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Abstract—Resistive Random Access Memories (RRAMs) are
now undergoing commercialization, with substantial investment
from many semiconductor companies. However, due to the
immature manufacturing process, RRAMs are prone to exhibit
unique defects, which should be efficiently identified for high-
volume production. Hence, obtaining diagnostic solutions for
RRAMs is necessary to facilitate yield learning, and improve
RRAM quality. Recently, the Device-Aware Test (DAT) approach
has been proposed as an effective method to detect unique defects
in RRAMs. However, the DAT focuses more on developing defect
models to aid production testing but does not focus on the
distinctive features of defects to diagnose different defects. This
paper proposes a Device-Aware Diagnosis method; it is based on
the DAT approach, which is extended for diagnosis. The method
aims to efficiently distinguish unique defects and conventional
defects based on their features. To achieve this, we first define
distinctive features of each defect based on physical analysis and
characterizations. Then, we develop efficient diagnosis algorithms
to extract electrical features and fault signatures for them. The
simulation results show the effectiveness of the developed method
to reliably diagnose all targeted defects.

Index Terms—RRAM, defects, device-aware diagnosis, test

I. INTRODUCTION

Resistive Random Access Memory (RRAM) is a viable
technology for the next generation of non-volatile memories
owing to its advantages, including high scalability, low access
latency, and energy efficiency for AI computing [1, 2]. How-
ever, it is generally recognized that variations and defects in
device characterization throughout the manufacturing process,
create significant challenges [3–5]. Hence, there is a pressing
need for a comprehensive understanding of manufacturing
defects and the development of high-quality test solutions.
Moreover, the seamless combination of testing with diagnosis
is paramount in achieving a holistic approach to improving
RRAM manufacturing processes and yield learning. There-
fore, effective diagnosis methods are as important as defect
detection to enable high volume detection [5, 6].

Although there are several works on test and diagnosis of
RRAMs, most of the work focuses on detection rather than
diagnosis. In 2009, Ginez et al. investigated coupling faults
by simulating bridge defects as resistors [7]. In 2015, Chen et
al. reported a dynamic write disturbance fault, and a March test
to cover it [8]. In 2017, Li et al. leveraged judicious control
of the sneak-paths to design a fault isolation technique and
diagnosis algorithm [9]. In 2022, a March diagnosis algorithm
was designed for distinguishing conventional RRAM defects

[5]. However, all these methods rely on linear resistors as
the defect model, which is certainly insufficient to describe
unique defects in the RRAM device itself because the device
is inherently non-linear [10]. To address this challenge, the
Device-Aware Test (DAT) approach was proposed [4, 11, 12].
The DAT approach considers the physical roots of defects and
incorporates their impact into the technology parameters of
the device, enabling accurate defect modeling and test gener-
ation for unique defects [4]. Although the DAT approach has
demonstrated its power in modeling and testing RRAM-related
unique defects, it is not practical to diagnose these defects, as
its primary optimization focuses on defect detection instead of
defect diagnosis. For instance, one test solution proposed in
[10] for forming defects could detect other defects as well, thus
it is inefficient for diagnosis. Therefore, a dedicated method of
diagnosing unique defects is required to enhance the quality
of RRAM fabrication further.

This paper focuses on the diagnosis of conventional and
unique defects in RRAMs. We present a novel framework
called Device-Aware Diagnosis (DA-Diagnosis), which goes
one step further than DAT by utilizing the defect models
obtained from DAT; the framework applies a systematical
method to analyze physical manufacturing defects and ex-
tract their distinctive features for RRAM diagnosis. Thanks
to the unique defect modeling of the DA method, unique
and reliable fault signatures for each defect are obtained.
DA-Diagnosis surpasses the limitation of existing memory
diagnosis methodologies as it is a comprehensive approach
that is based on defect origins and covers specific faults. The
main contributions of this paper are:

• Present the framework of the DA-Diagnosis method for
conventional and unique defects in RRAMs.

• Analyze and define distinctive features of all targeted
RRAM defects, especially unique defects.

• Design diagnosis algorithms based on distinctive features.
• Demonstrate the effectiveness of developed diagnosis

algorithms for targeted conventional and unique defects.

The rest of this paper is structured as follows. Section II es-
tablishes the RRAM basics. Section III presents the framework
of the DA-diagnosis method for targeted defects. Section IV
applies the proposed DA-diagnosis framework to the targeted
defects. Section V validates designed diagnosis algorithms.
Finally, Section VI discusses and concludes this paper.
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II. RRAM BASICS AND BACKGROUND

An RRAM device is a Metal-Insulator-Metal (MIM) stack,
as shown schematically in Fig. 1 (a) [13]. In its organization,
the middle metallic oxide is built with an extra capping layer
in between the top and bottom metal electrodes (TE and BE).
Typically, an RRAM device requires a forming process; it is a
post-manufacturing step that involves applying a high voltage
between two electrodes to form a Conductive Filament (CF)
consisting of oxygen vacancies (OV), as shown in Fig. 1 (b).

The shape of the CF decides the different resistances of the
RRAM. Fig. 2 shows the switching current-voltage (I-V) and
resistance-voltage (R-V) curves. The generation of more OV
(Fig. 1 (d)), which is referred to as a SET operation, causes the
CF length to rise with a positive voltage from TE to BE (VTE)
greater than the threshold (VTE ≥ VSET) [13]. Oppositely, the
dissolution of the CF (see Fig. 1 (c)) is referred to as a RESET
operation when VTE ≤ VRESET. The resistance states after
SET and RESET are referred to as RSET and RRESET.

The formation and dissolution of the CF is a result of the
stochastic O2− movement; this can cause cycle-to-cycle and
device-to-device variations in the resistance [13]. Hence, the
(binary) RRAM can be divided into 5 states, as shown in
Fig. 3 (a) [4, 14, 15]: 1) the faulty extremely high conductance
state ‘H’, 2) the correct low resistive state ‘1’, 3) the faulty
undefined state ‘U’, 4) the correct high resistive state ‘0’, and
5) the faulty extremely low conductance state ‘L’.
Fig. 3 (b) shows a typical RRAM 1-Transistor-1-Resistor (1T-
1R) cell with three terminals connecting with the Bit Line
(BL), Source Line (SL), and Word Line (WL). The WL
controls the transistor to make the data stored in the desired
cells accessible. BLs and SLs are set to appropriate voltages
for write (SET and RESET) and read operations.
Fig. 4 presents a 3× 3 1T-1R circuit architecture with related
peripheral circuits [10]; it comprises the core memory cell
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Fig. 5. Framework of RRAM test and diagnosis development: (a) DAT
process, (b) DA-diagnosis process.

array and peripheral circuits. Cells in the same row share the
same WL and SL, while those in the same column share the
same BL. The peripheral circuit consists of the WL decoder,
BL driver, and Sense Amplifier (SA) [16]. The decoder selects
cells, the driver provides write and read currents, and the SA
senses the current through the RRAM device to read cell states.

III. METHODOLOGY FOR DEVICE-AWARE DIAGNOSIS

Fig. 5 (a) shows the DAT approach; it consists of four steps:
defect characterization, defect modeling, fault modeling, and
test development [4, 12]. DAT has been shown to be very
powerful in modeling and testing unique defects in emerging
memories such as RRAMs [17, 18] and STT-MRAMs [11].
It focuses on maximizing the fault/defect coverage while
optimizing the test time. However, such an approach cannot
be applied straightforwardly to diagnosis as it cannot uniquely
identify which defect causes the detected fault. For example,
the March test and DfT designed for Ion Depletion (ID) defects
in RRAMs in [18] can detect other conventional defects; hence
they fail to provide the distinctiveness for defects. Therefore,
the DAT approach needs to be adapted for diagnosis.

Fig. 5 (b) shows the DA-diagnosis approach; it consists of
five steps. Note that steps 1, 2, and 3 have to be repeated
for each targeted defect (to be diagnosed); the results will be
then processed to create a ‘feature dictionary’, which will be
the basis to generate diagnosis test algorithms. Note also that
steps 1 and 2 for DAT as well as for DA-diagnosis are the
same. The platform was first applied for Spin-Transfer Torque
Magnetic RAMs (STT-MRAMs) in [19], and adapted to apply
for RRAMs in this work. In the rest of this section, we will
discuss the five steps of the DA-diagnosis approach.

A. Defect characterization

In this step, the targeted defects are determined. Defect
models and characterization data of calibrated defects are used
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to develop a library of defects and their features.

B. Defect modeling

This step appropriately models defects. The conventional
defects are modeled as linear resistors [20], while unique
defects require DA defect modeling, which describes the
impact of the defect on the device technology parameters and
thereafter on electrical behavior and obtains a defective device
model [4]. DA defect models have been shown to be accurate
defect modeling of unique RRAM defects [4, 17, 18, 21].

C. Feature extraction

This step extracts features of each defective device based on
the way the defect manifests itself in the functional behavior
of the memory. The features of RRAM refer to the electrical
parameters of the memory device. For RRAM, these are VSET,
VRESET, RSET, and RRESET; they can be extracted from the
simulation or measurement. Combining all extracted features
for all targeted defects results in an initial feature dictionary.

D. Distinctive feature identification

The distinctive features of each defect are selected from the
feature dictionary. Here a distinctive feature indicates a unique
behavior caused by one or more electrical parameters due to
the presence of a defect; such behavior is uniquely associated
with that defect. For example, a cell enters ‘H’ state only if a
certain defect (i.e., over forming) is presented in the memory;
no other defects can cause such behavior.

E. Diagnosis test generation

Based on distinctive features, this step generates a set
of diagnosis test algorithms being able to distinguish which
defect is causing certain faults; i.e., if one or more tests from
the set fails, then we can derive (based on the signature
created) which defect does the memory suffer from. Note
that in our analysis, we assume a single defect at a time.
Other diagnosis methods based on Physical Failure Analysis
(PFA) are not considered since it requires expensive, time-
consuming, and destructive analysis [22]. Finally, the output
of this step is the DA-Diagnosis algorithm for each defect.

IV. APPLICATION OF THE METHODOLOGY FOR RRAMS

In this section, we follow the DA-Diagnosis framework to
design diagnosis methods for targeted defects.

A. Targeted defects and their characterizations

The targeted defects consist of conventional defects and
unique RRAM defects.

1) Conventional defects [7, 20]: These consist of well-
known interconnect and contact defects, which can cause
opens, shorts, and bridges. They can be modeled accurately
by linear resistors [7, 20], see Fig. 6 (a). Both write and read
faults can be sensitized by these defects.

2) Unique RRAM defects: These consist of defects that are
found inside the RRAM device due to fabrication imperfec-
tion. As of now, there are five unique defects known in the
public domain; they are explained next.
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Fig. 7. Characterization of defect-free and ID-defective device: (a) I-V
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a) Over/under forming (O/UF) [4, 23]: The forming
defect is introduced by an inappropriate forming current. The
external tester usually controls the forming current; hence an
unstable voltage source may affect the forming process [15].
The forming defect may come in two variants: over (under)
forming when a too-large (small) CF is generated, as presented
in Fig. 6 (b), initializing to a resistance state that is much lower
(higher) than the nominal LRS.

b) Intermittent Undefined State Fault (IUSF) [17]: As
presented in Fig. 6 (c), the IUSF is related to imperfect
capping layer doping or OF, which causes the RRAM device to
intermittently change its switching mechanism from bipolar to
complementary switching, leading to an undefined state during
SET process.

c) Ion Depletion (ID) [18, 24]: As presented in Fig. 6
(e), the ID defect is caused by interface physical imperfections,
which involve an increased oxygen trap of the defective
capping layer, resulting in a lower recombination rate between
insufficient O2− and OV.

d) Over RESET (OR) [21]: As presented in Fig. 6 (d),
the OR phenomenon is caused by a reduced O2− storage
capacity (oxygen affinity), and extra ions come back to re-
combine the CF, leading to an intermittent extremely high
resistance state exceeding the HRS criteria.

For the characterizations, we perform I-V, R-V, and RSET-
Iforming measurements for defects mentioned in Section III-A.
For conventional defects, we characterize them with the
RRAM compact model in [25] in Cadence’s Spectre simu-
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TABLE I
FEATURE DICTIONARY OF TARGETED DEFECTS.

Defects Electrical parameters
RSET RRESET |VSET| |VRESET|

Conventional Interconnects
& Contacts ↑, ↓, NA U

L ↑, ↓, NA U
L ↑, ↓, NA ↑, ↓, NA

Unique

OF ↓ H NA ↓ ↑
UF ↑ U ↑ L ↑ ↓

IUSF ↑ (IB) U NA NA NA
ID NA ↓ (IB) U NA NA
OR NA ↑ (IB) L ↑ (IB) NA

Note: ↑: increase; ↓: decrease; NA: not affected; (IB): intermittent behavior; H/U/L: faulty states

lation, following the process in [10, 26]. For unique defects,
we have reused the characterization results produced in [4,
17, 18, 21, 23]. Measurements are produced on a 7×7 1T-1R
array. The I-V curves are performed by the Keysight B1500
parameter analyzer and extracted by Python. After that, the
R-V can be converted from I-V measurements. For example,
Fig. 7 (a) and (b) present measurements and compare those
for defect-free and ID-defective devices. A current increase
and RRESET decrease can be observed for I-V and R-V
curves of the defective device. Besides, we also investigate the
relationship between resistance and forming currents (RSET-
Iforming) based on HfO2-RRAM measurements in [23]. Not all
measurements are shown in this paper due to space limitations.

B. Defect Modeling

In this step, we directly use linear resistance for conven-
tional defects [20, 26] and DA-defect models of the 5 targeted
unique defects reported in previous works in [4, 17, 18, 21].

C. Feature Extraction

In this step, we summarize the feature dictionary for targeted
defects through measurements and simulation in Table I. The
symbols used in the table are listed as notations. For example,
in the presence of IUSF, there is a certain probability that the
RSET increases intermittently. Especially, we present possible
faulty states (‘H’, ‘U’, ‘L’) that are sensitized by each defect
when RSET and RRESET are affected by defects as features.

D. Distinctive feature identification

This step aims to identify distinctive features of each defect.
If a feature is unique in each column of Table I, it is considered
a distinctive feature. Consequently, distinctive features of
targeted defects can be directly derived from Table I. For
example, the intermittently (IB) increased RRESET is identified
as a distinctive feature for the OR defect; yet the permanent
increased RRESET is not a distinctive feature, since the same
feature can also be found in the presence of conventional
defects and UF. For the defects that have multiple distinctive
features, we can select those that facilitate the most effective
diagnosis. For the defects without distinctive features, we can
also consider combining features to make them distinctive.
Next, we present distinctive features of each targeted defect.

1) Conventional defects: The impact on features of conven-
tional defects also depends on the precise type (bridges, shorts,
or opens), range, and location of the defect. For example, we
observed that bridges in parallel with the cell affect both RSET

and RRESET; while some shorts affect only one of the resistive
states [10, 26]. Hence, conventional defects lack distinctive
features, which will be discussed later.

2) OF: As presented in Table I, the ‘H’ state of RSET can
be considered as the distinctive feature because other defects
cannot make the cell switch to ‘H’. Besides, |VRESET| is
another distinctive feature compared with other unique defects.
We can even weaken the RESET write pulse to better identify
the unique |VRESET|.

3) UF: As presented in Table I, there is no ensured distinc-
tive feature of UF. However, |VRESET|, RSET, and RRESET

are distinctive features compared with other unique defects.
Especially, the ‘L’ state RRESET can be combined with other
features to facilitate diagnosis, which will be discussed later.

4) IUSF: As presented in Table I, RSET is the distinctive
feature of IUSF. Especially, this defect occurs intermittently
with different cycles owing to the intrinsic stochasticity. The
intermittent behavior indicates that the defect has a probability
of occurring rather than exhibiting a constant resistance in
different cycles, like the conventional defects.

5) ID: As presented in Table I, an intermittently reduced
RRESET is the distinctive feature. Other defects, such as
conventional defects, can also lead to reduced RRESET but
without the intermittent behavior.

6) OR: As presented in Table I, intermittently increased
|VSET| and RRESET are distinctive features of OR.

In conclusion, among those unique defects, OF sensitizes
unique ‘H’ state faults; IUSF, ID, and OR all exhibit intermit-
tent faulty behavior owing to the intrinsic stochasticity [13].
These specific faulty behaviors are impossible to occur in the
presence of conventional defects. Hence, these unique defects
will not be mixed with conventional defects. Unfortunately,
UF may sensitize faults that are also sensitized by conventional
defects; hence, it is critical to distinguish them.

To achieve this, we propose a process based on the com-
parison of faults that are sensitized by different defects. The
assumption is that every defect sensitizes a different set of
faults. Hence, comparing these fault sets of each defect can
facilitate the diagnosis. The whole process is: 1) obtain a set
of sensitized faults in the presence of all defects, 2) compare
obtained fault sets of the targeted unique defects with the other
fault sets; diagnose the defect as either a conventional or an
unknown defect when there is no overlap in the comparison.
If there is an overlap, proceed to the third step for further
diagnosis, and 3) further compare fault sets of unique defects
with the set of faults that are sensitized by all conventional
defects. If there is no overlap in this comparison, diagnose the
defect as either a conventional or a unique defect. Otherwise,
a diagnosis cannot be guaranteed. Another benefit of this
process is that once we complete the first step, we will be
able to identify the location of faulty cells, allowing us to
save time by applying the algorithm only to the faulty cells.
In our case study, all faults sensitized by UF do not overlap
with conventional defects of any strength [10, 26]; hence, it
is possible to distinguish them.

E. Diagnosis Test Generation

This step generates DA-Diagnosis methods for all RRAM-
targeted defects. The diagnosis design first aims to distinguish
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TABLE II
OVERVIEW OF DIAGNOSIS FOR UNIQUE DEFECTS.

Defect Mechanism Related steps in RRAM fabrication Test method Diagnosis algorithm Notation
OF Higher forming current Forming step ⇕ (w0, w1, w0);

⇕ (r0); ⇕ (w1, r1) [10]
⇕ (w1, r1) Requires multiple referencesUF Lower forming current Forming step ⇕ (w0, r0, w1, r1)

IUSF Reduced oxygen
storage capability

(1) Over forming
(2) Capping layer doping, Annealing ⇕ (w0, w1, r1)i [17] ⇕ (w0, w1, r1)i

Requires multiple references
Requires algorithm repetitionsID O2− depletion,

interface imperfection HfO2 or TiO2 deposition, Annealing ⇕ (w1);⇕ (w0, r0) [18]
1. ⇕ (w1);⇕ (w0, r0);

⇕ (w1, r1)
2. ⇕ (w1, w0, r0)j

OR Reduced oxygen
storage capability TiO2 deposition, Annealing ⇕ (w1);⇕ (w0, r0) [21]

1. ⇕ (w1, r1);⇕ (w0, r0)
2. ⇕ (w1, w0, r0)k
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between conventional and unique defects and then applies
patterns to further distinguish which unique defect is present.

From the distinctive features obtained in Table I, it is
necessary to detect not only regular ‘0’ and ‘1’ states, but
also faulty ‘H’, ‘U’, and ‘L’ states. In this paper, the diagnosis
methods are based on March algorithms with adjustable read
operations. A regular SA design [16] with multiple yield
learning references is applied. Fig. 8 shows the implementation
of the reference setting for three specific read operations.
Those references are set according to the defined resistance
states and with a checkmark to indicate the reference used. For
example, the reference (Rref1) equal to the minimum RSET is
applied to detect the ‘H’ state. Two references (Rref2, Rref3)
are applied to detect ‘U’ from ‘0’ and ‘1’. The reference
(Rref4) equal to the maximum RRESET is applied to detect
the ‘L’ state. Next, we apply the above process and present
the diagnosis designs for each defect. Table II summarizes the
final result of this section.

1) Conventional defects: We follow the above process
(compare sensitized faults) to distinguish conventional defects
from unique defects, further diagnosis for types and locations
of conventional defects is out of the scope of this paper.

2) OF: RSET serves as a distinctive feature of OF. Hence,
we design the diagnosis method by reading the ‘H’ state (with
equivalent RH shown in Fig. 9) of the faulty cell to identify
fault origins in the presence of OF as follows: {⇕ (w1, r1)}.
Here, ‘⇕’ indicates that operations are performed with irrele-
vant addressing direction; w1 denotes write 1 and r1 read 1
(using Rref1). In case of the OF defect, r1 returns ‘H’.

3) UF: UF may cause the defective cell into an ‘L’ state
(see Fig. 9). Therefore, we design the March algorithm:
{⇕ (w0, r0, w1, r1)}. Here, the r0 operation is performed by
applying Rref4. If returned values are (L, 0), the cell has a UF
defect. If there are (L, 1), the cell may have an OR defect.

4) IUSF: The intermittent RSET is the distinctive feature
of IUSF. The affected RSET exhibits an intermittent ‘U’
state during the SET process with a low probability (up
to 1.068%) [17]. To distinguish IUSF from other defects,
it is sufficient to detect RSET with the following repeated
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Fig. 9. Diagnosis for forming defects.

algorithm:
{
⇕ (w0, w1, r1)i

}
(i.e., repeating w0, w1 and r1

operations for ‘i’ times). The r1 here applies Rref2 and Rref3 to
detect the ‘U’ state. The probability of IUSF occurrence PIUSF

can result in the diagnostic probability: Pd=1− (1− PIUSF)
i.

From the measurement, i = 644 can achieve a 99% Fault
Coverage (FC). If the values obtained from the algorithm are
oscillating (U), the defective cell suffers from an IUSF.

5) ID: The ID-defective device is stuck at the interme-
diate state ‘U’ (45% cycles). For diagnosis, we design the
algorithm: {⇕ (w1);⇕ (w0, r0);⇕ (w1, r1)}. This algorithm
consists of three elements: 1) apply w1 for initialization, 2)
apply 1w0 and r0 using Rref2, Rref3 to detect ‘U’, and 3)
apply ⇕ (w1, r1) to check whether the RSET is in nominal ‘1’
state (using Rref1). Note that the third element is necessary to
distinguish ID from OF (i.e., OF may switch cell into ‘H’). If
read values return (U, 1), the ID defect is diagnosed (assume
it occurs at this cycle). To target intermittent behavior, another
algorithm:

{
⇕ (w1, w0, r0)j

}
can be applied (r0 applies Rref2,

Rref3 to detect ‘U’). The second algorithm is expensive but
guaranteed for ID diagnosis (an FC=99% requires j=8).

6) OR: The proposed diagnosis algorithm is:
{⇕ (w1, r1);⇕ (w0, r0)}. The first element is to initialize the
cell to the ‘1’ state and read the state. The second element
is applied to identify whether the cell switched to ‘L’ owing
to the OR. The r0 here applies Rref4 to detect the ‘L’ state.
If the read values are (1, L), the OR is diagnosed (assume
OR occurs at this time). Again, we design another algorithm:{
⇕ (w1, w0, r0)k

}
to guarantee the high probability of

diagnosis for OR (an FC=99% requires k=11).

V. VALIDATION OF DIAGNOSIS ALGORITHMS

Finally, we validate the diagnosis algorithms in Table II
through simulation, following the process in Fig. 10. For each
targeted defect injected in the circuit netlist, the designed
diagnosis algorithms are applied. After that, the outputs of
algorithms are extracted and compared with expected outputs

Authorized licensed use limited to: TU Delft Library. Downloaded on July 15,2024 at 14:10:50 UTC from IEEE Xplore.  Restrictions apply. 



Circuit Netlist Inject defects
Run diagnosis 

algorithms

Outputs as 

expected?

Identified as 
specific defect

Sweep done?End
Not 

identified

Yes
NoNo

Yes

Fig. 10. Flow chart of diagnosis algorithm verification.

TABLE III
VALIDATION WITH OF-DEFECTIVE CELL.

Defect Expected output Actual output Diagnosed?
OF H H Yes
UF L, 0 1, 1 No

IUSF U 1 No
ID U, 1 1, H No
OR 1, L 1, 1 No

to validate whether the algorithm can identify the defect.
Once all algorithms are simulated, the next defect will be
injected and the process will be repeated. Note that we focus
more on applying algorithms designed for unique defects;
the identification of conventional defects can be achieved
by comparing different sets of faults that are sensitized by
different defects.

Table III shows the validation result for the OF defect as an
example. In the simulation setup, we follow the above process.
All designed diagnosis algorithms are applied in the presence
of OF defect. Table III shows expected and actual outputs for
each applied algorithm. Only if the actual read output is the
same as expected, the corresponding defect is diagnosed. For
example, both the actual and expected outputs of the algorithm
designed for OF are H, which means the defect is identified
as OF. However, the actual outputs (1, 1) of the algorithm
designed for OR are different from its expected outputs (1,
L), which indicates the defect is not OR.

VI. DISCUSSION AND CONCLUSION

This paper introduced the DA-diagnosis framework to detect
conventional and unique defects in RRAMs. First, it identifies
distinctive features for every defect based on physical analysis
and characterization. Next, efficient mechanisms are developed
that detect these distinctive features and thus efficiently diag-
nose the defects. We can conclude the following:

• Effectiveness: The results demonstrate that all RRAM
defects can be uniquely identified with the DA-Diagnosis
framework. This is because distinctive features for every
defect are identified, which allows for tailored diagnosis
solutions to only detect them. As such, the resulting
diagnosis solutions are accurate and fast.

• Applicability: The framework can be applied to currently
unknown RRAM defects and other memory technologies
as well. Once new RRAM defects are identified, they
need to be modeled using the DAT approach. Based on
the resulting models and the measurements of the defect,
distinctive features of this defect can be identified as well.
Next, a diagnosis solution can be developed that uniquely
identifies this defect. A similar argumentation holds for
other memory technologies: first, defects need to be
modeled, then distinctive features can be identified, and
finally, effective diagnosis solutions can be developed.

• Defect Modeling: The usage of accurate defect models
gives this framework its strength, but their development
is limited. From earlier work on DAT, it can be concluded
that defect identification and accurate defect modeling are
not straightforward tasks [17]. This is because the defect
needs to be deeply characterized with large amounts of
measurement data, and the physics of its behavior prop-
erly modeled. Only once the appropriate defect model
is developed, the distinctive features can be reliably
identified and an effective diagnosis solution developed.
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