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Notations

R, Rn , Rn×n sets of real numbers, n component real vectors,

and n by n real matrices

N,N+ set of natural numbers and positive natural numbers

xT , X T transpose of vector x, matrix X

P = P T > 0 positive definite symmetric matrix

tr(·) trace of a matrix

In identity matrix of dimension n

‖ ·‖ Euclidean norm

ä end of proof or remark

:= equal by definition

sgn(·) sign of a number

diag{· · · } a block-diagonal matrix

λmin(·), λmax(·) minimum and maximum eigenvalues of a square matrix

ϕ(t−) left limit of ϕ(t ), i.e., ϕ(t−) = limτ→t−ϕ(τ)

L2,L∞ space of square-integrable, bounded functions

L r
2

set of square integrable functions with values

on Rr defined on [0,∞)

Class K
a function α : [0,∞) → [0,∞) is of class K

if it is continuous, strictly increasing, and α(0) = 0

Class KL
a function β : [0,∞)× [0,∞) → [0,∞) is of class KL

if it is of class K for each fixed t ≥ 0 and β(s, t ) decreases to 0

as t →∞ for each fixed s ≥ 0

Class K∞
a function γ: [0,∞) → [0,∞) is of class K∞ if it is continuous

strictly increasing, unbounded, and γ(0) = 0
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Chapter 1

Introduction

In this chapter, we first present the motivation of the research of this thesis according to
the following two main research directions: adaptive stabilization of switched linear systems
with parametric uncertainties; adaptive and robust stabilization of switched linear systems
with time delays. The research questions and main contribution of this work are given. After
that, the chapter is concluded with a brief outline of the thesis.

1.1 Motivation of the research

Figure 1.1: The framework of time-driven switched systems.

Switched systems are a special class of hybrid systems that consists of collections of sub-
systems (or modes) with continuous dynamics, and a rule to regulate the switching behav-
ior between them, called switching law or signal. Based on the nature of the switching sig-
nals, switched linear systems can be generally categorized into two classes: state-dependent
switched systems and time-driven switched systems. In this thesis, we focus on switched
systems with time-driven switching signals, cf. Fig. 1.1, due to their applications to a broad
range of complex physical systems whose dynamics changes from time to time, such as net-
worked control systems [28], automotive systems [62], smart energy systems [139], fluid mix-
ing [27], flight control systems [91]. To be specific, the application of time-driven switched
systems to a flight control system is elaborated [91]: an aircraft system tends to display dif-
ferent dynamics at different operating points specified by the vehicle speed and altitude; the
switch of operating point can not be activated too often in order to avoid instability. When

1



2 1.1 Motivation of the research

controlling such complex systems, parameter uncertainties and external disturbances are
regarded as crucial undesired factors that should be addressed. This creates additional diffi-
culties when designing control and switching laws. In general, there are two main families of
techniques dealing with controller design of systems with parameter uncertainties and dis-
turbances: robust control and adaptive control. Robust control methods with fixed control
parameters are used to guarantee system stability given that the parametric uncertainties
or disturbances are confined within a known compact set, while adaptive control methods
with adjustable control parameters can be adopted to deal with uncertainties and distur-
bances within a possibly unknown compact set. In addition, time delay is another crucial
factor of complex systems that needs investigation. In view of this, this thesis is organized
in two parts: adaptive control of switched linear systems with parameter uncertainties and
disturbances; robust and adaptive stabilization of switched linear systems with time delays.

1.1.1 Adaptive stabilization of switched linear systems

To date, productive research has been conducted on the fundamental problems of stability
and stabilization of time-driven switched systems [9, 21, 33, 37, 38, 63, 77, 78, 94, 140]. Two
families of switching laws have been mainly considered: dwell time and average dwell time.
For dwell time switching, it is imposed that the switching interval between two consecutive
discontinuities of the switching signal is larger than a sufficiently large constant. For average
dwell time switching, the switching interval between two consecutive discontinuities of the
switching signal is sufficiently large in an average sense: this means that very short switching
intervals are allowed provided that they are compensated by long ones. It is clear that aver-
age dwell time switching relaxes the concept of dwell time switching. Subsequently, conser-
vativeness1 of average dwell time switching has been further decreased by a new switching
strategy proposed in [154]: mode-dependent average dwell time switching. The peculiarity
of this switching strategy consists in exploiting the information of every mode, such as the
exponential rate of the Lyapunov function associated to each mode.

On the other hand, being built upon the basis of the stability results for switched systems,
research on uncertain switched systems using adaptive techniques is not equally mature. It
is well recognized that a single robust controller may lead to very conservative performance
for a large uncertainty set [60, 79, 96]. Therefore, when the uncertainties are polytopic, us-
ing a family of robust controllers has been proposed to improve the performance of a single
controller [1]. As a complement to robust control, adaptive approaches for non-switched
uncertain systems have been investigated to improve the performance of robust approaches
over large non-polytopic uncertainties [5, 51, 75, 103]. However, adaptive control of uncer-
tain switched systems is more challenging than robust control. This is because adaptive
closed-loop systems are intrinsically nonlinear: not only an adaptive law should be devel-
oped to estimate the unknown parameters, but also a switching law should be carefully de-
signed to guarantee the stability of the closed-loop system. Recently, some research has been
conducted on adaptive control of uncertain switched linear systems, i.e., switched linear
systems with state-dependent switching laws [23–26, 46], and switched linear systems with
time-driven switching laws [91, 117, 118]. These two works [25] and [91] can be cited as rep-
resentative research for uncertain state-dependent switched linear systems and uncertain
time-driven switched linear systems, respectively. For state-dependent switched systems,

1In this work, the term conservativeness is adopted to indicate the lower bound on the length of the switch-
ing intervals for which stability can be guaranteed
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di Bernardo et al. [25] developed an adaptive law based on the so-called minimal control
synthesis algorithm, which can guarantee that the plant states asymptotically track a ref-
erence trajectory. For time-driven switched systems, Sang and Tao [91] proposed a family
of adaptive laws with parameter projection and a switching law based on dwell time, which,
however, cannot guarantee asymptotic stability of the tracking error if no common Lyapunov
function exists. Instead, only a “mean-square” performance of the tracking error during a fi-
nite time interval was presented. The problem of mean-square performance is that it does
not give information on learning of transient performance, which are important in adap-
tive control loops. In light of this, the first motivation of this thesis stems from the following
question:

Question 1: Can we reduce the conservativeness of the switching laws based on dwell
time in [91] and establish bounds on the transient performance and steady-state perfor-
mance of the tracking error instead of the mean-square performance?

Furthermore, since the well-known results of adaptive control of non-switched linear
systems guarantee asymptotic stability of the tracking error and convergence of the parame-
ter estimates to real parameters with the persistent excitation condition [103], one will recog-
nize the existence of a theoretical gap between adaptive control of switched linear systems
and adaptive control of non-switched linear systems [91]. In fact, for switched linear sys-
tems, asymptotic stability and convergence to the actual parameters have been guaranteed
only in the special case of having a common Lyapunov function. Therefore, we target the
second fundamental question as follows:

Question 2: Can we develop an adaptive law and a switching law for uncertain switched
linear systems to achieve the same asymptotic stability and parameter convergence results
as adaptive control of classical non-switched systems?

It is well-established that small disturbances in non-switched systems may lead to insta-
bility of the closed-loop systems if robustification techniques, such as parameter projection
and leakage, are not employed [44]. In this regard, to preserve stability of switched systems
subject to disturbances, modification methods for the adaptive laws of non-switched sys-
tems should be extended to the adaptive laws of switched systems. This gives rise to the
following question:

Question 3: How to robustify adaptive laws for switched linear systems?

1.1.2 Adaptive and robust stabilization of switched linear systems with
time delays

Time-varying delay of the system state is a common problem in switched systems. Time-
varying delays cause the state of a system to evolve based on some delayed information [34].
Increasing focus has been given on stability and stabilization of switched systems with time-
varying delays [17, 20, 28, 53, 66, 70, 98, 99, 105, 113, 146], where the well-known Krasovskii
and Razumikhin techniques for non-switched systems are extended to address time-varying
delays of switched systems. However, when switched systems are subject to parameter un-
certainties, the aforementioned methods show some limitations when applied to adaptive
stabilization of switched time-delay systems. On the one hand, the Krasovskii technique re-
quires derivatives of the time-varying delays to be bounded, i.e., time-varying delay should
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be continuous at the switching instants [58, 98]. On the other hand, even if the Razumikhin
technique does not show the drawback of the Krasovskii technique, its application in an
adaptive stabilization setting is not satisfactory: the existence of an adaptive controller can-
not be guaranteed [81, 156]. In view of these limitations, a question automatically arises:

Question 4: Can we develop a new technique that can overcome the limitations of the
Krasovskii and Razumikhin techniques in the setting of adaptive stabilization of uncertain
switched linear systems subject to time-varying delays?

Robust control of switched systems has been also attracting a lot of attention [42, 80, 87,
144, 147, 158]. However, these results mainly focus on an ideal family of switched systems,
in which the controller mode switches synchronously with the system mode. In practice, for
example, in networked control systems, where the controller communicates with the sys-
tem through a communication channel, there exist a new type of time delays arising from
switching behavior, called switching delays, between the activation of the system mode and
the activation of its corresponding controller. This will lead to mismatch between system
modes and controller modes. For switched linear systems with switching delays, some re-
sults on stability and robust stabilization are presented in [30, 106, 121, 143, 144, 152]. As a
fundamental index of robust performance, the L2 gain of switched systems with switching
delays has been studied in [56, 68, 107, 125, 142, 144, 151]: however, for these systems, the
classic notion on non-weighted L2 gain must be relaxed to a weighted L2 gain with an expo-
nential forgetting factor. This leads to a big inconsistency in the theoretical results of the L2

gain of non-switched linear systems and of switched linear systems with switching delays.
To this end, the following question is proposed:

Question 5: Can we design a robust controller for switched linear systems subject to
switching delays that achieves a non-weighted L2 gain?

1.2 Research goals and main contributions

The research goals of this thesis focus on developing new control schemes to handle un-
certainties and disturbances in switched linear systems. The main contribution consists in
filling some theoretical gaps between adaptive and robust stabilization of switched linear
systems and of non-switched linear systems, which are listed in the following:

• Adaptive tracking of switched linear systems using extended dwell time and average
dwell time

We extend the results in [91] using extended notions of dwell time and of average dwell
time switching: mode-dependent dwell time and mode-dependent average dwell time
switching, respectively. This gives rise to less conservative switching signals. Further-
more, to address the cases in which the next subsystem to be switched to is known,
we propose a new time-dependent switching scheme: mode-mode-dependent dwell
time switching, which not only exploits the information of the current subsystem, but
also of the next subsystem.

• Adaptive asymptotic tracking of switched linear systems

An adaptive law for switched linear systems with parametric uncertainties is intro-
duced, which closes the theoretical gaps between adaptive control of non-switched
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linear systems and of switched linear systems. The proposed adaptive law and switch-
ing law based on dwell time guarantee asymptotic convergence of the tracking error
to zero and, with a persistent exciting reference input, convergence of parameter esti-
mates to nominal parameters asymptotically.

• Robust adaptive tracking of switched linear systems

The adaptive law for switched linear systems is modified using the ideas of parame-
ter projection and leakage method, depending on the available a priori information:
when the bounds of uncertain parameters are known, parameter projection is adopted;
otherwise, the leakage method is used. The resulting adaptive closed-loop system is
shown to be globally uniformly ultimately bounded in the presence of parametric un-
certainties and external disturbances.

• Adaptive stabilization of switched linear systems with time-varying delays

We develop a new adaptive design for uncertain switched linear systems that can ad-
dress the limitations of the Krasovskii and Razumikhin techniques and handle discon-
tinuities in the time-varying delays. In particular, a stability condition is developed
to deal with discontinuities of multiple time-varying delays. By virtue of the stability
condition, a family of adaptive laws and a switching law are developed.

• Robust stability and stabilization of switched linear systems with switching delays

We introduce a Lyapunov function to study switched linear systems with switching
delays: this Lyapunov function is continuous at switching instants and discontinu-
ous at the instant when the controller and the system mode are matched. Using this
Lyapunov function, a novel robust controller is designed that can guarantee a non-
weighted L2 gain for switched linear systems with switching delays.

1.3 Thesis outline

This thesis consists of two parts. Part I focuses on adaptive tracking control of uncertain
switched linear systems: here, adaptive control mechanisms to address the tracking problem
based on different switching laws are derived. In Part II, uncertain switched linear systems
with different kinds of delays are considered, and adaptive and robust stabilization meth-
ods are developed. The organization and the relationship between different chapters of this
thesis are shown in Fig. 1.2. The content of each chapter is briefly presented as follows.

Chapter 2: The background on control of uncertain switched linear systems is intro-
duced. Specifically, some basic definitions and stability results about switched linear sys-
tems that are exploited to develop the control mechanisms are recalled. Moreover, repre-
sentative stability results for switched linear systems subject to switching delays and time
delays are presented. We also revisit the basic ideas of adaptive control of uncertain non-
switched linear systems and the state of the art on adaptive control of uncertain switched
linear systems.

Chapter 3: A family of new adaptive control schemes for uncertain switched linear sys-
tems is developed based on different switching laws that exploit the information of every
subsystem, namely mode-dependent dwell time, mode-mode dependent dwell time, and
mode-dependent average dwell time switching. These switching laws allow even shorter
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Figure 1.2: Structure of this thesis.

switching intervals than dwell time and average dwell time switching, respectively. Global
uniform ultimate boundedness of the switched adaptive closed-loop system is shown, and
the bounds on transient and steady-state performance are also presented.

Chapter 4: A Lyapunov function that is decreasing during the intervals between two con-
secutive switching instants and non-increasing at the switching instants, is exploited to de-
velop a novel model reference adaptive law for uncertain switched linear systems. With this
new Lyapunov function, asymptotic stability of the switched adaptive closed-loop system is
established for the first time, i.e., the tracking error converges to zero asymptotically, even
when no common Lyapunov function for the reference models exists. Furthermore, if the
reference input is persistently exciting, we can also guarantee that the parameter estimates
of the state-feedback controller converge to the nominal parameters asymptotically. The
results in this chapter close an important theoretical gap between adaptive control of non-
switched and of switched linear systems.

Chapter 5: In this chapter, the results about adaptive control of switched linear systems
in Chapter 3 are extended in the presence of disturbances by developing two robust adap-
tive control schemes for switched linear systems, namely, the parameter projection method
and the leakage method. The switched adaptive closed-loop system is shown to be globally
uniformly ultimately bounded, and ultimate bounds for both cases are also given.
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Chapter 6: This chapter introduces a new adaptive design for uncertain switched linear
systems that can handle impulses of states and discontinuities of time-varying delays. A
stability condition is developed with which a new switched adaptive controller is proposed.
With the designed adaptive law and a switching law based on mode-dependent dwell time
switching, global uniform ultimate boundedness of the closed-loop switched linear system
can be guaranteed.

Chapter 7: A Lyapunov function is proposed to study switched linear systems with switch-
ing delays. The major idea behind the novel Lyapunov function is the consistency with the
fundamental property of switched systems with switching delays. This Lyapunov function is
continuous at switching instants and discontinuous at the instant when the controller and
the system mode are matched. The structure of the Lyapunov function is exploited to de-
velop novel stability criteria for global asymptotic stability of switched linear systems with
switching delays. Most importantly, a non-weighted L2 gain result is established in presence
of external disturbances, whereas the state-of-the-art Lyapunov functions are not shown to
be capable of guaranteeing a non-weighted L2 gain.

Finally, conclusions and recommendations for future work are discussed in Chapter 8.





Chapter 2

Background on Stability and Adaptive
Control of Switched Linear Systems

In this chapter, a brief introduction on stability results about switched linear systems in-
volved in the subsequent chapters of this thesis under slow switching is presented. In ad-
dition, the general mathematical models of and stability analysis of switched linear systems
with switching delays and time-varying delays are introduced. The main results about adap-
tive tracking control of classic non-switched linear systems are revisited and compared with
state-of-the-art results about adaptive control of switched linear systems.

2.1 Stability of switched linear systems under slow switching

In this section, the existing stability conditions of switched linear systems exploited in this
thesis without and with considering time delays are presented, respectively.

2.1.1 Switched linear systems without time delays

Figure 2.1: The framework of autonomous switched linear systems.

A time-driven switched linear system, as shown in Fig. 2.1, can be mathematically de-
scribed as

ẋ(t ) = Aσ(t )x(t ), t ≥ 0 (2.1)

9
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where x(t ) ∈ Rn is the vector of state variables at time t , the switching signal σ(t ) : [0,∞) →
M := {1,2 . . . , M } is a piecewise function with M denoting the number of subsystems, and
Ap ∈Rn×n , p ∈ M , is the dynamics matrix.

First, the following definition of stability is given.

Definition 2.1 [60] [Global asymptotic stability] The switched linear system (2.1) is globally
asymptotically stable if there exists a class KL function β such that for all initial conditions
and for a given switching signal σ the solution of (2.1) satisfies the inequality

|x(t )| ≤β(|x(0)|, t ), t ≥ 0. (2.2)

In addition, we use the notation {(σ(ti ), ti )| i ∈N} to represent the set of mode-switching
instant pairs. The sequence of switch-in instants (entering instants) of subsystem p, p ∈
M , is defined by

{
t pin

l | l ∈N+}
and the sequence of switch-out instants (exiting instants) of

subsystem p, p ∈ M , is defined by
{

t pout

l+1 | l ∈N+}
. Then, the length of the l th active interval

of subsystem p is t pout

l+1 − t pin

l for all l ∈N+.
First, the well-known result about asymptotic stability of switched systems based on mul-

tiple Lyapunov function is introduced, which will be used to develop stability results using
slow switching, i.e., dwell time and average dwell time switching.

Theorem 2.1 [60] Let (2.1) be a finite family of globally asymptotically stable systems, and
let Vp , p ∈ M , be a family of corresponding radially unbounded Lyapunov functions. If there
exists a family of positive definite continuous functions Wp , p ∈ M , with the property that for
every pair of switching instants (ti , t j ), i < j , such that σ(ti ) =σ(t j ) = p ∈ M and σ(tk ) 6= p for
ti < tk < t j , we have

Vp (x(t j ))−Vp (x(ti )) ≤−Wp (x(ti )).

Then, the switched linear system (2.1) is globally asymptotically stable.

Theorem 2.1 basically shows that when switching to subsystem p ∈ M , the value of its
corresponding Lyapunov function Vp at one switch-in instant of subsystem p is smaller than
that at the previous switch-in instant of subsystem p, as shown in Fig. 2.2. However, this
stability result is not easy to be used to develop the slow switching laws because it is difficult
to impose the decreasing property for each Lyapunov function Vp at nonsuccessive switch-
ing instants [33]. In this regard, the stability condition in Theorem 2.1 is degenerated to the
following stability condition.

Theorem 2.2 [101] Let (2.1) be a finite family of globally asymptotically stable systems, and
let Vp , p ∈ M , be a family of corresponding radially unbounded Lyapunov functions. Suppose
that for every pair of switching instants (ti−1, ti ), such that σ(ti−1) = q and σ(ti ) = p with
p, q ∈ M and p 6= q, we have

Vq (x(ti−1))−Vp (x(ti )) < 0.

Then, the switched linear system (2.1) is globally asymptotically stable.

Theorem 2.2 essentially claims that when switching from subsystem q to subsystem p at
the switching instant ti , the value of its corresponding Lyapunov function Vp (ti ) is smaller
than the value of the Lyapunov function Vq (ti−1), as shown in Fig. 2.3. This stability con-
dition will be formulated in Lemma 2.1–Lemma 2.2 to design the switching laws based on
dwell time and average dwell time. Let us first introduce the notion of dwell time switching.
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Figure 2.2: Stability condition I: when switching to subsystem 1 at t4, the value of its corre-
sponding Lyapunov function V1 at the switch-in instant t4 of subsystem 1 is smaller
than that at the previous switch-in instant t2 of subsystem 1. This stability condi-
tion can be applied to subsystem 2 as well.

Figure 2.3: Stability condition II: when switching subsystem 3 to subsystem 1 at the switching
instant t2, the value of its corresponding Lyapunov function V1(t2) is smaller than
the value of the Lyapunov function V3(t1) of subsystem 3.
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Definition 2.2 [60] [Dwell time] Switching signals are said to belong to the dwell-time admis-
sible set D(τd) if there exists a number τd > 0 such that ti+1 − ti ≥ τd holds for all i ∈N+. Any
positive number τd, for which these constraints hold for all i ∈N+, is called dwell time.

An example of a switching signal based on the dwell time switching is presented in Fig.
2.4 where the switching signal admits a dwell time td.

Figure 2.4: A dwell time switching signal.

In what follows, based on the dwell time switching, a well-known result about asymptotic
stability of switched linear system (2.1) is introduced using multiple Lyapunov functions [9,
60]. Note that for switched linear systems, quadratic multiple Lyapunov functions Vp (x) =
xT Pp x, p ∈ M are adopted typically where Pp is a symmetric positive definite matrix.

Lemma 2.1 [60] Suppose that there exist C 1 functions Vp : Rn → R, p ∈ M , two class K∞
functions α1 and α2 and two positive numbers λ> 0 and µ≥ 1 such that we have

α1(|x|) ≤Vp ≤α2(|x|) (2.3)

and
∂Vp

∂x
Ap x ≤ −2λVp (x)

Vp (x) ≤ µVq (x)
(2.4)

for all p, q ∈ M with p 6= q. Then, the switched linear system (2.1) is globally asymptotically
stable for any switching signal σ(·) with dwell time

τd > lnµ

2λ
. (2.5)

Note that the dwell time (2.5) depends on two key elements: the rate of exponential de-
crease of the Lyapunov function in between two consecutive switching instants and the finite
positive increment of the Lyapunov functions at the switching instants. As one may notice,
the rate λ0 and the increment µ are common to all subsystems p without considering pos-
sibly different dynamics of different subsystems. This may give rise to conservative results:
a less conservative result than dwell time is proposed in [11, 14, 22], which incorporates the
dynamics information of each subsystem, for example the rate of the exponential decrease
of the Lyapunov function associated to each subsystem (mode). This extended dwell time is
called mode-dependent dwell time, and it is defined as follows.

Definition 2.3 [22] [Mode-dependent dwell time] Switching signals are said to belong to the
mode-dependent dwell-time admissible set D(τdp ) if for any p ∈ M there exists a number
τdp > 0 such that t pout

l+1 − t pin

l ≥ τdp holds for all l ∈ N+. Any positive number τdp , for which
these constraints hold for all l ∈N+, is called mode-dependent dwell time.

Using the concept of mode-dependent dwell time, the following stability result is given.
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Lemma 2.2 [11, 22] Suppose that there exist C 1 functions Vp :Rn →R, two class K∞ functions
α1 and α2 and a family of positive numbers λp > 0 and µp ≥ 1 such that we have

α1(|x|) ≤Vp ≤α2(|x|) (2.6)

and
∂Vp

∂x
Ap x ≤ −2λpVp (x)

Vp (x) ≤ µpVq (x)
(2.7)

for all p, q ∈ M with p 6= q. Then, the switched linear system (2.1) is globally asymptotically
stable for any switching signal σ(·) with mode-dependent dwell time

τdp > lnµp

2λp
. (2.8)

Since pairs of positive numbers λp and µp representing information of every subsystem are
used, the mode-dependent dwell time (2.8) admits a larger class of switching signals than
dwell time (2.5) does. As an alternative way to reduce the conservativeness of (2.5), a stability
condition based on dwell time switching has been proposed without explicitly involving the
aforementioned two crucial properties of the Lyapunov functions. Notably, to date, Lemma
2.3 gives rise to the least conservative result about asymptotic stability of switched linear
system with dwell time switching.

Lemma 2.3 [33] Assume that for τd > 0, there exists a collection of symmetric positive definite
matrices P1, . . . ,PM ∈Rn×n such that

AT
p Pp +Pp Ap < 0, ∀p ∈ M

and
e AT

p τd Pq e Apτd −Pp < 0, ∀p 6= q ∈ M . (2.9)

Then, the switched system (2.1) is globally asymptotically stable for any switching signal σ(·)
with dwell time τd.

Another well-known slow switching law is based on average dwell time that can relax
the concept of dwell time by allowing fast switchings provided that they are compensated
by sufficiently slow switchings. In other words, the dwell time (2.5) is realized in an average
sense. In what follows, the definition of average dwell time is introduced.

Definition 2.4 [60] [Average dwell time] Let us denote the number of discontinuities of a
switching signal σ(·) over an interval (t ,T ) by Nσ(T, t ). We say that σ(·) has average dwell
time τa if there exist two positive numbers N0 and τa such that

Nσ(T, t ) ≤ N0 + T − t

τa
. (2.10)

The switching signal admitting a dwell time td in Fig. 2.4 is relaxed into a switching sig-
nal admitting an average dwell time ta, as shown in Fig. 2.5, which shows that some of the
switching intervals are allowed to be smaller than td and they are compensated by longer
switching intervals.
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Figure 2.5: The switching signal based on dwell time in Fig. 2.4 is relaxed to the switching
signal based on average dwell time.

Similar with dwell time, the concept of average dwell time can be relaxed by incorpo-
rating information of each subsystem, which gives rise to the concept of mode-dependent
average dwell time as follows.

Definition 2.5 [31, 154] [Mode-dependent average dwell time] For a switching signal σ(·),
let Nσp (t1, t2), t2 ≥ t1 ≥ 0, p ∈ M , be the number of times that subsystem p is activated over the
interval [t1, t2) and let Tp (t1, t2) denote the total running time of subsystem p over the interval
[t1, t2], p ∈ M . We say that σ(·) has a mode-dependent average dwell time (MDADT) τap if for
any p ∈ M there exist positive numbers N0p and τap such that

Nσp (t1, t2) ≤ N0p + Tp (t1, t2)

τap
, ∀t2 ≥ t1 ≥ 0 (2.11)

where N0p are called mode-dependent chatter bounds.

The global asymptotic stability results about switched linear system (2.1) given by Lemma
2.1 based on dwell time and by Lemma 2.2 based on mode-dependent dwell time can di-
rectly be applied to average dwell time and mode-dependent average dwell time [154]. It is
important to mention that different selections of N0 and N0p do not influence the asymp-
totic stability, but only affect the overshoot of the switched systems: a large N0 or N0p leads
to a large overshoot [60].

Beyond the scope of the slow switching schemes using (mode-dependent) dwell time and
(mode-dependent) average dwell time, a less conservative stability analysis for switched sys-
tems have been introduced in [50] which does not involve bounds on the number of switches
over time intervals. However, the price paid for the improvement over the slow switching
schemes is the significant increase of computational complexity.

As a final remark, since the aforementioned stability results, without exception, stem
from quadratic Lyapunov functions using constant symmetric positive definite matrices, a
positive number µ> 1 is bound to be involved explicitly (cf. Lemma 2.1 and Lemma 2.2) or
implicitly (cf. Lemma 2.3) given that no common Lyapunov function exists. In other words,
the Lyapunov functions increase at some switching instants, which will be shown to be the
very obstacle in Chapter 4 that prevents adaptive control of switched systems from achieving
asymptotic stability.

2.1.2 Switched linear systems with time-varying delays

Switched systems with time-delay states are natural generalizations of switched systems, as
time-varying delay of the system state is a common problem in hybrid systems [29, 55, 65, 98,
105, 113, 146, 149, 153]. Switched linear system with time-varying delays can be described
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as follows
ẋ(t ) = Aσ(t )x(t )+Eσ(t )x(t −d(t )),

x(θ) = φ(θ), θ ∈ [−τ,0]
(2.12)

where Ap ∈Rn×n , Ep ∈Rn×n , φ ∈Rn is the initial function, and τ := supt>t0
d(t ).

Stability analysis of switched linear systems (2.12) with time-varying delays has been in-
tensively investigated [17, 39, 52, 53, 66, 98, 99, 105]. Two families of techniques for non-
switched time-delay systems, which are Krasovskii-based techniques and Razumikhin-based
techniques, have been extended by incorporating multiple Lyapunov functions. The follow-
ing widely-used Lyapunov-Krasovskii function was proposed in [98]

V (t ) = xT (t )Pσ(t )x(t )+
∫ 0

−τ

∫ t

t+θ
ẋT (s)eα(s−t )Zσ(t )ẋ(s)d sdθ+

∫ t

t−d(t )
xT (s)eα(s−t )Qσ(t )x(s)d s

(2.13)
where Pp , Zp , and Qp ∈ Rn×n , ∀p ∈ M are symmetric positive definite matrices. Making use
of the Lyapunov-Krasovskii function (2.13) and of its revised ones, various stability results
about switched time-delay linear system have been developed [17, 39, 52, 53, 66, 98, 99, 105].
One of the well-established stability results is introduced as follows.

Theorem 2.3 [98] For a given positive number α> 0, suppose that there exist symmetric pos-
itive definite matrices Pp ,Qp , Zp ,

X =
[

X p
11 X p

12

∗ X p
22

]
≥ 0 (2.14)

and any matrices Yp , Tp , p ∈ M with appropriate dimensions and a positive number µ ≥ 1
such that 

ϕ11 ϕ12 τAT Z

∗ ϕ22 τE T Z

∗ ∗ −τZ

< 0,


X p

11 X p
12 Yp

∗ X p
22 Tp

∗ ∗ e−ατZ

≥ 0 (2.15)

where
Pp ≤ µPq , Qp ≤µQq , Zp ≤µZq

ϕ
p
11 = AT

p Pp +Pp Ap +Yp +Y T
p +Qp +τX p

11 +αPp

ϕ
p
22 = −Tp −T T

p − (1−d)e−ατQp +τX p
22.

Then, the switched linear system with time-varying delays (2.12) is globally asymptotically
stable for any switching signal σ(·) with average dwell time

Ta > T ∗
a = lnµ

α
. (2.16)

In what follows, the Razumikhin-based result about asymptotic stability of system (2.12)
is presented. First, an introduction of Lyapunov-Razumikhin function for non-switched
time-delay systems is given in the following lemma.

Lemma 2.4 [131] Suppose u,υ,ω,P : R+ →R+ are continuous, non-decreasing functions with
u(0) = υ(0) = 0, u(s), υ(s), ω(s), P (s) positive for s > 0, P (s) > s, and υ(·) strictly increasing. If



16 2.1 Stability of switched linear systems under slow switching

there exists a continuous function V :R×Rn →R such that

u(‖x(t )‖) ≤V (t , x) ≤ υ(‖x(t )‖), t ≥ 0, x ∈Rn (2.17)

and
V̇ (t , x(t )) ≤−ω(‖x(t )‖) (2.18)

if
V (t +θ, x(t +θ)) <P (V (t , x(t ))) (2.19)

then, the general retarded functional differential equation ẋ(t ) = f (t , x(t ), x(t + θ)) is uni-
formly asymptotically stable.

By applying Lemma 2.4 to switched time-delay linear systems, the multiple Lyapunov func-
tions Vp = xT Pp x, p ∈ M are used, where the following conditions hold

κp‖x‖2 ≤Vp ≤ κ̄p‖x‖2Vp (t +θ, x(t +θ)) <Pp (Vp (t , x(t )))

and
V̇p ≤−xT Sp x

with a family of positive numbers κp , κ̄p , Pp , and symmetric positive definite matrices Sp

and Pp . Define λ := maxp∈M κ̄p /κp , and µ := maxp∈M κ̄p /ωp , where ωp > 0 is the smallest
singular value of Sp for all p ∈ M . Then, the asymptotic stability result about switched linear
systems with time delays is derived in [131] as follows.

Theorem 2.4 [131] Let the dwell time be defined by τd := T ∗+τ, where

T ∗ :=λµ
⌊
λ−1

P̄ −1
+1

⌋
with P̄ := minp∈M Pp > 1, b·c being the floor integer function. Then, the switched time-delay
system (2.12) is globally asymptotically stable for any switching signal σ(·) ∈ D(τd).

It is apparent that the stability results based on the Lyapunov-Krasovskii function need
continuity of the time-varying delays, since the derivative of the time-varying delays is in-
volved. On the other hand, the Lyapunov-Razumikhin function may handle discontinuous
delays, but it needs the existence of the constant (function) Pp for linear systems (nonlinear
systems).

2.1.3 Switched linear systems with switching delays

The controller design based on the stability conditions has been investigated intensively [10,
19, 21, 33, 61, 94, 100, 123, 140, 148], where, typically, the focus is on synchronously switched
linear systems, an ideal case in which the controller is assumed to switch synchronously with
the system mode. However, due to the delay between a mode change and the activation of
its corresponding controller, or due to the time needed to detect switching of system mode,
nonzero time intervals are present during which system modes and controller modes are
mismatched [30, 69, 111, 112, 119, 132, 143, 144]. These time intervals all called unmatched
intervals, and the counterparts when the subsystem and its corresponding controller are
matched are called matched intervals. A switched system with switching delays is shown
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in Fig. 2.6, where there exists a switching delay ∆τ(t ), t ∈ R≥0, between the activation of the
subsystem and the activation of the controller. A typical example in engineering practice can
be seen in teleoperation, e.g. [73, 74, 116].

Figure 2.6: The framework of switched system with switching delays.

The switched linear system with switching delays can be formulated mathematically as

ẋ(t ) = Aσ(t )x(t )+Bσ(t )u(t ) (2.20)

with the input u(t ) = Kσ(t−∆τ(t ))x(t ), which gives rise to

ẋ(t ) = (
Aσ(t ) +Bσ(t )Kσ(t−∆τ(t ))

)
x(t ) (2.21)

with Ap ∈ Rn×n , Bp ∈ Rm×n . In what follows, a lemma is used widely to study asymptotic
stability of switched linear systems with switching delays.

Lemma 2.5 [143] Let α > 0, β > 0 and µ > 1 be given constants. Suppose that there exist C 1

functions Vσ(t ): Rn →R, and two class K∞ functions κ1 and κ2 such that

κ1(|x|) ≤Vp (x) ≤ κ2(|x|), p ∈ M

V̇p (x) ≤
{
−αVp (x), for matched intervals

βVp (x), for unmatched intervals

and
Vp (x) ≤µVq (x)

for any p 6= q ∈ M . Then, the switched linear system with switching delays (2.21) is globally
asymptotically stable for any switching signal with average dwell time

τa ≥
∆τsup(α+β)+ lnµ

α

with ∆τsup = sup{∆τ(t )|t ≥ 0}.

Note that the Lyapunov functions proposed in Lemma 2.5 extend the multiple Lyapunov
functions in Lemma 2.1–2.3: the Lyapunov functions in Lemma 2.5 are allowed to increase
during the unmatched intervals which are compensated by the decrease during the matched
intervals. In view of this, the stability condition in Lemma 2.5 exploits explicitly the informa-
tion of the exponential decrease and increase in between two consecutive switching instants
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and the possible increment of the Lyapunov functions.

2.2 Adaptive control of switched linear systems

Before introducing the state of the art on adaptive control of switched linear systems, clas-
sical adaptive control of uncertain non-switched linear systems is revisited and the control
scheme is shown in Fig. 2.7. The desired system dynamics are described by a reference model
which is a linear time-invariant system driven by a reference signal. The control law is then
designed to guarantee that the uncertain closed-loop system can track the states of the ref-
erence model [103].

Figure 2.7: The framework of adaptive control of non-switched systems.

Before presenting the result of adaptive control of non-switched linear systems, the fol-
lowing important definition is given for the reference signal.

Definition 2.6 [43] [Persistently exciting condition] Consider a signal vector ν generated as
ν(t ) = H(s)ξ(t )1 where ξ ∈ R, and H(s) is a vector whose elements are transfer functions that
are strictly proper with stable poles. If the complex vectors H( jω1), . . . , H( jωn) are linearly
independent on the complex space ∀ω1, . . . ,ωn , whereωi 6=ω j for i 6= j , then we say ν is persis-
tently exciting if and only if the spectrum of ξ contains at least n/2 different nonzero frequen-
cies.

In what follows, important results about adaptive tracking control of non-switched sys-
tem with state feedback are presented [103, 104]. Consider a general linear time-invariant
plant in the state-space form

ẋ(t ) = Ax(t )+bu(t ) (2.22)

where A ∈ Rn×n and b ∈ Rn are an unknown constant matrix and an unknown constant vec-
tor. The reference signal is generated by

ẋm(t ) = Amxm(t )+bmr (t ) (2.23)

where Am ∈Rn×n and bm ∈Rn are a known constant matrix and a known constant vector with
Am Hurwitz, and the reference input r (t ) is bounded. Suppose that the following matching

1A streamlined notation is used to denote the filtering action of a linear system.
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conditions hold
A+bk∗T = Am, bl∗ = bm

where k∗ ∈ Rn and l∗ ∈ R are the nominal parameters such that the nominal controller
u(t ) = k∗T x(t )+l∗r (t ) can make the unknown closed-loop system track the reference model
asymptotically. Then, with the assumption about the knowledge of the sign of l∗, the follow-
ing adaptive laws for the unknown parameters k∗ and l∗ are used

k̇(t ) =−sgn[l∗]Γx(t )eT (t )Pbm

l̇ (t ) =−sgn[l∗]γr (t )eT (t )Pbm

via the Lyapunov function

V (t ) = eT (t )Pe(t )+ 1

|l∗| k̃
T (t )Γ−1k̃(t )+ 1

|l∗|γ
−1l̃ 2(t )

where k̃ := k−k∗, l̃ := l −l∗ are parameter estimation errors, Γ ∈Rn×n and γ ∈R are a positive
definite matrix and a positive number, respectively, and P ∈ Rn×n is a constant matrix such
that

AT
mP +PAm < 0.

The resulting controller u(t ) = kT (t )x(t )+ l (t )r (t ) can guarantee that the uncertain system
(2.22) asymptotically tracks the reference model (2.23), i.e., e(t ) := x(t )−xm(t ) → 0 for t →∞.
Furthermore, when the reference input r is of persistent excitation, it follows k(t ) → k∗ and
l (t ) → l∗ as t →∞.

Adaptive approaches for uncertain non-switched linear systems have been investigated
intensively to improve the performance of robust approaches over large non-polytopic un-
certainties [4, 51, 75, 103]. On the other hand, adaptive control of uncertain switched linear
systems is more challenging. This is because not only an adaptive law should be developed
to estimate the unknown parameters, but also a switching law should be carefully designed
to guarantee the stability of the closed-loop system. The basic framework of adaptive control
of switched systems is given in Fig. 2.8, where adaptive control of non-switched systems in
Fig. 2.7 is extended to switched systems case.

For convenience, we introduce the uncertain switched linear system

ẋ(t ) = Aσ(t )x(t )+bσ(t )u(t ) (2.24)

where Ap ∈ Rn×n and bp ∈ Rn are an unknown matrix and an unknown vector for all p ∈
M , and σ(t ) : [0,∞) → M := {1,2 . . . , M } is the switching signal. The reference dynamics are
represented by

ẋm(t ) = Amσ(t )xm(t )+bmσ(t )r (t ) (2.25)

where Amp ∈ Rn×n and bmp ∈ Rn are a known matrix and a known vector with Amp Hurwitz
for all p ∈ M , and the reference input r (t ) is bounded. Suppose that the following matching
conditions hold

Ap +bp k∗T
p = Amp , bp l∗p = bmp

where k∗
p ∈Rn and l∗p ∈R, p ∈ M , are the nominal parameters.

In what follows, we introduce two representative results using dwell time and average
dwell time switching, respectively.
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Figure 2.8: The framework of adaptive control of switched systems.

Assumption 2.1 The sign of l∗p for any p ∈ M should be known.

Assumption 2.2 The possible upper and lower bounds of the unknown parameters kp and lp

for any p ∈ M should be known.

Result 1: With the assumptions 2.1 and 2.2, Sang and Tao [91] proposed a switching law
based on the dwell time and adaptive laws with parameter projection for subsystem p, p ∈ M

k̇p (t ) = − sgn[l∗p ]Γp x(t )eT (t )Pp bmp + fxp (t )

l̇p (t ) = − sgn[l∗p ]γp r (t )eT (t )Pp bmp + fr p (t )
(2.26)

where the symmetric positive definite matrix Pp is the solution to

AT
mp Pp +Pp Amp =−Qmp , p ∈ M
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for a given symmetric positive definite matrix Qp , fxp and fr p , p ∈ M are the parameter
projection laws that keep the parameter estimates kp and lp bounded [103]. Note that the
adaptive laws (2.26) are developed using the Lyapunov function

Vp (t ) = eT (t )Pp e(t )+
M∑

p=1

1

|l∗p |
k̃T

p (t )Γ−1
p k̃p (t )+

M∑
p=1

1

|l∗p |
γ−1

p l̃ 2
p (t )

where k̃p := kp −k∗
p and l̃p := lp − l∗p , p ∈ M , are parameter estimation errors.

Find positive numbers amp and λmp such that ‖e Apt‖ ≤ amp e−λmp t for all p ∈ M . De-
fine am = maxp∈M amp , λm = minp∈M λmp , α= maxp∈M λmax(Pp ), and β= minp∈M λmin(Pp ).
Then, the stability result in [91] is given explicitly.

Lemma 2.6 [91] With the adaptive laws (2.26) and the switching signal with dwell time

τd =α(1+κ) ln(1+µ∆Am), κ> 0 (2.27)

where ∆Am = maxp,q∈M ‖Amp − Amq‖, and µ = a2
m maxp∈M ‖Pp‖/(λmβ), all signals in the

closed-loop system are bounded, and the tracking error is bounded in sense that∫ t+T

t
eT (τ)e(τ)dτ≤µ∆Am c0

T

T0
+ c1, t ≥ 0, T > 0 (2.28)

where c1 = (1+µ∆Am )c0 for some c0 > 0.

Two crucial properties of the Lyapunov function are exploited in [91]: an exponential
rate of decrease during the active intervals between two consecutive switching instants and
a bounded increment at switching instants. Because of this, asymptotic stability can be guar-
anteed only in the presence of a common Lyapunov function for the reference models. For
general settings when no common Lyapunov function exists, the control method proposed
in [91] can only guarantee (non-asymptotic) stability of the closed-loop switched system and
that the tracking error is bounded in a mean square sense (cf. (2.28)).

Furthermore, parameter projection is a necessary tool to keep the estimates bounded,
even in the absence of any disturbance. These results are not consistent with the well-known
results about adaptive tracking control for classical non-switched systems, where parameter
projection is not needed in the noiseless case, and asymptotic tracking can be guaranteed
[44, 103].

Result 2: With the assumptions 2.1 and 2.2, the adaptive laws similar with (2.26) are used
in [117] to address parametric uncertainties of multiple-input switched linear systems with
average dwell time switching

K̇ T
p (t ) =−ST

p B T
mp Pp e(t )xT (t )+F T

xp (t )

L̇p (t ) =−ST
p B T

mp Pp e(t )r T (t )+Fr p (t )
(2.29)

where Kp and Lp are the estimates of controller parameters for multiple-input switched lin-
ear systems, Sp are square matrices of compatible dimensions depending on the nominal
parameters L∗

p , Fxp and Fr p are the projection laws [103] that keep the parameter estimates
stay in the known bounds.

Definition 2.7 (Global uniform ultimate boundedness) [44] The uncertain switched linear
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system (3.1) under switching signal σ(·) is globally uniformly ultimately bounded (GUUB) if
there exists a finite positive number bT such that there exists a finite T such that ‖x(t )‖ ≤ bT

for all t ≥ t0 +T . Any positive number bT for which this condition holds is called ultimate
bound.

The stability result proposed in [117] is generalized in the following lemma, where only
global uniform ultimate boundedness of the closed-loop adaptive system is shown and the
transient and steady-state performance of the tracking error are not investigated. This result
apparently leads to a deviation from the result about adaptive control of non-switched linear
systems.

Lemma 2.7 [117] With the adaptive laws (2.29) and the switching signal with a proper design
of average dwell time, all signals in the closed-loop systems are bounded, and the tracking
error is globally uniformly ultimately bounded.

2.3 Concluding remarks

In this chapter, some stability conditions for switched linear systems using multiple Lya-
punov function have been presented which will be involved in the next chapters. In par-
ticular, asymptotic stability results based on dwell time and average dwell time switching
have been given, together with their extended notions of mode-dependent dwell time and
mode-dependent average dwell time switching. In addition, representative stability results
about switched linear systems with switching delays and time-varying delays have been in-
troduced. Finally, the classic adaptive control of non-switched linear systems is revisited,
which is followed by an introduction of the framework for adaptive control of switched lin-
ear systems and its state-of-the-art stability results.
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Adaptive Tracking Control of Uncertain
Switched Linear Systems
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Chapter 3

Adaptive Tracking of Switched Linear
Systems with Extended Dwell Time and
Average Dwell Time

In this chapter, two families of adaptive tracking control schemes for uncertain switched lin-
ear systems are developed based on mode-dependent dwell time and mode-dependent av-
erage dwell time switching, which exploit the information of every subsystem. Furthermore,
to address the cases in which the next subsystem to be switched to is known, we propose
a new time-driven switching approach: mode-mode-dependent dwell time switching. The
adaptive controller, consisting of a switching law and adaptive laws, guarantees global uni-
form ultimate boundedness of the switched adaptive closed-loop system.

Parts of the research presented in this chapter have been published in [136, 137].

3.1 Introduction

To date, some research has been conducted on adaptive tracking of uncertain switched lin-
ear systems based on dwell time [89–92] and on average dwell time [117, 118]. However,
to the best of the author’s knowledge, not much attention has been paid on reducing the
conservativeness of standard slow switching laws by exploiting the information of each sub-
system. Conservativeness is interpreted as the time interval required to switch from one
mode to another (which should be as short as possible to approach arbitrarily fast switch-
ing). In addition, the transient and steady-state performance of the tracking error have not
been studied, which are important aspects in adaptive closed-loop systems. To this end,
by extending the results in [91, 117], two families of adaptive tracking control schemes for
uncertain switched systems are developed based on mode-dependent dwell time (MDDT)
switching laws and mode-dependent average dwell time (MDADT) switching laws, by ex-
ploiting the information of every subsystem. Furthermore, to address the cases in which
the next subsystem to be switched to is known, such as in automobile power train [130],
power converters [67], and other applications, we propose a new time-driven switching ap-
proach: mode-mode-dependent dwell time (MMDDT) switching. It not only exploits the in-
formation of the current subsystem but also of the next subsystem. This allows even shorter
switching intervals than MDDT. Time intervals in switching laws based on MDADT are gen-
erally smaller than time intervals based on ADT and DT. In addition, globally uniformly ul-
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timately bounded (GUUB) stability of the switched system via the proposed adaptive track-
ing control schemes is shown. Notably, computable transient and steady-state performance
bounds are derived, where an upper bound and the ultimate bound characterizing the global
uniform ultimate boundedness of the tracking error are used as a measure for the transient
and steady-state performance, respectively.

The chapter is organized as follows. In Section 3.2, the mathematical model and problem
formulation are given. Next, the adaptive control schemes with a family of adaptive laws and
three different switching laws are proposed in Section 3.3. The transient and steady-state
performance analysis of the tracking error is introduced in Section 3.4. An example is used
to illustrate the proposed methods in Section 3.5. The chapter is concluded in Section 3.6.

3.2 Problem statement

Consider the uncertain switched multiple-input linear system given by

ẋ(t ) = Aσ(t )x(t )+Bσ(t )u(t ), σ(t ) ∈ M (3.1)

where x(t ) ∈ Rn is the state vector, u(t ) ∈ Rm is the control input, and the switching signal
σ : [0,∞) → M := {1,2, . . . , M } is a piecewise function with M denoting the number of subsys-
tems. We say a subsystem p ∈ M is uncertain when the matrices Ap ∈ Rn×n and Bp ∈ Rn×m

are unknown.

A family of switched reference models representing the desired behavior of each subsys-
tem is given as follows:

ẋm(t ) = Amσ(t )xm(t )+Bmσ(t )r (t ), σ(t ) ∈ M (3.2)

where xm(t ) ∈Rn is the desired state vector, and r (t ) ∈Rm is a bounded reference input. The
matrices Amp ∈Rn×n and Bmp ∈Rn×m are known and Amp , p ∈ M , are Hurwitz matrices. The
nominal state feedback controllers that make the switched system behave like the reference
model are given as u(t ) = K ∗T

σ(t )(t )x(t )+L∗
σ(t )(t )r (t ), where K ∗

p ∈Rn×m and L∗
p ∈Rm×m , p ∈ M ,

are nominal parameters, which can be calculated by

Ap +Bp K ∗T
p = Amp , Bp L∗

p = Bmp , p ∈ M . (3.3)

Since Ap and Bp are unknown, we cannot obtain K ∗
p and L∗

p from (3.3). Hence, the state
feedback controllers are designed as

u(t ) = K T
σ(t )(t )x(t )+Lσ(t )(t )r (t ) (3.4)

where Kp and Lp are the estimates of K ∗
p and L∗

p , p ∈ M , respectively, which are updated by
some adaptive laws to be explained in the next section.

In addition, the tracking error is defined as e(t ) = x(t )−xm(t ). Substituting (3.4) into (3.1),
and subtracting (3.2), we have the following dynamics of the tracking error:

ė(t ) = Amσ(t )e(t )+Bσ(t )(K̃ T
σ(t )(t )x(t )+ L̃σ(t )(t )r (t )) (3.5)

where K̃p = Kp −K ∗
p and L̃p = Lp −L∗

p , p ∈ M are the parameter estimation errors.
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Definition 3.1 (Mode-mode-dependent dwell time) The switching signal σ(·) is said to have
mode-mode-dependent dwell time (MMDDT) if there exist positive numbers τpq such that
tpl+1 − tpl ≥ τpq with σ(tpl ) = p and σ(tpl+1) = q, ∀l ∈N+. Furthermore, we indicate the fact
that the next mode to be switched on after p is q with N (p) = q. The MMDDT switching law
is defined for every p, q such that N (p) = q.

The control objective of the switched system in this chapter is presented as:

Problem 3.1 Develop an adaptive mechanism and a switching law that, without requiring
the knowledge of the actual values of Ap and Bp , p ∈ M , assures the global uniform ultimate
boundedness of all signals of the closed-loop switched system.

3.3 Design of switched adaptive controllers

In this section, to solve Problem 3.1, an adaptive law and three switching laws, which are
based on MDDT, MMDDT, and MDADT, are proposed. Since Amp is a Hurwitz matrix, there
exist a matrix Pp > 0 and a constant κp > 0 for every subsystem p ∈ M such that

AT
mp Pp +Pp Amp +κp Pp ≤ 0 (3.6)

where κp is called a stability margin of subsystem p. In addition, we define λp an up-
per bound and λp a lower bound of the eigenvalues of Pp , respectively. We define κmax =
maxp∈M κp , α= maxp∈M λp , and β= minp∈M λp .

3.3.1 Switching laws via extended dwell time and extended average dwell
time

Firstly, we introduce a switching law σ(·) based on the following MDDT:

τp = 1+ζ
κp

lnµp , ∀p ∈ M (3.7)

where µp =α/λp and ζ is a user-defined positive constant.

Assuming that the next subsystem q to be switched to after subsystem p is known, the
MDDT switching law in (3.7) is extended to an MMDDT switching law that satisfies

τpq = 1+ζ
κp

lnµpq , ∀p, q ∈ M with p 6= q (3.8)

where µpq = λq /λp and ζ is a user-defined positive constant. The MMDDT (3.8) switching
law represents a larger class of switching signals than (3.7), for which GUUB stability of the
closed-loop switched system can be guaranteed.

Finally, a switching law is proposed based on the MDADT strategy as follows:

τap > τ∗ap = 1+ζ
κp

lnµp , ∀p ∈ M (3.9)
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where µp = α/λmin(Pp ) and ζ is a user-defined positive constant which will be clarified in
the next section.

3.3.2 Adaptive laws

Before introducing the adaptive law, the following assumptions are made:

Assumption 3.1 There exists a matrix Sp ∈Rm×m such that Mp := L∗
p Sp =

(
L∗

p Sp

)T = ST
p L∗T

p >
0,∀p ∈ M .

Assumption 3.2 Upper and lower bounds of K ∗
p and L∗

p are known, i.e., K ∗
p ∈ [K p , K p ] and

L∗
p ∈ [Lp , Lp ], ∀p ∈ M . The upper and lower bounds are to be interpreted component-wise.

Remark 3.1 Assumption 3.1 is widely adopted in adaptive law of multiple-input systems,
where it is used to ensure the boundedness of signals in closed-loop systems [88, 102, 104,
120]. As for Assumption 3.2 , since the parameter estimates may deviate far away from the
nominal value due to switches between different subsystems which might destabilize the
closed-loop system, the knowledge of an upper bound and a lower bound of the parameters
prevents this case from happening with a projection law [91, 115]. 2

Therefore, using a Lyapunov method [89, 91], the following adaptive law is adopted:

K̇ T
σ(t )(t ) =−ST

σ(t )B
T
mσ(t )Pσ(t )e(t )xT (t )+F T

xσ(t )(t )

L̇σ(t )(t ) =−ST
σ(t )B

T
mσ(t )Pσ(t )e(t )r T (t )+Frσ(t )(t )

(3.10)

where Fxp (·) and Fr p (·), ∀p ∈ M , are parameters projection laws as given in [118]: Let

Kp = [
kp1, . . . ,kpm

]
, Lp = [

lp1, . . . , lpm
]

Fxp = [
fxp1, . . . , fxpm

]
, Fr p = [

fr p1, . . . , fr pm
]

Φxp =
(
−ST

p B T
mp Pp exT

)T = [φxp1, . . . ,φxpm]

Φr p = −ST
p B T

mp Pp er T = [φr p1, . . . ,φr pm].

Then, we obtain the projection terms as follows, for i ∈ {1, · · · ,m}

fxpi (t ) =


−φxpi (t ) if kpi (t ) ≤ kpi & φxpi (t ) ≤ 0,

or if kpi (t ) ≥ kpi & φxpi (t ) ≥ 0

0 otherwise

fr pi (t ) =


−φr pi (t ) if kpi (t ) ≤ kpi & φr pi (t ) ≤ 0,

or if kpi (t ) ≥ kpi & φr pi (t ) ≥ 0

0 otherwise

(3.11)

which can guarantee the parameter estimates bounded.

Remark 3.2 At the switch-in instant t pin

l of subsystem p, ∀p ∈ M , l ∈N+ the initial conditions
of (3.10) are taken from the estimates available at the previous switch-out instant of the same
subsystem, i.e., Kp (t pin

l ) = Kp (t pout

l+1 ), and Lp (t pin

l ) = Lp (t pout

l+1 ). This gives rise to continuity of
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the parameter estimates. Fig. 3.1 gives a conceptual illustration of the evolution of parameter
estimates, where the parameter estimates for subsystem p are updated when subsystem p is
active and they are kept invariant otherwise. 2

Figure 3.1: The evolution of parameter estimates.

3.4 Main results

3.4.1 Performance analysis with MDDT and MMDDT switching laws

Theorem 3.3 With the adaptive law (3.10) and the switching law based on MDDT (3.7), the
GUUB stability of the unknown switched systems (3.1) can be guaranteed. In addition, the
tracking error is bounded as

‖e(t )‖2 ≤ max

{
α

β
‖e(t0)‖2 + 1

β

M∑
p=1

Ξp ,
α(1+ζ)

β2ζ

M∑
p=1

Ξp

}
. (3.12)

Furthermore, the tracking error is GUUB with an ultimate bound bT in the interval,0,

√√√√α(1+ζ)

β2ζ

M∑
p=1

Ξp

 (3.13)

where

Ξp = tr

[(
K p −K p

)
M−1

p

(
K p −K p

)T
]
+ tr

[(
Lp −Lp

)T
M−1

p

(
Lp −Lp

)]
. (3.14)

Proof : The proof is organized as follows: we propose a Lyapunov function considering the
tracking error and estimation errors, whose behavior is studied with the proposed adaptive
law (3.10) and switching law based on MDDT (3.7). It is shown that the Lyapunov function
is decreasing during any switching interval between two consecutive switching instants ex-
cluding switching instants. Then, it is proven that there exists a finite bound such that after
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some time the Lyapunov function will stay below the bound, which implies that the closed-
loop system is GUUB.

Firstly, the following Lyapunov function is adopted:

V (t ) = eT (t )Pσ(t )e(t )+
M∑

p=1
tr

[
K̃p (t )M−1

p K̃ T
p (t )

]
+

M∑
p=1

tr
[

L̃T
p (t )M−1

p L̃p (t )
]

. (3.15)

Generally, the matrix Pσ(t ) is different for different subsystems, which indicates that V (t )
might be continuous w.r.t. time only in the intervals between two consecutive switches. In
light of this, to investigate the behavior of V (t ), firstly, we need to establish the characteris-
tics of V (t ) at the switching instants. Without loss of generality, we consider the Lyapunov
function at the switching instant tl+1, l ∈ N+. Subsystem σ(t−l+1) is active when t ∈ [tl , tl+1)
and subsystem σ(tl+1) is active when t ∈ [tl+1, tl+2). At the switching instant tl+1, we have
before switching

V (t−l+1) = eT (t−l+1)Pσ(t−l+1)e(t−l+1)+
M∑

p=1
tr

[
K̃p (t−l+1)M−1

p K̃ T
p (t−l+1)

]
+

M∑
p=1

tr
[

L̃T
p (t−l+1)M−1

p L̃p (t−l+1)
]

and after switching

V (tl+1) = eT (tl+1)Ptl+1 e(tl+1)+
M∑

p=1
tr

[
K̃p (tl+1)M−1

p K̃ T
p (tl+1)

]
+

M∑
p=1

tr
[

L̃T
p (tl+1)M−1

p L̃p (tl+1)
]

.

Based on the continuity of the tracking error e(·) in (3.5) and the continuity of the pa-
rameter estimates in (3.10), we have e(tl+1) = e(t−l+1), K̃p (tl+1) = K̃p (t−l+1), and L̃p (tl+1) =
L̃p (t−l+1) for any switching law. Then, due to the fact that eT (t )Pσ(t )e(t ) ≤ αeT (t )e(t ) and
eT (t )Pσ(t )e(t ) ≥ λσ(t )e

T (t )e(t ), the quantitative relationship of V (t ) at the switching instant
tl+1 is established as follows,

V (tl+1)−V (t−l+1) = eT (tl+1)
(
Pσ(tl+1) −Pσ(t−l+1)

)
e(tl+1)

≤
α−λσ(t−l+1)

λσ(t−l+1)

eT (tl+1)Pσ(t−l+1)e(tl+1)

≤
α−λσ(t−l+1)

λσ(t−l+1)

V (t−l+1)

i.e.,
V (tl+1) ≤µσ(t−l+1)V (t−l+1) (3.16)

with
µσ(t−l+1) =α/λσ(t−l+1).

Next, the behavior of V (t ) between two consecutive discontinuities is studied. When
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t ∈ [tl , tl+1), the derivative of V (t ) w.r.t. time using (3.3) and (3.5)–(3.10) is

V̇ (t ) = eT (t )(AT
mσ(t−l+1)Pσ(t−l+1) +Pσ(t−l+1) Amσ(t−l+1))e(t )+2tr

[
K̃σ(t−l+1)(t )M−1

σ(t−l+1)F
T
xσ(t−l+1)(t )

]
+2tr

[
L̃T
σ(t−l+1)(t )M−1

σ(t−l+1)Frσ(t−l+1)(t )
]

≤−κσ(t−l+1)e
T (t )Pσ(t−l+1)e(t )+2tr

[
K̃σ(t−l+1)(t )M−1

σ(t−l+1)F
T
xσ(t−l+1)(t )

]
+2tr

[
L̃T
σ(t−l+1)(t )M−1

σ(t−l+1)Frσ(t−l+1)(t )
]

.

(3.17)
Using the definition of parameter projection (3.11), we have the following arguments:

• when kpi ∈ (kpi ,kpi ), and lpi ∈ (kpi ,kpi ), we have fxpi = 0 and fr pi = 0, which indicates

that tr(K̃p M−1
p F T

xp ) = 0 and tr(L̃T
p M−1

p Fr p ) = 0;

• when kpi = kpi with φxpi ≤ 0, and lpi = l pi with φr pi ≤ 0, we have fxpi = 0 and fr pi = 0,
which indicates that tr(K̃p M−1

p F T
xp ) = 0 and tr(L̃T

p M−1
p Fr p ) = 0;

• when kpi = kpi with φxpi ≥ 0, and lpi = l pi with φr pi ≥ 0, we have fxpi = 0 and fr pi = 0,

which indicates that tr(K̃p M−1
p F T

xp ) = 0 and tr(L̃T
p M−1

p Fr p ) = 0;

• when kpi = kpi with φxpi ≥ 0, and lpi = l pi with φr pi ≥ 0, we have fxpi = −φxpi ≤
0 and fr pi = φxpi ≤ 0, which indicates that tr(K̃p M−1

p F T
xp ) ≤ 0 and tr(L̃T

p M−1
p Fr p ) ≤ 0

considering k̃pi = kpi −k∗
pi ≥ 0 and l̃pi = lpi − l∗pi ≥ 0;

• when kpi = kpi with φxpi ≤ 0, and lpi = l pi with φxpi ≤ 0, we have fxpi = −φxpi ≥ 0

and fr pi = −φr pi ≥ 0, which indicates that tr(K̃p M−1
p F T

xp ) ≤ 0 and tr(L̃T
p M−1

p Fr p ) ≤ 0

considering k̃pi = kpi −k∗
pi ≤ 0 and l̃pi = lpi − l∗pi ≤ 0.

In view of these arguments, it follows that tr(K̃p M−1
p F T

xp ) ≤ 0 and tr(L̃T
p M−1

P Fr p ) ≤ 0, and
thus V̇ (t ) ≤ 0 in (3.17). Since the parameter estimation errors K̃p and L̃p are bounded using
parameter projection laws Fxp and Fr p , the summation terms of (3.15) are upper bounded
by

∑M
p=1Ξp . Hence, it follows from (3.14), (3.15), and (3.17) that when t ∈ [tl , tl+1), ∀ζ> 0,

V̇ (t ) ≤−κσ(t−l+1)e
T (t )Pσ(t−l+1)e(t )

≤−κσ(t−l+1)V (t )+κσ(t−l+1)

M∑
p=1

Ξp

≤−
κσ(t−l+1)

1+ζ V (t )+
κσ(t−l+1)

1+ζ

[
(1+ζ)

M∑
p=1

Ξp −ζV (t )

]
.

(3.18)

According to (3.17), with the adaptive law (3.10), V (·) is decreasing in between two consec-
utive switching instants, i.e., in the time interval [tl , tl+1). To analyze the behavior of the
Lyapunov function, two possible scenarios should be taken into account:

• Case 1: when V (t ) ≥∑M
p=1Ξp (1+ζ)/ζ, it follows that V̇ (t ) ≤−κp /(1+ζ)V (t ), i.e., V (t ) is

decreasing at an exponential rate.

• Case 2: when V (t ) ≤∑M
p=1Ξp (1+ζ)/ζ, it follows that V̇ (t ) ≤ 0, i.e., V (t ) is non-increasing.
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The value of V (t0) can be larger than
∑M

p=1Ξp (1+ζ)/ζ (case 1), less or equal than
∑M

p=1Ξp (1+
ζ)/ζ (case 2).

Case 1: we assume V (t ) >∑M
p=1Ξp (1+ζ)/ζ when t ∈ [t0, t0 +T1), which implies that V (t )

is decreasing at an exponential rate in the beginning. Denote the number of intervals that
subsystem p, p ∈ M , is active for t ∈ [t0, t0 +T1) by N1p (t ), and the number of all intervals
in the time interval [t0, t ] for t ∈ [t0, t0 +T1) by N1(t ), where T1 represents the length of the
time interval before V (t ) enters into the bound

∑M
p=1Ξp (1+ζ)/ζ from t0. Denote the number

of all intervals in the whole time interval [t0, t0 +T1) by N1. Therefore, when t ∈ [t0, t0 +T1),
since V (t ) is decreasing at an exponential rate, it follows with (3.16) that

V (t ) ≤ V (tN1(t ))

≤ µσ(t−N1(t )−1) exp

(
−
κσ(tN1(t ))

1+ζ
(
tN1(t ) − tN1(t )−1

))
V (tN1(t )−1)

...

≤ µσ(t−N1(t )−1) exp

(
−
κσ(tN1(t ))

1+ζ
(
tN1(t ) − tN1(t )−1

))
µσ(t−N1(t )−2) exp

(
−
κσ(tN1(t )−1)

1+ζ
(
tN1(t )−1 − tN1(t )−2

)) · · ·
µσ(t0) exp

(
−κσ(t0)

1+ζ (t1 − t0)

)
V (t0)

≤
M∏

p=1
µ

N1p (t )
p exp

{
−

M∑
p=1

N1p (t )
κp

1+ζ (t pout

l+1 − t pin

l )

}
V (t0)

(3.19)

where l = {
0, 1, 2, · · · , N1p (t )

}
.

Substituting the MDDT condition τp = t pout

l+1 −t pin

l ≥ (1+ζ)/(2κp ) lnµp into (3.17), we have

V (t ) ≤V (t0), t ∈ [t0, t0 +T1). (3.20)

Moreover, it is apparent that V (t ) ≤ ∑M
p=1Ξp (1+ ζ)/ζ for t ∈ [t0 +T1, tN1+1) considering

that V (·) is non-increasing in the time interval [t0 +T1, tN1+1). Therefore, at the switching
instant tN1+1, we have

V (tN1+1) ≤ α(1+ζ)

βζ

M∑
p=1

Ξp . (3.21)

Similarly, assume when t ∈ [tN1+1, t0 +T2), V (·) is decreasing at an exponential rate. De-
note the number of all intervals for t ∈ [tN1+1, t0+T2) by N2. Then, substituting

∑M
p=1Ξpα(1+

ζ)/(βζ) for V (t0) in (3.19), we can use the deduction similar to (3.19)–(3.21), and it follows
that

V (t ) ≤ α(1+ζ)

βζ

M∑
p=1

Ξp , t ∈ [tN1+1, t0 +T2). (3.22)

Furthermore, when t ∈ [t0 +T2, tN1+N2+2), since V (·) is non-increasing, it holds that at
switching instant tN1+N2+2

V (tN1+N2+2) ≤ α(1+ζ)

βζ

N∑
p=1

Ξp . (3.23)
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For t ≥ tN1+N2+2, using the similar analysis as (3.19)–(3.21) recursively, it holds that

V (t ) ≤ α(1+ζ)

βζ

M∑
p=1

Ξp , t ∈ [tN1+N2+2, ∞). (3.24)

Therefore, with (3.21)–(3.23), we have

V (t ) ≤ α(1+ζ)

βζ

M∑
p=1

Ξp , t ∈ [t0 +T1, ∞) (3.25)

which implies that once V (·) enters the interval [0,
∑M

p=1Ξp (1+ ζ)/ζ], it cannot exceed the

bound
∑M

p=1Ξpα(1+ζ)/(βζ) for any time later with MDDT (3.7). Therefore, the closed-loop
switched system is GUUB with the adaptive law (3.10) and the switching law based on (3.7).

Finally, the dynamics of the tracking error is studied. It follows that via (3.25) and (3.21)

V (t ) ≤ max

{
V (t0),

α(1+ζ)

βζ

M∑
p=1

Ξp

}
, ∀t > 0. (3.26)

In addition, considering that eT (t )Pσ(t )e(t ) ≥β‖e(t )‖2, it is clear that

V (t ) = eT (t )Pσ(t )e(t )+
M∑

p=1
tr

[
K̃p (t )M−1

p K̃ T
p (t )

]
+

M∑
p=1

tr
[

L̃T
p (t )M−1

p L̃p (t )
]

≥ β‖e(t )‖2

(3.27)

and

V (t0) = eT (t0)Pσ(t0)e(t0)+
M∑

p=1
tr

[
K̃p (t0)M−1

p K̃ T
p (t0)

]
+

M∑
p=1

tr
[

L̃T
p (t0)M−1

p L̃p (t0)
]

≤ α‖e(t0)‖2 +
M∑

p=1
Ξp .

(3.28)

Then, it follows from (3.25)–(3.28) that

‖e(t )‖2 ≤ max

{
α

β
‖e(t0)‖2 + 1

β

M∑
p=1

Ξp ,
α(1+ζ)

β2ζ

M∑
p=1

Ξp

}
. (3.29)

Furthermore, according to (3.23) and (3.28), the tracking error is GUUB with an ultimate
bound b as in (3.13).

Case 2: we assume V (t0) ≤∑M
p=1Ξp (1+ζ)/ζ, which implies that V (·) is non-increasing in

the beginning. The same results (GUUB stability of the closed-loop switched system, (3.12)
and (3.13)) can be obtained following the proof lines from (3.21) to (3.28). This completes
the proof. 2

Remark 3.4 If there exists a common positive definite matrix P satisfying LMI (3.6) for all
Amp , the Lyapunov function is strictly decreasing for any e(t ) 6= 0 and for any switching signal
σ(·), and the tracking error tends to zero asymptotically [91]. In this case the ultimate bound
bT becomes zero, and global uniform ultimate stability becomes global asymptotic stability.

2
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Remark 3.5 The positive constant ζ shows the trade-off between the requirements on the
switching signal and the behavior of the tracking error. When a faster switching rate is de-
manded, a smaller ζ should be selected according to (3.7) and (3.8), which results in a larger
upper bound and ultimate bound of the tracking error according to (3.12) and (3.13). Vice
versa, when a smaller upper bound and ultimate bound of the tracking error is demanded, a
larger ζ should be selected, which results in a slower switching rate. 2

Remark 3.6 The upper and ultimate bounds of the tracking error indicate that the proposed
methods prevent the tracking error in the closed-loop switched system from growing large
over short time intervals. In contrast, large signals may be observed in ADT and MDADT
algorithms when the interval between two consecutive switches is very small [22]. 2

For the case when the switching sequence is known, the following result is introduced.

Theorem 3.7 With the control law (3.4), the adaptive law (3.10), and the switching law based
on MMDDT (3.8), the GUUB stability of the unknown switched system (3.1) can be guaran-
teed. In addition, the tracking error is bounded as:

‖e(t )‖2 ≤ max

α

β
‖e(t0)‖2 + 1

β

M∑
p=1

Ξp , max
p, q∈M
N (p)=q

{
µpq

} (1+ζ)

βζ

M∑
p=1

Ξp

 (3.30)

where c1 and c2 are the same positive constants as in Theorem 3.3. In addition, the tracking
error is GUUB with an ultimate bound bT in the interval0,

√√√√√ max
p, q∈M
N (p)=q

{
µpq

} (1+ζ)

βζ

M∑
p=1

Ξp

 . (3.31)

Proof : The proof is similar with the proof of Theorem 3.3. The same Lyapunov function as
(3.15) is adopted. The main difference arises from the relationship of the values between the
Lyapunov function at switching instant tl+1, which is expressed as follows:

V (tl+1) ≤ λσ(tl+1)

λσ(t−l+1)

V (t−l+1) =:µσ(tl+1)σ(t−l+1)V (t−l+1).

The dynamics of the Lyapunov function during the switching interval is identical with (3.17)–
(3.17). Since the switching sequence is known, the maximum increase of the Lyapunov func-
tion at the switching instants is maxp, q∈M ,N (p)=q

{
µpq

}
instead of α/β as in the MDDT case.

The rest of the proof follows the lines from (3.16) to (3.30) after substituting µσ(t−l+1) with
µσ(tl+1)σ(t−l+1). We conclude that the adaptive law (3.10) and the switching law with MMDDT
(3.8) lead to GUUB stability with bounds (3.30) and (3.31). 2

Remark 3.8 The GUUB stability of the closed-loop switched systems based on the proposed
switching laws can be explained in a more intuitive way. The Lyapunov function (3.15) can
be seen as the total energy of the uncertain switched system (3.1) due to the tracking er-
ror and parameter estimation errors. According to (3.18), during each interval between two
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consecutive switches, the energy is decreasing. However, when the switching takes place,
some energy might be added to the switched system. In light of this, what we have done
with the MDDT and MMDDT schemes is actually eliminating the incremental energy at each
switching instant by making the energy-decreasing interval long enough. When the energy
decreases to an extent that the reducing energy and incremental energy is keeping balance,
the tracking error is thus kept in a certain interval later. 2

The following corollary to Theorem 3.10 can be established.

Corollary 3.1 Consider two consecutive switching instants tl and tl+1, l ∈N+, with σ(tl ) = p
and σ(tl+1) = q, p, q ∈ M ×M . If µpq ≤ 1 in (3.8), then the switching interval tl+1 − tl can
be as small as desired, i.e., the closed-loop switched system is GUUB and the tracking error is
upper bounded as (3.12) with ultimate bound bT as (3.13) under arbitrarily fast switches of
the subsystem p when N (p) = q, where N (p) denotes the index of subsystem to be switched on
after subsystem p.

Proof : Since µpq ≤ 1 in (3.8), it follows that V (tl+1) ≤ V (t−l+1) at the switching instant tl+1,
which indicates the energy defined by the Lyapunov function is decreasing at the switching
instant tl+1. Considering that the Lyapunov function is non-increasing in the interval be-
tween two consecutive switching instants, τpq is allowed to be arbitrarily small. Therefore,
the closed-loop systems are GUUB with arbitrarily fast switches of the subsystem p when
N (p) = q . 2

Remark 3.9 Note that Corollary 3.1 does not guarantee asymptotic stability under arbitrarily
fast switches, unless a common Lyapunov function exists as discussed in Remark 3.4. For
example, consider two subsystems p and q , for which the condition µpq ≤ 1 is satisfied:
the system can switch arbitrarily fast from p to q , but if the switching signal at switching
instant tpl+1 switches from q to p, we have µqp ≥ 1, which leads to GUUB stability since the
Lyapunov function may increase at switching instant tpl+1. 2

3.4.2 Performance analysis with MDADT switching laws

Theorem 3.10 With the control law (3.4), the adaptive law (3.10) and the switching law based
on MDADT (3.9), the GUUB stability of the uncertain switched system (3.1) can be guaranteed.
The norm of the tracking error is upper bounded by, ∀t ≥ t0,

‖e(t )‖2 ≤ 1

β
exp

(
M∑

p=1
N0p lnµp

)
max

{
c1,

αc2(1+ζ)

βminp∈M
{
κp

}
ζ

}
(3.32)

where the positive constants c1 and c2 depend on the initial estimates and the real values of
the controller parameters. In addition, the ultimate bound bT for the tracking error lies in the
interval 0,

√√√√α(1+ζ)

β2ζ

M∑
p=1

Ξp

 . (3.33)

Proof : The proof can be carried out in the similar vein of the one of Theorem 3.3 and thus is
omitted. 2
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Remark 3.11 The positive number ζ can illustrate the trade-off between the length of the
switching intervals of MDADT according to (3.9) and the performance of the tracking error
according to (3.32) and (3.33). A large ζ results in a long MDADT, which means that the
switching signal is more conservative and we have a smaller bound on the ultimate tracking
error. On the contrary, a small ζ leads to a short MDADT and a larger ultimate bound of the
tracking error. Finally, when the reference signal is zero, the tracking error turns out to be a
regulation error, and the adaptive laws in (3.10) can still guarantee (3.32) and (3.33). 2

Remark 3.12 The upper bound of the tracking error is dependent on the chatter bounds of
MDADT N0p , p ∈ M : the smaller N0p the better the transient performance of the tracking
error. When N0p = 1, ∀p ∈ M , MDADT switching becomes mode-dependent dwell time
switching [22]. Note that the upper bound of the norm of the tracking error is based on the
worst-case scenario when the switches given by the chatters bounds N0p occur right after t0

and the intervals between two consecutive chatters are close to zero. 2

Corollary 3.2 If there exists a common Lyapunov function for all the subsystems of (3.2), i.e.,
there exists a positive definite matrix P such that AT

mp P +PAmp +κP ≤ 0, ∀p ∈ M , asymptotic
stability of the tracking error can be guaranteed using the adaptive law (3.10) with no leakage
terms under arbitrarily fast switching.

Proof : The proof follows the same lines of [91]. 2

3.5 Example

In this section, a highly maneuverable aircraft technology vehicle [35, 157] is adopted to il-
lustrate the proposed adaptive control method. The adaptive control approach is utilized to
design closed-loop controllers and switching signals for the unstable longitudinal dynamics.
Consider a switched linear system with the following three modes:

A1 =


−0.8435 0.97505 −0.0048

8.7072 −1.1643 0.0026

0 1 0

 , B1 =


−0.1299 −0.092 −0.0107 −0.0827

−7.6833 −4.7974 4.8178 −5.7416

0 0 0 0



A2 =


−1.8997 0.98312 −0.00073

11.720 −2.6316 0.00088

0 1 0

 , B2 =


−0.2436 −0.1708 −0.00497 −0.1997

−46.206 −31.604 22.396 −31.179

0 0 0 0



A3 =


−1.2206 0.99411 −0.00084

−64.071 −1.8876 0.00046

0 1 0

 , B3 =


−0.0662 −0.0315 −0.0141 −0.0749

−27.333 −13.163 11.058 −26.878

0 0 0 0

 .

A. Design of reference model

Three LQR controllers u = K ∗
p x with Q = diag([1 1 5]), R = diag([1 1 1 1]) are adopted to

design the reference model, i.e., ẋm = Amp xm +Bmp r = (Ap +Bp K ∗
p )xm +Bp r , p ∈ M . The
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nominal parameters and the system matrices of reference model are:

K ∗
1 =


0.6219 0.7469 1.4508

0.3969 0.4671 0.9013

−0.3174 −0.4621 −0.9483

0.4534 0.5572 1.0902

 , L∗
1 = I4, Am1 =


−0.9949 0.7939 −0.3562

−2.1076 −14.5691 −26.2966

0 1 0



K ∗
2 =


0.1984 0.6793 1.5202

0.1368 0.4646 1.0392

−0.0642 −0.3289 −0.7527

0.1431 0.4585 1.0212

 , L∗
2 = I4, Am2 =


−1.9997 0.6484 −0.7487

−7.6710 −70.3615 −151.7803

0 1 0



K ∗
3 =


−0.6674 0.6397 1.4517

−0.3220 0.3081 0.6995

0.3287 −0.2599 −0.6292

−0.6423 0.6288 1.4175

 , L∗
3 = I4, Am3 =


−1.1228 0.8986 −0.2163

−20.6916 −43.2036 −93.9421

0 1 0

 .

B. Adaptive control design
Let κ1 = 0.25,κ2 = 0.5,κ3 = 0.4. Solving (3.6) gives rise to the following positive definite

matrices:

P1 =


0.7337 −0.0162 −0.3781

−0.0162 0.0549 0.0800

−0.3781 0.0800 2.3960

 , P2 =


0.5225 −0.0028 −0.0517

−0.0028 0.0092 0.0132

−0.0517 0.0132 1.9764

 ,

P3 =


0.7942 −0.0063 −0.3177

−0.0063 0.0167 0.0241

−0.3177 0.0241 2.4767

 .

Then, the bounds of DT, MDDT, MMDDT are obtained as shown in Table 3.1, which shows
that a bigger class of switching signals based on MDDT is obtained than the class of switching
signals based on DT. Moreover, when the switching sequence is known, MMDDT leads to
even less conservative switching signals than MDDT and DT.

Table 3.1: Comparison of three switching laws.

Switching laws DT MDDT MMDDT

Switching sequences Unknown Unknown Known in advance

Switching
signals

τ∗d = 23.7 τ∗1 = 16.3, τ∗2 = 11.8, τ∗13 = 16.3, τ∗32 = 12.6

τ∗3 = 13.2, µ1 = 48.6 τ∗21 = 11.8, τ∗23 = 10

µ= 278.3 µ2 = 278.3, µ3 = 154.1 µ13 = 48.6, µ32 = 120.3

κ= 0.25 κ1 = 0.25, κ2 = 0.5, κ3 = 0.4 µ21 = 272.4 κ1 = 0.25

κ2 = 0.5, κ3 = 0.4
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Figure 3.2: Switching signal based on MDDT.

Figure 3.3: Switching signal based on MDADT.

Figure 3.4: Switching signal based on DT.

Figure 3.5: Switching signal based on MMDDT.

We design switching signals based on DT, MDADT, MDDT, and MMDDT as shown in
Figs. 3.2–3.5, respectively. Consider the adaptive gains S1 = S2 = S3 = 10I4×4, the initial
conditions x(0) = [0 0 0]T , xm(0) = [2 2 1]T , Kp (0) = 0.8K ∗

p , Lp (0) = 0.8L∗
p , and the refer-
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Figure 3.6: The tracking error based on MDDT with an enlarged detail in the time interval
[0,20].
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Figure 3.7: The tracking error based on MDADT with an enlarged detail in the time interval
[0,20].

ence input r (t ) = [2sin(t ) cos(t ) 0.5sin(0.5t ) 0]T . Furthermore, to illustrate robustness of
the adaptive law with parameter projection (3.10) against some external noises (the system-
atic design of robust adaptive laws will be introduced in Chapter 5), we add disturbances
d(t ) = [0.2sin(10t ) 0.15e−t 0.1cos(πt )]T to the switched linear systems. The tracking errors
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Figure 3.8: The tracking error based on DT.
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Figure 3.9: The tracking error based on MMDDT.

based on the four switching signals are shown in Figs. 3.6–3.9, respectively. It can be ob-
served that the tracking errors are upper bounded and ultimately bounded, which is verified
by the results of Theorems 3.3 and 3.10 in this chapter. Moreover, comparing Fig. 3.6 and
Fig. 3.7, the fast switchings of MDADT negatively impact the transient performance of the
tracking error (see the enlarged details).
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3.6 Concluding remarks

In this chapter, an adaptive tracking control problem of uncertain switched linear systems
has been studied. Switching laws by exploiting mode-dependent dwell time, mode-mode-
dependent dwell time, and mode-dependent average dwell time have been developed, which
are less conservative than ones based on the dwell time. Global uniform ultimate bounded-
ness of the closed-loop switched system based on the proposed methods can be guaranteed.
Moreover, a computable upper bound and an ultimate bound of the tracking error have been
derived. Finally, an example of highly maneuverable aircraft technology has demonstrated
the effectiveness of the proposed adaptive tracking control methods.





Chapter 4

Adaptive Asymptotic Tracking of Switched
Linear Systems with Dwell Time

This chapter establishes a novel result about adaptive asymptotic tracking control of uncer-
tain switched linear systems. The result exploits a recently proposed stability condition for
switched systems. In particular, a Lyapunov function with a time-varying positive definite
matrix is used to develop a novel piecewise continuous model-reference adaptive law and
a dwell time switching law. In contrast with previous research, where asymptotic tracking
was possible only in the presence of a common Lyapunov function for the reference models,
in this chapter asymptotic tracking is shown in a more general setting. Additionally, in the
presence of persistence of excitation, the controller parameter estimation errors will con-
verge to zero asymptotically. The main contribution of this chapter consists in establishing
a symmetry between adaptive control of classical non-switched linear systems and adaptive
control of switched linear systems.

The research presented in this chapter has been published in [135].

4.1 Introduction

The results in literature [89–92, 117, 118] and their extended results presented in Chapter
3 fail to guarantee asymptotic stability of the tracking error in a general setting, i.e., when
no common Lyapunov function exists for all subsystems, and to guarantee convergence of
the parameter estimation errors to zero. This leads to a big theoretical gap between adaptive
control of uncertain non-switched linear systems and adaptive control of uncertain switched
linear systems. This chapter aims at filling this gap. In other words, we want to develop an
adaptive law and a switching law for uncertain time-driven switched systems to achieve the
same asymptotic stability results as the ones of adaptive control of classical non-switched
systems. Furthermore, in presence of a persistently exciting reference input, we want to
guarantee convergence of the controller parameter estimation errors to zero.

Recently, a new asymptotic stability condition for switched linear systems has been pro-
posed based on a dwell-time switching law [1]. There are some distinguishing properties
of this new stability condition with respect to those proposed in [19, 33, 140]. In particular,
the dwell time guaranteeing the asymptotic stability can be calculated without involving an
exponential term. Moreover, instead of a single positive definite matrix, a family of positive
definite matrices is associated to each subsystem, which can be used to construct a time-
varying positive definite matrix using the linear interpolation method for a quadratic Lya-

43
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punov function. The resulting Lyapunov function is decreasing during the intervals between
two consecutive switching instants and non-increasing at the switching instants. In light
of this, the current chapter exploits the aforementioned stability result to develop a novel
model reference adaptive law for uncertain switched linear systems to guarantee asymptotic
stability.

The main contributions of the chapter can be summarized as follows: first, in contrast
with the previous chapter, the proposed adaptive laws completely remove the exponen-
tial decrease/bounded increase requirements of the Lyapunov function; second, there is no
need for parameter projection and for the a priori knowledge of upper and lower bounds for
the parameters when the switched system is not subject to disturbances; finally, asymptotic
stability is established for the first time, i.e., the tracking error converges to zero asymptot-
ically, even when no common Lyapunov function for the reference models exists. Further-
more, if the reference input is persistently exciting, we can also guarantee that the parameter
estimates of the state feedback controller converge to the nominal parameters asymptoti-
cally, which makes the closed-loop switched system behave like the reference model. In view
of these achievements, a symmetry between adaptive control of switched linear systems and
adaptive control of non-switched systems is established.

The chapter is organized as follows: Section 4.2 presents the control problem and some
preliminaries for later analysis. Section 4.3 proposes an adaptive law and a switching law to
solve the adaptive asymptotic tracking problem. Stability results about closed-loop switched
systems based on a quadratic Lyapunov function are presented Section 4.4. Section 4.5
adopts a practical example to illustrate the proposed results. Some concluding remarks are
given in Section 4.6.

4.2 Problem statement

This chapter focuses on uncertain switched single-input linear systems1 described by the
following differential equation:

ẋ(t ) = Aσ(t )x(t )+bσ(t )u(t ), σ(t ) ∈ M = {1, . . . , M } (4.1)

where x ∈Rn is the state vector, and u ∈R represents some piecewise continuous input. The
matrices Ap ∈ Rn×n and vectors bp ∈ Rn are assumed to be unknown for all p ∈ M . The
switching signal σ : [0,∞) → M := {1,2, . . . , M } is a piecewise function with M denoting the
number of subsystems. To develop the adaptive tracking scheme, a reference switched sys-
tem representing the desired behavior of (4.1) is given as follows:

ẋm(t ) = Amσ(t )xm(t )+bmσ(t )r (t ), σ(t ) ∈ M (4.2)

where xm ∈Rn is the desired state vector, and r ∈R is a bounded reference input. The matri-
ces Amp ∈Rn×n and vectors bmp ∈Rn are known, and Amp are Hurwitz matrices for all p ∈ M .
Suppose that (Amp , bmp ) is controllable for each p ∈ M and each subsystem in (4.1) has its
own corresponding reference submodel. We assume the measurement of x(t ) is available.
Hence, the nominal state feedback controller that makes the switched system behave like

1Extension to multiple-input systems can be achieved as described in Chapter 3.
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the reference model is given as follows:

u∗(t ) = k∗T
σ(t )(t )x(t )+ l∗σ(t )(t )r (t )

where the nominal parameters k∗
p ∈ Rn and l∗p ∈ R exist under the assumption that the fol-

lowing matching conditions hold [43, 51, 91]:

Ap +bp k∗T
p = Amp , bp l∗p = bmp . (4.3)

However, since Ap and bp are unknown, we cannot obtain k∗
p and l∗p from (4.3). In light

of this, the state feedback controller is developed as:

u(t ) = kT
σ(t )(t )x(t )+ lσ(t )(t )r (t ) (4.4)

where kp and lp are the estimates of k∗
p and l∗p , respectively. In addition, we define the track-

ing error as: e(t ) = x(t )−xm(t ).
Substituting (4.4) into (4.1), and subtracting (4.2), the dynamics of the tracking error are

as follows:
ė(t ) = Amσ(t )e(t )+bσ(t )(k̃T

σ(t )(t )x(t )+ l̃σ(t )(t )r (t )) (4.5)

where k̃p = kp −k∗
p and l̃p = lp − l∗p are the parameter estimation errors.

The problem addressed in this chapter is given as follows:

Problem 4.1 Develop an adaptive law for kp and lp in (4.4) and a switching law σ(·) such
that the switched system (4.1) with the state-feedback controller (4.1) can asymptotically track
the reference switched system (4.2), i.e., the tracking error satifies e(t ) → 0 as t →∞. In addi-
tion, convergence of the parameter estimates to nominal parameters is achieved if the reference
input r (·) is persistently exciting, i.e., k̃p → 0 and l̃p → 0 as t →∞.

Before presenting the main results, we assume that the sign of l∗p is known, ∀p ∈ M ,
which is a widely used assumption in adaptive control problems to ensure the boundedness
of signals in closed-loop systems [43].

4.3 Design of switching laws and adaptive laws

To guarantee that the states x of the uncertain switched system track xm asymptotically,
firstly, we need to develop a dwell time switching law σ(·) to guarantee the global stability
of the reference switched system with a bounded reference input r . It has been established
that the globally asymptotic stability of the homogeneous system, ẋm = Amp xm, p ∈ M , is
sufficient to lead to global stability of (4.2) [60]. Hence, using the stability condition pro-
posed in [1], the following lemma is stated:

Lemma 4.1 The switched system ẋm = Amp xm, p ∈ M , is globally asymptotically stable for
any switching law σ(·) ∈ D(τd) if there exist: a collection of symmetric matrices Pp,k ∈ Rn×n ,
p ∈ M , k = 0, . . . ,K , and a sequence {δk }K

k=1 > 0 with
∑K

k=1δk = τd such that the following hold:

Pp,k > 0 (4.6a)

(Pp,k+1 −Pp,k )/δk+1 +Pp,k Amp + AT
mp Pp,k < 0 (4.6b)
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(Pp,k+1 −Pp,k )/δk+1 +Pp,k+1 Amp + AT
mp Pp,k+1 < 0 (4.6c)

for k = 0, . . . ,K −1

Pp,K Amp + AT
mp Pp,K < 0 (4.6d)

Pp,K −Pq,0 ≥ 0 (4.6e)

for q = 1, . . . , p −1, p +1, . . . M

where K is an integer that may be chosen a priori, according to the allowed computational
complexity.

By solving the LMIs in (4.6), a collection of symmetric matrices Pp,k and a dwell time
τd can be obtained that will be utilized to develop a new adaptive law. Let S denotes the
switching instants {ti }i∈N and define a time sequence

{
ti ,k

}K
k=0 with ti ,k+1 − ti ,k = δk+1, k =

0, . . . , K −1. Note that ti ,0 = ti and ti ,K − ti ,0 = τd, as shown in Fig. 4.1 .

Figure 4.1: The time sequence between two consecutive switching instants.

Therefore, the adaptive law is proposed as follows:

k̇σ(t )(t ) =− sgn[l∗σ(t )]Γσ(t )x(t )eT (t )Pσ(t )(t )bmσ(t )

l̇σ(t )(t ) =− sgn[l∗σ(t )]γσ(t )r (t )eT (t )Pσ(t )(t )bmσ(t )
(4.7)

where Γp ∈ Rn×n and γp ∈ R are given adaptive gains for p ∈ M and the time-varying matrix
Pp (t ) is defined as:

Pp (t ) =
{

Pp,k + Pp,k+1−Pp,k

δk+1
(t − ti ,k ), for ti ,k ≤ t < ti ,k+1

Pp,K , for ti ,K ≤ t < ti+1.
(4.8)

The sequence of switch-in instants of subsystem p is represented by
{

t pin

l

}
l∈N+ , and the se-

quence of its switch-out instants is represented by
{

t pout

l+1

}
l∈N+ . Note that the proposed adap-

tive law (4.7) is to be implemented as follows: at a switch-in instant of subsystem p the initial
conditions of (4.7) are taken from the estimates available at the previous switch-out instant
of the same subsystem, i.e., kp (t pin

l ) = kp (t out
l ), and lp (t pin

l ) = lp (t pout

l ) for any l ∈N+. There-
fore, kp and lp evolve continuously.

Remark 4.1 Compared with adaptive laws proposed in previous research, the following con-
siderations are in order:

• As an improvement over [91, 117], projection laws are not necessary in (4.7) due to
the non-increasing behavior of the Lyapunov function at the switching instants, as will
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be demonstrated in the next section. Therefore, the knowledge of a priori bounds for
kp (t ) and lp (t ) is not needed for (4.7).

• The adaptive laws introduced in [91, 117] derive from a classical Lyapunov function
consisting of quadratic terms of the tracking error and of the parameter estimation
errors, where a constant positive definite matrix Pp for each subsystem is adopted. In
this chapter, we propose a new adaptive law that uses a time-varying positive definite
matrix Pp (t ) for each subsystem.

• In [91, 117] the adaptive law is derived independently of the switching law (and vice
versa). That is, the design of the switching law and of the adaptive law is decoupled. In
the approach proposed here adaptive and switching laws are coupled via the solution
of (4.6), which depends on the dwell time.

2

4.4 Main results

In this section, the asymptotic stability result and convergence of the parameter estimates of
the proposed control scheme will be presented

4.4.1 Asymptotic stability

Theorem 4.2 With the adaptive law (4.7)–(4.8) and any switching lawσ(·) ∈ D(τd), the track-
ing error e(t ) converges to zero asymptotically as t →∞.

Proof : Consider the following Lyapunov function:

V (t ) = eT (t )Pσ(t )(t )e(t )+
M∑

p=1

1

|l∗p |
(
k̃T

p (t )Γ−1
p k̃p (t )

)
+

M∑
p=1

1

|l∗p |
(
l̃ 2

p (t )γ−1
p

)
(4.9)

which is continuous during any interval between two consecutive switching instants and
discontinuous at switching instants considering the fact that Pσ(·)(·) is continuous during
intervals and discontinuous at switching instants. Without loss of generality, let us consider
an interval [ti , ti+1) between two consecutive switching instants ti and ti+1 and let σ(ti ) = p
and σ(ti+1) = q with i ∈ N+ and p, q ∈ M . Then, for t ∈ [ti , ti+1), subsystem p is active and
thus k j and l j for all j ∈ M /

{
p

}
stay constant and their values are those at the last switched-

out instant of subsystem j before the time instant ti . Therefore, using (4.8) and (4.7), the
derivative of V (t ) with respect to time is

V̇ (t ) = ėT (t )Pp (t )e(t )+eT (t )Pp (t )ė(t )+eT (t )Ṗp (t )e(t )

+2
1

|l∗p |
k̃T

p (t )Γ−1
p

˙̃kp (t )+2
1

|l∗p |
l̃p (t ) ˙̃lp (t )γ−1

p

= eT (t )Qp (t )e(t )

(4.10)

with Qp (t ) defined as
Qp (t ) = AT

mp Pp (t )+ Ṗp (t )+Pp (t )Amp (4.11)

which is continuous for t ∈ [ti , ti+1) due to the continuity of Pp (t ) for t ∈ [ti , ti+1).
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To analyze the properties of Qp (t ) for t ∈ [ti , ti+1), first we consider t ∈ [ti ,k , ti ,k+1), k =
0, . . . ,K −1. Note that

Qp (t ) = AT
mp Pp (t )+ (Pp,k+1 −Pp,k )/δk+1 +Pp (t )Amp

= η1

[
(Pp,k+1 −Pp,k )/δk+1 +Pp,k Amp + AT

mp Pp,k

]
+η2

[
(Pp,k+1 −Pp,k )/δk+1 +Pp,k+1 Amp + AT

mp Pp,k+1

] (4.12)

where

η1 = 1− t − ti ,k

δk+1
, η2 =

t − ti ,k

δk+1
.

According to (4.6b) and (4.6c), it follows from (4.12) that

Qp (t ) < 0, t ∈ [ti ,k , ti ,k+1). (4.13)

Then, let us consider t ∈ [ti ,K , ti+1) for the case that ti+1 − ti > τd. We have Pp (t ) = Pp,K

according to (4.8), which indicates by (4.6d) that

Qp (t ) = AT
mp Pp,K +Pp,K Amp < 0, t ∈ [ti ,K , ti+1). (4.14)

Therefore, it follows from (4.13)-(4.14) that Qp (t ) < 0 due to the continuity of Qp (t ) as t ∈
[ti , ti+1), which implies that V (t ) is strictly decreasing for any e(t ) 6= 0 for t ∈ [ti , ti+1), i.e.,

V̇ (t ) = eT (t )Qp (t )e(t ) < 0, t ∈ [ti , ti+1). (4.15)

Since the signals e(·), k̃σ(·)(·), and l̃σ(·)(·) are continuous according to (4.5) and (4.7), it
follows, at switching instant ti+1, that

Vσ(ti+1)(ti+1)−Vσ(t−i+1)(t−i+1)

= eT (ti+1)Pσ(ti+1)(ti+1)e(tl+1)−eT (t−i+1)Pσ(t−i+1)(t−i+1)e(t−i+1)

= eT (ti+1)(Pσ(ti+1) −Pσ(t−i+1))e(ti+1)

= eT (ti+1)
(
Pq,0 −Pp,K

)
e(ti+1)

which indicates that V (·) is non-increasing at switching instant ti+1 considering Pq,0−Pp,K ≤
0 for p, q ∈ M . Since V (·) is strictly decreasing during any interval between two consecutive
switching instants and non-increasing at each switching instant for any e(t ) 6= 0, now we can
conclude that V (t ) is strictly decreasing for any t > 0 and e(t ) 6= 0. This implies the bound-
edness of V (·) and therefore all the signals in the closed-loop switched system according to
(4.9). Integrating (4.15) from 0 to ∞, we have∫ ∞

0
eT (t )Qp (t )e(t )d t <V (0)−V (∞)

<∞.

Due to the boundedness of Pp (·), Qp (·) is also bounded, which implies∫ ∞

0
eT (t )e(t )d t <∞
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i.e., e(·) ∈ L2. According to (4.9), since V (·) ∈ L∞, we have e(·) ∈ L∞. Additionally, the dy-
namics of e(·) in (5) gives rise to ė(·) ∈L∞. Since e(·) ∈L2 and ė(·) ∈L∞, it can be concluded
that e(t ) → 0 as t →∞ according to Barbalat’s lemma [86]. This completes the proof. 2

Remark 4.3 Note that Pp (·) is constructed using a family of discrete matrices satisfying (4.6)
for each subsystem. The computational complexity of constructing Pp (·) is dependent on
the number K . A larger K leads to a smaller dwell time τd that can guarantee asymptotic
tracking. However, there always exists a constant K ∗ such that ∀K > K ∗, the dwell time τd is
equivalent to the result obtained by the stability condition presented in Lemma 2.3, i.e., for
p 6= q ∈ M ,

Pp ,Pq > 0

Pp Amp + AT
mp Pp < 0

e AT
mpτd Pq e Ampτd −Pp < 0.

(4.16)

2

Remark 4.4 According to Remark 4.3, a question may arise automatically: why cannot we
use the stability condition (4.16) directly to obtain the result of Theorem 4.2 instead of con-
dition (4.6)? The reason is explained in the following.

The differences between the stability conditions in (4.6) and (4.16) have a significant im-
pact on the derivative of the Lyapunov function (4.9). Note that it is not necessary to develop
the derivative in (4.10) during the intervals between two consecutive switches into an ex-
ponential decay formulation, i.e., V̇ (t ) ≤ −αV (t ) with a compatible number α > 0, which is
needed in the approach followed in [91, 117]. On the other hand, using (4.16), the following
classical Lyapunov function as in [91] is considered:

V (t ) = eT (t )Pσ(t )e(t )+
M∑

p=1

1

|l∗p |
(
k̃T

p (t )Γ−1
p k̃p (t )

)
+

M∑
p=1

1

|l∗p |
(
l̃ 2

p (t )γ−1
p

)
(4.17)

whose derivative is, for t ∈ [ti , ti+1)

V̇ (t ) = eT (t )(Pp Amp + Amp Pp )e(t )

+ 1

|l∗p |
(k̃T

p (t )Γ−1
p fxp (t )+γ−1

i l̃p (t ) fr p (t ))

≤−V (t )

ρ
− V (t )−B

sρ

(4.18)

where fxp and fr p are projection laws, and the positive numbers ρ, s , and B can be calcu-
lated as shown in [91]. The derivative in (4.19) can be shown to be decreasing at an expo-
nential rate only when V (t ) ≥ B . According to condition in (4.16), asymptotic stability can
be guaranteed only if the Lyapunov function in (4.17) is decreasing at an exponential rate for
t ∈R+/S which cannot be satisfied according to (4.19). In light of this, we cannot utilize (4.16)
obtain the result of Theorem 4.2 due to the the presence of the exponential term e Ampτd in
(4.16), while it does not appear in (4.6). 2

Remark 4.5 In the literature on adaptive control of switched systems, the switching laws
based on dwell time [91] and on average dwell time [117] are designed based on the follow-
ing two properties of the Lyapunov function: an exponential decreasing rate during active
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intervals between two consecutive switching instants, and a bounded increment at switch-
ing instants. Note that switching laws based on these two properties and adaptive laws with
constant positive definite matrices Pp prevent asymptotic tracking from being achieved, fol-
lowing the same reasoning as in Remark 4.4. 2

Remark 4.6 Since subsystem matrices are necessary to calculate the dwell time using Theo-
rem 1 in [1], the method proposed in [1] can only guarantee asymptotic stability of switched
systems with uncertainties residing in a known polytope. However, the Lyapunov function
(4.9) exploits the matrices of the reference modes. As a consequence, the proposed adap-
tive laws (4.7) with time-varying matrices Pp (·) can achieve asymptotic stability of switched
systems with more general (possibly non-polytopic) uncertainties. 2

4.4.2 Convergence of parameter estimates

Theorem 4.7 If the reference input signal r (·) is persistently exciting with respect to system
(4.2) (i.e., r (·) has at least (n + 1)/2 different frequencies), then k̃p (t ), l̃p (t ), p ∈ M , and e(t )
converge to zero asymptotically as t →∞, with the adaptive law (4.7)–(4.8) and any switching
law σ(·) ∈ D(τd), where M represents the set of subsystems that are active intermittently over
infinite intervals.

Proof : Define θ̃p (t ) = [k̃T
p (t ) l̃p (t )]T for t ∈ Tp , where Tp =∪l∈N+[tpl , tpl+1) denotes the total

time period when subsystem p is active. Then, we can express (4.7) as:

θ̇p (t ) =−sgn[l∗p ]Γpφ(t )bT
mp Pp (t )e(t )

where Γp = diag
{
Γp , γp

}
and φ(t ) =

[
xT (t ) r T (t )

]T
. Define χ(t ) = [eT (t ) θ̃T (t )]T . Then we

have
χ̇(t ) = Ap (t )χ(t ), e(t ) =C T

p χ(t )

where

Ap (t ) =
[

Amp bpφ
T (t )

−sgn[l∗p ]Γpφ(t )bT
mp Pp (t ) 0

]
, Cp =

[
I

0

]
.

Consider the time-varying positive definite matrix

P p (t ) =
Pp (t ) 0

0 1
|l∗p |Γ

−1
p


where Pp (t ) is defined in (4.8). We consider the following Lyapunov function:

Vp (t ) = χT (t )P p (t )χ(t )

= eT (t )Pp (t )e(t )+ 1

|l∗p |
(
k̃T

p (t )Γ−1
p k̃p (t )+ l̃ 2

p (t )γ−1
p

)
.

For an interval [tpl , tpl+1) with l ∈N+ when subsystem p is active, the derivative of the Lya-
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punov function is given by

V̇p (t ) = χT (t )
(

A
T
p (t )P p (t )+P p (t )Ap (t )+ Ṗ p (t )

)
χ(t )

= eT (t )
(

AT
mp Pp (t )+ Ṗp (t )+Pp (t )Amp

)
e(t )

= eT (t )Qp (t )e(t ).

Based on the proof of Theorem 4.2, it is clear that Vp (t ) is strictly decreasing for any e(t ) 6= 0,
which is equivalent to

V̇p (t ) < 0, t ∈ [tpl , tpl+1).

Therefore, there exist positive constants

υp =−sup
{
λmax[Qp (t )]

}
such that

V̇p (t ) ≤ −υp eT (t )e(t )

= −υpχ(t )T CpC T
p χ(t ), t ∈ [tpl , tpl+1).

(4.19)

Furthermore, since the reference input r (·) is persistently exciting and (Amp , bmp ) is con-
trollable, it follows that φm(·) := [xm(·)T r (·)T ]T is also persistently exciting [7], which, to-
gether with (4.19), implies that φ(·) is weakly persistently exciting (according to Definition
3 in [45]). This only leads to asymptotic convergence to zero of the system χ̇(t ) = Ap (t )χ(t )
(see Theorem 4 of [45]) for t ∈ [tpl , tpl+1). Next, we compare the value of Vp (t ) at the switch-
out instant t pout

l+1 and the switch-in instant t pin

l+1 of subsystem p. Since kp (t pin

l+1) = kp (t pout

l+1 ),

and lp (t pin

l+1) = lp (t pout

l+1 ), and due to the result that V (t ) in (4.9) is strictly decreasing for any
e(t ) 6= 0, we have

Vp (t pin

l+1)−Vp (t pout

l+1 ) = V (t pin

l+1)−V (t pout

l+1 )

= e(t pin

l+1)T Pp (t pin

l+1)e(t pin

l+1)

−e(t pout

l+1 )T Pp (t pout

l+1 )e(t pout

l+1 )

< 0

(4.20)

which shows that Vp (t ) is strictly decreasing for all t ∈ Tp together with (4.19). Now, we
construct a continuous time line t by joining the intervals when subsystem p is active, i.e.,
taking t pin

l+1 = t pout

l+1 for all l ∈ N+ and t 0 = tp0 . Therefore, according to (4.19)–(4.20), it holds

that the system χ̇(t ) = Ap (t )χ(t ) is asymptotically stable for the time line t , that is, χ(t ) → 0
as t →∞, which indicates that e(t ), k̃p (t ), and l̃p (t ) converge to zero asymptotically, as t ∈
Tp →∞. This completes the proof. 2

4.5 Example

In this section, an electro-hydraulic system [97, 108], as shown in Fig. 4.2, is used to demon-
strate the effectiveness of the proposed adaptive asymptotic tracking control scheme. The
sensors Linear Variable Differential Transformer (LVDT) and Velocity Receiver are measuring
the displacement and velocity.

Two operating conditions with respect to different supply pressures, 11.0 MPa and 1.4
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Figure 4.2: The schematic diagram of the electro-hydraulic system.

MPa, are selected, and the corresponding transfer functions are:

G1(s) = 62.4

s(s +4.58)
, G2(s) = 47.2

s(s +9.19)

which can be written in canonical form:

ẋ(t ) =
[

0 1

0 −4.58

]
x(t )+

[
0

62.4

]
u(t ), 11.0 MPa

ẋ(t ) =
[

0 1

0 −9.19

]
x(t )+

[
0

47.2

]
u(t ), 1.4 MPa

where x = [x1 x2]T with x1, x2 representing the displacement of the arm and the velocity of
the arm, respectively. The input u(t ) is the control voltage.

The desired behavior is represented by:

ẋm(t ) =
[

0 1

−15 −8

]
xm(t )+

[
0

31.2

]
r (t ), 11.0 MPa

ẋm(t ) =
[

0 1

−27 −12

]
xm(t )+

[
0

23.6

]
r (t ), 1.4 MPa.
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With K = 1 we have a dwell time τd = 1 and the matrices obtained by solving the LMIs in (4.6)
are:

P1,0 =
[

1.2605 0.0546

0.0546 0.0540

]
, P1,1 =

[
2.0107 0.0491

0.0491 0.1216

]

P2,0 =
[

1.3832 0.0305

0.0305 0.0443

]
, P2,1 =

[
2.1008 0.0279

0.0279 0.0818

]
.

Figure 4.3: The tracking error.

Figure 4.4: The parameter estimation errors of the controller for subsystem 1.

Without loss of generality, we select the switching interval ti+1 − ti = τd, for all i , of the
switching law σ(·). Therefore, the time-varying positive matrix Pp (t ) for p ∈ {1,2} can be
calculated by Pp (t ) = (t −τd ·floor(t/τd)) · (Pp,2 −Pp,1

)
/τd +Pp,1, where floor(t/τd) rounds

t/τd to the nearest integer less than or equal to t/τd. The initial conditions are chosen as:

x(0) =
[

0 0
]T

, xm(0) =
[

3 0
]T

, lp (0) = 0.5l∗p and kp (0) = 0.5k∗
p , p ∈ {1,2}. The adaptive

gains Γp = 10I , γp = 5, p ∈ {1,2}, are selected. In addition, a persistently exciting reference
input r (t ) = 3sin(πt )+ 2cos(2t ) is chosen. The simulation results are shown in Figs. 4.3–
(4.5), which indicate that the tracking error converges to 0 and the parameter estimates of
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Figure 4.5: The parameter estimation errors of the controller for subsystem 2.

the controller k1(t ), l1(t ), k2(t ) and l2(t ) converge to k∗
1 =

[
−0.2404 −0.0548

]T
, l∗1 = 0.5,

k∗
2 =

[
−0.5720 −0.0595

]T
, and l∗2 = 0.5 asymptotically, respectively.

4.6 Concluding remarks

In this chapter, the adaptive asymptotic tracking problem of uncertain switched linear sys-
tems has been investigated. An adaptive law based on a time-varying positive definite ma-
trix and a dwell time switching law have been developed. The proposed control scheme can
guarantee the asymptotic stability of the tracking error. Furthermore, with the presence of a
persistently exciting reference input, the parameter estimates of the controller converge to
the real values asymptotically. In light of this, the proposed method has filled the theoretical
gap between adaptive control of switched linear systems and non-switched linear systems.
A practical example of an electro-hydraulic system has demonstrated the effectiveness of the
proposed adaptive control scheme.



Chapter 5

Robust Adaptive Tracking of Switched
Linear Systems with Dwell Time

This chapter investigates robust adaptive control of uncertain switched linear systems con-
sidering disturbances. Two robustification designs for the adaptive law in Chapter 4 are pro-
posed based on parameter projection and on leakage. The main difference of the designs
consists in the available a priori knowledge: the projection law requires knowledge of the
bounds of the parameter estimates while the leakage law does not require knowledge of the
bounds of the parameter estimates. The closed-loop switched linear system is shown to be
globally uniformly ultimately bounded, i.e., robust adaptation is achieved in the presence of
disturbances. In addition, the ultimate bounds of both adaptive control schemes are given.

Parts of the research presented in the chapter have been published in [134].

5.1 Introduction

As parametric uncertainties have been addressed in the previous chapters, another ubiq-
uitous problem for switched linear systems is how to achieve robustness when considering
external disturbances. It is well established that robust control can be used to deal with
non-switched systems subject to uncertainties and disturbances [109, 110]. To date, robust
control of switched systems has been extensively investigated: a single robust controller has
been adopted [65, 150], and a family of robust controllers for polytopic uncertainties have
been designed [1, 2]. However, a single robust controller may lead to conservative perfor-
mance when considering large uncertainties [95]. As a complement to robust control, adap-
tive control techniques have been shown to be able to deal with large non-polytopic uncer-
tainties and disturbances [4, 44]. However, to the best of the author’s knowledge, the research
on robust adaptive control of switched systems considering both parametric uncertainties
and disturbances is a quite open field. In [108], Qing et al. proposed a robust adaptive con-
trol scheme for switched linear systems that requires the existence of a common Lyapunov
function. Hidetoshi and Kojiro developed a so-called adaptive robust controller for a family
of switched linear systems subject to parametric uncertainties, which did not address distur-
bances [83]. In light of this, this chapter aims to develop a robust adaptive control scheme to
deal with switched linear systems considering non-polytopic parametric uncertainties and
disturbances.

In this chapter, the results about adaptive control of switched linear systems without
considering disturbances in Chapter 4 are exploited to develop two robust adaptive control

55
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schemes for switched linear systems. With an assumption on the knowledge of the bounds
of nominal parameters, a robust adaptive control scheme using parameter projection is pro-
posed, which is an immediate extension of the result in Section 8.5.5 of [43]. Next, a robust
adaptive control scheme is developed via a leakage approach involving initial conditions of
the parameter estimates; this approach is different from the results established in Section
8.5.2 of [43]: the leakage terms involve the difference between the parameter estimates and
the initial conditions. In addition, the closed-loop switched linear system is shown to be
globally uniformly ultimately bounded based on the proposed two robust adaptive schemes,
and ultimate bounds for both cases are also given.

This chapter is organized as follows: Section 5.2 presents the control problem and some
preliminaries for later analysis. In Section 5.3, we introduce robust adaptive control schemes
based on a projection law and a leakage approach, respectively. In addition, the results about
global uniform ultimate boundedness of the closed-loop switched linear systems are also
given in 5.4. Section 5.5 adopts two examples to illustrate the proposed results. The chapter
is concluded in Section 5.6.

5.2 Problem statement

This chapter focuses on the uncertain single-input switched linear system with a bounded
disturbance defined as follows:

ẋ(t ) = Aσ(t )x(t )+bσ(t )u(t )+d(t ), t ≥ t0 (5.1)

where x ∈ Rn is the state vector, u ∈ R represents some piecewise continuous input, and
d(·) is a bounded disturbance with an upper bound d . The switching signalσ : [0,∞) → M :=
{1,2, . . . , M } is a piecewise function with M denoting the number of subsystems. The matrices
Ap ∈Rn×n and vectors bp ∈Rn are unknown for all p ∈ M .

A reference switched system representing the desired behavior of (5.1) is given as follows:

ẋm(t ) = Amσ(t )xm(t )+bmσ(t )r (t ), t ≥ t0 (5.2)

where xm ∈ Rn is the desired state vector, and r ∈ R is a bounded reference input. The ma-
trices Amp ∈ Rn×n and vectors bmp ∈ Rn are known, and Amp are Hurwitz matrices for all
p ∈ M . Suppose that the pair (Amp , bmp ) is controllable and each subsystem in (5.1) has
its own corresponding reference submodel. We assume that the measurement of the state
x(t ) is available. Hence, the nominal state feedback controller that makes the switched sys-
tem behave like the reference model is given as u∗(t ) = k∗T

σ(t )x(t )+ l∗σ(t )r (t ) for t ≥ t0, where
the nominal parameters k∗

p ∈ Rn and l∗p ∈ R exist under the assumption that the following
matching condition holds [43, 91]:

Ap +bp k∗T
p = Amp , bp l∗p = bmp . (5.3)

However, since Ap and bp are unknown, we cannot calculate k∗
p and l∗p from (5.3). In light

of this, the state feedback controller is developed as:

u(t ) = kT
σ(t )(t )x(t )+ lσ(t )(t )r (t ), t ≥ t0 (5.4)
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where kp and lp are the estimates of k∗
p and l∗p respectively. In addition, we define the track-

ing error as e(t ) = x(t )−xm(t ). Substituting (5.4) into (5.1), and subtracting (5.2), the dynam-
ics of the tracking error are given as follows:

ė(t ) = Amσ(t )e(t )+bσ(t )
(
k̃T
σ(t )(t )x(t )+ l̃σ(t )(t )r (t )

)+d(t ) (5.5)

where k̃p = kp −k∗
p , l̃p = lp − l∗p are the parameter estimation errors.

Thus, the problem addressed in this chapter is presented as follows:

Problem 5.1 Develop a switching law σ(·) based on dwell time and an adaptive law for kp

and lp such that the switched system (5.1) with the state-feedback controller (5.4) is stable,
and the tracking error is globally uniformly ultimately bounded.

5.3 Design of robust adaptive controllers

The following lemma is given to derive the main results in this section.

Lemma 5.1 [129] Let y ∈ Rp , z ∈ Rq , and Φ,Ψ be appropriately dimensioned matrices, then
for any positive constant ε and for any appropriately dimensioned matrix X (t ) satisfying
X T (t )X (t ) ≤ I , it holds that

2yTΦX (t )Ψz ≤ εyTΦΦT y +ε−1zTΨTΨz.

5.3.1 Switching laws

Let K be a given integer. Let us define a time sequence
{

ti ,k
}K

k=0 with ti ,k+1 − ti ,k = h, k =
0, . . . , K −1. We define that ti ,0 = ti and ti ,K −ti ,0 = τd, as shown in Fig. 7.3. Suppose that there

Figure 5.1: The time sequence between two consecutive switching instants.

exists a family of matrices Pp,k > 0, p ∈ M , k = 0, . . . ,K and a family of positive constants κp ,
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p ∈ M such that the following conditions hold:

AT
mp Pp,k +Pp,k Amp + Pp,k+1 −Pp,k

h
+ (

1+κp
)

Pp,k < 0 (5.6a)

AT
mp Pp,k+1 +Pp,k+1 Amp + Pp,k+1 −Pp,k

h
+ (

1+κp
)

Pp,k+1 < 0 (5.6b)

for k = 0, . . . ,K −1

AT
mp Pp,K +Pp,K Amp + (

1+κp
)

Pp,K < 0 (5.6c)

Pp,K −Pq,0 ≥ 0. (5.6d)

Then, the adaptive laws based on parameter projections and leakage approach will be de-
veloped based on the family of the matrices Pp,k > 0, p ∈ M , k = 0, . . . ,K , and a switching law
is proposed based on the following dwell time:

τd = K h. (5.7)

Remark 5.1 The selection of K is dependent on rule proposed in [122]: as K grows, smaller
(less conservative) h values can be found by solving the LMIs (5.6). In addition, there exists
an integer K ∗ such that no less conservative h can be obtained by choosing a sufficiently
large K ≥ K ∗. 2

5.3.2 Adaptive laws using parameter projection

Before introducing the adaptive law, the following assumptions are made:

Assumption 5.1 The sign of l∗p , ∀p ∈ M , is known.

Assumption 5.2 Upper and lower bounds of k∗
p and l∗p are known, i.e., k∗

p ∈ [kp , kp ] and

l∗p ∈ [l p , l p ], ∀p ∈ M .

Remark 5.2 Assumptions 5.1 and 5.2 are widely used in adaptive control based on parameter
projections [91, 118] to ensure the boundedness of signals in closed-loop systems [43]. 2

The adaptive law with the following projection laws is proposed:

k̇p (t ) =− sgn[l∗p ]Γp x(t )eT (t )Pp (t )bmp + fk,p (t )

l̇p (t ) =− sgn[l∗p ]γp r (t )eT (t )Pp (t )bmp + fl ,p (t )
(5.8)

where Γp ∈ Rn×n and γp ∈ R are given positive adaptive gains for all p ∈ M and the time-
varying matrix Pp (t ) is defined as:

Pp (t ) =
{

Pp,k + t−ti ,k+1
h

(
Pp,k+1 −Pp,k

)
, for ti ,k ≤ t < ti ,k+1

Pp,K , for ti ,K ≤ t < ti+1.
(5.9)

The functions fk,p (·) and fl ,p (·) are the projection laws, which are used to prevent parameter
drift of the parameter estimates [44]. Next, the definitions of fk,p and fl ,p are given [118]: Let
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kp = [kp1, . . . ,kpn]; fk,p = [ fk1,p , . . . , fkn,p ];

φk,p = − sgn[l∗p ]Γp xeT Pp bm = [φk1,p , . . . ,φkn,p ]

φl ,p = − sgn[l∗p ]γp r eT Pp bmp .

Then, we have the projection terms as follows, for s ∈ {1, · · · ,n}, t ≥ t0

fks,p (t ) =


−φks,p (t ) if kps(t ) ≤ kps & φks,p (t ) ≤ 0,

or if kps(t ) ≥ kps & φks,p (t ) ≥ 0

0 otherwise

fl ,p (t ) =


−φl ,p (t ) if lp (t ) ≤ l p & φl ,p (t ) ≤ 0,

or if lp (t ) ≥ kp & φl ,p (t ) ≥ 0

0 otherwise.

(5.10)

5.3.3 Adaptive laws using leakage method

Now, the leakage approach in [43] is extended to switched linear systems to prevent param-
eter drift, which does not require Assumption (5.2). The resulting adaptive law is given in the
following:

k̇p (t ) =− sgn[l∗p ]Γp x(t )eT (t )Pp (t )bmp −δk
pΓp k̂p (t ) (5.11a)

l̇p (t ) =− sgn[l∗p ]γp r (t )eT (t )Pp (t )bmp −δl
pγp l̂p (t ) (5.11b)

k̇q (t ) =−δk
qΓq k̂p (t ) (5.11c)

l̇q (t ) =−δl
qγq l̂p (t ) (5.11d)

for q = 1, . . . , p − 1, p + 1, . . . , M , where k̂p (t ) = kp (t ) − kp (t0), l̂p (t ) = lp (t ) − lp (t0), Pp (t ) is
defined in (5.9), Γp , γp are positive adaptive gains, and δk

p , δl
p are positive leakage rates sat-

isfying

δk
p ≥ max

p∈M

{
κp

}
λmax

(
Γ−1

p

)
, δl

p ≥ max
p∈M

{
κp

}
γ−1

p . (5.12)

Remark 5.3 Different from the adaptive law (5.11a), the parameter estimates of all subsys-
tems are updated during the whole time horizon. To be more precise, the updating rules
(5.11a)—(5.11b) of the parameter estimates are adopted when the subsystem is active. The
updating rules switch to (5.11c)—(5.11d) when the subsystem is inactive. In addition, differ-
ent from the leakage approach in [43] for adaptive control of non-switched systems, when a
subsystem is inactive, the adaptive rule will bring the parameter estimates to initial condi-
tions of (5.11) to guarantee the stability of the switched systems. 2

5.4 Main results

5.4.1 Performance analysis with parameter projection

Now, we are ready to introduce the following stability results.
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Theorem 5.4 With any switching law σ(·) ∈ D(τd) and the adaptive law (5.8)–(5.10), the un-
certain switched system (5.1) with state feedback controller (5.4) is GUUB. In addition, the
ultimate bound of the tracking error is given as

Bproj =
√√√√ maxp∈M

{
λmax

(
Pp (t )

)}
minp∈M

{
κp

}
minp∈M

{
λmin

(
Pp (t )

)}‖d‖. (5.13)

Proof : Consider the following Lyapunov function:

V (t ) = eT (t )Pσ(t )(t )e(t )+
M∑

p=1

1

|l∗p |
(
k̃T

p (t )Γ−1
p k̃p (t )

)
+

M∑
p=1

1

|l∗p |
(
l̃ 2

p (t )γ−1
p

)
. (5.14)

Without loss of generality, we assume that subsystem p is active for t ∈ [ti , ti+), i ∈N+. There-
fore, using (5.8) and (5.9), the derivative of V (t ) with respect to time is, for t ∈ [ti , ti+1)

V̇ (t ) = eT (t )Qp (t )e(t )+d T (t )Pp (t )e(t )+eT Pp (t )d(t )

+ 1

|l∗p |
k̃T

p Γ
−1
p fk,p (t )+ 1

|l∗p |
l̃ T

p γ
−1
p fl ,p (t )

(5.15)

with Qp (t ) = AT
mp Pp (t )+ Ṗp (t )+Pp (t )Amp . According to (5.10), we have k̃T

p Γ
−1
p fk,p ≤ 0, and

l̃pγ
−1
1p fl ,p ≤ 0. Since Pp (·) is a positive definite matrix, there exists a non-singular matrix Hp (·)

such that Pp (·) = Hp (·)H T
p (·). Then, substituting Pp (·) = Hp (·)H T

p (·) into (5.15), according to
Lemma 5.1, it follows that

V̇ (t ) ≤ eT (t )Qp (t )e(t )+eT (t )Pp (t )e(t )+d T (t )Pp (t )d(t )

≤ eT (t )Ξp (t )e(t )+d T (t )Pp (t )d(t )
(5.16)

where Ξp (t ) = Qp (t )+Pp (t ). To analyze the properties of V (t ) for t ∈ [ti , ti+1), first we con-
sider a subinterval, i.e., t ∈ [ti ,k , ti ,k+1), k = 0, . . . ,K −1. Note that

Ξp (t ) = AT
mPp (t )+Pp (t )Amp + Pp,k+1 −Pp,k

h
+ (
η1(t )Pp,k +η2(t )Pp,k+1

)
= η1(t )

(
Pp,k+1 −Pp,k

h
+ AT

mp Pp,k +Pp,k Amp +Pp,k

)
+η2(t )

(
Pp,k+1 −Pp,k

h
+ AT

mp Pp,k+1 +Pp,k+1 Amp +Pp,k+1

)
(5.17)

where η1(t ) = 1− (
t − ti ,k

)
/h, and η2(t ) = 1−η1(t ). According to (5.6a)–(5.6c), it follows that

Ξp (t )+κp Pp (t ) < 0, t ∈ [ti ,k , ti ,k+1). (5.18)

Then, let us consider t ∈ [ti ,K , ti+1) for the case that ti+1 − ti > τd. We have Pp (t ) = Pp,K

according to (5.9), which indicates by (5.6d) that

Ξp (t )+κp Pp,K < 0, t ∈ [ti ,K , ti+1). (5.19)
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Therefore, it follows from (5.18)–(5.19) that Ξp (t ) <−κp Pp (t ) for t ∈ [ti , ti+1). In light of this,
according to (5.16), we have

V̇ (t ) ≤−κp eT Pp (t )e(t )+d T (t )Pp (t )d(t ), t ∈ [ti , ti+1). (5.20)

Since the signals e(·), k̃σ(·)(·), and l̃σ(·)(·) are continuous according to (5.5) and (5.8), we have,
at switching instant ti+1,

Vσ(ti+1)(ti+1)−Vσ(t−i+1)(t−i+1)

= eT (ti+1)Pσ(ti+1)(ti+1)e(ti+1)−eT (t−i+1)Pσ(t−i+1)(t−i+1)e(t−i+1)

= eT (ti+1)(Pσ(ti+1) −Pσ(t−i+1))e(ti+1)

= eT (ti+1)
(
Pq,0 −Pp,K

)
e(ti+1)

(5.21)

which indicates that V (·) is non-increasing at switching instant ti+1 considering Pp,0−Pq,K ≤
0 for p, q ∈ M . Therefore, according to (5.20)-(5.21), it can be shown that there exists a ball
centered at the origin with the following radius:

Bproj =
√√√√ maxp∈M

{
λmax

(
Pp (t )

)}
min p ∈ M

{
κp

}
minp∈M

{
λmin

(
Pp (t )

)}‖d‖

such that when ‖e(t )‖ ≥Bproj, we have V̇ (t ) < 0. Furthermore, since the parameter estimates
are bounded due to the projection laws (5.10), V (·) is GUUB, and the tracking error e(·) is
attracted into the ball centered in the origin with radius Bproj, as shown in Fig. 5.2. This
completes the proof.

Figure 5.2: The attraction of the tracking error based on parameter projection.

2

5.4.2 Performance analysis with leakage

The following stability result is given based on the adaptive law (5.11)–(5.12), and the switch-
ing signals with dwell time τd defined in (5.7).

Theorem 5.5 With any switching law σ(·) ∈ D(τd) and the adaptive law (5.11)–(5.12), the
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uncertain switched system (5.1) with state-feedback controller (5.4) is GUUB. In addition, the
ultimate bound of the tracking error is given as

Bleak =
√√√√ Σ+maxp∈M

{
λmax

(
Pp (t )

)}‖d‖2

minp∈M
{
κp

}
minp∈M

{
λmin

(
Pp (t )

)} (5.22)

with

Σ=
M∑

p=1

1

|l∗p |
(
δk

p‖k∗
p −kp (t0)‖2 +δl

p

(
l∗p − lp (t0)

)2
)

. (5.23)

Proof : Consider the same Lyapunov function as in (5.14). Using (5.5), (5.6), and (5.11), the
derivative of V (t ) w.r.t. time is, for t ∈ [ti , ti+1),

V̇ (t ) = eT (t )Qσ(ti )(t )e(t )+d T (t )Pσ(ti )(t )e(t )+eT (t )Pσ(ti )(t )d(t )−2
M∑

p=1

1

|l∗p |
δk

p k̃T
p (t )k̂p (t )

−2
M∑

p=1

1

|l∗p |
δl

p l̃p (t )l̂p (t )

≤ eT (t )Ξσ(ti )(t )e(t )+d T (t )Pσ(ti )(t )d(t )−2
M∑

p=1

1

|l∗p |
δk

p k̃T
p (t )(k̃p (t )+k∗

p −kp (t0))

−2
M∑

p=1

1

|l∗p |
δl

p l̃p (t )(l̃p (t )+ l∗p − lp (t0))

≤ −κσ(ti )e
T (t )Pσ(ti )(t )e(t )+d T (t )Pσ(ti )(t )d(t )−

M∑
p=1

1

|l∗p |
δk

p

(
‖k̃p (t )‖2 −‖k∗

p −kp (t0)‖2
)

−
M∑

p=1

1

|l∗p |
δl

p

(
l̃ 2

p (t )−
(
l∗p − lp (t0)

)2
)

.

(5.24)
The first inequality in (5.24) holds by following the same steps as for (5.17)–(5.19), and the

second inequality holds since−2k̃T
p k̃p−2k̃T

p

(
k∗

p −kp (t0)
)
≤−‖k̃p‖2+‖k∗

p−kp (t0)‖2, and−2l̃ 2−
2l̃p

(
l∗p − lp (t0)

)
≤−l̃ 2

p+
(
l∗p − lp (t0)

)2
, ∀p ∈ M . Hence, according to (5.14), the following holds:

V̇ (t ) ≤ −κσ(ti )V (t )+d T (t )Pσ(ti )(t )d(t )+κσ(ti )

M∑
p=1

1

|l∗p |
(
k̃T

p (t )Γ−1
p k̃p (t )+ l̃ 2

p (t )γ−1
p

)
−

M∑
p=1

1

|l∗p |
(
δk

p‖k̃p (t )‖2 −δk
p‖k∗

p −kp (t0)‖2
)

−
M∑

p=1

1

|l∗p |
(
δl

p l̃ 2
p (t )−δl

p

(
l∗p − lp (t0)

)2
)

≤ −κσ(ti )V (t )+d T (t )Pσ(ti )(t )d(t )+
M∑

p=1

1

|l∗p |
[
κσ(ti )λmax

(
Γ−1

p

)
−δk

p

]
‖k̃p (t )‖2

+
M∑

p=1

1

|l∗p |
[
κσ(ti )γ

−1
p −δl

p

]
l̃ 2

p (t )+Σ

(5.25)
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where Σ is defined as (5.23). According to (5.12), (5.25) is recast into

V̇ (t ) ≤ −κσ(ti )V (t )+d T (t )Pσ(ti )(t )d(t )+Σ. (5.26)

Due to the same reason as for (5.21), V (·) is non-increasing at the switching instants. In light
of this, the Lyapunov function is attracted inside a ball centered at the origin with radius

BV = 1

minp∈M
{
κp

} (
Σ+max

p∈M

{
λmax

(
Pp (t )

)}‖d‖2
)

.

This implies that the switched system (5.1) with state-feedback controller (5.4) is GUUB.
Considering that ‖e(t )‖2 ≤ V (t )/minp∈M

{
λmin

(
Pp (t )

)}
, it can be shown that the tracking

error is attracted inside a ball centered at the origin with the following radius,

Bleak =
√√√√ Σ+maxp∈M

{
λmax

(
Pp (t )

)}‖d‖2

minp∈M
{
κp

}
minp∈M

{
λmin

(
Pp (t )

)}
as shown in Fig. 5.3. This completes the proof.

Figure 5.3: The attraction of the tracking error based on the leakage method.

2

Remark 5.6 Note that the ultimate bound of the tracking error depends on the initial param-
eter estimate errors: when the initial estimates are far away from the nominal parameters,
a large tracking error is expected, and vice versa. In light of this, compared with (5.13) and
(5.22), Assumption 5.2 is removed for the adaptive law with leakage method (5.11) at the ex-
pense of possibly impairing the steady-state performance of the tracking error. This will be
illustrated in the simulation of adaptive control of leakage approach in Section 5.5.

5.5 Examples

In this section, two examples are used to demonstrate the effectiveness of the proposed ro-
bust adaptive tracking control scheme. One is a numerical example and the other involves
an air handling unit.
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5.5.1 Numerical example

Consider the following uncertain switched linear system:

A1 =


−0.6 3.0 3.3

1.0 −0.1 2.1

−0.2 2.3 1.5

 , B1 =


−2.3

1.8

0.4



A2 =


2.6 3.6 1.2

1.8 −0.5 3.6

1.2 1.8 2.0

 , B2 =


0.0

−0.4

−1.5



A3 =


3.5 2.4 1.3

2.4 2.2 2.3

3.9 2.6 −0.9

 , B3 =


0.2

−1.3

−0.8


and the following reference switched model:

Am1 =


7.9 26.1 32.8

−5.7 −18.1 −21.0

−1.7 −1.7 −3.6

 , Bm1 =


−2.3

1.8

0.4



Am2 =


25.9 23.1 22.7

−7.5 −8.3 −5.0

−33.8 −27.4 −30.3

 , Bm2 =


0.0

−0.4

−1.5



Am3 =


7.3 4.7 2.5

−22.5 −12.7 −5.5

−11.4 −6.5 −5.7

 , Bm3 =


0.2

−1.3

−0.8

 .

Let κ1 = 0.1, κ2 = 0.15, and κ3 = 0.12, K = 1, and h = 2. Solving the LMIs (5.6) gives

P10 =


0.02 0.03 0.03

0.03 0.04 0.04

0.03 0.04 0.05

 , P11 =


0.15 0.17 0.19

0.17 0.30 0.34

0.19 0.34 0.44



P20 =


0.11 0.08 0.07

0.08 0.07 0.05

0.07 0.05 0.05

 , P21 =


0.70 0.55 0.46

0.55 0.49 0.36

0.46 0.36 0.34



P30 =


0.07 0.03 0.01

0.03 0.012 0.003

0.009 0.003 0.006

 , P31 =


0.60 0.31 0.17

0.31 0.17 0.11

0.17 0.11 0.10

 .

We select the switching interval ti+1 − ti = τd for i = 1,2,3. Therefore, the time-varying pos-
itive matrices Pp (t ) for p ∈ {1,2,3} are Pp (t ) = (t −τd ·floor(t/τd)) · (Pp,1 −Pp,0

)
/τd + Pp,0,
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where floor(t/τd) rounds t/τd to the nearest integer less than or equal to t/τd.
Before performing the adaptation process, we select a bounded external disturbance

d(t ) = [0.2sin(10t ) e−0.1t 0.1cos(5t )]T , the initial conditions x(0) = [0 0 0]T , xm(0) = [3 1 0]T ,
and the adaptive gains Γp = 10I3, γp = 10, ∀p ∈ M . The switching signal is designed with a
dwell time τd = 2 as shown in Fig. 5.4.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50
Switching intants

1

2

3

M
od

e

Figure 5.4: The switching signal.

A. Adaptive control with projection law

We select the initial parameter estimates kp (0) = 0.2k∗
p , lp (0) = 0.2l∗p , ∀p ∈ M . Assume

the parameter estimates reside in the following known bounds: k1(t ) ∈ [
1.2k∗

1 0.2k∗
1

]
, ks(t ) ∈[

0.2k∗
s 1.2k∗

s

]
with s ∈ {2,3}, and lp (t ) ∈

[
0.2l∗p 1.2l∗p

]
with p ∈ {1,2,3}. The resulting tracking

error is given in Fig. 5.5, which shows that the tracking error is attracted inside a ball.

B. Adaptive control with leakage law

The leakage rates δk
p = δl

p = 0.015 are chosen to satisfy the conditions (5.12). To study
the effect of the initial conditions of the parameter estimates on the steady-state perfor-
mance of the tracking error, we select the two initial conditions of the parameter estimates
kp (0) = 0.8k∗

p , lp (0) = 0.8l∗p , and kp (0) = 0.2k∗
p , lp (0) = 0.2l∗p , ∀p ∈ M . The resulting tracking

errors based on the two initial conditions of parameter estimates are given in Figs. 5.6–5.7,
which show that the tracking errors are attracted inside a ball. By comparing Fig. 5.6 and
Fig. 5.7, it can be observed that larger initial parameter estimation errors give rise to larger
tracking errors. Moreover, it can be noticed from Fig. 5.5 and Fig. 5.7 that the ultimate bound
of tracking error Bleak in Fig. 5.7 is bigger than Bproj in Fig. 5.5, which indicates that the
adaptive law with leakage may negatively impact the steady-state performance of the track-
ing error when improper initial conditions in (5.8)–(5.11) are selected.

5.5.2 Air handling unit

We consider an air handling unit (AHU) serving a conditioned space [47, 93]. For the sake of
simplicity, the space is represented by a single zone and the ducting is omitted. The air han-
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Figure 5.5: The tracking error e(t ) via projection laws.
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Figure 5.6: The tracking error e(t ) with kp (0) = 0.8k∗
p and lp (0) = 0.8l∗p .

dler consists of a cooling/heating coil, supply and return fans, valve, damper, and ductwork,
as shown in Fig. 5.8. Chilled or heated water flows through the coil depending on different
seasons, and the water flow rate is controlled by a programmable valve. The air in the duct-
work is cooled or heated when flowing through the coil, and the air flow rate is controlled by
the speed of the supply/return fan. In addition to the supply air, the temperature in the zone
is affected by the heat exchange with the building mass, and by solar radiation, which has
both a direct effect (through windows) and an indirect effect (through the building mass) on
the zone temperature.

All these effects can be derived from the heat balance of the zone. In particular, after
ignoring the influence of humidity on temperature, the following differential equations de-
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Figure 5.7: The tracking error e(t ) with kp (0) = 0.2k∗
p and lp (0) = 0.2l∗p .

Figure 5.8: Layout of the AHU with a single zone.

scribe the evolution of the temperature in the system:

Ṫz = − fs,i

Vz
(Tz −Ts)+ kmz

ρaCpaVz
(Tm −Tz)+ ηPsolar

ρaCpaVz

Ṫm = kmz

Cm
(Tz −Tm)+ kom

Cm
(To −Tm)+ 1−η

Cm
Psolar

Ṫs =
fs,i

Vc
(Tz −Ts)+ 0.25 fs,i

Vc
(To −Tz)+ ρwCpw∆Tc

ρaCpaVc
fw

(5.27)

where Ts, Tm, and Tz ∈ R represent the temperature of the supply air, of the mass, and of
the thermal zone, respectively; the coefficient 0.25 represents the typical damper position
where 25% fresh air and 75% exhaust air are mixed in the mixing zone before passing through
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the coil. The definitions of all the parameters of the dynamic model (5.27) are provided in
Table 5.1. The following comments apply to the volumetric flow rate of air fs,i . In most
building automation designs, the variable-speed drive of the fan operates at fixed number of
speeds [40], typically

{
off, low,medium,high

}= {0,1,2,3}, giving fs,i ∈
{

fs,0, fs,1, fs,2, fs,3
}

with
fs,0 ≡ 0. The switching behavior between different fan speeds, i.e. fs,i = fs,σ(t ), is controlled
by the switching signal σ(·), which might depend on external commands or by a supervisory
controller.

Table 5.1: Parameters of the dynamical model (5.27).

Cpa (J/kg°C) Specific heat capacity of air

Cpw (J/kg°C) Specific heat capacity of water

Cm (J/°C) Heat capacity of the mass

kom (W/°C) Thermal conductance between environmental air and the mass

kmz (W/°C) Thermal conductance between indoor air and the mass

ρa (kg/m3) Air density

ρw (kg/m3) Water density

Vc (m3) Volume of heat exchanger

Vz (m3) Volume of thermal space

To (°C) Environmental temperature

Ts (°C) Temperature of supply air

Tz (°C) Temperature of thermal zone

Tm (°C) Temperature of mass in the zone

fs (m3/s) Volumetric flow rate of air with discrete modes

fw (m3/s) Flow rate of chilled water

∆Tc (°C) Temperature gradient in cooling unit

Psolar (kW/m2) Solar radiation

By taking into account the practical constraints of fs,i and fw, and after selecting the state
x = [Tz Tm Ts]T , the model (5.27) is recast into in a switched input-saturated system with four
different modes (subsystems)

ẋ(t ) = Ai x(t )+b fw(t )+d(t ), i ∈ {0,1,2,3} (5.28)

where

Ai =


−α1 fs,i −α2kmz −α2kmz α1 fs,i

β1kmz −β1 (kmz +kom) 0

0.75β2 fs,i 0 −β2 fs,i



b =


0

0

γ1

 , d = d1 +d2, d1 =


0

0

γ2

 fs,i , d2 =


ξ1

ξ2

0
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Table 5.2: The parameters of the AHU.

Cpa 1000 J/kg

Cpw 4180 J/kg°C

Cm 880 J/kg°C

kom 5.235 ·10−5 W/°C

kmz 2.141 ·10−4 W/°C

ρa 1.18 kg/m3

ρw 1000 kg/m3

Vc 1 m3

Vz 400 m3

To 0 °C

fs 2.6 m3/s, 5 m3/s, 7 m3/s

∆Tc 6 °C

Psolar
(
700W/m2

)
with

α1 = 1

Vz
, α2 = 1

ρaCpaVz
, β1 = 1

Cm
, β2 = 1

Vc
, γ1 =

ρwCpw∆Tc

ρaCpaVc

γ2 = 0.25β2To, ξ1 = η

ρaCpaVz
Psolar, ξ2 = 1−η

Cm
Psolar +β1komTo.

Since the switched system (5.28) is uncontrollable with fs,0 ≡ 0, in what follows, we con-
sider three modes fs,i , i = 1,2,3 to develop the switching signal. The following parameters
are adopted to study the air handling unit. The material of the building mass is burnt brick,
whose density is 1820 kg/m3, specific heat is 880 J/kg°C, and absorptivity of the solar radia-
tion is 0.6. The discretized error of the water supply rate is 0.00005m3/s and the water supply
rate is constrained in [0 0.0025]m3/s. The desired zone temperature is 24°C, and the initial
zone temperature is 16°C. The thermal and geometrical parameters are given in Table 5.21.

A. Design of reference models

The discrete fan speeds
{

fs,1, fs,2, fs,3
}

lead to a simple design of xm: that is, the dynamics
of the reference model are designed to be faster or slower according to the fan speed. In
particular, the higher the speed, the faster the rate with which the temperature is expected
to change. Then, the following reference models for three different fan speeds are designed:

Am,1 =


−0.0066 −0.0001 0.0065

0.0002 −0.0003 0

3.2 0 −4.4

 , bm,1 =


0

0

1.2638



1The solar radiation absorbed by the building depends on several factors, like a) design variables (geomet-
rical features of building like orientation); b) material of the building mass; c) environmental weather data like
different seasons, etc. This gives rise to Psolar ∈ [0 700]W/m2. In the example, we take the maximum value, i.e.
Psolar = 700W/m2.
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Am,2 =


−0.0126 −0.0001 0.0125

0.0002 −0.0003 0

3 0 −4.1

 , bm,2 =


0

0

1.1310



Am,3 =


−0.0201 −0.0001 0.02

0.0002 −0.0003 0

2.5 0 −3.6

 , bm,3 =


0

0

1.1169


whose step responses are shown in Fig. 5.9. From Fig. 5.9, we learn that for the low speed
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Figure 5.9: The step response of the dynamic of the zone temperature.

of the fan, it takes 36 minutes to reach the steady state; for the medium speed of the fan, it
takes 22 minutes to reach the steady state; for the high speed of the fan, it takes 16 minutes
to reach the steady state.

Solving the LMIs (5.6) for K = 1 using the SeDuMi solver, we obtain the dwell time τd =
1.2s and the matrices

P1,0 =


2.9958 0.1765 −0.0525

0.1765 3.4025 0.0003

−0.0525 0.0003 0.0790

 , P1,1 =


3.1765 0.1658 −0.1387

0.1658 3.4572 0.0002

−0.1387 0.0002 0.2020



P2,0 =


2.7996 0.1694 −0.0496

0.1694 3.4025 0.0005

−0.0496 0.0005 0.0800

 , P2,1 =


3.3691 0.1724 −0.1366

0.1724 3.4572 0.0005

−0.1366 0.0005 0.2103



P3,0 =


2.6126 0.1615 −0.0423

0.1615 3.4025 0.0009

−0.0423 0.0009 0.0819

 , P3,1 =


3.5182 0.1777 −0.1291

0.1777 3.4572 0.0012

−0.1291 0.0012 0.2357

 .
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B. Adaptive control of air handling unit

Let the initial conditions be x(0) = [16 5 16]T , xm(0) = [16.5 5 16.5]T , k1(0) = [0.2941 0 −
0.4234]T ×10−4, k2(0) = [−0.1764 0 0.2117]T ×10−4, k3(0) = [−0.823 0 1.035]T ×10−4, l1(0) =
2.9731×10−5, l2(0) = 2.6606×10−5, l3(0) = 2.6606×10−5, υ(0) = 4.7049×10−8. In addition, the
adaptive gains Γi = 10−5I and γ1,i = γ2,i = γ3,i = 10−5 for i = 1,2,3 are chosen. We assume
that the mode of the fan is switched every 10 minutes in 60 minutes. The switching law is
given in Fig. 5.10.

Then, the dynamics of the zone temperature and the dynamics of reference zone temper-
ature with the switching signal in Fig. 5.10 are shown in Fig. 5.11, which indicates an ultimate
bounded tracking error. This result is consistent with the proposed result as (5.13).

Figure 5.10: The time-driven switching signal.
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Figure 5.11: The dynamics of the zone temperature and the reference zone temperature with
switching signal as in Fig. 5.10.
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5.6 Concluding remarks

Robust adaptive control problem of uncertain switched linear systems has been studied in
this chapter. As an extension of the results in Chapter 4, two control schemes have been in-
troduced based on a parameter projection approach and a leakage approach, respectively.
With the proposed robust adaptive control schemes, the closed-loop switched linear systems
have been shown to be globally uniformly ultimately bounded. In addition, ultimate bounds
of the tracking error for both cases have been given, which has indicated that as a price paid
for not requiring the bounds of the unknown parameters, the leakage approach tends to pro-
duce worse steady-state performance compared with parameter projection. One numerical
example and one practical example involving an air handling unit are used to show the ef-
fectiveness of the robust adaptive controllers.
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Chapter 6

Adaptive Stabilization of Switched Linear
Systems with Time-Varying Delays

In the presence of discontinuous time-varying delays of states, neither Krasovskii nor Razu-
mikhin techniques can be successfully applied to adaptive stabilization of switched time-
delay systems with parametric uncertainties. This chapter develops a new adaptive control
scheme for uncertain switched time-delay systems that can handle impulsive behavior in
both states and time-varying delays. At the core of the proposed scheme is a Lyapunov func-
tion with a dynamically time-varying coefficient, which allows the Lyapunov function to be
non-increasing at the switching instants. The control scheme can guarantee global uniform
ultimate boundedness of the adaptive closed-loop system.

6.1 Introduction

Switched time-delay systems are natural generalizations of switched systems, as time delay
of states is another common problem in hybrid systems. Time delay is typically time-varying,
and makes the state of a system evolve based on some delayed information [32, 98, 105, 113,
146]. Stability and stabilization of switched time-delay systems have been studied inten-
sively [3, 17, 66, 85, 98, 128]. However, the two main approaches adopted to deal with time-
varying delay, namely the Krasovskii technique and the Razumikhin technique, show some
limitations when applied to adaptive stabilization of switched time-delay systems. Since the
Krasovskii technique involves the bounded derivatives of the time-varying delays, continuity
of time-varying delay at the switching instants should be assumed [58, 84, 98]. While this as-
sumption might be reasonable for non-switched systems, it turns out to be quite restrictive
when considering that switching behavior may lead to impulsive delays. On the other hand,
even although the Razumikhin technique can handle discontinuous time-varying delays, its
application in an adaptive stabilization setting is problematic: as pointed out in [81, 82, 156],
the selection of the Razumikhin coefficient is limited to an unknown interval inside which
the existence of an adaptive controller is guaranteed. Therefore, addressing discontinuous
time-varying delays in adaptive control of uncertain switched systems is not only practically
relevant but it also tackles the need to extend the current stabilization tools, which motivates
this study.

In this chapter, we develop a new adaptive control design for uncertain switched linear
systems that can handle impulses in both states and time-varying delays. A stability condi-
tion is developed to deal with the discontinuities of multiple time-varying delays. Based on
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the stability condition, a new adaptive controller is proposed by solving a family of Riccati
equations and LMIs. The adaptive law involves a piecewise dynamic gain that is properly de-
signed to guarantee the non-increasing property of the Lyapunov function at the switching
instants. Furthermore, a less conservative switching law based on mode-dependent dwell
time is designed by exploiting information of each subsystem. With the designed adaptive
controller and switching law, global uniform ultimate boundedness of the closed-loop sys-
tem can be guaranteed. The main contribution of this chapter is that the impulsive behav-
ior of both the states and the time-varying delay is addressed and solved for the first time
in an adaptive stabilization setting. As a matter of fact, the proposed adaptive mechanism
substantially enlarges the class of uncertain switched linear systems for which the adaptive
stabilization can be solved.

This chapter is organized as follows: the problem formulation and some useful lemmas
are given in Section 6.2. A stability condition for switched linear systems with time-varying
delays is introduced in Section 6.3. In Section 6.4, the adaptive controller with matching con-
ditions is designed while the adaptive controller with unmatched uncertainties is designed
in Section 6.5. A two-tank system is used to illustrate the proposed method in Section 6.6.
The chapter is concluded in Section 6.7.

6.2 Problem statement

Consider the switched linear impulsive system with multiple time-varying delays

ẋ(t ) = (
Aσ(t ) +∆Aσ(t )(t )

)
x(t )+Bσ(t )u(t )+w(t )

+
L∑
`=1

(
E`,σ(t ) +∆E`,σ(t )(t )

)
x(t −d`,σ(t )(t ))

xt0 (ϑ) =ψ(ϑ), ϑ ∈ [t0 −dm, t0]

x(ti ) = Hσ(t )x(t−i ), i ∈N+

(6.1)

where x ∈Rn is the state vector, u ∈Rm is the system input, w ∈Rn is a bounded disturbance
with unknown bound w̄ , i.e., ‖w‖ ≤ w̄ . The matrices Ap ∈ Rn×n , Ep ∈ Rn×n , Bp ∈ Rn×m , and
Hp ∈Rn×n are known constant matrices with

(
Ap ,Bp

)
, being controllable for all p ∈ M ;∆Ap ∈

Rn×n and ∆E`,p ∈ Rn×n are unknown possibly time-varying matrices. The terms d`,p (·) ∈ R,
` ∈ L , p ∈ M , represent unknown multiple time-varying delays, and ψ(ϑ) is a continuous
initial function for ϑ ∈ [t0 −dm, t0] with dm defined in Assumption 6.1. The switching signal
σ : [0,∞) → M := {1,2, . . . , M } is a piecewise function with M denoting the number of subsys-
tems.

The following assumptions are made.

Assumption 6.1 There exists a positive constant dm =: sup`∈L ,p∈M d`,p (·), which is not neces-
sarily known.

Assumption 6.2 The uncertain matrices ∆Ap (·) and ∆Ep (·) satisfy the following matching
conditions:

∆Ap (t ) = BpΞp (t ), ∆E`,p (t ) = BpΠ`,p (t ) (6.2)

with ‖Ξp (t )‖2 ≤ ξp and ‖Π`,p (t )‖2 ≤ ζ`,p where ξp and ζ`,p , p ∈ M , l ∈ L , are unknown posi-
tive constants.
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Remark 6.1 Assumption 6.1 only requires the existence of an upper bound to the multiple
time-varying delays. Note that the time-varying delays are allowed be discontinuous at the
switching instants due to switching behavior. Discontinuity excludes the application of the
Krasovskii technique, while the Razumikhin technique is intrinsically subject to limitations
in the adaptive control setting, as highlighted in [81, 156]. Therefore, a new stability con-
dition needs to be developed for adaptive control of system (6.1). Assumption 6.2 is rather
standard, and widely used in adaptive control or robust control [44, 156] to dominate the
uncertainties. Note that Assumption 6.2 will be relaxed in (6.23), so as to handle bounded
unmatched uncertainties. 2

The following lemmas are useful for deriving the main results.

Lemma 6.1 [129] Let y ∈Rp , z ∈Rq , and M , N be appropriately dimensioned constant matri-
ces. Then, for any positive constant ε, it holds that

2yT M N z ≤ εyT M M T y +ε−1zT N T N z.

Lemma 6.2 [17] For given positive scalarsµ≥ 1, a, and b that satisfy 0 < b < aµ/(µ+1), define

v =:
1

c
arctanh

(µ−1)c
a
2 (µ+1)−2b

(6.3)

where c =√
a2/4−b2/µ. Let ϕ(t ) be the solution of the following initial value problem:

ϕ̇(t ) =− v

T

(
ϕ2(t )−aϕ(t )+ b2

µ

)
, t ≥ ts

ϕ(ts) = b

µ

(6.4)

with T > 0. Then, ϕ(t ) exists on [ts ,∞) and satisfies

ϕ(t ) =
a
2 + c + ( a

2 − c)$(t )

1+$(t )
, t ≥ ts (6.5)

where $(t ) = a/2+c−b/µ
b/µ−a/2+c e− 2cv

T (t−ts ), ϕ(ts +T ) = b, and ϕ̇(t ) ≥ 0.

6.3 Stability analysis

In this section, a new control scheme is proposed based on the solution of a family of LMIs
and Riccati equations to guarantee global uniform ultimate boundedness of the closed-loop
system. The following lemma extends the results of [81] to switched systems with impulsive
behavior, which is crucial to derive the stability results.

Lemma 6.3 Let g (·) be a left-continuous function for all t ≥ t0 and φ(·) > 0 be continuous for
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t ∈ [t0 −dm,t0]. If there exist positive constants α1, α2, α3 with α1 >α2 such that

ġ (t ) ≤−α1g (t )+α2 sup
t−dm≤s≤t

g (s)+α3, t ∈ [ti ,ti+1)

g (t−i+1) ≥ g (ti+1)

g t0 (ϑ) =φ(ϑ), ϑ ∈ [t0 −dm,t0]

then we have
g (t ) ≤β1 +β2e−ρ(t−t0), t ≥ t0

where β1 = α3/(α1 −α2), β2 = supt0−dm≤s≤t0
φ(s)−β1, and ρ is the unique solution to ρ =

α1 −α2eρdm .

Proof : To facilitate the proof, consider the differential equation

ḟ (t ) = −α1 f (t )+α2 sup
t−dm≤s≤t

f (s)+α3, t ≥ t0

ft0 (ϑ) = φ(ϑ), ϑ ∈ [t0 −dm, t0].
(6.6)

We search for a unique solution to (6.6) in the form

f (t ) =β1 +β2e−ρ(t−t0), t ≥ t0 (6.7)

with β1 > 0, β2, ρ > 0 to be determined, which implies that supt−dm≤s≤t f (s) = f (t −dm).
Note that uniqueness of (6.7) arises from continuity of the right-hand side of the differential
equation. Substituting (6.7) into (6.6) leads to

−ρβ2e−ρ(t−t0) = −α1β1 +α2β1 +α3

−α1β2e−ρ(t−t0) +α2β2e−ρ(t−t0−dm)

which gives the solutions to β1, β2 and the characteristic equation of ρ

β1 = α3

α1 −α2
, β2 = ft0 −β1, ρ =α1 −α2eρdm

where a solution toρ always exists and is unique due toα1 ≥α2, andβ2 ≤ supt0−dm≤s≤t0
φ(s)−

β1. It can be verified that g (t ) ≤ f (t ) for t ∈ [ti ,ti+1). Considering g (t−i+1) ≥ g (ti+1) at the
switching instant ti+1, we arrive at g (ti+1) ≤ f (ti+1). This implies, together with (6.7)

g (t ) ≤ α3

α1 −α2
+β2e−ρ(t−t0), t ≥ t0

where
β2 = sup

t0−dm≤s≤t0

φ(s)− α3

α1 −α2
.

This completes the proof. 2

6.4 Adaptive control design with matched uncertainties

Now we are ready to present the stability result using Lemmas 6.1–6.3.
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Theorem 6.2 Suppose that there exist a collection of symmetric positive definite matrices Pp ,
Qp , Gp ∈Rn×n , positive scalars a, b, v, χ τp , µ≥ 1, ε`,p , ε`,p , %1,p , %2,p , ` ∈ L , p ∈ M , such that
b < aµ/(µ+1), v satisfies (6.3), and

Ψp Pp E1,p · · · Pp EL,p

∗ −ε−1
1,p I · · · 0

...
...

. . .
...

∗ ∗ ·· · −ε−1
L,p I

< 0 (6.8a)

− v
τp

Pp −Gp

∗ − b2v
µτp

Pp

< 0 (6.8b)

χPp −b
L∑
`=1

(
ε−1
`,p +ε−1

`,p

)
I > 0 (6.8c)

H T
q Pq Hq ≤µPp (6.8d)

with
Ψp =−Qp + v

τp
aPp +χPp +2Gp

where Pp and Qp , %1,p , %2,p , p ∈ M , and κ satisfy the following Riccati equation

AT
p Pp +Pp Ap +

(
%−1

1,p +%−1
2,p

)
I −2κPp Bp B T

p Pp =−Qp . (6.9)

Then, under Assumptions 6.1 and 6.2, the controller

u(t ) =−
(
κ+ 1

2
θ̂(t )

)
B T
σ(t )Pσ(t )x(t ) (6.10)

and the adaptive law

˙̂θ(t ) = γϕm(t )xT (t )Pσ(t )Bσ(t )B
T
σ(t )Pσ(t )x(t )−γδθ̂(t ) (6.11)

with γ> 0 a given adaptive gain, δ≥χ/γ, and

ϕm(t ) =


ϕ(t ), t ∈ [ti ,ti +τσ(t ))

b, t ∈ [ti +τσ(t ),ti+1)
b
µ , t = ti+1

(6.12)

and ϕ(·) as in (6.5) with T = τσ(t ) and ts = ti guarantees that the switched impulsive system
(6.1) is GUUB for any switching signalσ(·) ∈ D(τp ). Moreover, an ultimate bound for the norm
of the state is given by

bT =

√√√√√ bµw̄ 2 maxp∈M %2,pλ+ δ
2θ

2

bλχ−bµmaxp∈M
∑L
`=1

(
ε−1
`,p +ε−1

`,p

) (6.13)
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where λ,minp∈M λmin(Pp ), λ,maxp∈M λmax(Pp ), and

θ,max
p∈M

{
ξp%1,p +

L∑
`=1

ζ`,pε`,p

}
. (6.14)

Proof : In this proof, the time index is sometimes not indicated for compactness, and a de-
layed signal will be marked with the subscript d, e.g. xd = x(t −d`,p (t )). Consider the follow-
ing Lyapunov function:

V (t ) =ϕm(t )xT (t )Pσ(t )x(t )+ 1

2γ
θ̃2(t ) (6.15)

with θ̃ = θ− θ̂. It is straightforward that V (·) is continuous during the switching intervals
[ti ,ti+1), i ∈N+, and possibly discontinuous at the switching instants ti , i ∈N+. Without loss
of generality, we assume that subsystem p is active for t ∈ [ti ,ti+1) and subsystem q is active
for t ∈ [ti+1,ti+2). Moreover, to facilitate the analysis of the Lyapunov function, we partition
the interval [ti ,ti+1) into two parts: [ti ,ti +τp ) and [ti +τp ,ti+1), upon which, according to
(6.12), (6.15) can be recast into

V (t ) =
{
ϕ(t )xT (t )Pp x(t )+ 1

2γ θ̃
2(t ), t ∈ [ti ,ti +τp )

bxT (t )Pp x(t )+ 1
2γ θ̃

2(t ), t ∈ [ti +τp ,ti+1).

The essence of the proof is to show that the Lyapunov function satisfies the conditions in
Lemma 6.3. The proof is organized in three steps:

(a) for t ∈ [ti ,ti +τp ), the Lyapunov function is shown to satisfy the conditions in Lemma
6.3 using the LMIs (6.8a)–(6.8c), the Riccati equation (6.9), and the adaptive controller
(6.10)–(6.12);

(b) for t ∈ [ti +τp ,ti+1), the Lyapunov function is shown to satisfy the conditions in Lemma
6.3 using the LMIs (6.8a) and (6.8c), the Riccati equation (6.9), and the adaptive con-
troller (6.10)–(6.12);

(c) at the switching instant ti+1, the Lyapunov function is shown to be non-increasing due
to (6.8d) and the reset of ϕm(ti+1).

(a) For t ∈ [ti ,ti +τp ), it can be shown that the time derivative of V (·) is

V̇ ≤ ϕxT

(
AT

p Pp +Pp Ap +
L∑
`=1

ε`,p Pp E`,p E T
`,p Pp

)
x

+ϕxT

(
L∑
`=1

ε`,p Pp∆E`,p∆E T
`,p Pp

)
x +%−1

1,pϕxT x

+%1,pϕxT Pp∆Ap∆AT
p Pp x +2ϕxT Pp Bp u

+
L∑
`=1

(
ε−1
`,p +ε−1

`,p

)
ϕxT

d xd +%2,pϕw T Pp Pp w

+%−1
2,pϕxT x − v

τp

(
ϕ2 −aϕ+ b2

µ

)
xT Pp x − 1

γ
θ̃ ˙̂θ

(6.16)
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where the inequality holds according to Lemma 6.1 and Lemma 6.2. Using Assumption 6.1
and the fact that ϕ> 0, (6.16) is written as

V̇ ≤ ϕxT

(
AT

p Pp +Pp Ap +
L∑
`=1

ε`,p Pp E`,p E T
`,p Pp

)
x

+
(
ξp%1,p +

L∑
`=1

ζ`,pε`,p

)
ϕxT Pp Bp B T

p Pp x

+2ϕxT Pp Bp u +
(
%−1

1,p +%−1
2,p

)
ϕxT x

− v

τp

(
ϕ2 −aϕ+ b2

µ

)
xT Pp x − 1

γ
θ̃ ˙̂θ

+
L∑
`=1

(
ε−1
`,p +ε−1

`,p

)
ϕxT

d xd +%2,pϕw T Pp Pp w.

(6.17)

Then, substituting the Riccati equation (6.9) into (6.17) yields

V̇ ≤ −ϕxT Qp x +2κϕxT Pp Bp B T
p Pp x

+ϕxT

(
L∑
`=1

ε`,p Pp E`,p E T
`,p Pp

)
x

+
(
ξp%1,p +

L∑
`=1

ζ`,pε`,p

)
ϕxT Pp Bp B T

p Pp x

+2ϕxT Pp Bp u +%2,pϕw T Pp Pp w

− v

τp

(
ϕ2 −aϕ+ b2

µ

)
xT Pp x − 1

γ
θ̃ ˙̂θ

+
L∑
`=1

(
ε−1
`,p +ε−1

`,p

)
ϕxT

d xd.

With help of the controller (6.10), the adaptive law (6.11), and the definition of θ in (6.14),
one has

V̇ ≤ −ϕxT Qp x +ϕxT

(
L∑
`=1

ε`,p Pp E`,p E T
`,p Pp

)
x

+
L∑
`=1

(
ε−1
`,p +ε−1

`,p

)
ϕxT

d xd +δθ̃θ̂

− v

τp

(
ϕ2 −aϕ+ b2

µ

)
xT Pp x

+%2,pϕw T Pp Pp w.

Furthermore, (6.8b) directly shows that

[
ϕx

x

]T − v
τp

Pp −Gp

∗ − b2v
µτp

Pp

[
ϕx

x

]
< 0
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which, combined with (6.8a) by Schur complement, implies

V̇ ≤ −χϕxT Pp x +%2,pϕw T Pp Pp w

+
L∑
`=1

(
ε−1
`,p +ε−1

`,p

)
ϕxT

d xd +δθ̃θ̂.

Recalling that θ̃ = θ− θ̂ and using δθ̃θ−δθ̃2 ≤−1
2δθ̃

2 + 1
2δθ

2 results in

V̇ ≤ −χϕxT Pp x − χ

2γ
θ̃2 +%2,pϕw T Pp Pp w

+
L∑
`=1

(
ε−1
`,p +ε−1

`,p

)
ϕxT

d xd +
1

2
(
χ

γ
−δ)θ̃2 + δ

2
θ2

where χ/γ−δ≤ 0. In addition, the following holds:

ϕxT
d xd ≤ µ

λmin(Pp )
ϕdxT

d Pp xd

≤ µ

λmin(Pp )
Vd

≤ µ

λmin(Pp )
sup

t−dm≤s≤t
V (s).

(6.18)

Hence, the derivative of V for t ∈ [ti ,ti +τp ) satisfies

V̇ ≤ −χV + δ

2
θ2 +%2,pϕw T Pp Pp w

+
µ

∑L
`=1

(
ε−1
`,p +ε−1

`,p

)
λmin(Pp )

sup
t−dm≤s≤t

V (s).

(6.19)

(b) For t ∈ [ti +τp ,ti+1), the Lyapunov function becomes

V (t ) = bxT (t )Pσ(t )x(t )+ 1

2γ
θ̃2(t ).

It follows immediately from (6.8a) that
Θp Pp E1,p · · · Pp EL,p

∗ −ε−1
1,p I · · · 0

...
...

. . .
...

∗ ∗ ·· · −ε−1
L,p I

< 0

withΘp =−Qp+χPp , which, combined with (6.8c) and following the similar steps from (6.16)
to (6.19) yields

V̇ ≤ −χV + δ

2
θ2 +%2,p bwT Pp Pp w

+
µ

∑L
`=1

(
ε−1
`,p +ε−1

`,p

)
λmin(Pp )

sup
t−dm≤s≤t

V (s).

(6.20)
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According to (6.19) and (6.20), it holds for t ∈ [ti ,ti+1) that

V̇ ≤ −χV + δ

2
θ2 +%2,pϕmw T Pp Pp w

+
µ

∑L
`=1

(
ε−1
`,p +ε−1

`,p

)
λmin(Pp )

sup
t−dm≤s≤t

V (s).

(6.21)

(c) At the switching instant ti+1, using (6.8d) and the fact that ϕ(t−i+1) = b and ϕ(ti+1) = b
µ

,
one has

V (ti+1)−V (t−i+1)

=ϕ(ti+1)xT (ti+1)Pq x(ti+1)−b(t−i+1)xT (t−i+1)Pp x(t−i+1)

= b

µ
xT (t−i+1)H T

q Pq Hq x(t−i+1)−bxT (t−i+1)Pp x(t−i+1)

= bxT (t−i+1)

(
H T

q Pq Hq

µ
−Pp

)
x(t−i+1)

≤ 0

(6.22)

which implies that (6.21) holds for all t ≥ t0. In light of this, using (6.8c) and Lemma 6.3, it
readily follows that

V (t ) ≤ bw̄ 2 maxp∈M %2,pλ
2
max(Pp )+ δ

2θ
2

χ− µ
∑L
`=1

(
ε−1
`,p+ε−1

`,p

)
minp∈M λmin(Pp )

+β2e−ρ(t−t0)

where β2 is a finite constant dependent on the initial value of the Lyapunov function. This
indicates, together with (6.15), the ultimate bound bT shown in (6.13). This completes the
proof. 2

Remark 6.3 Some comments are needed for the family of Riccati equations (6.9). Since
(Ap ,Bp ) is controllable for all p ∈ M , one can always find a solution for Pp and Qp satisfying
(6.9). As a matter of fact, the Riccati equations guarantee a sufficient large stability margin
with only the requirement of controllability. In [156], a LMI condition is proposed to design
the adaptive controller for time-varying delay without considering switching behavior of the
system: however, the absence of a Riccati equation fundamentally requires the system ma-
trix Ap to be Hurwitz, which to a large extent limits the scope of applications of the method
in [156]. 2

Remark 6.4 In contrast with the Razumikhin technique, where an adaptive controller is
guaranteed to exist only in an unknown interval, the existence of the adaptive controller
(6.10)–(6.12) is well defined by the appropriate selection of the constants in Theorem 6.2.
Here are some guidelines for the selection of such constants: after a sufficiently large stabil-
ity margin has been achieved by the solution of the Riccati equations (6.9), one can find a
feasible µ in (6.8d); at this point, with a simple grid search over the pair (a,b) (which auto-
matically defines v from (6.3)), we have that (6.8a)–(6.8c) are linear in the decision variables
Gp , τ−1

p , ε−1
`,p , ε−1

`,p . One can either solve a feasibility problem, or preferably, optimize the so-

lution to the LMIs for large τ−1
p (to address a desirable large family of switching laws), or large

ε−1
`,p and bλχ−bµmaxp∈M

∑L
`=1

(
ε−1
`,p +ε−1

`,p

)
(to minimize the ultimate bound bT in (6.13)). 2
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Remark 6.5 Different from classic adaptive laws with a constant gain, the proposed design
incorporates a piecewise dynamic gain ϕm, entering both the adaptive law (6.11) and the
Lyapunov function (6.15). Note that (6.22) suggests that the Lyapunov function (6.15) is non-
increasing at switching instants thanks to the dynamic gain ϕm in (6.12). It can be veri-
fied that in the absence of disturbances and time-varying delays, asymptotic stability of the
closed-loop system can be derived. In fact, using the controller (6.10) and the adaptive law
(6.11) with δ ≡ 0, (6.21) reduces to V̇ ≤ −χϕmxT Pp x, and using Barbalat’s lemma [48] leads
to asymptotic stability. This implies, in the spirit of [135], that the Lyapunov function (6.15)
can lead to less conservative result than using standard multiple Lyapunov functions [91],
i.e., with ϕm ≡ 1. 2

Remark 6.6 Connected to the previous remark, a question may arise: why cannot the time-
interpolation method of [135] (which is also based on a Lyapunov function non-increasing
at the switching instants) be adopted to achieve the control objective of this chapter? Some
clarifications are provided as follows: instead of using a constant Pp for each subsystem,
[135] relies on a time-varying Pp (t ), t ∈ [ti ,ti+1), obtained by linear interpolation of a set of
positive definite matrices (c.f. Lemma 1 in [135]). However, the need for the Riccati equa-
tions in (6.9), which are quadratic in Pp , makes linear interpolation not applicable here. 2

6.5 Adaptive control design with unmatched uncertainties

In many practical cases, the uncertainties may not satisfy the matching conditions shown in
(6.2). For the unmatched case, Assumption 6.2 can be relaxed into Assumption 6.3.

Assumption 6.3 The uncertain matrices ∆Ap (·) and ∆E`,p (·) satisfy

∆Ap (t ) = BpΞp (t )+∆Ξp (t )

∆E`,p (t ) = BpΠ`,p (t )+∆Π`,p (t )
(6.23)

with ‖Ξp (t )‖2 ≤ ξp , ‖∆Ξp (t )‖2 ≤ ∆ξp , and ‖Π`,p (t )‖2 ≤ ζ`,p , and ‖∆Π`,p (t )‖2 ≤ ∆ζ`,p , p ∈
M , ` ∈ L , where ξp and ζ`,p are unknown positive constants, and ∆ξp and ∆ζ`,p are known
positive constants.

Remark 6.7 Since the unmatched uncertainties (6.23) cannot be addressed by the controller
in an adaptive fashion, the knowledge of the bounds of the unmatched uncertainties is re-
quired to guarantee stability of the switched system. In fact, to the best of the author’ knowl-
edge, how to cope with unknown unmatched uncertainties without knowing their bounds is
still an open problem in adaptive control or robust control [44]. 2

Considering the unmatched terms as in (6.23), we provide the following stability result:

Corollary 6.1 Suppose that there exist a collection of positive definite symmetric matrices Pp ,
Qp , Gp ∈Rn×n , positive scalars a, b, v, χ τp , µ≥ 1, ε`,p , ε`,p , ι`,p , %1,p , %2,p , ` ∈ L , p ∈ M such
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that b < aµ/(µ+1), v satisfies (6.3), and

Ψp Pp E1,p · · · Pp EL,p

√
∆ζ1,p Pp · · ·

√
∆ζL,p Pp

∗ −ε−1
1,p I · · · 0 0 · · · 0

...
...

. . .
...

...
. . .

...

∗ ∗ ·· · −ε−1
L,p I 0 · · · 0

∗ ∗ ·· · ∗ −ι−1
1,p I · · · 0

...
...

. . .
...

...
. . .

...

∗ ∗ ·· · ∗ ∗ · · · −ι−1
L,p I


< 0

− v
τp

Pp −Gp

∗ − b2v
µτp

Pp

< 0

χPp −b
L∑
`=1

(
ε−1
`,p +ε−1

`,p + ι−1
`,p

)
I > 0

H T
q Pq Hq ≤µPp

with
Ψp =−Qp + v

τp
aPp +χPp +2Gp

where Pp and Qp , %1,p , %2,p , p ∈ M , and κ satisfy the Riccati equation

(
Ap +

√
∆ξp I

)T
Pp +Pp

(
Ap +

√
∆ξp I

)
+

(
%−1

1,p +%−1
2,p

)
I −2κPp Bp B T

p Pp =−Qp .

Then, under Assumptions 6.1 and 6.3, the controller

u(t ) =−
(
κ+ 1

2
θ̂(t )

)
B T
σ(t )Pσ(t )x(t )

and the adaptive law

˙̂θ(t ) = γϕm(t )xT (t )Pσ(t )Bσ(t )B
T
σ(t )Pσ(t )x(t )−γδθ̂(t )

with γ > 0 a given adaptive gain, δ ≥ χ/γ, and ϕm as defined in (6.12) guarantee that the
switched impulsive system (6.1) is GUUB for any switching signal σ(·) ∈ D(τp ). Moreover, an
ultimate bound for the norm of the state is given by

bT =

√√√√√ bµw̄ 2 maxp∈M %2,pλ+ δ
2θ

2

bλχ−bµmaxp∈M
∑L
`=1

(
ε−1
`,p +ε−1

`,p + ι−1
`,p

)
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where λ,minp∈M λmin(Pp ), λ,maxp∈M λmax(Pp ), and

θ,max
p∈M

{
ξp%1,p +

L∑
`=1

ζ`,pε`,p

}
.

Proof : The proof follows similar steps as the proof of Theorem 6.2, and thus it is omitted. 2

6.6 Example

Consider the two-tank system taken from [6, 18], and illustrated in Fig. 6.1. The states of the
system are the deviations of reservoir levels with respect to their nominal values, denoted by
the dashed lines in Fig. 6.1. The flow between the two reservoirs is proportional to the dif-
ference of their levels. We assume that both flow control and level measurement can switch

Figure 6.1: The two-tank system.

between the first tank (actuator 1-sensor 1) and the second tank (actuator 2-sensor 2). In ad-
dition, the pipe between the two tanks gives rise to time delays. Thus, the two-tank system
can be modeled as an impulsive switched system

ẋ(t ) = Ax(t )+ (
Eσ(t ) +∆Eσ(t )

)
x(t −dσ(t )(t ))+Bσ(t )u(t )+w(t )

x(ti ) = Hσ(t )x(t−i )

where the following matrices have been taken in line with [6, 18]:

A =
[
−1 1

1 −1

]
, E1 =

[
0.1 −0.2

0.2 0.4

]
, E2 =

[
0.2 −0.3

−0.2 0.4

]

∆E1 =
[

0.1 0.2

0 0

]
, ∆E2 =

[
0 0

0.2 0.1

]
, B1 =

[
1

0

]

B2 =
[

0

−1

]
, H1 =

[
0.95 0

0 1.05

]
, H2 =

[
1.05 0

0 0.95

]

and d1(t ) = 0.1(1−cos(t )), d2(t ) = 0.1(1+ sin(t )), and w(t ) = 0.1cos(5t ). Let %11 = %12 = %21 =
%22 = 0.1, ε1 = ε2 = 1000, κ= 10, a = 10, b = 2, and χ= 0.25, γ= 1, δ= 0.3, and

Q1 =
[

8 1.9

1.9 10

]
, Q2 =

[
2.5 0.9

0.9 3

]
.
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Solving the Riccati equations (6.9) and the LMIs (6.8a)–(6.8d) results in

P1 =
[

0.8661 0.6171

0.6171 3.7130

]
, P2 =

[
0.9884 0.3496

0.3496 0.5164

]

G1 =
[

0.0414 0.0066

0.0066 0.0227

]
, G2 =

[
0.0184 0.0062

0.0062 0.0099

]

the mode-dependent dwell time τ1 = 1.25, τ2 = 3, and µ = 11.76. For simulations, the fol-
lowing initial conditions are selected: x0 = [1 1.5]T , θ(0) = 1. To illustrate the effect of the
dynamic gain ϕm on the Lyapunov function V , we use the function Vm = ϕmxT Pp x. Based
on the switching signal in Fig. 6.3, the evolution of Vm is given in Fig. 6.3, which shows that
Vm and thus V is decreasing at the switching instant1. In addition, the state response in
Fig. 6.4 admits an ultimate bound 0.25, as expected from the GUUB result of Theorem 6.2.
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M
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Figure 6.2: The switching law.
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Figure 6.3: The evolution of Vm.

1Since the signal θ̃ is unknown and continuous for all t ≥ t0, the absence of the quadratic term θ̃ in Vm does
not impact the non-increasing effect of ϕm.
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Figure 6.4: The state trajectory and the attraction region.

6.7 Concluding remarks

This chapter has investigated adaptive stabilization of switched impulsive systems with pos-
sibly discontinuous time-varying delays. By solving a family of Riccati equations and LMIs,
a novel adaptive controller and a less conservative switching law based on mode-dependent
dwell time than that based on dwell time have been designed. A piecewise dynamic gain
has been designed for the adaptive law, which allows the Lyapunov function to be non-
increasing at the switching instants. Based on the proposed control scheme, global uniform
ultimate boundedness of the closed-loop systems has been guaranteed. A two-tank system
has been used to illustrate the effectiveness of the control scheme.



Chapter 7

Stability and Robust Stabilization of
Switched Linear Systems with Switching
Delays

This chapter proposes a novel Lyapunov function to study switched linear systems with
switching delays between activation of system modes and activation of candidate controller
modes. The novelty consists in continuity of the Lyapunov function at the switching in-
stants and discontinuity when the system modes and controller modes are matched. This
structure is exploited to construct a time-varying Lyapunov function that is non-increasing
at time instants of discontinuity. Stability criteria based on the novel Lyapunov function are
developed to guarantee global asymptotic stability in the noiseless case. Most importantly,
when exogenous disturbances are considered, the proposed Lyapunov function can be used
to guarantee a finite non-weighted L2 gain for switched systems with switching delays, for
which Lyapunov functions proposed in literature are inconclusive. A numerical example il-
lustrates the effectiveness of the proposed method.

The research presented in this chapter has been published in [138].

7.1 Introduction

Typically, the focus of stability and stabilization of switched linear systems is on switched
linear systems without switching delays, an ideal case in which the controller is assumed to
switch synchronously with the system mode. However, due to delay between a mode change
and activation of its corresponding controller, or due to the time needed to detect switch-
ing of system mode, nonzero time intervals, called unmatched intervals, are present during
which system modes and controller modes are mismatched. A typical example in engineer-
ing practice can be seen in teleoperation, e.g. [74]. Most of the research on ideal switched
linear systems has been carried out based on the Lyapunov function proposed by Branicky
[9] that is discontinuous at the switching instants and continuous during the switching inter-
vals between two consecutive switching instants. Two properties of the Lyapunov function
have been exploited to develop switching strategies based on dwell time and average dwell
time [37, 154]: an exponential decreasing during the switching interval between two consec-
utive switching instants, and a bounded increment of the Lyapunov function at switching
instants. For switched linear systems with switching delays, several studies have appeared

89
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on stability and stabilization problems [30, 106, 121, 143, 144, 152]. In particular, a seminal
work on stability of switched linear systems considering switching delays [143] introduces
a new Lyapunov function for switched systems with switching delays based on the classical
Lyapunov function for ideal switched systems. This new Lyapunov function uses the ad-
ditional property that the Lyapunov function is allowed to increase during the unmatched
intervals.

Another fundamental topic, the L2 gain of switched linear systems, has been intensively
investigated [54, 64, 76, 98, 133, 141, 150, 155]. A weighted L2 gain for ideal switched lin-
ear systems based on average dwell time switching was introduced initially in [141]. Sub-
sequently, a non-weighted L2 gain for ideal switched linear systems was obtained in [1] via
dwell time switching laws and in [148] via switching laws using persistent dwell time. How-
ever, to the best of the author’ knowledge, only a weighted L2 gain has been obtained for
switched linear systems with switching delays [56, 57, 114, 125, 144], which is based on the
Lyapunov function in [144] via average dwell time switching laws; considering the narrower
class of switching laws based on dwell time does not help in achieving a non-weighted L2

gain1. In view of this, this chapter focuses on achieving a non-weighted L2 gain for switched
linear systems with switching delays. The solution consists in designing a new Lyapunov
function to cover the gap between ideal and switched linear systems with switching delays.

In this chapter, a novel Lyapunov function is proposed to study switched linear systems
with switching delays; this Lyapunov function is continuous at switching instants and dis-
continuous at the instant when the controller and the system mode is matched. This is dif-
ferent with the well-known multiple Lyapunov functions proposed by Branicky [9], which
are discontinuous at switching instants and continuous during the switching intervals. The
major idea behind the novel Lyapunov function is the consistency with the switching mecha-
nism of switched systems with switching delays, since the same controller is used during the
matched interval of the previous subsystem and the unmatched interval of the current sub-
system. The structure of the Lyapunov function is exploited to develop novel stability criteria
that can be combined with the interpolation technique in [1, 12, 13, 123, 124, 126, 127] such
that global asymptotic stability of switched linear systems with switching delays is guaran-
teed. The contribution of this chapter is twofold:

• A new Lyapunov function is proposed that is consistent with the controller design of
switched linear systems with switching delays;

• A non-weighted L2 gain is guaranteed for the first time for switched linear systems with
switching delays.

This chapter is organized as follows: Section 7.2 introduces the problem formulation
and some preliminaries. Section 7.3 gives a condition in the form of linear matrix inequali-
ties (LMIs) to guarantee global asymptotic stability for switched linear systems considering
switching delays. Section 7.4 derives the LMI conditions for a non-weighted L2 gain and H∞
control of switched linear systems with switching delays. A numerical example is adopted to
illustrate the theoretical results in Section 7.5. The chapter is concluded in Section 7.6.

1This can be verified by setting N0 ≡ 1 to the derivation in [125] according to the definition of dwell time
[36].
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7.2 Problem statement

Consider the following switched linear system:

ẋ(t ) = Aσ(t )x(t )+Bσ(t )u(t )+Eσ(t )w(t )

y(t ) = Cσ(t )x(t )+Dσ(t )u(t )+Fσ(t )w(t )
(7.1)

where t ≥ 0, x ∈ Rn is the state vector, u ∈ Rm is the input, y ∈ Rg is the output, w ∈ Rr is an
exogenous disturbance, and the switching signal σ : [0,∞) → M := {1,2, . . . , M } is a piecewise
function with M denoting the number of subsystems. In this chapter, a mode-dependent
state-feedback controller is adopted, i .e.,u(t ) =Gσ(t )x(t ). Let∆τi be the delay before switch-
ing to a new subsystem and the activation of the corresponding controller after the switch-
ing instant ti . Then, the switched linear system (7.1) becomes a switched linear system with
switching delays as follows:

ẋ(t ) = (Aσ(t ) +Bσ(t )Gσ(t−∆τi ))x(t )+Eσ(t )w(t )

=
{

Ap,q x(t )+Ep w(t ), t ∈ [ti , ti +∆τi )

Ap x(t )+Ep w(t ), t ∈ [ti +∆τi , ti+1)

y(t ) = (Cσ(t ) +Dσ(t )Gσ(t−∆τi ))x(t )+Fσ(t )w(t )

=
{

C p,q x(t )+Fp w(t ), t ∈ [ti , ti +∆τi )

C p x(t )+Fp w(t ), t ∈ [ti +∆τi , ti+1)

(7.2)

where Ap is a Hurwitz matrix, and Ap,q , p 6= q ∈ M , may be an unstable matrix. To keep
the notation concise, we denote the unmatched interval [ti , ti +∆τi ) by T↑(ti , ti+1), and the
matched interval [ti +∆τi , ti+1) by T↓(ti , ti+1).

The following definition is provided for later analysis.

Definition 7.1 [Non-weighted L2 gain] [148] The switched system (7.2) is said to have a non-
weighted L2 gain γ> 0, if under zero initial conditions, the following inequality holds:∫ ∞

0
yT (t )y(t )d t ≤

∫ ∞

0
γ2w T (t )w(t )d t (7.3)

for all t ≥ 0, and all w(t ) ∈ Lr
2 .

The following lemma will be used to analyze the L2 gain.

Lemma 7.1 [36] All admissible switching laws with dwell time τd satisfy the following in-
equality:

N (ts, tf) ≤ 1+ ts − tf

τd
, ∀ts ≥ tf (7.4)

where N (ts, tf) denotes the number of switchings over the interval [ts, tf).

Define the maximum switching delay ∆τ := maxi∈N∆τi , which is assumed to be known.
The set of admissible switching laws with dwell time is denoted by D(τd). Then, the problem
to be solved in this work is formulated as follows:

Problem 7.1 Design an admissible switching law with dwell time such that:



92 7.3 Stability conditions with dwell time constraint

(i) the system (7.2) with the knowledge of ∆τ is globally asymptotically stable for w(t ) ≡ 0;

(ii) the system (7.2) with the knowledge of ∆τ has a non-weighted L2 gain.

Furthermore, design a switching law with dwell time and a family of mode-dependent state-
feedback controllers such that

(iii) the closed-loop system has a non-weighted L2 gain.

7.3 Stability conditions with dwell time constraint

In this section, a novel Lyapunov function is introduced to study the asymptotic stability
of (7.2) with w(t ) ≡ 0. In addition, the LMIs derived from the resulting Lyapunov stability
criterion are provided.

7.3.1 A new Lyapunov function

The Lyapunov function most widely used [36, 37, 94] to study the stability of switched linear
systems has the form

V (t ) = xT (t )Pσ(t )x(t ), V (ti ) ≤µV (t−i ), µ≥ 1 (7.5)

for t ∈ [ti , ti+1), where V (t−i ) represents the left-limit of V (t ) at t = ti . This function is contin-
uous between two consecutive switching instants and possibly discontinuous at switching
instants. For switched linear systems with switching delays, a new version of (7.5) has been
developed [143, 144, 152] as follows:

V (t ) = xT (t )Pσ(t )x(t ), V (ti ) ≤µV (t−i ), µ≥ 1

V̇ (t ) ≤
{
−λ1V (t ), λ1 > 0, ∀t ∈T↑(ti , ti+1)

λ2V (t ), λ2 > 0, ∀t ∈T↓(ti , ti+1)

(7.6)

which has the following property that is different with respect to (7.5): (7.6) might increase
during the unmatched intervals and it decreases during the matched intervals, as illustrated
in Fig. 7.1. However, the following asymmetry can be noted in state-of-the-art results for
stability of switched linear systems with switching delays via (7.6) (c.f. Theorem 1 in [143]):
During t ∈T↑(ti , ti+1) the Lyapunov function corresponding to a different subsystem rather
than xT (t )Pσ(ti )x(t ) should be used, i.e., xT (t )Pσ(t−i )x(t ). In view of this, to reflect the key
feature behind unmatched and matched intervals, a new Lyapunov function is proposed for
switched linear systems with switching delays:

V (t ) =
{

xT (t )Pσ(t−i )(t )x(t ), ∀t ∈T↑(ti , ti+1)

xT (t )Pσ(ti )(t )x(t ), ∀t ∈T↓(ti , ti+1)
(7.7)

which is continuous at the switching instants and discontinuous at the instants when the
modes are matched, as illustrated in Fig. 7.2.

Remark 7.1 The main difference between switched linear systems without switching delays
and switched linear systems with switching delays consists in the switching delay between
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activation of system modes and activation of candidate controller modes. This gives rise to
the key feature of switched linear systems with switching delays: the same controller is con-
nected to the previous system mode during the matched interval and to the current system
mode during the unmatched interval. In view of this key feature, to solve the stabilization
problem using a Lyapunov method, the same positive definite matrix should be adopted
in these two intervals to construct the Lyapunov function. This implies that the Lyapunov
function is continuous at the switching instants and discontinuous at the instants when the
modes are matched, as shown in Fig. 7.2. Note that when the switching delay ∆τ is zero, the
proposed Lyapunov function (7.7) reduces to the classic Lyapunov function (7.5). In view of
this, the Lyapunov function (7.5) can be regarded as a special case of (7.7). 2

Figure 7.1: The Lyapunov function (7.6).

Figure 7.2: The proposed Lyapunov function (7.7).
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7.3.2 LMI conditions

Moreover, a time-varying Lyapunov function based on (7.7) can now be constructed by re-
vising the so-called interpolation approach in [1, 123, 126] and by extending it to switched
linear systems with switching delays. This gives rise to the new stability criteria as presented
below.

7.3.3 Stability results

Theorem 7.2 Let λ and {λl }L
l=0 be given positive real numbers, where L is a given integer. Sup-

pose there exists a family of positive definite matrices Pp,l , p ∈ M , l = 0, . . . ,L, and a number
h > 0 such that

A
T
p,q Pq,L +Pq,L Ap,q −λPq,L < 0 (7.8a)

∆P p
l+1,l /h + A

T
p Pp,`+Pp,`Ap +λp,`Pp,` < 0 (7.8b)

λp,l Pp,l −λl+1Pp,l+1 ≥ 0 (7.8c)

∆P p
l+1,l > 0 (7.8d)

A
T
p Pp,L +Pp,L Ap < 0 (7.8e)

Pq,L −Pp,0 ≥ 0 (7.8f)

λ∆τ−
L∑

l=1
λl h ≤ 0 (7.8g)

with ∆P p
l+1,l := Pp,l+1 − Pp,l for ` = l , l + 1; l = 0, . . . ,L − 1; ∀q, p ∈ M with p 6= q. Then,

the system (7.2) with w(t ) ≡ 0 is globally asymptotically stable for any switching signal σ(·) ∈
D(τd) with

τd > Lh +∆τ.

Proof : To prove Theorem 7.2, the stability condition for switched systems introduced in
Theorem 2.2 of Chapter 2 is used. Below we will show in three steps that this stability condi-
tion can be guaranteed by the LMIs in (7.8a)–(7.8g):

(a) we construct a quadratic Lyapunov function V (t ) in the fashion of (7.7) by interpolat-
ing a discrete set of positive definite matrices (obtained from (7.8a)–(7.8g));

(b) within a switching interval [ti , ti+1), we show that the increase of the Lyapunov func-
tion during unmatched intervals is compensated by the decrease during matched in-
tervals, i.e., V (ti ) ≥V (t−i+1);

(c) we exploit continuity of the Lyapunov function at switching instants, i.e., V (t−i+1) =
V (ti+1).

(a) Without loss of generality, we assume that subsystem p is active for t ∈ [ti , ti+1), i ∈N,
and subsystem q is active for t ∈ [ti−1, ti ). Let us define a time sequence

{
ti ,l

}L
l=0, where

ti ,l+1 − ti ,l = h, l = 0, . . . , L−1, ti ,0 = ti +∆τ, and ti ,L − ti = τd, as shown in Fig. 7.3.
To study the properties of the Lyapunov function in (7.7), we partition the interval [ti , ti+1)

into three subintervals: [ti , ti ,0), [ti ,0, ti ,L), and [ti ,L , ti+1). Using linear interpolation, we con-
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Figure 7.3: The time sequence between two consecutive switching instants.

struct the following time-varying positive definite matrix Pp (t ), for t ∈ [ti ,0, ti+1)

Pp (t ) =
{

Pp,l +ρi ,l (t )∆P p
l+1,l , t ∈ [ti ,l , ti ,l+1)

Pp,L , t ∈ [ti ,L , ti+1)

where ρi ,l (t ) = (t − ti ,l )/h with l = 0, . . . ,L −1. Then, the Lyapunov function (7.7) becomes,
for t ∈ [ti , ti+1)

V (t ) =
{

xT (t )Pq,L x(t ), t ∈ [ti , ti ,0)

xT (t )Pp (t )x(t ), t ∈ [ti ,0, ti+1)
(7.9)

which is continuous at switching instants, and discontinuous at the instant ti ,0 when the
controller and subsystem are matched.

(b) First, we consider the subinterval [ti , ti ,0). According to (7.8a), the derivative of V (t )
in (7.9) is

V̇ (t ) = xT (t )(A
T
p,q Pq,L +Pq,L Ap,q )x(t ) <λVp (t ).

At the instant ti ,0, it follows from (7.8f) that

V (t−i ,0)−Vp (ti ,0) = xT (t )(Pq,L −Pp,0)x(t ) ≥ 0

which implies that the Lyapunov function is non-increasing at time instants of discontinu-
ity. Next, for the second subinterval [ti ,0, ti ,L), according to (7.8b)–(7.8c), we have V̇ (t ) =
xT (t )P (t )x(t ), for t ∈ [ti ,l , ti ,l+1), where

P (t ) = A
T
p P (t )+P (t )Ap +∆P p

l+1,l /h

= η1

(
∆P p

l+1,l /h +Pp,l Ap + A
T
p Pp,l

)
+η2

(
∆P p

l+1,l /h +Pp,l+1 Ap + A
T
p Pp,l+1

)
< − (

η1λl Pp,l +η2λl+1Pp,l+1
)

< −λl+1Pp,l+1 −η1
(
λl Pp,l −λl+1Pp,l+1

)
< −λl+1Pp,l+1

(7.10)

with η1 = 1−(t−tp,l )/h, η2 = 1−η1. Moreover, the inequality (7.8d) implies that Pp,l+1−P (t ) ≥
0, which combined with (7.10) leads to

V̇ (t ) <−λl+1xT (t )P (t )x(t ), t ∈ [ti ,l , ti ,l+1)
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for l = 0, . . . ,L − 1. This implies that (7.9) is decreasing exponentially with different rates
{λl }L

l=1 during different intervals [ti ,l , ti ,l+1). Then, we have

Vp (ti ,L) < exp(
L∑

l=0
λl h)Vp (ti ,0).

Considering the properties of (7.9) during the first subinterval [ti , ti ,0) and at the time instant
ti ,0 of discontinuity, we obtain

V (ti ) < exp(−λ∆τ+
L∑

l=0
λl h)Vp (ti ,L)

which implies that V (ti ,L) ≤ V (ti ) by (7.8g). Finally, we consider the third subinterval t ∈
[ti ,L , ti+1). Since the matrix Pp (t ) is constant during the third subinterval, it holds that

V̇ = xT (AT
p Pp,L +Pp,L Ap )x < 0

according to (7.8e), i.e., V (t−i+1) < V (ti ,L). Then, it means that the increase of the Lyapunov
function (7.9) during the unmatched interval is compensated by the decrease during the
matched interval, i.e., V (t−i+1) <V (ti ).

(c) Since the Lyapunov function (7.9) is continuous at the switching instants, i.e., V (t−i+1) =
V (ti+1), we have V (ti+1) ≤V (ti ), which satisfies that stability condition by Branicky [9]. This
completes the proof. 2

The LMIs (7.8a)–(7.8g) might be difficult to solve due to the large number of design pa-
rameters λl , l = 0, . . . ,L when a large integer L is chosen. Therefore, a more convenient op-
tion is to use a common rate of decrease during matched intervals, i.e., λ0 = ·· · =λL =β. This
simplification gives rise to the following corollary, which involves only two design parame-
ters and in return may give conservative results as compared with Theorem 7.2.

Corollary 7.1 Letα andβ be given positive constants. Suppose there exists a family of positive
definite matrices Pp,l , p ∈ M , l = 0, . . . ,L with a given integer L, and a number h > 0, such that

A
T
p,q Pq,L +Pq,L Ap,q −αPq,L < 0 (7.11a)

∆P p
l+1,l /h + A

T
p Pp,`+Pp,`Ap +βPp,` < 0 (7.11b)

∆P p
l+1,l > 0 (7.11c)

A
T
p Pp,L +Pp,L Ap +βPp,L < 0 (7.11d)

Pq,L −Pp,0 ≥ 0 (7.11e)

for ` = l , l +1; l = 0, . . . ,L −1; ∀q, p ∈ M with p 6= q. Then, the system (7.2) with w(t ) ≡ 0 is
globally asymptotically stable for any switching law σ(·) ∈ D(τd) with

τd > max
(
∆τ+hL, (α+β)∆τ/β

)
.

Proof : The proof has the following three steps in a similar vein to the one for Theorem 7.2.
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(a) Without loss of generality, we assume that during the switching interval [ti , ti+1), i ∈N,
subsystem p is active, and during the switching interval [ti−1, ti ), i ∈N+, subsystem q is ac-
tive. In order to enforce that the increase of the Lyapunov function over the unmatched inter-
val is compensated by a decrease in the matched interval, we define a new positive number
ĥ as

ĥ =
{
α∆τ/

(
βL

)
, if βLh <α∆τ

h, otherwise.

It is evident that ĥ ≥ h, which implies that

∆P p
l+1,l

h
−
∆P p

l+1,l

ĥ
> 0.

Considering that
∆P p

l+1,l

h
> 0

due to (7.11c), it can be shown that if (7.11b) holds, then

∆P p
l+1,l

ĥ
+ A

T
p Pp,`+Pp,`Ap +βPp,` < 0.

Let us define a time sequence
{

ti ,l
}L

l=0, where ti ,l+1− ti ,l = ĥ, l = 0, . . . , L−1, ti ,0 = ti +∆τ, and
ti ,L − ti = τd, as shown in Fig. 7.4.

Figure 7.4: The time sequence between two consecutive switching instants.

Similarly, we partition the interval [ti , ti+1) into three subintervals: [ti , ti ,0), [ti ,0, ti ,L), and
[ti ,L , ti+1). The time-varying positive definite matrix Pp (t ) is

Pp (t ) =
{

Pp,l + ρ̂i ,l (t )∆P p
l+1,l , t ∈ [ti ,l , ti ,l+1)

Pp,L , t ∈ [ti ,L , ti+1)
(7.12)

where ρ̂i ,l (t ) = (t − ti ,l )/ĥ. Then, we construct a Lyapunov function similar with (7.9) using
(7.12).

(b) For the first subinterval t ∈ [ti , ti ,0), the derivative of the Lyapunov function is

V̇ (t ) ≤αV (t ), t ∈ [ti , ti ,0)
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according to to (7.11a), and for t ∈ [ti ,0, ti+1), according to (7.11b)–(7.11c), it holds that

V̇ (t ) ≤−βV (t ), t ∈ [ti ,0, ti+1)

using similar steps as (7.10) in the proof of Theorem 7.2. Since the Lyapunov function is non-
increasing at the instant ti ,0, using the dwell time τd > max

(
∆τ+hL, (α+β)∆τ/β

)
, we can

guarantee that V (t−i+1) ≤V (ti ).

(c) Finally, we refer to the same reasoning as the third part in Theorem 7.2. This completes
the proof. 2

Remark 7.3 As noted in [143], for a stable switched system with switching delays, one can
always find α (characterizing the rate of the exponential increase) big enough and β (char-
acterizing the rate of the exponential decrease) small enough to certify stability; a similar
situation arises also in our case. In addition, according to the results in [1, 126, 145], given β
satisfying (7.11), there exists a lower bound h for h such that feasibility occurs for any h ≥ h.
This suggests the use of a sequence of a line search approach to solve (7.11), where the scalars
α,β,h are searched according to the aforementioned guidelines and (7.11) reduces to an LMI
for fixed α,β,h. 2

7.4 L2 analysis and synthesis

In this section, a non-weighted L2 gain for switched linear systems with switching delays
is derived from the Lyapunov function (7.7). Moreover, the LMIs for controller design are
provided based on Corollary 7.1.

7.4.1 Non-weighted L2 gain

Lemma 7.2 Letα and β be given positive constants. Suppose there exists a Lyapunov function
V :Rn →R, and two class-K∞ functions κ1 and κ2 such that, for t ∈ [ti , ti+1), ∀i ∈N, we have

V ((ti +∆τi )−) ≥V (ti +∆τi )

V (t−i ) =V (ti )

κ1(|x(t )|) ≤V (x(t )) ≤ κ2(|x(t )|)

∀t ≥ 0, and

V̇ (t ) ≤
{
αV (t )−Γ(t ), t ∈T↑(ti , ti+1)

−βV (t )−Γ(t ), t ∈T↓(ti , ti+1)
(7.13)

where Γ(t ) = yT (t )y(t )−γ2w T (t )w(t ). Then, the system (7.2) achieves a non-weighted L2 gain

γ=
√

βτde(α+β)∆τ

βτd − (α+β)∆τ
γ (7.14)

for any switching signal σ(·) ∈D(τd) with

τd > max
(
∆τ+hL, (α+β)∆τ/β

)
.
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Proof : Consider an interval [ti , ti+1), i ∈N. We represent the total unmatched interval and
matched interval between [ts, tf) by T ↑(ts, tf) and T ↓(ts, tf), respectively. To keep the math-
ematical derivation concise, let us use the following notation

E(a,b) := eαT ↑(a, b)−βT ↓(a, b)

with a > b ≥ 0. Since
V (ti +∆τi )−V ((ti +∆τi )−) ≤ 0

for any i ∈N, it follows from (7.13) that

V (t ) ≤ V (ti )E(ti , t )−
∫ t

ti

E(s, t )Γ(s)d s

≤
(
V (ti−1)E(ti , t )−

∫ ti

ti−1

E(s, ti )Γ(s)d s

)
E(ti , t )−

∫ t

ti

E(s, t )Γ(s)d s

= V (ti−1)E(ti−1, t )−
∫ t

ti−1

E(s, t )Γ(s)d s

...

≤ V (t0)E(t0, t )−
∫ t

t0

E(s, t )Γ(s)d s.

(7.15)

Considering the initial condition V (t0) = 0, and V (t ) ≥ 0, and substituting

Γ(t ) = yT (t )y(t )−γ2w T (t )w(t )

into (7.15) gives ∫ t

t0

E(s, t )yT (s)y(s)d s ≤
∫ t

t0

E(s, t )γ2w T (s)w(s)d s

where the left-hand side is given by∫ t

t0

E(s, t )yT (s)y(s)d s

=
∫ t

t0

e(α+β)T ↑(s, t )−β(t−s) yT (s)y(s)d s

≥
∫ t

t0

e−β(t−s) yT (s)y(s)d s

(7.16)

and the right-hand side is∫ t

t0

E(s, t )γ2w T (s)w(s)d s

=
∫ t

t0

e(α+β)T ↑(s, t )−β(t−s)γ2w T (s)w(s)d s

≤
∫ t

t0

eN (s, t )(α+β)∆τ−β(t−s)γ2w T (s)w(s)d s

≤
∫ t

t0

e
(1+ t−s

τd
)(α+β)∆τ−β(t−s)

γ2w T (s)w(s)d s

(7.17)
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≤
∫ t

t0

e(α+β)∆τe
(α+β)∆τ−βτd

τp
(t−s)

γ2w T (s)w(s)d s

where the second inequality in (7.17) holds due to (7.4). Let t0 = 0 according to the definition
of the non-weighted L2 gain (Definition 7.1). Integrating (7.16) and (7.17) for t going from 0
to ∞, we have ∫ ∞

0

∫ t

0
e−β(t−s) yT (s)y(s)d sd t

=
∫ ∞

0
yT (s)y(s)

(∫ ∞

s
e−β(t−s)d t

)
d s

= 1

β

∫ ∞

0
yT (s)y(s)d s

(7.18)

and ∫ ∞

0

∫ t

0
e(α+β)∆τe

−∆T
τd

(t−s)
γ2w T (s)w(s)d s d t

= e(α+β)∆τ
∫ ∞

0

(∫ ∞

s
e
−∆T
τd

(t−s)
d t

)
γ2w T (s)w(s)d s

= τd

−∆T
e(α+β)∆τγ2

∫ ∞

0
w T (s)w(s)d s

(7.19)

due to ∆T := (α+β)∆τ−βτd < 0.

Combining (7.18) and (7.19) leads to

1

β

∫ ∞

0
yT (s)y(s)d s ≤ τde(α+β)∆τ

−∆T
γ2

∫ ∞

0
w T (s)w(s)d s

which indicates that a non-weighted L2 gain as (7.14) for the system (7.2) is guaranteed. This
completes the proof. 2

Theorem 7.4 Letα and β be given positive constants. Suppose there exists a family of positive
definite matrices Pp,l , p ∈ M , l = 0, . . . ,L, such that

Φp,q Pq,LEp C
T
p,q

∗ −γ2I F T
p

∗ ∗ −I

< 0,


Θp Pp,`Ep C

T
p

∗ −γ2I F T
p

∗ ∗ −I

< 0


Ψp Pp,LEp C

T
p

∗ −γ2I F T
p

∗ ∗ −I

< 0,
∆P p

l+1,l > 0

Pq,L −Pp,0 ≥ 0

(7.20)

for `= l , l +1; l = 1, . . . ,L−1; ∀p, q ∈ M with p 6= q, where

Φp,q = A
T
p,q Pq,L +Pq,L Ap,q −αPq,L

Θp = ∆P p
l+1,l /ĥ +Pp,`Ap + A

T
p Pp,`+βPp,`

Ψp = Pp,L Ap + A
T
p Pp,L +βPp,L .

Then, the switched linear system with switching delays (7.2) achieves a non-weighted L2 gain
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γ (7.14) for any switching law σ(·) ∈D(τd) with

τd > max
(
∆τ+hL, (α+β)∆τ/β

)
.

Proof : According to the standard derivation of the bounded real lemma for linear systems
[8] and the definition of Pp (t ) in (7.12), it can be verified that (7.20) leads to the following:

V̇ (t ) ≤ αV (t )+ yT (t )y(t )−γ2w T (t )w(t ), t ∈T↑(ti , ti+1)

V̇ (t ) ≤ −βV (t )+ yT (t )y(t )−γ2w T (t )w(t ), t ∈T↓(ti , ti+1)

which is in the same form as (7.13). Furthermore, V (t ) is continuous at the switching in-
stants, and non-increasing at the instants when the modes are matched. This means that
Lemma 7.2 holds, and we can guarantee a non-weighted L2 gain for switched systems (7.2)
via the dwell time τd > max

(
∆τ+hL, (α+β)∆τ/β

)
. 2

7.4.2 Robust H∞ control design

Theorem 7.5 Letα and β be given positive constants. Suppose there exists a family of positive
definite matrices Qp,l , a family of vectors Up,l , p ∈ M , l = 0, . . . ,L, and a positive number h
such that 

Hp,q Ep Zp,q

∗ −γ2I F T
p

∗ ∗ −I

< 0,


Ξp Ep Λp

∗ −γ2I F T
p

∗ ∗ −I

< 0


Ωp Ep Υp

∗ −γ2I F T
p

∗ ∗ −I

< 0,
∆Qp

l+1,l < 0

−Qq,L +Qp,0 ≥ 0

(7.21)

for `= l , l +1; l = 0, . . . ,L−1; ∀p, q ∈ M with p 6= q, where

Hp,q = Qq,L AT
p + ApQq,L +U T

q,LB T
p +BpUq,L −αQq,L

Zp,q = Qq,LC T
p +U T

q,LDT
p

Ξp = ∆Qp
l+1,l /ĥ +Qp,`AT

p + ApQp,`+U T
p,`B T

p

+BpUp,`+βPp,`

Λp = Qp,`C T
p +U T

p,`DT
p

Ωp = Qp,L AT
p + ApQp,L +U T

p,LB T
p +BpUp,L +βp Pp,L

Υp = Qp,LC T
p +U T

p,LDT
p .

Then, there exists a family of mode-dependent state-feedback controllers u(t ) =Gσ(t )x(t ) with
the maximum switching delay ∆τ such that the system (7.2) achieves a non-weighted L2 gain
γ (7.14) for any switching law σ(·) ∈D(τd) with

τd > max
(
∆τ+hL, (α+β)∆τ/β

)
.
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Additionally, the gains of state feedback controllers with switching delay can be obtained as

Gp (t ) =


[
Up,l + ρ̂i ,l (t )∆U p

l+1,l

]
·[

Qp,l + ρ̂i ,l (t )∆Qp
l+1,l

]−1
, t ∈ [ti ,l , ti ,l+1)

Up,LQ−1
p,L , t ∈ [ti ,L , ti+1,0)

(7.22)

for l = 0, . . . ,L−1, where ∆U p
l+1,l =Up,l −Up,l+1, ρ̂i ,l (t ) = (t − ti ,l )/ĥ with ti ,l shown in Fig. 7.4.

Proof : Let Qp,l = P−1
p,l , for l = 0, . . . ,L. Substituting Ap,q , Ap , C p,q and C p in (7.2) into (7.20),

and then pre-multiplying and post-multiplying by diag
{
Qp,l , I , I

}
from both sides, the state

feedback gains Gp (t ) are obtained. 2

Remark 7.6 The following difference must be remarked between the results in [1, 123, 126]
and the results of this work. In [1, 123, 126], it has been shown that by increasing L, a less
conservative dwell time can be found. In Corollary 7.1, when ∆τ+hL ≤ (α+β)∆τ/β, the
dwell time τd is not affected by the choice of L. However, increasing L might reduce conser-
vativeness in terms of L2 gain, as illustrated in the example of Section 7.5. 2

Figure 7.5: The control scheme of (7.2).

Remark 7.7 Derived from the novel Lyapunov function (7.9), the state-feedback gains of the
mode-dependent controller are designed to be time-varying only during the matched in-
terval according to (7.22). This implies that after the switching, the controller associated to
the subsystem has a constant gain during the unmatched interval, as illustrated in Fig. 7.5.
This can simplify the analysis and design of the closed-loop system formed, during an un-
matched interval whose actual length is unknown, by the currently active subsystem and the
constant-gain controller. 2

Remark 7.8 Thanks to the convexity of the proposed stability analysis and H∞ control de-
sign with respect to the system matrices Ap , the stability condition (7.11) and the stabiliza-
tion condition (7.21) can be extended readily to switched linear system (7.1) with polytopic
parametric uncertainties in a similar vein to ones in [1]. 2
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7.5 Example

In this section, the following switched linear system with maximum switching delay ∆τ = 2
is adopted to illustrate the proposed results:

A1 =
[

0.9 −5.8

2.75 0.9

]
, A2 =

[
−2 2

2.1 −1.3

]
, B1 =

[
1.5

2.2

]

B2 =
[

1.85

1.75

]
, C1 =

[
1

0

]
, C2 =

[
0.45

0

]
, E1 =

[
0.1

0.5

]

E2 =
[

0.2 0.6
]T

, D1 = D2 = 1.5, F1 = F2 = 0.65.

A. Non-weighted L2 gain using (7.7)

In this subsection, different choices for the value of L are considered to illustrate the
results in this chapter.

(a) (L = 1) We select L = 1, α= 0.26, β= 0.2. After solving the convex optimization prob-
lem (7.21), we obtain γ= 1.2746, h = 0.06, ĥ = 2.6, τ∗d =: (α+β)∆τ/β= 4.6, and the following
matrices and vectors:

Q1,0 =
[

4.8481 −0.0466

−0.0466 0.8858

]
, Q1,1 =

[
4.8420 −0.0613

−0.0613 0.8503

]

Q2,0 =
[

6.3250 −0.8206

−0.8206 1.2390

]
, Q2,1 =

[
4.2490 −0.1715

−0.1715 0.8598

]

U1,0 =
[
−3.6725 −0.7633

]
, U1,1 =

[
−3.7385 −0.6484

]
U2,0 =

[
−1.1715 −1.0804

]
, U2,1 =

[
−2.8473 −0.1361

]
.

Figure 7.6: The switching signal.

Selecting ti+1 − ti = τd = 5.6 > τd∗ , i ∈ N, we have the non-weighted L2 gain γ = 4.7865
according to (7.14). Then, using (7.22), the controller gains for the two system modes are
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obtained as follows:

Gp (t ) =


[
(t − ti ,0)∆Up /ĥ +Up,0

] ·[
(t − ti ,0)∆Qp /ĥ +Qp,0

]−1
, t ∈ [ti ,0, ti ,1)

Up,1Q−1
p,1, t ∈ [ti ,1, ti+1,0)

(7.23)

for p ∈ {1,2}, where ∆Up =Up,1 −Up,0, and ∆Qp = Qp,1 −Qp,0. Let the disturbance w(t ) ≡ 0,
and the initial condition x0 = [2 1]T . We design the switching signal as in 7.6. Then, the
resulting Lyapunov function is given in Fig. 7.7, which shows that when the controller mode
and the system mode are matched, i.e., at t = 2, the Lyapunov function is decreasing, and at
the switching instant t = 5.6, the Lyapunov function is continuous. In addition, the Lyapunov
function tends to zero, as predicted by the global asymptotic stability results.

For the disturbance, let us consider for example w(t ) = 0.5exp(−0.2t ), and let the initial
condition be x0 = [2 1]T . Adopting the controllers (7.23) with L2 gain γ= 4.7865 gives rise to
the state response shown in Fig. 7.8, which is stable.
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Figure 7.7: The proposed Lyapunov functions with a zoomed detail around t = 5.6.

(b) (L > 1) Now we choose different values of L ∈ {1,5,20,90,100}, and α = 0.26, β = 0.2.
By solving the convex optimization problem (7.21), we get different L2 gain γ as shown in
Table 7.1. It can be observed that a less conservative L2 gain is obtained as L increases.

Table 7.1: Non-weighted L2 gain γ for different values of L.

L 1 5 20 90 100

γ 1.2769 1.0546 1.0474 1.0436 1.0435

γ 4.7865 3.9116 3.9119 3.9118 3.9118

B. Comparison between (7.6) and (7.7)
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Figure 7.8: State response of closed-loop systems with controllers (7.23).

The key properties about continuity and discontinuity of (7.6) and (7.7) are compared
herein. To facilitate understanding of the comparison between (7.6) and (7.7), we let L =
1. First, we adopt the same technique to develop time-varying matrices Pp (t ) for (7.6) and
derive the conditions for designing the two mode-dependent controllers: substituting Qp,0

with Qq,L in Hp,q , and replacing −Qq,L+Qp,0 ≥ 0 with −Qp,L+Qq,0 ≥ 0 in (7.21), p 6= q ∈ {1,2}.
Therefore, the resulting controller gains are, for p = 1, 2

Gp (t ) =


[
(t − ti )∆Up /ĥ +Up,0

] ·[
(t − ti )∆Qp /ĥ +Qp,0

]−1
, t ∈ [ti , ti ,1)

Up,1Q−1
p,1, t ∈ [ti ,1, ti+1)

which shows that the mode-dependent controllers up are active during the interval [ti , ti+1).
This implies that the mode-dependent controllers designed via (7.6) fail to deal with the
switching delay ∆τ. Now, let us focus on the controllers in (7.23) designed via (7.7). They
are active during the interval [ti ,0, ti+1,0), which implies that the controllers are designed
considering the switching delays based on (7.7). Therefore, we conclude that the proposed
Lyapunov function (7.7) reflects the key feature of switched linear systems with switching
delays (as explained more technically in Remark 7.1).

7.6 Concluding remarks

In this chapter, a novel Lyapunov function for switched linear systems with switching delays
has been proposed. Different from the classical Lyapunov function introduced by Branicky,
this Lyapunov function is continuous at the switching instants and discontinuous when the
system modes and controller modes are matched, which is consistent with the essence of
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switched systems with switching delays. A new stability condition via dwell time switching
has been introduced to guarantee asymptotic stability in the noiseless case. Moreover, the
proposed Lyapunov function can be used to guarantee a non-weighted L2 gain for switched
linear systems with switching delays. Future work will focus on applying the proposed stabil-
ity analysis to adaptive control of switched systems with switching delays and non-polytopic
parametric uncertainties.



Chapter 8

Conclusions and Recommendations

In this thesis, we have introduced new adaptive control techniques for switched linear sys-
tems that fill the theoretical gap of asymptotic stability between adaptive control of non-
switched linear systems and adaptive control of switched linear systems. In addition, robust
and adaptive stabilization of switched linear systems with time delays have been studied. In
this chapter, the main results of this thesis and some recommendations for future research
are presented.

8.1 Conclusions

The main results of this thesis are summarized as follows:

• Adaptive tracking control of uncertain switched systems using extended dwell time
and average dwell time

We have extended the results in [91, 117] using extended dwell time and average dwell
time switching, namely, mode-dependent dwell time, mode-mode-dependent dwell
time, and mode-dependent average dwell time switching. These switching laws give
rise to less conservative switching signals. Global uniform ultimate boundedness of
switched linear system via the adaptive control schemes has been shown. Further-
more, an upper bound and an ultimate bound characterizing the transient and steady-
state performance of the tracking error are introduced.

• Adaptive asymptotic tracking of uncertain switched systems

A new adaptive law for uncertain switched linear systems has been proposed. In par-
ticular, a novel piecewise adaptive law has been proposed that gets rid of parameter
projection and of the a priori knowledge of upper and lower bounds for the parame-
ters when the switched system is not subject to disturbances. The proposed adaptive
law and switching law based on dwell time guarantee that the tracking error converges
to zero asymptotically. Furthermore, if the reference is persistently exciting, asymp-
totic stability becomes exponential and the parameter estimates of the state feedback
controller converge to the real parameters.

• Robust adaptive tracking of switched linear systems

107
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We have modified the adaptive law for switched linear systems exploiting the ideas of
a parameter projection and a leakage method to preserve robustness of the closed-
loop system in the presence of disturbances. In particular, global uniform ultimate
boundedness has been achieved, and the ultimate bounds of the tracking error for
both cases have been given.

• Adaptive stabilization of switched systems with time-varying delays

We have developed an adaptive design for uncertain switched linear systems that can
handle impulses in states and discontinuous time-varying delays at the switching in-
stants. Using a new Lyapunov function that is non-increasing at the switching in-
stants, we have designed an adaptive control law with a piecewise time-varying gain.
Global uniform ultimate boundedness of the adaptive closed-loop system is guaran-
teed. The main contribution is that the impulsive behavior of both the states and the
time-varying delay is addressed and solved in the presence of uncertainty.

• Robust stability and stabilization of switched systems with switching delays

We have introduced a Lyapunov function for switched linear systems with switching
delays: this Lyapunov function is continuous at switching instants and possibly dis-
continuous at the instant when the controller and the system mode is matched. Based
on this Lyapunov function, a robust controller has been developed to achieve a non-
weighted L2 gain for switched linear systems with switching delays.

8.2 Recommendations for future research

In this section, some potential topics based on the research of this thesis are introduced.
The first family of future research topics stems from the results of Chapters 3–5, which is

proposed as follows:

• Adaptive asymptotic tracking control with average dwell time switching

Asymptotic stability of the tracking error has been guaranteed in Chapter 4 based on
dwell time switching signals. To reduce the conservativeness of dwell time switching, it
is of theoretical and practical interest to investigate adaptive asymptotic tracking con-
trol with average dwell time switching. The difficulty consists in developing a stability
condition with average dwell time such that the Lyapunov function is non-increasing
at the switching instants.

• Improving transient performance of the tracking error

As shown in Chapters 3–5, at switching instants, the tracking error may be subject
to high-frequency oscillations caused by parameters changes. This could violate the
physical limitations of the systems or even lead to failures of the controllers. In this
regard, it is worth investigating how to decrease the oscillations. One possible solution
is to incorporate a low-pass filter in the control loop as in L1-adaptive control [16, 41]
where fast adaptation is allowed. The difficulty consists in guaranteeing asymptotic
stability.

• Addressing large modeling uncertainty
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When the modeling uncertainty of each subsystem is so large that a single adaptive
controller for each subsystem cannot guarantee satisfactory tracking performance, a
new adaptation mechanism is required. Adaptive control using multiple models [49,
71, 72] would be an efficient method to address large modeling uncertainty, where the
multiple models essentially formulate a switched system. The switching between the
switched system depends on the regions of the tracking error, which turns out to be
a state-dependent switching. The difficulty is to incorporate two different kinds of
switching signals, i.e., time-driven and state-dependent switching signals.

• Adaptive output-feedback control of switched systems

The adaptive controllers proposed in Chapters 3–5 depend on the state signals. How-
ever, it is clear that in many cases the measurements of the states are not economical
or even technically impossible. In this regard, designing an adaptive controller based
on output signals is relevant and not trivial. The difficulty is to design a switching law
and an output-feedback adaptive law based on the switched linear system without the
knowledge of the system matrices.

The second family of future research topics comes from the results of Chapter 6, which is
proposed as follows:

• Adaptive tracking control of switched time-delay systems

Since adaptive regulation of switched time-delay systems has been addressed in Chap-
ter 6, it is relevant to consider adaptive tracking when a family of reference models is
involved. In the setting of adaptive tracking, the Lyapunov function (6.15) is not ap-
plicable and thus a Lyapunov function with the summation of parameter estimation
errors should be used because a family of parameter estimates are needed instead of
one for the case of (6.15) . This will give rise to a new family of adaptive laws different
from that of Chapter 6 to guarantee stability.

• New adaptive design via differential Riccati equation

The adaptive controllers (6.11) have been developed by solving a family of algebraic
Riccati equations. To guarantee that the Lyapunov function (6.15) with a family of con-
stant symmetric positive definite matrices Pp is decreasing at the switching instants,
the time-varying coefficient should be carefully designed. One potential method to
remove the time-varying coefficient is resorting to solutions to a family of differen-
tial Riccati equations, i.e., time-varying symmetric positive definite matrices Pp (·). By
making using of Pp (·), we can impose the decreasing condition for the resulting Lya-
punov function V (t ) = xT (t )Pσ(t )(t )x(t )+ 1

2γ θ̃
2(t ), t ≥ 0 at the switching instants.

The third family of future research topics comes from the results of Chapter 7, which is
listed as follows:

• Adaptive control of switched systems with switching delays

In Chapter 7, a Lyapunov function that is continuous at the switching instants and
discontinuous at the matching instants is proposed for switched systems with time
delays. Since the Lyapunov function with parameter estimate errors does not admit
rates of the exponential decreasing during the matched intervals and of the exponen-
tial increasing during the unmatched intervals, a new adaptive law different from that
of Chapter 4 is needed to guarantee asymptotic stability.
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• Addressing sample-data switched systems with switching delays

When the control signals are transmitted through a communication network, quan-
tized signals are used to save bandwidth. The method proposed in Chapter 7 can be
extended to design a dynamical quantizer [15, 59] that simplifies the design of the
dynamic quantizer for switched linear systems in [106] by increasing the adjustable
parameter µ during the zooming-out stage or unmatched intervals and decreasing µ
during the zooming-in stage or matched intervals.
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Summary

Control of Switched Linear Systems: Adaptation and Robust-
ness

As a special class of hybrid systems, switched systems have attracted a lot of attention in
the last decade due to theoretical and practical interests. When controlling switched sys-
tems, a ubiquitous problem is the presence of large parametric uncertainties and external
disturbances. However, the state of the art on adaptive and robust control of switched linear
systems is not satisfactory and due to the existence of theoretical gaps between adaptive and
robust control for switched linear systems and non-switched linear systems. To this end, this
thesis has been successfully closed some theoretical gaps, which is divided into two parts.

In the first part of this thesis, to start with, we have extended the state-of-the-art results
using extended notions of dwell time and of average dwell time: mode-dependent dwell
time and mode-dependent average dwell time, respectively. This gives rise to less conser-
vative switching signals. To address the cases in which the next subsystem to be switched
on is known, we propose a new time-dependent switching scheme: mode-mode-dependent
dwell time, which not only exploits the information of the current subsystem, but also of the
next subsystem. Subsequently, an adaptive law for uncertain switched linear systems has
been introduced, which fills the theoretical gaps between adaptive control of non-switched
linear systems and of switched linear systems. The proposed adaptive law and switching
law based on dwell time guarantee asymptotic convergence of the tracking error to zero
and, with a persistent exciting reference input, convergence of parameter estimates to nom-
inal parameters asymptotically. To conclude the first part of this thesis, the adaptive law for
switched linear systems has been modified using the ideas of parameter projection and leak-
age method, depending on the available a priori information: when the bounds of uncertain
parameters are known, parameter projection is adopted; otherwise, the leakage method is
used. The resulting adaptive closed-loop system is shown to be global uniform ultimate
bounded in the presence of external disturbances.

In the second part of this thesis, adaptive and robust stabilization of switched linear sys-
tems have been investigated. Based on the stability conditions, adaptive stabilization of un-
certain asynchronously switched systems is studied. Furthermore, in the presence of dis-
continuous time-varying delays, neither Krasovskii nor Razumikhin techniques can be suc-
cessfully applied to adaptive stabilization of uncertain switched time-delay systems. A new
adaptive control scheme for switched time-delay systems is developed that can handle im-
pulsive behavior in states and time-varying delays with discontinuities. At the core of the
proposed scheme is a Lyapunov function with a dynamically time-varying coefficient, which
allows the Lyapunov function to be non-increasing at the switching instants. The control
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scheme substantially enlarges the class of uncertain switched systems for which the adap-
tive stabilization problem can be solved. Furthermore, in the presence of switching delays
between a mode change and activation of its corresponding controller, enhanced stability
criteria are investigated, whose novelty consists in continuity of the Lyapunov function at
the switching instants and discontinuity when the system modes and controller modes are
matched. The proposed Lyapunov function can be used to guarantee a finite non-weighted
L2 gain for asynchronously switched systems, for which methods proposed in literature are
inconclusive.

Shuai Yuan



Samenvatting

Regeling van geschakelde lineaire systemen: adaptatie en ro-
buustheid

Als een speciale klasse van hybride systemen hebben geschakelde systemen het afgelopen
decennium veel aandacht getrokken vanwege theoretische en praktische interesses. Bij het
regelen van geschakelde systemen is een alomtegenwoordig probleem de aanwezigheid van
grote parametrische onzekerheden en externe storingen. De stand van de techniek met
betrekking tot adaptieve en robuuste regeling van geschakelde lineaire systemen is echter
niet toereikend en vanwege het bestaan van theoretische openingen tussen adaptieve en ro-
buuste regeling voor geschakelde lineaire systemen en niet-geschakelde lineaire systemen.
Hiertoe heeft dit proefschrift enkele theoretische hiaten met succes afgesloten,verdeeld in
twee delen.

In het eerste deel van dit proefschrift hebben we om te beginnen de state-of-the-art resul-
taten uitgebreid met behulp van uitgebreide noties van dwell-tijd en van gemiddelde dwell-
tijd: modus-afhankelijke dwell-tijd en modus-afhankelijke gemiddelde dwell-tijd, respec-
tievelijk. Dit geeft aanleiding tot minder conservatieve schakelsignalen. Om de gevallen
aan te geven waarin het volgende subsysteem moet worden ingeschakeld, stellen we een
nieuw tijdsafhankelijk schakelschema voor: mode-modus-afhankelijke dwell-tijd, die niet
alleen de informatie van het huidige subsysteem, maar ook van het volgende subsysteem
gebruikt. Vervolgens is een adaptieve wet voor onzekere geschakelde lineaire systemen geïn-
troduceerd, die de theoretische kloof opvult tussen adaptieve controle van niet-geschakelde
lineaire systemen en van geschakelde lineaire systemen. De voorgestelde adaptieve wet en
omschakelingswet op basis van dwell-tijd garanderen asymptotische convergentie van de
volgfout tot nul en, met een persistent exciterende referentie-invoer, convergentie van para-
meterschattingen tot asymptotische parameters. Om het eerste deel van dit proefschrift af te
sluiten, is de adaptieve wet voor geschakelde lineaire systemen aangepast met behulp van de
ideeën van parameterprojectie en lekmethode, afhankelijk van de beschikbare a priori infor-
matie: wanneer de grenzen van onzekere parameters bekend zijn, wordt parameterprojectie
toegepast; anders wordt de lekmethode gebruikt. Het is aangetoond dat het resulterende
adaptieve gesloten-lussysteem globaal uniform ultiem begrensd is in de aanwezigheid van
externe verstoringen.

In het tweede deel van dit proefschrift is adaptieve en robuuste stabilisatie van gescha-
kelde lineaire systemen onderzocht. Op basis van de stabiliteitsvoorwaarden wordt adap-
tieve stabilisatie van onzekere, asynchroon geschakelde systemen bestudeerd. Bovendien
kunnen, in aanwezigheid van discontinue, in de tijdvariant vertragingen, noch Krasovskii
noch Razumikhin-technieken met succes worden toegepast op adaptieve stabilisatie van
onzekere geschakelde tijdvertragingssystemen. Een nieuw adaptief regelschema voor ge-
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schakelde tijdvertragingssystemen is ontwikkeld dat impulsief gedrag in toestanden en in
de tijdvariant vertragingen met discontinuïteiten aankan. De kern van het voorgestelde
schema is een Lyapunov-functie met een dynamisch in de tijdvariant coëfficiënt, waardoor
de Lyapunov-functie niet toeneemt op de schakelmomenten. Het regelschema vergroot
de klasse van onzekere geschakelde systemen waarvoor het adaptieve stabilisatieprobleem
kan worden opgelost aanzienlijk. Verder worden, in de aanwezigheid van schakelvertragin-
gen tussen een modusverandering en activering van de corresponderende regelaar, verbe-
terde stabiliteitscriteria onderzocht, waarvan de nieuwheid bestaat uit de continuïteit van
de Lyapunov-functie op de schakelmomenten en discontinuïteit wanneer de systeemmodi
en besturingsmodi overeenkomen. De voorgestelde Lyapunov-functie kan worden gebruikt
om een eindige niet-gewogen L2 winst voor asynchroon geschakelde systemen te garande-
ren, waarvoor in de literatuur voorgestelde methoden niet doorslaggevend zijn.

Shuai Yuan
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