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Preface

T he first question you ask yourself when starting a PhD is “where do I even begin?”
Somehow I’m still not sure how to answer that. You just start working on something,

and somewhere, somehow, you find yourself suddenly in the thick of it. And before you
know it, the time has passed and you are wrapping up! As I sit here now, thesis very nearly
finished, I find myself asking the same question about this preface. So many people have
been a part of this journey that it is difficult to even begin to acknowledge everyone.

So, first things first: I would like to thank my promoter and supervisor, Ramon
Hanssen, for taking me on this journey and supporting my work for the past four years.
Your constant energy kept me motivated, and your challenging questions kept me sharp
and engaged throughout the project. One question above all was always a motivator:
“Are we happy with this?”, the answer always being “No”, as there is always more to
do, more problems to fix, and above all more to be learned. Yet, looking back over this
entire project, seeing where we started and where we are now, I feel like I can finally
answer “Yes”. Also in the InSAR research group, I would like to thank Freek van Leijen.
Without your constant support, this project would not have been possible. Thank you as
well for such a careful reading of this thesis draft when you had so many other things to
do. To the other PhDs in the group, Wietske Brouwer, Simon van Diepen, Yuqing Wang,
Dita Lumban-Gaol, and Alex Lapadat, thank you for creating such a positive group to be
a part of. I learned something from each one of you and I wish you all the best for your
futures.

Next, I would like to thank Esther Stouthamer, the principle investigator of the Living
on Soft Soils project which funded this work. Your enthusiasm and support for the devel-
opment of an unproven technology like InSAR for peatland monitoring is amazing. The
LOSS project gave me the opportunity to meet experts from so many different fields who
I would otherwise have never encountered, and I grateful for having been able to learn so
much about a topic which lies at the heart of Dutch society and culture. To all the other
LOSS PhDs: best of luck with finishing up! Thank you as well to Sanneke van Asselen
and Giles Erkens from Deltares for your support during this project, which would have
been impossible without the high-quality extensometer data you shared freely with me,
and thank you for your enthusiasm about my work!

At the TU Delft Department of Geoscience and Remote Sensing, I would like to thank
my copromotor Paco Lopez-Dekker, who is more passionate about SAR than anyone else
I have ever met. I feel like I learn something new every time we speak. Many thank-yous
to Frithjof Ehlers, for serving as paranymph during my defence, for designing the cover
art of this thesis, and of course for introducing me to the power of the squircle. Having
a hungover breakfast together in Vienna during EGU, I wished you would just shut up
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about this function to draw squares with rounded corners and let me enjoy my coffee,
but who would have thought that it would actually help solve a nonlinear optimization
problem I was having! To Yan Yuan, thank you for always keeping it real, being a reliable
friend, and taking care of Abby even though she scratched the hell out of your apartment.
To Ben Hernandez, thanks for all the memes. But more importantly, thanks for being
a great friend and bouldering coach! I hope you liked proposition 10. Finally, I would
like to thank everyone in the GRS department for making what has easily been the most
positive and fun workplace I have ever been a part of. The energy in this department is
something special, and it keeps me happy about showing up to work every day.

Thank you to my remaining committee members Andrea Monti-Guarnieri, Ain Kull
and Peter Teunissen for reading my work and for your positive and constructive feedback.

To my parents, who supported me during my studies and always encouraged me.
Thank you to my dad, Phil, for encouraging me to study engineering and to stick with it
when the going got tough. I guess radar is becoming a family business. Thank you to
my mom, Andrea, for always giving me a home to come back to and for always being so
supportive.

Finally, thank you to Julia, for saying yes to going on this adventure and moving to
Delft with me, and for always being there for me.

Philip Conroy
Delft, March 2025
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Summary

O ver the past three decades, synthetic aperture radar (SAR) interferometry (InSAR)
has become one of the most important Earth observation technologies in the world,

and its use has become common in applications such as topographic mapping, monitor-
ing earthquakes and volcanoes, as well as the built environment. Despite these advances,
many technical and scientific challenges remain unsolved in the field, which prevent its
use across diverse regions and biomes. One such type of region are wetlands and peat-
lands, which are notoriously challenging to monitor remotely due to poor signal quality
and rapidly changing conditions between SAR acquisitions. This problem is particu-
larly relevant in the Netherlands, because a significant portion of the country is com-
posed of drained peat and clay soils which lie below sea level. These “soft soils” exhibit
highly dynamic temporal behaviour that is closely linked to the phreatic groundwater
system. In addition, they also exhibit a slow, irreversible subsidence caused by com-
paction and oxidation, the latter of which is a greenhouse gas (GHG) emitting process. It
is this slow, irreversible subsidence component which scientists, governments, farmers
and other stakeholders are trying to better understand, and evaluate the risks it poses.

Previous efforts in monitoring the cultivated soft soil regions of the Netherlands by
InSAR have been hampered by two main problems, which in this work are referred to as
“cycle slips” and “loss-of-lock”. The former refers to consistent errors made in ambigu-
ity resolution due to signals which exhibit such highly dynamic behaviour that standard
algorithms cannot correctly interpret the wrapped phase data. The latter term refers to a
permanent and irreparable loss of coherence in an interferometric SAR data stack. It is
common in peatland regions for coherence levels to rise and fall seasonally, and in gen-
eral, no coherent interferometric combination exists between the coherent periods. This
condition means that the interferometric time series is severed during these incoherent
periods, and only intermittent, disconnected temporal subsets of data are useable.

An appropriate parameterization of the expected land surface motion is needed in or-
der to overcome both of these challenges. By using the disconnected coherent subsets
of wrapped phase data to estimate a set of model parameters that describe the expected
land surface motion to within an acceptable level of accuracy, we can subsequently use
such a model to both estimate the correct ambiguity levels of the unwrapped phase, and
interpolate over the incoherent periods in order to align the coherent subsets of data.
Therefore, the methodology developed in this research, called Delft Contextually-Aided
Distributed Scatterer Environment (DECADE), focuses on how we can use the accumu-
lation of sparse coherent data subsets over time to learn how a certain patch of the Earth
behaves, rather than on simply supplying an InSAR time series of displacements without
any context.

This work concludes by showing the first InSAR-derived estimates of land surface
motion of the soft soil regions of the Dutch Green Heart (Groene Hart). These estimates
are compared to in-situ measurements at three locations, and there is a remarkably good
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level of agreement between the results of the two techniques. This indicates that the
DECADE methodology is indeed capable of enabling the use of InSAR to monitor these
highly dynamic and decorrelating peatland regions. Finally, by combining estimates of
the average irreversible subsidence rate with soil data of the region, an approximate worst-
case estimate of greenhouse gas emissions caused by soil oxidation is established.



Samenvatting

R adar interferometrie (InSAR) heeft zich gedurende de laatste dertig jaar ontwikkeld
tot een van de belangrijkste hedendaagse ruimtegeodetische aardobservatietechnie-

ken. De techniek wordt gebruikt voor het in kaart brengen van de topografie van de aarde
in de vorm van hoogtemodellen, of voor het bestuderen van de deformatie van het aard-
oppervlak. Een zich snel ontwikkelende toepassing is het monitoren van de gebouwde
leefomgeving. Alhoewel dit heeft geleid tot een veelheid van operationele producten,
zijn er nog significante uitdagingen, zowel technisch als wetenschappelijk, die de directe
toepassing in specifieke gebieden in de weg staan. Een pregnant voorbeeld is het veen-
weidegebied. De uitdagingen worden hier gevormd doordat de complexe radarreflectie
van het grasland relatief snel en aanzienlijk kan veranderen tussen opeenvolgende ra-
daropnames. Deze vegetatieëffecten zorgen voor ruis in de data, en in combinatie met
de fasemeerduidigheden en het dynamisch gedrag van de veenbodems leidt dit tot sig-
nificante problemen in de schatting van de bodembeweging. Dit probleem is zeer rele-
vant voor Nederland, omdat een groot deel van het land bestaand uit veen- en kleigrond
blootgesteld aan een kunstmatige variatie van de grondwaterstand. Deze ’zachte’ bodem
blijkt een zeer sterk dynamisch gedrag te hebben, sterk gecorreleerd met het freatisch
grondwaterniveau. Tevens is er sprake van een langzame maar gestage onomkeerbare
bodemdaling, ten gevolge van compactie en oxidatie, hetgeen tevens leidt tot de uitstoot
van broeikasgassen. Het is met name deze langzame en onomkeerbare bodemdaling die
van groot belang is om te begrijpen, om toekomstig gedrag te kunnen voorspellen en er
adequate maatregelen tegen te nemen. Hiervoor moet het echter eerst mogelijk zijn om
deze te kunnen meten.

Eerdere pogingen om de bodembeweging van het Nederlandse veenweidegebied te
monitoren met behulp van InSAR legden twee beperkingen bloot: (i) het abusievelijk
overslaan van een semi-golflengte in de schatting van de geheeltallige meerduidighe-
den (meerduidigheidssprong of ’cycle-slip’) en (ii) het onomkeerbaar verbreken van het
correlatieverband in de keten van radarwaarnemingen (correlatiebreuk of ’loss-of-lock’).
Cycle-slips zijn het gevolg van de combinatie van een sterk dynamisch signaal en ruis,
waardoor standaard algoritmes verkeerde resultaten geven. Loss-of-lock treedt op wan-
neer er een permanante (onomkeerbare) verandering in de reflectieëigenschappen van het
terrein plaatsvindt, waardoor de interferometrische coherentie tussen opeenvolgende ra-
daropnames tijdelijk onder een bepaald minimum komt. In het veenweidegebied is deze
variatie in coherentiewaarden onvermijdelijk, bijvoorbeeld tussen de seizoenen als gevolg
van gewasgroei en landgebruik. Als gevolg hiervan moet de serie van radaropnames als
onderbroken of gefragmenteerd worden beschouwd.

Beide beperkingen zijn te ondervangen door een adequate parameterisatie van de ver-
wachte bodembeweging. Door gebruik te maken van de gefragmenteerde coherente delen
van de waarnemingstijdreeksen van de relatieve fase kunnen we de gekozen modelpa-
rameters schatten. Hierbij wordt bewust gekozen voor een niet-perfecte parameterisa-
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tie zolang deze maar een acceptabele precisie en betrouwbaarheid heeft om de correcte
meerduidigheden te kunnen schatten. Daarna worden de incoherente perioden in dewaar-
nemingstijdsreeks overbrugd. De ontwikkelde methode, Delft Contextually-Aided Dis-
tributed Scatterer Environment (DECADE), optimaliseert de geaccumuleerde serie van
temporeel schaars bemonsterde deelperioden, met als doel het afdoende beschrijven van
het dynamisch gedrag van een bepaald gebied, zoals een perceel, in plaats van het op
afroep produceren van een InSAR bewegingstijdserie zonder context.

Als eindresultaat wordt binnen dit onderzoek de eerste vlakdekkende schatting van
bodembeweging van het veenweidegebied op basis van InSAR gepresenteerd, toegepast
op het Groene Hart. De resultaten zijn vergeleken met onafhankelijke veldmetingen op
drie locaties, waarbij er een overtuigende mate van overeenkomst wordt aangetoond. Dit
betekent dat de DECADEmethode in staat is om gebruikmakend van ruimtegeodesie (sa-
tellietwaarnemingen) het veenweide gebied adequaat te monitoren. Ook is aangetoond
dat de combinatie van de geschatte onomkeerbare (irreversibele) bodemdaling met addi-
tionele bodeminformatie kan worden gebruikt om een bovengrens-scenario van broeikas-
gasemissies ten gevolge van oxidatie vast te stellen.
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Introduction

God created the Earth,
but the Dutch created the Netherlands.

Proverb

1.1 Motivation
SAR Interferometry is the only geodetic technique that has the potential to monitor

land surface motion over a wide spatial extent at frequent intervals with high pre-
cision, however, highly dynamic displacement signals and temporal decorrelation have
prevented the technique from being successfully applied over cultivated peatlands. This
research aims to overcome these challenges and enable land surface monitoring of these
dynamic and noisy environments.

1.2 Background
Despite their critical importance for carbon emissions, water security and biodiversity,
northern peatlands remain a poorly understood biome due to the difficulties in produc-
ing observations with sufficient quality and spatiotemporal resolution. Drained peatlands
subside over time as the upper layers of soil dry out and oxidize, and due to consolida-
tion of the deeper soil layers caused by loading conditions of the layers above [1]. This
subsidence releases significant amounts of carbon dioxide and nitrous oxide into the at-
mosphere through soil oxidation, and creates risks for flooding due to land elevation loss
[2], [3].

This is of particular importance in the Netherlands, where the topic of subsidence is
part of a larger ongoing societal debate regarding land use. There are significant questions
about balancing the cultural heritage and traditional agriculture of the region with long-
term sustainability concerns such as nitrogen pollution and water security in the context
of global climate change. Much of the coastal plain already lies below mean sea level and
additional subsidence constitutes a significant threat to the security of the country. The
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Dutch government has committed to a 1 Mt reduction in CO2-equivalents per year origi-
nating from its peatlands before 2030 [4], corresponding to a reduction of approximately
25% according to a government report [5] (based on a methodology by Wageningen En-
vironmental Research [6], [7]), a decision with significant impact on future land use,
agriculture and the economy that requires adequate assessment of subsidence rates.

While it is clear that soil subsidence is occurring in the peatland regions of the Nether-
lands, producing accurate and reliable estimates of the phenomenon from geodetic mea-
surements has proven challenging. This is due in part to a lack of understanding how
these environments behave over short timescales. Until recently, most geodetic tech-
niques used to study the problem are either not representative, do not provide the required
spatial sampling density, or provide data too infrequently to capture the rapid seasonal
and sub-seasonal movements of the soil. Therefore, geologists and soil scientists have
had to make do with long- (1000–100 years [2]) and medium- (100–10 years [8], [9])
term estimates of ground subsidence over time, or at best, semi-annual surveys of a few
specific locations [10]. Moreover, researchers require high spatial coverage in order to
accurately assess and quantify the various land subsidence phenomena across the coun-
try. Soil heterogeneity in the Holocene as well as the discontinuous nature of the Dutch
landscape which is split apart by drainage ditches and canals into separate polders with
varying land usage and vegetation can result in a high spatial variability in the ground
displacement signal.

The only potentially viable technique available to provide accurate land surface mo-
tion time series estimates with wide spatial coverage and the required temporal frequency
is SAR interferometry (InSAR). However, several technical challenges have prevented
the use of InSAR in this context. In particular, the soil dynamics under study exhibit
both rapid temporal behaviour on a daily time scale, as well as a large dynamic range,
a problem which is made worse by the very poor signal quality which is obtained from
radar observations of these regions in combination with the wrapped nature of the SAR
observations. The goal of this research is to identify, quantify and overcome these chal-
lenges in order to enable the use of InSAR as a tool for studying the land surface motion
of Dutch peatlands.

1.3 Prior Knowledge
1.3.1 Land Motion and Subsidence in the Netherlands
Large regions of the Netherlands have been reclaimed by pumping water out of wetlands,
exposing low-lying, fertile peat soils which are used for intensive agriculture. As much
of the western half of the country lies below mean sea level, water must be continuously
monitored, pumped and drained out of the ground to prevent flooding and damage. Once
the ground water level is below the surface level, oxidation begins to take effect as the
organic content in the soils dry out. Over time, this irreversible loss of soil becomes
significant, and water levels must be lowered again once they become too high relative to
the ground to prevent flooding and enable agriculture. Repetition of this procedure over
several centuries has slowly caused the mean level of the ground to sink drastically, an
effect which is compounded by sea level rise due to climate change [2], [11] (Fig. 1.1).
Furthermore, the water management and flood defence infrastructure in the country have
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Figure 1.1: Visualization of the cycle of land subsidence caused by active water management in the Netherlands.
Figure taken from the Netherlands Council for the Environment and Infrastructure (RLI), 2020.

prevented river sediment from being naturally transported to these low-lying regions,
creating additional susceptibility to flooding [12].

The first indications that these cultivated peatlands exhibited highly dynamic be-
haviour came in 1977, when a levelling study by Schothorst [10] showed that a test polder
in Zegveld exhibited large seasonal fluctuations in elevation. However, it was not until
over 40 years later that a study by van Asselen et al. [13] based on extensometers located
throughout the country revealed that the motion of the land surface is much more dynamic
that previously thought, and is largely composed of seasonal and sub-seasonal signals orig-
inating in the shallow subsurface which are approximately an order of magnitude greater
than the slow, irreversible subsidence processes. Despite these new measurements, the
link between precipitation and evapotranspiration and the surface elevation had not been
made. Furthermore, the fact that precipitation and evapotranspiration are responsible
for such rapid and relatively large shrinkage and swell has significant ramifications for
the representativity of surveys by levelling or airborne laser scanning, which could po-
tentially produce significantly biased estimations depending on when the campaigns are
carried out, as motions on the order of 5–10 cm are possible within the time span of a
few weeks.



1

4 1. Introduction

1.3.2 Greenhouse Gas Emissions
Drained peat soils release greenhouse gases (GHGs) as they decompose in the presence
of oxygen, and it is estimated that peat oxidation is responsible for approximately 2.4%
of the total GHG emissions of the Netherlands (4.25 Mt-CO2-equivalents/year, corre-
sponding to 19 tons of CO2-equivalents per hectare per year) according to the National
Institute for Public Health and the Environment (RIVM) [14], [15]. Re-wetting these
drained peatlands could significantly reduce these GHG emission rates despite the fact
that wetlands produce CH4, a more potent GHG, due to the fact that wetlands act as a
carbon sink as part of the peat creation process. A recent study reviewing global in-situ
peatland GHG emission measurements has found that the sum of total emissions from
the three major GHGs emitted by peatlands and wetlands (CO2, CH4 and N2O) is mini-
mized when the water table is near the surface (-30 to -5 cm depth), resulting in near-zero
net emissions [16]. Finding the optimal water table level for the Dutch peatlands will
require a balancing between the interests of various stakeholders to allow for productive
agriculture, meeting environmental targets and ensuring flood protection and water secu-
rity. This again underscores the need to be able to accurately quantify the motion of the
shallow soils on a regional scale.

Apart from the actual estimation of an accurate long-term average subsidence rate,
a major source of uncertainty in deriving GHG emission estimates from subsidence is
the fraction of subsidence which can be attributed to oxidation versus other mechanisms
which do not create emissions [7]. A generally accepted range for this fraction is between
0.33–0.67 [17], however, other ranges have been reported, such as 0.25–0.71 in [18], and
a study based on in-situ measurements in the Zegveld area of the Green Heart region
found a fraction as large as 0.85 [10]. As GHG emissions scale linearly with this fraction
of subsidence, the assumption of a certain fraction will have a significant impact on the
resulting GHG emission estimate.

1.3.3 Previous InSAR Studies of Peatland Surface Motion
It has so far been impossible to monitor the motion of peatlands using InSAR due to
the combination of very rapid displacement signals, poor signal quality, and the inherent
InSAR phase ambiguity problem. This is not only the case in the managed and cultivated
peatlands of the Netherlands [19], [20], but also in wild peatlands in other northern regions
such as Scotland and Estonia [21]–[23].

In 2008, Caro Cuenca and Hanssen [24] indirectly observed effects of peat oxida-
tion in the motion of shallow-founded buildings using point scatterer (PS) interferome-
try. Work on directly monitoring the land surface motion of the Dutch peatlands with
distributed scatterer (DS) InSAR began with Morishita and Hanssen in 2015 [19], who
applied amulti-satellite approach combining ALOS, Envisat, Radarsat-2 and TerraSAR-X
data together in a joint small baseline subset (SBAS) inversion [25] (Sec. 2.4.8) to mon-
itor subsidence in the Delfland region. The resulting time series strongly overestimated
the true average subsidence rate due to challenges with phase unwrapping (Sec. 2.4.9)
and rapid temporal decorrelation (Sec. 2.4.5). Nevertheless, the work was significant in
demonstrating the combination of multiple disconnected datasets into a unified estima-
tion framework. In the same year, the authors also documented the effects of tempo-
ral decorrelation of SAR observations of grasslands in the region at different frequency
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Table 1.1: Overview of Soil Subsidence Monitoring Techniques

Technique Precision Spatial
Coverage

Temporal
Coverage

Represen-
tativity

Extensometer High Low High High
Leveling High Medium Low Low
Airborne Laser Scanning Low High Low Low
GNSS Medium Low High Low
InSAR High High Medium High

bands [26]. In 2018, Samiei-Esfahany and Hanssen conducted a feasibility study of apply-
ing DS InSAR techniques to monitor peatland surface motion in the Veendam region of
the Netherlands [27], and concluded that there was not enough useful information content
in either C- or X-band data stacks to successfully invert a complete time series of motion.
However, the study does note that individual coherent periods occurring during winter-
time do contain useful information that could be utilized, an insight key to developing
the processing methodology developed in this work. In 2020, Heuff and Hanssen [28]
developed a DS processing method employing the state of the art “EMI” estimator [29]
(Sec. 2.4.8), however they encountered the same decorrelation and phase unwrapping
challenges as in previous studies.

1.3.4 Other Geodetic Techniques
Several geodetic techniques apart from InSAR have been used to estimate land surface
elevation change in the Netherlands, with their applicability for monitoring shallow soil
subsidence summarized in Table 1.1. Monitoring the changes in measured elevation over
time by levelling and airborne laser scanning has been used to produce subsidence esti-
mates for cultivated peatlands [8], however, the accuracy of these techniques for this
application are poor due to the sensitivity of laser scanning to changes in vegetation and
the lack of reference benchmarks representative of the soil motion. Generally, for both
techniques, only one survey is made approximately every 5–10 years due to the cost and
effort involved. While permanent global navigation satellite systems (GNSS) stations
provide a continuous stream of absolute position measurements over time, GNSS uncer-
tainties are generally much higher in the local up component, and the data is limited to the
locations where a permanent GNSS station is present. More importantly, these stations
are often set on foundations for stability, which will make the stations insensitive to the
top layer of shallow soil movement. Recently, new in-situ measurements by extensome-
ters have become available, which provide accurate (sub-mm level) soil displacements at
an hourly rate [13]. While this data is extremely valuable, and indeed used as validation
in this work, it is limited to where and when the devices have been installed. InSAR
is the only technique which can potentially provide both high spatial coverage with fre-
quent enough temporal sampling in order to accurately track rapid ground displacement,
making it a good candidate to monitor the soft soil dynamics over the entire country if
the open technical issues preventing its implementation can be overcome.
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1.4 Research Gaps Addressed by this Work
1.4.1 Overview
This work seeks to address several problems which have been identified as preventing the
use of InSAR for monitoring cultivated peatland regions: the lack of a functional parame-
terization of the expected motion of the target, in this case the shallow soils, as well as the
problems related to phase unwrapping termed cycle slips, and those related to temporal
decorrelation termed loss-of-lock, which are explained in the following sections.

1.4.2 Unknown Displacement Model
While it is known that shallow soil motion is mainly driven by changes in phreatic ground-
water levels [9], [30], [31], its short-term dynamics have not been accurately modeled, due
in large part to a lack of observational data on the required time scales. The first sub-daily
in-situ measurements by extensometer of soil motion in the Netherlands became available
around 2020 [13], [32]. As a consequence, it is not known how to optimally parameter-
ize the rapid motion of shallow soft soils, which is necessary to invert the wrapped SAR
phase observations to useful displacement estimates. Previous InSAR studies [19], [24]
have attempted to parameterize the functional model as a combination of sinusoids and
linear functions, but this formulation was not sufficient to accurately capture the com-
plex motion exhibited by the shallow soil motion. Ch. 3 details the development of two
shallow soil motion models based on the extensometer measurements for this purpose.

1.4.3 Cycle Slips
The term cycle slip is used in this text to refer to the consistent phase unwrapping errors
(Sec. 2.4.9) caused by algorithms that cannot correctly interpret displacements which
exceed a quarter-wavelength (half of a 2𝜋 ambiguity) along the line of sight (LOS), which
at C-band, corresponds to 1.4 cm LOS. It is very challenging to correctly estimate the
ambiguity level for signals exceeding this level of displacement between acquisitions, as
such large motions in certain direction are generally interpreted as small motions in the
opposite direction. Conversely, small observed phase changes may in fact correspond
to large vertical motions with an additional missed ambiguity level. This situation is
made worse by the strong noise levels that are encountered, which makes it difficult
to separate real displacement from unwanted noise. We found that these moments of
rapid displacement are often due to soil uplift caused by rain-induced swell during the
autumn and early spring, and incorrectly unwrapping these signals can lead to strong
overestimation of the average subsidence rate in the region [19]. Ch. 4 describes the
development of a phase unwrapping methodology that takes soil and water conditions
into account in order to anticipate the correct ambiguity level.

1.4.4 Loss-of-Lock
This work also introduces the term loss-of-lock, a condition that arises from strong tem-
poral decorrelation (Sec. 2.3.5) such that the chain of connected interferometric pairs in
the time series is cut. This corresponds to a partitioned coherence matrix (Sec. 2.4.1) in
which there are isolated blocks of coherent data, but with no coherent connection between
them. In an agricultural context, this generally occurs seasonally during the summer due
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to vegetation growth, or during periods of farming activity such as plowing and harvest-
ing. While temporal decorrelation is a well-known effect, the implications of inverting a
complete time series with loss-of-lock are rarely considered or addressed in the commu-
nity of InSAR users, which can lead to severe misinterpretation of the observational data.
This problem is addressed by Ch. 5.

1.5 Scope Limitations
1.5.1 L-Band Data
It is worth noting that the issues described above are expected to be mitigated by using
L-band SAR data instead of C-band. In particular, at L-band frequencies, the quarter-
wavelength phase wrapping threshold is approximately 6 cm along the LoS, meaning
that the maximum expected signal gradient between subsequent acquisitions (approx.
2 cm) fits comfortably within this threshold. The temporal decorrelaton rate of L-band
observations of grasslands is also significantly slower [26] than C-band. However, there
are several open issues with using L-band data as well as project constraints which have
prevented its use in this research. Apart from a small number of acquisitions by the
Japanese ALOS 1 satellite made between 2007–2011, the only satellite mission currently
making regular (sub-annual) L-band SAR acquisitions over the Netherlands is the Argen-
tinian SAOCOMmission, which began acquiring imagery of the Netherlands in mid-July
of 2023, and is providing a small but growing stack of about 20 images times two tracks
(at time of writing). It should be noted that the integration of L-band data into the overall
methodology is not trivial, nor does its inclusion guarantee that the problems discussed in
Sec. 1.4 will be immediately solved, as shown by the challenges faced in previous studies
using L-band data [19].

1.5.2 Deeply-Based Land Motion
The objective of this work is to enable the monitoring of land surface motion originated by
shallow-based processes in the Holocene. Land surface motion originating from deeply-
based processes such as mining, gas extraction and water extraction from deep aquifers
are not in the scope of this research. This also limits the spatial extent of the analysis
to peatland regions in the Netherlands in which no significant deep signal is expected;
precluding analysis of the regions in the North of the country (ex. Groningen) which are
also peatlands, but where gas extraction constitutes a significant component of the overall
displacement signal.

1.5.3 Transformation from Relative to Absolute Displacements
The estimations of motion originating from InSAR are inherently relative, due to the
double-differenced nature of the phase differences used (Sec. 2.3.3). Converting these
estimates from a relative to an absolute reference frame (i.e. a frame not dependant on the
motion of a reference pixel, such as the European Terrestrial Reference Frame (ETRF))
requires analysis of themotion of the reference point usedwith another geodetic technique
and is out of the scope of this work.





2
A Review of Synthetic Aperture

Radar and Interferometry
InSAR doesn’t work.

Ramon Hanssen

This chapter will introduce the fundamental concepts of SAR and InSAR, with a
focus on the techniques which are relevant to this research. Sec. 2.2 provides a
basic introduction to SAR and describes the imaging scenario and geometry, as
well as a description of the basic observables. Sec. 2.3 introduces the concept
of InSAR, and how information can be extracted by interferometrically combining
images. Finally, Sec. 2.4 provides an in-depth look at the techniques and challenges
encountered in the state of the art of distributed scatterer InSAR analysis.

2.1 Introduction
T here is a long chain of steps to go from a raw set of recorded radar pulses to a focused,

complex-valued synthetic aperture radar (SAR) image, and to go from a stack of
focused images to a ground displacement estimate with SAR interferometry (InSAR).
This chapter will give a brief overview of these steps, starting with the basics of SAR
in Sec. 2.2, in particular the imaging geometry, the radar phase observable and scatterer
classifications. The basic concepts of InSAR are then introduced in Sec. 2.3, again starting
with the geometry of multiple SAR acquisitions, and then moving to a breakdown of the
different signal components which are present in an interferometric observation. This
is to give the reader a basis on which to contextualize the more in-depth sections of the
chapter and is by no means an exhaustive introduction to the topic. For a more detailed
description of these concepts, the reader is directed to the following references fromwhich
the content of this section is adapted: [33]–[36]. Finally, Sec. 2.4 will introduce the key
concepts of distributed scatterer (DS) InSAR, as well as provide the theoretical basis for
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the work contained in the subsequent chapters. Interested readers can find more detail
on this topic in the following references: [20], [37].

2.2 Synthetic Aperture Radar
This section introduces the basic concepts behind SAR imaging, including the geometry,
the radar observables, and scatterer classification, which are the most relevant concepts
for understanding InSAR.

2.2.1 Basic Principles of Radar Sensors
Radar imagers such as SARs produce complex-valued images whose intensities appear
similar to passive optical images, but the principles behind generating them are funda-
mentally different. Passive optical sensors (like cameras) use a lens and mirror system
to project radiation from a separate light source (like the sun) scattered by objects in the
scene onto a two-dimensional array of detectors. This conserves the angular relationships
between multiple targets and their images. Imaging radars produce the radiation used to
illuminate the scene, and sample the backscattered signal in time to retrieve the range
dimension, and their relative Doppler shifts to separate them in the azimuth direction.

2.2.2 SAR Imaging Geometry
A simplified diagram of the SAR imaging geometry is shown in Figure 2.1. The local
coordinate system of a side-looking radar sensor (aka. the radar coordinates) is defined
by three dimensions: the slant range, (also simply called the range), the azimuth, which
is the distance from the radar antenna to the target along the flight path of the radar, and
the cross range, which is the direction orthogonal to the plane spanned by the range and
azimuth directions [38], [39].

Ultimately, the radar measures the delay time and Doppler shift of received echoes,
which are used to estimate the distance from itself to targets on the ground along the
line of sight (LOS) (i.e. the slant range) and the azimuth direction, respectively. The
ground range is the projection of the slant range vector onto the horizontal plane. From
the perspective of the satellite, the angle between the slant range vector and the nadir
direction is called the look angle and is denoted by 𝜃. This is closely related to the
incidence angle, 𝜃inc, which is the angle between the normal vector of the surface at the
target location and the zenith. If the surface of the Earth were flat, these would be equal
as they would form alternate interior angles. However, due to the curvature of the Earth,
they deviate (not depicted).

The radar illuminates a region on the ground called the footprint. The extent of the
footprint in ground range is called the swath, and is an important parameter when de-
signing SAR missions as it determines how large of a region will be observable at any
given moment. The edge of the swath closest to the radar is called the near range, and
the edge furthest from the radar is called far range. Note that the incidence angles will
be different for different pixels within the footprint depending on their range.

The extent of the footprint in azimuth is called the azimuth beamwidth. The beamwidth
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Figure 2.1: Simplified diagram showing a right-looking SAR imaging scenario. Adapted from [33] and [34].

of the system, 𝑊az is
𝑊az = 𝑟𝜆

𝐿𝑎
, (2.1)

where 𝜆 is the wavelength of the sensor, 𝑟 is the slant range to the target, and 𝐿𝑎 is the
length of the antenna. If not for the innovation of the synthetic aperture, the beamwidth
would be the best achievable resolution in the azimuth direction, which is explained in
Sec. 2.2.4.

2.2.3 Range Resolution
The resolution of a SAR system is defined by the minimum separation distance needed to
differentiate two targets on the ground. If two targets are separated in range by a distance
Δ𝑟, then their respective echoes will be separated by a time

Δ𝑡 = 2Δ𝑟
𝑐 , (2.2)

where 𝑐 is the speed of light and the factor of 2 is due to the two-way travel time. The in-
verse of this time is the range bandwidth, 𝐵𝑊r. Thus the best achievable range resolution
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of the system is
𝛿r = 𝑐

2𝐵𝑊𝑟
. (2.3)

Note that this value is independent of distance to the target.

2.2.4 Azimuth Resolution and the Synthetic Aperture
The synthetic aperture is a powerful technique in which the motion of the radar sensor
itself is used to synthetically enhance the effective antenna size, hence its name. Without
this innovation, it would be impossible to create useable radar images of the ground from
orbit, as the azimuthal resolution degrades with distance between the radar and the target.
The azimuth resolution of a real aperture radar (RAR) system, 𝛿az,rar, is limited by the
distance between the radar antenna and the target, such that

𝛿az,rar = 𝑊az = 𝑟𝜆
𝐿𝑎

, (2.4)

where 𝑟 is the range of the sensor to the target, 𝜆 is the wavelength and 𝐿𝑎 is the length
of the antenna. For a typical C-band sensor in low Earth orbit (LEO) (∼700 km altitude),
this would result in a very poor resolution of around four kilometers.

In 1951, CarlWiley discovered that a radar mounted perpendicular to the vehicle flight
path would receive echos that have been Doppler-shifted as a result of its motion [40].
Combining the recorded echos while taking into account their Doppler-shift could allow
one to separate the combined responses of targets within the footprint and improve the
resolution of a spaceborne system one-thousandfold [41]. This effect can be derived in
several ways; one simple way is to consider the geometry of the scene. Successive echoes
are recorded as the sensor moves along the flight path, extending the effective length of
the antenna, 𝐿sar, to

𝐿sar = 𝑟𝜆
2𝐿𝑎

, (2.5)

where the subscript “sar” denotes synthetic aperture radar. Substituting the effective
antenna length into the original equation for azimuth resolution, we obtain

𝛿az,sar = 𝐿𝑎
2 . (2.6)

Now the azimuth resolution no longer depends on the range to the target, as any additional
distance to the target is exactly compensated for by an increase in the size of the synthetic
aperture.

2.2.5 SAR Observables
The resulting SAR image after range and azimuth focusing is a high-resolution complex-
valued image covering a large spatial extent. A given pixel in this image is a complex
number in which the amplitude and phase both have a physically interpretable origin.
The amplitude is essentially the brightness of the pixel, and corresponds to the amount
of radiated energy that is reflected back to the sensor. The phase component of the pixel
corresponds to (i) the travel time of the received radar pulse which is a function of the
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distance of the target to the antenna and the refractive index of the medium along the prop-
agation path, and (ii) the random summation of the reflections of elementary scatterers
within the resolution cell.

The value of an arbitrary pixel, 𝑆, in a SAR image is a complex number and is gen-
erally written in polar form as

𝑆 = 𝐴 exp (𝑖𝜓), (2.7)

where 𝐴 is the amplitude, 𝑖 is the imaginary unit, and 𝜓 is the phase. Interferometry is
based on combining the phase observations of multiple radar acquisitions, and the phase is
therefore the observable wewill focus on. The value of the phase is a summation of several
effects which determine the optical path length the pulse must travel, and ultimately its
total travel time. The phase components are represented as [33]

𝜓 = 𝜓geom + 𝜓scat + 𝜓atmo + 𝜓
noise

, (2.8)

where
• 𝜓 is the observed phase, where the underline indicates its stochastic nature;
• 𝜓geom is the geometric phase, the range-dependent phase which is determined by
the separation distance between the radar antenna and the target;

• 𝜓scat is the scattering phase, which is a result of the coherent summation of all
the backscattered echos of the elementary scatterers contained within the resolu-
tion cell, as well as the effects of volume scattering which determine the effective
scattering phase centre of the target;

• 𝜓atmo is the atmospheric phase, which affects the optical path length the pulse must
travel through due to variations in the refractive index of the troposphere and iono-
sphere. Variations in the temperature, pressure, and humidity will create variations
in the refractive index along the path through the troposphere, and variations in free
electron density in the ionosphere;

• 𝜓
noise

is phase noise caused primarily by thermal noise in the radar transmitter and
receiver.

Although the phase has a well understood physical origin, the cumulative effects of these
components, particularly the scattering phase, results in a uniformly distributed random
observed phase between 0 and 2𝜋 radians (360 degrees). The 2𝜋 interval on which the
phase is defined is arbitrary, and without loss of generality we use the notation of defin-
ing the phase on the interval between −𝜋 (−180 degrees) and +𝜋 (+180 degrees), which
is denoted as [−𝜋, 𝜋). For simplicity and readability, the underline is omitted from fur-
ther equations containing the term 𝜓, but it should be understood that it contains both
deterministic and stochastic components.

2.2.6 Scatterer Classification
2.2.6.1 Overview
The observed value of a resolution cell in a SAR image is the sum of all the backscat-
tered energy of the objects within that cell, called elementary scatterers [33]. Certain
objects will reflect a radar pulse back to the sensor more effectively due to their material
properties, shape, size, and orientation. Different configurations of elementary scatterers
will result in different observed behaviours. It is therefore helpful to categorize these
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Table 2.1: Delft SAR Scatterer Taxonomy (After [42])

Stable Over Time Variable Over Time

Point Target Continuously coherent
point scatterer (CCPS)

Temporarily coherent
point scatterer (TCPS)

Distributed Target Continuously coherent
distributed scatterer (CCDS)

Temporarily coherent
distributed scatterer (TCDS)

scatterers into groups according to their spatial an temporal characteristics, summarized
in Table 2.1 [42].

2.2.6.2 Point Scatterers
Resolution cells containing an object with a high radar cross-section (RCS) will be domi-
nated by the reflections from that object, as shown in Fig. 2.2. As a result, the behaviour
of the entire resolution cell can be localized to the point where that object is located, with
all other elementary scatterers acting as clutter. Such a scatterer configuration is called
a point scatterer (PS). Generally, point scatterers (PSs) provide stable, low-noise reflec-
tions which are very useful in time series analysis because the geometric components of
the scattering phase are relatively easily extracted. This type of analysis is called point
scatterer interferometry (PSI) 1 and has been developed into a mature technology over
the previous two decades [43], [44]. PSs can be natural or man-made objects, however
they are most often formed by reflections from buildings or infrastructure, which makes
PSI particularly well-suited to monitoring the built environment, see [45]–[48].

Since PSs are often formed by the reflections of rigid structures, they tend to exhibit
a consistent and comparable reflection mechanism over time. If the reflection of a PS is
consistent throughout the entire image stack used for a given analysis, it is called a “con-
tinuously coherent point scatterer (CCPS)”. The term coherent refers to the consistency
of the scatterer’s reflection, a concept that is expanded upon in Sec. 2.3 and 2.4. How-
ever, the reflection of PSs does not always remain consistent over time, for instance due
to other objects obscuring the backscatter in certain images, or due to the construction
date of the object in question in the case of the built environment. Such a PS is referred
to as a “temporarily coherent point scatterer (TCPS)” [42].

2.2.6.3 Distributed Scatterers
Regions that do not contain an object which dominates the backscattered signal of its
surroundings are known as distributed scatterers (DS), shown if Fig. 2.3. The diffuse
reflected signals from these resolution cells tend to have a much lower signal-to-noise
ratio (SNR) than a PS. This is apparent in the right-hand side of Fig. 2.3, where the
clutter signal of the weak elementary scatterers in Fig. 2.2 have become the primary
signal which is observed. Therefore, it is common to coherently average multiple DS
pixels together in a process called multilooking in order to reduce the noise level of
1Note that PSI is also known as Permanent Scatterer Interferometry, or Persistent Scatterer Interferometry,
implying a permanently unvarying scattering mechanism, and conflating the point-like nature of the scatterers
with this temporal invariability, which are two unrelated concepts. In the Delft taxonomy [42], we prefer to
disentangle these concepts.
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Figure 2.2: Diagram showing the basic configuration of a point scatterer. Left: simplified spatial view of a
resolution cell containing elementary scatterers with a dominant scattering object. Right: diagram showing the
magnitude and phase of the example resolution cell in the complex plane. Blue: reflected signal of dominant
PS. Red: reflected signals of other elementary scatterers acting as clutter. Green: resultant observed signal.
After [49].

Figure 2.3: Diagram showing the basic configuration of a distributed scatterer. Left: simplified spatial view of a
resolution cell containing elementary scatterers without a dominant scattering object. Right: diagram showing
the magnitude and phase of the example resolution cell in the complex plane. Red: reflected signals of the
elementary scatterers. Green: resultant observed signal. After [49].

the observed signal. In non-arid regions, DSs often do not remain stable over time due
to changes in vegetation, human activity, etc. and generally tend to lose coherence over
time, adding a significant challenge to using them for monitoring purposes [50]. These are
denoted as “temporarily coherent distributed scatterer (TCDS)” [42]. In regions where
the ground and land cover remain stable over time such as uninhabited deserts, one may
encounter stable DSs, which are denoted as “continuously coherent distributed scatterer
(CCDS)”. This work is focused on the use of DS techniques to monitor dynamic regions
over time, and Sec. 2.4 goes into detail on the state of the art.

2.2.7 Common SAR Frequency Bands
There are several possible frequency bands in which SAR instruments generally oper-
ate. These bands are designated by a letter code and the definition is maintained by the
Institute of Electrical and Electronics Engineers (IEEE) [51]. Different frequencies are
sensitive to different objects, geometries and processes on the ground. The choice of band
of a SAR instrument is dictated by its mission objectives and/or system requirements. In
general, higher frequencies provide higher resolution, but will tend to decorrelate faster
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Table 2.2: Common SAR Frequency Bands

Designation L C X
Frequency (GHz) 1–2 4–8 8–12
Wavelength (cm) 15–30 3.8–7.5 2.4–3.8
Common uses Biomass

Ice
Land subsidence
Soil moisture

Compromise
between L
and X band

High resolution
imagery
Urban monitoring

Satellite missions ALOS 1, 2
SAOCOM
NISAR (upcoming)
ROSE-L (upcoming)

Sentinel-1
Radarsat-2

TerraSAR-X
Paz
COSMO-SkyMed

(Sec. 2.3.5). Lower frequencies will generally penetrate deeper into solid materials. Ta-
ble 2.2 provides a summary of the most commonly-used frequency bands and some well
known satellite missions. This list is not exhaustive and is provided as background infor-
mation for the reader.

2.3 SAR Interferometry
This section introduces the concept of SAR interferometry, paying special attention to the
geometry of repeat-pass acquisitions and the various components of the interferometric
phase observation.

2.3.1 Introduction
As seen in Eq. (2.8), the phase of a given pixel in a SAR image is a combination of several
components, resulting in what is essentially a random number uniformly distributed on
the interval [−𝜋, 𝜋). In a simplified view, the most important of these components are
the geometric phase and the scattering phase. If two images of the same region were
to be combined, and the scattering phase components were similar in both images, then
combining them would make the scattering components cancel out and would yield a
product with a phase value which would be very sensitive to the geometric components
of the scene [33].

The concept of coherently combining multiple SAR acquisitions of the same scene in
order to glean geometric information about targets located within that scene is known as
SAR interferometry (InSAR). In this context, the term coherent refers to the fact that the
phases of the SAR acquisitions are preserved; therefore a coherent combination of two
SAR image pixels can be said to be the interference of the two sampled wave returns of
the given target. The coherent combination of two SAR phase images is called an inter-
ferogram, and the phase difference between two SAR pixels is called the interferometric
phase.

In order for the interferometric phase to contain any useful geometric information,
there needs to be a difference between the two SAR images that are combined, either
spatial or temporal. This difference is called the interferometric baseline, and the choice
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of this baseline will affect the type of information that is contained within the interfero-
metric phase.

The two most basic types of InSAR are essentially the result of this choice of baseline,
and are called single-pass and repeat-pass. In single-pass interferometry, there is no
temporal baseline, which means that there are two radars attached to the same vehicle
(aircraft or spacecraft) acquiring imagery of the same location from different viewing
geometries. This technique is commonly employed to produce accurate digital elevation
models (DEMs), such as the well known Shuttle Radar Topography Mission (SRTM)
DEM [52] which was acquired by the space shuttle Endeavour in the year 2000. In repeat-
pass interferometry, there is a temporal baseline, which refers to the fact that some time
has passed between SAR acquisitions of the same target. This technique is usually used
to monitor changes in a scene or target over time. While a spatial baseline still exists as
well, these are usually kept as small as possible, as is the case in the Sentinel-1 mission
which as of the time of writing has produced the most commonly used dataset of SAR
imagery in the world. Repeat-pass interferometry is therefore a very powerful tool for
monitoring geometric changes in a scene over time, and is the focus of this work.

2.3.2 InSAR Geometry
A diagram showing the geometry of a typical repeat-pass interferometric configuration
is shown in Fig. 2.4. The target in position 𝑃𝐻 is imaged by the observing satellites(s)
at positions 𝑥𝑖 and 𝑥𝑗. The spatial interferometric baseline, 𝐵, is defined as the distance
between these positions. The baseline can be decomposed into components 𝐵⟂ and 𝐵∥,
which are the perpendicular and parallel baselines respectively. The ranges from the
target to the satellite(s) in positions 𝑥𝑖 and 𝑥𝑗 are 𝑟𝑖 and 𝑟𝑗, respectively. The range to the
target is often expressed with respect to the reference (or “mother”) image, (when the
satellite is in position 𝑥𝑖), and is denoted as 𝑟 without any subscript and simply referred to
as “the range”. The target is located at a certain height, 𝐻. However, without a DEM, the
height of the topography is unknown, and the target will appear to be located at position
𝑃0 on the reference ellipsoid, 𝐻0. The look angle, 𝜃, is defined as the angle between the
the line-of-sight vector of the satellite in position 𝑥𝑖 to the target at position 𝑃0, and the
normal vector of the reference ellipsoid. The baseline orientation, 𝛼, is the angle between
the baseline vector and the direction of the tangent line of the reference ellipsoid [33].

2.3.3 The Interferometric Phase
In order to understand what information is contained within the interferometric phase,
we start by defining two SAR acquisitions of a given target, with indices 𝑖 and 𝑗. The
value of the two pixels of the two acquisitions of the same target are

𝑆𝑖 = 𝐴𝑖 exp (𝑖𝜓𝑖)
𝑆𝑗 = 𝐴𝑗 exp (𝑖𝜓𝑗),

(2.9)

where 𝐴 is the amplitude of the pixel and 𝜓 is the phase. When coherently combining
the two SAR images to produce an interferogram, one image is multiplied with the com-
plex conjugate of the other image. The value of a pixel in the resulting interferogram is
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Figure 2.4: Simplified diagram showing the geometry of a repeat-pass interferometric configuration, with ac-
quisitions occurring at locations 𝑥𝑖 and 𝑥𝑗. 𝐵 is the spatial baseline, with perpendicular component 𝐵⟂ and
parallel component 𝐵∥. The target is located at position 𝑃𝐻 with height 𝐻, corresponding to the point 𝑃0 on
the reference ellipsoid, 𝐻0. 𝜃 is the look angle, 𝜃inc is the incidence angle, and 𝛼 is the baseline orientation
angle. The along-track (azimuth) coordinate is into the page. Note that this diagram does not depict any motion
of the target. Adapted from [33].
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therefore

𝐼𝑖𝑗 = 𝑆𝑖𝑆∗
𝑗

= 𝐴𝑖𝐴𝑗 exp (𝑖(𝜓𝑖 − 𝜓𝑗))
= 𝐴𝑖𝐴𝑗 exp (𝑖𝜙𝑖𝑗),

(2.10)

where {⋅}∗ denotes conjugation and 𝜙𝑖𝑗 is the interferometric phase of acquisition 𝑗 with
respect to 𝑖. The sign of the interferometric phase depends on which acquisition is conju-
gated andwhich is kept as-is. In our notation, this is noted in the order of the interferogram
subscript. The unconjugated acquisition in the first position of the subscript is denoted in
this text as the reference acquisition, which is also known as the “master” or “mother”
image.

The observed interferometric phase 𝜙𝑖𝑗 is the summation of the various phase com-
ponents from Eq. (2.8) of both images comprising the interferogram:

𝜙𝑖𝑗 = 𝜙geom + 𝜙scat + 𝜙atmo + 𝜙
noise

, (2.11)

where 𝜙geom is the phase contribution due to differences in geometry, 𝜙scat is the phase
contribution due to differences in scattering, 𝜙atmo is the phase contribution due to differ-
ences in atmosphere, and 𝜙

noise
is the sum of the noise in both image pixels. The underline

indicates the stochastic nature of the variable. The following sections will examine the
different components of the interferometric phase in detail.

2.3.4 Interferometric Geometric Phase
This component of the interferometric phase is based on the difference between the ge-
ometric components of the two respective acquisitions, and is caused by motion of the
target and differences in the orbital position of the satellite(s) occurring between acquisi-
tions. The geometric phase can be written as the sum of three sub-components:

𝜙geom = 𝜙disp + 𝜙ref + 𝜙topo, (2.12)

where 𝜙disp is the displacement phase, 𝜙ref is the so-called “reference” phase, and 𝜙topo is
the topographic phase. This component is therefore very dependent on the interferometric
baseline. If we are interested in observing the relative motion of a target over time,
which is the focus of this work, then we want to have a non-zero temporal baseline and
to minimize the spatial baseline as much as possible.

2.3.4.1 Displacement Phase
The phase contribution of the motion of the target between acquisitions is called the dis-
placement phase, and can be written as

𝜙disp = −4𝜋
𝜆 (𝑟𝑖 − 𝑟𝑗)

= −4𝜋
𝜆 Δ𝑟𝑖𝑗,

(2.13)
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where Δ𝑟𝑖𝑗 is the change in distance from the target to the radar along the line-of-sight
between epochs 𝑖 and 𝑗. The scaling factor 2𝜋/𝜆 converts the geometric distance in
meters to an angular phase value in radians. There is also an additional factor of 2 which
corresponds to the fact that the radar pulse must travel along the range distance twice.
This is the signal we are ultimately trying to measure in repeat-pass time series InSAR.

2.3.4.2 Reference Phase
This phase contribution is caused by the differences in the positions of the satellite(s)
at epochs 𝑖 and 𝑗, when evaluated for positions on a reference surface, such as a global
reference ellipsoid. This is essentially the difference in path length along the line of
sight caused by a non-zero spatial baseline, as shown in Fig. 2.4. The reference phase
typically appears as a smoothly varying trend in the interferogram. It can be computed
with knowledge of the parallel baseline and the reference surface by using the far-field
approximation, which assumes that the line-of-sight vectors of acquisitions 𝑖 and 𝑗 are
parallel [33], [53], resulting in

𝜙ref = 4𝜋
𝜆 𝐵 sin(𝜃 − 𝛼)

= 4𝜋
𝜆 𝐵∥,

(2.14)

where 𝐵∥ is the parallel baseline when evaluated for a point on the reference surface.

2.3.4.3 Topographic Phase
This component is due to the effects of topography, i.e., the difference between the actual
elevation of the target and the reference surface. Fig. 2.4 shows how a target at point
𝑃𝐻 will appear at point 𝑃0 on the reference ellipsoid in the reference image (image 𝑖),
following the iso-range lines. The overall path length contribution of the topography in
both images is

𝜙topo = −4𝜋
𝜆 [(| ⃗𝑥𝑖 − ⃗𝑃𝐻 | − | ⃗𝑥𝑗 − ⃗𝑃𝐻 |) − (| ⃗𝑥𝑖 − ⃗𝑃0| − | ⃗𝑥𝑗 − ⃗𝑃0|)]. (2.15)

Because points 𝑃𝐻 and 𝑃0 lie on the same iso-range lines with respect to image 𝑖, the
two terms containing the ranges with respect to point 𝑥𝑖 are in fact equal and cancel each
other out, leaving the difference in range with respect to point 𝑥𝑗, giving the equation

𝜙topo = −4𝜋
𝜆 (| ⃗𝑥𝑗 − ⃗𝑃0| − | ⃗𝑥𝑗 − ⃗𝑃𝐻 |), (2.16)

which is visualized as the difference in length between the red dashed and dotted lines in
Fig. 2.4. This equation can be written in terms of the reference image and interferometric
baseline using the far-field approximation [33], [53],

𝜙topo = −4𝜋
𝜆 ⋅ 𝐵 cos(𝜃 − 𝛼)

𝑟 sin 𝜃inc
⋅ 𝐻

= −4𝜋
𝜆 ⋅ 𝐵⟂

𝑟 sin 𝜃inc
⋅ 𝐻.

(2.17)
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In displacement monitoring applications, this term must be estimated and removed us-
ing a-priori knowledge of the topography, i.e. a DEM. This data is generally imperfect
(ex. additional and unmodelled elevation of structures) and a residual topographic phase
component will remain after DEM correction, referred to as the DEM error.

Multi-temporal InSAR can also be used to create DEMs. In this case, Eq. (2.17)
becomes the signal of interest and the target is assumed to be stationary. The displacement
phase in Eq. (2.13) becomes an error term, which is minimized by averaging subsequent
acquisitions together.

2.3.5 Interferometric Scattering Phase
This component of the interferometric phase is based on the difference between the scat-
tering components of a given pixel in the two respective acquisitions, 𝑖 and 𝑗, and essen-
tially acts as an additional noise term, and is written as

𝜙scat = 𝜓scat,𝑖 − 𝜓scat,𝑗. (2.18)

If the surface and volume scattering components 𝜓scat,𝑖 and 𝜓scat,𝑗 remain stable over time,
then 𝜙scat will remain small, i.e., close to zero, hence with minimal effect in Eq. (2.12),
even if they form a significant part of the backscattered echo of the individual acquisitions.

These scattering components will inevitably change over time [26], [50], causing the
contribution of 𝜙scat to becomemore significant, i.e., increasingly non-zero, until it cannot
be disentangled from the geometric component in Eq. (2.12) anymore. This effect is called
temporal decorrelation [50] and is a significant consideration in any distributed scatterer
InSAR analysis, which is covered in depth in Sec. 2.4 and Ch. 5.

2.3.6 Interferometric Atmospheric Phase
This component of the interferometric phase is caused by differences in tropospheric and
ionospheric conditions in which the radar signal has travelled during the two acquisitions,
𝑖 and 𝑗, which is written for a certain pixel as

𝜙atmo = 𝜓atmo,𝑖 − 𝜓atmo,𝑗. (2.19)

Changes in weather patterns and ionospheric conditions between acquisitions will lead
to differences in the refractive index along the LOS between the radar and the target.
Because of its relatively smooth spatial characteristics, the atmospheric signal forms a
spatially variable atmospheric phase screen (APS) that can be difficult to distinguish from
the displacement phase or orbital errors [33]. However, the atmospheric phase can be
considered to be uncorrelated between interferograms, and so can bemitigated by filtering
once initial estimates for the geometric interferometric phase are obtained for a network
of high-quality point scatterers [54]. Because the tropospheric and ionospheric conditions
primarily affect the time delay of the radar pulse, and these delays are near-identical over
short distances, the atmospheric delays do not affect the interferometric coherence or its
estimator, see Sec. 2.4.1.

2.3.7 Double-Difference Arc Phase
Secs. 2.3.3–2.3.6 have shown that there are several components which make up the ob-
served interferometric phase. In order to extract useful information about the displace-
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ment phase from the overall observation, the other components must be removed. While
satellite orbits and atmospheric conditions can be modeled to some degree of accuracy,
it is impossible to estimate the absolute effect of these components in the interferometric
phase with the millimetric precision that is required.

Points nearby one another on the ground will share very similar orbital and atmo-
spheric phases. By taking the difference between their respective interferometric phases,
i.e., forming an arc between two points, the majority of these components will cancel
out, leaving only differences in the displacement, topographic, and scattering phases. The
double-difference arc phase of a point, 𝑛, with respect to a another point, 𝑚, is denoted
as

𝜙𝑚𝑛
𝑖𝑗 = 𝜙𝑚

𝑖𝑗 − 𝜙𝑛
𝑖𝑗, (2.20)

where the point 𝑚 is called the reference point. Because of this, all InSAR-derived dis-
placement products are relative with respect to a reference point. Therefore it is very
important that care is taken when selecting a reference point. It is often advantageous to
choose a point with a very high SNR, such that the scattering phase components of the
point can be assumed to be very low. By using a DEM, the topographic phase can be
mostly removed, leaving only the differential displacement phase, as well as the residual
atmospheric and orbital phases. These residuals can be removed by using external infor-
mation, i.e., models [55], or by converting assumptions to filtering operations [33], [54].
Note that in subsequent chapters, the superscript 𝑚𝑛 is excluded for readability, and it
should be understood that all interferometric phases are taken with respect to a certain
reference point.

2.4 Distributed Scatterer InSAR
This section will describe the state of the art of distributed scatterer (DS) InSAR tech-
niques and provide the theoretical basis for the work in the subsequent chapters of this
thesis, as well as highlight the open research gaps addressed by this thesis. A compre-
hensive review of the subject of DS processing and analysis is available in [20].

2.4.1 The Coherence Matrix
Coherence is a useful metric for the quality of an interferometric combination. The (com-
plex) coherence of a given interferometric combination of a given pixel is defined as [33],
[56]

𝛾𝑖𝑗 = 𝐸{𝑆𝑖𝑆∗
𝑗 }

√𝐸{|𝑆𝑖|2}𝐸{|𝑆𝑗|2}
= |𝛾𝑖𝑗| exp(𝑖𝜙0𝑖𝑗

), (2.21)

where 𝐸{⋅} is the expectation operator. This results in a complex value with a magnitude,
|𝛾𝑖𝑗|, in the interval [0,1] and a phase value, 𝜙0𝑖𝑗

∈ [−𝜋, 𝜋), equal to the expectation of
the interferometric phase. The magnitude of the coherence is the normalized covariance
between corresponding pixels of two SAR images combined interferometrically. Thus
it can be viewed as a measure of the useful information available in a specific interfer-
ometric combination. This is because the differences in the images caused by a change
in scattering phase of the elementary scatterers also affects the amplitude values. If the
scattering phase components are similar in both images, their effects will cancel out in
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Figure 2.5: Example of an observed (magnitude) coherence matrix, using data acquired by Sentinel-1 ascending
track 088 imagery of a grassland DS near Zegveld, the Netherlands. The colour axis is limited to the range [0,
0.5] in order to emphasize the low coherence values.

the interferogram, leaving only the geometric (and atmospheric) phase terms, and the
coherence will be high. On the other hand, if the scattering phase components change
significantly between images, the effect of this term will dominate and the coherence
will be low. Such an interferometric combination is said to be decorrelated (Sec. 2.3.4
and 2.3.5).

The coherences of each possible interferometric combination in a stack of 𝑁 SAR
images can be expressed as elements in an 𝑁 × 𝑁 matrix called the coherence matrix,
Γ, which is defined as

Γ =
⎡
⎢⎢
⎣

1 𝛾12 … 𝛾1𝑁
𝛾21 1 … 𝛾2𝑁

⋮ ⋮ ⋱ ⋮
𝛾𝑁1 𝛾𝑁2 … 1

⎤
⎥⎥
⎦

. (2.22)

The main diagonal of Γ is always unity, as it corresponds to each SAR image combined
with itself.

The definition of coherence in Eq. (2.21) depends on the expectation value, which
means that in order to estimate this value with real data a statistical approach is required.
The expectation operator in Eq. (2.21) is replaced with the statistical average over a se-
lected group of pixels, Ω, resulting in the (complex) coherence estimator

̂𝛾𝑖𝑗 =
∑

𝑛∈Ω
𝑆𝑛

𝑖 𝑆𝑛
𝑗

∗

√( ∑
𝑛∈Ω

|𝑆𝑛
𝑖 |2) ( ∑

𝑛∈Ω
|𝑆𝑛

𝑗 |2)
, (2.23)
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where the ̂⋅ notation indicates an estimator and 𝑆𝑛
𝑖,𝑗 is the value of the 𝑛th SAR SLC pixel

at epoch 𝑖 or 𝑗. This has multiple implications: 1) the coherence of a single pixel cannot
be estimated using this definition (which is why it is not used in PS analysis), and 2) that
the statistical average is used to estimate the expected value, making Eq. (2.23) a biased
estimator for low numbers of pixels [57]. The process of coherently averaging multiple
pixels in an interferometric SAR stack is called multilooking, and means that the phase
of ̂𝛾𝑖𝑗 is equal to the multilooked interferometric phase of the pixels in Ω.

Evaluating Eq. (2.23) for every combination of images in the interferometric stack
results in the sample coherence matrix, Γ̂, which is very useful for graphically represent-
ing the coherence behaviour of a distributed scatterer over time, an example of which is
shown in Fig. 2.5. The matrix is triangular symmetric in magnitude, and the interfero-
metric phases 𝜙𝑖𝑗 = −𝜙𝑗𝑖. The main diagonal is unity. The matrix shows at a glance how
the coherence evolves over time and which interferometric combinations contain use-
ful information. Sec. 2.4.8 discusses how the information contained within the complex
coherence matrix can be extracted to estimate the interferometric phase of a DS.

2.4.2 Statistically Homogeneous Pixels
The choice of the set of pixels Ω to be included in the multilooking window is critical,
as it determines which observations are to be averaged together and be treated as a sin-
gle combined observation. Thus, care must be taken to ensure that the pixels chosen for
inclusion are representative of the same process occurring on the ground, else the risk of
phase inconsistencies becomes significant, as shown in Fig. 2.6. To that end, several pro-
cedures for the a-priori testing of the homogeneity of the pixels have been developed [58],
[59]. In general, the idea is to test if the amplitudes of the selected pixels are likely to be
from the same distribution, and therefore representative of the same process. Thus these
pixels are called statistically homogeneous pixels (SHPs).

This idea was introduced by [58], who used a Kolmogorov-Smirnov test to estimate
whether or not a given pixel belongs to the same distribution as one another, and is the
most commonly used SHP test. This method does however have several shortcomings:
the test is computationally expensive and can drastically increase the time needed to pro-
cess a large dataset. Secondly, just because the amplitudes are estimated to belong to
the same distribution, there is no guarantee that the phases do in fact belong together.
Finally, the test does not filter out extreme values from the statistically homogeneous
distribution (if they do not occur often enough to reject the distribution). For example,
in an agricultural context, if a tractor were to be imaged in a given pixel that is otherwise
identical to a neighbour, the Kolmogorov-Smirnov test will not filter out the affected pixel
containing the tractor, despite the fact that that pixel phase clearly has a completely un-
correlated geometric component in the affected epoch. Conversely, if a pixel is excluded
because enough epochs are affected by some inhomogeneity, the pixel is removed for all
epochs, even those which may contain useful information. Other methods, such as the
Anderson-Darling test [60] can improve on the sensitivity to the tails of the distribution,
yet the other drawbacks of the methodology remain. Thus the interpretation of the results
of such a test, and indeed the entire analysis, depends on these underlying assumptions.
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Figure 2.6: Simplified diagram of statistically homogeneous pixels (green). Pixels containing reflections from
unwanted/ unrepresentative objects on the ground (red) can introduce different components into the geometric
and scattering phases, leading to erroneous interpretations. Adapted from [20].

2.4.3 Pixels versus Looks
Multilooking is defined as the combination of multiple resolution cells together, however,
functionally speaking we have access to pixels, not the resolution cells. The size of a
resolution cell is a parameter which depends on the SAR system, see Sec. 2.2, whereas
the pixel size is determined by the digital sampling (or posting) of the obtained radar data
in azimuth and range. It is common practice to oversample the radar data by a small
degree, which means that the pixel size is smaller than the resolution cell sizes, and
that the pixels are not completely independent samples when considering the statistical
quantities of the DS. Thus we use the term effective number of looks to refer to the
number of independent samples which is derived from the number of pixels [33]. The
effective number of looks, 𝐿, is

𝐿 = 𝑁
OSR , (2.24)

where 𝑁 is the number of pixels and OSR is the oversampling ratio given by

OSR = PRF
BWaz

⋅ 𝑓𝑠
BWr

, (2.25)

where PRF is the pulse repetition frequency, 𝑓𝑠 is the range sampling frequency, and
BW𝑎𝑧 and BWr are the azimuth and range bandwidths, respectively.

2.4.4 Coherence Estimation Bias
The coherence estimator in Eq. (2.23) is biased for low values of coherence and for a
low effective number of looks, as reported by [57], which gives an expected value of the
coherence estimator as

𝐸{| ̂𝛾|} = Γ(𝐿)Γ(3/2)
Γ(𝐿 + 1/2) ⋅ 3𝐹 2(3/2, 𝐿, 𝐿; 𝐿 + 1/2, 1; |𝛾|2)(1 − |𝛾|2)𝐿, (2.26)

where Γ(⋅) is the gamma function and 𝑝𝐹 𝑞(⋅) is the generalized hypergeometric func-
tion. Evaluating this expression for varying levels of coherence and number of looks one
obtains the plot shown in Fig. 2.7. This shows the risk of interpreting weakly coher-
ent combinations with a low degree of multilooking, as it is likely that the coherence is
significantly overestimated.
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Figure 2.7: True versus estimated coherence evaluated for several degrees of multilooking according to
Eq. (2.26). After [61].

2.4.5 Effect of Coherence on Phase Distribution
The stochastic components of a SAR acquisition are typically modelled as a complex
Gaussian process. Thus, for a given SAR acquisition, the amplitude component is Rayleigh
distributed, and the phase component is uniformly distributed on the interval [−𝜋, 𝜋).
This is no longer the case for an interferogram, or interferometric combination of a subset
of pixels in the case of correlation between the SAR acquisitions. The phase distribution of
a given interferometric combination is described by a probability density function (PDF)
as a function of the coherence and the effective number of looks, 𝐿, see [33, Eq. (4.2.24)],
and [62], [63]

𝑓(𝜙|𝛾, 𝐿, 𝜙0) = Γ(𝐿 + 1/2)(1 − 𝛾2)𝐿𝛽
2√𝜋Γ(𝐿)(1 − 𝛽2)𝐿+1/2 + (1 − 𝛾2)𝐿

2𝜋 ⋅ 2𝐹 1(𝐿, 1; 1
2 ; 𝛽2), (2.27)

where 𝜙0 is the mean or expected interferometric phase and 𝛽 = |𝛾| cos(𝜙 − 𝜙0). The
distribution is plotted for varying levels of coherence and effective number of looks in
Fig. 2.8. As the coherence and effective number of looks increase, the distribution of the
phase becomes more localized. At zero coherence, the distribution becomes uniform,
indicating complete information loss, and at unity coherence the distribution becomes a
delta function, indicating that the two combined images are identical, and the interfero-
metric phase is zero (not shown). It is important to note that Eq. (2.27) assumes that each
look is an independent sample of the same process. In reality, each resolution cell on the
ground will be subject to different effects and processes which affect the geometric and
scattering phases differently.
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Figure 2.8: Phase probability density functions obtained by evaluating Eq. (2.27) assuming 𝜙0 = 0 with varying
levels of coherence and effective number of looks. a): L=1, b): L=10, c): L=50, d): L=100. Adapted from [33].

2.4.6 Stochastic Model for Distributed Scatterers
Eq. (2.27) can be evaluated to determine the expected phase standard deviation, 𝜎𝜙, for a
given level of coherence and effective number of looks, see [33, Eq. 4.2.27]. Thus one can
obtain an estimate for the level of precision of an interferometric combination of a given
distributed scatterer, shown in Fig. 2.9. This allows for an uncertainty estimate of the
interferometric observation and any derived quantities using standard error propagation
methods (APS and phase unwrapping errors notwithstanding) [20], [33].

Fig. 2.9 clearly shows the effect of multilooking on the obtainable precision of an
interferometric observation. Under the assumption of representativity, increasing the
effective number of looks can drastically improve the quality of the observed DS signal.
However, the diminishing returns of increasing multilooking are also visible: moving
from 𝐿 = 50 to 𝐿 = 100 provides only a marginal uncertainty reduction despite the
very large increase in the number samples used. It should also be noted that at low
coherence, no amount of multilooking can improve the signal quality, as 𝜎𝜙 converges
to 2𝜋/

√
12 ≈ 1.8138 rad at zero coherence, which is the standard deviation of a uniform

distribution on the interval [−𝜋, 𝜋). Further limitations of multilooking are discussed in
Sec. 2.4.7.
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Figure 2.9: Phase standard deviation versus coherence by evaluating the standard deviation of Eq. (2.27) with
varying levels of coherence and effective number of looks. After [64].

2.4.7 Phase Triangularity
The concept of phase triangularity (sometimes called phase consistency) states the fact
that the interferometric phase combinations of a given pixel must be self-consistent, that
is, for the epochs 𝑖, 𝑗 and 𝑘,

𝜙𝑖𝑗 + 𝜙𝑗𝑘 − 𝜙𝑖𝑘 = 0. (2.28)
While this relation holds for a single pixel, it may no longer be valid once multilooking is
applied, and the right-hand side of Eq. (2.28) becomes non-zero, which is known as the
closure phase [20], [65], [66]. Closure phase can be caused bymultilooking random noise,
or by systematic components in the scattering phase term. A basic statistical description
of closure phase arising from skewed volume scattering profiles was developed in [65] as

𝜙𝑖𝑗𝑘 ≈ −1
2 𝐸{(𝑓(𝑧) − 𝜇𝑓)3}𝑘𝑧𝑖𝑗𝑘𝑧𝑗𝑘𝑘𝑧𝑘𝑖, (2.29)

where 𝜙𝑖𝑗𝑘 is the non-zero closure phase term that arises from Eq. (2.28) in the presence
of multilooking, 𝑓(𝑧) is the vertical scattering profile, 𝜇𝑓 is the mean of 𝑓(𝑧), and 𝑘𝑧 is
the vertical wavenumber. Despite this description, it is unclear how this term affects a
given observed interferometric phase, 𝜙𝑖𝑗, see Eq. (2.11), however, it has been shown
that closure phases can bias interferometric time series estimates [67].

This brief summary reflects the field’s current state of understanding (or lack thereof)
of this phenomenon. Current research is mainly focused on extracting useful information
from observed closure phases and relating it to processes occurring within the scene, such
as crop growth [68] or soil moisture changes [69]. Despite this lack of clarity, the risk
that such a term can bias interferometric time series estimates should inform the choice of
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how redundant interferometric combinations within the coherence matrix are interpreted,
which is elaborated in Sec. 2.4.8.

2.4.8 Consistent Phase Estimation
2.4.8.1 Basic Approaches
The coherence matrix contains the phases of every possible combination of SAR images
in the stack, however, much of this information is redundant and we would like to have
only one phase per epoch in order to interpret the motion of the object under observa-
tion. There are multiple approaches to accomplish this [25], [29], [44], [58], depicted in
Fig. 2.10.

Methods for PSs [44], which remain coherent over time, simply take the difference in
phase between each epoch and a single designated reference epoch, which is called the
“single mother stack” or “single master stack”. This is equivalent to looking at a single
row/column in the coherence matrix.

This is not possible for DS applications due to the effects of temporal decorrela-
tion [25], [26]. A few epochs before or after the reference image, the obtained interfer-
ometric combinations may be completely decorrelated. This effect is visible in Fig. 2.5.
The simplest method for DS phase estimation is to take the “daisy-chain” of phases, that
is, to take the difference in phase between each consecutive acquisition, which corre-
sponds to looking at the first off-diagonal of the coherence matrix. This differential phase
can then be integrated with respect to the reference epoch to obtain the so-called “Equiv-
alent single master (ESM)”, or “Equivalent Single Mother”.

2.4.8.2 Small Baseline Subset Approaches
Since DS-based observations are sensitive to temporal decorrelation, one of the first meth-
ods to build upon the daisy-chain concept was to use all of, but only those, interferometric
combinations which contain coherent information. This is known as the small baseline
subset (SBAS) technique [25]. At this time (in the early 2000s), SAR missions tended to
have larger perpendicular baselines, so baseline decorrelation was also a concern. Now,
in the Sentinel-1 era of consistently small perpendicular baselines, SBAS generally refers
only to picking coherent temporal interferometric combinations.

SBAS requires the user to first spatially unwrap each selected small-baseline interfer-
ogram before inverting the ESM phase time series. The ESM phases are found by first
writing the vector of the subset of used small baseline phases as different combinations
of the ESM phases. In a stack of 𝑁 SAR acquisitions, there are 𝑁(𝑁 − 1)/2 possi-
ble interferometric combinations. The vector of coherent, small baseline subset of these
combinations is denoted as 𝜙sbas, and we can write

𝐴𝜙esm = 𝜙sbas, (2.30)

where 𝐴 is a design matrix that indicates which combination of ESM phases is used to
obtain the subset of observed phases. A consistent set of ESM phases which satisfies
Eq. (2.30) can then be estimated in the least-squares sense by

̂𝜙esm = (𝐴𝑇 𝐴)−1𝐴𝑇 𝜙sbas, (2.31)
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Figure 2.10: Canonical coherence matrices depicting various consistent phase estimation approaches: a) single-
reference (PS) b) daisy-chain c) SBAS d) full-rank. Black squares: unity, grey squares: used interferometric
combinations, white squares: unused interferometric combinations. Adapted from [37].

where {⋅}T indicates the matrix transpose. Depending on the choice of interferometric
subsets, the term 𝐴𝑇 𝐴 may be rank deficient and not invertible. To solve this problem,
the authors of [25] use the singular value decomposition (SVD) to find the pseudoinverse
of 𝐴𝑇 𝐴, corresponding to the 𝐿2-norm solution. There are several versions of SBAS-
based processing algorithms, however, all of them share the common methodology of
first spatially unwrapping the selected interferograms and subsequently computing the
pseudoinverse of Eq. (2.31).

SBAS is a computationally robust method which will always find a solution given a
choice of interferogram subsets, and is the most commonly used DS processing method-
ology. However, due to the phase triangularity problem (Sec. 2.4.7), the method is
sensitive to the choice of interferometric subsets used. Once multilooking is applied,
the different interferometric combinations are no longer self-consistent, and it has been
shown that SBAS will provide biased solutions in cases where there are significant phase
closures [67].
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2.4.8.3 Full-Rank Approaches
An alternative school of thought is use all 𝑁(𝑁 −1)/2 possible interferometric combina-
tions. This guarantees an overdetermined system of equations to be solved, and mitigates
the risk of biasing the solution by excluding certain interferometric combinations in the
event of significant closure phases, as is the case in SBAS processing [67]. There are sev-
eral ways in which the full coherence matrix is reduced, using either maximum-likelihood
estimation [58], eigenvalue decomposition, or a combination of both [29]. Unfortunately
these full-rank methods have been given a number of unclear names such as “phase trian-
gulation” or “phase linking”. The state-of-the art full-rank estimator is the “Eigendecom-
position based maximum likelihood estimator of interferometric phase (EMI)” method
proposed in [29], which is used later in this work. This text will simply use the term
ESM phase estimation when referring to this step.

The EMI procedure reduces the full set of all interferometric combinations to a single
set of consistent ESM phases, ̂𝜙esm, as estimated by the phase of the minimum eigenvector
of the Hadamard product of the inverse of the sample coherence matrix with the complex
sample coherence matrix, as given by

(|Γ̂|−1 ∘ Γ̂)𝜉 = 𝜆𝜉, (2.32)

where ∘ denotes the Hadamard product, 𝜆 is the eigenvalue, and 𝜉 is the eigenvector. The
estimated ESM phases are given by

̂𝜙esm = arg{𝜉}. (2.33)

One of the major advantages of the EMI method is that it works on the wrapped phase
observations, allowing for an ESM phase estimation before any phase unwrapping, which
is generally the most error-prone step in InSAR processing. Strong decorrelation can
hinder the effectiveness of the EMI estimation, but it is unclear to what extent this has an
effect, and whether or not the full stack of interferograms should always be used even in
the case of complete decorrelation.

2.4.9 Phase Unwrapping
2.4.9.1 Overview
Interferometric phase is an angular measurement bounded by the interval [−𝜋, 𝜋), where
the linear LOS displacements are mapped to the phase following Eq. (2.13). Displace-
ment histories exceeding these bounds are wrapped back onto the interval. Stated plainly,
an angular measurement cannot measure displacements larger than a full circle (2𝜋, 360∘),
which corresponds to the linear distance 𝜆/2. Therefore, there exists an unknown integer
number of full phase cycles in each phase observation, called the ambiguity [33]. In order
to go from a set of angular phase measurements to linear displacements, these ambiguities
must first be estimated, which is called phase unwrapping or ambiguity resolution [70].

There are several different approaches to phase unwrapping, which will not be cov-
ered exhaustively by this summary. Two of the most common approaches are to either
spatially unwrap interferograms, and then estimate the overall time series change over all
sets of multilooked pixels, which is the most common approach in DS processing; or to
assume a deformation model or constraint in time, and unwrap the phases according this
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model, and subsequently apply spatial checks with neighbouring pixels to ensure a spa-
tially continuous solution, which is the most commonly used technique in PS processing.
In both cases, phase unwrapping must make assumptions about the motion of the scat-
terer in order to produce a solution, because it is an “ill-posed” problem, i.e., there are
an infinite number of solutions which satisfy the mathematical constraints. This means
that the unwrapped phase is no longer a measurement, but an estimated value based on
certain underlying assumptions. If these assumptions do not accurately reflect the true
motion phenomena, then the correct displacement time series cannot be inverted from
the wrapped phase observations. Therefore, some knowledge (in the form of smoothness
constraints or parametric model) of the displacement phenomenon is needed a-priori in
order to make the correct assumptions.

2.4.9.2 Spatial Phase Unwrapping
In many DS applications, interferograms have smoothly-varying phases. In such cases,
the overall unwrapped phase can be estimated by spatially integrating the wrapped phases
in the interferogram. The most commonly used method for this is SNAPHU [71]. This
method is based on the “minimum cost flow (MCF)” algorithm [72], which examines the
phase residues of loops of pixels/multilooked cells in order to find inconsistencies in the
unwrapped result.

Despite their widespread applicability, MCF-based algorithms have some significant
drawbacks. First, by their spatial nature, these algorithms assume a spatial smoothness
constraint between adjacent pixels, however, in highly discontinuous environments this
assumption may not always be true. In the canalized agricultural regions of the Nether-
lands, there exist numerous sharp discontinuities in the landscape and water level heights.
Secondly, while capable of correctly unwrapping spatial phase gradients larger than 𝜋,
previous studies have shown that the approach fails to catch very rapid motions in highly
dynamic and noisy environments such as peatlands when integrating the cumulative un-
wrapped phases over time, which results in extreme overestimation of the true displace-
ment rate [19].

2.4.9.3 Temporal Phase Unwrapping
Unwrapping the temporal evolution of the phase of each individual scatterer is most com-
monly done in PS processing methods, however, it can also be applied in the DS case
if a set of ESM phases is available. In this case, a parametric model for the expected
motion of the scatterer is required, called the functional model. The fit of the phase is
tested against the model using a temporal coherence estimator a-priori, and/or against
other unwrapped scatterers using smoothness constraints a-posteriori [54]. The temporal
coherence (also known as the ensemble coherence) estimator of a scatterer is defined as

̂𝛾temp = 1
𝑁 ∣

𝑁
∑
𝑛=1

exp(𝑖[𝜙(𝑡𝑛) − 𝜙M( ̂𝑥, 𝑡𝑛)])∣, (2.34)

where 𝑁 is the number of interferometric phase observations and 𝜙M is the modeled
phase. This is a useful metric for model fitting, because it can be applied on the wrapped
phases. Several methods exist for estimating the most likely integer ambiguity for each
epoch, such as integer least-squares (ILS) or integer bootstrapping [70], [73], [74].
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This method is primarily used for PS analysis, where the observed points usually lie
on rather stable objects, such as in the built environment. Consequently, the functional
model usually has a simple form, such as a model with linear and seasonal components.
For more complex phenomena, such a simple description may not be adequate to accu-
rately capture the dynamics contained in the wrapped phase observations. On the other
hand, a functional model should not contain too many unknown parameters, or else fitting
can become challenging as it may be too difficult to constrain the unknowns, or a model
may be overfit to the data.

2.4.9.4 Implicit vs. Explicit Unwrapping
It is also useful to distinguish between so-called “implicit” and “explicit” phase unwrap-
ping methods. The term explicit refers to a method which attempts to directly estimate
the most likely ambiguity level, which allows one to obtain an unwrapped phase time
series, from which the ground displacement can be inferred. SNAPHU is an example of
an explicit method. Alternatively, implicit methods try to find the most likely displace-
ment model (the functional model), which is fit to the wrapped phase observations. The
estimated displacement model then implies a certain ambiguity as a consequence of that
model. There are advantages and disadvantages to either approach, and the target/signal
of interest as well as the SAR sensor should be taken into account when deciding which
method to use. For example, in the case of peatlands which are of interest in this work,
the SNAPHU method will be more reliable and robust when used on L-band data than
C-band, due to the fact that the signal dynamic range (approx 5–10 cm) is much larger
than the C-band wavelength (5.5 cm), but smaller than the L-band wavelength (24 cm).

2.5 Summary
This chapter has provided a brief overview of the relevant background of InSAR as it per-
tains to the monitoring of shallow-based ground motion. A description of SAR imaging
geometry is provided along with an outline of basic scatterer designations in the Delft
taxonomy. The concept of interferometry is introduced, and the various terms in the in-
terferometric phase are described. Finally, topics surrounding the quality of DS InSAR
are discussed, with focus on the effect of coherence on the expected phase distribution,
how to combine phase observations into one time series of consistent phases, and finally
phase unwrapping.

The following chapters will address some of the open issues in the field, in particular
those pertaining to the monitoring of dynamic land surface motion of rapidly decorrelating
areas. This includes the development of models for the expected motion of the land
surface in Ch. 3, temporal phase unwrapping of dynamic and noisy signals in Ch. 4, the
reconstruction of interferometric time series estimates which have been split by temporal
decorrelation in Ch. 5, and finally, scaling the analysis to a large region over the entire
archive of Sentinel-1 imagery in Ch. 6.
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Modeling the Motion of Soils

Sometimes science is more art than science.
A lot of people don’t get that.

Rick and Morty

This chapter describes the development of two models for the motion of shallow soft soils,
in particular the motion of deformable soils such as peat and clay in the Vadose zone. One
model is based on machine learning techniques, and the other is based on a simple param-
eterization. Both models use meteorological data as input for making predictions about the
relative position of the surface height over time, described in Sec. 3.2. Sections 3.3 and 3.4
describe the machine learning and parametric model implementation and parameterization
respectively. The performance of both models is shown and discussed in Sec. 3.5.

Highlights:
1. The feasibility of employing simple models for the kinematic behaviour of shallow soil

motion is demonstrated.
2. Precipitation and evapotranspiration are shown to be the dominant drivers of shallow

soil motion.
3. The effects of climate stresses are visible in the irreversible subsidence component.

Parts of this chapter have been published in IEEE Transactions on Geoscience and Remote Sensing,
Vol. 60, No. 5234611 [75]; and Geoderma Vol. 440, No. 116699 [76].
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3.1 Introduction
3.1.1 Motivation

A lthough InSAR is capable of producing measurements of ground displacement with
precision on the order of millimetres, as we have seen in Ch. 2, the technique pro-

vides an underdetermined set of observations with ambiguities that must first be resolved
in order to produce a useable time series. This inevitably leads to the need for making
assumptions about the most likely relative displacement rate, either spatial or temporal.
A major pillar of this thesis is that the quality of InSAR as a technique can be significantly
improved when these assumptions are made explicit and when they are made “smarter”;
i.e. suited to the environment of study, as opposed to making blanket assumptions with-
out consideration of the processes being monitored Accordingly, a significant part of this
research was put towards creating models for the expected displacement of shallow soft
soils. This chapter details the development of two models for shallow soft soil displace-
ment, a machine learning model and a parametric model, which are later used in the
InSAR processing steps detailed in Ch. 4 and 5.

3.1.2 Model Development Philosophy
While it is clear that shallow soil movements are caused primarily by changes in phreatic
groundwater level [30], [31], modelling the expected motion of soft soils such as peat and
clay is an ongoing effort and generally involves accurately parameterizing the material
and hydrological properties of every layer within the modeled soil strata. Most studies
relating soil subsidence to groundwater focus on the effects of extraction from deep con-
fined aquifers, and/or on the effects of settlement in an urban context, for example: [77]–
[79]. While modelling unconfined (phreatic) subsurface groundwater is an ongoing effort
in The Netherlands [80]–[83], the relationship between the shallow groundwater system
and the corresponding soil displacement is not well understood, as so far the focus has
been on studying the effect of phreatic groundwater levels on greenhouse gas emissions,
and because in-situ measurements of the phenomenon with adequate temporal sampling
were not available until recently [13].

Despite these past efforts, there is also a need to be able to describe and predict the
motion of these soils simply, with as few model parameters or assumptions as possible.
This is particularly important in inverse problems such as those encountered in InSAR, in
which one has only one ambiguous observable per location and measurement epoch, ren-
dering any highly multivariate model too complex for inversion, as the problems are too
unconstrained to be solved without making many assumptions. This was the motivation
to develop a soil motion model with the following requirements:

1. The model should have as few parameters as possible (in the case of a parametric
model).

2. All input data should be readily available.
3. The model should be accurate, allowing for minor variations caused by higher-order

effects which are not captured.
4. The model should be validated at all available test locations.

The goal is to create an empirical model for observed shallow soil displacement, in first ap-
proximation, rather than a complete description of all processes occurring in the shallow
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subsurface. Obviously, potential anthropogenic interventions in the water management
would not be covered. This resulted in the development of two models: a machine learn-
ing model, and a parametric model which was named Simple Parameterization for the
Motion of Soils (SPAMS). Both models use the same input data and produce estimates
of the same quantity; they differ only in their parameterizations. We will first look at
what quantities are used for the input of the models in Sec. 3.2, then each model will be
described in detail in Sections 3.3 and 3.4.

3.2 Model Inputs
To simplify the problem, only the two most dominant drivers of soil movement are con-
sidered: precipitation and evapotranspiration [30]. These values respectively constitute
the primary source and sink of groundwater in the shallow Holocene. In the the first iter-
ation of the machine learning approach [75], temperature and day of year (DOY) inputs
were used instead of evapotranspiration. The use of evapotranspiration is a refinement
which captures the effects of temperature and seasonality.

The value for evapotranspiration reported by the Royal Netherlands Meteorological
Institute (KNMI) is the so-called “De Bruin-Makkink” reference evapotranspiration [84],
[85]. This model is applicable to grasslands in the Netherlands, and can be rescaled to
model the effects of other vegetation types [86]. A major advantage of the model is that
only two easily obtainable input values are required: average daily temperature and daily
solar radiant exposure. The De Bruin-Makkink model for reference evapotranspiration,
𝐸, is given by

𝐸 = 𝐶 ⋅ 𝑠
𝑠 + 𝑝 ⋅ 𝑆day

Δ𝐻𝑣𝜌𝑤
, (3.1)

where 𝐶 is a constant equal to 0.65 [84], 𝑠 is the first derivative of the saturation water
vapour pressure with respect to temperature (kPa/∘C) as given by [87], 𝑝 is the psychro-
metric constant (kPa/∘C), 𝑆day is the daily solar radiant exposure (J/m2), Δ𝐻𝑣 is the latent
heat of vaporization of water (J/kg), and 𝜌𝑤 is the bulk density of water (i.e. 1000 kg/m3).
𝑠 is a function of the mean daily temperature, 𝑇day (∘C), and is given by

𝑠 = 7.5 ⋅ 237.3
(237.3 + 𝑇day)2 ⋅ ln 10 ⋅ 0.6107 ⋅ 10

7.5⋅𝑇day
(237.3+𝑇day) , (3.2)

the psychometric constant, 𝑝, is also a function of mean daily temperature and is given
by

𝑝 = 0.0646 + 6 ⋅ 10−5 ⋅ 𝑇day, (3.3)

as well as the latent heat of vaporization of water:

Δ𝐻𝑣 = (2501 − 2.375 ⋅ 𝑇day) ⋅ 1000. (3.4)

For more information about these quantities, the reader is referred to [84].
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Figure 3.1: RNN flow diagram with an instance of a training data sequence 𝑠𝑡 at epoch 𝑡. The feedforward
prediction path is shown with solid lines, and the feedback path used for training the network is shown with
dashed lines.

3.3 Machine Learning Model
3.3.1 Basic Architecture
A recurrent neural network (RNN) is optimized for the task of processing sequences of
input data in time and predicting an output time series, and is therefore a suitable choice
for the goal of modeling soil motion based on input sequences of meteorological data [88].

The RNN is shown in Fig. 3.1 and is comprised of an input layer, three long short-term
memory (LSTM) hidden layers, and an output layer. LSTM layers are chosen because of
their ability to use both current and past values of a time series in computation. Multiple
layers are used in order to capture the nonlinear relationships between the input sequences
and the target value. The outputs of each layer are renormalized, and a 10% dropout is
added to help prevent overfitting [89]. The RNN is created using the TensorFlow Python
library. An instance of the training set (also pictured in Fig. 3.1) is a sequence of daily
precipitation and evapotranspiration values starting from the day in question (the current
epoch, 𝑡) going back to the 𝑀 𝑡ℎ previous day.

There are two options for the configuration of the output node:
1. A 1x𝑛 size node, providing a categorical prediction about the state of the height at

time 𝑡 relative a previous epoch 𝑡−𝑚.
2. A 1x1 size node providing a scalar, real-valued output corresponding to the esti-

mated height at time 𝑡.
These options are elaborated in Secs. 3.3.2 and 3.3.3.

3.3.2 Categorical Prediction
In this setup, the objective of the model is not to reproduce a time series of surface eleva-
tion, but rather to predict whether or not the surface level has moved upwards or down-
wards with respect to a previous epoch. This concept is helpful for SAR interferometry
(InSAR) phase unwrapping, and is covered in depth in Ch. 4.

The input data, is a sequence of daily precipitation and evapotranspiration (alterna-
tively DOY and temperature) values starting from the day in question (the current epoch,
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𝑚) going back to the 𝑁 𝑡ℎ previous day. However, now these sequences are coupled with
one integer target value, corresponding to the relative state of the elevation with respect
to a previous epoch, six days prior to match the Sentinel-1 revisit time. This means we
have an estimation of whether or not the surface level shifted upwards, downwards, or
did not move significantly between SAR image acquisitions. An integer label of 0, 1,
or 2 is assigned to the target value 𝑦𝑡 corresponding to either insignificant, upward, or
downward motion respectively.

A set of 𝑀 training sequences is used to train the network, which takes the precipita-
tion and temperature inputs and attempts to predict the target value at the output. Error in
the predictions is quantified through the categorical cross-entropy loss function 𝐽 , given
in [90] as

𝐽(𝑤) = − 1
𝑀

𝑀
∑
𝑡=1

𝐶
∑
𝑗=1

𝑦𝑡,𝑗 ⋅ log [ℎ𝑗 (𝑤, 𝑠𝑡)] , (3.5)

where 𝑤 is the vector of weights in the neural network model, 𝑦𝑚 is the one-hot vector
representation of the true target at epoch 𝑡 and ℎ𝑗(𝑤, 𝑠𝑡) is the output value. 𝐶 is the length
of the one-hot vectors, i.e. the number of categories. A one-hot vector is a mapping of an
integer category to a vector with a length equal to the number of categories, and in which
all elements are zero apart from the element corresponding to the given category. For
example, in the set of categories {0,1,2}, the category “2” maps to the vector [0,0,1]. The
output of the network, ℎ𝑗(𝑤, 𝑠𝑡), is therefore a real-valued estimate of the probability of
the surface level being in a certain state.

3.3.3 Real-Valued Prediction
Another possible configuration of the output node allows for a real-valued prediction. A
set of 𝑀 training sequences is used to train the network, which takes the precipitation
and temperature inputs and attempts to predict the target value at the output. These are
coupled with one real-valued target, 𝑦𝑡, the soil height as measured in-situ. Error in the
predictions is quantified through by the mean squared error (MSE) loss function, 𝐽 , given
by

𝐽(𝑤) = − 1
𝑀

𝑀
∑
𝑡=1

[ℎ (𝑤, 𝑠𝑡) − 𝑦𝑡]
2 , (3.6)

where 𝑤 is the vector of weights in the neural network model (also known as the model
parameters) and ℎ(𝑤, 𝑠𝑡) is the model output.

3.3.4 Network Optimization
In both configurations, the network weights are updated in each training iteration so as
to minimize 𝐽 . The problem statement can then be formulated as finding the optimal set
of weights, 𝑤opt, that minimize 𝐽 as

𝑤opt = argmin
𝑤

𝐽(𝑤). (3.7)

The first part of the measurement time series spanning dates from June 2020 – Oc-
tober 2022 is used as the training and validation set which is used to train the network
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Figure 3.2: RNN learning curves. The black dashed line indicates the training iteration in which the optimum
model weights are achieved. Accuracy is defined as the ratio of the number of correct predictions to the total
number of predictions, and loss is defined by Eq. (3.5).

(i.e. optimize the network weight parameters). The final year of the measurement time
series, from October 2022 - October 2023 is used as a testing set in order to assess the
performance of the model.

The training dataset is split between 80% training and 20% validation. The network
is trained over many iterations as the algorithm attempts to reduce the training loss. The
final model which is saved is the iteration in which the validation loss is minimized. The
graph of loss versus training iteration is known as the network’s “learning curve”. An
example set of these learning curves for the categorical case is shown in Fig. 3.2. The
model iteration used is given by the vertical black dashed line.

3.4 Parametric Model (SPAMS)
3.4.1 Model Description
The second model to be developed was a parametric model with the objective of describ-
ing the shallow soil behaviour as simply as possible. By keeping the model simple, we
sacrifice some potential accuracy for better generality, as it becomes less likely to overfit
models with simple parameterizations. In SPAMS, the overall relative soil surface height,
𝑧, in a given reference system and at a given time 𝑡 relative to a start time 𝑡0 in days, is
modeled as a combination of reversible (shrinkage and swell) and irreversible processes
(oxidation):

𝑧(𝑥, 𝑡) = 𝑅(𝑥, 𝑡) + 𝐼(𝑥, 𝑡), (3.8)

where 𝑅 is the reversible component and 𝐼 is the irreversible component. 𝑥 is the set of
lithology dependent parameters which will vary with location. We do not consider irre-
versible subsidence due to compaction or creep, only model the behaviour of unloaded
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soils with respect to changes in phreatic groundwater level and soil moisture. The re-
versible component is obtained by considering the balance between the dominant source
and sink of ground water, i.e., precipitation and evapotranspiration, respectively. This
balance is sometimes referred to as the rainfall or water surplus and its integral over time
as the cumulative rainfall/water surplus [30], [91]. We modify this concept by introduc-
ing a scaling factor between the precipitation and evapotranspiration terms in order to
model the material and hydrological properties of a given region. Different locations will
have different soil stratigraphies, land use, and land parcel geometries, thus resulting in
different responses to meteorological conditions. This also rescales the reference evap-
otranspiration value to one better suited to the vegetation cover of the area. Thus, the
reversible component is modeled as the scaled difference between precipitation, 𝑃(𝑡),
and evapotranspiration, 𝐸(𝑡), integrated over a period of time 𝜏 (in days):

𝑅(𝑥, 𝑡) =
𝑡

∑
𝑡′=𝑡−𝜏

[𝑥𝑃 𝑃(𝑡′) − 𝑥𝐸𝐸(𝑡′)], (3.9)

where 𝑃 and 𝐸 are daily mean precipitation and evapotranspiration in millimetres, re-
spectively, as reported by KNMI, and 𝑥𝑃 and 𝑥𝐸 are unknown relative scaling factors
which will differ per location. These factors reflect the relative effect on soil height each
respective process has, i.e., their relative strengths based on seepage and infiltration, as
well as the scaling from cumulative groundwater balance to soil surface height. The un-
known integration time 𝜏 is also different for different soils, as the memory/hysteresis of
the system will differ based on material properties and geometry.

The irreversible component of soil subsidence is often modeled and reported as a
constant linear rate [8]. However, we note that this ignores the effect of water in the
system, and the fact that oxidation primarily occurs while there is a net loss of water in
the system. We can make a simple improvement to this approximation by taking into
account when the soil is wetting or drying. We retain a constant linear rate, but modulate
its activity based on the scaled water surplus of Eq. (3.9). Thus the irreversible component
is estimated by

𝐼(𝑥, 𝑡) =
𝑡

∑
𝑡′=𝑡0

𝑥𝐼 ⋅ 𝑓(𝑥, 𝑡), (3.10)

where 𝑥𝐼 is an unknown constant rate of irreversible subsidence, and

𝑓(𝑥, 𝑡) = {0, for 𝑅(𝑥, 𝑡) > 0
1, for 𝑅(𝑥, 𝑡) ≤ 0. (3.11)

When 𝑅 > 0 (see Eq. (3.9)), the precipitation term dominates and the soil is considered
to be wetting. When 𝑅 ≤ 0, the evapotranspiration term dominates and the soil is con-
sidered to be drying, and undergoing oxidation. As-is, the model ignores the effects of
compaction below the Vadose zone; that is, compaction in the saturated zone caused by
the mass of the water above. This could be included by setting the zero-term in Eq. (3.11)
to an unknown constant.
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Figure 3.3: Map of The Netherlands annotated with extensometer locations in red, along with corresponding
simplified Holocene borehole lithographies.

3.4.2 Parameter Estimation
There are four unknown parameters to estimate for a given location: the scaling factors
𝑥𝑃 , 𝑥𝐸, and 𝑥𝐼 , and the integration time 𝜏 . While these parameters are clearly linked with
the physical makeup of the area of study, at this point we simply use them as empirical
factors; additional study would be necessary to link the parameter values with soil and
hydrological properties, as well as other factors such as parcel size and shape, land use,
or ground water management factors such as freeboard or ditch water levels.

The parameters are estimated by minimizing the MSE between the model output and
a set of training data. The MSE is quantified in a similar manner to the machine learning
model “real-valued prediction” loss in Eq. 3.6:

𝐽( ̂𝑥) = 1
𝑀

𝑀
∑
𝑡=1

[𝑧( ̂𝑥, 𝑡) − 𝑦(𝑡)]2, (3.12)

where ̂𝑥 is the set of estimated parameters, 𝑀 is the length of the time series, and 𝑦 is the
ground truth data, described in Sec. 3.5.1. The optimal set of parameters, ̂𝑥opt, is found
by minimizing 𝐽 such that

̂𝑥opt = argmin
�̂�

𝐽( ̂𝑥). (3.13)

The first part of the measurement time series spanning dates from June 2020 –October
2022 is used as the training set which is used to fit the model parameters. The final year
of the measurement time series, from October 2022 - October 2023 is used as a testing
set in order to assess the performance of the model.

3.5 Results and Discussion
3.5.1 Test Locations
The two models are tested at five locations, shown in Fig. 3.3 along with corresponding
publicly available borehole log data from the immediate vicinity [92]. The test locations
are distributed across various different parts of the Dutch coastal plain and have different
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Table 3.1: Categorical Test Confusion Matrix

True True True
STAY UP DOWN

Predicted STAY 0.61 0.12 0.22
Predicted UP 0.14 0.88 0.02
Predicted DOWN 0.24 0 0.76

combinations of clay, peat and sand in the Holocene sequence, thus providing a repre-
sentative set of conditions for the region. All locations are managed grasslands used for
agriculture.

The test locations were chosen by the project consortium National research pro-
gram on greenhouse gas emissions in peatlands (Dutch: Nationaal Onderzoekspro-
gramma Broeikasgassen Veenweiden (NOBV)). Each site is equipped with an exten-
someter which are used as the source of the training and testing datasets at each loca-
tion (available: [32]). The extensometers are permanent devices based in the Pleistocene
layer, and consist of several measurement anchors at different vertical levels in the above
Holocene. Thus they provide continuous measurements of the movement of the Holocene
layer above the base of the device. We use the topmost anchor located at 5 cm depth,
which is the shallowest depth at which an anchor can be reliably fixed, which almost
completely captures the full motion of the Holocene layer(s). A full description of the
system is provided in [13].

3.5.2 Machine Learning Model Results
3.5.2.1 Categorical Prediction
The categorical machine learning model is evaluated using 977 predictions on data gath-
ered from October 15, 2018 to July 4, 2021 at the Zegveld site. The performance of the
model is determined by creating a confusion matrix of the real vs. predicted movement
classes, shown in Table 3.1. It can be seen that the network can very accurately differ-
entiate between significant upward and downward motion (UP vs. DOWN) with little
to no error (bottom-right quadrant of Table 3.1. It has greater difficulty in distinguishing
between UP/DOWN vs. STAY. This is due to the fact that the choice of threshold which
defines what amount of movement is considered large enough to be an UP/DOWN state
vs. what is not large enough and is considered a STAY is a somewhat arbitrary distinction.
This is not necessarily a major problem given the application of the categorical prediction
in ambiguity resolution, because the important distinction to make is between significant
upward and downward motion, i.e. correctly predicting UP vs. DOWN.

This was the first model to be developed over the course of this research and demon-
strated the feasibility of using a machine learning model to make predictions about the
state of ground motion. This model is used in tandem with the phase observations in a
temporal phase unwrapping algorithm which is described in detail in Ch. 4.
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Figure 3.4: Machine learning model training/validation and testing results (blue) plotted against ground truth
data obtained from extensometer readings at each location (black). Locations: (a) Aldeboarn, (b) Assendelft,
(c) Rouveen, (d) Vlist, (e) Zegveld.

3.5.2.2 Real-Valued Prediction
Time series results of the real-valued version of the machine learning model are shown
in Fig. 3.4 and Table 3.2. The model is able to make accurate predictions of the ground
motion time series in three of the five test locations: (c), (d) and (e). The model strug-
gled to correctly predict the correct annual seasonal uplift for locations (a) and (b), largely
overestimating the fall/winter rebound by quite a large margin. In fact this effect is visible
to some degree in all the predicted time series, which raises concerns about this model’s
ability to reliably predict an accurate value for the irreversible component of subsidence.
While this model can generate a time series that “looks” realistic, the black-box nature of
the model’s predictions and the fact that it is easy to overfit such models during training
means that the reliability of this technique is in question. However, it may be possible
to improve the performance with a different RNN architecture, for instance by remov-
ing a hidden layer or by performing fewer training epochs to prevent overfitting. These
measures would likely come at the cost of reduced accuracy.

3.5.3 Parametric Model Results
The SPAMS model is validated by comparing the output to in-situ measurement data,
i.e. testing data, taken by extensometer readings from the five test locations, shown in
Fig. 3.5 and Table 3.3. This demonstrates that the model is able to reliably approximate
the relative soil displacement at every test location, each with different Holocene soil
stratigraphies and depths.

While it is clear that the model is too simple to perfectly capture all the high-frequency
components of the surface motion, the mean seasonal and sub-seasonal effects are accu-
rately modelled at every location, which is sufficient for our objectives. The best perfor-
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Table 3.2: Real-Valued Machine Learning Model Performance

Location Aldeboarn Assendelft Rouveen Vlist Zegveld
Designation (a) (b) (c) (d) (e)
Distance site-station [km] 17.4 9.80 34.8 7.20 19.4
Training RMSE [mm] 6.05 4.42 4.01 2.53 4.87
Testing RMSE [mm] 13.1 17.9 8.64 6.82 8.66
Training RMSE/𝜎 [mm/mm] 0.41 0.23 0.39 0.26 0.20
Testing RMSE/𝜎 [mm/mm] 0.89 0.92 0.83 0.70 0.35
Overall 𝑅2 [ ] 0.65 0.71 0.75 0.81 0.94

Figure 3.5: SPAMS model training and testing results (blue) plotted against ground truth data obtained from
extensometer readings at each location (black). Red: estimated irreversible component. Locations: (a) Alde-
boarn, (b) Assendelft, (c) Rouveen, (d) Vlist, (e) Zegveld.

mance is found at sites b) and d), which display the lowest overall root mean squared
error (RMSE), and the lowest RMSE normalized to the standard deviation of the in-situ
data (RMSE/𝜎) respectively. These sites also have the shortest distance to their corre-
sponding weather station, so it is likely that they have the most accurate input data. The
worst performance is encountered at site a), which exhibits the most complex displace-
ment history, with very large differences between subsequent years. Nevertheless, the
model is still able to capture the large variations between seasons.

A major benefit to parameterizing the irreversible component separately from the
overall surface displacement is that it allows for an estimation of when the most signifi-
cant soil volume loss occurs. For example, the irreversible component was significantly
greater at sites a), b) and d) in the hot and dry summer of 2022 compared to the previous
wetter and cooler summer of 2021. Thus we can compare the irreversible rates between
years to gain understanding of how climate stresses on the soil and water system can
affect subsidence.
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Table 3.3: SPAMS Estimated Model Parameters and Performance

Location Aldeboarn Assendelft Rouveen Vlist Zegveld
Designation (a) (b) (c) (d) (e)
Distance site-station [km] 17.4 9.8 34.8 7.2 19.4
𝑥𝑃 [m/mm] 1.7⋅10-4 1.5⋅10-4 6.3⋅10-5 8.0⋅10-5 9.7⋅10-5
𝑥𝐸 [m/mm] 1.3⋅10-4 9.2⋅10-5 8.2⋅10-5 6.4⋅10-5 2.7⋅10-4
𝑥𝐼 [m/d] -1.0⋅10-4 -1.4⋅10-4 -2.9⋅10-5 -2.0⋅10-5 -2.3⋅10-5
𝜏 [d] 80 80 54 86 69
Training RMSE [mm] 10.6 8.39 4.18 4.80 6.64
Testing RMSE [mm] 12.2 6.38 6.03 4.51 10.4
Training RMSE/𝜎 [mm/mm] 0.72 0.43 0.40 0.49 0.27
Testing RMSE/𝜎 [mm/mm] 0.83 0.33 0.58 0.46 0.42
Overall 𝑅2 [ ] 0.43 0.84 0.80 0.77 0.90

3.6 Conclusion
In this chapter we have demonstrated that the motion of shallow soft soils is predictable
and how it can be modeled using local weather data. The feasibility in employing simple
models for the kinematic behaviour of shallow soil motion without invoking complex
hydrological simulations is demonstrated. Depending on their application, these models
can take different forms and output either categorical or time series predictions of soil
motion. Ch. 4 and 5 will describe how these models are employed within the InSAR
processing chain to resolve ambiguities and help overcome data loss caused by temporal
decorrelation.

In the future, the models can also be further developed; for example, the SPAMS
model can be improved by considering an additional compaction term which acts on the
saturated soils below the Vadose zone. This would require an additional parameter to be
estimated, but could provide more long term accuracy in the estimation of irreversible
subsidence occurring over decadal time scales.
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Temporal Phase Unwrapping

and Cycle Slips
A leap of faith – yes, but only after reflection.

Søren Kierkegaard

This chapter describes a methodology which allows for additional environmental information
to be integrated into temporal phase unwrapping procedures, mitigating the effects of rapid
displacements which exceed the standard unwrapping threshold of a quarter wavelength.
Problematic epochs that cause errors in the temporal phase unwrapping process can be
anticipated by machine learning algorithms which create categorical predictions about the
relative ambiguity level based on readily-available meteorological data. These predictions
significantly assist in the interpretation of large changes in the wrapped interferometric phase
and enable the monitoring of environments not previously possible using standard minimum-
gradient phase unwrapping techniques.

Highlights:
1. Standard (explicit) phase unwrapping techniques are not able to cope with signals ex-

ceeding the critical unwrapping threshold.
2. Previous studies of Dutch peatlands showed extremely large subsidence rates, often

because the rapid upward motion of the peat following rainy periods was missed by
standard phase unwrapping.

3. Augmenting the phase unwrapping process with additional information about the ex-
pected behaviour of the environment can prevent phase unwrapping errors.

Parts of this chapter have been published in IEEE Transactions on Geoscience and Remote Sensing,
Vol. 60, No. 5234611 [75].
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4.1 Introduction
P hase unwrapping, also known as ambiguity resolution, is an underdetermined prob-

lem in which assumptions must be made in order to obtain a result in InSAR time
series analysis. This problem is particularly acute for distributed scatterer InSAR, in
which noise levels can be so large that they are comparable in magnitude to the signal
of investigation. Additionally, deformation rates can be highly nonlinear and orders of
magnitude larger than neighboring point scatterers, which may be part of a more stable
object.

The combination of these factors has often proven too challenging for conventional
InSAR processing methods to successfully monitor the low-lying peatland regions of the
Netherlands. The soft soils which comprise the majority of the country’s agricultural
lands are prone to rapid deformation and are very difficult, or even impossible to directly
monitor using standard distributed scatterer (DS) InSAR techniques [19], [28] which use
smoothness constraints to perform spatial phase unwrapping [71], [93], [94]. Recently,
a significant amount of research has been conducted to improve two-dimensional phase
unwrapping [95], and there is great interest in the applicability of machine learning tech-
niques in solving the problem [96]; however, this research has largely been limited to
the spatial case and does not consider the temporal effects of a rapidly deforming region.
Rapid soil motion and non-stationary coherence cause large fluctuations affecting both
the functional and stochastic models, which rules out the use of time-domain phase un-
wrapping techniques such as integer integer least-squares (ILS) [73], as the stochastic
model will become too large to reliably evaluate an assumed deformation model.

Using newly available ground truthmeasurements, we find that in the case of Sentinel-1
observations, rapid soil uplift due to increases in the ground water level between satellite
overpasses can cause phase displacements larger than half a cycle (𝜆/4) at C-band. This
renders time series analysis of the region using Sentinel-1 imagery impossible using stan-
dard techniques, because phase unwrapping algorithms will typically assume the smaller
phase displacement in the opposite direction to be the correct solution. This introduces
a systematic error in all subsequent points of the time series corresponding to one 2𝜋
ambiguity level. While this problem may potentially be avoided by using L-band SAR
data, there is currently no operational L-band radar mission observing the Netherlands at
the temporal frequencies required for monitoring this environment.

It is therefore necessary to augment the standard unwrapping procedure with addi-
tional information in order to prevent errors in the unwrapping direction. This is done
by considering the Direction of ground motion (DOGM), and therefore the correct phase
unwrapping direction, as states in a hidden Markov model (HMM). By using a modifi-
cation of the widely-used Viterbi algorithm [97], we can integrate additional contextual
information about the system into a generalized probabilistic framework which can be
used to guide the unwrapping of the interferometric phase in the time domain. In our
case, this additional information comes from a Recurrent Neural Network (RNN) which
takes meteorological data as its input to predict the DOGM. This was chosen because
meteorological data is easily accessible and interpretable for our areas of study, but in
general, any model which predicts the state of ground motion can be used. We show that
this framework is able to reliably anticipate rapid soil deformation events and correctly
unwrap the interferometric phases.
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Figure 4.1: (a) Rouveen and (b) Zegveld daily extensometer soil height measurements with respect to Nether-
lands vertical datum (Dutch: Normaal Amsterdams Peil) (blue trace, left-hand y-axis) and corresponding height
gradient magnitudes computed over 6, 11 and 24-day intervals (red, purple, green bars, right-hand y-axis). Rep-
resentative C- and X-band unwrapping thresholds projected from slant range to the vertical are indicated by the
horizontal dashed and dotted lines respectively (right-hand y-axis). Not visible: L-band unwrapping threshold
projected to the vertical (0.0726 m). The gap in data around Jan. 2021 in Zegveld is caused by uplift which
exceeded the range of the extensometer scale and could not be recorded.

4.2 Extensometer Data and Signal Simulation
4.2.1 Extensometer Data
Extensometers placed in various locations across the Netherlands have been continuously
monitoring the vertical movement of the surface and shallow subsurface of peaty soft soils
for several years [13]. The longest running of these stations is in Rouveen, which has been
collecting data since October 2018, and exhibits relatively modest levels of movement,
within a range of 4 cm, see Fig. 4.1 (a). On the other hand, some of the largest measured
soil variations are observed in Zegveld, within a range of 9 cm, see Fig. 4.1 (b).

These two locations therefore show a representative range of ground movements
which can be reasonably expected to be encountered in Dutch agricultural areas. In-
spection of the extensometer measurements (blue trace) shows a very high degree of
reversible deformation following a strong seasonal trend. The most stable periods are
during the winter months, when cold, rainy conditions in the Netherlands keep the soils
saturated with moisture. As temperatures rise and precipitation levels decrease, the soils
dry out and become more unstable. A significant amount of movement over short time
scales can also be observed. This creates an additional complication for InSAR obser-
vations, as significant movement can occur even between the relatively frequent 6-day
Sentinel-1 overpass cycle, which is shown by the 6-day height gradient magnitude (red
bars). In the case of Zegveld, shifts in soil height can cause strong gradients in the mea-
sured signal which exceed the unwrapping threshold (projected from slant range to the
vertical using a typical Sentinel-1 incidence angle of 37∘, and shown by the dashed hor-
izontal line), even in an ideal, noiseless case. We can also infer that we do not need to
expect the deformation to exceed multiple ambiguity levels at C-band within one over-
pass.

For other missions, the outlook is significantly worse. In the case of Radarsat2 (corre-
sponding to the 24-day gradient shown by green bars), which also operates at C-band, the
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gradients routinely exceed the unwrapping threshold in both locations. With TerraSAR-X
(corresponding to the 11-day gradient shown by purple bars, and the dotted line represent-
ing the X-band unwrapping threshold height projected from slant range to vertical), the
signal shifts are consistently larger than the unwrapping threshold, rendering any time-
series interpretation extremely challenging. On a more hopeful note, the future ROSE-L
mission operating at L-band, with a 6-day revisit time should be able to comfortably fol-
low the observed signal without significant risk of phase unwrapping errors (The L-band
unwrapping threshold is significantly larger than the dynamic range of the signals plotted
in Fig. 4.1 and is therefore not shown). While this mission will undoubtedly be a very
useful asset for subsidence monitoring in the Netherlands, it is expected to be launched
in the year 2027, and will then require several additional years to build up a dataset of ob-
servations to allow for time-series analysis. This means scientists and policymakers will
need to wait about another 10 years before the benefits of the ROSE-L mission become
truly available to them, and many decisions until that time will need to be based on avail-
able Sentinel-1 data. While other L-band missions have been flown, notably ALOS-1,
ALOS-2 and SAOCOM, there have not been enough acquisitions to provide the neces-
sary coverage.

Note that the gap in data from end Dec. 2020 to mid Jan. 2021 in Fig. 4.1 in Zegveld
is caused by uplift which exceeded the range of the extensometer scale and could not be
recorded. We conservatively do not use the data from this time in our subsequent analy-
sis; however it could be interpreted that an additional spike in the observed deformation
gradients would be present here as well.

4.2.2 Simulated InSAR Signal
In order to assess the ability of an algorithm to correctly unwrap the observed phase, we
simulate an InSAR signal based on the ground truth provided by the extensometers. This
allows us to control the level of noise in the data and reference the obtained solutions
to a known true value. We produce this simulated signal, 𝜙sim, by downsampling the
extensometer data to one observation per six days, converting vertical displacement into
phase, projecting from the vertical axis onto the slant range direction, adding noise, and
wrapping the resultant phase on the interval [−𝜋, 𝜋). The simulated signal is given by

𝜙sim,𝑖𝑗 = 𝑊 {Δ𝑧ext(𝑡𝑖, 𝑡𝑗) ⋅ 4𝜋 cos 𝜃
𝜆 + 𝑛(𝑡𝑖, 𝑡𝑗)} , (4.1)

where 𝑊{⋅} is the phase wrapping operator [33], Δ𝑧ext(𝑡𝑖, 𝑡𝑗) is the change in the exten-
someter signal between acquisition epochs 𝑡𝑖 and 𝑡𝑗, 𝜆 is the radar wavelength of 0.0556
m, corresponding to the wavelength of the Sentinel-1 radar, 𝜃 is the radar incidence angle
and 𝑛(𝑡𝑖, 𝑡𝑗) is additive heteroscedastic noise. The variance of 𝑛(𝑡𝑖, 𝑡𝑗) differs for each
interferogram and is governed by the coherence 𝛾𝑖𝑗, and equivalent number of looks,
𝐿 [33]. The coherence of a multilooked set of pixels Ω in an interferogram is estimated
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Figure 4.2: Daisy-chain coherence values used to generate additive noise in (a) Rouveen and (b) Zegveld. The
term “daisy-chain” refers to the off-diagonal elements of the coherence matrix showing the relative coherence
between consecutive epochs.

from the magnitude of the complex sample coherence given in [33] by

|𝛾𝑖𝑗| =
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where 𝑆𝑛
𝑖,𝑗 is the 𝑛th SAR single-look complex (SLC) pixel in acquisitions 𝑖 and 𝑗. We

focus on the daisy-chain coherence, which refers to the coherence observed in interfero-
grams of consecutive acquisitions (𝑗 = 𝑖 − 1), i.e. the magnitudes of the first off-diagonal
of the full coherence matrix, as shown in Fig. 4.2. For simplicity, we denote the daisy-
chain phase 𝜙(𝑡𝑖, 𝑡𝑖−1) as 𝜙dc. The additive phase noise is modelled as a random process
which follows a circular Gaussian distribution. The probability density function (PDF)
of the interferometric phase is [33], [62], [63]

𝑓(𝜙|𝛾, 𝐿, 𝜙0) = Γ(𝐿 + 1/2)(1 − |𝛾|2)𝐿𝛽
2√𝜋Γ(𝐿)(1 − 𝛽2)𝐿+1/2 + (1 − |𝛾|2)𝐿

2𝜋 ⋅ 2𝐹 1(𝐿, 1; 1
2 ; 𝛽2), (4.3)

where 𝛽 = |𝛾| cos (𝜙 − 𝜙0), Γ(⋅) is the gamma function and 𝐹(⋅) is the hypergeometric
function. The PDF is evaluated over the interval 𝜙 = [−𝜋, 𝜋) and the mean, 𝜙0, is taken as
0 to center the additive noise around the signal. An equivalent alternative formulation is
possible in which one sets 𝜙0 = 𝑊{Δ𝑧ext ⋅ 4𝜋 cos 𝜃/𝜆}, due to the fact that 𝑓(𝜙|𝛾, 𝐿, 𝜙0)
produces random samples of wrapped phases. In this case, the distributionwould describe
the entire signal, 𝜙sim, and not only the noise component, and the phase wrapping would
be stated implicitly. We choose to use the 𝜙0 = 0 formulation because it allows the reader
to more clearly see all the steps which are taken to produce the simulated phases.

Thus, every epoch, 𝑖, has a different noise variance 𝜎2
𝑛, which is based on the daisy-

chain coherence value between epochs 𝑖 and 𝑖−1, and determines the shape of the distri-
bution 𝑓(𝜙dc|𝛾dc, 𝐿), which is randomly sampled. The simulated coherence values used
to generate these noise values are shown in Fig. 4.2, which are representative values for
Sentinel-1 observations over Rouveen and Zegveld during the periods in which the exten-
someters were active. Epochs with coherences of less than 0.05 can occasionally occur,
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Figure 4.3: Normalized multi-modal PDF (greyscale) based on Eqs. (4.1) and (4.3) from downsampled exten-
someter soil height measurements (green trace) with additive noise, corresponding to the Sentinel-1 revisit time
for (a) Rouveen and (b) Zegveld. During times of high coherence, the PDF is clearly defined and a clear peak
is visible at each ambiguity level. During low coherence epochs, the PDF becomes “smeared-out” and distin-
guishing ambiguity levels becomes challenging. 50 realizations of random noise are generated and a solution
obtained using the standard minimum gradient approach (red traces).

but are omitted from this study because this results in almost complete information loss
in the interferogram, and phase unwrapping becomes redundant because only noise re-
mains in the observation. In a fully-realized InSAR processor, these interferograms must
be omitted, or bridged using some form of assumption or pseudo-observation. We use
a multilooking factor 𝐿 = 100, as strong multilooking is an important part of a strategy
for noise-reduction to enable InSAR over grasslands on peaty soil. Without such high
levels of multilooking, noise levels in the summer months of low coherence can become
so strong that it is impossible to interpret the interferometric phase.

To visualize the effect of noise, Fig. 4.3 shows 50 unwrapped time series (red traces)
obtained by 50 realizations of random noise generated by the PDF (greyscale). The PDF
is multimodal, which reflects that the observed phase is wrapped and the true ambiguity
level is unknown. Epochs of low coherence widen the PDF such that it is no longer a
set of clearly defined peaks, which can cause the observed phase change between epochs
to exceed the unwrapping threshold. The divergence of the red traces illustrates how
noise can have a significant effect on unwrapping decisions, and therefore on the inferred
vertical displacement. Strong noise can either introduce new unwrapping errors, as in
the case of Rouveen, or it can exacerbate existing problems already present, as in the
Zegveld case, cf. Fig. 4.1 (a) and (b), respectively.

4.2.3 Implications of Rapid Ground Motion and Noise
Figs. 4.1, 4.2, and 4.3 demonstrate the difficulty of directly producing InSAR time series
estimates of the Dutch polderlands. First, from a signal perspective, Fig. 4.1 shows that
the ground motion which we attempt to measure is highly rapid and nonlinear. Large
shifts can occur even within the 6-day Sentinel-1 revisit interval, creating problems for
phase unwrapping even in a noise-free scenario. The second additional challenge is that
of noise, which is related to that of temporal decorrelation, shown in Figs. 4.2 and 4.3.
Additive noise can occasionally become very large during periods of low coherence and
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Table 4.1: Categorical RNN Confusion Matrix

True True True
STAY UP DOWN

Predicted STAY 0.61 0.12 0.22
Predicted UP 0.14 0.88 0.02
Predicted DOWN 0.24 0 0.76

can cause phase wrapping to occur when there would be none in the hypothetical noise-
free scenario. This is of particular importance during the late summer and autumnmonths,
when the soil height gradients are at their largest. The observer, and by extension, the
algorithm, needs more information in order to correctly unwrap the observed phase in
this environment. The following section will describe how this may be accomplished by
using readily available meteorological data.

4.3 RNN-Aided Phase Unwrapping
4.3.1 Introduction
The categorical RNN model described in Sec. 3.3.2 is able to estimate the DOGM, how-
ever, these predictions are not 100% accurate (as shown in Table 4.1), and all this informa-
tion must still be integrated into a phase unwrapping routine. Additionally, the wrapped
phases and coherences are also important information which should be used. To inte-
grate all this information together, the problem can be posed as an HMM, which is a
general formulation describing how a system may transition between various unobserv-
able “hidden” states (the unwrapped phase transitions) given a set of noisy observations
(the recurrent neural network (RNN) estimation).

4.3.2 Hidden Markov Model
The system of wrapped interferometric phase observations and estimated RNN classes
are considered to act together as an HMM, pictured in Fig. 4.4. For simplicity, we con-
sider three hidden states corresponding to the average ground movement: uplift (UP),
subsidence (DOWN), or no significant movement (STAY), which correspond closely to
(but are distinct from) the RNN output classes. These states are hidden, because the na-
ture of wrapped phases is such that one cannot discern the DOGM from them directly.
The additional observations in this HMM therefore come from the RNN output classes.

To complete the model, a set of transition and emission probabilities are required.
The transition probabilities represent the probability of moving to a given state from the
current state. In our implementation, these are estimated using the wrapped phases, 𝜙dc.
The probabilities are estimated in two steps: (i) estimating the probability of downward
vs. upward motion, and (ii) estimating the significance of the motion, by comparing the
magnitude of the phase change with the distribution given in Eq. (4.3). The up/down
probabilities are determined by considering the two nearest ambiguity levels as branches:

𝑏1 = 𝜙dc

𝑏2 = 𝜙dc − sign(𝜙dc) ⋅ 2𝜋, (4.4)
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Figure 4.4: Hidden Markov Model used to integrate wrapped phase information with RNN output. Solid lines
represent transition probabilities, dashed lines represent emission probabilities.

where 𝜙dc is the observed change in the wrapped phases between epochs, which is equal
to the equivalent daisy-chain phase. These branches correspond to the UP or DOWN
state, depending on the sign of the observed phase change. The initial probabilities of the
two complementary branches are estimated based on the magnitude of 𝜙dc and are given
by

𝑝𝑏1
= 1 − 1

2 [erf (|𝜙dc| − 𝜋) + 1]
𝑝𝑏2

= 1 − 𝑝𝑏1
,

(4.5)

where erf(⋅) denotes the error function. As |𝜙dc| increases, the probability of remaining
on branch 𝑏1 smoothly decreases from 1. When |𝜙dc| = 𝜋, both branches are equally
likely. In this initial estimation, the branch corresponding to the minimum phase gradient
solution is favoured. In the absence of any additional information, this branch would
always be selected by the algorithm, corresponding to the standard unwrapping solution.
Which branch corresponds to UP and which to DOWN depends on the sign of 𝜙dc.

While the probabilities estimated by Eq. (4.5) provide the relative likelihoods of tran-
sitioning to the UP vs DOWN state, to complete the set of transition probabilities, the
likelihood of the STAY state must also be estimated. This is done by using the temporal
coherence to compare the magnitude of the phase to three times the estimated phase noise
standard deviation, 𝜎𝜙𝑛

, of that epoch, which is determined using the circular Gaussian
distribution given in Eq. (4.3). This provides an estimate as to whether or not an ob-
served phase change contains significant movement with respect to the estimated level
of noise in the measurement. This probability of significance is estimated by comparing
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Figure 4.5: Example estimation of the transition probabilities based on an observed phase change𝜙dc = −2𝜋/3.
Left: blue indicates the upward branch and red indicates the downward branch. Right: blue indicates the T(UP),
red T(DOWN), and yellow T(STAY). The black dashed lines correspond to the UP and DOWN probabilities
estimated for 𝜙dc (not shown: T(STAY)=0).

the magnitude of the phase change with the n-sigma noise level:

𝑝sig = erf( 1√
2

⋅ |𝜙dc|
𝑛𝜎𝜙𝑛

) . (4.6)

The best value of 𝑛 is empirically found to be 1.5. Finally, to obtain the set of transition
probabilities, the probabilities of Eq. (4.5) are conditioned on 𝑝sig:

𝑇 (UP) = 𝑝𝑏1,2
⋅ 𝑝sig

𝑇 (DOWN) = 𝑝𝑏2,1
⋅ 𝑝sig

𝑇 (STAY) = 1 − 𝑝sig,
(4.7)

where the subscript 𝑏1,2 refers to the branch corresponding to upward motion, and 𝑏2,1
is the opposite branch corresponding to downward motion depending on the signs of
the terms in Eq. (4.4). A graphical example of how an observed phase change relates
to the transition probabilities is shown in Fig. 4.5. The emission probabilities describe
the likelihood of an external observation (in our case the RNN output) while being in
a given state. These probabilities are estimated by taking the values of the appropriate
column of the confusion matrix obtained from testing the RNN (Table 3.1). There are two
key differences which differentiate our implementation and a typical HMM example: (i)
the transition probabilities are usually assumed to be static, but in our case they change
with every epoch, and (ii) in our case, the transition probabilities are independent of the
current state, while usually they are not. The effect this has on the calculation is described
in Sec. 4.3.3.
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4.3.3 Modified Viterbi Algorithm
The Viterbi algorithm [97] describes how to predict the most likely sequence of states
in an HMM. It does this by predicting the most likely current state and subsequently
using that state’s transition probabilities in combination with the external observations to
predict the next state. Thus, the sequence of most-likely states, called the Viterbi path, is
determined. The output of this calculation is a “trellis” of probabilities 𝑃 which describe
the likelihood of being in a given state 𝑠 at epoch 𝑡 (corresponding to 𝑡𝑖 in Eq. (4.1)),
which can be written as

𝑃(𝑡, 𝑠) = 𝑃(𝑡 − 1, 𝑘) ⋅ 𝑇 (𝑘, 𝑠) ⋅ 𝐸(𝑡, 𝑠), (4.8)

where 𝑘 is the most likely state at time 𝑡 − 1, 𝑇 is the matrix of state transition probabil-
ities and 𝐸 is the matrix of emission probabilities. This calculation is simplified in our
implementation by the fact that the next state does not depend on the current state; that
is, while the set of state transition probabilities change from epoch to epoch, they are the
same for each state. Since 𝑃(𝑡−1, 𝑘) is the same for each choice of 𝑘, it becomes a scalar
which no longer affects the outcome and is dropped. We therefore calculate the trellis of
probabilities as

𝑃(𝑡, 𝑠) = 𝑇 (𝑡, 𝑠) ⋅ 𝐸(𝑡, 𝑠), (4.9)

which shows how the RNN estimation is combined with the wrapped phases to inform
the algorithm how the phase should be unwrapped. 𝑇 represents the information present
in the wrapped phases, and 𝐸 the information from the RNN. If one were to imagine
the case in which 𝐸 were not present, that is, 𝑃(𝑡, 𝑠) = 𝑇 (𝑡, 𝑠), the phase unwrapping
would be completely informed by the wrapped phases and the algorithm would behave
identically to the standard minimum gradient implementations. Inversely, if one were to
ignore the wrapped phases and take 𝑃(𝑡, 𝑠) = 𝐸(𝑡, 𝑠), the phase unwrapping would be
driven completely by the RNN. Therefore Eq. (4.9) shows how the final probabilities are
assessed based on the balance of the relative levels of confidence in the two sources of
information at that epoch.

4.3.4 Phase Unwrapping
The phase unwrapping works by stepping through the trellis to find the most likely state
at each epoch and integrating the corresponding phase. The two branches in Eq. (4.4)
are considered as the two possible paths the algorithm can take to unwrap the phase.
The algorithm steps through each epoch and selects the appropriate ambiguity level, i.e.,
−2𝜋, 0, or +2𝜋, to add to the phase at that epoch according to the value of the most likely
state. In the case of an UP state, the upper branch is chosen, and in the DOWN state,
the lower branch is chosen. In the STAY case, the branch corresponding to the smallest
phase change is selected. This way, the algorithm attempts to find the correct ambiguity
level without modifying the observed phases. When the observed phase change is low,
or the estimated level of noise is high, the algorithm becomes more conservative and the
STAY state becomes more likely, causing the algorithm to default back to the standard
minimum gradient solution.
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Figure 4.6: Normalized multi-modal PDF (greyscale) based on Eqs. (4.1) and (4.3) from downsampled exten-
someter soil height measurements (green trace) with additive noise, corresponding to Sentinel-1 revisit time
for (a) Rouveen and (b) Zegveld. 50 realizations of random noise are generated and solutions obtained using
the standard minimum gradient (red traces) and the RNN-aided (blue traces) approaches.

4.4 Results
4.4.1 Optimal Path Through Noisy Data
The RNN-aided algorithm is used to unwrap fifty instances of noisy phases originally
shown in Fig. 4.3, shown again with the RNN-aided solution in Fig. 4.6. While the RNN-
aided algorithm solutions contain significantly less error than their standard counterparts,
it can be observed that noise still has a significant effect on the solution. We therefore
include the option to retain multiple solutions which branch out in the problematic epochs
where the algorithm cannot confidently choose a certain path.

The effect of introducing the RNN-aided algorithm is clearly shown in Fig. 4.7,which
shows histograms of the error in the final epoch of the unwrapped time series with respect
to the true value in 1000 realizations of noise. Here, a downward skew can be seen in the
standard algorithm’s results at both locations, but which is particularly pronounced in the
Zegveld case. This downward skew is strongly mitigated by the RNN-aided algorithm,
and the correct solution is more consistently obtained.

4.4.2 Unwrapping Success Rates Versus Coherence
TheRNN-aided phase unwrapping algorithm is tested against a standardminimum-gradient
unwrapping algorithm to test its ability to correctly interpret the simulated deformation
phase as given in Eq. (4.1). Several values of temporal coherence ranging from 0.05
to 0.95 are swept through to generate the test cases, see Fig. 4.8 for Rouveen and Zegveld.
For each coherence level, 1000 independent noise simulations are generated according to
the circular Gaussian distribution in Eq. (4.3). Note that for this particular test, while the
noise is random from epoch to epoch, the coherence is held constant for the entire run
through the time-series. This simplification is made in order to generate the test statistics
and accurately compare the two algorithms in a standardized manner. For each time-
series run, the integer number of unwrapping errors is tallied and the unwrapping error
rate is determined by dividing the total number of errors by the number of unwrapping
operations performed for each coherence level (𝑁errors/𝑁epochs ⋅ 𝑁iterations). The position



4

58 4. Temporal Phase Unwrapping and Cycle Slips

Figure 4.7: Histograms of the error in the final epoch of the obtained time-series in (a) Rouveen and (b) Zegveld
of 1000 realizations of simulated noise. Red: standard algorithm. Blue: RNN-aided algorithm. The nearest
ambiguity levels are indicated by the black dashed lines. The standard algorithm produces results which are
downwardly skewed. This skew is corrected by the RNN-aided algorithm.

of the unwrapping error in the time series is not considered in this tally.
The RNN-aided unwrapping algorithm consistently outperforms the standard algo-

rithm in both cases. In the case of Rouveen, both are able to correctly unwrap the time-
series and retrieve the correct deformation phase in high-coherence scenarios, because the
deformation phase gradient never exceeds the unwrapping threshold. But as coherence
drops and noise levels increase, errors begin to appear in the solution. The RNN-aided
algorithm is more resistant to this noise, as it does not solely rely upon the wrapped
phases to estimate the correct ambiguity level. In the Zegveld case, the deformation gra-
dients are stronger and do exceed the unwrapping threshold even in a noiseless scenario.
Thus we conclude that the standard algorithm will intrinsically never be able to estimate
the correct ambiguity level. However, the RNN-aided algorithm is able to consistently
unwrap the time series correctly. As coherence decreases, the likelihood of making an
error increases, as spikes of noise can affect the algorithm’s ability to interpret the phase.
Nevertheless, the RNN-aided algorithm is still able to reject some of the effects of noise
and perform better, or as well as, the standard algorithm.

4.5 Discussion
Extensometer measurements gathered throughout the Dutch polderlands have shown that
there is a very close relationship between the phreatic groundwater level and soil height
[13]. While ground water measurements are not directly available, we are able to antici-
pate large shifts in the soil height which disrupt standard phase unwrapping by means of
a motion-classifier RNN. This model can very reliably anticipate the large changes in the
ground motion of nearby independent locations, as shown by the lower-right quadrant
of the confusion matrix in Table 3.1. The model has greater difficulty in differentiating
between significant and insignificant levels of motion in both directions, which is a some-
what arbitrary distinction. This can be avoided by removing the STAY class altogether,
however in that case the model predictions can become unstable, as even tiny or zero
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Figure 4.8: Algorithm performance curves of unwrapping success rate vs. coherence in (a) Rouveen and (b)
Zegveld. Red: standard algorithm. Blue: RNN-aided algorithm. In the Zegveld case, the standard algorithm
cannot exceed a success rate of approx. 98%. This means that at least one phase unwrapping error can be
expected for a time series containing 50 epochs (just under one year of Sentinel-1 data).

deformations must be given an UP or DOWN label by the model. We find that including
a STAY class corresponding to small deformations (< 3 mm) provides more accuracy in
making the distinction between large UP/DOWN events, which we choose to prioritize.

Previous InSAR studies of the Dutch peatlands which have attempted to directly mon-
itor the ground via DS processing [19] have failed to match the observations of other
geodetic techniques such as levelling, lidar surveys, and extensometer measurements,
and often strongly overestimate the true linear subsidence rate. The reason for this (as
discussed in Sec. 4.1) is due in large part to conventional phase unwrapping techniques
being unable to cope with the rapid movements which occur within the shortest temporal
baselines, as shown in Fig. 4.1, which results in estimates skewed downward, as shown
in Fig. 4.7. By removing this downward skew, we hope to enable accurate monitoring of
this region with DS InSAR for the first time.

The results of Fig. 4.8 show that the RNN can provide a significant performance gain
by supplying the unwrapping procedure with more information. The deformation test
scenario chosen based on the Zegveld extensometer measurements as shown in Fig. 4.1
shows a period of strong uplift in the autumn of 2020. When downsampling these mea-
surements to 6-day intervals corresponding to the Sentinel-1 overpass cycle, there is at
least one epoch in which the deformation phase exceeds half a cycle (𝜆/4) and the stan-
dard unwrapping procedures fail, even in the presence of little or no noise. On the other
hand, the RNN-aided algorithm is able to consistently retrieve the correct time series. In
the Rouveen case, both algorithms are able to achieve a 100% success rate (SR) given
a high enough coherence level. However, the RNN-aided algorithm is able to achieve
100% SR at lower levels of coherence, which shows how integrating more information
into the processing workflow will enable greater performance. Coherence itself can be
viewed as a measure of the information content in an interferogram (or lack of coherence
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as a measure of entropy). Thus, introducing new information to the algorithm creates
an increase in the “effective coherence” of the interferogram. For example, in the Rou-
veen case, Fig. 4.8 shows an effective coherence gain of Δ𝛾 = 0.175 at SR=100% when
moving from the standard unwrapping algorithm (𝛾 = 0.4) to the RNN-aided algorithm
(𝛾 = 0.225).

One can also observe that the RNN-aided algorithm performs differently between
locations, with better performance in Rouveen than in Zegveld. This is likely due to the
fact that the available dataset in Rouveen is much longer than in Zegveld. The Rouveen
dataset begins 1.5 years before the Zegveld one, which means that the RNN has more than
twice as much training data available to it. Therefore, one may also infer that the potential
for improvement as available datasets expand is very large, and that the performance of
these models will continue to improve as more data becomes available.

4.6 Conclusion
Phase unwrapping is an underdetermined problem which is conventionally sidestepped
by assuming that the correct solution is the one which corresponds to the smallest phase
change between epochs. While this is often a reasonable approach, ground-based mea-
surements have shown that this is not a good enough solution in certain regions, such
as the Dutch peatlands. If InSAR is to be used to monitor ground deformation in these
regions, a different approach is required. This necessitates the integration of additional
information to help solve the phase unwrapping problem.

This chapter demonstrated how ground-based measurements can be used to create a
model that anticipates large shifts in the ground level based on readily available environ-
mental information such as precipitation and temperature. Predictions from this model
are integrated into the phase unwrapping process by considering the system of wrapped
phases and model predictions as an HMM. The relative probabilities of which direction
the observed phases should be integrated into the time series can then be estimated us-
ing the Viterbi algorithm. While this scenario focused on a model to anticipate ground
movement caused by changes in precipitation and temperature, this HMM framework
can also be used in other cases in which a researcher would wish to integrate additional
information into a temporal phase unwrapping application.
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Loss-of-Lock
Why don’t you just use L-band?

Reviewer 2

This chapter introduces the term loss-of-lock to describe a specific form of coherence loss
which results in the breakage of an InSAR time series. Loss-of-lock creates a specific pat-
tern in the coherence matrix of a multilooked distributed scatterer by which it may be de-
tected. Along with identification, a new distributed scatterer processing methodology is in-
troduced which is designed to mitigate the effects of loss-of-lock by introducing contextual
data to assist in the time series processing. This methodology is of particular relevance to
regions which suffer from severe temporal decorrelation, such as northern peatlands. The
newmethod is applied to two subsiding cultivated peatland regions in The Netherlands which
previously proved impossible to monitor using distributed scatterer InSAR techniques. Re-
sults show a very good agreement with in-situ validation data as well as spatial correlation
between regions and the natural terrain.

Highlights:
1. Loss-of-lock is defined and shown to be a common occurrence in distributed scatterer

InSAR problems.
2. A novel distributed scatterer InSAR processing methodology is introduced with a strat-

egy to mitigate the effects on loss-of-lock.
3. Initial results on test locations demonstrate the feasibility of the new methodology.

Parts of this chapter have been published in IEEE Transactions on Geoscience and Remote Sensing,
Vol. 61, No. 5220911 [98].
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Figure 5.1: Canonical coherence matrices showing different types of coherence losses for a set of five subse-
quent SAR acquisitions. Shaded cells: interferometric combinations that are sufficiently coherent to produce
a useful phase estimation. Empty cells: insufficiently coherent combinations. a) An intermittent loss of co-
herence at epoch 𝑡𝐿 that does not produce a loss-of-lock, because coherent interferometric combinations exist
which connect epochs preceding and following 𝑡𝐿. Archetype: intermittent snow cover. b) A loss of coher-
ence resulting in a loss-of-lock. There are no sufficiently coherent interferometric combinations connecting the
epochs preceding and following 𝑡𝐿. Archetype: plowing, harvesting.

5.1 Introduction
5.1.1 Definition of Loss-of-Lock

I nterferometric coherence is a measure of how much information is available in an in-
terferogram. While losses of coherence are a common phenomenon, we differentiate

between intermittent losses of coherence, where an event results in the loss of one or
more epochs, but the overall time series is unaffected (Fig. 5.1a); and loss-of-lock, a
more serious loss of coherence which results in an irreparable discontinuity of the time
series (Fig. 5.1b). A loss-of-lock is defined at a given epoch 𝑡𝐿 such that a sustained
loss of coherence is observed, and no coherent interferometric combination exists which
connects observations across the epoch in question. At low sample coherences (<0.1),
the distribution of the interferometric phase approaches a uniform distribution [64]. This
means that all useful interferometric information (i.e. the displacement component of the
interferometric phase) at that epoch is lost. Thus, the time-series is effectively cut at 𝑡𝐿,
and the information content in the SAR image stack alone is not sufficient to estimate a
connected set of interferometric phases spanning the entire observation period without
additional information or assumptions.

Loss-of-lock is a diagnostic term in that it is defined based on conditions in an observed
coherence matrix, rather than the occurrence of a particular scattering phenomenon, al-
though the coherence losses are ultimately related to physical changes in the scattering
object(s). For instance, a short-lived snowfall on an otherwise undisturbed and station-
ary grassland will result in an intermittent loss of coherence, while a loss-of-lock may be
caused by agricultural activities such as plowing, or changes in vegetation such as har-
vesting of crops, resulting in a drastic reconfiguration of the scattering geometry of the
ground, without implying any subsidence.

It is important to note that the presence of a loss-of-lock event may not be readily
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Figure 5.2: Two examples of a loss-of-lock which result in different interpretations, resulting in a perceived
change in the displacement phase at epoch 50. Top: interferometric complex phasors, with arrows indicating
the mean value pre- and post- loss-of-lock (blue and red, respectively). Bottom: resulting unwrapped phases.
Blue dots: true (noisy) displacement phase of the ground level. Red dots: observed (noisy) displacement phase
in the presence of loss-of-lock. Green dashed line: estimated linear velocity.

apparent from inspecting a displacement (or phase) time series. If one considers an event
in which the mean surface level of the region under observation remains constant, but the
scattering geometry changes drastically (for instance by ploughing), due to the wrapped
nature of phase observations, the wrapped phase observation following the event may
quite likely fall close to that of the previous epoch, and both phase unwrapping algorithms
and manual inspection will overlook the change (as shown in Fig. 5.2 a) and b)). Alterna-
tively, it is also possible for large phase differences to be observed, due to changes in the
scattering surface which are then misattributed as displacements (as shown in Fig. 5.2 c)
and d)).

Different sensors will be sensitive to different phenomena occurring on the ground
and in the atmosphere, i.e. a loss-of-lock observed at C-band may not be observed at L-
band. A more practical description of the phenomena affecting our study area is provided
in Sec. 5.1.2.
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Figure 5.3: Observed coherence matrix showing loss-of-lock in Sentinel-1 ascending track 88 of a multilooked
region near Zegveld, the Netherlands. The red and magenta dashed lines are added to indicate the disconnected
coherent periods. When or if a loss-of-lock occurs depends on the minimum allowable coherence threshold
(discussed in 5.1.2).

5.1.2 Observed Loss-of-Lock Events
A practical example of loss-of-lock is shown in Fig. 5.3, showing sample coherences for
the period between January 2020 to May 2021. Two coherent periods (identified with the
red dashed lines) are separated by a substantial amount of time, but more importantly,
it can be seen that there is no significantly coherent interferometric combination linking
them. This means that the two periods are effectively disconnected, and additional infor-
mation will be required to estimate a time series spanning the entire observation period.
Depending on the threshold used, an additional loss-of-lock event can be observed, re-
sulting in three coherent periods, as indicated by the magenta lines. This shows that: i)
detecting a loss-of-lock is dependent on the choice of allowed level of noise vs. amount
of data used, and ii) a loss-of-lock can be both a sudden and/or a sustained condition. This
choice of threshold is discussed further in Sec. 5.2.5.

5.2 Distributed Scatterer Processing Methodology
5.2.1 Overview
A high-level end-to-end process flow diagram is given in Fig. 5.4. The system makes use
of two well-established InSAR software packages, Delft Object-oriented Radar Interfero-
metric Software (DORIS) [99] and Delft Persistent Scatterer Interferometry (DePSI) [54]
(blue and red sections of Fig 5.4, respectively). DORIS is used to align, resample, and ge-
olocate the level-1 single-look complex (SLC) SAR image stack. DePSI is used to create a
network of point scatterers (PS) and estimate an atmospheric phase screen (APS), which



5.2. Distributed Scatterer Processing Methodology

5

65

Figure 5.4: Simplified process flow diagram showing the major steps taken to create DS time series estimates
from Sentinel-1 Level 1 SLC SAR data with the aid of spatial and temporal contextual data. DECADE v0
software implementation.
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Figure 5.5: Graphical visualization of spatial contextual data in QGIS, based on land parcel polygons of the
region surrounding Zegveld, The Netherlands. The attributed polygons are shown in green over a background
optical satellite image of the region. A parcel of interest is highlighted with a red border, and the corresponding
contextual group is highlighted in yellow.

can be applied to both the point scatterer (PS) and distributed scatterer (DS) phase obser-
vations. The remaining parts of this section are dedicated to describing the “Contextual
Data” and “DS Processing Workflow” sections of the diagram (yellow and blue sections
of Fig 5.4, respectively), which are the novel aspects of this methodology. This method
has been implemented in a software package called Delft Contextually-Aided Distributed
Scatterer Environment (DECADE).

5.2.2 Spatial Contextual Data and DS Pixel Identification
Three publicly available spatial datasets are combined via a spatial join operation: cadas-
tral land use (parcel) polygons, soil maps, and groundwater management zones (Dutch:
peilgebied) [100]. The datasets are provided as vector geometries in geopackage format,
allowing for a straightforward combination of the data. This is accomplished by taking
the land parcel delineations in the cadastral dataset as the base layer for the spatial join
and performing a one-to-one attribution with the features with the largest overlap. While
the cadastral and groundwater management zones follow similar geographic boundaries,
the soil map has a different spatial structure and this one-to-one attribution results in some
information loss. For instance, a parcel mostly composed of peat with a smaller vein of
sand running through it will simply be labelled with the peat soilcode. This is done to
constrain the problem variables and have only one value per region. This method could
be extended for regions with larger or more heterogeneous parcels by subdividing them
either geographically or based on other relevant contextual information. Finally, the near-
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est weather station is found by Voronoi polygonization, and its corresponding ID is added
in order to enable attribution of (temporal) meteorological data. An example of such a
combined dataset is shown in Fig. 5.5.

DORIS provides a coregistered SLC stack along with the geolocation of each pixel
in a grid. Each pixel in the stack can therefore be assigned an ID corresponding to the
polygon it belongs to (Fig. 5.5). Each polygon is assigned a coordinate according to its
centroid.

5.2.3 Coherence Matrix and ESM Phase Estimation
Multilooking is performed on a per-polygon basis. As can be seen in Fig. 5.5, the Dutch
peatlands are divided into large rectangular parcels surrounded by drainage ditches, which
provides us with a natural set of multilooking boundaries. While parcel sizes vary in shape
and size, in general, the groundwater level and land cover within a parcel is consistent,
atmospheric delay variability will be negligible (at the sub-mm level) [33], [55], and a
parcel will typically contain 100 pixels. A minimum number of 50 pixels per polygon is
enforced for noise suppression. Thus we are able to ensure ergodicity and representativity
while maximizing the number of equivalent looks. Following this parcel selection, we
also optionally apply a statistically homogeneous pixel (SHP) test as outlined in [58]. This
can filter out misattributed pixels due to geolocation errors in the radar and contextual
data, as well as the effects of unwanted scatterers within the region, such as electrical
masts, light posts, trees, etc.

The complex sample coherence matrix of a multilooked region, Γ̂, consisting of ele-
ments ̂𝛾𝑖𝑗 is given by

|𝛾𝑖𝑗| =
∣ ∑
𝑛∈Ω

𝑆𝑛
𝑖 𝑆𝑛

𝑗
∗∣

√( ∑
𝑛∈Ω

|𝑆𝑛
𝑖 |2) ( ∑

𝑛∈Ω
|𝑆𝑛

𝑗 |2)
, (5.1)

where 𝑆𝑛
𝑖,𝑗 is the 𝑛th single-look complex (SLC) SAR pixel 𝑛th pixel acquired at epochs

𝑖 and 𝑗, the asterisk denotes the complex conjugate, and Ω is the set of all selected pixels
within the multilooked region. We differentiate between the complex coherence matrix
Γ, and the coherence matrix, |Γ|, which is the matrix of the magnitudes of the elements
of Γ. An example of |Γ̂| of a multilooked parcel is shown in Fig. 5.3.

An Equivalent single master (ESM) [101] set of phases is estimated using the “EMI”
method, as described in [29]. This procedure reduces the full set of all interferometric
combinations to a single set of consistent phases, ̂𝜙esm, as estimated by the phase of the
minimum eigenvector of the Hadamard product of the inverse of the sample coherence
matrix with the complex sample coherence matrix, as given by

(|Γ̂|−1 ∘ Γ̂)𝜉 = 𝜆𝜉, (5.2)

where ∘ denotes the Hadamard product, 𝜆 is the eigenvalue, and 𝜉 is the eigenvector. The
estimated interferometric phases are given by

̂𝜙esm = arg{𝜉}. (5.3)
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Strong decorrelation can hinder the effectiveness of the ESM phase estimation. In
cases in which coherence is completely lost during a loss-of-lock event, it may be ad-
vantageous to only perform the estimate within the identified coherent blocks. This can
reduce the amount of noise at the input to the estimator, however, one risks losing useful
long-term coherent information (see Sec. 6.2.1). The decision to perform block-wise es-
timation could also be driven by contextual data, i.e. a-priori information about the land
use/cover which indicates that a loss-of-lock has occurred, such as knowledge of plowing
or harvesting events.

The estimated ESM phases ̂𝜙esm per polygon are then imported into DePSI as vir-
tual points into the secondary network of scatterers in order to apply atmospheric phase
screen (APS) filtering. The locations of the virtual representative points are given by the
centroids of the given parcel polygon. The APS estimation is based on an initial primary
network of PS’s. The filtered phases ̂𝜙aps are read back out of DePSI following the APS
filtering stage.

5.2.4 Contextual Enrichment and Grouping
We have now obtained a set of wrapped, multilooked and filtered DS phases which are
each characterized by the set of attributes shown in Fig. 5.5, along with a point coordi-
nate given by the polygon centroid. The parcels and their estimated phases are grouped
together according to their shared attributes, establishing contextual groups. We con-
tend that parcels which share the same land use, soil classification, and belong to the
same groundwater management regime should be expected to behave in a similar fash-
ion. That is, although we expect to see variations in phase according to differing noise
and clutter conditions, local variations in soil stratigraphy, and variations in the optical
depth due to land cover, we expect that the parcels in a contextual group can be expected
to move according to the same displacement model in the mean sense. This grouping
becomes critical in the context of bridging loss-of-lock in the parcel time series, which is
described in Secs. 5.2.5, 5.2.6, and 5.2.7. The contextual group corresponding to the red
highlighted parcel of Fig. 5.5 is indicated in yellow. The identified contextual groups are
then filtered by their number of members: we have found a minimum of 30 members is
needed to ensure sufficient coverage throughout the year, however, this value will change
depending on the coherence behaviour of the area under investigation.

5.2.5 Segment Identification
Due to the loss-of-lock phenomenon, attempting to interpret the entire ESM time series of
phases at once is not possible and will result in several types of error, such as interpreting
a noise-dominated signal as real deformation, or phase unwrapping errors when transi-
tioning from incoherent to coherent interferograms [19]–[23]. Thus, a different approach
is required.

We begin by identifying which parts of a time series are of sufficient quality that they
contain physically interpretable information which can be unwrapped with an acceptable
degree of error. Despite using a full-rank method to estimate the ESM phases (Sec. 5.2.3),
we find that the best quality indicator we have available is the so-called daisy-chain co-
herence, | ̂𝛾dc|, which is the magnitude of the first off-diagonal of the coherence matrix
(corresponding to the indices 𝑗 = 𝑖 − 1 in Eq. (5.1)). These are the coherence magni-
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tudes of the interferograms with the shortest temporal baseline in the dataset, which for
Sentinel-1 data is six days. In general, we expect these to be the most coherent interfero-
grams in the dataset, as less time has passed for decorrelation effects to occur [26], while
orbital baselines for Sentinel-1 are always small, resulting in negligible baseline decor-
relation [33]. We threshold the daisy-chain coherence to identify sufficiently coherent
subsections of the full time-series, which we term (temporal) segments. A segment is a
contiguous subset of a time-series in which the coherence is sufficiently high to estimate a
consistent set of interferometric phases. Thus a segment is defined by two thresholds: the
minimum coherence, and the minimum number of consecutive coherent epochs, which
can be determined experimentally. In our case, a minimum of five consecutive epochs
with ||ℎ𝑎𝑡𝛾dc| > 0.12 is used as a threshold.

Each contextual group therefore contains many coherent segments: one for each con-
tiguously coherent period of a parcel, times the number of parcels, times the number of
satellite tracks covering the area of interest (AOI), which can be combined. By consider-
ing such a large number of segments, we are able to span loss-of-lock events in one parcel
time series with coherent observations from a neighbouring one from the same contextual
group.

5.2.6 Temporal Ambiguity Resolution
The identified segments are initially treated as independent time-series. Temporal phase
unwrapping (or ambiguity resolution) is performed independently on each segment using
a method aided by a machine learning model, as described by [75] (Ch. 3). The ground
surface level of peatlands is extremely unstable and prone to rapid fluctuations depending
on temperature and precipitation levels, so we use a recurrent neural network (RNN)
to aid in making predictions about which ambiguity level is correct. This RNN model
uses temperature, precipitation, and day of year as inputs, which is publicly available
daily weather data. Detailed information about the implementation and testing of the
methodology is provided in [75] (Ch. 4).

5.2.7 Displacement Model
We have now obtained a collection of temporally unwrapped segments, which are in-
ternally consistent but disconnected from one another by an unknown vertical shift, Δ𝑧,
which represents the unknown displacement history of the DS during the loss-of-lock
period. Thus, in order to recombine the coherent segments, this unknown shift must be
estimated. This can be accomplished with the aid of a displacement model, which can be
used to align all the segments of a contextual group.

A parametric model which relates precipitation and evapotranspiration to soil surface
displacement at a particular location has been developed in [76], and is detailed in Ch. 3.
The modeled soil surface height, 𝑧𝑀 , is a function of precipitation, evapotranspiration,
and the Holocene stratigraphy at the modeled location. It is combination of reversible
processes, such as shrinkage and swell, and irreversible processes, such as soil oxidation:

𝑧𝑀(𝑥, 𝑡) = 𝑅(𝑥, 𝑡) + 𝐼(𝑥, 𝑡), (5.4)

where the model is parameterized by the lithology dependent unknowns in 𝑥 and 𝑡 is
time in days. 𝑅 represents the reversible component and 𝐼 is the irreversible component
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of the relative soil surface position. The reversible component is estimated by the scaled
cumulative difference between precipitation and evapotranspiration:

𝑅(𝑥, 𝑡) =
𝑡

∑
𝑡′=𝑡−𝜏

[𝑥𝑃 ⋅ 𝑃 (𝑡′) − 𝑥𝐸 ⋅ 𝐸(𝑡′)], (5.5)

where 𝑥𝑃 and 𝑥𝐸 are empirical scaling factors, and 𝜏 is the integration time. 𝑃 is daily
mean precipitation [mm], and 𝐸 is daily mean reference evapotranspiration [mm] [84].
Daily values for 𝑃 and 𝐸 are provided at every weather station in the Netherlands [102].

The irreversible component is approximated as a linear rate, which is only considered
active when 𝑅 is negative, indicating drying soil conditions:

𝐼(𝑥, 𝑡) =
𝑡

∑
𝑡′=𝑡0

𝑥𝐼 ⋅ 𝑓(𝑥, 𝑡), (5.6)

where 𝑥𝐼 is a constant, and

𝑓(𝑥, 𝑡) = {0, for 𝑅(𝑥, 𝑡) > 0
1, for 𝑅(𝑥, 𝑡) ≤ 0. (5.7)

Thus, the model is parameterized by the four unknowns

𝑥 = [𝑥𝑃 , 𝑥𝐸, 𝑥𝐼 , 𝜏 ]. (5.8)

These parameters depend on the depth and stratigraphy of the Holocene sequence at a
given location, i.e. the lithology of that location. Details on the validation of the model
is provided in [76]. For the test locations shown in Sec. 3.5.3, the RMSE of the model
with validation data is 6.9 mm in Zegveld, and 4.1 mm in Rouveen.

Now we will show how to accurately estimate these model parameters, given the
sparse unwrapped measurements we have available. This result can then be used to
align the unwrapped segments of a given contextual group and estimate a continuous
displacement time series. The relationship between the unwrapped ESM phases of the
𝑛th segment of a given DS polygon, 𝜙esm,𝑛, and the group displacement model, 𝑧𝑀 , is
given by

𝜙esm,𝑛(𝑡) = −4𝜋 cos 𝜃inc
𝜆 ⋅ [𝑧𝑀(𝑥, 𝑃 (𝑡), 𝐸(𝑡)) + Δ𝑧𝑛] + 𝜖; ∀ 𝑡 ∈ 𝑇𝑛, (5.9)

where 𝑡 is time, 𝜃 is the incidence angle, 𝜆 is the wavelength, Δ𝑧𝑛 is the unknown ver-
tical shift (constant for a given segment), 𝜖 is a combination of noise, phase unwrapping
errors and model residuals, and 𝑇𝑛 is the set of all epochs in the 𝑛th coherent segment.
Eq. (5.9) cannot be solved in its current form, as the model parameters 𝑥 must be known
a-priori in order to evaluate the correct Δ𝑧. While they can theoretically be estimated
simultaneously, the high degree of correlation between these unknowns can result in a
very poor estimation. Instead, we note that Δ𝑧 is common for all phases within a given
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segment. Thus by taking the difference in time between phases (i.e. the equivalent daisy-
chain (EDC) phase), the Δ𝑧 term drops out and the model parameters 𝑥 can be estimated
directly by solving

𝜙edc,𝑛(𝑡) = −4𝜋 cos 𝜃inc
𝜆 ⋅ Δ𝑧𝑀(𝑥, 𝑃 (𝑡), 𝐸(𝑡)) + 𝜖Δ; ∀ 𝑡 ∈ 𝑇𝑛. (5.10)

Now that the model parameters have been estimated, the Δ𝑧 for each coherent seg-
ment can subsequently be estimated by taking the average difference between the model
and the ESM phase time series over the coherent period 𝑇𝑛:

Δ ̂𝑧𝑛 = ⟨ −𝜆
4𝜋 cos 𝜃inc

⋅ 𝜙esm,𝑛(𝑡) − 𝑧𝑀( ̂𝑥, 𝑃 (𝑡), 𝐸(𝑡))⟩ ; ∀ 𝑡 ∈ 𝑇𝑛, (5.11)

where ̂𝑥 are the estimated model parameters, and ⟨⋅⟩ denotes averaging. This process
is repeated for each contextual group described in Sec. 5.2.4, so there is one model for
every identified contextual group.

This method can also be used to align the phase observations of multiple satellite
tracks together, provided there is no significant horizontal motion, or else that the vertical
component of the displacement phase can be accurately estimated, and that care is taken
to ensure that the same object is used as a reference point across all tracks.

5.2.8 Spatial Ambiguity Resolution
The typical approach to DS InSAR processing involves applying a minimum cost flow
spatial unwrapping algorithm to the data, such as the well-known SNAPHU algorithm
[71]. However, this approach is not well-suited to peatland observations due to rapid
soil movements and the high degree of multilooking required [21], [23], [75]. Hetero-
geneity in both the type and depth of the soft soil layer of the Holocene will result in
different responses to the seasonal weather conditions which the ground is exposed to,
leading to spatial differences in the seasonal amplitude of the reversible displacement.
When combined with high degrees of multilooking, this can create sharp discontinuities
in the downsampled interferogram, which will essentially lead to aliasing if strong spatial
continuity constraints, such as those in SNAPHU, are applied [103].

For these reasons, direct spatial comparison of phase changes between adjacent parcels
is an error-fraught process, and could result in introducing additional phase unwrapping
errors instead of improving the result. We therefore take advantage of the mean displace-
ment of the contextual group, which is the best estimate of how the contextual group of
parcels should behave on average. Since a time series for the expected mean behaviour
of the contextual group has already been estimated, it is now a straightforward process
to apply integer least-squares (ILS) or an integer bootstrapping estimation[73], [104] to
refine the estimated ambiguities of each DS polygon belonging to the contextual group.
The ambiguities are estimated by first obtaining a float solution, given by

̂𝑎 = (𝐴𝑇 𝑄−1
𝑦 𝐴)−1𝐴𝑇 𝑄−1

𝑦 ( ̂𝜙𝑝 − ̂𝜙group), (5.12)

where ̂𝑎 are the real-valued float ambiguity corrections, 𝐴 is 2𝜋 times the 𝑛 × 𝑛 identity
matrix, ̂𝜙𝑝 is the vector of unwrapped interferometric phases of the 𝑝th DS polygon,
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and ̂𝜙group is the vector of mean unwrapped phase of the entire contextual group. 𝑄𝑦 is
the variance-covariance matrix of the phase observations, and can be approximated by
the Cramer-Rao bound (CRB) [20]. Thus, the covariance between two interferometric
phases, 𝜙𝑖𝑗 and 𝜙𝑘𝑙 is approximated by

Cov{𝜙𝑖𝑗, 𝜙𝑘𝑙} ≈ |𝛾𝑖,𝑘||𝛾𝑗,𝑙| − |𝛾𝑖,𝑙||𝛾𝑗,𝑘|
2𝐿 ⋅ |𝛾𝑖,𝑗||𝛾𝑘,𝑙|

, (5.13)

where 𝐿 is the effective number of looks [33], and |𝛾| is the magnitude of the sample
coherence (as determined by Eq. (5.1)) of the given interferometric combination, as indi-
cated by the epoch subscripts 𝑖, 𝑗, 𝑘 and 𝑙. Next, integer bootstrapping [105] is be applied,
which provides the most likely integer ambiguities as

̌𝑎 =
⎡
⎢⎢
⎣

̌𝑎1
̌𝑎2
⋮
̌𝑎𝑛

⎤
⎥⎥
⎦

=
⎡
⎢⎢
⎣

[ ̂𝑎1]
[ ̂𝑎2 − 𝑙21( ̂𝑎1 − ̌𝑎1)]

⋮
[ ̂𝑎2 − ∑𝑛−1

𝑖=1 𝑙𝑛𝑖( ̂𝑎𝑖 − ̌𝑎𝑖)]

⎤
⎥⎥
⎦

, (5.14)

where [⋅] is the rounding operator, ̌𝑎 ∈ ℤ𝑛 is the vector of estimated integer ambiguities,
and 𝑙 are the entries of a lower triangular matrix 𝐿 obtained by decomposing the matrix
𝑄−1

𝑦 into 𝐿 and a diagonal matrix 𝐷, such that 𝐿𝐷𝐿𝑇 = 𝑄−1
𝑦 .

5.2.9 Overall Model Test
Finally, a quality check is performed on the estimated contextual group results to ensure
reliability. Overall statistics of the estimated contextual group parameters are generated
for the entire AOI, and groups are flagged whose parameters deviate significantly (i.e.
greater than 2𝜎). The unwrapped parcel phases of the member parcels are compared to
the estimated group model in flagged groups in which it is suspected that the contextual
groupmodel has been poorly estimated bymeans of an overall model test (OMT) to assess
the level of agreement between the overall group model and the constituent parcels.

The OMT is performed by comparing the model residuals ̂𝑒 to the estimated precision
of the observations 𝑄𝑦 to generate the test statistic 𝑇 for each DS polygon:

𝑇 = ̂𝑒𝑇 𝑄−1
𝑦 ̂𝑒, (5.15)

for a time series with 𝑁 total epochs, the 𝑛th element of ̂𝑒 is given by

̂𝑒𝑛 = Δ𝜙(𝑡 = 𝑡𝑛) − −4𝜋 cos 𝜃
𝜆 ⋅ Δ𝑀( ̂𝑥, 𝑡 = 𝑡𝑛). (5.16)

The operator Δ refers to the fact that we use the differential daisy-chain phase as defined in
Eq. (5.10) in order to remove the estimated vertical displacement shifts (the displacement
occurring during the loss-of-lock periods) from the equation.

The test statistic 𝑇 follows a central chi-squared distribution with four degrees of free-
dom, corresponding to the four unknown model parameters (Eq. (5.8)), and is compared
to a critical value which follows from a chosen significance level 𝛼. If 𝑇 exceeds the
critical value, then the model does not follow the observations to within the estimated
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precision of the observations at that significance level. In our case, the precision estima-
tion comes from the CRB, which is the theoretical lower bound on the best achievable
uncertainty. Thus while it is correlated with the true uncertainty, estimating the CRB
based on the sample coherence (Eq. (5.13)) will systematically overestimate the uncer-
tainty of the phase observations. Therefore the significance level is chosen more strictly
to compensate for this.

The OMT is performed recursively on flagged groups by choosing an initial 𝛼 and
removing points which are rejected by the test. The model parameters of the contextual
group are then re-estimated with the rejected points removed. If the new model param-
eters fall below the acceptable threshold then the group is sustained. If the parameters
still deviate, 𝛼 is slowly decreased and the procedure performed again. If after several
iterations (ex. 5) the estimated model parameters still fall outside the accepted bounds, it
is concluded that the model is not suitable for the terrain in question, and the group result
is discarded. In a multiple hypothesis testing context, this procedure could be reiterated
with an alternative model.

5.3 Results
5.3.1 Description of Satellite Data Used
Sentinel-1 imagery of two 10×10 km regions around Zegveld and Rouveen, The Nether-
lands, are used as test sites for the time period spanning Jan. 2017 - Dec. 2022. In
Zegveld, four tracks are used: ascending 088 and 161, and descending 037 and 110. In
Rouveen, three tracks are used: ascending 015 and 088, and descending 037. The un-
wrapped segments of all available tracks are combined (as discussed in Sec. 5.2.7) by
projecting them onto the vertical after ensuring that all phases are referenced to the same
object. The common reference point is found by identifying common PSs, i.e. points that
are visible in all tracks and located on the same object. The PS with the lowest total
normalized amplitude dispersion across all tracks is chosen as a common reference.

5.3.2 Multilooking Based on Contextual Data vs SHP Test Only
A comparison between a standard multilooking approach which employs 300×300 m
regions and the parcel-based multilooking approach is shown in Figs. 5.6 a) and b), re-
spectively. As can be seen in the standard approach, despite the use of an SHP test,
pixels from a number of objects which we do not expect to behave the same way are still
averaged together. This is particularly apparent in the NE and NW corners of the image,
where agricultural fields, residential yards, and greenery along roadways are all grouped
together.

By including parcel cadastral information, we can help ensure that we are indeed
averaging pixels which belong to the same objects or regions. An SHP test can also still
be applied to remove unwanted pixels from within the parcel boundaries.

5.3.3 Coherent Segment Identification and Commonalities
Fig. 5.7 illustrates the advantage of grouping similar parcels together into contextual
groups. While almost all regions provide sufficiently coherent (i.e. |𝛾dc| > 0.12) data
over the winter period, from approximately October to April, the coherence of most re-
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Figure 5.6: Comparison between two multilooking strategies of the same area, colour-coded by region. Solid
lines: boundaries of a given multilooking region. Circles: pixels included in the multilooking. a): Standard
square multilooking procedure using 300×300 m areas. b): Parcel-based multilooking.

gions drops significantly in the spring and is only intermittently present throughout the
summer period until the following October. However, by combining the observations
of enough similar parcels, we are able to have a year-round set of data with which to
estimate the parameters of the displacement model as per Eq. (5.10). The coherence
threshold of |𝛾dc| > 0.12 was experimentally found to be the highest value which still
ensured sufficient data coverage year-round.

It is interesting to note that there is both a systematic and a random aspect to the
coherence behaviour of these regions. A systematic loss of coherence from April to Oc-
tober is clearly visible in the majority of parcels, however, the exact timing of this loss,
as well as the intermittent recovery of coherence during the summer, seems to be a ran-
dom event. This distribution is visualized by the shading of the background of Fig. 5.7.
While it is clear that losses of coherence in these regions are caused by agricultural activ-
ities such as mowing and grazing, as well as changes in the scattering properties of the
medium [26] caused by the drying of the soil and vegetation over the summer periods,
it is unclear why some parcels seem to show higher coherence levels than others from
the same contextual group at the same moments in time. This may be caused by some
fields being used more intensively for agriculture than others, for instance differences in
the level of grazing between various fields.

5.3.4 Time Series Estimation
An example group time series result is given in Fig. 5.8. This result demonstrates how the
displacement estimates of several temporarily coherent regions can be combined together
to produce an unbroken time series of the overall region. The result matches very well
with the available in-situ validation data. Note that the validation data is not available for
the entire span of the time series due to their installation dates. The difference between
the contextual group median result and the validation data is quantified by the root mean
square difference (RMSD) in Table 5.1. However, it should also be noted that we do not
expect an exact match between the InSAR and ground-based results, because the InSAR
result shows the average behaviour over a large spatial extent, whereas the ground-based
measurement is of a single point. Moreover, the ground-based results do not capture
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Figure 5.7: Chart showing the availability of coherent data over time for a period of one year for a selection of
parcels belonging to the same contextual group. The y-axis indicates the ID number of a given parcel, and the
presence of a solid line indicates the presence of sufficiently coherent data. The background is shaded to indicate
the relative degree of availability (i.e. the number of coherent parcels divided by total number of parcels) such
that a white background indicates complete availability with darker shading as availability decreases.

Table 5.1: Difference between InSAR and extensometer estimates

Location Zegveld Rouveen
Parcel RMSD (mm) 7.9 6.6
Group RMSD (mm) 6.9 5.3

the influence of the top five centimeters of soil, due to the position of the extensometer
anchors. Nevertheless, as the major factors driving the motion are the same for both
cases, we see that the agreement between them is very close, particularly in the observed
short-term dynamics.

5.3.5 Effective Number of Looks Over Time
An important factor governing the quality of the result is the effective number of looks [33],
shown in Fig. 5.9. This number fluctuates throughout the year due to the availability of
coherent segments in the contextual group, as discussed in Sec. 5.3.3. It is important to
ensure that there remain enough coherent observations during the periods in which most
regions are incoherent. If too few coherent observations are present, then the overall con-
textual group result can become biased by the behaviour (and noise) of only a few pixels.
The effective number of looks 𝐿 used at a given time is given by

𝐿 = (No.segments) × (No.pixels/segment) × OSR, (5.17)
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Figure 5.8: Surface level time series results plotted against in-situ extensometer measurements for the period
Jan. 1, 2017 – Dec. 31, 2022 at the a) Zegveld and b) Rouveen regions. Grey lines: all segments of all parcels
belonging to the contextual group. Blue line: contextual group median time series. Red line: Mean of time
series segments of a selected parcel in the contextual group. Black line: in-situ measurement by extensometer
of the same parcel. All the individual coherent segments belonging to the contextual group are shown in grey
for readability.

where OSR is the oversampling rate given by

OSR = PRF
BWaz

⋅ 𝑓𝑠
BWr

(5.18)

where PRF is the pulse repetition frequency, 𝑓𝑠 is the range sampling frequency, and
𝐵𝑊az and 𝐵𝑊r are the azimuth and range bandwidths, respectively.

5.3.6 Estimated Linear Rates
Approximate linear subsidence rates are shown in Fig. 5.10. These rates are estimated
by linear regression of the contextual group mean time series results shown in Sec. 5.3.4,
however, it should be noted that the total length of the observation period (five years) is
too short to establish a robust estimate of the rate. Thus, these results provide an order
of magnitude estimate and can be used to assess the spatial distribution of subsidence in
the area.

5.4 Discussion
5.4.1 On the Absence of Contextual Data
It is quite likely that in some cases, additional contextual data may not be available for the
region under investigation, for instance in peatland regions in remote locations. In such
a case, additional remote sensing data may be integrated into the processing workflow
in order to identify and group common pixels together, such as the SAR backscatter
data, as is done in the established squeeSAR [58] method, or through the use of semantic
segmentation techniques on co-located optical or hyperspectral imagery. A-posteriori
techniques such as t-SNE [106], [107] can potentially be used to group similarly behaving
scatterers together into contextual groups.
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Figure 5.9: Chart showing the effective number of looks over time for the period Jan. 1, 2017 – Dec. 31, 2022
for the same contextual group shown in Fig. 5.8a.

5.4.2 Model Reliability and Goodness of Fit
Steps are taken to ensure goodness of fit and reliability of the estimated model with the
overall model test (Sec. 5.2.9). The 𝑇 -score of a given parcel (eq. (5.15)) is shown in
Fig. 5.11, however whether or not that parcel is used in the final rate estimation depends
on the procedure outlined in Sec. 5.2.9. When comparing Fig. 5.10 to Fig. 5.11, it can
be seen that some parcels with a high 𝑇 -score, and therefore a poor agreement with the
contextual group model, are discarded from the final result. These are the ones detected
by the iterative testing procedure. Other parcels with high 𝑇 -scores are flagged for further
re-evaluation but are not discarded immediately because their corresponding groups fall
within expected bounds. There are several main causes of error which make a parcel
deviate from the estimated contextual group model:

• Misattribution within the contextual dataset: for example, errors in the soil map,
or incorrect land use classifications

• Phase unwrapping errors
• Noise and decorrelation
• Model parameter estimation errors

Often these causes are correlated; a misattributed parcel may be grouped with a set of
other parcels in which it should not belong, and introduce error into the contextual group
model estimation. One region where this is evident is in a group of central-northern
parcels (approx. coordinates: 52.62∘N, 6.13∘E) in the Rouveen area. Although classified
as grassland, it is in fact a large rewilded “Natura-2000” region. Some of the parcels in
this region are more densely covered with vegetation as opposed to being simple grass-
lands. This means that the phase behaviour in these parcels is possibly different from the
surrounding areas, and in some cases the estimated displacement model may not be valid
there. The OMT procedure is able to identify this and re-estimate a valid model with
the remaining parcels not discarded by the test. A similar situation is visible in the SW
corner of the Zegveld region (approx. coordinates: 52.095∘N, 4.75∘E).
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Figure 5.10: Colour-coded map of estimated linear subsidence rates for the period Jan. 1, 2017 – Dec. 31, 2022
at the a) Zegveld and b) Rouveen regions. Parcels with no fill indicate that no estimation has been made at that
location.

Figure 5.11: Colour-coded map of estimated goodness of fit according the 𝑇 -score value at the a) Zegveld and
b) Rouveen regions. Parcels with no fill indicate that no estimation has been made at that location.
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5.4.3 Mean Displacement Model versus Mean Phase Change
The use of a mean displacement model is a choice which in theory could be omitted. One
could for example simply take the mean of the daisy-chain differential phase 𝜙dc(𝑡) of the
entire contextual group and integrate it to obtain a relative position time series. However
in that case, one becomes very dependent upon a select few sets of measurements during
the low-coherence times, as shown in Figs. 5.7 and 5.9. Any biases, noise or phase
unwrapping errors in these observations would then be directly propagated into the mean
contextual group time series. Therefore, using the set of all 𝜙dc(𝑡) observations to estimate
a set of global model parameters is a safer option, provided the model is valid for the
contextual group.

5.5 Conclusion
Loss-of-lock is a permanent loss of coherence between two or more parts of a time series
which is impossible to repair using the data in the SAR image stack alone. While decorre-
lation is a topic that has been discussed at length in the past, the specific implications of a
loss-of-lock event are not well understood nor has a name been given to the phenomenon
despite its very common occurrence in certain regions around the world, such as northern
peatlands.

This chapter introduced a new DS processing methodology which makes use of con-
textual data in order to reconnect coherent observations separated by loss-of-lock. In this
methodology we performmultilooking based on polygons which mark physically existing
divisions in the terrain, and assign a set of attributes and multilooked phases to each poly-
gon. As is observable from their coherence matrices, most of these phase histories suffer
from loss-of-lock. The observations of different polygons which we expect to behave in a
similar manner are combined in order to parameterize a common functional model. This
model is used to align the disparate observations to estimate a single unbroken time series
for the contextual group.

Using this methodology, we have successfully been able to estimate accurate InSAR
displacement time series in several subsiding peatland regions in The Netherlands which
was previously not possible with InSAR. To our knowledge, this is the first time that an
accurate and validated time series has been estimated based on direct observation of the
peatland pixels using DS techniques.
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Land Surface Monitoring at

Regional Scale
60 percent of the time, it works every time.

Anchorman

This chapter documents the development of the DECADE methodology for regional scale
use over the entire Sentinel-1 archive up to January 2023. The results of applying DECADE
for estimating the land surface motion of the rapidly moving and decorrelating peatlands of
the Green Heart region of the Netherlands for eight years from January 2015–January 2023
are provided. Lastly, greenhouse gas emissions are estimated by combining the per-parcel
subsidence estimates with soil type information.

Highlights:
1. The challenges of moving from a short time- and local spatial scale analysis to long

time- and regional spatial scale are described.
2. The DECADE distributed scatterer processing methodology is documented.
3. Per-parcel subsidence rates are estimated for the Green Heart region of the Nether-

lands. An average irreversible subsidence rate of 6.3 mm/year is obtained over the
region.

4. Greenhouse gas emission estimates due to soil oxidation are provided for the region.
An upper bound average GHG emission intensity of 21.5 tonnes of CO2-equivalents
per hectare per year is obtained, or 2.3 Mt CO2-eq/year for the entire Green Heart,
54% of the total national estimated GHG emissions caused by peatland oxidation in
the Netherlands, or 1.3% of the entire GHG emissions of the Netherlands in 2019 [14].

Parts of this chapter have been submitted to Geophysical Research Letters, [108].
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Figure 6.1: Comparison of coherence matrices of a one-year stack (left) vs. an eight-year stack (right) of the
same location. The respective proportions of interferometric combinations with |�̂�| > 0.15 is 13% and 2.4%.

6.1 Introduction
T he previous chapters describe methodological developments aimed at enabling the

use of C-band radar interferometry for monitoring shallow-based land surface mo-
tion. While they all provide results of test cases to demonstrate the feasibility of the
proposed methods, they are limited in both their spatial and temporal extents. One of
the key advantages of InSAR is the ability to provide estimates over large spatial extents,
which has not yet been taken advantage of, nor has the entire archive of Sentinel-1 been
used in those initial results. The goal of this chapter is to apply the newly developed meth-
ods to a large region of peatlands in the Netherlands to provide land surface displacement
estimates at a regional scale using the entire available Sentinel-1 archive. Establishing a
multi-year average subsidence rate estimate also enables a preliminary analysis of green-
house gas (GHG) emissions from the region, which is presented following the estimation
of the region-wide subsidence rates.

6.2 Challenges of Scaling Up to Regional Monitoring
6.2.1 ESM Phase Estimation in Large Stacks
The Sentinel-1 archive of imagery contains four tracks covering the Green Heart region, of
approximately 400 SAR images each, spanning eight years (at the time of assessment).
This large stack size introduces an additional level of complexity when performing an
Equivalent single master (ESM) phase estimation [20], in particular for regions in which
coherence is rapidly lost. The performance of full-rank phase estimators such as EMI [29]
is unknown for such large stacks, due to the fact that they had not yet grown to such sizes
when the estimators were developed. For example, the EMI method was published in
2018, only two years into the era of 6-day Sentinel-1 revisit times.

One major problem with applying the EMI method on rapidly decorrelating C-band
data is the simple fact that most of the possible 𝑁(𝑁 − 1)/2 combinations of single-
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Figure 6.2: Example coherence matrix of an eight-year stack where all combinations with a temporal baseline
greater than six months are masked. The proportion of (used) interferometric combinations with |�̂�| > 0.15 is
18.4%.

look complex (SLC) images will be decorrelated, and that the proportion of coherent to
incoherent data in the coherence matrix of a stack decreases geometrically (quadratically)
with the length of the stack, as shown in Fig. 6.1. Due to noise and the biased nature of
the coherence estimator, see Eq. (2.26) [57], combinations with long temporal baselines
still have a non-zero coherence, even when it is expected (or known) [26] to be zero,
which means they are still given some weight in the estimation process despite the fact
that they are completely noise dominated-data.

One simple solution to this problem is to mask the coherence matrix by forcing all
combinations with a temporal baseline beyond a certain threshold to be zero. This can
drastically decrease the amount of noise going into the estimator even with a very conser-
vative threshold. For example, the masked coherence matrix in Fig. 6.2 is set such that
all combinations longer than six months are masked and removed from the estimation.
This approach can also decrease the computational burden of calculating the full complex
coherence matrix as the long-baseline interferometric combinations can be omitted.

6.2.2 Point Scatterer Networks
A network of high-quality point scatterers (PSs) [44] is used for atmospheric phase screen
(APS) estimation and removal, and for the selection of an appropriate reference point,
and is implemented using the Delft Persistent Scatterer Interferometry (DePSI) method-
ology [54]. DePSI works by first creating a “primary” network of high quality points
through which the APS is estimated and subsequently interpolated by Kriging before be-
ing removed for all primary and secondary (all remaining identified PS candidates) scat-
terers in the stack. In DECADE, the multilooked DSs are input to DePSI to be treated as
additional virtual secondary points positioned at the DS centroid. For large datasets, the
primary network formation step is very sensitive to parameters such as the point selection
criteria and the network’s spatial density. Additionally, as the time series gets longer, the
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Figure 6.3: Comparison of primary PS networks over the approximately 85×65 km Green Heart AOI obtained
by different networking strategies in DePSI (Sentinel-1 ascending track 088). Left: network obtained by using
“spider” algorithm [109]. Right: network obtained by using Delaunay triangulation.

probability of a given PS remaining coherent over the entire time span decreases.
At regional scales, hundreds of thousands of PSs will initially be identified. Arcs are

then formed and initial parameters are estimated, including phase ambiguity resolution.
These arcs are subsequently checked for spatial consistency by forming closed loops and
checking if all estimated ambiguities in the loop sum to zero, over the entire primary
network. Forming a consistent primary network is a challenge which requires balancing
spatial density and regularity against computational overhead. If too many points are
selected, checking spatial consistency between all the arcs becomes an unmanageably
large computation. If too few points are selected, the network will be too sparse and the
resulting APS will be poorly estimated. A lack of high-quality arcs between points can
in fact also lead to split networks, which will significantly compromise the resulting APS
estimate.

Fig. 6.3 visualizes the differences in the primary PS networks obtained by two differ-
ent network formation strategies. The area of interest (AOI) approximately covers the
Randstad region of the Netherlands, which is a highly urbanized area which encircles the
Green Heart, which consists mostly of rural grassland pastures. This creates a lack of
primary network points in the centre of the AOI. In Fig. 6.3 a), a spatially inconsistent
set of points (and split networks) is obtained using the “spider” algorithm [109]. Split
networks result in the need for multiple reference points, and no geodetic connection
exists between the two networks, which will introduce error into the APS estimate. In
Fig 6.3 b), a more spatially homogeneous network is obtained by using Delaunay triangu-
lation. The more regular spatial coverage in the network results in one network, and the
APS is interpolated over shorter distances from the primary network points. While the
spider method creates a more dense and redundant network at local scales, it also tends to
form longer arcs between distant high-quality points in lieu of shorter arcs which are less
affected by atmospheric effects. For this reason, the Delaunay triangulation was found to
be a more suitable method for this context.
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6.3 DECADE InSAR Methodology
6.3.1 Overview
The Delft Contextually-Aided Distributed Scatterer Environment (DECADE) methodol-
ogy developed in this research is pictured in the flowchart in Fig. 6.4 and is an adaptation
of Fig. 5.4, with changes made as a result of the challenges described in Sec. 6.2. The si-
multaneous development of the SPAMS model (Ch. 3) also contributed to changes in the
initial phase unwrapping and model estimation. Having only four model parameters to
be estimated means that the model can be tailored for each individual parcel, as opposed
to relying on a neural network trained at only a few locations with ground truth. Having
fewer model parameters also helps ensure that overfitting is less likely, as discussed in
Ch. 3. In addition, the fact that SPAMS provides daily displacement estimates which
could be subsampled to match any revisit time made it a more effective choice than the
RNN-based model for processing large interferometric stacks 1. This section outlines the
main processing steps taken in the DECADE v1.0 distributed scatterer (DS) processing
block of Fig. 6.4, following APS filtering, as the preceding steps are not significantly
changed.

6.3.2 Reference Point Selection and Motion Analysis
The selection of a common reference point is a crucial step for combining the observa-
tions of multiple viewing geometries (i.e., satellite tracks) together. Because the basic
InSAR observable is a spatiotemporal double-difference phase, the displacement signal
will always be relative to the motion of the reference point, which will be different for
every track because they are processed independently. Therefore, in order to combine the
observations of multiple tracks together, all observations should first be re-referenced to
the same object on the ground. Generally, the only way to ensure this is to use ascending-
and descending-oriented corner reflectors attached to the same structure. This is one of
the purposes of the integrated geodetic reference stations (IGRSs) installed throughout
the Netherlands. However, such a station cannot be used directly as the reference point
for the entire time series because it was constructed in the year 2020, and we require the
time series to go back to 2015.

As an alternative, we try to find a structure which appears in each track. First, a list
of all PSs with the same (within a given threshold) estimated geolocation across all tracks
is made. The PS with the lowest overall amplitude dispersion across all tracks is chosen
from this list as the new reference point for all tracks. Thus we can be sure that a high
quality (low noise) scatterer is chosen which approximately represents the same physical
object in every track.

As mentioned above, these phase observations are all relative to the motion of the ref-
erence point. To ensure that the average annual soil subsidence rates are not affected by
the motion of the reference point, we estimate its motion in the European Terrestrial Ref-
erence Frame (ETRF). This is accomplished by making use of the IGRS stations [110], as
they consist of a radar corner reflector attached to a permanent global positioning system
(GPS) station on the same rigid structure. Thus the relative motion between the chosen

1The loss of the Sentinel-1b satellite presented an additional challenge for the initial RNN-based phase unwrap-
ping routine (Ch. 4), which assumed a constant 6-day revisit time to make predictions.
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Figure 6.4: Simplified process flow diagram showing the major steps taken to create DS time series estimates
from Sentinel-1 Level 1 SLC SAR data with the aid of spatial and temporal contextual data. DECADE v1.0
software implementation.
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Figure 6.5: Plot showing estimated reference point motion relative to the IGRS station for the period 2020–2023
(blue dots, 2𝜋 ambiguities shown in grey). An overall relative linear trend (red line) 0.43 mm/year is estimated,
corresponding to a linear trend of 0.17 mm/year in the ETRF (reference: S.A.N van Diepen, in prep.).

reference point and the IGRS station is analyzed for the period following 2020. Fig. 6.5
shows the phase observations and a linear trend of the motion of the reference point rela-
tive to the IGRS station. Using the GPS observations over the same period allows us to
estimate the averaged motion of the reference point in the ETRF. A trend of 0.47 mm/year
is obtained relative to the IGRS over the temporal subset, corresponding to a vertical mo-
tion of 0.17 mm/year in ETRF following removal of the GPS estimated trend. The value of
0.17 mm/year is not considered significant when compared to the expected average sub-
sidence rates of the land surfaces under investigation (approx. 5–10 mm/year), and we
can therefore assume that all the phase observations can be attributed to the DS. Residual
reference point motion, noise and clutter can be mitigated by the use of a reference point
noise estimation algorithm [111].

6.3.3 Initial Parcel-Wise Model Estimation and Phase Unwrapping
As elaborated in Ch. 5, the presence of loss-of-lock results in a sparse time series of
wrapped interferometric phases. The time series is sparse because it consists of discon-
nected segments (subsets) of coherent data, interspersed by incoherent periods. On their
own, these sparse, wrapped phases cannot be interpreted due to the unknown displace-
ment during the incoherent period and the highly nonlinear nature of the surface motion
signal [27], [75], [98]. By assuming that the true vertical surface displacement can be
described by a model, 𝑧𝑀 , with unknown parameters, 𝑥, the 𝑛th coherent segment of the
signal can be written as

𝑊{𝜙esm,𝑛(𝑡)} = 𝑊{−4𝜋 cos 𝜃inc
𝜆 ⋅ [𝑧𝑀(𝑥, 𝑡) + Δ𝑧𝑛] + 𝜖}; ∀ 𝑡 ∈ 𝑇𝑛, (6.1)

where 𝜙esm,𝑛 is the ESM interferometric phase of the 𝑛th coherent segment, 𝑡 is time,
𝑇𝑛 is the set of all epochs in the 𝑛th coherent segment, 𝜃inc is the incidence angle, 𝜆 is
the wavelength, Δ𝑧𝑛 is the n𝑡ℎ segment’s constant offset caused by the unknown vertical
displacement which occurred during the incoherent period, 𝜖 is a combination of noise and
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model residuals, and 𝑊{⋅} is the wrapping operator. By taking the first-order difference
between subsequent phases within each coherent segment, we can omit any unknown
constant in the time series caused by displacement during an incoherent period, resulting
in the equation

𝑊{𝜙edc,𝑛(𝑡)} = 𝑊{−4𝜋 cos 𝜃inc
𝜆 ⋅ Δ𝑧𝑀(𝑥, 𝑡) + 𝜖Δ}; ∀ 𝑡 ∈ 𝑇𝑛, (6.2)

where 𝜙edc,𝑛 is the (differential) equivalent daisy-chain (EDC) interferometric phase of
the 𝑛th coherent segment and 𝜖Δ is the differenced noise and model residuals.

Now the time series can be implicitly unwrapped by estimating the optimal model
parameters ̂𝑥opt. This is done by maximizing the temporal coherence, ̂𝛾temp, between the
modeled and observed phases in all coherent segments of all tracks by iteratively tuning
the model parameters ̂𝑥:

̂𝑥opt = argmax
�̂�

̂𝛾temp(𝜙edc(𝑡), 𝜙𝑀( ̂𝑥, 𝑡)), (6.3)

where the subscript 𝑀 indicates the forward-modelled phase, and

̂𝛾temp = 1
𝑁 ∣ ∑

𝑡
exp(𝑖[𝜙edc(𝑡) − 𝜙𝑀( ̂𝑥, 𝑡)])∣, (6.4)

where 𝑁 is the total number of coherent EDC phases in all segments and 𝑖 is the imaginary
unit. Eq. (6.4) can be used to combine the observations of multiple viewing geometries
(or indeed sensors) together in order to derive a single common displacement model,
provided that all observations are referenced to the same object. Once the optimal set
of model parameters is found, the time series segments are unwrapped by estimating the
closest integer ambiguity that matches the observed and modelled EDC phases under
the assumption that the optimized model is representative of the vertical motion of the
scatterer. The unwrapped ESM phases are obtained by taking the cumulative sum of the
unwrapped EDC phases.

Following ambiguity estimation, the coherent segments are reconnected by estimating
the constant offset Δ𝑧𝑛 by

Δ ̂𝑧𝑛 = ⟨ −𝜆
4𝜋 cos 𝜃inc

⋅ 𝜙esm,𝑛(𝑡) − 𝑧𝑀( ̂𝑥opt, 𝑡)⟩ ; ∀ 𝑡 ∈ 𝑇𝑛, (6.5)

where ⟨⋅⟩ is the averaging operator. Now we have initial estimates for the unwrapped
phase time series within each coherent segment, as well as an estimate for the relative
positions of the segments with respect to one another.

6.3.4 Group Model Estimation
Following the initial parcel-wise estimation, the unwrapped and reconnected phase time
series data of a given contextual group are combined and a joint group model is esti-
mated. Contextual groups are identified based on their land cover/land use, soil type,
elevation and water management zone classifications (Sec. 5.2.4). Despite the fact that
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Figure 6.6: Plot of example contextual group model estimation. Grey dots: combined initial unwrapped phases
of contextual group (projected to vertical displacement). Blue line: estimated group displacement model.

each parcel in a given contextual group shares these same attributes, there can be differ-
ences between the parcel seasonal shrinkage and swell amplitudes due to their differing
geometries or other unconsidered factors, such as the installation of subsidence mitigation
systems. Nevertheless, parcels within a contextual group are expected to show compa-
rable irreversible subsidence coefficients (Eq. (3.10)), i.e. the 𝑥𝐼 parameter, which we
make use of in order refine the initial per-parcel models. Initially, the entire estimated
group model was used to re-unwrap the phases (Sec. 5.2.8), however, this was found to be
too restrictive and resulted in poor estimations in the parcel-wise 𝑥𝑃 and 𝑥𝐸 parameters.

The 𝑥𝐼 parameter is challenging to estimate because it corresponds to a process that is
approximately an order of magnitude smaller than the reversible shrinkage/swell (corre-
sponding to the 𝑥𝑃 and 𝑥𝐸 parameters), and will be more affected by noise when moving
to the differential EDC phase observations (Eq. (6.2)). Therefore, the group 𝑥𝐼 param-
eter is used to re-estimate the phase ambiguities and segment shifts following the group
model estimation, shown in Fig. 6.6. The group model is estimated by minimizing the
root mean squared error (RMSE) between the model and the combined contextual group
phases. Parcels with low temporal coherence ( ̂𝛾temp < 0.15, Eq. (6.4)) are excluded
from the estimation to reduce noise and poorly-fit initial models from affecting the group
estimate. The ambiguities and segment shifts are then re-estimated in the same way as
described in Sec. 6.3.3.

As the combined observations of the contextual group represent independent sam-
ples of a similar process, the dispersion of the phase observations per epoch, 𝜎2

group,𝑖, of
the entire contextual group is used as an approximation of the uncertainty of the phase
observations (corresponding to the dispersion of the grey points in Fig 6.6). This has
the benefit of modeling uncertainty due to coherence levels, but also captures the effects
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of the imperfect ESM phase estimation (Sec. 6.2.1), APS estimation error (Sec. 6.2.2),
unmodelled reference point motion and phase unwrapping errors without the need for
storing the entire coherence matrix of every parcel, which would require a prohibitively
large amount of data storage. It should be noted that this is a first-order approximation
of the stochastic model and is not independent from the functional model, and therefore
should be regarded as an upper bound. The covariance matrix of the phase observations
of a given parcel is thus approximated by

𝑄𝜙 ≈ diag(�̂�2
group), (6.6)

where �̂�2
group is the vector of sample variances of the contextual group phases at every

epoch. In this ESM form, we expect the phase observations at each epoch to be indepen-
dent [112].

6.3.5 Final Parcel-Wise Model Estimation and Uncertainty Propaga-
tion

Following the second implicit phase unwrapping, a final displacement model is fit to
the unwrapped phases for each parcel. The final model is fit by minimizing the mean
squared error (MSE) between the unwrapped phases of each track (projected to vertical
displacement) and the model, such that

̂𝑥opt = argmin
�̂�

⟨( −𝜆
4𝜋 cos 𝜃inc

⋅ 𝜙unw(𝑡) − 𝑧𝑀( ̂𝑥, 𝑡))
2
⟩ , (6.7)

where 𝜙unw are the unwrapped interferometric phases. The fitting is performed using the
Nelder-Mead Simplex method, which is a derivative-free method [113].

The per-parcel vectors of unwrapped phases of the 𝑁 independent satellite tracks,
𝜙𝑛, are combined in a single vector, 𝑦all, by projecting from the LOS phase to vertical
displacement (no horizontal motion is expected due to no deep subsidence sources in the
region [114]) as

𝑦all = ⎡⎢
⎣

𝜙1 ⋅ −𝜆/4𝜋 cos 𝜃inc,1
⋮

𝜙𝑁 ⋅ −𝜆/4𝜋 cos 𝜃inc,𝑁
⎤⎥
⎦

, (6.8)

where 𝜆 is the wavelength, and 𝜃inc,𝑛 is the incidence angle of the location corresponding
to the 𝑛th track’s viewing geometry. The covariance matrix of the final model parameters
is estimated per parcel by propagating the covariance matrix of the unwrapped phases,
𝑄𝜙, which is in turn approximated as described in Sec. 6.3.4. The combined covariance
matrix of all tracks is obtained by diagonally combining the individual covariancematrices
of each track. Each viewing geometry is assumed to be independent, giving

𝑄𝑦,all = ⎡⎢
⎣

𝑄𝜙,1 ⋅ (𝜆/4𝜋 cos 𝜃inc,1)2 … 0
⋮ ⋱ ⋮
0 … 𝑄𝜙,𝑁 ⋅ (𝜆/4𝜋 cos 𝜃inc,𝑁)2

⎤⎥
⎦

. (6.9)

Following the formulation of [19], the SPAMS model is converted to a linearized matrix
form, such that

̂𝑦 = 𝐴𝑀 ̂𝑥, (6.10)
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where

̂𝑥 = ⎡⎢
⎣

̂𝑥𝑃
̂𝑥𝐸
̂𝑥𝐼

⎤⎥
⎦

, (6.11)

and

𝑀 = ⎡
⎢
⎣

∑𝑡1
𝑡1−𝜏 𝑃(𝑡) − ∑𝑡1

𝑡1−𝜏 𝐸(𝑡) 𝑧1
⋮

∑𝑡𝐾
𝑡𝐾−𝜏 𝑃(𝑡) − ∑𝑡𝐾

𝑡𝐾−𝜏 𝐸(𝑡) 𝑧𝐾

⎤
⎥
⎦

, (6.12)

and where 𝑧𝑘 is 0 if ∑𝑡𝑘
𝑡𝑘−𝜏 𝑃(𝑡) > − ∑𝑡𝑘

𝑡𝑘−𝜏 𝐸(𝑡), and 1 otherwise (see Eq. (3.10)). The
daily model values are mapped to the satellite acquisition epochs by the design matrix

𝐴 = ⎡⎢
⎣

1 0 0 0 0 0 0 …
0 0 0 0 0 1 0 …

⋮
⎤⎥
⎦

, (6.13)

where an element of 𝐴 is unity when the model and observation dates coincide. The rows
of 𝐴 correspond to satellite observation epochs and the columns correspond to the model
epochs. Thus the size of 𝐴 is the total number of observation epochs times the number
of model epochs, and the product 𝐴𝑀 is the overall functional model which maps the
satellite observations to model estimations. In this linear form, the integration time 𝜏 is
part of the functional model and cannot be written as a parameter in ̂𝑥. Therefore, no un-
certainty is estimated for this parameter. The covariance matrix of the model parameters
is then propagated as

𝑄�̂� = ((𝐴𝑀)𝑇 𝑄−1
𝑦,all(𝐴𝑀))

−1
, (6.14)

and the covariance matrix of the (daily) modeled displacement is obtained by

𝑄 ̂𝑦 = 𝑀𝑇 𝑄�̂�𝑀. (6.15)

6.3.6 Overall Model Test
An overall model test (OMT) [115] is applied to assess the suitability of the assumed
displacement model based on the model residuals and uncertainties. The model residuals,

̂𝑒, are
̂𝑒 = 𝑦 − ̂𝑦. (6.16)

The test statistic, 𝑇 , is a measure of the relative magnitude of the model residuals with
respect to the covariance matrix, and is given by

𝑇 = ̂𝑒𝑇 𝑄−1
̂𝑦 ̂𝑒. (6.17)

The OMT compares the test statistic to a critical value, 𝑇crit, which corresponds to a 𝜒2

distribution with a chosen significance level and number of degrees of freedom,

𝑇crit = 𝜒2(DOF, 𝛼), (6.18)
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where DOF is the number of degrees of freedom (i.e. the redundancy), and is given by

DOF = 𝑃 − 𝑁, (6.19)

where 𝑃 is the number of observations and 𝑁 is the number of unknown model param-
eters. In our case, 𝑃 is the total number of coherent interferometric phase observations
across all tracks, and 𝑁 is three, see Eq. (6.11). 𝛼 is the significance level, which is the
probability of falsely rejecting the model. A 5% significance level is used, which is a
conservative threshold to prevent false acceptance of the model. The model is rejected if

𝑇 > 𝑇crit, (6.20)

which indicates that the model residuals do not agree with the model uncertainties. This
means that either the model does not adequately describe the observed behaviour, or else,
the stochastic model is too optimistic.

6.4 Results and Discussion
6.4.1 Description of Satellite Data and Study Area
The area of study is known as the “Green Heart”, an agricultural area comprised mainly of
grasslands which is situated on mainly peat and marine/river clay soils (see Appendix A).
While the region is largely rural, it is encircled by the “Randstad”; a metropolitan area
made up of the cities of Amsterdam, Rotterdam, the Hague, Utrecht and others. Final
estimations were made for 34908 grassland parcels in the region, covering a total area
of approximately 600 km2. A total of 1515 Sentinel-1 images from observation tracks
(ascending 088 and 161, and descending 037 and 110) between January 2015 – January
2023 were used in the analysis.

Table 6.1: Summary of satellite data and study area

Parameter Value
SAR sensor Sentinel-1
Period Jan. 2015 – Jan. 2023
Num. SAR images 1515
Num. SAR tracks 4
Num. parcels 34908
Total parcel area 601 km2

6.4.2 Displacement Time Series Estimates
The estimated time series displacements of the three parcels with available in-situ mea-
surements by extensometer [13], [32] are shown in Fig. 6.7. The combined unwrapped
InSAR displacement estimates from the four overpassing Sentinel-1 tracks are shown as
red points along with the corresponding 1𝜎 estimated error bars. The estimated model is
shown by the solid blue line, and the corresponding 3-sigma confidence region obtained
by Eq. (6.14) is shown by the shaded blue area. The average subsidence rate is given
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Figure 6.7: Estimated InSAR displacements (projected from LOS to vertical) and associated model against in-
situ measurements at test sites a) Vlist (standard), b) Zegveld (standard), and c) Zegveld (mitigated) (Table 6.2)
for 2015–2023. Red dots: combined (see Sec. 6.3) InSAR displacement estimates of Sentinel-1 ascending tracks
088 and 161, and descending tracks 037 and 110, with estimated 1𝜎 error bars. Blue line: estimated InSAR
displacement model. Shaded blue region: estimated 3-sigma confidence region. Dashed black line: estimated
average subsidence rate. Bold black line: in-situ measurement [13], [32] (error bars too small to plot).
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Table 6.2: Estimated displacement model parameters and performance against extensometer (ext.)

Location Vlist (Standard) Zegveld (Standard) Zegveld (Mitigated)
Designation a) b) c)
Coordinates (lat., lon.) (51.9827∘, 4.8269∘) (52.1358∘, 4.8399∘) (52.1372∘, 4.8398∘)
�̂�𝑃 ± 1𝜎 (mm/mm) 7.4⋅10-2 ± 3.6⋅10-3 9.4⋅10-2 ± 6.4⋅10-3 7.4⋅10-2 ± 5.7⋅10-3
�̂�𝐸 ± 1𝜎 (mm/mm) 1.2⋅10-1 ± 4.0⋅10-3 2.7⋅10-1 ± 7.1⋅10-3 1.0⋅10-1 ± 5.6⋅10-3
�̂�𝐼 ± 1𝜎 (mm/day) -2.7⋅10-2 ± 5.8⋅10-4 -2.7⋅10-2 ± 9.5⋅10-4 -2.8⋅10-2 ± 1.1⋅10-3

̂𝜏 (days) 65 70 70
Av. subsidence (mm/year) -5.9 -7.8 -5.6
RMSD Obs.–Ext. (mm) 6.5 7.4 7.5
RMSD Model–Ext. (mm) 5.5 6.7 4.1
RMSE Obs.–Model (mm) 4.7 5.9 6.0
Temporal Coherence 0.69 0.22 0.17
Area (m2) 47428 11704 9053
Effective Num. Looks 409 99 78

by the dashed black line. Finally, the in-situ measurements by extensometer are shown
by the solid black line (the expected precision of the extensometer is sub-millimetre, and
corresponding error bars are too small to plot).

A comparison of estimated InSAR and available in-situ validation data is provided in
Table 6.2. Sub-centimetre agreement (i.e. the root mean squared difference (RMSD)) is
achieved across all three validation sites for both the InSAR displacement estimates, as
well as the derived displacement model, which is approximately 5–10% of the overall
signal variation. The Zegveld test sites b) and c) show a larger RMSE between observa-
tions and model due to the lower effective number of looks (i.e. independent samples) as
a consequence of moving down to a sub-parcel scale resolution. The effective number of
looks 𝐿 is given by

𝐿 = 𝑛 × OSR, (6.21)

where 𝑛 is the number of pixels and OSR is the oversampling rate, given by

OSR = PRF
BWaz

⋅ 𝑓𝑠,r
BWr

(6.22)

where PRF is the pulse repetition frequency, 𝑓𝑠,r is the range sampling rate, and 𝐵𝑊𝑎𝑧
and 𝐵𝑊r are the azimuth and range bandwidths, respectively.

Differences are expected to be found between the InSAR estimates and the in-situ
measurements, as the former are based on the average of many pixels covering a certain
spatial extent (approximately 104 m2) of the soil surface, and the latter are point-based
measurements anchored at -5 cm in the soil subsurface. Nevertheless, close agreement
between the results of the two techniques suggests that the InSAR estimations are reliable.

An experimental subsidence mitigation system [116] is installed at site c) (see Ap-
pendix B). This installation is a pressurized drainage system that is intended to reduce
the overall fluctuations in groundwater level in the centre of the parcel, thereby reduc-
ing the amount of soil oxidation incurred during the dry summer periods. This site is in
fact the northern part of the same test parcel as site b), which displays the most strongly
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Figure 6.8: Covariance matrix 𝑄�̂� obtained for test site b) (Zegveld, standard drainage). It can be seen that
the 𝑥𝑃 and 𝑥𝐸 parameters are approximately uncorrelated. The 𝑥𝐼 parameter is correlated with 𝑥𝑃 and 𝑥𝐸 to
approximately the same order of magnitude as the variance in 𝑥𝐼 . Note that the units of the covariance matrix
vary depending on the parameters in �̂�, see Table 6.2.

dynamic behaviour in the region. This experiment provides a natural test case for our
method to test whether or not it can resolve differences in the sub-parcel scale and be of
use as a tool for assessing the efficacy of such subsidence/climate mitigation measures. A
significant reduction in the seasonal amplitude is visible between sites b) and c), as plotted
in Figs. 6.7 b) and c), from approximately 6 cm peak-peak to 2 cm peak-peak, respec-
tively. A reduction of approximately 30% in the average subsidence rate was detected,
from 7.8 mm/year at site b) to 5.6 mm/year at site c). The biggest losses in elevation
during the summers of 2018 and 2023 are mitigated as well, by approximately 2 cm.

The effect of drainage measures on the displacement model parameters is shown in
Table 6.2. In terms of these parameters, the effect of the measures is mainly character-
ized by a drastic reduction in the 𝑥𝐸 parameter, which determines the magnitude of the
response of the soil to evapotranspiration and the overall water retention ability of the
parcel. Thus it is clear from our observations that despite the intrinsic susceptibility of
the soil to oxidation (as characterized by the 𝑥𝐼 parameter) remaining unchanged, the
retention of water in the system leads to a reduction in the overall subsidence rate. This
is what we expect to see, as the biochemical properties of the soil are the same in both
cases; only the extrinsic groundwater conditions have changed.

A colour-coded visualization of a covariance matrix 𝑄�̂� is shown in Fig. 6.8. It can be
seen that the parameters governing reversible shrinkage and swell, 𝑥𝑃 and 𝑥𝐸, are uncor-
related. The irreversible parameter, 𝑥𝐼 , is correlated with 𝑥𝑃 and 𝑥𝐸 to approximately
the same order of magnitude as the variance in 𝑥𝐼 . This is expected because of how irre-
versible subsidence is defined in SPAMS, which depends on the cumulative balances of
water gains and losses, see Eq. (3.10).

6.4.3 Regional Scale Soil Subsidence Rates
The average irreversible subsidence rate is estimated at parcel scale and visualized in
Fig. 6.9. The most actively subsiding areas occur around the area between the cities of
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Figure 6.9: Map of parcel-scale average subsidence rates in the Green Heart region estimated over the period
2015–2023. The locations of test sites a) Vlist (standard), b) Zegveld (standard) and c) Zegveld (mitigated) are
marked with white arrows.

Gouda and Utrecht, in the centre of the Green Heart region, which is a peat dominated
region. A general slight decrease in subsidence rates is visible in the Northwest areas,
where more marine clay is found in the Holocene, versus the Southeast, where peat is
more prevalent (see Appendix A). An overall average subsidence rate for the region is
found by weighted average of parcel surface area:

̄𝑧′
all = 1

𝐴tot
∑

𝑖
𝐴𝑖 ⋅ ̄𝑧′𝑖, (6.23)

where 𝐴 is a given parcel’s area and ̄𝑧′ is the 𝑖th parcel’s average subsidence rate. An
overall average subsidence rate of 6.5 mm/year is found for the region.

Comparing this result to previous studies, there is significant uncertainty in the results
obtained from repeated levelling campaigns and airborne laser scanning. A 1996 report
by Beuving and van den Akker [117] (Table 11) based on repeated levelling surveys found
subsidence rates in the Zegveld region of the Netherlands (around and including site b))
ranging from 4.7–13.5 mm/year depending on location and date of measurement. In a
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2009 report by Jansen et al. [118] (Table 2.2), a decadal-scale average subsidence rate
was estimated by combining levelling data from the period 1946–1972 and airborne laser
scanning from the period 1997–2004, with rates ranging from 1.0–4.6 mm/year for peat
soils, and 1.8–3.0 mm/year for marine and river clay soils (see soil map in Appendix A).
The uncertainties in these estimates are significant: standard deviations for the former
range from 4.6–17.2 mm/year, and 3.4–16.0 mm/year for the latter, approximately 1–
4 times the magnitude of the actual estimated value in both cases. It is apparent from
Fig. 6.7 that the sub-seasonal temporal dynamics of the land surface motion are approxi-
mately one order of magnitude greater than the long-term (multi-year) subsidence rates.
This demonstrates the need for high temporal sampling of the surface displacement signal
in order to obtain reliable average irreversible subsidence rate estimates, and how these
previous studies based on observations at very localized points in space and time are at
risk of significant biases due to the rapidly changing shrinkage and swell (the effects of
vegetation on the airborne laser observation notwithstanding).

It should be noted that these average subsidence values are considered to be “steady-
state” subsidence rates which do not consider any significant changes in anthropogenic
intervention in the phreatic groundwater system. That is, with no significant changes
to the groundwater management, the current rates of oxidation and compaction/creep
are expected to remain more or less constant. However, if the current subsidence rates
are allowed to continue unabated, and the region’s current primary land use of grazing
cattle is continued, additional lowering of the groundwater level will be required in the
coming decades to enable the continued usage of the land2. Following such a lowering,
a significant increase in the subsidence rate will occur due to settlement before returning
back to a steady-state. As such, when projecting land surface heights over large time
scales, the effective subsidence rate will necessarily be higher. Conversely, allowing the
phreatic groundwater level to rise with respect to the surface level should decrease the
overall subsidence rate.

6.4.4 Greenhouse Gas Emission Estimates
The estimation of average subsidence rates enables an estimate of GHG emissions caused
by the oxidation-driven subsidence component. The average GHG emission intensity in
CO2-equivalents per hectare per year of the 𝑖th parcel, 𝐶𝑖, as a function of the average
irreversible subsidence rate is estimated by the equation [6], [7]

𝐶𝑖 = 𝐹 ⋅ 𝑓𝑜 ⋅ 𝑓𝑐,𝑖 ⋅ 𝜌 ⋅ ̄𝑧′𝑖 ⋅ 104 ⋅ 3.67, (6.24)

where 𝐹 is the fraction of subsidence caused by peat oxidation, 𝑓𝑜 is the fraction of soil
organic matter, 𝑓𝑐,𝑖 is the soil-dependant fraction of carbon contained within the soil
organic matter of the 𝑖th parcel, 𝜌 is the bulk density of the soil, and ̄𝑧′𝑖 is the average
irreversible subsidence rate of the 𝑖th parcel. The factor 104 is a conversion of square
metres to hectares, and the factor 3.67 is a conversion from tonnes-C to tonnes-CO2
equivalents.

There is considerable uncertainty in assessing accurate values for the coefficient 𝐹 ,
which varies quite strongly by location and time scale. The fraction 𝐹 is reported in litera-
2See, in this context, the EU’s Regulation on Nature Restoration (Nature Restoration Law) that came into effect
18 August 2024 [119].
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Figure 6.10: Map of parcel-scale maximum GHG emission intensities estimated over the period 2015–2023.
The locations of test sites a) Vlist (standard), b) Zegveld (standard) and c) Zegveld (mitigated) are marked with
white arrows.

ture to vary from 0.33–0.66 in [17], 0.25–0.71 in [18] and 0.85 in [10]. In [10], Schothorst
determined a fraction of 𝐹 of 0.85 at the Zegveld test site (site b)) by comparing the bulk
densities of mineral elements in soils above and below the groundwater level, reasoning
that the overall quantity of minerals should remain constant, but their bulk density should
increase as the organic matter oxidizes. As 0.85 is an in-situ estimation from the region
under study and also represents the upper bound of the reported values for 𝐹 , we use this
value as an estimate for the maximum expected level of subsidence caused by oxidation.
We assume an average value of 220 kg/m3 for the bulk density of organic matter (i.e.
the product 𝑓𝑜 ⋅ 𝜌) in peat in the upper 30 cm of soil, as reported in [10]. The fraction
of carbon contained within the soil organic matter, 𝑓𝑐, is generally assumed to be 0.55
for peat soils [15], [121]. The factor 𝑓𝑐 is rescaled for other soil types by comparing
the relative carbon stocks per soil type for grasslands, as inventoried in the 2023 report
by [15] (Figure 11.2) on behalf of the Dutch government.

Applying these values to Eq. (6.24) for all estimated parcels in the region will provide
a rough estimate of the maximum expected level of CO2-equivalents we can expect to be
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Figure 6.11: Histograms of GHG emission intensity obtained by Eq. (6.24) bymain soil type classification [120]:
a) Peat soils, b) “Peaty” soils, c) Marine clay soils, d) River clay soils.

released by peatland oxidation in the region, shown in Fig. 6.10. Certainly, the value
of 0.85 for 𝐹 will be an overestimation in many areas. Nevertheless, in doing so we
establish an upper bound on the expected GHG emissions for the region based on satellite
observations of ground motion. The average GHG emission intensity of the region can
be established by taking the spatial average:

𝐶av = 1
𝐴tot

∑
𝑖

𝐴𝑖 ⋅ 𝐶𝑖. (6.25)

We obtain an average maximum GHG emission intensity of 21.5 tCO2-eq/ha/year, cor-
responding to 3.31 tCO2-eq/ha/mm of subsidence. This is in good agreement with the
National GHG Emission Inventory 1990–2019 [14] (based on the report [15]), which
estimates an average 19 tCO2-eq/ha/year for all peatlands in the entire Netherlands, con-
sidering we apply a blanket worst-case assumption across the entire region. Multiplying
this rate by the combined total area of all land parcels within the region, a total maximum
annual GHG emission rate of 2.3 MtCO2-eq/year is obtained for the entire Green Heart.
This figure corresponds to 54% of the total national estimated GHG emissions caused by
peatland oxidation in the Netherlands (2.3 MtCO2-eq/year), or 1.3% of the entire GHG
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Figure 6.12: Heatmap showing the density of the initial model estimations over time at Zegveld site b) as a
result of 500 runs in which 20% of the coherent data are randomly removed.

emissions of the Netherlands in 2019 [14]. The effect of soil type on GHG emissions is
visible in Fig. 6.11, where peat soils show significantly higher levels of GHG emission
intensity than all other soil types, due to a combination of higher subsidence rates and
soil carbon content.

The effect of the pressurized drain subsidence mitigation measure installed at test
site c) on the GHG emissions can be estimated by applying the difference between the
estimated average subsidence rates between sites b) and c) (Table 6.2) to Eq. (6.24).
We find that the subsidence mitigation measures are able to reduce the worst-case GHG
emission intensity by approximately 7.6 tCO2-eq/ha/year, approximately a 28% decrease.

6.4.5 Estimation Quality
6.4.5.1 Model Estimation Robustness
To evaluate the robustness of the initial model estimation to missing data, the unwrapped
phases of parcel at site b) are taken and the model is re-estimated 500 times in which a
random 20% of the coherent segments (Sec. 5.2.5) are removed. The resulting model
estimates are plotted in a 2D histogram, shown in Fig. 6.12. In the majority of runs, com-
parable seasonal amplitude and irreversible subsidence rates are obtained, indicating that
the method is generally robust and can handle losses of data. This also suggests that a
the model estimation quality will continue to increase as the time series grows in length,
provided that there are no significant changes to the parcel’s biological and physical prop-
erties (the estimated parameters ̂𝑥). The histogram is also positively skewed, which is
particularly visible in the summer months. This indicates there is a tendency to underes-
timate the seasonal amplitude in the event of data loss. While the histogram diverges over
time due to the differences in the irreversible component, it can be seen that the extreme
values in the tails are relatively unlikely compared to the region containing the majority
of the estimations.

6.4.5.2 Overall Model Test
The overall model test described in Sec. 6.3.6 is applied to the parcels with a model es-
timation, and is shown in Fig. 6.13. 27700 (approximately 80%) of the parcel models
are sustained by the test at a significance level (𝛼) of 5%, and 7208 parcels are rejected.
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Figure 6.13: Map of parcel-scale overall model test results at 5% significance level in the Green Heart region
estimated over the period 2015–2023. The locations of test sites a) Vlist (standard), b) Zegveld (standard) and
c) Zegveld (mitigated) are marked with white arrows.

Interestingly, most of the rejected parcels are predominantly clay-dominated soils, sug-
gesting that either the SPAMS model does not describe these soils as accurately as the
peat-dominated soils, or else the estimated uncertainties are too optimistic for the clay-
dominated parcels.

6.4.5.3 Temporal Coherence Between Observations and Model
The degree of fit between the model and wrapped phase observations as per the temporal
coherence ( ̂𝛾temp) is visualized in Fig. 6.14. Generally speaking, a high degree of fit
is obtained, ranging from approximately 0.4–0.8, values which are comparable to high-
quality point scatterers. Most of the low-quality parcels ( ̂𝛾temp < 0.4) are attributed to
parcels with small areas or irregular shapes. Indeed, as can be seen in Fig. 6.15, the
temporal coherence is strongly dependent on the area of the parcel, which affects the
number of independent looks used in the estimation procedure. The relationship between
the temporal coherence and area appears to follow an error function curve, shown in red
in Fig. 6.15. That is, it is possible to define a function relating the performance in temporal
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Figure 6.14: Map of temporal coherence between parcel-wise multilooked interferometric phase and estimated
displacement model. The locations of test sites a) Vlist (standard), b) Zegveld (standard) and c) Zegveld (miti-
gated) are marked with white arrows.

coherence to the area of the multilooked region. This indicates that noise is the limiting
factor in model estimation quality. Parcels with a larger area will be covered by more
pixels, meaning a larger effective number of looks, allowing for amore accurate coherence
estimation and better noise reduction by multilooking.

6.5 Conclusion
This chapter presented the results of applying a novel InSAR methodology to estimate
land surface motion in the grassland areas of the Dutch Green Heart (Groene Hart) re-
gion. This is the first accurate and validated InSAR analysis performed at regional scale
of these rapidly decorrelating peatlands. The methodology works by finding the set of pa-
rameters which optimizes the fit of a displacement model to the intermittently coherent
wrapped phase observations. Thus the focus of this method is to use imperfect observa-
tional data 𝑦 to learn how a given parcel reacts to hydrological inputs, which are described
by the model parameters, 𝑥. The quality of the model fit to the data is generally very good,
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Figure 6.15: Temporal coherence vs corresponding parcel area. Blue dots: temporal coherence obtained for
each parcel estimate. Red dashed curve: empirical fit to observed performance.

with most parcels having a temporal coherence ranging from 0.4–0.8, which is compara-
ble to mature PS analysis methods which use only the lowest noise pixels in the image
stack. Noise is shown to be the main limiting factor in the model fitting procedure, and
that larger parcels with more pixel coverage show a correspondingly better fit to the data.

An average irreversible subsidence rate of 6.3 mm/year is obtained for the region, with
the majority of parcels within the range of 5–8 mm/year. While the obtained estimates
agree well with the available ground truth, the dynamics of the region show that any
technique for monitoring the ground surface motion over time may not be representative
if these dynamics are not taken into account. Currently, InSAR is the only technique
which can provide both high spatial coverage with frequent enough temporal sampling in
order to accurately monitor land surface displacement of these regions.

An upper bound on the GHG emissions due to the oxidation of organic matter in the
soil is estimated from the per-parcel subsidence rates by assuming a worst-case fraction
of subsidence caused by oxidation and the density of carbon contained within the soil. By
spatial averaging, we obtain an average GHG emission intensity of 21.5 tonnes of CO2-
equivalents per hectare per year, and multiplying this value by the total sum of the areas of
each parcel, we find a total upper bound emission rate of 2.3 Mt/year of CO2-equivalents
for the entire Green Heart region. This result demonstrates the feasibility of combining
InSAR-derived motion estimates with soil data as a tool for assessing the GHG impact of
land and water management in the region. The precision of the GHG estimates may be
improved by combining the average irreversible subsidence rates with precise soil data
such as that available from GeoTOP [122].





7
Conclusions and

Recommendations
If you spend too much time thinking about a thing,

you will never get it done.
Bruce Lee

7.1 Conclusions
T he overall conclusions of this work address the research gaps identified in Sec. 1.4.

The research outcomes summarized below detail efforts made in order to enable the
use of InSAR for the estimation of land surface motion of rapidly moving and decorre-
lating peatland environments, in particular the drained and cultivated peatlands of the
Netherlands.

Shallow soft soil motion is driven by precipitation and evapotranspiration,
and can be modelled to an accuracy within approximately 10% of the overall
signal magnitude.
Two models for soft soil motion based on synoptic meteorological data were developed
in Chapter 3. It was demonstrated that these are able to describe the observed motion of
these soils to a remarkably accurate level, given their simplicity. Both models displayed
testing RMSE values of approximately 10% of the overall signal magnitude or lower. A
model based on machine learning techniques, a recurrent neural network (RNN), was
able to capture sub-seasonal effects due to changing groundwater conditions within ap-
proximately 5 mm accuracy, but could not accurately model the multi-year irreversible
subsidence signal. This is apparent during the winter periods, during which the model
generally overestimated the surface level by 10–20 mm (Sec. 3.5.2), a significant de-
viation when considering annual subsidence rates in the range of 5–10 mm/year. This
difficulty in generalizing to the multi-year time scale indicates that the model may be
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overfit to the rapid sub-seasonal signal. On the other hand, a parametric model called
Simple Parameterization for the Motion of Soils (SPAMS) was able to model both the
highly dynamic sub-seasonal motions as well as the multi-year irreversible subsidence
(Sec. 3.5.3) with an RMSE of approximately 1 cm or better (corresponding to about 10%
of the signal magnitude) when validated against ground-based measurements at five test
locations throughout the Netherlands. While the overall RMSE of this model was oc-
casionally higher than that obtained by the RNN model, it was preferred for its overall
simplicity and ability to generalize over both the sub-seasonal and multi-year time scales.
SPAMS does not explicitly consider human interventions in the system such as pumping
of excess water through the drainage ditches, and does not consider compaction, or oxi-
dation occurring during wetting of the soil. Additional terms may be added to the model
to account for these effects, at the cost of added complexity.

The ambiguities of dynamic signals exceeding a quarter-wavelength of LOS
motion between acquisitions can be estimated by using contextual data to
anticipate moments of strong subsidence and uplift.
Cycle slips are consistent phase unwrapping errors made by algorithms which cannot
cope with displacements exceeding 𝜆/4 between acquisitions. This condition is made
worse when considering the strong noise levels encountered in cultivated peatland re-
gions. A hidden Markov model based implementation for (explicit) temporal phase un-
wrapping is developed in Chapter 4 in order to overcome this problem. The method
integrates categorical predictions about the state of relative motion from the machine
learning model discussed in Sec. 3.3.2. Based on precipitation, temperature, and time
inputs, the method compares an RNN prediction to the observed (wrapped) interferomet-
ric phase value in order to estimate whether or not an ambiguity level should be added
or subtracted from the phase time series at the epoch in question. It is shown that stan-
dard minimum-gradient techniques fail to correctly handle rapid soil motions, which can
create a strong bias (the magnitude of which corresponding to the number of cycle slips
incurred) in the average annual subsidence rates estimated by C-band InSAR studies of
peatland regions that rely on such phase unwrapping techniques (Sec. 4.4). This bias can
be mitigated when correctly anticipating these large soil motions.

A full displacement time series can be inverted from interferometric data af-
fected by loss-of-lock.
Temporal decorrelation strongly hinders the application of InSAR for monitoring land
surface motion in highly dynamic areas. Previous studies focused on applying InSAR
methods to peatland regions were constrained to monitoring motion within seasons or,
worse, ignored the problem of decorrelation and produced physically unrealistic results.
The concept of loss-of-lock was introduced in Chapter 5 to specifically describe coher-
ence losses which result in a breakage of an interferometric time series, and describes
how to identify and overcome them. The prototype of the Delft Contextually-Aided Dis-
tributed Scatterer Environment (DECADE) methodology was developed, which makes
use of contextual data in order to reconnect coherent observations separated by loss-of-
lock. The combined observations of groups of polygons which are expected to behave in
a similar manner are used to estimate the parameters of a common displacement model.
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This model is used to align the observations and estimate a single unbroken time series
for the contextual group. The SPAMS model described in Sec. 3.4 was used for this task.
While this method enabled the application of InSAR over decorrelating regions, the spa-
tial resolution became limited by the contextual groups, and differently behaving parcels
within a contextual group would not be detected.

It is possible to observe the shallow-based land surface motion of soft soils
using InSAR. An average regional subsidence rate of 6.3 mm/year is obtained
for the Green Heart for the period 2015–2023.
The DECADE methodology was further developed to scale up to large area (600 km2)
coverage over the full Sentinel-1 archive in order to estimate parcel-scale land surface
motion in the Green Heart region of the Netherlands, and to supply estimates of multi-
year average irreversible subsidence rates of the region. By identifying and mitigating
the main problems preventing the use of (C-band) InSAR for this application, namely
cycle slips and loss-of-lock, it becomes possible to use InSAR for land surface monitor-
ing applications. By making use of the SPAMS model (Sec. 3.4), the DECADE InSAR
methodology was further developed to enable parcel-scale time series estimation despite
the loss-of-lock problem described in Chapter 5. This development represents a different
paradigm in InSARmethodology, wherein the focus lies on estimating the parcel’s intrin-
sic model parameters ( ̂𝑥) in order to learn how a given piece of land behaves, as opposed
to focusing on obtaining as accurate of a time series as possible using a generic functional
model ( ̂𝑦). Per-parcel land surface displacement time series estimates are provided for
the Green Heart region, along with estimates of average irreversible subsidence rates and
estimated displacement (SPAMS) model parameters. Sub-centimetre agreement is found
for all test locations with in-situ measurements, corresponding to approximately 10% of
the overall signal magnitude. The change in land surface motion caused by experimental
subsidence mitigation measures is observable, which is also reflected in the estimated
displacement model parameters.

An upper bound on greenhouse gas emissions from soil oxidation can be
estimated from InSAR displacement data. An approximate upper bound of
21.5 t/ha/year of CO2-equivalents are released by the oxidation of drying peat
soils from the Green Heart, corresponding to a total annual rate of 2.3 Mt/year
over the entire region.
Greenhouse gas (GHG) emissions caused by the oxidation of organic matter in the Green
Heart’s soft soils were estimated in Chapter 6, based on their known soil types, area, and
estimated annual subsidence rates. There is considerable uncertainty in the fraction of
subsidence caused by oxidation, versus subsidence caused by other processes which do
not produce GHG emissions, which in turn creates uncertainty in GHG emission esti-
mates. As such, the upper bound of observed values of this fraction was applied every-
where, and an upper bound on the expected level of GHG emissions from the oxidizing
soils of the region was estimated. A total (maximum) value of 2.3 Mt/year of CO2-
equivalents for the entire Green Heart was estimated, which is approximately half of the
national total estimated GHG emissions caused by oxidizing peatlands in the Netherlands,
or 1.3% of the entire GHG emissions of the Netherlands in 2019 [14].
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7.2 Contributions
This research has provided the following contributions to the field:

• Development of the SPAMS model for shallow soft soil motion
• Development of the DECADE methodology and software implementation for dis-
tributed scatterer InSAR analysis of decorrelating land surface motion

• Introduction of the term “loss-of-lock” into the InSAR literature to describe decor-
relation events which result in breakages of an interferometric time series.

• First accurate and validated shallow soil surface motion time series estimates pro-
duced by InSAR in the Netherlands

• Estimated CO2 impact of the period 2015–2023 from soil oxidation in the Dutch
Green Heart region

7.3 Recommendations
Several areas for further study have been identified as a result of this research. As such,
the following recommendations are identified.

The DECADE methodology has so far only been applied to grassland regions, which
are not affected by agricultural activity such as plowing and harvesting (although the ef-
fects of vegetation growth and mowing are still present). While this was not a significant
limitation in the Green Heart region where the vast majority of parcels were grasslands
used for cattle grazing, this is not the case in other regions in the country where crop
farming is more prevalent. Preliminary coherence studies of crop-covered parcels [123]
indicate that high coherence levels are often encountered during the winter periods, cor-
responding to bare soils. During these periods, the coherence is generally higher than
that of grasslands, suggesting that despite these farming activities, an estimation may still
be possible. Furthermore, the DECADE methodology also does not consider any deep-
based subsidence processes such as hydrocarbon extraction or mining, which are also
not present in the Green Heart. Such deeply-based processes will need to be taken into
account in order for a national-scale analysis to be performed.

The parameters of the SPAMS model are treated as static values which do not change
with time. Variability in the displacement time series comes from the extrinsic precip-
itation and evapotranspiration values which are input to the model which has a certain
set of (intrinsic) parameters. However, factors such as changing land use/land cover,
anthropogenic interventions, and other aspects like changing parcel geometry and the
introduction of subsidence mitigation systems could cause these parameters to change
over time. Furthermore, as the time series of observations grows, it is desirable to avoid
reprocessing of the entire SAR stack, but rather to simply recursively update the current
estimates with the newest SAR image as it is acquired, as has been demonstrated with
PS methods [124]. Such a method could potentially be used to account for changes in the
intrinsic parcel properties over time.

The applicability of the SPAMS model may be extended to longer (multi-decadal)
time scales by introducing a constant background subsidence rate related to long-term
compaction and creep processes occurring in the Vadose zone. This could allow for the
establishment of a more accurate linear subsidence rate, as well as allow for a more ac-
curate separation of the component of subsidence caused by oxidation from the overall
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irreversible subsidence rate, if the two rates can be appropriately distinguished during dif-
ferent times of the year (i.e. summer and winter). Furthermore, by comparing the relative
magnitudes of such an additional term with the oxidation term, a more accurate fraction
of subsidence caused by oxidation could potentially be retrieved, thereby reducing the
uncertainty in GHG emissions based on the estimated subsidence rate.

The limitations of the EMI method need to be better understood in order to assure an
accurately estimated consistent phase time series. It has been noted that the performance
of EMI degrades as the number of images in an interferometric stack increases, as the
ratio of coherent to incoherent data decreases quadratically with stack length (Sec. 6.2).
The method can be further developed by applying the concept of the “sequential esti-
mator” [125] for use in conjunction with the optimal stack size and the identification of
loss-of-lock. Finally, the effects of closure phase on the ESM estimation should be better
understood and quantified, as for example the implications of performing an ESM estima-
tion over a region with changing land use/land cover over time have not been considered.
Such changes may lead to additional closure phases or degraded estimation performance.

Identifying loss-of-lock is currently done by simply specifying a minimum threshold
on the daisy-chain coherence level. While this is a practical solution which is easy to im-
plement, it does not agree completely with how loss-of-lock is defined, and may result in
sub-optimal separation of the time series into segments. An improved methodology that
uses all the possible interferometric connections should be developed, and ideally com-
bined with the EMI/sequential ESM estimation procedure (see recommendation above).

The stochastic model for distributed scatterers should be completed by formulating an
estimate of the ESM and APS estimation quality to allow for error propagation from the
observed coherence to the final estimated model parameters. Such a description would
also require a model for the quality of the PS reference point to be included as well [126].
For large regions, the storage space requirements for saving the full covariance matrix
for each multilooked distributed scatterer become very restrictive, however, space could
be saved by only retaining the unmasked portion of the coherence matrix, as discussed
in Sec. 6.2.1.

With the new availability of regular L-band SAR acquisitions of the Netherlands from
SAOCOM as of mid-2023, a multi-sensor approach to monitoring is now possible in the
region. The C-band Sentinel-1 and L-band SAOCOM missions are complementary in
that Sentinel-1 provides frequent imagery that decorrelates quickly and is challenging to
unwrap, whereas SAOCOM data is less prone to decorrelation and unwrapping errors
but is provided more infrequently. These two sensors should be used in conjunction from
2023 onward in order to help constrain the model specification during C-band loss-of-lock
events to ensure a more robust estimation of the irreversible subsidence rate.





Appendix A
Green Heart Soil Map

A simplified soil map of the Green Heart obtained from [100] based on the codes docu-
mented in [120] is shown in Figure A.1. Each of the four main classes shown contains
numerous subclasses which have been combined in order to simplify interpretation of the
figure.

Figure A.1: Simplified soil map of the Green Heart region of the Netherlands showing peat soils, class “V”
(red); “peaty” soils, class “W” (purple), marine clay soils, class “M” (blue); and river clay soils, class “R”
(green). Classification from [120].
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Appendix B
Subsidence Mitigation Measures
A simplified schematic diagram of the subsidence mitigation system [116] installed at
the Zegveld location is shown in Fig. B.1. The objective of the system is to minimize
groundwater fluctuations in the centre of the parcel by means of a pressurized drain,
thereby reducing the effects of shrinkage and swell, and the drying of the upper layers of
soils which leads to oxidation.

Figure B.1: Simplified schematic visualizing the difference between a normally managed parcel (’South’ test
plot) and the subsidence mitigation measure (’North’ test plot).
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An aerial view of the Zegveld test parcel is shown in Fig. B.2. The mitigation system
is installed at the northern end of the parcel. In order to process the two halves separately,
the parcel polygon is divided as shown by the blue lines.

Figure B.2: Aerial view of Zegveld test parcel, with polygon divisions visualized in blue. South sub-parcel:
standard drainage system, site b). North sub-parcel: mitigated drainage system, site c).
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