms )+2pms (1−pms )(1−ps)Ts0+(1−pms )2Ts0
(B.8)

Finally, after simplifying we reach (B.9), from which we retrieve (B.1) replacing
m by n−3

2
.

Ts0 =
3− p2ms

2pm+1
s − p2m+1

s

. (B.9)

B.2. Even n
The case of an even number of nodes is equivalent to the previous scenario,
but we must now consider that there are six possible states (See Fig. B.2).
The central nodes (indexes n

2
− 1 and n

2
) will only attempt swaps if they share

an entangled link with their respective closer end node. We now set m = n
2
− 2

to simplify our expressions. Starting from an empty chain, the system will
reach state s0 if all 2m swaps (m on every side of the chain) are successful.
If all swaps are successful on one side, but some fail on the other side, the
system will reach state s2. Finally, if at least one swap fails on each side, the
system goes back to s0. Then, the end-to-end delivery time reads

Ts0 = 1 + p2ms Ts1 + 2pms (1− pms )Ts2 + (1− pms )
2Ts0 . (B.10)

The equations for the delivery time of the different states can be found simi-
larly:

Ts1 = 1 + p2sTs5 + (1− p2s)Ts0 = 1 + (1− p2s)Ts0 , (B.11)

where we have used Ts5 = 0.

Ts2 = 1 + pm+1
s Ts3 + pms (1− ps)Ts2 + ps(1− pms )Ts4 + (1− ps)(1− pms )Ts0 . (B.12)

Equations for s3 and s4 are similar to Eqs. (B.11) and (B.12).
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Figure B.2: States in the middle-last policy when n is even, p = 1, and tcut = ∞.

Ts3 = 1 + psTs5 + (1− ps)Ts0 = 1 + (1− ps)Ts0 . (B.13)
Ts4 = 1 + pms Ts3 + (1− pms )Ts4 . (B.14)

Finally, substituting in (B.10) and simplifying, we find (B.15).

Ts0 =
1 + 2ps + pms − pm+1

s − p2ms = p3m+1
s − p3ms

2pm+2
s − p2m+2

s − p3m+2
s + p3m+3

s

. (B.15)

Again, this is equivalent to (B.2) if we replace m by n
2
− 2.



Nested vector for ten nodes

In this Appendix, we derive the equation for the nested vector of a ten-node
chain following the algorithm described in Section 4.3.

1. Ten is an even number so we define the label of the central nodes as

m1 =
n

2
− 1 = 4. (C.1)

m2 =
n

2
= 5. (C.2)

2. Set νm1(n) = Lm2, νm2(n) = Rm2.

ν4(10) = L5. (C.3)
ν5(10) = R5. (C.4)

3. Set ν0(n) = νn−1(n) = Em2.

ν0(10) = E5. (C.5)
ν9(10) = E5. (C.6)

4. Calculate ν⃗(m2) = ν⃗(5). We must now use the algorithm for an odd num-
ber of nodes.

(a) Define the label of the central node.

m =
m2 − 1

2
= 2. (C.7)

(b) Set νm(m2) = Wm.
ν2(5) = W2. (C.8)

(c) Set ν0(m2) = νm2−1(m2) = Em.

ν0(5) = ν4(5) = E2. (C.9)

(d) Calculate ν⃗(m+ 1) = ν⃗(3). This nested vector was defined as

ν⃗(3) = [E1, S1, E1]. (C.10)

(e) Set νi(m2) = νm2−i−1(m2) = νi(m+ 1) for i = 1, . . . ,m− 1.

ν1(5) = ν3(5) = S1. (C.11)

Therefore, the nested vector ν⃗(5) reads

ν⃗(5) = [E2, S1,W2, S1, E2]. (C.12)
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5. Set νi(n) = νn−i−1(n) = νi(m2) for i = 1, . . . ,m1 − 1.

ν1(10) = ν8(10) = S1. (C.13)
ν2(10) = ν7(10) = W2. (C.14)
ν3(10) = ν6(10) = S2. (C.15)

Finally, all the elements of the nested vector ν⃗(10) are known. The full expres-
sion is given by (C.16).

ν⃗(10) = [E5, S1,W2, S1, L5, R5, S1,W2, S1, E5]. (C.16)



Simulation methods

Analytic analysis of our repeater chain model is only possible under very spe-
cific assumptions, so we use simulations to benchmark our entanglement
distribution policy candidates against the swap-asap policy. Here we outline
the implementation of these simulation methods for one-time and continuous
end-to-end entanglement delivery.

In order to estimate the main quantities of interest (end-to-end delivery time
and end-to-end fidelity), we employ Monte Carlo (MC) simulations. These take
advantage of the concept of random sampling to model the probability distri-
bution of a given event. MC sampling methods often use Markov chains [54].
This is especially suited for our repeater chain model, which can be formu-
lated as a Markov decission process (MDP). Within each time step, elementary
links are generated with probability p, swaps are attempted following the spe-
cific policy (and are successful with probability ps) and links are discarded if
they exceed the cutoff time tcut. At the end of each time step, the ages of all
links are increased by one. Note that for applying cutoffs, ages are calculated
using the rule (D.1)

tswap = max(t1, t2), (D.1)

where tswap is the age of a link resulting from a swapping operation and t1
and t2 are the ages of the links involved in the swap. This rule is useful to
compute the value of the cutoff that ensures a minimum value of the end-
to-end fidelity Fmin, but it does not provide an accurate description of the
evolution of the fidelity. Therefore, we parallelly keep track of the link ages
using the post-swapping formula derived in Appendix A to compute the end-
to-end fidelity. It is also possible to directly keep track of the fidelities or the
Werner parameters of the states, which would simplify the expressions for the
post-swapping fidelity. However, this would involve additional calculations
to introduce decoherence experienced by the qubits in each time step (ages
simply increase their value by one).

tswap = t1 + t2 − τ ln

(
4F0 − 1

3

)
(D.2)

To reduce the number of parameters in our system we assumed ideal fidelity
of elementary links (F0 = 1). In this case, the post-swapping age is simply
tswap = t1 + t2. We also arbitrarily set τ = 50.

We distinguish between one-time and continuous entanglement generation
(defined in Section 2.3). For one-time entanglement delivery, the system
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evolves starting from an empty chain until it reaches end-to-end entangle-
ment. Then, the number of elapsed time steps and the fidelity of the end-to-
end link are stored. This procedure is repeated until a sufficient number of
end-to-end entanglement episodes (None-time) have occurred.

In continuous entanglement delivery simulations, the system evolves a to-
tal number of tmax time steps. When end-to-end entanglement is achieved,
the fidelity of the end-to-end link is stored, and the number of counts is in-
creased by one. The end-to-end entanglement delivery rate R(t) can then be
estimated as the ratio between the number of counts at time step t, ce2e and
the total number of realizations Ncont:

R̂(t) =
ce2e(t)

Ncont
(D.3)

R(t) does in principle depend on time, but it is expected that after a suffi-
ciently large number of time steps, the system is no longer affected by its
initial conditions, so the rate should converge to a constant value, as has
been previously shown for similar systems [55]. This “long term” regime is
precisely the region of interest, as it captures the dynamics of the system after
it has stabilized. We set tmax = 1000 and confirm from the simulation results
that the system always reaches equilibrium in this time scale.

The error in our estimates is inversely proportional to the square root of the
number of samples in our simulations.

σx =
σ√
N

≈ σx√
N
, (D.4)

where σx is the standard error of the sample mean of the random variable
x, σ is the standard deviation of the population, σx is the sample standard
deviation, and N is the total number of samples. Therefore, there exists a
trade-off between reliability and use of computational resources. Our choice
for the number of samples was to set None-time = 105 and Ncont = 106. The
standard error can be used to find confidence intervals for our estimates.
The z-score corresponding to a confidence interval of 95% is 1.96. That is,
with a 95% certainty, the mean value of the population will be in the interval
(x− 1.96σx, x+ 1.96σx). The error bars in our figures are also calculated using
this z-score.

The Python simulations employed in this project can be found in the following
GitHub repository:
https://github.com/hectorcaleromas/Homogenous-Repeater-Chains.

https://github.com/hectorcaleromas/Homogenous-Repeater-Chains
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