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ABSTRACT

Database-centric systems strongly rely on SQL queries to manage

and manipulate their data. These SQL commands can range from

very simple selections to queries that involve several tables, sub-

queries, and grouping operations. And, as with any important piece

of code, developers should properly test SQL queries. In order to

completely test a SQL query, developers need to create test data

that exercise all possible coverage targets in a query, e.g., JOINs

and WHERE predicates. And indeed, this task can be challenging

and time-consuming for complex queries. Previous studies have

modeled the problem of generating test data as a constraint sat-

isfaction problem and, with the help of SAT solvers, generate the

required data. However, such approaches have strong limitations,

such as partial support for queries with JOINs, subqueries, and

strings (which are commonly used in SQL queries). In this paper,

we model test data generation for SQL queries as a search-based

problem. Then, we devise and evaluate three different approaches

based on random search, biased random search, and genetic algo-

rithms (GAs). The GA, in particular, uses a fitness function based

on information extracted from the physical query plan of a data-

base engine as search guidance. We then evaluate each approach

in 2,135 queries extracted from three open source software and

one industrial software system. Our results show that GA is able

to completely cover 98.6% of all queries in the dataset, requiring

only a few seconds per query. Moreover, it does not suffer from the

limitations affecting state-of-the art techniques.
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1 INTRODUCTION

SQL queries form the heart of database-centric applications, which

can range from systems dealing with customer relations to applica-

tions managing medical data for hospitals. Software engineers are

then required to test such SQL queries as intensively as they test

program code. However, the complexity of generating test data re-

quired to fully test a SQL query grows together with the complexity

of the query itself.

Consider a SQL query that joins two tables and contains two

predicates:

SELECT items .* FROM invoice

JOIN items ON invoice.id = items.invoiceid

WHERE amount > 1000 OR taxFree = true

This SQL query returns all items of invoices that either have

amount greater than 1000 or that are tax free. To test this query

rigorously, the tester may want to follow some coverage criteria,

such as to exercise all “branches” that can be executed in this SQL

query. Thus, the tester needs to target 1) the JOIN relation, 2) the

left predicate (amount > 1000) to be evaluated to true, 3) the

right predicate (taxFree = true) to be evaluated to true. For

that to happen, the two tables should contain the right data that

satisfies each of these targets. While in this illustrative example,

generating test data can be done by a human, in more complex

cases, e.g., queries with multiple JOINs, predicates, and subqueries,

the number of targets grows, and the generation of data that test all

the branches of a SQL query becomes a difficult and time-consuming

task.

Researchers have proposed approaches to automatically gener-

ate test data to support developers testing SQL queries [4, 11, 21, 34].

These approaches transform the test data generation problem into

a constraint satisfaction problem [36]. Subsequently, they use con-

straint solvers, such as Alloy [19] and Choco [20] to generate test

data solving the constraints. However, such approaches suffer from

two important problems that may prevent them from being used

in large software systems: First, due to limitations of the existing

constraint solver tools, these approaches commonly do not support

strings and any kind of string manipulation. Secondly, mapping the

entire SQL language to a constraint satisfaction problem is a highly

complex task. As a consequence, these approaches commonly do

not support JOIN expressions, subqueries, and specific database

functions, such as date/time functions.

At the same time, SQL queries often contain JOINs, subqueries,

strings, and database-specific functions. For example, 30% of the

queries in SuiteCRM, a large open source web application that man-

ages customer relationships, contain at least a single JOIN, and 28%

of the queries in Alura, a closed-source e-learning web application,

contain at least one subquery. Consequently, the aforementioned

limitations of existing solutions clearly reduce their applicability

to real software systems.

1220

2018 ACM/IEEE 40th International Conference on Software Engineering



ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden Castelein et al.

To overcome the identified limitations, we model the problem of

test data generation for SQL queries as a search-based problem. We

opted for search-based techniques since they have been successfully

applied in various software testing scenarios (e.g., white-box unit

testing [24] and regression testing [38]), handling complex data

structures (e.g., Java objects [13]), and for string search problems [1].

Given a SQL query, its respective database schema and a collec-

tion of coverage requirements, we implement and evaluate three

different search approaches, namely random search, biased random

search, and genetic algorithms, to populate tables with test data

meeting a given testing criterion. The random search explores a set

of randomly generated data; the biased random search improves

the pure random search by seeding constants that can be extracted

from the SQL query under test. Finally, the genetic algorithm (GA)

is guided by a fitness function based on data collected from the

physical query plan generated by a fully-functioning instrumented

database engine.

We provide an implementation of the three approaches in a tool,

named EvoSQL. To evaluate the three approaches, we execute them

on 2,135 queries extracted from 4 software systems, one of them

being from an industry partner. Our results show that the GA is

able to completely cover 2,106 queries (98.6%) of our dataset. On

average, the GA takes 2 seconds to cover queries up to 10 different

coverage targets, and 15 seconds to cover queries up to 20 different

coverage targets. Interestingly, we observe that the GA does not

get stuck in JOINs, subqueries, or string manipulation, and thus,

shows advantages over the two other search algorithms.

Our study leads to the following four contributions:

• A formulation of the test data generation problem for SQL

queries as a search problem together with the definition of

three different search algorithms tailored to generate test

data for SQL queries (Section 3).

• An open source Java implementation of the approach, namely

EvoSQL (Section 4).

• An empirical study on the effectiveness, performance, and

difficulties that the three approaches face on 2,135 queries

extracted from four software systems (Section 5), demon-

strating that the genetic algorithm reaches full coverage for

almost all cases in 2-15 seconds, making the approach usable

in a practical setting.

• A replication package containing the queries and schemas

used in our evaluation that can help researchers in reproduc-

ing and improving our results [7].

2 SQL TEST ADEQUACY

To enable the generation of test data for SQL queries, we must

first select a test adequacy criterion. SQL queries contain different

syntax and semantics that can be exercised, e.g., joining, grouping,

and aggregation. Consider the following SQL query:

SELECT *

FROM Product

WHERE Category = 'Toy'

It contains at least two different scenarios that could be tested:

1) when a row contains Category = ’Toy’, and 2) when a row

contains Category != ’Toy’.

Tuya et al. [37] propose SQLFpc, a full predicate coverage cri-

terion for SQL queries which takes into account logical operators,

joins, grouping, aggregations, subqueries, case expressions and null

values. Given a SQL query, SQLFpc produces coverage targets in

SQL formats. Such SQL targets are satisfied when the database

returns at least a single row after being populated with test data

and then executed.

As an example, SQLFpc would generate two coverage targets for

the query above:

(1) SELECT * FROM Product WHERE (Category = ’Toy’),

which is, in this case, the same as the SQL under test, and

(2) SELECT * FROM Product WHERE NOT(Category = ’Toy’),

which represents the negative counterpart.

A database that contains two rows (Row 1 = {’Toy’}, Row 2 = {’Car’})

would achieve 100% of coverage for the SQL under test, as row 1

satisfies target 1, and row 2 satisfies target 2.

In this paper, we adopt the coverage criterion by Tuya et al. [37].

Nevertheless, we devise our approach in a way that other coverage

criteria can be used. Our approach only requires a coverage criterion

that 1) produces a set of coverage targets in SQL format, and 2) each

target is considered satisfied when a database returns non-empty

results after executing it against the generated data.

3 APPROACH

Given an SQL query under test, our goal is to generate test data

that satisfies a coverage criterion. The test data generation problem

can be formulated as follows:

Definition 3.1 (Search Problem). Let R = {r1, . . . , rm } be the set

of coverage targets for a query Q according to a coverage criterion.

Find test data S that satisfies all coverage targets in R.

To allow the application of search-based techniques, we (i) design

an encoding scheme for representing solutions of the problem in

Definition 3.1; (ii) define a fitness function measuring the optimality

of each solution; (iii) select three search algorithms to find optimal

solutions and thus solving our problem. These aspects are described

in detail in the next subsections.

3.1 Solution Representation

Given a coverage target for a SQL query, the search space is repre-

sented by all possible combinations of database tables whose rows

satisfy the target. A database table has a specified (and previously

defined in the supplied database schema) number of columns and

can store any number of rows. The columns define the data type

(e.g., string or integer) that each cell in a row can store. As an exam-

ple, a table Product has three columns: name which stores strings,

price which stores doubles, and size which stores integers. Rows

in this table always contain three elements: the first cell stores a

string, the second stores a double, and the third stores an integer.

Our encoding scheme represents the set of database tables that

are used in the SQL query, where each of them contains a list of non-

empty rows. More specifically, a candidate solution is a set of tables

T = {T1, . . . ,Tn }, where each tableTi is composed of rows, i.e.,Ti ={
R1, . . . ,Rk

}
. Each row contains cells, i.e., Rj = {V1, . . . ,Vc }, where

c is the number of columns in Ti .
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(a) Single step
(b) Two steps

Figure 1: Two examples of SQL queries with the correspond-

ing steps in a physical query plan.

The tables and columns of a candidate solution are defined by the

tables appearing in the target to solve. For example, let us consider

the target SELECT * FROM Product WHERE (price>100.00 AND

size>10.00); a candidate solution for this target contains a list of

rows for the previously defined table Product. As an example, a

candidate solution for the query is:

Product =
{
R1 =

〈′TV ′, 500.0, 60
〉}

(1)

3.2 Fitness Function

To determine how close a candidate solution T is from covering a

query target we need to define a proper fitness function. Usually, the

fitness function is a distance measure f : T → [0,+∞) that takes as

input a candidate solutionT and returns zero if and only ifT satisfies

the given target. In our case, the fitness function is computed by

analyzing the execution of a SQL query in a database engine and its

physical query plan, the plan that the database internally devises to

process the query. Therefore, before describing our fitness function,

we need to introduce and describe the physical query plan.

3.2.1 Physical query plan. For any SQL query to be executed,

databases first convert the query into a physical query plan [17],

which indicates the operations required to process the query as

well as the order by which they need to be performed. The resulting

physical query plan can be viewed as an ordered list of relational

algebra operations in each of its nodes. As an example, nodes could

contain a JOIN between two tables, or a predicate expressed in

a WHERE statement. In the following, we refer to these relational

algebra operations in the physical query plan as steps to satisfy.

Figure 1 depicts two examples of SQL queries and highlights the

states in the corresponding physical query plan. Figure 1a contains

a SQL query with a single step, which contains a single selection op-

eration (model = ’Ferrari’). The SQL query in Figure 1b contains

two steps: the physical query plan first commands the database to

work on the JOIN (step one), and then, after that step is done, to

work on the selection (step two). In the second case, if the JOIN does

not produce an output (i.e., the predicate Cars.tire_id=Tires.id

is not TRUE for any row in both Cars and Tires table), the database

realizes that the query will return an empty result, and stops its

execution before proceeding to step two.

The order of the steps in the physical query plan as well as the

order of operations in each step is automatically computed by the

database engine that performs different cost calculations to come

up with the best order to execute them [17]. The physical query

plan also takes into account the priorities that an operation may

have over another, e.g., a subquery may need to be executed before

a JOIN. Nevertheless, to cover a given query target r , a solution

has to go through all the steps in the query plan, which will only

happen if all predicates are evaluated to TRUE for at least once.

3.2.2 Fitness function definition. Executing a candidate solution

against a given coverage target corresponds to executing all the

steps in the plan. If a solutionT fully satisfies all steps, i.e., predicates

in all steps, then it satisfies the coverage target under test. Given

our coverage criterion, satisfying a coverage target means that the

query under test, when executed in a database that contains the

solution T , yields a non-empty result. If T does not cover the given

target, it implies that some steps are not satisfied and the database

engine terminates the execution before completing the last step

in the query plan. In this case, we can measure the distance of T

to cover the target by (1) counting the number of yet unsatisfied

steps (step level), and (2) measuring how far T is to satisfy the step

where the database engine stopped its execution prematurely (step

distance).

Therefore, given a candidate solution T and a coverage target r ,

we design our fitness function as follows:

d (T , r ) = step_level (T , r ) + step_distance (T ,L) (2)

In the equation above, step_level (T , r ) measures the number

of steps in the physical query plan not executed by the database

engine when running T against the target r . The second function

clause step_distance (T ,L) measures the distance of T in satisfying

the first step L of the physical query plan that is not fully satisfied

by T , i.e., the step distance is computed for the step L where the

database engine stopped its execution.

A step L is satisfied by T if all relational algebra operations in

L are satisfied. Therefore, let OL =
{
op1, . . . ,oph

}
be the set of

operations in a given step L, the corresponding step distance for a

solution T is defined as:

step_distance (T ,L) = ϕ

⎡
⎢
⎢
⎢
⎢
⎢
⎣

h∑

i=1

ϕ [dist (T ,opi )]

⎤
⎥
⎥
⎥
⎥
⎥
⎦

(3)

where opi is the i-th operation in L,dist (T ,opi ) denotes the distance

ofT to satisfy the relational operation opi , and ϕ is the normalizing

function ϕ (x ) = x/(x + 1) widely used in search-based software

testing [24]. According to Equation 3, the step distance results in

values in the range [0;+1) and it is obtained by summing up the

distances dist (T ,opi ) for all operations in the step under analysis.

All operations contribute in equal manner to step_distance (T ,L) as

they are normalized before being aggregated with the sum operator.

The actual distance dist (T ,opi ) for each operation opi ∈ OL is

defined depending on the type of the values being involved. In

particular, we identify the following operations and their corre-

sponding operation distances:

(i) Comparison operators. The existing comparison operations

in SQL (i.e., =, <>, >, >=, <, and <=) can involve either numbers,

booleans, strings, dates, or the special value NULL. For numbers and

boolean values, the distance dist (T ,opi ) corresponds to the stan-

dard branch distance defined by Korel [22]. For example, the distance

for the equality price=10 is abs (price − 10) [22]. For strings, we

use the enhanced edit distance defined by Alshraideh et al. [1] that

combines the standard edit distance with the character distance.
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We selected this distance as it performs best when dealing with

string values in test data generation [1]. For dates, the distance is

computed as the sum of the differences for each numerical calendar

part: year, month, day, hour, minute, second, and millisecond.

(ii) Logical operators. For logical operations (e.g., AND) we used the

traditional branch distance rules [22] that aggregate the distances

of the logical expressions (predicates) involved in the operation.

For example, the branch distance for the operation price=100.00

AND size=10.00 is d = [abs (price− 100.00) +abs (size− 10.0)].

(iii) SQL operators. There are five operators that are specific for

SQL, which are: BETWEEN, IS (NOT) NULL, IN, LIKE and EXISTS. For

these operators, we define the corresponding operation distances

as described in the following.

The BETWEEN operator verifies whether a given value v is within

the two given bounds, i.e., if lb <= v <= ub with lb andub being the

lower and the upper bound respectively. In SQL, this is equivalent

to lb <= v AND v <= ub and, therefore, we use the corresponding

branch distance rule for the AND operator.

The IS NULL operator returns TRUE when the value v under

inspection is NULL, and FALSE otherwise. The IS NOT NULL operator

is equivalent to NOT ( IS NULL ). Therefore, it is equivalent to the

boolean operator v � NULL and it is treated as the not equal

operator when computing the operation distance.

The IN operator verifies whether a given value lv (left term of the

operation) is contained in the list on the right part of the operation.

Such a list can be a constant list written in the query or the result of

a subquery. This operator returns TRUE if at least one of the values in

the list is equal to lv . Therefore, the operation distance corresponds

to the minimum branch distance between each element e in the list

and lv , i.e., dist (T ,opi ) = mine ∈l ist abs (lv − e ).

The LIKE operator performs pattern matching on a string. There-

fore, its operation distance corresponds to the branch distance for

pattern matching defined by Alshraideh et al. [1].

The EXISTS operator takes a subquery as a parameter. If the

subquery (once executed) returns a value, then the operation is

satisfied and its operation distance is zero. Otherwise, the operation

distance corresponds to the operation distance of the subquery.

The JOIN operator merges two tables based on a list of join

conditions, e.g., the condition Cars.tire_id=Tires.id for the SQL

query in Figure 1b. Join conditions are equality operators between

two columns, or between pairs of columns, to satisfy. Therefore,

the operation distance for a join operation is computed based on

the branch distance for equality operators: dist (T ,opi ) is equal to

the sum of the branch distances applied to all join conditions in opi .

3.3 Search Algorithms

In this paper, we consider three different search algorithms: (1)

Genetic Algorithms (GAs); (2) random search; and (3) biased random

search. The details of these algorithms are discussed below.

3.3.1 Genetic Algorithms. GAs are stochastic search algorithms

inspired by the Darwinian natural selection. These algorithms

evolve a pool of N solutions (called population) using the fitness

function to measure the quality of each solution. Initially, the pop-

ulation consists of randomly generated solutions, that correspond

(in our case) to set of solutions as described in Section 3.1 and filled

with randomly generated values (e.g., random integers). The pop-

ulation is evolved via selection and reproduction through various

iterations, called generations. In each generation, individuals in

the population are evaluated as follows: each individual is inserted

into an in-memory database engine and executed against the target

under analysis. The in-memory database is instrumented to give

the complete execution trace of the query, step-by-step. This execu-

tion trace is therefore used to computed the corresponding fitness

function as described in Section 3.2. After evaluating all individu-

als in the populations, the fittest individuals (parents) are selected

using the tournament selection [18, 33] and then recombined using

crossover and mutation. These two genetic operators generate new

individuals (offsprings) that inherit some properties (tables in our

case) from their parents. Then, parents and offsprings compete with

each other and the N fittest individuals (according to the fitness

function for the target under analysis) are selected to form the pop-

ulation of the next generation (elitism). The selection-reproduction

cycle ends if one individual in the current population achieves a

zero fitness value meaning that it covers the given coverage tar-

get; otherwise the search is terminated when the maximum search

budget allocated for the current target is reached.

The details of the genetic operators implemented for our problem

are discussed in the next paragraphs.

Crossover. As explained in Section 3.1, in our case an indi-

vidual (or solutions) is a set of tables T = {T1, . . . ,Tn }. There-

fore, the crossover operator has to generate two offspring by shuf-

fling the tables in the parent solutions. To this aim, we used the

uniform crossover [5]: given two parents T = {T1, . . . ,Tn } and

X = {X1, . . . ,Xn }, the uniform crossover uses a random binary

vector (crossover mask) to decide which offspring inherits each

table in T and X . The mask b = {b1, . . . ,bn } has the same length

as the parents (i.e., the number n of tables), one binary element for

each table in the solutions. If the binary element bi is one, then the

first offspring inherits the table Ti (from the first parent) while the

second offspring inherits Xi (from the second parent); otherwise,

the first offspring inherits Xi while the second inherits Ti . Notice

that parents and offsprings always have the same number of tables.

Mutation. When an individualT = {T1, . . . ,Tn } is mutated, there

is a 1/n probability for each table Ti ∈ T to be mutated, so on

average, one table is mutated inT . Three types of mutations can be

applied to eachTi ∈ T , which are in order of their application delete,

change, and insert. These operations have the same probability pm
of being applied and are not mutually exclusive, i.e., more than one

mutation can be applied to the same tableTi . LetTi =
{
R1, . . . ,Rk

}
be one table with k rows in a given solutionT to mutate. The delete

mutation consists in deleting one random row from Ti .

The change mutation modifies each row r in a table Ti with a

probability pc . A row is modified by randomly changing one of its

values. Let r j be the row to mutate; each cell in r j is modified with

a 1/c probability, where c is the number of columns inTi . Elements

are mutated depending on their types: floating-point numbers are

modified using the polynomial mutation [10], which is standard

for real numbers; integers are mutated by using a delta mutation,

i.e., by adding or removing a delta value randomly generated from

the interval [−10; 10]; a date is mutated by applying the same delta

mutation to all its calendar parts (e.g., days); strings are mutated

by adding, removing or replacing characters [1]; finally, booleans
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are mutated by flipping their values (e.g., from true to false). If the

column to mutate is nullable, one of its value is set to NULL with

a probability pnull .

The last mutation operator adds one row to a given table Ti . It

either duplicates one existing row inT or it adds a newly randomly

generated row (i.e., a row containing randomly generated values).

In a given query under test, not all columns of the table are exer-

cised. Therefore, we limit its search space by ignoring columns that

are not used by any predicate, and instead, considering the other

columns to which we refer to as mutable columns. The approach

uses a naive technique to identify the mutable columns: if a column

is used anywhere in the query’s important clauses (FROM, WHERE,

GROUP BY, HAVING), it is added to the list of mutable columns.

Seeding strategies. Seeding is the technique of inserting values

from a seeding pool into the population with some probability. The

values in the seeding pool are extracted using the knowledge taken

from the query under test. Our GA uses a seeding pool containing

all constants (e.g., strings and integers) appearing in the query. This

is because a query may contain comparisons with constant values.

Each constant in the query is extracted and added to the column

seeding pool, which will be used to be seeded into columns of the

generated individuals, when mutating a row.

We use a further seeding strategy specific for join operations. A

typical SQL predicate for joining two tables together is an equal-

ity between two columns. Each predicate of the form column1 =

column2 adds a logical link between the two columns. Therefore,

the seeding is applied by copying some values from column1 into

column column2 , and vice versa.

Post Processing. Readability of the generated data is important

when it comes to comprehending the SQL query and writing test

cases for it. To improve the readability of the generated data, when a

solution is found, we apply a naive row minimization technique: for

each table Ti in the generated solution T , we remove all rows that

do not contribute to covering the coverage target under analysis.

3.3.2 Random Search. As for GAs, random search is executed

against each target to cover independently. It iteratively generates

random solutions, and this process is repeated until the coverage

target is satisfied (i.e., the coverage target, when executed against

the generated data, yields a non-empty result) or the maximum

search budget allocated for the current target is reached.

Random search is a simple algorithm that does not evolve exist-

ing solutions. However, it is often used in the literature as baseline

the to test the complexity of the problem to solve and to assess

the need for more advanced algorithms (e.g., GAs). Moreover, ran-

dom search has been shown to outperform other search algorithms

when solving specific problems [3, 30].

3.3.3 Biased Random Search. In addition to the simple random

search algorithm, in this paper we used another variant of random

search that uses the same seeding strategy used in GAs. Therefore,

randomly generated solutions contain (with a given probability)

values seeded from the constants appearing in the query (i.e., from

the column seeding) or obtained by applying the seeding strategy

specific for join operations.

3.3.4 Search budget allocation. All search algorithms described

above can optimize only one single coverage target at one time. To

solve multiple coverage targets they have to be executed several

times, one run is executed independently for each coverage target.

Therefore, the total search budget SB given to test each query Q is

divided in equal manner among all coverage targets of the SQLFpc

coverage criterion [37]. In other words, the local budget assigned

for each coverage target is SL = SB/m, wherem is the total number

of targets for Q . If one of the coverage targets is satisfied without

fully consuming the local budget SL, the saved search time is used

to dynamically increase the budgets for the remaining uncovered

targets.

The coverage targets generated for a query differ from each other

for only few spare operations and predicates (i.e., they are very

similar). Therefore, test data covering one target may be very close

to covering other similar targets (according to their fitness func-

tions). For this reason, some solutions generated when optimizing

previous coverage targets are used to seed the initial population in

the GA.

4 OUR IMPLEMENTATION: EVOSQL

We provide EvoSQL, a tool implementing the database engine in-

strumentation, the fitness function and the three search algorithms

described in the previous section. EvoSQL takes as input a query, a

database schema, and a time budget, and returns test data for each

SQLFpc coverage target. Our implementation is available open

source and can be found in our GitHub [6] as well as in our appen-

dix [7].

EvoSQL internally uses HSQLDB1, a Java relational database

engine that supports the latest SQL standards and is able to run

in-memory. We modified the source code of the database engine

to instrument the physical query plan generated during a query

execution, which is used to calculate our fitness function.

To extract the coverage targets, our tool uses the webservice that

is made available by Tuya et al. [37]. The webservice receives as an

input the SQL query and the database schema and returns a list of

coverage targets in SQL format.

We disabled internal optimizations of HSQLDB as they would

reduce the amount of information we could collect. In particular,

we disabled (1) indexing, as it excludes rows that do not satisfy pred-

icates of indexed columns without individually evaluating them,

and (2) lazy AND/OR optimizations, i.e., short-circuit evaluation,

which makes the engine potentially not evaluate all predicates.

5 EMPIRICAL STUDY

The goal of this study is to evaluate the effectiveness of the three dif-

ferent search algorithms when generating test data for SQL queries.

More specifically, we investigate the following research questions:

• RQ1:What is the coverage achieved by the proposed search-

based algorithms?

• RQ2:What is the performance of the proposed search-based

algorithms?

• RQ3:What causes the different approaches to not achieve 100%

coverage?

1HSQLDB - http://hsqldb.org/
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Application
Total

Queries

Queries w/o

bad syntax

Unique

Queries

Final

Queries

Alura 554 494 258 249

EspoCRM 151 149 40 40

SuiteCRM 709 704 280 279

ERPNext 18,454 17,761 1,631 1,567

Total 19,868 19,108 2,209 2,135

Table 1: Queries collected per application

1/ 3/ 5/ 7/ 9/ 11/ 16/

Property 0 2 4 6 8 10 15 20 21+

Predicates 58 1389 495 100 33 11 27 16 6

Joins 1890 189 32 3 17 2 - 1 1

Subqueries 2052 78 3 1 - - 1 - -

Functions 1796 291 12 16 2 6 12 - -

Columns 60 1369 457 127 43 26 20 13 20

Targets - 656 382 408 346 114 107 51 71

Table 2: Number of queries according to their different prop-

erties

5.1 Context of the Study

We evaluate the different search algorithms on 2, 135 queries taken

from four software systems:

• Alura2 is a closed source Java e-learning platform that uses

Hibernate as layer between application and database. Hiber-

nate generates SQL queries based on incoming data requests.

• EspoCRM3 is an open source web application to manage

customer relationships (CRM). It uses a REST API backend

written in PHPwhich communicates with a MySQL database.

• SuiteCRM4 is another open source CRM. It is a fork of the

SugarCRM Community Edition, and is written in PHP. The

database it uses can be eitherMySQL,MariaDB or SQL Server.

For our evaluation, we used MySQL.

• ERPNext5 is an end-to-end business solution that manages

business information (ERP stands for Enterprise Resource

Planning). It is built on top of the Python & JavaScript frame-

work Frappé and uses MariaDB.

We chose these systems because they are database-centric, i.e., they

make intensive use of databases and, thus, contain a large number

of SQL queries. In addition, these systems are written in three dif-

ferent programming languages (Java, PHP, and Python), giving us a

more diverse sample of projects and queries, as the way a developer

writes a SQL query might be influenced by the overall ecosystem

of the chosen language (e.g., Java developers typically used Hiber-

nate to generate SQL queries). Apart from the industrial system,

all others can be found on GitHub, enabling other researchers to

reproduce our results.

2Alura- http://www.alura.com.br/.
3EspoCRM - https://www.espocrm.com.
4SuiteCRM - https://suitecrm.com.
5ERPNext - https://erpnext.com.

The queries were collected by executing the test suites of each

system and mining the generated database logs. Table 1 shows the

total number of queries collected per system as well as the number

of queries selected in our empirical evaluation. For the query selec-

tion, we analyzed all extracted queries to filter out non-executable

and duplicated queries. In particular, we filtered outHSQLDB and

SQLFpc non-compliant SQL, i.e., queries containing SQL con-

structs that are not supported by either HSQLDB or SQLFpc. We

also removed duplicated queries, i.e., similar queries differing by

some constant values. For example, the queries SELECT * FROM t

WHERE a = 1 and SELECT * FROM t WHERE a = 2 are similar, as

their only difference is a constant (1 and 2). As there is no difference

in solving these queries, we exclude duplicated queries. Finally, we

ignored queries with no predicates or other constraints, i.e., ,

queries with no conditional branches to be exercised, and thus,

without coverage targets.

In Table 2, we report the characteristics of the queries in our

dataset. As expected, the number of coverage targets of a query is

strongly correlated with the number of its properties (Spearman

correlation=0.95, p-value < 0.01). As queries with fewer properties

could be easier to solve than (complex) queries withmore properties,

we control our results by the number of coverage targets.

5.2 Configuration of the Search Parameters

The performance of search algorithms is influenced by a large num-

ber of parameters. To identify the best configuration of parameters

for the applied Genetic Algorithm (GA), we executed the algorithm

in a training set that contained 100 queries. We carefully devised

this training set to contain all SQL constructs that are supported by

HSQLDB, such as JOINs, WHEREs, subqueries, and string functions.

The training set is available in our online appendix [7]. To evaluate

various possible configurations, we opted for a set of values and

thresholds that are commonly used in applying evolutionary search

algorithms on similar software engineering problems [14, 32]. The

exercised configurations for different probabilities (in a total of 108

different combinations) are as follows: (1) NULL mutation (pnull ) =

{0.01, 0.10, 0.50}, (2) inserting, deleting or duplicating a row (pm ) =

{1/3, 1/6}, (3) row change mutation (pc ) = {1/n, 1}, where n is the

number of rows in the mutated table, (4) seeding = {0.01, 0.10, 0.50},

and (5) crossover = {0.0, 0.6, 0.75}.

For each combination of probabilities, we executed the approach

10 times and averaged the execution time of the complete training

set. At the end, we selected the configuration with the smallest

execution time. The best configuration we identified is as the fol-

lowing:

• Population size = 50.

• Tournament size = 4.

• NULL mutation (pnull ) = 0.1.

• Inserting, deleting, and duplicating (pm ) = 1/3.

• Row Change Mutation (pc ) = 1.

• Seeding = 0.5

• Crossover = 0.75.

• Cloning from previous target population = 0.6.

The time budget for the search process is 30 minutes. Finally, to

compare the biased random search with the GA, we set the same

probability for seeding individuals which is 0.5.
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5.3 Experimental Procedure

To answer RQ1, we executed the three approaches on the entire

dataset. Given the randomized natural of the algorithms, we execute

each of them 10 times. We perform 10 runs, the minimum suggested

in literature [2] and a common choice for expensive experiments [15,

28], which is our case. For each query, we average their coverage

across the 10 executions. We consider a query to be successfully

covered if its average coverage is 100%, meaning that all its targets

were covered in all 10 executions. If any target was not covered in

any of the executions, that query is considered to be not fully covered.

Such definition gives us the “worst-case view” on the results.

Throughout the research, we have experienced that some of the

coverage targets that are produced by SQLFpc are infeasible. In

most of these cases, this is due to some combination of predicates

that cannot be satisfied, e.g., A > 10 and A < 10. Such infeasible

targets may affect the analysis of our results, as a query would then

be marked as not succesfully covered. We manually analyzed each

target produced by SQLFpc, and removed them from our analysis.

In the end, we removed 127 out of the 12, 991 total coverage targets.

To answer RQ2, we analyze the average execution time per query

in each approach. Once more, we control the queries by their cov-

erage targets to analyze whether this has an effect on the execution

time. We provide descriptive statistics of each approach.

Finally, to answer RQ3, we train and understand a J48 decision

tree [31] that classifies whether a coverage target is likely to be

covered or not based on the results in RQ1, using R’s RWeka package.

We use the following SQL constructs as features to the model:

number of tables used, number of base predicates (does not include

AND, OR, and NOT operators), number of inner joins, number of

left joins, number of right joins, number of subqueries, number

of aggregate functions (MIN, MAX, SUM, AVG, COUNT), number

of non-aggregate functions (e.g., DATENOW, IFNULL), number of

columns, number of WHERE clauses, number of GROUP BY clauses,

number of HAVING clauses, number of string equality predicates,

number of date equality predicates, number of EXIST predicates,

number of LIKE predicates, number of IFNULL functions, and the

SQL query’s total number of coverage targets.

As classes (failed and successful coverage targets) are not evenly

balanced (there are more failing cases in the random search and

more successful cases in the biased and GA search), we apply

SMOTE (Synthetic Minority Over-sampling TEchnique) to gen-

erate extra data points for the smaller class [8]. This way, both

classes have equal size, which prevents the classifier from generat-

ing a biased model. Finally, to enable the model to be understood by

a human, we limit the number of leaves in the tree by 10. We also

report the accuracy of the generated models, i.e., , the percentage of

instances in our dataset that are correctly classified by the model.

The accuracy gives us an estimate of how much we can trust on

the model.

Replication package. We provide an open source replication pack-

age [7] that contains (1) our implementations of the three search-

based algorithms, (2) the R scripts used to generate the analysis,

and (3) the queries and schemas from all systems but the closed-

source application Alura, which enables researchers to replicate

and further compare with other tools.

6 RESULTS

6.1 RQ1: What is the coverage achieved by the
proposed search-based algorithms?

In Figure 2, we show a boxplot of average coverage that each search-

based approach achieved. In addition, in Table 3 we present the

number of queries each approach was able to completely cover,

controlled by the number of coverage targets. From this data, we

observe that:

The random search proved to be highly inefficient. Among

the 2,135 queries, the random baseline was able to completely cover

only 140 (6.5%) of them. It also achieved a partial median coverage

of only 33.75% among the remaining queries, and completely failed

(i.e., achieved 0% coverage) in 605 queries (28.33%). Its ability to

find a solution quickly decreases as the number of coverage targets

increases. In practice, random search was only able to completely

cover queries with less than 8 coverage targets. Still, the number

of times it fails is relatively high even in queries with less targets,

e.g., the random search was not able to solve any of the 21 queries

with 1 or 2 coverage targets in SuiteCRM, and only 34 out of 263

queries with 3 or 4 coverage targets in ERPNext.

The biased search presents good efficacy in queries with less

than 10 coverage targets. The biased search was able to com-

pletely cover 1,923 (90%) queries, had a partial median coverage of

79.76%, and completely failed only in 11 queries (0.05%). For queries

with less than 10 coverage targets, the biased search could only not

completely cover 66 out of 1,906 queries (3.46%). However, its effec-

tiveness also decreases as the number of coverage targets increases.

In particular, it rapidly decreases after 10 targets: it solved only 83

out of the 229 queries (36.24%) with more than 10 targets, and only

5 out of the 71 queries with more than 20 coverage targets.

The GA is the most effective approach. It completely covered

2,106 queries (98.64%), had a partial median coverage of 86.66%

among the remaining ones, and did not completely fail in any of the

queries in the dataset. The GA achieved high efficacy in queries with

less than 10 coverage targets, as it did not completely covered only 3

out of 1,906 queries. However, we still observe that its performance

decreases as the number of coverage targets increases. Still, the

decrease is much smaller than in the previous approaches. Even

in queries with more than 20 coverage targets, the GA was able to

solve 53 out of the 71 existing queries (74.64%).

6.2 RQ2: What is the performance of the
proposed search-based algorithms?

In Table 4, we show descriptive statistics of the average runtime of

each approach. In addition, in Figure 3, we show the average query

coverage given a time budget for the biased and GA approaches,

respectively. We do not present data for the random search as it

fails in most cases, and thus is not a competitor; the full data can

be found in our online appendix [7]. We observe that:

The biased search is the fastest for queries up to 5-6 coverage

targets. Both the GA and the biased search are able to solve queries

up to 6 coverage targets in less than one second. However, the biased

search is even faster than the GA for such cases, e.g., for queries
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# of targets

1 - 2 (656 queries) 3 - 4 (382 queries) 5 - 6 (408 queries) 7 - 8 (346 queries)

Random Biased GA Random Biased GA Random Biased GA Random Biased GA

Alura 2/14 13/14 14/14 11/51 50/51 51/51 0/33 33/33 33/33 0/38 35/38 37/38

SuiteCRM 0/21 21/21 21/21 7/66 66/66 66/66 1/117 115/117 117/117 1/45 45/45 45/45

ERPNext 61/621 621/621 621/621 34/263 262/263 263/263 21/240 230/240 240/240 2/260 242/260 259/260

EspoCRM 0/0 0/0 0/0 0/2 2/2 2/2 0/18 13/18 18/18 0/3 3/3 3/3

# of targets

9 - 10 (114 queries) 11 - 15 (107 queries) 16 - 20 (51 queries) 21+ (71 queries)

Random Biased GA Random Biased GA Random Biased GA Random Biased GA

Alura 0/24 18/24 24/24 0/46 25/46 46/46 0/25 8/25 24/25 0/18 3/18 15/18

SuiteCRM 0/19 17/19 18/19 0/7 5/7 6/7 0/2 0/2 2/2 0/2 0/2 2/2

ERPNext 0/70 53/70 70/70 0/53 33/53 50/53 0/21 4/21 18/21 0/39 2/39 29/39

EspoCRM 0/1 1/1 1/1 0/1 1/1 1/1 0/3 2/3 3/3 0/12 0/12 7/12

Table 3: Number of completely successfully covered SQL queries vs their total number.
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Figure 2: The average coverage for a SQL query achieved by

each search-based approach, after 10 executions. Figure bet-

ter visualized in colors.

with 1-2 coverage targets, the biased search has a median runtime

of 0.05 seconds, compared to 0.22 of the GA (a difference of 0.17s).

The GA becomes much faster than the biased search as the

number of coverage targets increase. As soon as the number of

coverage targets starts to increase, both the biased search and the

GA become slower. However, the runtime of the biased search grows

rapidly, while the GA’s runtime growth is less aggressive. As an

example, the median runtime for the biased search in queries with

9 to 10 coverage targets is 5.95 seconds while GA presents a median

of 1.48 seconds; for 11 to 15 coverage targets, the biased search

takes, on average, 74.04 seconds (a 12x increase when compared to

9-10 targets) while the GA takes 3.65 seconds (an increase of 2.4x).

A time budget of one minute is enough for the GA to com-

pletely cover simple queries and to cover at least 70% of com-

plex queries.A time budget of one minute is, on average, sufficient

for the GA to completely cover queries with 6 coverage targets or

less; for the biased search, the same occurs for queries with 4 or

less coverage targets. However, for complex queries, the given 30

0.7
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0 10 20 30
Biased

0.7
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GA
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Figure 3: The average coverage of a SQL query (Y axis) in

a given time budget (X axis, in minutes) controlled by the

number of coverage targets. Figure better visualized in col-

ors.

1st quantile Median 3rd quantile

Biased GA Biased GA Biased GA

1-2 0.03 0.15 0.05 0.22 0.07 0.37

3-4 0.09 0.2 0.15 0.28 0.36 0.46

5-6 0.17 0.3 0.34 0.41 0.56 0.58

7-8 1.23 0.59 2.25 0.88 7.64 1.45

9-10 1.26 0.9 5.95 1.48 100.80 2.49

11-15 7.47 2.21 74.04 3.65 844.10 8.80

16-20 83.1 7.33 844.00 15.69 1539.00 41.79

21+ 1027 81.36 1688.00 155.90 1800.00 581.90

Table 4: Descriptive statistics of the biased and GA ap-

proaches’ average runtime (in seconds).

minutes budget does not seem enough for the biased search. In par-

ticular, even after 30 minutes, queries with more than 20 coverage

targets achieve only 51% median coverage (not even appearing in

the Figure, due to our scale). On the other hand, the GA needs a

single minute to cover at least 70% of queries with more than 20

targets, and 90% in queries ranging from 16 to 20 targets. To achieve

90% of coverage in queries with more than 20 targets, the GA needs,

on average, 4 minutes.
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6.3 RQ3: What causes the different approaches
to not achieve 100% coverage?

The decision tree models generated after the random search, biased

search, and GA results, achieved an accuracy of 85.93%, 90.27%, and

91.88%, respectively. In the following paragraphs, we present and

discuss them:

The random search can not deal with JOINs and strings. The

model classifies any query with JOINs as a failing one. In addition,

even in queries with no JOINs, the existence of a single string

equality also makes the model to classify the target as failing.

The biased search suffers fromquerieswithmanypredicates.

The model classifies any query with more than 6 predicates as a

failing one. On the other hand, queries with 4 predicates or less

are classified as successful. When the query contains between 4

and 6 predicates, the model uses the number of joins as a way to

differentiate between them: the model classifies the targets with the

existence of a single JOIN as a failing one. Interestingly, the strings

feature does not appear in the model; we discusss more about this

in Section 7.

The size of the query impacts the GA. The classifier classifies

any query with less than 5 predicates or with more than 5 predicates

and less than 60 columns as successful. No other feature seemed

relevant to the model, meaning that the number of columns in a

query is what impacts the performance of the algorithm.

7 DISCUSSION

7.1 Biased search vs Genetic Algorithm

Our results indicate that biased search, although highly efficient for

simple queries, suffers in queries with many predicates. The num-

bers also show that, for simple queries, its runtime performance can

be even better than that achieved by the GA. This can be explained

in two ways: First, the experimental dataset contains several string

comparisons and non-complex LIKE commands, both of which can

be solved by seeding. Our dataset, however, did not contain more

complex string manipulation functions, such as concatenations, left,

right, length, reverse, or combinations of them. Although our data set

suggests that these operations do not often appear in SQL queries,

developers can use such functions.

After further investigation with manually created cases that did

actually contain such operations, we observed that the GA is the

only approach that is able to find solution in such cases. For example,

the queries SELECT * FROM product WHERE length(name) =

12 AND left(name, 5) = ’REFRI’ AND right(name, 7) =

’GERATOR and SELECT * FROM product WHERE reverse(name) =

’ROTAREGIRFER’ are not solved by the biased search. On the other

hand, given the instrumentation that we perform in the database

engine to guide the fitness function, the GA approach solves this

particular query in a few seconds. Although these queries are just

examples, they illustrate how the biased search is unable to solve

complex cases where guidance is needed.

Second, although the GA implementation has an initialization

step that is similar to what happens in the biased search, at every

iteration of the evolution, the GA spends time calculating the fit-

nesses, and applying the search operators. All these calculations

do not happen in the biased search. Thus, for less complex queries,

these extra actions that are taken by the GA explain the small

difference in the runtime performance.

It is also worth noticing that the inefficiency of GA can be due to

the single-target search strategy: GA is re-executed multiple times,

once for each coverage target. However, such a search strategy

often leads to an inefficient allocation of the search budget[14] as

the order by which the targets are optimized (over independent

runs) by GA strongly impacts the search effectiveness [14]. To ad-

dress this limitation, various multi-target evolutionary algorithms

have been proposed literature in the context of white-box unit test-

ing [14, 28, 29]. Therefore, better results may be obtained when

using these multi-target strategies, whose evaluation is part of our

future agenda.

7.2 Implications

We designed and implemented EvoSQL with the working developer

in mind, and anticipate the following usage scenarios:

(i) Query unit testing: As we saw in our experimental dataset,

queries can be highly complex, containing many predicates and

subqueries. EvoSQL provides developers with test data that com-

pletely exercises the query, enabling them to verify whether the

behavior of the query is exactly as expected.

(ii) Query regression testing: Support developers in refactor-

ing or evolving their queries, using data sets generated from an

earlier version as an oracle to ensure that the queries preserve the

desired behavior.

(iii) Integration testing: Support developers in writing inte-

gration tests, helping them to create the right data sets enabling

them to trigger and test interesting interactions between code and

queries.

The use of genetic algorithms for generating SQL test data opens

up interesting areas for future research. Our current approach,

based on HSQLDB, only exercises queries expressed by the stan-

dard SQL92 Specification. Different databases (e.g., MySQL, Oracle,

Postgres) provide their own functions, data types, and constructs,

which were not included in this study. Oracle, for example, provides

a data type to store XML. For each database-specific function or

data type, our proposed fitness function can be optimized with

tailored branch distances, mutation operators, and random data

generation.

From an integration perspective, dependencies on external infras-

tructures, such as databases and files, currently hinder the power of

automated test generation tools [15]. Researchers have worked on

achieving high branch coverage of source code that interacts with

such infrastructure by either generating database test data from

scratch or using previously existing databases [9, 12, 23, 27, 35].

However, we discuss in Section 8, they suffer from different lim-

itations. Our GA approach has no such restrictions, suggesting

that the interplay of our technique and source code test generation

could increase test coverage substantially.

Finally, we did not consider local search or memetic algorithms

(the combination of local and global search) [16]. Future research

may explore the impact of combining local search with the global

one on the coverage rate and performance.
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7.3 Threats to Validity

With respect to internal validity, (1) we collected the 2,135 from the

four systems after executing their existing test suites and extract-

ing the SQL queries from the database logs. Thus, our dataset is

limited by the queries that are actually exercised by their test suites.

However, as we see in Table 2, the final dataset has shown to be di-

verse, ranging from simple queries with few constructs to large and

complex queries with more than 20 columns and coverage paths.

(2) The analysis of the infeasible targets that were generated by

SQLFpc was performed manually. To reduce the risk of classifying

a feasible query as infeasible, the analysis were conducted by the

first two authors of this paper. (3) We defined the internal probabil-

ities of the GA approach after performing experimenting different

combinations of probabilities in a set of 100 tests. As testing all

possible probabilities would imply in an explosion of combinations,

we experimented a set of well-known intervals in the field [14, 32].

Nevertheless, there might be better configurations, and future work

needs to be conducted on this matter.

With respect to external validity, we analyzed 2,135 from four

different systems, three of them being open source and one of them

being an industry system. Although systems were different in their

programming languages as well as in their nature, more research

needs to be conducted to generalize our results to SQL queries in

any software system.

8 RELATEDWORK

Several approaches [4, 11, 21, 34] have been introduced by re-

searchers with similar goals to EvoSQL: generating test data or

test databases based on one or more SQL queries. These approaches

are based on constraint solving, which transform SQL queries to

constraints and apply constraints solvers to satisfy them. Therefore,

these approaches suffer from two main limitations, namely: 1) they

are not able to describe the entire SQL syntax as constraints, and

2) solvers may not be able to satisfy certain constraints, e.g., when

SQL queries involve common constructions such as subqueries and

String predicates (in our evaluation set, 84.1% of queries contained

such constructions).

EvoSQL takes a different approach and benefits from using an

existing, fully functioning SQL database engine. As a consequence,

all queries using standard SQL syntax are supported. Unfortunately,

to the best of our knowledge, none of the tools discussed in this

section are available for download and re-implementating them

would be a highly demanding task. This prevented us from doing an

empirical comparison between them and EvoSQL. In the following,

we discuss the existing approaches [4, 11, 21, 34] based on what is

reported in their papers, and highlight the differences between our

approach and them.

QAGrow, presented by Suárez-Cabal et al. [34], generates test

databases for a set of queries, using SQLFpc [37] as coverage cri-

terion. The approach generates test databases by formulating the

problem of generating data for a query as a constraint satisfac-

tion problem, in which the current database state is also taken

into account. They then use a SAT solver, Choco [20], to generate

the test data. They evaluated their approach on 215 queries taken

from a closed-source system. On these queries, they achieved 99.0%

SQLFpc coverage, in about two minutes time. However, QAGrow

does not solve queries which contain strings and subqueries.

Emmi et al. [11] describe an algorithm to automatically generate

test input for database applications. Their goal, however, is not

to test the SQL query itself, but maximizing branch coverage of

the program code under test. The approach also uses a constraint

solver, where the constraints are a combination of the path con-

straints in the program and the database constraints. Although the

approach handles string constraints (equality, inequality and LIKE),

it supports only FROM and WHERE clauses, but no JOINs.

Khalek et al. [21] present ADUSA, a tool that generates test data

for SQL queries. The paper uses the generated data to find faults

in database systems, such as MySQL and HSQLDB. Thus, they

generate repeated test data for the same SQL query. The approach

models SQL queries into Alloy [19] specifications. ADUSA supports

FROM, WHERE, GROUP BY and HAVING clauses. However, ADUSA only

supports natural joins (an implicit join between two tables, using

common column names) and cross joins (which have no predicates).

In addition, the Alloy solver is unable to solve string constraints.

The QAGen tool, presented by Binnig et al. [4], also generates

test databases with the goal of testing a DBMS. The approach uses

a constraint solver to generate test data. The model is built using

symbolic query processing, their extension of symbolic execution.

QAGen does not support subqueries, and solely supports JOINs

that use foreign key constraints in the JOIN predicate.

Finally, McMinn et al. [25, 26] have worked on generating tests

for the integrity constraints (e.g., “must not be NULL” constraint)

that may exist in a database schema using a search-based approach.

Their work complements ours as, in practice, developers must com-

pletely test their databases: this includes both the integrity of the

schemas as well as executed SQL queries.

9 CONCLUSION

The goal of this paper is to understand how to automatically gen-

erate test data systematically covering realistic SQL queries. To

achieve this goal, we model test data generation for SQL queries

as a search-based problem. We devise and evaluate three different

approaches, based on random search, biased random search, and

genetic algorithms. We define a fitness function that can be used to

steer such algorithms towards an optimal solution containing the

appropriate data to reach a given coverage target.

We offer an implementation of our approach in the open source

tool EvoSQL, which we use to evaluate the applicability of our

approach in practice. Using the 2,135 queries collected from real

life systems, we demonstrate that (1) EvoSQL can handle the full

SQL standard, including subqueries, JOINs, and string handling; (2)

achieves 100% coverage for 98% of our queries; and (3) manages to

do so in 2-15 seconds in most of the cases.

Our work paves the way for systematic and automated unit,

integration, and regression testing of SQL queries. Furthermore,

we anticipate interesting future research in terms of further opti-

mizing the performance and effectiveness of the genetic algorithm,

taking EvoSQL beyond standard SQL, making use of all integrity

constraints of the schema to speed up the search, and letting the ge-

netic algorithm take information obtained from the system’s source

code into account as well.

1229



Search-Based Test Data Generation for SQLQueries ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

REFERENCES
[1] Mohammad Alshraideh and Leonardo Bottaci. 2006. Search-based software test

data generation for string data using program-specific search operators. Software
Testing, Verification and Reliability 16, 3 (2006), 175–203.

[2] Andrea Arcuri and Lionel Briand. 2014. A hitchhiker’s guide to statistical tests
for assessing randomized algorithms in software engineering. Software Testing,
Verification and Reliability 24, 3 (2014), 219–250.

[3] James Bergstra and Yoshua Bengio. 2012. Random Search for Hyper-parameter
Optimization. J. Mach. Learn. Res. 13 (Feb. 2012), 281–305.

[4] Carsten Binnig, Donald Kossmann, Eric Lo, and M Tamer Özsu. 2007. QAGen:
generating query-aware test databases. In Proceedings of the 2007 ACM SIGMOD
international conference on Management of data. ACM, 341–352.

[5] Edmund K Burke, Graham Kendall, et al. 2005. Search methodologies. Springer.
[6] Jeroen Castelein, Maurício Aniche, Mozhan Soltani, Annibale Panichella, and Arie

van Deursen. 2018. EvoSQL. https://github.com/SERG-Delft/evosql. (2018). The
precise version used in this paper can be found at https://github.com/SERG-Delft/
evosql/releases/tag/icse.

[7] Jeroen Castelein, Maurício Aniche, Mozhan Soltani, Annibale Panichella, and
Arie van Deursen. 2018. Search-Based Test Data Generation for SQL Queries:
Appendix. https://www.zenodo.org/record/1166023. (2018). https://doi.org/10.
5281/zenodo.1166023

[8] Nitesh V Chawla. 2003. C4. 5 and imbalanced data sets: investigating the ef-
fect of sampling method, probabilistic estimate, and decision tree structure. In
Proceedings of the ICML, Vol. 3.

[9] David Chays, John Shahid, and Phyllis G Frankl. 2008. Query-based test genera-
tion for database applications. In Proceedings of the 1st international workshop on
Testing database systems. ACM, 6.

[10] Kalyanmoy Deb and Debayan Deb. 2014. Analysing mutation schemes for real-
parameter genetic algorithms. International Journal of Artificial Intelligence and
Soft Computing 4, 1 (2014), 1–28.

[11] Michael Emmi, Rupak Majumdar, and Koushik Sen. 2007. Dynamic test input
generation for database applications. In Proceedings of the 2007 international
symposium on Software testing and analysis. ACM, 151–162.

[12] Michael Emmi, Rupak Majumdar, and Koushik Sen. 2007. Dynamic test input
generation for database applications. In Proceedings of the 2007 international
symposium on Software testing and analysis. ACM, 151–162.

[13] Gordon Fraser and Andrea Arcuri. 2011. Evosuite: automatic test suite generation
for object-oriented software. In Proceedings of the 19th ACM SIGSOFT symposium
and the 13th European conference on Foundations of software engineering. ACM,
416–419.

[14] Gordon Fraser and Andrea Arcuri. 2013. Whole test suite generation. IEEE
Transactions on Software Engineering 39, 2 (2013), 276–291.

[15] Gordon Fraser and Andrea Arcuri. 2014. A large-scale evaluation of automated
unit test generation using evosuite. ACM Transactions on Software Engineering
and Methodology (TOSEM) 24, 2 (2014), 8.

[16] Gordon Fraser, Andrea Arcuri, and Phil McMinn. 2015. A memetic algorithm for
whole test suite generation. Journal of Systems and Software 103 (2015), 311–327.

[17] Hector Garcia-Molina, Jeffrey D Ullman, and Jennifer Widom. 2000. Database
system implementation. Vol. 654. Prentice Hall Upper Saddle River, NJ:.

[18] David E Goldberg and Kalyanmoy Deb. 1991. A comparative analysis of selection
schemes used in genetic algorithms. Foundations of genetic algorithms 1 (1991),
69–93.

[19] Daniel Jackson. 2002. Alloy: a lightweight object modelling notation. ACM
Transactions on Software Engineering and Methodology (TOSEM) 11, 2 (2002),
256–290.

[20] Narendra Jussien, Guillaume Rochart, and Xavier Lorca. 2008. Choco: an open
source java constraint programming library. In CPAIOR’08 Workshop on Open-
Source Software for Integer and Contraint Programming (OSSICP’08). 1–10.

[21] Shadi Abdul Khalek, Bassem Elkarablieh, Yai O Laleye, and Sarfraz Khurshid.
2008. Query-aware test generation using a relational constraint solver. In Proceed-
ings of the 2008 23rd IEEE/ACM international conference on automated software
engineering. IEEE Computer Society, 238–247.

[22] Bogdan Korel. 1990. Automated software test data generation. IEEE Transactions
on software engineering 16, 8 (1990), 870–879.

[23] Chengkai Li and Christoph Csallner. 2010. Dynamic symbolic database applica-
tion testing.. In DBTest.

[24] Phil McMinn. 2004. Search-based software test data generation: a survey. Software
testing, Verification and reliability 14, 2 (2004), 105–156.

[25] Phil Mcminn, Chris J Wright, and Gregory M Kapfhammer. 2015. The effective-
ness of test coverage criteria for relational database schema integrity constraints.
ACM Transactions on Software Engineering and Methodology (TOSEM) 25, 1 (2015),
8.

[26] Phil McMinn, Chris J Wright, Cody Kinneer, Colton J McCurdy, Michael Camara,
and Gregory M Kapfhammer. 2016. SchemaAnalyst: Search-based test data
generation for relational database schemas. In SoftwareMaintenance and Evolution
(ICSME), 2016 IEEE International Conference on. IEEE, 586–590.

[27] Kai Pan, Xintao Wu, and Tao Xie. 2011. Database state generation via dynamic
symbolic execution for coverage criteria. In Proceedings of the Fourth International
Workshop on Testing Database Systems. ACM, 4.

[28] A. Panichella, F. Kifetew, and P. Tonella. 2017. Automated Test Case Generation as
a Many-Objective Optimisation Problem with Dynamic Selection of the Targets.
IEEE Transactions on Software Engineering PP, 99 (2017), 1–1.

[29] Annibale Panichella, Fitsum Meshesha Kifetew, and Paolo Tonella. 2015. Refor-
mulating branch coverage as a many-objective optimization problem. In Software
Testing, Verification and Validation (ICST), 2015 IEEE 8th International Conference
on. IEEE, 1–10.

[30] Yuhua Qi, Xiaoguang Mao, Yan Lei, Ziying Dai, and Chengsong Wang. 2014. The
Strength of Random Search on Automated Program Repair. In Proceedings of the
36th International Conference on Software Engineering (ICSE 2014). ACM, New
York, NY, USA, 254–265.

[31] Ross Quinlan. 1993. C4.5: Programs for Machine Learning. Morgan Kaufmann
Publishers, San Mateo, CA.

[32] José Miguel Rojas, Gordon Fraser, and Andrea Arcuri. 2016. Seeding strategies in
search-based unit test generation. Software Testing, Verification and Reliability
26, 5 (2016), 366–401.

[33] S.N. Sivanandam and S.N. Deepa. 2007. Introduction to genetic algorithms. Springer
Science & Business Media.

[34] María José Suárez-Cabal, Claudio de la Riva, Javier Tuya, and Raquel Blanco.
2017. Incremental test data generation for database queries. Automated Software
Engineering (2017), 1–37.

[35] Kunal Taneja, Yi Zhang, and Tao Xie. 2010. MODA: Automated test genera-
tion for database applications via mock objects. In Proceedings of the IEEE/ACM
international conference on Automated software engineering. ACM, 289–292.

[36] Edward Tsang. 1993. Foundations of constraint satisfaction. Academic Press.
[37] Javier Tuya, María José Suárez-Cabal, and Claudio De La Riva. 2010. Full predicate

coverage for testing SQL database queries. Software Testing, Verification and
Reliability 20, 3 (2010), 237–288.

[38] Shin Yoo and Mark Harman. 2012. Regression testing minimization, selection
and prioritization: a survey. Software Testing, Verification and Reliability 22, 2
(2012), 67–120.

1230


