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ABSTRACT
Predicting wave impact design loads is crucial for ensuring

safety and performance of maritime structures, but it is challeng-
ing due to the complexity and rarity of these events. Existing
methods are mainly suitable for prediction of weakly non-linear
responses, or are very computationally expensive. Highly non-
linear responses require a fidelity level that can only be achieved
with expensive CFD or experiments, leading to sparsely populated
exceedance distributions. A new event-based multi-fidelity method
called ‘adaptive screening’ therefore combines elements of screen-
ing, multi-fidelity Gaussian Process Regression and adaptive sam-
pling, to more efficiently predict highly non-linear loads. It is ap-
plied at the level of the response peak exceedance probability dis-
tributions. A simplified case study using second-order wave data
validates the effectiveness of the method in accurately predicting
short-term design loads. The new method predicts more accurate
MPM results than the conventional method recommended by class
societies and the ITTC, while also significantly reducing the re-
quired HF simulation time. The new method has a deviation of
only 0.3-3.5% from the true 1-hour MPM over all test cases, com-
pared to the conventional method’s deviation of 5.2-6.7%. The
HF simulation time required to do this is 91 times shorter with
the new method (0.033 versus 3 hours per sea state). The new
method is not very sensitive to input noise as long as HF samples
are selected properly, and the application of the method to the ex-
ceedance distributions works.

1 INTRODUCTION AND OBJECTIVES
1.1 Background

Prediction of wave impact loads (green water, slamming,
wave-in-deck) is crucial in designing safe and effective maritime

structures, as they can cause significant damage, endanger the
crew and decrease performance (e.g., [1, 2, 3, 4, 5, 6]). However,
obtaining reliable design loads for these impacts is challenging
due to their complexity and rarity. High-fidelity (HF) tools are
needed to account for the impact complexity, and low-fidelity (LF)
tools are necessary to cope with the rare occurrences. A review of
multi-fidelity methods to predict wave impact loads is provided
by [7], which also highlights the importance of this issue by as-
sembled wave impact accidents. The review includes screening,
Gaussian Process Regression (GPR), adaptive sampling (AS), and
response-conditioning methods. Alternatively, conventional brute
force methods can be applied.

While existing multi-fidelity methods are suitable for weakly
non-linear responses, highly non-linear responses require a very
high fidelity level that can only be achieved with a few wave events
in CFD or experiments. This event-based approach is challenging
for the existing methods due to the sparseness of the resulting ex-
ceedance distribution. To tackle this issue, we propose combining
multi-fidelity event-based screening with the sound statistical ba-
sis and uncertainty estimate of GPR. The new method is aimed at
providing accurate design value predictions for highly non-linear
response, while minimising HF simulation time. Additionally, AS
can be used to further improve its efficiency.

1.2 Objectives
Our new method, called ‘adaptive screening’ is introduced

here, and a first validation using weakly non-linear wave data is
presented. We aim to answer the following questions:

• Can the method be applied to the response peak exceedance
distributions, or is another ‘abstraction level’ more suitable?

1 Copyright © 2023 by ASME
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FIGURE 1: Some of the ‘abstraction level’ options to learn the relation between LF indicator and HF non-linear response (not exhaustive).

• Can the new method accurately determine short-term most
probable maximum (MPM) values of non-linear responses?

• How does the method perform under conditions of noise or
less effective low-fidelity screening indicators?

• How does the accuracy and required simulation time of the
method compare to a conventional brute force method?

Design for seakeeping distinguishes long- and short-term re-
sponses. Long-term response considers variability over all wave
conditions a ship may encounter, whereas short-term response
considers variability within one wave condition. In theory, adap-
tive screening would be able to consider both, but this study fo-
cuses on predicting short-term design loads.

1.3 Organisation
Section 2 explains some of the existing methods and Section 3

the required statistical concepts. Section 4 introduces the new
adaptive screening method. Section 5 describes the simplified case
study used in the present publication, and Section 6 presents the
results for this case study. Finally, Section 7 contains conclusions
and planned follow-up work.

2 EXISTING METHODS
This section introduces the screening, (multi-fidelity) GPR,

and AS methods. The assessment of non-linear ship responses re-
quires some form of multi-fidelity evaluation. These methods es-
tablish a link between LF and HF variables at different abstraction
levels or stages in the time trace analysis (see Figure 1). However,
as explained in the introduction, the existing methods cannot pre-
dict design values for highly non-linear responses. They are there-
fore not widely used by designers for such responses. Section 2.4
describes a conventional wave impact load prediction method used
in the industry.

2.1 Screening
Screening methods rely on an LF indicator or surrogate vari-

able that reflects the order statistics of the target HF non-linear
variable [8, 9, 10, 11]. By performing Monte-Carlo Simulation
(MCS) on the LF indicator, many wave conditions or realizations
can be screened quickly for non-linear responses in both short and
long-term scenarios. Critical events identified through this screen-
ing can then be evaluated using HF methods such as CFD calcu-
lations or experiments. Finally, combining the LF statistics with

the HF loads enables obtaining HF design loads with a specified
probability of exceedance.

An ideal indicator would have identical order statistics as the
target non-linear response, where the highest indicator value ap-
pears in the same wave event as the highest non-linear response
value, and so on. The indicator can take various forms, such as
the rise time of relative wave elevation, wave crest front steep-
ness, or a combination of wave steepness, pitch amplitude, and
relative wave elevation amplitude. Studies validating wave impact
indicators are reviewed in [7]. The screening process includes the
following steps:

1. Define long-term wave information for the operational profile
(e.g., scatter diagrams).

2. Select critical sea states (LF long-term screening).
3. Generate wave and response realisation time traces.
4. Select critical events (LF short-term screening).
5. Generate input conditions for a HF tool for these events.
6. Perform HF calculations for the events to obtain HF loads.
7. Combine the LF probability from steps 2 and 4 with the HF

loads from step 6 in a long-term load distribution.

Here, we focus on short-term screening (steps 3 to 7). Results
for a full short-term procedure in one example wave condition are
provided by [11]. Screening links LF and HF responses at the level
of peak or ensemble maximum values in Figure 1.

2.2 Multi-fidelity Gaussian Process Regression
GPR, also known as Kriging, is a form of supervised learning

that assumes a considered process can be described by an infinite-
dimensional multivariate Gaussian distribution. This approach
has advantages over traditional regression, such as less restriction,
more influence from data points (although some assumptions need
to be made on the smoothness of the underlying curves), and pro-
vision of uncertainty bands for new estimates. It also has bene-
fits over more data-driven techniques: it works well with small
datasets and is less ‘black-box’ since hyperparameters are not en-
tirely abstract. GPR is a non-parametric Bayesian method that in-
fers a probability distribution over all possible values using a prior
distribution and updated posterior distribution from observations.
GPR can be used in single-fidelity [15] or multi-fidelity [16, 17]
forms. More information on single- and multi-fidelity GPR is in-
cluded in Appendix A.
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FIGURE 2: Abstraction level in Figure 1 for learning the relation between LF indicator and HF non-linear ship response in waves in
some of the applications in literature and the new method. References: [12, 13, 14]. KL-decomposition = wave event decomposition in
‘Karhunen-Loeve’ components (for details see [13]). CDF = cumulative distribution function.

2.3 Adaptive sampling
An advantage of GPR is that it produces an uncertainty esti-

mate. This can be used to define an acquisition function that finds
the optimal location for the next LF or HF sample during an AS
method. The acquisition function is designed to achieve a spe-
cific target, such as global surrogate optimisation (e.g., [18, 19])
or global surrogate accuracy (e.g., [20]). This process, known
as adaptive / sequential sampling or active learning / search, bal-
ances exploration and exploitation. Various sampling strategies
are available, with popular acquisition functions including Prob-
ability of Improvement (PI), Expected Improvement (EI, leading
to so-called Efficient Global Optimisation EGO), and Upper Con-
fidence Bound (UCB). When global surrogate accuracy is the tar-
get, samples can be added at the location with the largest predic-
tive variance. GPR combined with AS has been applied to time-
dependent reliability problems [21]. Applications of multi-fidelity
GPR and AS to ship response in waves are limited in literature,
but a few were found. For example, [12] used one-step lookahead
AS with single-fidelity GPR to learn 3-parameter Weibull fits to
vertical bending moment (VBM) maxima for a tanker. [13] used
AS with single-fidelity GPR to match wave events to VBM events
for a marine vessel, while [14] used multi-fidelity GPR to predict
short-term VBM maxima for the same vessel. Figure 2 illustrates
the abstraction level at which these studies operated.

2.4 Conventional brute force method
Extreme impact loads are hard to predict, and can have seri-

ous consequences for the performance, safety and cost of a marine
structure. As a consequence, designers tend to rely on class so-
cieties and proven technology to determine such loads. The envi-
ronmental contour approach (e.g., [22, 23]) is commonly used, in

which a few sea states are chosen and modelled in an experiment
of HF simulation. Several wave realisations or seeds with a du-
ration of 30 minutes to 3 hours are run. This is recommended by
class societies and others for highly non-linear response: e.g., it is
advised to run at least 10 seeds [24]; 16 seeds [25, 26] (in the lat-
ter reference derived from the recommendations for an exposure
duration of 1 hour); 20-30 seeds [27,28] or even 50-60 seeds [29].
Alternatively, it is recommended to run only 1 seed with a ‘suffi-
cient’ number of events [26, 30, 31]. 3-parameter Weibull fitting
Equation (1) can then be applied to the top 20-40% of the mea-
sured non-linear response peaks per seed (see e.g., [28,32,33,34]),
from which the MPM value for the target duration can be derived
(see Section 3). The uncertainty of this MPM as a function of the
number of seeds is studied in [35, 36], showing that this ranges
from RMSE error 12%Hs in 1 seed to less than 1% in 20 seeds
for the wave crest height MPM, for 1 hour (as is common to use
for sailing ships). This conventional approach is ‘brute force’, but
usually fewer seeds are used than would be required for a proper
MCS. In practice, more than one sea state, speed, heading and ship
configuration needs to be tested, and experimental time is limited.
It is therefore common to test only 1 seed per sea state, follow-
ing the ITTC [30]. Testing 2 or 3 is uncommon, and testing 10 is
occasionally done in the offshore industry. Obviously, the conven-
tional method is very (computationally) expensive due to the long
HF simulations or experiments.

p(x ≥ X)weibull = exp

(
−
(

x−θ

α

)β
)

(1)
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3 STATISTICS AND DEFINITIONS
As explained in the introduction, this study aims to predict

MPM values for non-linear responses in a given exposure dura-
tion. The MPM value can be obtained in different ways, as dis-
cussed in e.g., [35, 36]. A design load is related to either a target
exceedance probability or a return period; here we use exceedance
probability. The exceedance probability distribution (EPD) is de-
fined as one minus the cumulative distribution function (CDF).
Different EPD types are distinguished. The EPD of the (ensem-
ble) maximum values of each seed is called DEM, while the EPD
of all response peaks in the experimental time traces is called DSR
or DNR depending on whether it is based on a single or on multi-
ple realisations. The DEM is defined in Appendix B, but not used
here. The DSR and DNR are defined in Equation (2), with SC(N)
all response peak or crest values over N realisations, exceedance
probability defined based on the total number of response peaks
np and probability 1/np for the maximum value.

DSR(s) = p(SC(1)≥ s)

DNR(s) = p(SC(N)≥ s)
(2)

The MPM can be derived from either the DEM or the DNR.
The MPM from the DNR ŜC(N) is defined in Equation (3), where
np,e is the average number of peaks in the considered exposure
duration. It was shown in [35, 36] that these two options lead to
similar MPM values for wave crest heights and wave impact force
peaks. In our case study, we use Equation (3). For reference, Ap-
pendix B shows the MPM values for our case study when derived
from the DEM.

pexp = 1/np,e

DNR
(

ŜC(N)
)
= p

(
SC(N)≥ ŜC(N)

)
= pexp

ŜC(N) = φPexp [SC(N)]

(3)

4 NEW METHOD: ADAPTIVE SCREENING
We introduce a novel approach called adaptive screening,

which combines screening discussed in Section 2.1, multi-fidelity
GPR in Appendix A.2 and AS in Section 2.3 to predict extreme
HF response. Our aim is to address the sparse statistics challenge
posed by highly non-linear ship responses and obtain the HF MPM
value for a given exposure duration. Generally we only have a
few HF data points and many LF data points available. Fitting or
regression can reduce the influence of interpolation issues on the
sparse HF distribution. The next section presents the steps taken in
the new method, after which the advantages of the method com-
pared to existing methods, the utilized assumptions and the ab-
straction level are discussed.

4.1 Steps
The new method involves the following steps. Steps 1-6 relate

mostly to screening, steps 7-8 to GPR and step 9 to AS.

1. Define an LF indicator with a strong statistical relation to the
target HF response, as would be done in a screening method.
See Section 2.1 for indicator options.

2. Perform LF Monte-Carlo Simulation for a large number N of
wave seeds with the same exposure duration. See [35, 36] for
an example of the required N for wave crests, green water
impact forces and wave-in-deck impact forces.

3. Identify all LF indicator events in the time traces.
4. Select M indicator events from all available seeds, as would

be done in a screening method. Diffent sampling strategies
can be used, e.g., M events with the highest LF indicator
value, or M events around the target exceedance probability
of the LF indicator.

5. Find the corresponding HF response for these screened LF
events, by running HF CFD or experiments for the selected
events.

6. Calculate the DNR of the derived HF data points using (Equa-
tion (2)), with an exceedance probability based on the total
number of LF indicator data points. In other words, we as-
sume that the order statistics of the HF response are similar
to those of the LF indicator and use the full LF event set to
define np for the selected HF events.

7. Apply 1D single- or multi-fidelity GPR to the LF and HF
DNR samples. In order for the GPR to perform well in the
tail of the distribution, it is applied to the logarithm of the LF
and HF DNR in Equation (2).

8. Estimate the MPM and its uncertainty using Equation (3)
applied to the (MF-)GPR prediction for the DNR, with np,e
based on the average number of LF response peaks in the tar-
get exposure duration.

9. Compare the MPM uncertainty to a given tolerance. If it is
above the tolerance, add a new HF sample using one of the
AS strategies discussed in Section 2.3. This new sample has
to be selected from the available LF samples. Repeat steps 5
to 9 until the MPM uncertainty is below the tolerance.

4.2 Advantages
Compared to the conventional method in Section 2.4, the new

method will require a much shorter HF simulation time in or-
der to reach a similar MPM accuracy. Compared to the existing
multi-fidelity methods in Section 2, the new method also has ad-
vantages. Firstly, by combining MF-GPR with screening we can
generate new HF samples at low exceedance probability values,
without performing a very long HF simulation. The LF statistics
are used to identify a wave event at any given exceedance proba-
bility (within the limits of LF MCS) for which we obtain the HF
load. This cannot be done with GPR or regression methods with-
out screening, and makes the new method suitable for highly non-
linear responses. Secondly, the new approach uses MF-GPR in
step 7, which provides uncertainty estimates for predictions and
can take into account features of both LF and HF data points.
This can be used as input for AS, which can make the procedure
more efficient by reducing the total number of required samples
and targeting the sampling at interesting areas of the design space.

4 Copyright © 2023 by ASME



Thirdly, by using multi- instead of single-fidelity regression we
can reduce the sparse HF statistics problem. We use the LF statis-
tics not only to select the event in screening steps 1-5, but also to
improve the regression in step 7.

4.3 Assumptions
The screening part of the method (steps 1 to 6) is only useful

when the order statistics of the LF indicator and HF response are
sufficiently similar. See Section 2.1 for studies that validated this
assumption for wave impact indicators. In steps 7-8, the GPR
assumes some degree of smoothness of the distributions, and the
multi-fidelity GPR version assumes that the shapes of the LF and
HF distributions are similar.

4.4 Abstraction level
The abstraction level at which the new approach links the LF

and HF responses is depicted in Figure 2. In the present study
we choose to operate at the level of the peak exceedance proba-
bility distributions (DNR), in 1D with the exceedance probability
as only input variable. For sparse non-linear statistics it is sen-
sible move towards the right of the figure and apply some form
of regression, as we are not able to run HF simulations for long
time traces or for many events. The selected level is closest to the
value we are trying to predict, and it aligns with the conventional
method in Section 2.4. However, it is not the only option. If we
conclude that we miss important physics we may have to go back
in abstraction level or add more input variables (multi-variate re-
gression). If the prediction is easy on the other hand we may try
to go a step further in abstraction level.

5 SIMPLIFIED CASE STUDY
The present paper applies the new approach from Section 4 to a

simplified case study. The last step of the new approach, adaptive
sampling, is not yet applied.

5.1 Monte-Carlo simulations
The LF indicator in this case is a linear long-crested Gaus-

sian wave signal, and the HF response is the second-order long-
crested wave signal. We perform MCS for both variables, allow-
ing for ‘true’ HF validation material. We also have the theoretical
linear Rayleigh and second-order Forristall [37] ‘true’ reference
exceedance distributions. The linear wave elevation time traces
were generated using a long-crested JONSWAP wave spectrum
with Hs = 10 m, Tp = 11 s, γ = 3.3. The sea state steepness is
Hs/T 2

p ∼ 0.083, so relatively steep. The water depth was set at
30 m (relatively shallow to generate large second-order contribu-
tions). No current is assumed. The second-order wave signals
were generated using the Python toolbox Pyseawave of the Co-
operative Research Ships (which uses the formulations of [38]).
Frequency limits 0-5 rad/s were used for the interaction between
first-order components. A small part of the resulting time traces is
shown in Figure 3. We used T1 = Tp/1.198 for JONSWAP to ob-
tain the reference Forristall distribution. To ensure convergence of
the wave crest height extreme value statistics for 1 hour duration,

we require at least 8-22 realisations for a root mean square error
(RMSE) convergence criterion of 3% Hs, according to [35,36]. In
this case, we use 50 realisations of 1 hour duration for the MCS.

5.2 Noise
The data above perfectly follow linear and second-order wave

theory. In a real non-linear response problem, especially the HF
data points are expected to be noisy due to numerical issues in
CFD, basin effects in experiments, etc. Noise in this definition
may also indicate differences in the order statistics between the
LF indicator variable and the HF response variable, due to e.g.,
additional physics modelled in the HF tool or a less good LF indi-
cator. The LF data points would be generated using a lower-order
tool (e.g., linear or weakly non-linear potential flow), so these will
include less noise. Two ‘noise’ versions are considered here:

• ‘MeasNoise’: Gaussian measurement noise with zero mean
and 0.6 m standard deviation, added to the HF time series.

• ‘PhysNoise’: Time series based on another linear wave spec-
trum, added to the HF time series. This situation could for
instance represent HF experiments where there is still a resid-
ual wave system in the basin from a previous experiment. A
JONSWAP spectrum with Hs = 1.5 m, Tp = 12 s, γ = 3.3
was selected, with random phases that are independent from
the phases of the main wave system.

This changes the input data such that the LF indicator (peaks
linear waves) is a less good indicator for the HF response (peaks
second-order waves + noise). Similar plots as presented above for
the ‘clean’ data are provided in Appendix C for the data includ-
ing noise. These show that noise introduces more scatter in the
relation between the LF and HF wave crests, as expected.

5.3 Truth and considered approaches
The target of the case study is to obtain the MPM value of the

HF response (second-order wave crest height) for an exposure du-
ration of 1 hour. We want to compare the MPM value from differ-
ent versions of the new method (Section 4) to the ‘true’ value and
to the value derived from the conventional approach (Section 2.4).
For the ‘truth’ we have two references: the full MCS second-order
wave crest DNR, and the Forristall theoretical DNR (which is a
sanity check for the MCS). This gives us the following options
to derive the 1-hour MPM value for the HF non-linear wave crest
heights:

1. Truth based on the DNR from HF MCS.
2. Truth based on the theoretical Forristall distribution.
3. Conventional prediction based on approach in Section 2.4.
4. New prediction based on ‘screening + single-fidelity GPR’

applied to only the HF training data (Section 4).
5. New prediction based on ‘screening + multi-fidelity GPR’ ap-

plied to both the LF and HF training data (Section 4).
6. New prediction based on ‘screening + Weibull-fitting’ applied

to only the HF training data.

The settings for new methods 4 to 6 are discussed in Sec-
tion 5.4 and those for conventional method 3 in Section 5.5. For

5 Copyright © 2023 by ASME
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FIGURE 3: Matched LF indicator peaks (linear wave crests) and
HF response peaks (second-order wave crests) without noise -
zoom-in around the highest crest in the first realisation.

method 6, steps 1-6 are identical to the steps for the adaptive
screening procedure in Section 4. Next, a 3-parameter Weibull dis-
tribution (see Equation (1)) was fitted using least-squares fitting to
the HF DNR. The reasons for selecting Weibull and least-squares
fitting are explained in [35]. This approach was added in order
to evaluate whether GPR adds something with respect to simpler
regression. The 1-hour MPM for all methods and the truth can
be estimated using Equation (3), with np,e based on the average
number of LF linear wave crests in 1 hour.

5.4 New method choices
For the new approaches in Section 5.3, some choices were

made: LF and HF sampling, GPR implementation and settings.
Sampling of LF training data: In order to generate train-

ing data, we need a sampling strategy for the LF and HF data in
step 4 of the approach. First, we discuss the LF samples. Using
all LF wave crests in multiple 1-hour realisations as LF training
data leads to memory issues in the generation of the covariance
matrices in Equations (14) to (16). The LF training data there-
fore consist of every 10th wave crest in the DNR based on the LF
Monte-Carlo simulation, covering the whole range of exceedance
probabilities.

Sampling of HF training data: In order to avoid having to do
CFD simulations for each selected event in step 5 of the procedure
in Section 4 in our simplified case study, we used the HF MCS
results to sample the HF training data. In the case study we can do
this because we have a HF MCS available - in a real application
we do not, so then we must do CFD or experiments in step 5. The
case study therefore assumes that the generated CFD HF loads for
the selected events are accurate, and validates the rest of the ap-
proach. In order to use the HF MCS results, we match the LF
indicator peaks from the LF MCS (linear wave crests) in time to
the response peaks from the HF MCS (second-order wave crests)
using the following procedure. Firstly, the LF zero up-crossing
indicator peaks were identified (‘linear peaks’ in Figure 3). Next,
the corresponding maximum values of the HF response (‘corre-
sponding 2nd order peaks’), between each set of LF indicator zero
up-crossings were identified. Because we use the maximum HF
value between LF zero up-crossings, it does not matter if the LF
and HF peak are slightly shifted in time. This can be useful when

FIGURE 4: Scatter plot of matched LF indicator peaks (linear
wave crests) and HF response peaks (second-order wave crests)
over all 50 1-hour realisations. Time traces without noise.

you use an indicator value that has a phase difference with the HF
response. The scatter plot resulting from the peak matching (Fig-
ure 4) shows that the second-order wave crests are larger than the
linear crests. It also shows that the LF indicator is not perfect;
there is some scatter in the data. For the HF training data we used
two screening sampling strategies:

• ‘SampMax’: The HF peaks corresponding to the 10 maxi-
mum LF indicator peaks.

• ‘SampPexp’: The HF peaks corresponding to 10 LF indica-
tor peaks around pexp. ‘Around’ is defined by the LF DNR
indices [-50,-40,-30,-20,-10,0,10,20,30,40]+ipexp (where ipexp
is the closest LF index for pexp in the DNR).

In the case study the HF samples in both strategies are gen-
erated using the time trace matching discussed above (visualised
by the horizontal lines in the DNR of Figure 5). The first strat-
egy relates most to the traditional way to use screening data in the
studies discussed in Section 2.1. However, for derivation of MPM
values from the DNR (see Section 3), the focus around pexp in the
second option is more logical. Adaptive sampling is not yet ap-
plied. The resulting true and training data are summarised in Fig-
ure 5. For reference, the theoretical linear Rayleigh and second-
order Forristall wave crest distributions are also included in this
plot, showing that the MCS data follow them relatively well (as
expected). As said, the shown full DNR HF result is available for
the present simplified case study, but we only use it for validation
and for sampling the HF training data.

GPR implementation and settings: The MF-GPR theory was
first implemented and tested based on the papers of [16, 17]. This
was great for the understanding of the principles. However, for the
final results a more robust open-source Python toolbox was used:
Emukit v0.4.9 [39] (which in turn uses GPy v1.10.0 [40]). All
(MF-)GPR kernels were selected to be square exponential (Equa-
tion (5)). Some other kernels such as exponential quadratic were
tried, but gave almost identical results. The (MF-)GPR noise set-
tings were imposed instead of learned. They were all set at 0.1
m standard deviation (for input waves with and without noise).
A small sensitivity study showed that some noise is always bet-
ter than no noise in the GPR; this makes the resulting uncertainty
band slightly bigger, but also stabilises the results. Applying GPR
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(a) Sampling: SampMax.

(b) Sampling: SampPexp.

FIGURE 5: DNR of the true and training data over all 50 1-hour re-
alisations for the two sampling options, without noise. Both sam-
ple options with in total 10 HF samples.

FIGURE 6: Peaks and Weibull fits in the conventional procedure
for 3 randomly picked seeds, without noise.

without noise to noisy input data yields unstable results.

5.5 Conventional method choices
In order to show the improvement of the new approach com-

pared to the conventional experimental method discussed in Sec-
tion 2.4, results for this method are also provided. No experiments

were performed, but it is assumed that they would deliver second-
order wave peaks for a number of 1 hour seeds. We selected 3
seeds, and applied 3-parameter Weibull fitting to the top 30% of
the resulting HF peaks in each seed. For the case without noise,
this results in Figure 6. Each time 3 seeds are randomly picked,
the result will be slightly different. This was accounted for by a
bootstrap analysis over 200 seed picking realisations. For each set
of 3 seeds, the MPM crest height value was calculated from the
fits using Equations (20) and (21). The mean and U95 uncertainty
(1.96 times standard deviation) over the 200 seed picking realisa-
tions were calculated, in order to be compared to the new method
and the full MCS results.

5.6 Differences between simplified case study and
wave impact problem

Because our ultimate focus is on wave impacts, the LF points
may relate to an indicator variable and the HF points to a load
variable. This differs from the case study definition of LF and
HF, where both are the same variable at different fidelity levels.
However, if the indicator LF and load HF statistics are sufficiently
similar for screening (see Section 2.1), we can still use them in
multi-fidelity approaches. Another difference with the simplified
study is that the indicators for the wave impact problem are prob-
ably less good, which will complicate the regression. Whether the
new method can still be applied will be evaluated in a follow-up
(see Section 8).

6 RESULTS CASE STUDY
The results for the case study without noise and with noise are

discussed in the present section.

6.1 Results - no noise
In Figure 7 and Figure 8, we present predicted DNR curves

without noise for two different sampling options. Each figure in-
cludes two plots. The top one shows both the LF and the HF DNR
approximation from screening + multi-fidelity GPR (approach 5
from Section 5.3). The bottom one shows the same HF result, the
result of screening + single-fidelity GPR (approach 4) and the re-
sult of the screening + Weibull-fitting (approach 6). The 1h MPM
value for all can be read from the horizontal dotted line (equiva-
lent to Equation (3)), and the results are listed in Table 1. Note that
uncertainty is not available for the screening + Weibull approach.

In Figure 7, the MF-GPR result based on the SampMax sam-
ples is good, except for a small underestimation of intermediate
crest heights. This is also visible in the 1h MPM (Table 1): -2.8%
w.r.t. MCS. The single-fidelity GPR performs worse for higher
probabilities due to HF training data being centered around max-
ima, but it still performs well around target probability pexp. The
Weibull fit is worse than the single-fidelity GPR for the full do-
main, but it performs reasonably around pexp and good around the
maxima. In Figure 8 for sample option SampPexp around pexp, all
three methods show better results. In general, the three methods
perform well around the center of gravity of the sampling, but MF-
GPR outperforms the single-fidelity GPR and Weibull fitting over
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(a) Details screening + multi-fidelity GPR result.

(b) Screening + single- / multi-fidelity GPR / Weibull fit results.

FIGURE 7: Results for sample option SampMax, no noise.

the full curve. We recommend to focus the sampling around the
probability of interest, and adaptive sampling may further improve
results (or obtain them with fewer samples). Table 1 also includes
the result from the conventional procedure, which performs much
worse than the new methods with sampling around pexp (+6.7%
MPM deviation versus -0.3 to -0.9%).

If there is no noise in the training data, the size of the MF-GPR
uncertainty band mainly depends on the GPR noise settings. The
size of the MF-GPR uncertainty band in Figures 7 and 8 therefore
does not say much. However, even then, with proper sampling the
noise level is lower than that based on the conventional method.

The main advantage of using a multi-fidelity method com-
pared to a conventional brute force approach is the significant
reduction of HF simulation or experiment time. Assuming that
we need 12 sec CFD simulation time for each selected event (as
used in CFD with imposed ship motions from the LF calculation
in [11, 41]), we need 120 sec HF simulation time for the 10 se-
lected events in each sea state. We also need an LF MCS, which
can be very quick with linear potential flow. In contrast, we need
3 hours HF simulation time per sea state for the conventional ap-
proach with 3 seeds and 50 hours for the full HF MCS (see Ta-

(a) Details screening + multi-fidelity GPR result.

(b) Screening + single- / multi-fidelity GPR / Weibull fit results.

FIGURE 8: Results for sample option SampPexp, no noise.

ble 2; note that this table shows the full-scale time to be simu-
lated, not the CPU time). Comparing the two tables shows that the
new method provides more accurate MPM results than the conven-
tional method, also with a significant reduction in HF simulation
time. The results of the conventional method will be more accurate
with more seeds, but this also strongly increases the HF simulation
time.

6.2 Results - with noise
Similar results were obtained for the two types of noise defined

in Section 5.2. We exclude the detailed MF-GPR plots and only
apply SampPexp sampling because the previous section shows that
this performs best. Forristall is not included in the plots as it does
not account for noise. The required HF simulation time with and
without noise is the same for the different methods (see Table 2).

The first noise type, MeasNoise, adds Gaussian measurement
noise to the HF signal. Results are shown in Figure 9. Compared
to the case without noise, the samples have a larger scatter, indi-
cating that linear wave crests are now a less reliable indicator for
second-order wave crests. However, all three new methods are still
very close to the MCS result around pexp. MPM values in Table 1
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FIGURE 9: Results for sample option SampPexp, with Meas-
Noise. Screening + single- / multi-fidelity GPR / Weibull fit re-
sults.

FIGURE 10: Results for sample option SampPexp, with Phys-
Noise. Screening + single- / multi-fidelity GPR / Weibull fit re-
sults.

deviate ranging from -0.3% to -0.8% from the MCS value, show-
ing that these results are much closer to the MCS result than the
conventional method (+5.2%), and have lower uncertainty (which
can be further reduced by optimizing GPR noise settings).

The second noise type, PhysNoise, adds ‘physical noise’ such
as residual basin waves to the HF signal. Results for this type
of noise, sampled using the SampPexp option, are shown in Fig-
ure 10. The predictions around pexp are again close to the true
MCS result for all three new methods, but slightly less accurate
than for the measurement noise case. MPM values in Table 1 de-
viate ranging from -2.7% to -3.3% from the MCS value for the
new methods, which is still better than the +5.8% of the conven-
tional method.

These results were generated with the input GPR noise settings
provided in Section 5.4. Results may further improve by optimis-
ing the noise hyperparameters instead of prescribing them. Based

TABLE 1: HF second-order wave crest height 1-hour MPM, its
deviation with respect to the true MCS value and its uncertainty.
Result of different approaches. The input noise cases refer to Sec-
tion 5.2 and the input sample options to Section 5.4.

Input noise case None None Meas Phys
Sampling Max Pexp Pexp Pexp

1-hour MPM in [m]

True MCS 10.382 10.382 11.334 10.508

True Forristall 10.145 10.145 - -

Conventional (3 seeds) 11.075 11.075 11.923 11.118

Screening + MF-GPR 10.088 10.346 11.301 10.228

Screening + GPR 10.428 10.315 11.262 10.174

Screening + Weibull 10.749 10.288 11.241 10.166

Deviation w.r.t. true MCS in [%]

Conventional (3 seeds) +6.7 +6.7 +5.2 +5.8

Screening + MF-GPR -2.8 -0.3 -0.3 -2.7

Screening + GPR +0.4 -0.6 -0.6 -3.2

Screening + Weibull +3.5 -0.9 -0.8 -3.3

Uncertainty (U95) of 1-hour MPM [m]

Conventional (3 seeds) 1.290 1.290 1.255 1.487

Screening + MF-GPR 0.626 0.636 0.640 0.636

Screening + GPR 1.673 0.652 0.651 0.651

TABLE 2: Required HF and LF simulation time per sea state for
prediction of the 1-hour MPM.

Method HF [h] LF [h]
True MCS 50 0

Conventional (3 seeds) 3 0

All versions of new method (10 events) 0.033 50

on these results, it can be concluded that some measurement noise
in the HF data or a residual extra wave do not matter much for
the MPM prediction (the correct HF MPM including noise is pre-
dicted). The methods are not very sensitive to noise, as long as the
HF samples are focused around the probability of interest.

Finally, we evaluate the application of the new methods at the
abstraction level of the DNR. The present results are good. How-
ever, with focused sampling around pexp, the HF samples are close
together on the probability axis. Especially when there is a lot of
noise in the HF data or the indicator is less good, the samples will
form a cloud in the DNR plot, which makes regression difficult.
Assuming that all the HF samples have exactly probability pexp in
the DNR, assembling them in a DEM and then applying the new
methods to this DEM could therefore improve the results. This
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would shift analysis to another level of abstraction and probably
make the regression more stable, especially for more non-linear or
noisy problems.

7 CONCLUSIONS
It can be concluded that all three versions of the new

method (screening + MF-GPR, screening + GPR, and screening +
Weibull-fitting) perform well for the simplified case study, where
MF-GPR performs the best overall. Weibull fitting and single-
fidelity GPR can introduce larger deviations if samples are not
well chosen. Focusing the HF sampling around the exceedance
probability of interest is advisable. The new method is rather in-
sensitive to noise as long as HF samples are selected properly. The
application to the DNR exceedance distribution works, and appli-
cation to the DEM may further improve results. Most importantly,
the new method produces more accurate MPM results than the
conventional method while also significantly reducing HF simula-
tion time. The new method has a deviation of only 0.3-3.5% from
the true 1-hour MPM over all test cases, compared to the conven-
tional method’s deviation of 5.2-6.7%. The HF simulation time
required to do this is 91 times shorter with the new method (0.033
versus 3 hours per sea state).

8 FURTHER WORK
Future work on this project is foreseen in several areas. Firstly,

we plan to include adaptive sampling, which is expected to result
in more accurate results with fewer HF samples. Secondly, we
plan an application to long duration wave impact data, to validate
the new method for predicting wave impact design loads. There
will be more scatter in the HF data compared to the present case
study, and the LF indicator and HF response will be different vari-
ables. It needs to be evaluated whether the assumptions in Sec-
tion 4.3 are still sufficiently valid in that case. Thirdly, we will
evaluate the application to the DEM instead of the DNR. It is ex-
pected that this makes the regression more stable for highly non-
linear problems, but it needs to be evaluated whether this is nec-
essary for the wave impact problem. Fourthly, we will investigate
suitable (MF-)GPR settings (noise parameters, kernels, optimisa-
tion algorithm for the hyperparameters, etc.) in more detail. The
noise parameters can be learned instead of imposed. The mean
of the GPR can be non-constant and based on prior knowledge,
such as a fitted extreme value distribution. It could be interesting
to compare this approach with the multi-fidelity GPR. Also, the
present MF-GPR model is linear in yl , which puts a lot of mod-
elling burden on δ (x). In future work, it may therefore be con-
sidered to change Equation (13) to e.g., yh(x) = f (x,yl(x)). This
may improve results, especially for cases with a large scale factor
between the LF and HF data (such as indicator and wave impact
values in a wave impact study). Finally, when it would be con-
cluded that the method works for wave impact problems, it may
also work for other non-linear problems inside or outside the mar-
itime field. Generalisation of the method for more dimensions and
other applications could be evaluated.
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A SINGLE- AND MULTI-FIDELITY GPR DETAILS
A.1 Single-fidelity GPR

GPR or Kriging [15, 42] is a method for estimating new de-
pendent variable values y∗ (and their uncertainty) at new input
variable values x∗, using a data set of n existing observations
yobs = (y1,y2, . . . ,yn) at xobs = (x1,x2, . . . ,xn). The underlying
process f (x) is assumed to have an infinite-dimensional multivari-
ate Gaussian distribution with a mean function, µ(x), and covari-
ance function or kernel, k(x,x′). Prior knowledge can be incorpo-
rated using these functions, and the mean is often set to the mean
of the training data. This can already be done when defining xobs
and yobs, such that the mean in the subsequent formulations can
be set to zero. Gaussian noise ε ∼ N (0,σ2

n ) can be included by
adding it to the right-hand side of Equation (4). GPR roughly has
the following steps:

f (x)∼ G
(
µ(x),k(x,x′)

)
(4)

1. Select a kernel, assume a priori hyperparameters.
2. Optimise hyperparameters based on available data.
3. Use the optimised GPR (with a posteriori hyperparameters)

to estimate the process values y∗ at x∗.

The kernel is a covariance function that describes the relation
between x-points. We use the squared exponential kernel (see
Equation (5)), which includes length parameter l and maximum
allowable covariance parameter σ . The kernel can also include a
noise term with an additional hyperparameter σn. If two points x
and x′ are far apart, their covariance is zero, and the length param-
eter determines how quickly this interaction decreases. Kernels
have sets of hyperparameters that are optimised in the GPR pro-
cess; for the squared exponential, this is θ = (l) or θ = (l,σn)
with noise. σ is usually set to the standard deviation of the data
set instead of being optimised.

k(x,x′) = σ
2exp

[
−(x− x′)2

2l2

]
(5)

The GPR needs the value of the kernel for interaction of each
point with all the other points. This results in the interaction matrix
in Equation (6).
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K(x,x′) =


k(x1,x1) k(x1,x2) ... k(x1,xn)
k(x2,x1) k(x2,x2) ... k(x2,xn)

...
...

. . .
...

k(xn,x1) k(xn,x2) ... k(xn,xn)

 (6)

To predict new values based on existing observations, we need
a total interaction matrix that accounts for interactions between ex-
isting points, existing points and new points, and new points with
themselves. This results in covariance matrix C in Equation (7).

C =

[
K(x,x′) K(x∗,x′)
K(x,x∗′) K(x∗,x∗′)

]
=

[
Ke K∗T

K∗ K∗∗

]
(7)

When the mean is subtracted from the observations in xobs and
yobs, this reduces the GPR process to Equation (8).

[
yobs
y∗

]
∼ N (0,C) (8)

Now Equation (9) provides the conditional probability of new
values based on existing observations (for a detailed derivation
see [42]). This equation yields the best estimate for new values
y∗ and their variance var(y∗). The 95% confidence interval can be
calculated from this variance using U95 = 1.96 ·var(y∗).

y∗|yobs ∼ N
(

K∗Ke
−1yobs,K∗∗−K∗Ke

−1K∗T
)

y∗ = K∗Ke
−1yobs

var(y∗) = K∗∗−K∗Ke
−1K∗T

(9)

To find these new values, we need the values of the kernel
hyperparameters. In step one of the GPR, we assume arbitrary
a priori values, and then maximise the conditional probability
p(θ |xobs,yobs) to optimise them. According to Bayes’ theorem,
this is equivalent to maximising the log-likelihood given in Equa-
tion (10), where n is the number of existing observations (see
e.g., [42]). We can find the maximum of this formulation using a
multi-variate optimisation algorithm to solve for the hyperparam-
eter set θ . Assuming a uniform prior distribution U (θmin,θmax)
gives the best parameters θ .

log(p(yobs|xobs,θ)) =

− 1
2

yobs
T C−1yobs −

1
2

log|C|− n
2

log(2π)
(10)

Once this a posteriori hyperparameter set θ is found, Equa-
tion (9) can be used to obtain the new values and their uncertainty.
As we subtracted the mean of the data set at the start of the proce-
dure, it has to be added again at the last step.

A.2 Multi-fidelity GPR
In MF-GPR or co-kriging [16] we have existing LF and HF

observations (xl,obs,yl,obs) and (xh,obs,yh,obs), respectively. These
are organised in Equation (11). We also have high-fidelity new
points x∗ and the corresponding new values to predict y∗.

xm,obs =

[
xl,obs
xh,obs

]
ym,obs =

[
yl,obs
yh,obs

]
(11)

We use two levels of fidelity, as in [17]. Certain assumptions
must hold in order to efficiently apply MF-GPR: the different fi-
delity levels must be correlated in some way (necessary for any
multi-fidelity model), both the LF and HF data sets should have
some degree of smoothness and prior beliefs about each level of
the code can be represented using a Gaussian process. Satisfying
the second assumption may be hard for some types of non-linear
ship responses; wave impact loads for instance can be very noisy
and may have different load regimes. However, the extent to which
MF-GPR can be applied can be assessed.

We use the autoregressive model of [16]. This uses the as-
sumption in Equation (12), which is a kind of Markov property
that enables decomposition of the multi-fidelity GPR problem into
independent single-fidelity GPR problems. This speeds up the
computation. The assumption can be interpreted as follows: given
the nearest point yl(x), we can learn no more about yh(x) from any
other point yl(x′) for x′ ̸= x.

k
(
yh(x),yl(x′)|yl(x)

)
= 0 (12)

The formulation commonly used for MF-GPR, including in
the present paper, is expressed in Equation (13). See Section 8
for a comment on alternatives. Here, the multi-fidelity problem is
split into two GPRs: one for the LF data and one for the difference
function δ (x) between the LF and HF data. The parameter ρ is
used to establish the correlation between the two datasets. The
present process has the following steps:

yh(x) = ρyl(x)+δ (x) (13)

1. Select a kernel, assume its a priori hyperparameters θl for
‘ordinary’ single-fidelity GPR of LF function.

2. Optimise these LF hyperparameters using available LF data.
3. Use optimised single-fidelity LF GPR (based on a posteriori

hyperparameters θl) to estimate the LF values at x∗.
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4. Select a kernel, assume its a priori hyperparameters θδ for
multi-fidelity GPR of the difference function δ (x).

5. Optimise these multi-fidelity hyperparameters using available
HF data and evaluated LF GPR values at x∗.

6. Use optimised multi-fidelity GPR (based on a posteriori hy-
perparameters θl and θδ ) to estimate the HF values over x∗.

Steps 1 to 3 are identical to the single-fidelity procedure de-
scribed in Appendix A.1 applied to the LF data. In steps 4-5, simi-
lar hyperparameters are optimised for the difference function, plus
ρ from Equation (13). In steps 4 to 6, the multi-fidelity GPR for-
mulations differ from the single-fidelity formulations. The multi-
fidelity covariance matrix of the existing observations De is for-
mulated in Equation (14), which uses Equation (6). Similarly, the
multi-fidelity covariance matrix of the existing observations with
new points D∗ is given in Equation (15) and the multi-fidelity co-
variance matrix for the new points D∗∗ in Equation (16).

De,11 = K(xl,xl
′|θl)

De,21 = ρK(xh,xl
′|θl)

De,22 = ρ
2K(xh,xh

′|θl)+K(xh,xh
′|θδ )

De =

[
De,11 De,21

T

De,21 De,22

] (14)

D∗
11 = ρK(x∗,xl

′|θl)

D∗
12 = ρ

2K(x∗,xh
′|θl)+K(x∗,xh

′|θδ )

D∗ =
[
D∗

11 D∗
12
] (15)

D∗∗ = ρ
2K(x∗,x∗′|θl)+K(x∗,x∗′|θδ ) (16)

Now we can assemble the multi-fidelity form of the full co-
variance matrix (Equation (17)) and of the log-likelihood function
(Equation (18)), where nm is the number of elements in xm,obs.

D =

[
De D∗T

D∗ D∗∗

]
(17)

log(p(ym,obs|xm,obs,θl ,θδ )) =

− 1
2

ym,obs
T D−1ym,obs −

1
2

log|D|− nm

2
log(2π)

(18)

Finally, the new predicted values and their variance can be cal-
culated using Equation (19). Here, the constant mean of the data

set is handled in the same way as in the single-fidelity GPR: sub-
tracted from the observations in step 1, and added again after the
last step.

y∗ = D∗De
−1ym,obs

var(y∗) = D∗∗−D∗De
−1D∗T

(19)

B TRUE MPM DERIVED FROM DEM
The DEM is defined in Equation (20), with SE(N) the ensem-

ble maximum response values of N realisations and probability
1/N for the maximum value. The MPM from the DEM ŜE(N)
is defined in Equation (21). The estimated value of 0.632 comes
from the exceedance probability of the MPM in a DEM distribu-
tion for a Gaussian signal as discussed in, e.g., [43].

DEM(s) = p(SE(N)≥ s) (20)

DEM
(

ŜE(N)
)
= p

(
SE(N)≥ ŜE(N)

)
= 0.632

ŜE(N) = φ0.632 [SE(N)]
(21)

For the HF second-order wave time series in the case study of
Section 5 without noise, the 1-hour MPM estimated from the DNR
is 10.382 m (see Table 1). The MPM estimated from the DEM
using the formulations above for the same case and the same 50
realisations is 10.530 m. The difference between these two val-
ues is of the same order as the differences between the MPM from
the different approaches in Section 6. This difference is probably
caused by wave grouping; individual second-order wave crests are
not fully independent. The ensemble maxima in the DEM are fully
de-coupled (one ‘event’ per realisation), whereas the crests in the
DNR are not (many ‘events’ per realisation). It is expected that the
estimates are closer for more rare HF phenomena such as wave im-
pact loads (as events are more independent, even when all events
are considered).

C INPUT PLOTS WITH NOISE
This appendix contains similar plots of the scatter of matched

LF versus HF peaks as Figure 4 and true and training DNR data as
Figure 5, but here for the two input versions with noise. Figure 11
shows these plots for the option MeasNoise and Figure 12 for the
option PhysNoise; both for sampling option SampPexp.
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