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Abstract 

Background In the past decade, there has been substantial progress in the development of robotic controllers that 
specify how lower‑limb exoskeletons should interact with brain‑injured patients. However, it is still an open question 
which exoskeleton control strategies can more effectively stimulate motor function recovery. In this review, we aim to 
complement previous literature surveys on the topic of exoskeleton control for gait rehabilitation by: (1) providing an 
updated structured framework of current control strategies, (2) analyzing the methodology of clinical validations used 
in the robotic interventions, and (3) reporting the potential relation between control strategies and clinical outcomes.

Methods Four databases were searched using database‑specific search terms from January 2000 to September 2020. 
We identified 1648 articles, of which 159 were included and evaluated in full‑text. We included studies that clinically 
evaluated the effectiveness of the exoskeleton on impaired participants, and which clearly explained or referenced 
the implemented control strategy.

Results (1) We found that assistive control (100% of exoskeletons) that followed rule‑based algorithms (72%) based 
on ground reaction force thresholds (63%) in conjunction with trajectory‑tracking control (97%) were the most 
implemented control strategies. Only 14% of the exoskeletons implemented adaptive control strategies. (2) Regarding 
the clinical validations used in the robotic interventions, we found high variability on the experimental protocols and 
outcome metrics selected. (3) With high grade of evidence and a moderate number of participants (N = 19), assistive 
control strategies that implemented a combination of trajectory‑tracking and compliant control showed the highest 
clinical effectiveness for acute stroke. However, they also required the longest training time. With high grade of evi‑
dence and low number of participants (N = 8), assistive control strategies that followed a threshold‑based algorithm 
with EMG as gait detection metric and control signal provided the highest improvements with the lowest training 
intensities for subacute stroke. Finally, with high grade of evidence and a moderate number of participants (N = 19), 
assistive control strategies that implemented adaptive oscillator algorithms together with trajectory‑tracking control 
resulted in the highest improvements with reduced training intensities for individuals with chronic stroke.
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Conclusions Despite the efforts to develop novel and more effective controllers for exoskeleton‑based gait neurore‑
habilitation, the current level of evidence on the effectiveness of the different control strategies on clinical outcomes 
is still low. There is a clear lack of standardization in the experimental protocols leading to high levels of heterogeneity. 
Standardized comparisons among control strategies analyzing the relation between control parameters and biome‑
chanical metrics will fill this gap to better guide future technical developments. It is still an open question whether 
controllers that provide an on‑line adaptation of the control parameters based on key biomechanical descriptors 
associated to the patients’ specific pathology outperform current control strategies.

Keywords Powered exoskeleton, Gait rehabilitation, Lower limb, Brain injury, Stroke, Cerebral palsy, Literature 
synthesis

Background
Brain injury is a wide open concept associated with dam-
age to the brain due to events inside of the body, i.e., 
non-traumatic brain injuries, or external forces, i.e., trau-
matic brain injuries (TBIs). Non-traumatic brain injuries 
include stroke or cerebral palsy. Brain injuries are one of 
the major causes of death and disability worldwide [1]. 
The global incidence of stroke increases by more than 
13.7 million new cases each year [2], and is the third lead-
ing cause of disability worldwide [3]. The prevalence of 
cerebral palsy is estimated to be from nearly 2 to nearly 
3 per 1000 newborns worldwide [4, 5]. Traumatic brain 
injury is another leading cause of disability around the 
globe, with 69 million survivors every year [6].

Difficulty in standing and walking is one of the major 
consequences of brain injuries. For instance, over 63% 
of stroke survivors suffer from half-mild to severe motor 
and cognitive disabilities [7], and 30–36% are unable to 
walk without assistive aids [8, 9]. This results in loss of 
independent mobility and limits community partici-
pation and social integration, which causes secondary 
health conditions [10]. Individuals with brain injuries can 
exhibit common motor impairments, like paralysis, spas-
ticity, or abnormal muscle synergies, leading to compen-
satory movements and gait asymmetries [11–15]. This 
pathological gait hinders a skilful, comfortable, safe, and 
metabolically efficient ambulation [16].

The recovery process after a brain injury takes months 
to years and neurological impairments can be permanent 
[17]. There is strong evidence that early, intensive, and 
repetitive task- and goal-oriented training, which is pro-
gressively adapted to the patients level of impairment and 
rehabilitation stage, can improve functional ambulatory 
outcomes [11, 18–23]. However, due to limited resources 
and the heterogeneity of impairment, it is challenging for 
physiotherapists to provide the required intensity and 
dose of training, while extracting quantitative informa-
tion to maximize functional walking ability for a specific 
patient.

Robotics can play a promising role in gait rehabilita-
tion for individuals with brain injuries. Robots allow 

performance of wide range of tasks—e.g., walking, sit-
ting up/down, or walking on a slope—with high intensity. 
Some robotic controllers might also promote patients’ 
active participation and engagement during the training 
process, e.g., by varying the level of the assistive force [24, 
25]. High repeatability and intensity of training, together 
with patients’ engagement, have been listed as cru-
cial factors to induce neural plasticity and motor learn-
ing [26–28]. Importantly, clinical evidence suggests that 
combining robotic and conventional rehabilitation train-
ing positively impacts the ability to walk independently, 
walking speed, and walking capacity, although there is 
still no solid evidence about the superiority of robotic 
rehabilitation over conventional therapy [29–33].

Lower-limb exoskeletons promote task-oriented repeti-
tive movements, muscle strengthening, and movement 
coordination, which have been shown to positively 
impact energy efficiency, gait speed, and balance con-
trol [34, 35]. Exoskeletons, compared to other robotic 
solutions, e.g., patient-guided suspension systems and 
end-effector devices, allow for full control of the leg joint 
angles and torques, and are the preferred robotic solu-
tions for training brain-injured patients who suffer from 
severe motor disabilities [36]. Thereby, we consider that 
focusing on exoskeleton technology is a wide and rich 
enough topic to extract conclusions on the clinical effec-
tiveness of the control strategies in the broad group of 
brain-injured patients [37–39].

The interest on lower-limb exoskeletons for gait reha-
bilitation has increased exponentially in the last years, 
which is reflected in the considerable number of reviews 
published within the last decade [38, 40–60]. However, 
the majority of these reviews focus on hardware, while 
only a few of them analyzed the control strategies imple-
mented on lower limb exoskeletons and their effects on 
walking function in individuals with brain injuries [38, 
41, 42, 54–60]. Yet, the control strategy—as ergonomics 
and robot actuation—might play a key role on the effec-
tiveness of the robotic treatment [61]. As in every biolog-
ical system, control rules are essential to modulate every 
action attending to internal and external factors [62].
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We found a few literature surveys that focused on con-
trol strategies for lower-extremity exoskeletons: Baud 
et al. and Li et al. categorised the control strategies and 
actuation systems implemented on lower-limb exoskel-
etons [41, 42]; Chen et  al. presented a review on wear-
able hip exoskeletons for gait rehabilitation and human 
performance augmentation that addressed actuation sys-
tem technologies and control strategies [57]; Zhang et al. 
presented a review on lower-limb exoskeletons offering 
details about actuation systems, high-level control, and 
human–robot synchronization tools [38]; Tucker et  al. 
[55] reviewed several control strategies, gait pattern rec-
ognition, and biofeedback approaches for lower extrem-
ity robotic prosthetics and orthotics. Finally, a recent 
systematic review on wearable ankle rehabilitation robots 
for post-stroke rehabilitation focused on actuation tech-
nologies, gait event detection, control strategies, and the 
clinical effects of the robotic intervention [59].

In this systematic review, we aim at complement-
ing previous literature surveys by providing an updated 
structured framework of current control strategies, ana-
lyzing the methodology of clinical validations used in the 
robotic interventions, and reporting the potential rela-
tion between the employed control strategies and clini-
cal outcomes. In this literature survey we seek to answer 
the following three research questions: (1) Which control 
strategies have been used on powered lower limb exo-
skeletons for individuals with brain injuries?, (2) What 
are the experimental protocols and outcome metrics 
used in the clinical validation of robotic interventions?, 
and (3) What is the current clinical evidence on the effec-
tiveness of the different control strategies?

Methods
Search strategy
To answer the first research question—i.e., which control 
strategies have been used on powered lower limb exo-
skeletons for individuals with brain injuries?—we con-
ducted a literature search on the 17th of September 2020, 
including English-language studies published from Janu-
ary 2000 to September 2020 in four databases: Web of 
Science, Scopus, PubMed, and IEEE Xplore. The search 
included the following keywords: (“brain injury” OR 
“cerebral” OR “palsy” OR “stroke” OR “hemipare*” OR 
“hemiplegi*” OR “CVA” OR “cerebrovascular accident” 
OR “cerebral infarct” OR “cerebral hemorrhage” OR 
“ABI” OR “acquired brain injury” OR “motor learning” 
OR “neuroplasticity” OR “neural plasticity” OR “neuro-
plastic”) AND ((“lower” AND (“limb*” OR “extremit*”)) 
OR “walk*” OR “ambulat*” OR “gait”) AND (“power*” OR 
“active” OR “robot*” OR “wearable”) AND ( “assistive” 
OR “exo*” OR “exosuit” OR “exo-suit” OR “brace*” OR 
“ortho*”) AND “control*”.

The search query led to 1648 studies (991 after remov-
ing duplicates). After a title and abstract screening, the 
number of studies was reduced to 255. Then, a full-text 
screening process was carried out with the following 
criteria: studies should (1) involve active orthoses/exo-
skeletons for lower-limb training, (2) provide technical 
details about the control strategy used, (3) validate the 
device on individuals with a brain injury, and (4) report 
biomechanical or clinical outcome metrics that allow for 
a comparison among different control strategies. The last 
condition was associated with the analysis of the clini-
cal methodology followed in robotic interventions. After 
the full-text screening, a total of 159 publications were 
included in this review (see Fig. 1), with a total of 43 dif-
ferent lower limb exoskeletons. The resulting studies will 
be used to answer the first two research questions out-
lined in this review. See Additional file 1 for a detailed list 
of the studies included.

Clinical comparison
To answer the third research question—i.e., what is the 
current clinical evidence on the effectiveness of the dif-
ferent control strategies?—we conducted a stricter 
screening of the 159 publications focusing on the stud-
ies that performed an assessment before and after the 
robotic intervention; the studies that focused only on 
assessments during the robotic intervention while wear-
ing the robotic device or only immediately after a single 
training session were not included (see Fig. 1).

To perform an unbiased clinical comparison between 
different exoskeleton controllers, we subdivided the 
individuals with stroke and CP into different subgroups, 
based on their impairment level and/or acuity before the 
robotic intervention. For the stroke group, we used three 
levels of acuity: acute (≤ 2 weeks from stroke onset), sub-
acute (≤ 6 months from stroke onset), and chronic (> 6 
months from stroke onset). In the case of CP, we followed 
the four levels of the Gross Motor Function Classification 
System (GMFCS) [63].

Applying a final screening process, we only compared 
controllers tested with participants who shared similar 
levels of impairment before the robotic treatment, i.e., 
similar scores in Functional Ambulation Category (FAC) 
and in the metrics mentioned in “Outcomes of interest 
for the clinical comparison” section. This resulted in the 
exclusion of six studies on individuals with acute [64], 
subacute [64–69], and chronic [69] stroke.

This final screening process led to 73 studies of which 
57 studies included stroke survivors (78.08% of the 
studies) and 16 children/adults with CP (21.91% of the 
studies). From the 57 studies that analyzed the benefits 
of robotic exoskeleton lower-limb training on stroke 
survivors, five studies included participants with acute 
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stroke, 13 studies with subacute stroke, and 42 studies 
with chronic stroke. From the 16 studies with children/
adults with CP, five studies included participants with 

GMFCS I, 15 studies with GMFCS II, 12 studies with 
GMFCS III, and four studies with GMFCS IV. Note 
that the total number of studies is not equal to the sum 

Fig. 1 PRISMA flowchart for identification and screening of eligible studies for the current review. The total number of studies is not equal to the 
sum of the studies divided per level of impairment and/or acuity as, in some studies, participants were pooled together independently of their 
acuity or GMFCS levels
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of the studies divided per level of impairment and/or 
acuity as, in some studies, participants were pooled 
together independently of their acuity and GMFCS lev-
els. See Additional file 2 for a detailed list of the studies 
included in the clinical analysis.

To further analyze, compare, and discuss the effec-
tiveness of different control strategies, we also took into 
consideration: (1) the grade of evidence based on the 
type of intervention—e.g., (randomized) clinical trials 
or observational studies, (2) the training intensity of the 
robotic treatment—i.e., the product of the session dura-
tion, number of sessions, and frequency of the training, 
and (3) the number of participants who trained with 
each type of control.

Following the guidelines presented in [70, 71], we 
considered that a study had a high level of evidence 
(level I study) when it was a Randomized Clinical Trial 
(RCT). When the study was a Clinical Trial (CT), we 
considered that its level of evidence was moderate 
(level II study). Finally, the level of evidence of observa-
tional studies was considered low (level III study). The 
grade of evidence of the clinical effects of the robotic 
treatment was considered strong when there was a pre-
ponderance of level I and/or level II studies that sup-
ported the result—this must include at least one level I 
study. The grade of evidence was considered moderate 
when there was a preponderance of level II and/or level 
III studies that supported the result—this must include 
at least one level II study. Finally, the evidence was clas-
sified as weak when only level III studies supported the 
result.

Outcomes of interest for the clinical comparison
The selection of the outcome measures of interest was 
based on those recommended by surveys and studies that 
evaluated stroke and CP rehabilitation [72–78]. To evalu-
ate the effectiveness of the control methods on stroke 
survivors, we selected the following scales: Berg Balance 
Scale (BBS), 10 m Walk Test (10MWT), 6 min Walk Test 
(6MWT), Timed-Up and Go (TUG), Fugl–Meyer Assess-
ment of Lower Extremity (FMA-LE), and Functional 
Independence Measure (FIM)—this last one only for 
acute stroke. To evaluate the effectiveness of the control 
strategies on individuals with CP, we selected the follow-
ing scales: Gross Motor Function Measure (GMFM)-
66/88 dimensions D and E, 10MWT, and 6MWT.

Control strategies taxonomy
To analyze the state of the art of control strategies for 
lower limb exoskeletons in rehabilitation, we propose a 
hierarchical classification of control methods based on an 
adapted version of the categorization presented in [55]. 
The hierarchy establishes three different levels: High-
level control, Mid-level control, and Low-level control 
(see Fig. 2).

High-level controllers are defined as control strategies 
that identify the human’s volitional intent and select the 
appropriate exoskeleton response behaviour. The exo-
skeleton Mid-level control reacts to the current state of 
the user and defines the reference position or force that 
the robot should follow based on the control aim and 
the state estimated by the human–robot synchroniza-
tion algorithm (both embedded in the High-level control) 

Fig. 2 General control system diagram. The signals from the Human–Exoskeleton—e.g., human–robot interaction forces, limbs’ kinematics, and/or 
recorded human muscle or brain activity—are processed sequentially by three different blocks—each corresponding to High‑, Mid‑ and Low‑level 
control, to generate the actuation command. High‑Level Control: the Control Aim defines the role of the exoskeleton in the overall performance of 
the human‑exoskeleton system, i.e., enhance or hinder task completion. The Human–Robot Synchronization block generates an estimation of the 
actual state and is used by the Mid‑level control, together with the control aim, to provide reference values—e.g., desired position or force—to 
the Low‑level control. The Low‑level Control then transforms that reference into actual assistive/resistive force/motion and sends the actuation 
command to the exoskeleton hardware
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and the sensors measurements. Finally, the Low-level 
control tries to achieve the desired state determined by 
the Mid-level controller by applying feedforward or feed-
back control. In this systematic review, we have focused 
on High- and Mid-level controllers since they are highly 
related to exoskeleton use, while Low-level controllers 
are directly linked to the hardware and can be applied in 
other types of robots [41].

High‑level control
A High-level control system provides a command that 
modifies the state of the actuation system according 
to the control aim [79–81] (see Fig.  3A). The Control 
Aim varies the purpose of the exoskeleton based on the 
desired treatment approach, e.g., assists or challenge the 
patients.

Assistive High-level controllers facilitate functional 
training by supporting the patients’ movements to com-
plete the task—e.g., sit-to-stand [82], achieve stability 
during the loading response of the gait [83], or plantar-
flexion assistance in late stance [84]. Assistance can be 
provided while patients are fully guided by the exoskel-
eton and remain passive during the training—i.e., haptic 
demonstration [81], or while patients actively execute the 
task while they are guided/corrected by the robot—i.e., 
haptic assistance [81]. It is thought that guiding move-
ments while patients remain passive may improve gait 
performance [85–87], especially in those suffering from 
severe impairment [55, 88]. Additionally, mobilizing 
the affected limbs while patients remain passive allows 
for stretching the muscles and might reduce spastic-
ity [89], provides somatosensory stimulation that facili-
tates restoring normative patterns of motor output [87], 
and importantly, provides an environment for safe, high 
intensity, and motivating locomotion training.

On the contrary, Challenge-based High-level control-
lers aim at, e.g., strengthening the muscles by opposing to 
task completion—e.g., resistive methods [90], enhancing 
error detection—e.g., error augmentation methods [91], 
and increasing movement variability—e.g., perturbation 
methods [92]. These challenge-based control strategies 
might lead to improvements in physical performance, 
movement control, walking speed, and functional inde-
pendence, especially in people in the late stages of the 
rehabilitation or with mild impairment [93–96].

Adaptive control strategies aim to modify the control 
parameters based on the patient’s specific needs [97]. In 
general, the control parameters of the exoskeletons have 
to be tuned to properly adapt to each specific patient’s 
walking capabilities, as they are not generalized enough 
to capture the heterogeneity of gait disorders [98, 99]. 
It has been found that when setting up the exoskeleton, 
tuning the control parameters, together with donning, 

requires the highest amount of time [98, 100, 101]. Tun-
ing is a laborious process, as therapists must manu-
ally modify the parameters relying only on subjective 
feedback from the patients and visual assessments of 
the gait pattern [99, 102]. A potential solution to guide 
the physiotherapists through the tuning process might 
be to provide an initial set of parameters that has been 
automatically tuned off-line based on the users’ baseline 
performance [99, 103]. However, automatic off-line or 
manual tuning might lead to a suboptimal set of param-
eters, which does not take advantage of the full potential 
of the exoskeleton to improve the rehabilitation effect 
[98]. Therefore, strategies that automatically adapt the 
control parameters of the exoskeleton in real-time, e.g., 
based on the patient’s performance, could increase the 
positive effect of the exoskeleton while enhancing its 
usability by reducing the time needed to tune the control 
parameters.

Synchronization to the user’s motion is a key factor 
to effectively benefit from the exoskeleton therapy, e.g., 
reducing adaptation time and metabolic rate [104]. Most 
of the Mid-level control strategies need an estimation 
of the current action performed by the user to properly 
assist or resist her/his motion, i.e., to synchronize the 
human and the robot. The Human–Robot Synchroni-
zation sub-level within the High-level control estimates 
the state of the patient by using deterministic or stochas-
tic methods based on recorded kinematic, kinetic, and/
or bioelectric data—e.g., joint kinematics [105], ground 
reaction forces [106], human–robot interaction forces 
[107], muscular activity [108], and brain activity [109] 
(see Fig. 3B).

Threshold-based algorithms differentiate between 
states—e.g., gait phases [110], falling [111], and start-stop 
walking [112]—following a state-machine structure that 
allows the transition between states depending on logical 
rules.

Stochastic algorithms, on the other hand, infer the state 
throughout statistical models, e.g., using Linear Discri-
minant Analysis (LDA) [109], Hidden Markov Models 
[113], Principal Component Analysis [114], K-Nearest 
Neighbours [115], or Neural Networks [116]. This family 
of human–robot synchronization methods is particularly 
useful for planning the gait pattern of the exoskeleton 
based on vision-based environment classification due to 
the high performance of stochastic algorithms to classify 
environments using images [117].

Bio-inspired models are emerging as an alternative to 
threshold-based and stochastic algorithms. For example, 
adaptive oscillators are non-linear models that synchro-
nize with a teaching signal—e.g., the thigh angle in the 
sagittal plane [118]—in phase, frequency and amplitude, 
mimicking bio-inspired behaviours [119]. The estimated 
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output from the adaptive oscillator—e.g., phase of the 
input signal—is used to estimate the phase of the gait or 
to generate reference joint trajectories to assist or resist 
the human motion [118, 120, 121]. The main disadvan-
tage of adaptive oscillators, however, is that they require 

precise parameter tuning to quickly synchronize with the 
human periodic motion [122].

Nevertheless, all human–robot synchronization meth-
ods require a parameter tuning to properly adapt to each 
specific patient’s gait as they are not generalizable enough 

Fig. 3 Taxonomy of High‑ and Mid‑level controllers. A Control Aim: AI In Assistive Control, the exoskeleton provides support to enhance the 
movement performance during training. AII Conversely, in Challenge-Based Control mode, the exoskeleton provides actions that hinder the human 
performance. AIII Adaptive Control adjusts the system parameters based on the human–robot performance to provide adjusted assistance or 
resistance. B Human–Robot Synchronization: BI Threshold-Based Algorithms ensure the transition between states whether the detection metric 
fulfils a pre‑defined threshold. BII In Stochastic Algorithms, the transition between states for the same set of initial conditions and algorithm 
parameters might be different due to the inherent randomness of the models used. BIII Adaptive Oscillators use the periodic motion of the patient 
to extract its phase either to generate a control signal or to determine the actual state of the patient, e.g., the phase of the gait. C We categorize 
the Mid‑level control strategies used in lower‑limb exoskeletons for gait rehabilitation into three families: Trajectory-Tracking Control generates 
reference assistive or resistive torque/position profiles based on parameterized or pre‑recorded position/torque trajectories; Neuromuscular Control 
uses recorded biosignals (e.g., brain/muscle signals) to generate the control signal for the Low‑level control; and Compliant Controllers regulate the 
impedance or admittance of the exoskeleton by modifying the dynamic relation between movement and force or force and velocity, respectively
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to avoid patient-to-patient variability [98]. This process is 
laborious, as therapists must manually tune the param-
eters off-line relying only on feedback from the patients 
and subjective visual assessments [99, 102]. Automatic 
adaptation [123] based on the patient’s intention and/
or gait parameters, such as gait speed [124–126], might 
facilitate the usability of these methods.

Mid‑level control
Mid-level control employs sensor measurements, the con-
trol aim, and the state inferred by the human–robot syn-
chronization to generate reference control commands used 
by the Low-level control to apply the actuation command 
(see Fig.  2). Three different families of Mid-level control 
strategies can be distinguished depending on the control 
inputs/outputs and controllers employed (see Fig. 3C).

Trajectory-tracking control generates predefined posi-
tion or force trajectories as reference commands to pro-
vide assistance/resistance. These trajectories are usually 
determined based on pre-recordings of unimpaired indi-
viduals (e.g., hip and knee flexion-extension, and ankle 
plantarflexion-dorsiflexion torques [127]), information 
from the non-paretic limb (e.g., hip and knee flexion-
extension angles [105, 128]), or pre-recorded trajectories 
during therapist-guided assistance (e.g., foot trajectory 
[129] or knee flexion-extension [130]).

Neuromuscular control strategies use biosignal record-
ings as control signals to decode the actions of the patient 
and send reference values to the Low-level control [131]. 
Common approaches, like myoelectric [132–134] and 
Brain-Computer Interface (BCI) [135, 136] control, use 
muscular—electromyography (EMG)—and brain—elec-
troencephalography (EEG)—signals, respectively, to han-
dle the control objective.

Lastly, compliant controllers [137, 138] regulate the 
impedance [113, 139] or admittance [140, 141] levels of the 
exoskeleton by modifying the dynamic relation between 
movement and force or force and velocity, respectively, 
using virtual dynamics of springs, dampers, or masses. 
The combination of trajectory-tracking control [142] or 
neuromuscular control [143] with compliant control usu-
ally provides a more flexible behavior to the exoskeleton 
during rehabilitation—e.g., by allowing more movement 
variability around the desired trajectory, compared to 

conventional rigid Low-level controllers such as propor-
tional-derivative (PD) controllers [144, 145].

Neuroscience evidence behind current control developments
Neuroscience evidence seems to indicate that the aim 
of the control strategy of an exoskeleton for individuals 
with brain injuries should be to stimulate physical/cogni-
tive engagement and motor learning rather than enforce 
repetitive movements with low variability [21, 146–148]. 
For this reason, control strategies for individuals with 
brain injuries should guarantee the patient’s active physi-
cal and cognitive engagement by providing tailored and 
compliant assistance or resistance. In particular, in indi-
viduals with moderate/mild brain injuries, excessive 
assistance may have a negative influence on motor learn-
ing, as the dynamics of the task to be learned is different 
from the trained task [149]. To promote patient’s active 
participation, the device should engage the users wear-
ing the exoskeleton to, e.g., actively initiate each step, 
inter-joint coordination or control their balance. This 
can be achieved by, e.g., adjusting the level of assistance 
or resistance based on real-time biomechanical measure-
ments during locomotion. Thus, non-compliant generic 
controllers [104] that do not adapt their assistance/resist-
ance might not be the most effective ones for gait reha-
bilitation of individuals with brain injuries who preserve 
partial or full volitional control [14, 147, 150]. Robotic 
training using controllers that modulate the assistance 
based on patient’s performance or that allow for more 
compliant human–robot interaction might be more 
effective to stimulate motor learning than those that 
enforce generic “normative” movements independently 
of the patients’ capabilities [151].

Review
Implementation of control strategies
In this section we provide an overview of the High and 
Mid-level control strategies implemented in the studies 
included in this review from a technological point of view, 
without focusing on clinical aspects (see Fig. 4A). Exoskel-
etons used with individuals with stroke and cerebral palsy 
are highlighted as these two were the most predominant 
pathologies in the reviewed studies (see Fig. 4B, C).

(See figure on next page.)
Fig. 4 Overview of exoskeletons based on their High‑ and Mid‑level control strategies. Each color represents the different families inside the 
High‑ and Mid‑level controllers and the symbols point out the categories inside these families. A Percentage of exoskeletons that implemented the 
different families and categories of High‑ and Mid‑level controllers for all the pathologies included in this review. Note that the same exoskeleton 
could incorporate different controllers, and therefore, the summation of percentages can be higher than 100%. B, C Circular plots illustrate the 
High‑ and Mid‑level control strategies of exoskeletons tested on individuals with stroke (B) and cerebral palsy (C). Each circular sector represents 
a different exoskeleton and every ring represents different levels of the control hierarchy. The outer ring is the control aim, the middle ring is the 
human–robot synchronization, and the inner ring is the Mid‑level control. If a symbol lies in the middle of a subdivision within a sector, it implies 
that the characteristic related to that symbol applies to both subdivisions
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Fig. 4 (See legend on previous page.)
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High‑level control: control aim
All of the exoskeletons validated on stroke survivors and 
children/adults with cerebral palsy implemented assistive 
strategies. On the other hand, only 10.5% of the exoskel-
etons for stroke rehabilitation and 20.0% for cerebral palsy 
validated challenged-based control strategies, e.g., using 
resistive forces [152–154], perturbing forces [92], or haptic 
error augmentation [155]. Note that the same exoskeleton 
could incorporate different controllers, and therefore, the 
summation of percentages can be higher than 100%.

Notably, only 14% of the exoskeletons used adaptive 
assistive control strategies and 2% used adaptive resis-
tive control strategies. The parameters of the exoskeleton 
were automatically adapted in real-time based on real-
time measurements of the patient’s biomechanics, e.g., 
the ankle angle tracking error [154, 156], hip and knee 
kinematics [98], gait speed [157, 158] or vertical ground 
reaction force [159]. The rest of the devices automati-
cally or manually tuned the magnitude of the assistance 
off-line based on the patient’s motor function, previously 
assessed by therapists [98, 99, 160].

The lack of studies that adapted the assistance or resist-
ance based on direct gait biomechanical descriptors of 
the brain-injured population might be due to the small 
number of reviewed studies that analyzed the effect of 
the control parameters on the patients’ gait kinematics 
and kinetics [103, 156, 161–164]. Besides, the majority of 
these few studies only focused on analyzing the effect of 
the timing and magnitude of the assistive torque or posi-
tion trajectories on ankle power [103], walking speed, step 
length, joint kinematics [161, 163, 164], metabolic cost, 
or muscular activity [162]. Only one study explored the 
effect of varying the parameters of an impedance model 
on the ankle position on the sagittal plane [156]. Yet, bio-
mechanical metrics—e.g., step length [165], hip hiking 
[166], and trailing-limb angle during the stance phase 
[167]—might more directly reflect the patients’ rehabili-
tation progress. Thus, control strategies based on these 
descriptors might increase the rehabilitation effect of the 
exoskeleton in comparison to non-adaptive strategies.

High‑level control: human–robot synchronization
Threshold-based approaches were the most implemented 
human–robot synchronization algorithms on lower-limb 
exoskeletons for individuals with brain injuries in general 
(72.1% of the exoskeletons), and stroke survivors (73.6% 
of the exoskeletons) and cerebral palsy participants 
(80.0% of the exoskeletons) in particular.

Adaptive oscillators were tested with individuals with 
stroke in four different exoskeletons (10.5% of the exo-
skeletons) using sagittal lower-limb segment angles, joint 
angles, or robot–human interaction forces as synchroni-
zation signals [161, 168–170].

A few number of devices (25.6%) did not implement any 
type of event detection algorithm for human–robot syn-
chronization, probably because they did not strictly need 
it [171–177]. Most of them were grounded exoskeletons 
that either enforced joint angle reference trajectories dur-
ing gait—based on the unimpaired joint movement—using 
assistive control strategies [171, 172], or employed an assis-
tive controller around the desired trajectory [173–177].

Only one exoskeleton in this review implemented sto-
chastic methods to distinguish between different loco-
motion modes, i.e., stop, normal walk, acceleration, and 
deceleration [109]. They used linear discriminant analysis 
(LDA) with EEG signals to differentiate between the fre-
quencies of the brain activity associated to each mode.

We consider that two main reasons may have led to the 
lack of implementation of stochastic methods: (1) hav-
ing a stochastic model that is flexible and able to capture 
the variance of the population (i.e., does not underfit) 
requires training data that captures the heterogeneity of 
individuals with brain injuries, which might be difficult to 
obtain [178]; and (2) the difficulty of getting robust sto-
chastic models hinders their application in commercial 
exoskeletons, as regulatory bodies impose strict safety 
standards to validate such devices for clinical use [179].

Exoskeletons and prosthesis share similar challenges 
in terms of human–robot synchronization, but in the 
case of prosthetic devices, the tendency to apply sto-
chastic methods is higher than using threshold-based 
approaches [180, 181]. This might be explained by the 
homogeneity in the gait of amputees compared to the 
heterogeneity observed in individuals with brain inju-
ries [182–184]. Nevertheless, as in the case of lower-limb 
exoskeletons, there is a lack of use of stochastic methods 
in commercially available prostheses [185].

We have not found any exoskeleton in the framework 
of this review that implements algorithms that automati-
cally adapt the threshold values or model parameters 
related to gait event identification algorithms. Gait state 
detection methods with the ability to adapt to diverse 
walking conditions, e.g., different cadences [186], are still 
pending to be implemented and validated on exoskel-
etons for individuals with brain injuries.

The most common metric used to detect gait events was 
the vertical ground reaction force (62.8% for all the pathol-
ogies, 60.5% for stroke and 50.0% for CP), probably due to 
its simplicity in the theoretical and practical implementa-
tion [187]. Ground reaction forces are directly related with 
the physics of foot-ground interaction. The normal or verti-
cal force component is the one that allows to identify the 
phases of the foot contact and lift. Force-sensing resistors, 
placed at particular foot locations—e.g., heel, toe, and first 
and/or fifth metatarsals—were generally used to measure 
this metric [92, 107, 157–159, 162, 164, 177, 188–203]. 
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Alternatively, instrumented treadmills were employed 
to measure anterior-posterior ground reaction forces to 
determine the timing of the ankle plantarflexion assis-
tance [133, 204]. However, the suitability of this metric to 
treat individuals with brain injuries is questionable due to 
their irregular center of pressure trajectory along a walking 
cycle. The lack of uniformity might come from equinovarus 
deformity [205], excessive hip external rotation [16, 206], or 
reduced propioception [207, 208]. Thus, it might be chal-
lenging to develop robust gait event detection algorithms 
that use ground reaction forces for this specific population.

Human–robot interaction forces have only been imple-
mented on two exoskeletons (4.6%). In the first exoskel-
eton, the human–robot interaction forces were employed 
to feed a threshold-based algorithm to detect the swing 
phase [107], while in the second exoskeleton they were 
used as the teaching signal of a pool of adaptive oscilla-
tors [161]. Only a few devices used human–robot inter-
action forces as control inputs [103, 107, 109, 190, 209], 
which might explain the scarce use of this metric in exo-
skeletons for individuals with brain injuries. The mechan-
ical adaptations needed on the exoskeleton’s structure to 
install a force/torque sensor might also explain why the 
measurements of human–robot interaction forces as 
control inputs are not commonly used.

Only a few reviewed studies incorporated biosignals as 
metrics in their human–robot synchronization algorithms 
(4.6% of the exoskeletons for all the pathologies). For exam-
ple, EEG was used by only one exoskeleton [109] to detect 
different locomotion modes, i.e., stop, normal walk, accel-
eration, and deceleration. Problems related to EEG analysis, 
such as feature extraction and artifact removal [58, 210, 211], 
might make the implementation of reliable control strategies 
a challenge. Furthermore, EEG-based synchronization might 
require high levels of attention from the patient, which might 
result in mental fatigue [212], and thus, might limit the train-
ing duration. Nevertheless, brain activity might be especially 
useful for individuals who suffer from a severe neurological 
condition, such as paraplegia [213, 214].

In people who preserve their voluntary muscle control 
over the affected limbs, muscular activity might be a more 
suitable metric compared to brain activity. Yet, only two 
devices [108, 159] validated muscular activity as an event 
detection metric in individuals with brain injuries. These 
devices employed muscular activity (EMG) from the trunk, 
hip, and knee flexor/extensor muscles to trigger the control 
action. There are several limitations associated with the use 
of muscular activity to detect gait events. First, surface elec-
tromyography (sEMG) signals suffer from non-robustness 
due to patient-to-patient variability and sensor-placement 
dependency [38, 59]. Moreover, muscular activity might not 
be reliable in individuals who have abnormal muscle activa-
tion patterns, such as stroke and CP survivors [58, 215].

We consider that joint or body segment kinematics 
(used in 41.8% of the exoskeletons for all the pathologies, 
36.8% for stroke, and 40.0% for CP) might be more reli-
able metrics than the aforementioned metrics in previous 
paragraphs for the human–robot synchronization algo-
rithms when detecting events with brain-injured people 
[216], as they show higher homogeneity among individu-
als with hemiplegic gait [217, 218]. In particular, the shank 
absolute angle and angular velocity in the sagittal plane 
have been shown to be especially robust metrics to detect 
gait events in individuals with hemiplegic gait [219].

Mid‑level control
Trajectory-tracking control is the most used Mid-level 
control strategy in lower limb exoskeletons for rehabili-
tation (97.7%). The most common approach is to enforce 
predefined reference position or torque trajectories 
defined based on data of unimpaired joints [69, 192, 220]. 
Trajectory-tracking control was combined with com-
pliant control (28.9% of the exoskeletons for stroke and 
20.0% of the exoskeletons for CP) in assistive controllers 
based on potential [14, 107, 176, 190, 221] or velocity 
fields [142]. In these examples, the assistive action of the 
exoskeleton varied based on the joint kinematic errors.

Only four devices (13.9% of the exoskeletons) that used 
myoelectric control were validated on individuals with 
brain injuries [66, 133, 159, 204]. Myoelectric control is 
one of the least often employed Mid-level control strate-
gies in post-stroke (10.5% of the exoskeletons) and cerebral 
palsy (10.0%) rehabilitation, according to the results of this 
review. The aforementioned issues with muscle activity 
recording and analysis (see “High-level control: human–
robot synchronization” for a detailed discussion) might 
be behind the low adoption of this Mid-level control tech-
nique. Nonetheless, myoelectric control has a high appli-
cability for people who preserve volitional control of the 
muscles, such as users of robotic prosthetic devices [222].

None of the reviewed studies incorporated BCI control 
with individuals with brain injuries. Problems related to the 
extraction of relevant information from, e.g., EEG record-
ings (see “High-level control: human–robot synchroniza-
tion” for a detailed discussion) might also explain the lack of 
usage of this Mid-level control technique in exoskeletons for 
individuals with brain injuries. EMG is a viable alternative or 
adjunct to EEG for detecting movement intention or gener-
ating control signals, but the practical benefits of using EMG 
over EEG, e.g., shorter set-up time, more compactness, and 
lower doning/offing times, might explain why myoelectric 
control has been more often used than BCI control [214]. 
Few studies, aside the ones included in this review, evaluated 
the feasibility of using EEG signals for BCI control of exo-
skeletons for individuals with brain injuries [223, 224].
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Clinical validation
This section provides an overview of the most important 
characteristics of the clinical validation of the robotic 
interventions, i.e., participants’ demographics, proto-
col design, and outcome measures. The results summa-
rized in this section only incorporate participants who 
tested the exoskeletons and not participants in the con-
trol group. See Additional file 1 to have a more detailed 

description about the studies included in the clinical 
validation.

Participants’ demographics
Stroke was the main pathology of the participants 
recruited for the studies included in this review (74% 
of the studies) (see Fig. 5A). The majority of the partici-
pants with stroke were in the chronic phase (55.41% of 

Fig. 5 Overview of the participants’ demographics and experimental protocol characteristics. A Percentage distribution of the pathologies of 
the participants included in the reviewed studies. B Percentage distribution of main control conditions in the studies. C Histograms of number of 
participants (top left), number of sessions (top right), "session frequency" (times per week; bottom left), and session duration (bottom right) across 
the selected studies
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participants with stroke), followed by subacute (33.83%) 
and acute (10.76%) phases. Cerebral Palsy was included 
in only 20% of the studies, while the representation of 
other brain injuries, like traumatic brain injury (1.2%) 
or other acquired brain injury (1.88%), was scarce. It is 
especially remarkable that despite the high incidence of 
traumatic brain injury, only two studies focused on this 
specific population [225, 226].

Experimental protocol
High variability was found in the number of participants 
( 14.87± 13.53 ), number of sessions ( 11.77± 12.20 ), ses-
sion frequency (times per week; 3.09± 1.68 ), and ses-
sion duration ( 50.57± 34.06 min) (see Fig. 5C). Previous 
reviews that analyzed the protocol of robotic treatments 
reported similar high variability [40, 46]. Some studies 
did not provide complete information about the experi-
mental protocol, e.g., they did not mention the number 
(15.09%), duration (33.33%), or frequency (31.44%) of the 
training sessions.

Free walking without the exoskeleton was the condi-
tion most often employed to compare the robotic treat-
ment with (39.62%) (see Fig. 5B). There were also studies 
that compared the robotic treatment with conventional 
gait therapy (22.01%), while other studies compared the 
robotic treatment with the effect of using the device 
unpowered (10.69%) or in zero torque mode (6.92%).

The average level of evidence of the studies included 
in this review was low. The majority of the studies were 
observational (66.04%), while only 10.06% and 22.64% 
were CTs and RCTs, respectively. Only 12.58% of the 
studies did a follow-up evaluation after the robotic 
intervention, on average four  months after the last 
intervention.

Outcomes of interest
Ambulation scales were the main metrics used to clas-
sify the initial functional level of participants for all 
the studies. The participants’ baseline was determined 
using metrics that analyzed their level of impairment 
and motor function—GMFM (19.50%), FMA (13.21%), 
and Brunnstrom Stage (BS) (7.55%)—, mobility—TUG 
(10.06%), FAC (29.56%), BBS (14.47%)—, spasticity—
modified Ashworth scale (MAS) (15.09%)—, and func-
tional capacity and activities of daily living—walking 
speed (56.6%), 10MWT (20.75%), 6MWT (16.98%), FIM 
(8.81%), and Barthel Index (BI) (11.32%) (see Fig. 6A).

A critical limitation we encountered when compar-
ing robotic treatments was the low homogeneity across 
studies in the selected outcome measures after the treat-
ment, as no metric was used in more than 50% of the 
studies (see Fig.  6B). Ambulation scales together with 

spatio-temporal parameters were similarly used to deter-
mine the effect of the robotic treatment (62.89% of the 
studies). Within these families of metrics, gait speed was 
the most used metric in the reviewed studies (37.74%), 
followed by cadence (25.16%) and step length (23.27%). 
Joint kinematics was also often used to quantify the effect 
of the robotic intervention (44.65%). Hip (22.64%), knee 
(27.67%), and ankle (18.87%) ranges of motion (RoM) in 
the sagittal plane were the most often selected kinematic 
metrics.

Finally, the number of studies that analyzed the muscu-
lar activity through sEMG was lower in comparison with 
the aforementioned families of metrics (20.75%). The 
main analyzed muscles were the ankle dorsiflexor (tibi-
alis anterior, 10.69%) and plantaflexor (gastrocnemius, 
8.81%; and soleus, 6.92%) muscles, and the knee extensor 
(rectus femoris, 9.43%; and vastus lateralis, 5.03%) and 
flexor (semitendinosus, 6.92%) muscles. Less frequently 
employed metrics include those related to gait dynamics 
(18.23%, where the most used was ankle torque in 5.03% 
of the studies)—i.e., joint torques and ground reaction 
forces, energy expenditure (10.69%, where the most used 
was oxygen consumption in 5.66% of the studies), and 
neural activity, i.e., brain activation and cortex excitabil-
ity (6.29%).

Clinical comparison of the control strategies
This section quantifies the relation between the control 
strategies and the clinical metrics presented in “Out-
comes of interest for the clinical comparison” section to 
compare among strategies.

A total of 12 control strategies were evaluated in this 
section in terms of training intensity (min/week) and per-
centage of improvement of the outcome metrics selected. 
We considered that the most efficient control strategy for 
the metric analyzed would be the one that results in the 
highest improvement with the lowest training intensity. 
We also evaluated the grade of evidence—i.e., high, mid 
and low—and the number of participants and studies.

Based on the analyzed studies, we could only extract 
moderate conclusions from the studies that included 
post-stroke participants. The studies that involved 
patients with other brain injuries such as CP or traumatic 
brain injury did not allow for a comparison of the control 
strategies implemented, due to the lack of studies with 
exoskeletons using different control strategies. See “Limi-
tations and future steps” section for more details.

As a general introductory comment to the results, all 
the control strategies evaluated provided a positive effect 
on the selected outcomes of interest for participants with 
stroke (see Fig. 7). Only one control strategy, i.e., assistive 
control with a threshold-based approach using EMG as 
detection metric and control signal, provided a negative 
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impact on chronic participants for the TUG test [227, 
228]. See Additional file 3 for a detailed table of the con-
trol strategies implemented in the reviewed studies and 
the results obtained in the main outcomes of interest for 
individuals with stroke.

Acute stroke
From the originally listed outcome metrics of interest, 
FIM was the only metric that allowed a comparison of the 
effectiveness of different control strategies in acute stroke 

Fig. 6 Overview of the main baseline and outcome metrics. A Percentage distribution of the metrics that were used in at least 5% of the studies 
to determine the initial functioning level of participants. B Percentage distribution of the outcome measures of the robotic interventions that were 
used in at least 5% of the studies grouped by categories, i.e., ambulation scales/tests, spatio‑temporal measurements, joint kinematics, muscular 
activity (EMG), dynamics, and energy expenditure. Functional Ambulation Category (FAC), 10 m Walk Test (10MWT), 6 min Walk Test (6MWT), Gross 
Motor Function Measure (GMFM), Modified Ashworth Scale (MAS), Berg Balance Scale (BBS), Fugl–Meyer Assessment (FMA), Barthel Index (BI), 
Timed‑Up and Go (TUG), Functional Independence Measure (FIM) and Brunnstrom Stage (BS)
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rehabilitation [134, 229–232]. The participants included 
in the considered studies ( 35.80± 22.07 participants) 
presented an average initial FIM score of 2.50± 1.29 and 
an average training intensity of the robotic intervention 
of 840 [360, 1620] min/week.

Assistive control strategies that implemented a com-
bination of trajectory-tracking and compliant Mid-
level control showed an improvement after training 
of 272.73% in FIM [229] with a strong grade of evi-
dence (see Fig.  7A). Conversely, assistive strategies 
that included a threshold-based algorithm based on 
EMG recordings as detection metric and control sig-
nal showed a lower improvement after training of 

58.33 [0.00, 150.00]% in FIM with moderate grade of evi-
dence [134, 230–232].

However, this comparison is based on partial informa-
tion as in [229] authors did not report the frequency of 
the sessions. We could deem that the observed higher 
improvement in FIM in the compliant assistive control 
strategies could also be explained by the longer training 
duration ( ≈ 600 min) compared to the duration of train-
ing with neuromuscular assistive strategies ( ≈ 240 min). 
Thus, there is not a control strategy that is clearly bet-
ter than others to improve the patients’ functional status 
(based on the FIM assessment) for acute stroke.

Fig. 7 Clinical comparison of the control strategies per outcome metric and acuity level of stroke. Relation between the training intensity and 
percentage of improvement for A acute, B–D subacute and E–I chronic stroke for the selected outcome metrics. The shape of each symbol 
corresponds to each of the control strategies, the color is related to the grade of evidence and the intensity of the color is associated to the 
number of participants of the studies included. The error bars indicate the range of values for the training intensity (horizontal lines) and range 
of percentage of improvement (vertical lines). The control strategies included are combinations of (i) Control aim: Assistive (A), Challenge‑Based 
(CB); (ii) Human–Robot Synchronization: Threshold‑Based (TB) and Adaptive Oscillator (AO), with metrics Ground Reaction Forces (GRF), 
Electromyography (EMG), and Joint Kinematics (K); (iii) Mid‑Level Control: Trajectory Tracking (TT), Compliant (C), Myoelectric (M). Other acronyms: 
Not Available (N/A), 10 m Walk Test (10MWT), 6 min Walk Test (6MWT), Berg Balance Scale (BBS), Fugl–Meyer Assessment of Lower Extremity 
(FMA‑LE), Functional Independence Measure (FIM), and Timed‑Up and Go (TUG)
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Subacute stroke
The metrics analyzed in studies with people in the sub-
acute phase after stroke focused on: motor function 
(FMA-LE) [233–237], gait endurance (6MWT) [69, 234, 
236, 238, 239], and general mobility (TUG) [234, 236, 
238]. The initial scores of the outcomes of interest that 
allowed for comparison between different control strate-
gies were on average: FMA-LE = 18.87± 3.75 , 6MWT = 
114.45± 40.77 m and TUG = 29.42± 10.2 s. The num-
ber of participants and the training intensity were on 
average 26.31± 17.83 and 3103.63± 3059.54 min/week, 
respectively.

The results presented in Fig.  7B–D pointed out that 
neuromuscular assistive control strategies outperformed 
trajectory tracking and compliant control strategies 
when evaluating the outcomes of interest. In particular, 
neuromuscular assistive control strategies that incor-
porated a threshold-based algorithm using EMG as the 
detection metric and control signal provided the highest 
improvements in all outcome measures with a high level 
of evidence [233–235]. Importantly, this type of control 
showed similar or higher improvements with lower train-
ing intensity and higher grade of evidence (high level) in 
6MWT (69.59%; see Fig. 7B), FMA-LE (12.66% improve-
ment; see Fig. 7C) and TUG (50.74%; see Fig. 7D), com-
pared to the other control strategies implemented in other 
studies. However, the average number of participants (8 
participants) was smaller than in other studies (25.5 par-
ticipants), which reduces the impact of this result.

Only one study combined two different control strat-
egies separately on the same robotic treatment [236]. 
In particular, the authors combined EMG and assistive 
control with a trajectory-tracking (Mid-level control) 
that used a threshold-based synchronization algorithm 
with ground reaction forces as input data. When com-
pared with other control strategies from other studies, 
the combination of the two control strategies in Watan-
abe et al. [236] reached similar improvements with lower 
training intensity and higher grade of evidence in 6MWT 
(60.39%; see Fig. 7B), FMA-LE (8.42%; see Fig. 7C), and 
TUG (39.57%; see Fig. 7D).

In the high-evidence study from Watanabe et al. [236], 
the results of myoelectric control were boosted when 
combined with a control strategy that did not use mus-
cle activation. As we mentioned in “High-level control: 
human–robot synchronization” section, myoelectric 
control suffers from several technical limitations when 
employed in individuals with abnormal muscle activation 
patterns. Thus, it is possible that alternative detection met-
rics (e.g., based on lower-limb kinematics) and Mid-level 
control strategies (e.g., trajectory-tracking with compliant 
control) might produce higher improvements with shorter 
training time in subacute stroke participants [240–244].

Aligned with the aforementioned comments, assis-
tance provided by trajectory tracking and compliant con-
trol showed the highest improvement for the FMA-LE 
(21.95%; see Fig.  7C) for a high number of participants 
(38 participants). Nevertheless, the training intensity 
was higher and the grade of evidence was lower than the 
other studies.

Chronic stroke
Studies on people in the chronic phase after stroke were 
the only ones that used all the metrics described in 
“Outcomes of interest for the clinical comparison” sec-
tion. The mean baseline values (i.e., baseline condi-
tion) were: 6MWT = 197.03± 58.53  m [160, 168, 171, 
190, 245–254], 10MWT = 0.42± 0.23 m/s [160, 168, 
171, 227, 228, 245, 248, 255–258], BBS = 44.00± 6.94 
[160, 168, 171, 190, 227, 228, 245, 246, 250, 252–254, 
259–261], TUG = 31.85± 20.00 s [160, 190, 245, 248, 
249, 252, 258–260], and FMA-LE = 37.26± 53.80 [160, 
168, 170, 171, 190, 247, 249, 250, 252, 257]. The average 
number of participants per study and the mean train-
ing intensity were 16.95± 12.80 and 3414.31± 3518.10 
min/week, respectively.

Assistive control together with adaptive oscillators 
that use lower-limb kinematic information to synchro-
nize the robot with the patient’s motion and with a tra-
jectory-tracking control as Mid-level control, achieved 
the best results in general (see Fig.  7E–H). Robotic 
treatments using this strategy showed higher or simi-
lar improvements—i.e., improvement of 46.00% in 
6MWT (see Fig. 7G), 34.00% in 10MWT (see Fig. 7E), 
25.19 [21.40, 28.99]% in FMA-LE (see Fig.  7H), and 
11.30% in BBS (see Fig.  7I) after the treatment—with 
lower or similar training intensity ( 2025 [1620, 2430] 
min/week) and higher grade of evidence, compared to 
other control strategies implemented in other stud-
ies [168, 170]. Yet, despite being high-evidence studies 
with a moderate number of participants (19 partici-
pants), there were only two studies that supported the 
efficacy of this control strategy.

Similar improvements in the 10MWT and BBS (28.82 
[9.76, 53.85]%; see Fig. 7E and 12.39 [11.82, 12.96]%; see 
Fig.  7F, respectively) were observed when assistive con-
trollers with a threshold-based approach using EMG 
as detection metric and control signal were employed 
[227, 228, 255]. However, the grade of evidence and the 
number of participants were lower in comparison to 
the aforementioned studies that implemented control-
lers that were not neuromuscular-based. Furthermore, 
this type of controller was the only one that had a nega-
tive effect on the TUG score ( −3.61 [−10.27, 3.06]% ; see 
Fig. 7I) [227, 228].
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Control strategies that implemented assistance 
in combination with trajectory tracking and com-
pliant control showed the highest increase in TUG 
( 20.43 [12.5, 41.30]% ; see Fig.  7I) and FMA-LE 
( 27.76 [11.30, 60.00]% ; see Fig. 7H), with a strong grade of 
evidence [247–250, 257–260]. Nevertheless, these studies 
also involved the highest training intensity. Therefore, the 
superior improvement might be related not only to the 
control strategy employed, but also to the higher training 
intensity ([1080,  10500] min/week); in comparison with 
the studies that used different control strategies and that 
also evaluated these metrics ([480, 4500] min/week).

Only one study evaluated resistive control strategies in 
people in the chronic phase of stroke [253]. The authors 
reported an improvement in 6MWT (5.00%; see Fig. 7G) 
and BBS (7.14%; see Fig. 7F), which are similar to the ones 
reported for assistive control. Based on this, we advocate 
that more studies implementing resistive control strate-
gies need to be carried out to provide stronger evidence 
on their clinical effectiveness.

Discussion
The main contribution of this systematic review is that it 
provides a classification of the control strategies imple-
mented on lower-limb exoskeletons, analyzes the experi-
mental methodology used in the robotic interventions, 
and compares the clinical effectiveness of the control 
strategies when used—together with the exoskeleton—as 
a gait rehabilitation tool for individuals with stroke. In 
the following subsections, we answer to the posed three 
research questions of this review.

Which control strategies have been used on powered lower 
limb exoskeletons for individuals with brain injuries?
Regarding the implementation of High-level controllers, 
we found that assistive control strategies are the most 
widely implemented on lower-limb exoskeletons for indi-
viduals with brain injuries. Despite the potential of adap-
tive control (see “Neuroscience evidence behind current 
control developments”), most of the controllers included 
in this review did not adapt the control parameters based 
on meaningful biomechanical metrics, such as hip hiking 
or circumduction. Thus, it is an open question whether 
adaptive controllers would potentially outperform cur-
rent solutions. Comprehensive studies analyzing the 
effect of the exoskeleton control parameters on clinically 
meaningful biomechanical metrics might allow the devel-
opment of adaptive control rules that directly tackle the 
main gait abnormalities of individuals with brain injuries 
[97, 262, 263].

As for human–robot synchronization, we found that 
threshold-based techniques, which rely on ground reac-
tion force as detection metric, are extensively used. Only 

a few devices used adaptive oscillators to synchronize the 
motion of the exoskeleton with that of the patient. Yet, 
adaptive oscillators seem to have a high potential for this 
specific population. As an interesting result, only one 
device included in this systematic review implemented 
stochastic methods for human–robot synchronization, 
despite their popularity in research and potential appli-
cation in identification and classification of states and 
actions of the human–robot system. In recent years, 
novel approaches have been proposed that estimate bio-
logical joint torques using musculoskeletal modelling to 
control the action of the exoskeleton in a state-independ-
ent manner, i.e., with no need to detect gait events or dif-
ferent walking conditions, e.g., stair ascent and descent 
[143, 264, 265]. However, these control strategies still 
need further investigation to evaluate their potential clin-
ical effectiveness on individuals with brain injury.

For the Mid-level control, position trajectory-tracking 
control was the most commonly used strategy, which 
was combined in some cases with compliant control to 
dynamically relate joint angles to forces or torques. We 
consider that this approach might be the most appropri-
ate for devices that provide partial assistance, as it pro-
motes a dynamic synergy between the patient and the 
device. Only a few devices implemented myoelectric con-
trol, while none of them employed BCI to control lower-
limb exoskeletons in this population. We attribute this 
shortage to the difficulty of developing generalized con-
trol laws that use EMG or EEG as control signals for indi-
viduals with brain injuries.

What are the experimental protocols and outcome metrics 
used for the clinical validation of robotic interventions?
We found a wide heterogeneity in the experimental 
protocols and the selection of the outcomes of inter-
est to evaluate the robotic interventions. Walking speed 
was the preferred metric to evaluate the patients’ initial 
impairment level and the effectiveness of the robotic 
treatment. Almost all studies included in this review 
focused on testing the exoskeletons on participants with 
stroke and CP. Other types of brain injury represented a 
low portion of the reviewed studies.

Regarding the outcome metrics used, we consider that 
the field should not continue focusing solely on perfor-
mance-based outcome metrics such as walking speed 
over a certain distance. Standard clinical metrics have 
been useful in the past years to quantitatively evaluate the 
progress of impaired individuals. However, they might 
fail in showing the specific biomechanical effects of the 
treatments. For example, participants could have a bet-
ter score on the 10MWT after training, i.e., walk faster, 
but they might use more compensatory strategies, e.g., 
hip hiking or circumduction, or a stronger involvement 
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of the non-impaired leg. This does not necessarily have to 
be a negative circumstance, but the 10MWT alone does 
not allow to link a potential effect of the robotic training 
to the underlying (biomechanical) mechanism through 
which the improvement is achieved.

Thus, we consider that using biomechanical metrics, 
which are more directly related to the impairment itself, 
could complement standard clinical outcomes by pro-
viding a more detailed perspective of the effect of the 
robotic treatment. Moreover, improvements in these 
biomechanical metrics might also result in better scores 
in the standard clinical tests as they are related. Finally, 
biomechanical outcomes, e.g., step length or temporal 
symmetry ratio, can be used independently of the level 
of impairment. In fact, there are some clinical tests, e.g., 
the 6MWT, that are quite difficult to be carried out by 
participants with high levels of impairment. In this lit-
erature survey, we have found that the number of stud-
ies that used outcomes directly related to gait disorders is 
increasing. However, those studies included a wide range 
of biomechanical metrics that did not allow a comparison 
among studies. For instance, step length, which is one 
of the quantifiable markers of impaired walking perfor-
mance and motor recovery, was used only in 23% of the 
studies. Future research could focus on identifying a core 
set of biomechanical outcome metrics to be used in pro-
spective trials.

As complementary results to the biomechanical out-
comes, we think that reporting information about the 
set-up timings and the level of participation of the patient 
through the treatment might provide relevant informa-
tion to compare control strategies. None of the studies 
included in this review reported set-up times of the con-
trol parameters of the exoskeletons. Yet, the time to tune 
the control parameters might be a relevant point to con-
sider when comparing control strategies. This is impor-
tant because during practice therapists have to tailor the 
device for multiple patients in a reduced time frame. For-
tunately, recent publications of exoskeletons tested on 
individuals with brain injuries have started to include this 
metric [100, 101]. Furthermore, we did not find any study 
that reported metrics that might be directly associated 
with the level of participation of the patient through the 
robotic treatment, e.g., direct measurements of muscle 
activation or indirect estimation through the reporting of 
control parameters. For example, reporting the value of 
the adapted control parameters along the training might 
provide an estimate of the patients’ walking ability [266, 
267].

The variety in the experimental protocols and the 
reported performance metrics are the main factors which 
hinder a systematic comparison between the controllers 

effectiveness. We think that the same outcomes and 
experimental protocol have to be used for studies in 
which the participants have the same pathology and level 
of impairment, so it is possible to compare among con-
trol strategies. Furthermore, studies with exoskeletons 
that target the same joints should use the same experi-
mental methods to allow for hardware-independent 
comparisons among control strategies.

What is the current clinical evidence on the effectiveness 
of the different control strategies?
We were unable to identify a control strategy that is 
clearly superior for acute stroke patients. Assistive con-
trol strategies that implemented a combination of trajec-
tory-tracking and compliant control showed the highest 
clinical effectiveness, with high grade of evidence and 
a moderate number of participants (19 participants), 
but they also required the longest training time. Assis-
tive control strategies that followed a threshold-based 
algorithm with EMG as detection metric and control 
signal provided the highest improvements with the low-
est training intensities and low number of participants 
(8 participants) in the outcome measures of interest for 
subacute stroke. Finally, adaptive oscillators that used 
lower limb kinematic information to assist the motion of 
the user together with trajectory-tracking as Mid-level 
control showed the highest improvements with reduced 
training intensities for chronic stroke with high evidence 
(all RCT) with a moderate mean number of participants 
(19 participants). Finally, we were not able to determine 
the efficacy of adaptive control strategies as none of the 
studies that implemented these strategies fullfilled the 
inclusion criteria for the clinical comparison.

Note that these conclusions should be treated with the 
consideration that the number of studies for the clinical 
comparison of the control strategies was low. A total of 
73 studies were included in the comparison (see Fig. 1), 
but our conclusions are based on only 57 studies. Nev-
ertheless, the majority of these studies are of high qual-
ity (see Additional file  3 for detailed information about 
the quality of the studies for each family of control strat-
egies). Thus, there is a trade-off between quality and 
quantity. On the one hand, we consider that results are 
fairly consistent across the studies and come from high-
level evidence studies with large sample sizes, i.e., RCTs 
or CTs, which minimizes the risk of bias. On the other 
hand, we think that the results would be stronger if treat-
ments included a larger aggregate pool of participants 
and/or with wider inclusion criteria, which would allow 
the generalizability of the outcomes of the studies to a 
broader population.
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Limitations and future steps
Although the number of studies that evaluated the 
effectiveness of robotic-assisted gait rehabilitation has 
increased exponentially in the last decade, we still found 
critical limitations in the clinical comparison of the effec-
tiveness of different control strategies. Only a few stud-
ies compared control strategies on the same participants 
and using the same exoskeleton, hindering the possibility 
to extract clear conclusions regarding the clinical effec-
tiveness of each control strategy for gait rehabilitation. 
In addition, spontaneous recovery [69] and compensa-
tion strategies probably contributed to increased scores 
on the outcome metrics, making it challenging to purely 
evaluate the effect of the different control strategies on 
functional recovery among different studies.

Another relevant limitation is that our comparison 
was limited to individuals with stroke. We were not able 
to evaluate control strategies of studies that involved 
patients with CP or traumatic brain injury, due to the 
lack of studies with exoskeletons using different control 
strategies and the heterogeneity of the level of the impair-
ment of the participants. For the case of CP, in the studies 
that reported the main outcomes of interest, participants 
were pooled together, independently of their GMFCS 
level [268–271]. Only in a few studies that used the 
Lokomat [272–276] and CPWalker [277], authors ana-
lyzed the outcomes of interest selected in “Outcomes of 
interest for the clinical comparison” section and differen-
tiated between the GMFCS levels. However, those stud-
ies implemented the same family of control strategies, 
namely assistive control strategies without human–robot 
synchronization algorithms that combined trajectory-
tracking and compliant control, and thus, no comparison 
between controllers was possible.

While the level of evidence of the studies included in 
the clinical comparisons is high, the number of stud-
ies for each family of control strategies is still low. The 
reduced number of studies might be a consequence of 
the regulatory framework for medical devices, which lim-
its the opportunity of validating the technology at early 
stages of development (see Fig.  8 for the geographical 
location of the studies included in the clinical analysis). 
With current tight regulations, testing devices at a low 
Technology Readiness Level (TRL) is subject to the same 
requirements as those devices that are ready to be cer-
tified [111, 179, 278]. Furthermore, there is a lack of an 
ethical and regulatory framework that enables research-
ers to involve end-users in the co-creation and validation 
of early-stage prototypes to quickly make technology 
accessible to the users, while guaranteeing the well-being 
of patients and therapists.

Conclusion
This paper presents one of the first reviews that focuses 
on the effectiveness on rehabilitation of different con-
trol algorithms used in lower limb exoskeletons for gait 
rehabilitation after brain injury. This literature survey is 
a first step towards determining the most effective con-
trol algorithms for each pathology and level of impair-
ment. The main findings from this review are: (1) We 
found that assistive controllers that followed thresh-
old-based algorithms relying on ground reaction force 
thresholds in conjunction with trajectory-tracking 
control were the most implemented control strategies. 
Few devices implemented adaptive control strategies 
that modulated the control parameters based on the 
patients’ performance. (2) Aligned with other reviews 

Fig. 8 Location of studies included in the clinical comparison. A Number of the studies per location for participants with stroke. B Number of the 
studies per location for participants with cerebral palsy
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on clinical practice of robotic interventions, we found 
high variability in the experimental protocols and 
selected outcome metrics. (3) Assistive control strate-
gies that implemented a combination of trajectory-
tracking and compliant control showed the highest 
clinical effectiveness for acute stroke. Assistive control 
strategies that followed a threshold-based algorithm 
with EMG as detection metric and control signal pro-
vided the highest improvements in the outcome meas-
ures of interest for subacute stroke. Assistive control 
strategies, which followed threshold-based or adaptive 
oscillator algorithms together with trajectory-tracking 
control, resulted in the highest improvements for indi-
viduals with chronic stroke. For other brain injuries 
included in this review—i.e., cerebral palsy and trau-
matic brain injury—the lack of standardization on the 
clinical studies made it impossible to analyze the effect 
of the control strategies on the clinical outcomes of 
interest.

Although remarkable efforts have been made into 
developing novel sophisticated motor-learning driven 
controllers to enhance gait rehabilitation, the majority 
of the reviewed studies only provided a general over-
view of the effect of the robotic controller on individu-
als with brain injuries. Future research should evolve 
into structured and standardized studies that aim at 
finding the relation between control strategies and a 
core-set of clinical outcome measures, controlling for 
the effects of participants’ initial impairment level and 
training intensity. Current limitations might be over-
come when clinicians, researchers, industry, and regu-
latory bodies work together to solve this urgent societal 
and scientific problem.
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