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ABSTRACT

The increasing use of Fibre Reinforced Polymers produced by Vacuum Assisted Resin Transfer
Molding in civil infrastructure applications leads to the need for an appropriate research data. The
VARTM produced structural elements are not limited in dimensions and material properties and
typically are slender structures parts of which are susceptible to plate buckling. The latest standards
- CUR96 Vezelversterkte kunststoffen in bouwkundige en civieltechnische draagconstructies and JRC
Prospect for New Guidance in the Design of FRP — are for a large part based on the research data of
pultruded profiles and in terms of design for buckling, focus on the flange / web interaction. The goal
of this thesis is to investigate the effect of initial out of plane deformations on buckling of FRP plates
produced by VARTM.

Literature study includes a detailed overview of the currently available analytical models and design
procedures for plate buckling, and a summary of the research dedicated to study of the effect of
initial imperfections on buckling behaviour of FRP structural elements. Although the limiting values
for initial out of plane deformations are provided, they are not included directly in the design
procedures given in standards, referring designer to determine the influence of the imperfections
either from tests or numerically. From experimental and finite element analysis studies it seems that
the suggested limiting values of the initial imperfections are unrealistically large.

The first step of this research was to determine the shape of the imperfection that has the largest
effect on plate’s structural behaviour. The effect of the shape and amplitude of the initial out of
plane deformation was studied with geometrically nonlinear finite element analysis using Abaqus
software. Four different shapes (first two buckling modes, one halfwave over the whole length of
the plate, wrinkle imperfections) and four amplitudes of imperfections were considered with the
maximum being the limiting value suggested in standards. The effects of material layup, plate
thickness and aspect ratio were investigated. It was found that an imperfect plate does not buckle,
meaning there no sudden growth of out of plane deformations and thus no bifurcation point in the
load — deflection diagram, which leads to difficulty of determining the critical buckling load. A couple
of methods to approximate the critical load were considered, however, none of them are useful
when it comes to larger amplitudes of imperfections.

Since it was impossible to quantify the influence of initial imperfections in terms of critical buckling
load, another failure criterion had to be chosen. Three possibilities were considered: serviceability
limit strain, Hashin progressive failure and delamination. It was shown that delamination would not
be critical compared to the Hashin progressive failure criterion. By varying plate’s thickness several
values of plate slenderness were obtained and the corresponding failure loads determined. Based on
the results buckling curves were derived showing the relation between plate slenderness and
compressive load reduction due to buckling.

Lastly, a numerical example is presented that demonstrates the application of the three methods for
design for local buckling of a profile: JRC/Kollar, CUR96 and buckling curves.

The general conclusion is that for thin plates the critical load criterion gives quite conservative
results, as thin plates have “postbuckling” capacity. This “postbuckling” capacity is (almost)
independent of the amplitude of imperfection. In case of thick plates, it was shown that failure
occurs below the critical load and depends on the amplitude of initial imperfection.



1. INTRODUCTION

1.1 MOTIVATION AND BACKGROUND RELEVANCE

Fibre Reinforced Polymers (FRP) properties such as very high strength-to-weight ratio and low
maintenance make it a very attractive material to use in infrastructure applications. Usually
pultruded profiles with hollow, I-shape, and channel sections are used in bridge construction.
However, next to pultrusion, Vacuum Assisted Resin Transfer Moulding (VARTM) is becoming one of
the most used manufacturing processes for FRP in civil engineering. Typically, large monocoque
structures are produced in this manner. Quality of the final product produced by VARTM is largely
dependent on skill and experience of workers as the placement of fibres is done manually. Due to
high slenderness and initial imperfections introduced during manufacturing these structures are
susceptible to buckling.

Some of the structures in which buckling might be critical are listed next. In all of these examples,
the critical parts can be regarded as plates under longitudinal compression:

- composite bridge decks; two types of instability can be identified: “wrinkling” of the top face
of the deck due to longitudinal compressive stresses, which results from the deck bending
and buckling of the web at the supports and under wheel loading;

Traffic loads

adhesively-bonded
connection

Figure 1.1.1 Composite bridge deck [31] p.46

- bridge superstructure; in the structural system as shown in the figure 1.1.2 due to bending
of the bridge, tensile forces are developing in the tie and compressive forces in the chord,
which is a hollow profile with thin walls and is susceptible to local buckling;

Figure 1.1.2 Paradis bridge [32] p.19



- bridge tower structure; due to global bending of the whole structure the parts of the cross
section are locally compressed giving rise to buckling;

Figure 1.1.3 Landmark tower [32] p.74

Current design standards for FRP structures are still in development and are largely based on
experimental data of pultruded profiles. Design procedures for local buckling that are available in
the existing codes do not account for influence of initial imperfections but focus on the interaction
between webs and flanges. Therefore, there is a great need for research data on VARTM-produced
structural elements and on the influence of initial imperfections on buckling behaviour of plates.

Both pultrusion and VARTM are cost effective processes for production of FRP elements. Pultrusion
is a continuous process in which fibres are lead into a resin bath for wetting, then pulled through a
heated die where it is formed into the intended shape. After curing in the die the profiles are ready
to be cut into desired lengths. VARTM is a closed mould process in which the placement of the fibres
is done manually. After the fibres are placed in the mould, the resin inlet tubes are placed followed
by a vacuum bad that is made of a transparent flexible material. The air is then sucked out and the
resin starts to flow. The composite is removed from the mould after curing.

The key differences between structural elements produced by pultrusion and VARTM are:

Pultrusion VARTM

e Prismatic profiles with open and closed e large thin-walled elements, closed
cross-sections cross-section profiles

e Constant cross-section and layup over e Freedom in geometry and layup over
the whole length of the profile the length of the element

e In general, thicker plates; variation e large variations of material properties
between the thickness within the cross- and dimensions in the cross-section
section is small e Better dimensional tolerances

For the design of the elements produced by VARTM this means that the difference in thickness of
webs and flanges - t,,; tf - and various ratios of longitudinal and transverse elastic moduli Ex/Ey of a
plate (flange or web), as well as difference in material properties — Ey; Ey; vy, - of webs and flanges
have to be accounted for. The analytical models that have been developed for pultruded profiles
often leave out one or more of these considerations, simplifying the design procedure.



1.2 OBJECTIVE AND RESEARCH QUESTIONS

The objectives of this research are to clarify the design recommendations for buckling given in the
two latest standards for FRP: CUR96 Vezelversterkte kunststoffen in bouwkundige en

civieltechnische draagconstructies and JRC Prospect for New Guidance in the Design of FRP and to
qguantify the influence of initial geometric imperfections on the structural behaviour of FRP plates.

The main research question to be answered is:

- How do initial out of plane deformations influence the structural behaviour of Fibre
Reinforced Polymer plates produced by Vacuum Assisted Resin Transfer Molding?

The key questions to be addressed are:
- What is the effect of shape and magnitude of imperfection?
- How much does the presence of initial imperfections degrade the load carrying capacity?
- Do the limiting values given in standards make sense in terms of design for buckling?

The methodology used in this project include literature research, which includes an overview of
present design guidance and research papers on buckling of FRP plates, and finite element analysis.
Linear, geometrically nonlinear and materially nonlinear analyses were used.



2. LITERATURE STUDY

The two topics that are the main focus of this literature study are the analytical models and the role
of initial geometric imperfections in buckling of FRP plates and profiles. The goal is to answer the
following questions:

e What are the applicability and limitations of the analytical models currently available in
standards and literature?

e What is the role of boundary conditions and web / flange interaction?

e How are initial geometric imperfections considered in standards?

e What is the significance of buckling modes interaction?

e What is the effect of initial geometric imperfections on buckling behaviour of plates?

2.1 ANALYTICAL MODELS

Buckling of plates can be approached in two ways. A plate can be considered as a separate element
with certain standard boundary conditions — simply supported, clamped, etc. Another way to look at
plate buckling is to consider a plate as a part of an assembly, namely a profile. In latter case the local
buckling (buckling of flanges or webs) of profiles is considered. The second approach is more
practical for designers because in practice idealized boundary conditions can rarely be seen. The
currently available analytical models for buckling of FRP profiles consider flanges and webs as
separate plates and the main focus lies on the correct modelling of their boundary conditions taking
into account the interaction between webs and flanges.

In this chapter an overview of analytical models dealing with buckling of FRP plates is presented,
which include explicit expressions for plates with standard boundaries under uniform compression
and linearly varying in-plane load, and design equations for profiles of various shapes given in the
following documents: JRC Prospect for New Guidance in the Design of FRP (JRC) [1], CUR96
Vezelversterkte kunststoffen in bouwkundige en civieltechnische draagconstructies (CUR96) [2] and
Stabilitatsverhalten ebener Tragwerke aus pultrudierten faserverstarkten Polymerprofilen by Heiko
Trumpf [3] and the relevant background papers.

2.1.1 BUCKLING OF PLATES

PLATE ASPECT RATIO = g

Figure 2.1.1 Perfect plate geometry [4] p. 227
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Buckling of a plate is a sudden deviation from a flat state under in-plane loading (x-axis) into a state
that is bowed in the normal direction (z-axis). The load under which the plate buckles is called critical
buckling load. The value of this load depends on geometry of the plate and the material properties
and can be determined with a linear eigenvalue analysis. What happens after the buckling load is
reach can only be described by nonlinear analysis. Plates exhibit stable postbuckling behaviour,
which means that a plate can still carry load after it buckles, which is illustrated in the following
diagram.

N

cr
o

Mv

Figure 2.1.2 In-plane load versus out of plane deflection curves

Figure 2.1.2 describes the classical bifurcation behaviour. With increasing longitudinal loading, the
plate deflection follows the ordinate upwards showing no out of plane deflection (1) — a plate only
shortens in the load direction while remaining flat. Theoretically after the in-plane loading exceeds
the critical buckling load N,,., the curve might continue upwards up to the failure load. More
realistically, at N = N, which is called bifurcation point, assuming that the load is applied in the
midplane of a perfectly flat plate, a plate will buckle and take a new shape and equilibrium state but
still will be able to carry load with a reduced stiffness. This is shown by curve 2. In reality, initial
imperfections in form of load eccentricities and geometric imperfections will be introduced, which
will result in deviation from the curve 1-2 and postbuckling path will then look similar to the curve 3.
Horizontal line 4 illustrates a neutral postbuckling behaviour, in this case a structural element (a bar)
cannot carry load after the critical buckling load is reached.

2.1.2 PLATE BUCKLING DESIGN EXPRESSIONS

The equation of the deflected surface of symmetrically laminated perfectly flat plate is:

0*w o*w o*w 2*w 2*w 2%w 2%w
Dy gr + D16 5,355+ 2Dsz + Doe) 3755 + 420 5oz + Don s = Negoy = 2y 50
2%w
- Ny W = 0

(2.1.1)

For symmetrical composite plate with cross-ply lamination there is no coupling between bending
and twisting, which means that D, = D, = 0 and the equation becomes:

11



0*w o*w o*w 9%w 02w 2%w
D11W+2(D12+D66)a—+D Nxﬁ_Znym—Nya—:yZ:

x20y? 22 9y% 0

(2.1.2)

D11, D55, Dgg, D16, D¢ are the orthotropic plate stiffnesses defined as:

n
1 —
Dy =3 ) (@), (1} = ki)
k=1

1 =5
h, 2
hy| 4 3 h/2
h?.
h, |
hk tkt k
k+1 h/2¥ z

hn—l

n n

Figure 2.1.3 Laminate with n plies [5]

An exact solution of this equation is possible when the shear loading Ny, is equal to zero and N, and
N,, are constants.

For a plate that is loaded by uniform uniaxial loading:

d*w *w *w 9w
D11W+2(D12+D66)W+D226_y4_ x5z = 0
(2.1.3)

The boundary conditions for a plate simply supported at all four edges are (with respect to figure
2.1):

e atx=0,a:w=M, =0;

92w 02w 02w
Mx = — Dllw‘i'Dzza—yz —>W(X) =W= 0

) aty=0,b:w=My=0

92w 9w 2w
My =— DIZW-'_DZZ@_)/Z —>W(}’)=a—yz=0

(2.1.4)
Where M, and M,, are bending moments.
The buckling mode may be taken in the form:
. mmx | nmwy
w(X,y) = Cpp - Sin +sin—=
(2.1.5)
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where ¢, is arbitrary amplitude coefficient.

Substituting (2.1.5) into (2.1.3) yields a fourth order ordinary differential equation which has an
exact closed form solution. This equation was solved for plates with various boundary conditions
under uniaxial loading; the most common cases are listed in the Table 2.1.

It can be seen that the buckling load N is a function of m, a number of half-waves in x direction of
the plate (for uniaxial loading the number of half-waves in y direction is n = 1) and the aspect ratio
AR = a/b. The fundamental buckling mode shape can have any number of half-waves in the
direction of loading, depending on the aspect ratio and the stiffness ratio of a particular plate. For
small plate aspect ratios the plate buckles into a single half-wave in x direction. As the aspect ratio
increases, the number of half-waves m in the direction of the load increases. Figure 2.1.4 illustrates
dependence of buckling load on aspect ratio for isotropic (D;; = D,,) plate. For a certain stiffness
ratio there is a corresponding plate aspect ratio for which the plate buckles with a minimum in-plate
loading into a certain buckled shape:

+Dyq

AR =m
D5,

(2.1.6)

Substituting 2.1.6 into the first formula given in Table 2.1 the equation for the buckling load of a long
plate with simply supported edges is derived. The design equations for the calculation of the critical
buckling stress of long plates with various boundary conditions are presented in Table 2.2.

More in-depth derivations and investigations of plate equations for various loading and boundary
conditions can be studied in works of S. G. Lekhnitskii [7] and A. W. Leissa [8].

08 T
[ Nycrit m=1 =
L = - M= 2 m= 3
0.6 +(N/mm) - O
' o — D, | 06
04 +
y . < — D1z 0.47
r width «— NX ——T7%
[ — -«
02 I _’ <« DGS 049
- NXx
r «— length —»
O -

O 02 04 06 08 1 12 14 16 18 2 22 24 26 28 3
Length/Width

Figure 2.1.4 Dependence of aspect ratio of a plate on buckling load [6] p.129
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O - v = T [Dumt +2(Di> +2De) m? (ARY + Do (AR)']
SS O a’m?
w? 4 2(Di2+2D¢) 3., -
No=oi/ DD (K) el T b 92 G < LE62
I C| == ) a (Dn\"* b? i : )‘“+ v Dy Dy, +4 b
b =o\D 448m*+1 2(Dy+D A2
y 55 x g B tum g Ml A > 1.662
A2 (m~ 4 1) V' Di1D> m*+ 1
e — nefiey N, T DDk Koy 2(Pat2De) 16X
bie = ~ BN B LI R B /DDy  3m?
n? 42 8(Diy+ 2Dg) ’
N, = —+/D Dy (K K=—4+—F——c——"+4+41 0<i<1.094
e A a(Dzz)l/4 ;d e )“2+ 3V DDy, * s
c |+ “"T5\D 448m*+1 2(Dp+D A2
b ¢ £ o I EOMHL SO e, A > 1.094
A2 (m?+1) VD1 D> m?+ 1
free Dy \ 14 2 12 D 1
SS| k:£< 22) No=n—2 Dy Dy (K) K=—7$+—7
Ss b \ Dy, b w* /DDy  A*

m=%¢ammm

ss M a
A= —
SS ) b

SS

+ 16

Dyu\'*
(D“) K —0047;[21,2\/(’"2 4. 20w+ 206) ﬁ) (mz 8 (Dy; + 2Dge) ,JG)

+=S )=+ :
A2 \/D“Dgg m= A= \/D”ng m=

Table 2.1 Buckling load of plates with various boundary and loading conditions [6] p.146

14



a
—
N le— b
0 cre 0 cre
—
7T/
| s
a
Z Z
— e
Ocre Gere b
— le——
7 I rd
>
a
—] —
0 (] - i 0 cre b
—]
L e ——
a
l—
0 — [“— 0 cre b

—] le—
ClEAA AL

Gerb

a

2
s
Ocre = 732 [2\/ Dy1D3; + 2(Dy, + 2D66)]

2
T
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T
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Ocrc = 12 h2

1
Ocrc = 73+/D11D22[15,1KNT = v + 7(1 — K))]

forK<1
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(- v)] forK>1
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T
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fork<3

2
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Free edge
Simply supported edge

Clamped edge

Table 2.2 Buckling load of long plates with various boundary and loading conditions [2] p. 75-76

Where:
a is the plate length
b is the plate width

t is the plate thickness

D _ EL * t3
VY A =vpr-vrL)
ET " t3
Dy,

12 (A =vpr-vrL)

Dy =vir - Dy,
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(2.1.11)

(2.1.12)



2.1.3 JRC PROSPECT FOR NEW GUIDANCE IN THE DESIGN OF FRP

DESIGN PROCEDURE

Design procedure for local instability under longitudinal compression for pultruded doubly
symmetric elements is given in ANNEX C.

Nioc,ra is the design value of compressive force which determines the local instability of the element
and can be calculated as:

ial
Nloc,Rd =A 'ﬂgg,lc(ll

(2.1.13)
The design value of local critical stresses is the minimum design value of critical stresses in the

uniformly compressed flanges or the web: f;2¥al = :—Cmin {(ﬁg’éi;‘?l)f, (gt W}
: » : :

Procedure to evaluate local critical stresses in the web and the flanges is given for I-cross section
(figure 2.1.5).

| bf |
I
[ i if
71— . J T

b“‘ — - -<—f“

[f

v [ ]
T

Figure 2.1.5 I-section [1] p. 151
Subscripts used:
f —flange; w — web; L- longitudinal direction; T- transversal direction.

First, the critical stresses are calculated assuming hinged connections between the flange and the
web:

2
( f axial =4-G <t_f>
lock LT b
f

(2.1.14)
m?-E tw\2 E Gir
axial Tc w Lc
S=k.- (—) k.=2 L LG +2-
(flock w " 12-(1—vip  vrp) " Ere Ere ( Vir tVrL) VT
(2.1.15)

(flg’gl,?l corresponds with the analytical solution for an orthotropic symmetrical plate that is
loaded in longitudinal compression and is simply supported at three edges and has one unloaded

17



edge free and represents half of a flange of an I-section. (flf,”(f,i,fl 55 is the solution for an orthotropic

symmetrical plate which is simply supported at all four edges and is loaded by uniform compression
and represents simplified boundary conditions for a web. k. is called the plate buckling coefficient.

The element (web or flange) with lower critical stress will buckle first. It is then assumed that
through the interaction between the flange and the web the element that has a higher critical stress
will restrain the plate with lower critical buckling stress. The lower critical stress is then evaluated
using expressions given in ANNEX E taking into account the interaction between the flange and the
web.

In order to evaluate (fi%se") s, when (fi3idh)$ < (f255)57, the stiffness of the rotational

constraint k exercised by the web on the flanges has to be taken into account:
(D11)f ! (Dzz)f

b 2
f
b (7)

(fiseeDyr =

7-(1—K
-{K-[15.1-n-,/1—p+6-(1—p)-(1—n)]+ ( )},

J1+412-¢

K<1
(2.1.16)
(fisely = (Dn)fl;(DzZZ)f [151-n-JT—p+6-(1—p)-(K—m)]K>1
8
(2.1.17)
(D22)
(= o !
(2.1.18)
b= (D12)f
2 (Dge) s + (D12)f
(2.1.19)
1
nz\/1+(7.22—3.55-p)-§
(2.1.20)
K = 2 (Dge) s + (D12)f
(D11)5 - (D22)f
(2.1.21)
. (Dzz)w_ . by~ (fzggcc,llgl JS‘S' (ELC)lf T 0
Pl GEEOE ]
Lc)w w
(2.1.22)
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The expression to evaluate (f,2'¢"),,, in case (fiZF¢h)ss < (f25d ?S takes into account the

torsional stiffness GI; of the constraint given by the flanges:
2
. T
G = T
- {2 J1T+4139-8 /(D11 - (Da2)w + (2 +0.62-¢%)
“[(D12dw + 2 (D66)w]}

(2.1.23)
. 1
¢ =1¥10. 4
(2.1.24)
o= @z by
Gl
(2.1.25)
axial 1
tw - (floc,k )W W
Gl, =4- (D66)f ) bf (- axial Clw
tr * ioex )y L)y tr
(2.1.26)

Design procedure for local instability under bending loading for pultruded doubly symmetric
elements is given in ANNEX D.

The design value of the bending moment which determines the local instability can be determined
using the following expression:

_ . cflex
MlOC,Rd =W floc,d

(2.1.27)

When the element is subjected to bending the top flange is in compression and the web is in

bending, the design value of the critical stress for flexure is flgéej = —mm{(ﬁﬁ’c‘f,?l)f, (flgée,f W}.

(ﬁgjcc,i,?l)f, when (le’C”,?L < (flgée,f 55, can be determined in the same way as described in the

procedure for uniform compression loading, first assuming simply supported edges, and then
evaluating the critical stress using expressions 2.1.16 to 2.1.22.

lex lex
(flgck ,,» when (flgck 5 < (flﬁ’C“,ﬁll is determined using the conservative expression:

2

)

(fflex — flex\ss _ =k T[ ETC (tw)
lock /,, loc,k /w f 12 - (1_VLT VTL)

E; G
kf=139 E_TC+222 E_TC (1_VLT VTL)+111 VLT

(2.1.28)
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Rearranging the expression (2.1.28) will result in the Lekhnitskii’s formula for a plate that is simply
supported and is loaded by linearly varying load:

2
s
Oor = tb—z[13.9,/1)11022 + 11.1(Dy, + 2Dgs) ]
(2.1.29)

It is the same as reported in JRC 15.2.4 and in Table 2.2 in 2.1.2 of this report but for the constants
13.9 and 11.1. The explanation for that is found in Trajan, Sapkas and Kollar (2010) [9]. It was
concluded that these coefficients (13.9 and 11.1) are a little high and 13.4 and 10.4 give better
approximation.

BACKGROUND

More detailed insight into the procedures given in JRC can be gained by studying the research paper
by L. P. Kollar “Local Buckling of Fiber Reinforced Plastic Composite Structural Members with Open
and Closed Cross Sections” [10], which provides calculation procedures for box, I-, C-, Z- and L-
sections under compression and bending loads. This report will focus on |- and box sections.

Webs and flanges of a profile are considered as separate plates with rotationally restrained edges.
Two ways of restrain are possible:

e edges rotationally restrained by springs
e edges rotationally restrained by stiffeners

In the first case, the rotational spring constant kg is considered:

_ c: (DZZ)rs

k
° Lys

(2.1.30)

Coefficient ¢ takes into account boundary conditions of the restraining plate and L is the width of
the restraining plate. However, this expression is only valid when no axial load is applied. To take the
effect of axial loading into account the amplification factor is used:

1
. axial\SS ., 1
Eu (floc,k bu (ELc)bu “Thy

ial\SS
rs (ﬁg’g]g rs (ELc)rs “lrs

1

(2.1.31)

Subscript bu stands for the element that buckles, s — the element that restrains. If (ﬁg’gg’ ?5 <

(ﬁ%’c‘,i,?l 55, then the flange buckles first and the web will be the restraining plate and vice versa.

The torsional spring stiffness can be written as:
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i 1
1\SS

thu " (flg)cc,llg bu’ (E ) T

1-— Lc/bu__“bu

L ial 1
rs Lrs (flggllg fg ' m

k=k0'

=~ 1 _ c: (DZZ)T'S .
T

(2.1.32)

Coefficient ¢ depends on the edge conditions of the restraining element and is given in the Figure
2.1.6:

Gy
le- LT'S o 9 L T8 | 9 L

rs

* ) e > ke

c=2 c=3 c=4

LV
-3

Figure 2.1.6 Coefficient c for different edge conditions [10] p. 1507
When the edges are restrained by stiffeners, the torsional stiffness is given as

Glyo =4+ (Dge)rs * Lys

(2.1.33)
Taking into account the effect of axial loading:
i 1
to * ioek Vou " (51—
Gl :4'(D66)r5'Lr5' 1- Le Iiu bu
t _(faxial SS .
TS locj Jrs (ELc)rs “lrs
(2.1.34)

In case of an I-section under the axial loading the same procedure as described by equations 2.1.14
to 2.1.26 applies. If the flange buckles first, the web is the restraining plate and the flange is the
buckling plate, coefficient ¢ = 2 and a factor of 1/2 is introduced because the web restrains two
“half” flanges:

t _(faxial SS . 1
- l c: (Dzz)rs q bu loc,k /bu (ELc)bu “thy

2 L ial\SS 1
© brs (flgg'llg TS (ELc)rs “lrs

(2.1.35)
After rewriting the expression 2.1.35 it will become identical to expression 2.1.22 given in JRC.

For the situation when the web of the I-section buckles first under uniform compression and the
torsional stiffness GI; is considered, it should be noted that the expression 2.1.24 from JRC is not the
same as given by Kollar:

1

$=1706 012

(2.1.36)
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For a hollow section in compression the same general procedure applies, except in case of box
members the boundary conditions for the webs are the flanges are identical. Therefore, to evaluate
critical stress for both the webs and the flanges the rotational spring constant is used. Also, in a
hollow section when calculating spring constant factor of 1/2 is omitted and the expression
becomes:

k _ ¢ Da2)ys 1-— tock It (ELe)pu * tou
Lys trs - (flar g )Ps - m
(2.1.37)
with ¢ = 2.

Under linearly varying loading (bending) for an I-section the spring constant according to Kollar is
calculated with equation 2.1.35 with ¢ = 4 because when a profile is in bending, only one flange is in
compression and the tensile flange stabilizes the web. The introduction of coefficient ¢ = 4 will
result in a different value of rotational spring constant than described in JRC.

For flanges of a hollow section in bending the spring constant is calculated using equation 2.1.37
with ¢ = 4.

No closed form solution was in given for a plate with rotationally restrained edges subjected to a
linearly varying normal force and therefore the webs both of I- and box sections should be calculated
using the conservative expression 2.1.29.

Table 2.3 summarizes design equations proposed by Kollar for I- and hollow cross-sections under
uniform compression and bending.

Table 2.4 gives a comparison of equations given in JRC and by Kollar for an I-profile in compression
and in bending.
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I-section Hollow section
Compression Bending Compression Bending
12(Dgs)
(g = ——=% VP = (2[00, 02, + 2101, + 200),])

tr(by/2)"

2

A
2% = o (2 Pu e

+2[(D12)w + 2(D66)w]}

2
T
e = 7 (1390w D)
wHw

+11L.1[(Dyp),, + 2(D66)W]}

2

77.'
G2 = o (P @u e

+2[(D12w + 2(D66)w]}

7.".2
(i) = 57 {139V @22
wHw

+11.1[(Dyp)y + 2(D66)w]}

flange buckles first:

flange buckles first:

flange buckles first:

flange buckles first:

PR G P 07 ?S(Eu)w] P2 20 [ SEEF B PG [1 _ Gz ,%S(ELC)W] PG B DI
b,, (leZf_L,fl)ﬁf(ELc)f b, (fzﬁ?:)@S(ELc)f w b, (ﬁgfﬁfl)ﬁas(ELc)f w b, (ﬂﬁif)azs(ELc)f
web buckles first: web buckles first: web buckles first: web buckles first:
ial ial
61, = 40,0ty 1 - ZEED | o a0y b |1 - FRDIE D, gy = 2] GBI 0| R,
(floc,k )f (ELo)w t— 66/f5f (ﬁg;l){al)}ScS(ELc)w bf (ﬁoc,k )f (Erodw £ bf (ﬁgﬁ(al)?s(ELc)w
V(D11)(D23) ¢ 7(1-K)
(faziaty, = VLT 22T k15401 — p + 6(1 — p)(1 — )] + — K<1
tf(bf/z) v 1+412¢ axial
(fioek ) = 1+ 4.139¢ |(D11)r(D2p)f + (2 +0.628 )[(Du)f + Z(Déﬁ)f]}
NICRE
sty = L2 Codr 1y 1 5 60—y -]k > 1
f( f 2) £= ¢= (Dzz)f
14107’ by
¢ = (Dzz)f ip= (D1z)f Sq = 1 CK = Z(Des)f + (D1z)f
kb2 7 2(Dee)s + (D12)f” /1 + (7.22—355p)0 JO D),
2 2
s =g o T BBy | (), = = = (1390102, Gt = LA O SR AW (7550, = £ 139V D D)
wHw

+ (24 0.628) (D1
+ Z(Dss)w]}

1 ’ (DZZ)W w

= Tv 061072 = ql,

+11.1[(Dy,)w + Z(Dés)w]}

+ (24 0.6262)[(Dy12)w
+ 2(D66)w]}

1 Dy2)w
5( )

=17 10¢’ krby,

+11.1[(Dy,)w + Z(Dss)w]}

Table 2.3 Formulas for web and flange buckling stresses of I- and hollow cross sections according to Kollar (2003)
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JRC

‘ Kollar

Compression

12(Dee)s
tf (bs/2)

axial
loc,k

A
1NSS —
b (S80S = 15

2
2 {2\/ (D10)w D22y + 2[(D12)w + 2(D66)w]}

flange buckles first:

]‘(:

(DZZ)W

b,,

[1 B (ﬁzzﬁfl)ﬁswu)w]
(D oy

web buckles first:

Gl, = 4(Dgg) by [1 -

(it (Eroy ]
otk OF (Erodw

v (Dll)f(Dzz)f{ 7(1-K) }
axialy =X 2 K[15.4n/1-p +6(1 — p)(1 — ——~ 1 K<1
(fioci o (5,/2) [15.1nyT=p +6(1 - p)(1—n)] + NI
vy, = VP Ondr oy 5= 66— )k —m) Kk > 1
tr(by/2)"
7= (Da2)s (D12)f 1 K= 2(Dge) s + (D12)
kbg/2’ P20+ 0, T TE (7.22-355p) D1);(D)f
(figeiw = bz (VT 4139801, (2o, ek = ¢ bz 7 (2T 4139 (0.0, (D).,
+(2+0.628)[(Dyy), + z(Dés)W]} +(2+0.628)[(Dyy),, + 2(D66)W]}
1= 1 .7 = (D22) b r_ 1 Lo (D22)wby
§_1+10(" ~ Gl f_1+0,(,1;r1.z'Z TGl
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(fatanyss (2 ;;))}; (s = tﬂbz {13.9Y(01)u D)y + 11.1[(D15),, + 2(Des) ]}
f f wEw

flange buckles first:

flange buckles first:

e (D22)w s P (Eredw e 2(D32)y FioaiD P (Eredw
= - 7 = - 1
by (Floei )% (Evp by, Floei % (Bvg
web buckles first: web buckles first:
ioer 5 (B s ioer ) (B s

GI, = 4(Dgg) s by [1

(o7 Erdw

Gl = 4(Dgg) sy [1

(el Eredw
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(floc,k )f tf(bf/Z)Z

\/ (Dll)f(DZZ)f [15 177\/—_{_ 6(1—

et {K[ls.mm 61— )1~ ] +

_’0} k<1
Ji+4127) ~

(fgacaal p)K—-n|,K>1

oo tr(br/2)° ]

(= (Dzz)f (D12)f _ 1 DK = Z(Dss)f + (D12)f
kb2’ P T 20, + 0, T T (2235500 D), (Dr);

flex _
(flac k

bz {13901 D22 + 111101y + 2(Ds6)y 1}

Table 2.4 Local buckling of an I-section according to JRC and Kollar
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2.1.4 CUR9S6 VEZELVERSTERKTE KUNSTSTOFFEN IN BOUWKUNDIGE EN CIVIELTECHNISCHE
DRAAGCONSTRUCTIES

DESIGN PROCEDURE

Annex E provides analytical formulas to determine characteristic buckling strength that accounts for
wrinkling but does not account for imperfections. The given equations can be applied for I-, H- and
hollow sections.

For a profile under longitudinal compression critical stress of the flange is given by the following
expression:

festabis = m (tf) [J_( IE, - )+p (V- vay +2- ny)]

(2.1.38)
p, q are constants that are defined by the coefficient of restraint &; for I- and H-shaped cross
sections:
0.065
_ o5, 0004 0025+ 7504 . 2-b, b, »
p_ . 6—0.5' q_ eczorr ;f— bf 4 _21 corr —
(2.1.39)
b
s
X
> wll P | -+
b“" —- -—T“
I
I | | X
-
Figure 2.1.7 I-. H- sections [2] p. 151
For hollow sections:
20+ 0.002 — 10+ O'OB-E—bW-b—b
Pl a3 17 T ev02 ST T
(2.1.40)
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Figure 2.1.8 Hollow section [2] p. 152

Critical buckling stress of the web is calculated assuming simply supported connection to the flanges:

2
A
fc,stab,k,w = t b2 ’ (2 "4/ D11,w ' Dzz,w +2- (Dlz,w + 2D66,w)
w "~ Pw

(2.1.41)
The critical stress for flanges in a profile in bending is given by expression 2.1.38.
For I- and H-shaped cross sections:
_ 03+ 0.004 — 0.025 + 0.065 _ by b_bf
P=T2 e o5 177 f+0.4’f_bf' 2
(2.1.42)
For hollow sections:
— 20+ 2002 104+ 208 R P T
(2.1.43)
Critical buckling stress of the web is then determined with the expression:
2
fb,stab,k,w = W ' (13-4 RV, Dll,w ' DZZ,W +10.4- (D12,w + 2D66,W)
w w
(2.1.44)

As it can be seen, the difference in calculating critical buckling stress for axial compression and
bending for |- and H- sections lies in definition of coefficient of constraint £. For calculating critical
buckling stress in the flange which is a part of profile in bending the same formula as for uniaxial
compression is used. In case of bending the flange in tension supports the web, while under uniform
compression both flanges will buckle. For hollow sections the flange width b is reduced in case of
bending by 15% compared to case of axial compression.

26



BACKGROUND

It should be noted, that the equations given in CUR96 do not take into account the difference
between material properties of flanges in webs. The coefficient of constraint £ is calculated based
only on geometry of the cross-section. If material properties of the webs and flanges differ, the
expression for the coefficient of restraint & should be calculated according to the background
document Step-by-Step Engineering Design Equations for Fiber-reinforced Plastic Beams for
Transportation Structures [11]:

For I- and H-shaped cross sections:

_ 2 " bW ET,f
bf Ery
(2.1.45)
For hollow sections:
é_: bW_tf.Ey,f
bf —tw Ey'W
(2.1.46)

The critical force is calculated depending on the loading conditions. The example is given for three-
point bending:

[ |
A @)
| |
| |

Figure 2.1.9 Three-point bending [11] p. 29

In this case the maximum moment in the midspan of the beam is given as:

(2.1.47)
From the well-known bending stress expression the moment can be expressed:
o= % > Mp=0c-W
w
(2.1.48)
and
W= I
b, /2
(2.1.49)

27



Substituting 2.1.48 and 2.1.49 into 2.1.47:

P_8-0-I
" by, L

(2.1.50)

Beam stiffness for |- and hollow sections can be defined by equations 2.1.51 and 2.1.52 respectively:

1 2 1 3 1 3
D=_EL,ftfbwa+_EL,WthW+€EL,ftfbf

2 12
(2.1.51)
D =1-ELf-tf-bvzv-bf+1-ELw-tw-b§V+1-ELf-t;-bf
2 " 6 6
(2.1.52)
The critical force then is:
plocal _ 8D 0cr
r Epf by L
(2.1.53)

with o, defined by 2.1.38.

Comparing the expression from CUR96 for the critical local buckling stress in the flange to 2.1.53 for
the critical force, it can be seen that the stress expression does not take into consideration the
thickness of the web because the t,, comes into calculations only when the critical force, not stress,
is computed. This means that CUR96 equations for local buckling of the flange are applicable for
cross-sections where thickness of the flange equals to thickness of the web.

2.1.5 STABILITATSVERHALTEN EBENER TRAGWERKE AUS PULTRUDIERTEN
FASERVERSTARKTEN POLYMERPROFILEN

The design procedure proposed in this research is similar to the one that is used for checking the
stability of steel plates and is developed for pultruded profiles of hollow, I- and C- cross-sections
W|th EL/ET = 245 and fL/fT = 285

The first step is to determine the class of the cross-section of individual parts of the profile. There
are 2 cross-sectional classes defined:

e class 3: cross-sections of this class reach the strength limit in the most unfavourable fibre
and further stressing is not stressing is employed;

e class 4: to determine the resistance of cross-sections of class 4 the local buckling of
compressed parts has to be taken into account.

Maximum values of width-to-thickness ratios are given for the class 3 in tables 5.1 and 5.2 in [3]. If
these values are exceeded, then the cross-section belongs to class 4.
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The plate buckling factor k., is determined next. The plate buckling factor depends on the boundary
conditions and loading conditions. In case of pultruded profiles two types of plates are considered:
plates that are simply supported at the two edges (webs) and plates that are simply supported at
one edge (flange of an open section). Values of k., are calculated for the two types of plates and 13
load cases, which include pure compression, pure bending and various combinations of compression
combined with bending and are given in tables 3.1 to 3.3.

Once the plate buckling is known, critical plate buckling stress can be calculated with the expression:

T[Z\/ECL .ECT (t)z

Gx.lZ'(l—VLT'VTL). E

Ocrxp = k

(2.1.54)

The buckling stress of a plate (flange, web) is given as fy,x i = Xp * fex; Xp is @ reduction factor and
can be determined from buckling curves or using the following expression:

1
xp=———=<0

b+ /cpz—/’f,{,

Xp =10 for sections of class 4 and the resistance is calculated using the full area of the section.

(2.1.55)

Shape function is defined as @ = 0.5 - (1 + a, (/Tp - /Tp,O) + /T’I;)

Parameter /Tp is plate slenderness and is a square root of ratio of compressive strength and critical

buckling load:
A_p — f cXxX
acrx,p

(2.1.56)

Parameters a,, — imperfection factor, Zp,O — length of horizontal plateau in the buckling curve
diagram and y —restraint coefficient are determined experimentally and numerically.

For webs:

Y =2; Apo =037; a, =115
and flanges:

Yy =1; Ay =037 a, =10

fux 2 = max(fyy ;) is the capacity of the strongest part of the profile. The effective widths are given
in tables 5.3 and 5.4;

fuxi

Aerri = A

(2.1.57)

And the resistance of the cross-section can then be calculated based on the effective cross-section.
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This model takes the influence of initial geometrical imperfections into account by incorporating the
imperfection factor a,,. However, this influence is applied to the ultimate load, not the buckling load.
For the critical buckling stress this model assumes simply supported boundary conditions between
webs and flanges, giving a conservative estimation of the buckling strength.

2.2 IMPERFECTIONS

The imperfections of FRP structural elements can be divided in two groups: internal and external.
Internal imperfections, or material imperfections, are the imperfections that occur in the material
itself. Some examples are voids, local waviness of fabrics, initial delamination. External imperfections
have to do with the deviations of the intended geometry of the considered element: flatness and
straightness of the element or variations in thickness, or load and support eccentricities. This study
focuses on the geometric imperfections of plates and profiles.

The analytical models for local buckling in standards focus on the web/flange interaction. This
chapter will describe the effect of initial imperfections on buckling behaviour of plates, how the
initial imperfections are implemented in the standards in the design equations, and what limiting
values of geometric imperfections found in literature.

2.2.1 EFFECT OF INITIAL IMPERFECTIONS

PERFECT
IMPERFECT

-
’ ot

Wg

Figure 2.2.1 Perfect and imperfect plate buckling [4] p. 22

For the symmetric stable postbuckling behaviour, which is characteristic for plates, effects of initial
imperfections result in a path deviation from the postbuckling curve of a perfect structure in a
manner shown in the figure 2.2.1. The degree of deviation of the imperfect postbuckling path
depends on the magnitude and nature of the initial imperfection. The most detrimental geometric
imperfection is assumed to be the one in a shape of a buckling mode of a perfect plate. The most
noticeable effect of initial imperfections occurs around the load values where buckling of a perfect
plate occurs. The larger the imperfection magnitude, the more rounded — over load versus
displacement curve becomes.

While classical bifurcation buckling is an eigenvalue problem, the imperfect plate buckling is an
equilibrium problem. The postbuckling paths can be determined with a nonlinear analysis.
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LOAD -+

‘ WITH ALL EDGES

| SQUARE PLATE
SIMPLY SUPPORTED

IMPERFECT PLATES

DISPLACEMENT —
Figure 2.2.2 Buckling of a square plate with initial imperfections

As it can be seen from the figure 2.2.2 it is problematic to determine the critical load for an actual
imperfect plate because of a rounded-over postbuckling path with no clear bifurcation point. It can
also be noticed that when the magnitude of imperfection is very large then the curve becomes
almost linear. In principle, an imperfect plate does not buckle; it begins with an initial bow which
gradually increases without changing shape. Often large increase in transversal deformation occurs
near the bifurcation load of a perfect plate. Next to that, a plate with initial out of plane deformation
can buckle into a different shape at loads that are higher than the critical buckling load of a perfect
plate. This effect is called secondary buckling.

Even though an imperfect plate does not have a clearly defined buckling load, there are methods to
approximate this value for design purposes:

- strain-reversal method
- top-of-the-knee method.

In strain-reversal method two compressive strains in the x-direction are considered: on the concave
side (1) and on the convex side (&,) of the bowed plate. As the in-plane compressive load increases,
so do the strains. At the critical stress strain &, stops increasing and begins decreasing, this point is
estimated as the buckling load. In top-of-the-knee method the portion of the postbuckling curve,
where the rate of increase of out of plane deformation goes from low to high, is called “knee”. The
top of it corresponds to the approximate buckling load. Both methods are subjective as different
observers might determine the load values slightly differently and become more difficult to apply as
the magnitude of initial imperfection becomes larger.

A square composite plate that is clamped at all edges was researched in [12]. This paper presents
finite element and experimental modelling of composite plates with initial transversal imperfection
and finite element modelling of delaminated composite plates. The plate that is analysed is a part of
a ship hull structure that is placed between two pairs of stiffeners. The plate has a square shape with
the length of the side of 320 mm and thickness of 4.96 mm. Material that is used has the following
properties:

E, =46 GPa,E, = 13 GPa,E, = 13 GPa, Gy, =5 GPa, Gy, = 5 GPa, Gy, = 4.6 GPa, jiy, = 0.3,

Uyz = 0.42, u,, = 0.3, with E,./E,, = 3.54
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traction strengths R, = 1.062 GPa, R, = 0.031 GPa, compression strength R, = 0.118 GPa, shear
strength Ry, = 0.72 GPa.

The initial imperfection shape is the first buckling mode of the flat plate that is clamped at all sides.

Macro-layer | a t [mm]
2x00 0.62
450 0.31

1 2x900 | 0.62
450 0.31
2x00 0.62
2x00 0.62
450 0.31

2 2x900 0.62
450 0.31
2x00 0.62

Figure 2.2.3 Plate layup and initial transversal deformation [12] p. 390, 393

The analysis is presented for the most usual imperfection magnitudes that is introduced after ship
deck fabrication: wy = 1.06 mm, wy = 3.2 mm, wy = 9.6 mm.

The finite element analysis was presented for the following cases: compressive buckling, shear
buckling, mixed compressive and shear buckling. Only the first case is of interest for this research
and, therefore, only this case will be described here.

The plate was modelled as clamped at all edges with the boundary conditions defined as
(displacements u and rotations r):

- onthe sides parallel with x-axis: u, = 0, 13y, =0, , = 0

- on the sides parallel with y-axis:
- clampedside: uy = 0,uy =0,u, =0, 1, =0, 5, =0, , =0
- loaded side: u, =0u,=0,%,=01r=07r=0

using shell elements and nonlinear analysis of the buckling behaviour.

The results are presented in a graph which shows the in-plane loading versus the transversal
deformation of the midpoint of the plate. As it can be seen from this diagram the buckling load of a
plate with initial transversal imperfection is difficult to determine since the curves do not have
bifurcation points as in case of plates with perfect geometry. By drawing the asymptote to the curve
where the slope changes almost suddenly the buckling load p,,., is estimated to be between

140 MPa < p. < 175 MPa.

These results were validated by the experiments. The tested plate has the initial transversal
deformation of 9.6 mm. The measurements were done with the stretching machine, displacement
transducer, strain gauge measurement system. A very rigid frame was used to assure the proper
boundary conditions. The comparison is done in diagram in figure 2.13 and shows good agreement
between the FEA and tests and demonstrates the behaviour described by theory.
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Figure 2.2.4 Buckling and post buckling behaviour of compression buckling of imperfect plate [12]
p. 392

g
B
1

T T T
& experiment

—numeric

0.8

\1»

s {2
e T

4

=T ¢ | *
e id p [MPa]

0.091—%"]
094 1.88 281 375 469 563 656 7.5 8.44 9.38 103 11.3 122 131 141 15 159 168

Figure 2.2.5 Variation of compression load versus displacement of the midpoint of the imperfect
plate [12] p. 394
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Experimental programme was presented by Czapski and Kubiak (2015) [13] for square hollow cross-
section columns under concentric compression. Tests specimens were produced using autoclaving
technique and have the dimensions shown in figure 2.2.6. The main aim of the tests to validate the
FE model and study the influence of layer arrangement on buckling behaviour.

250

F

Figure 2.2.6 Geometry of the columns [13] p. 1161

Six different layups were considered of which three are symmetric and the other three are
asymmetric:

- [45/-45/45/-45/-45/45/-45/45] - CS1,;
- [45/-45/0/0/0/0/-45/45] - CS2;

- [45/-45/45/0/0/45/-45/45] - CS3;

- [45/-45/45/0/0/-45/45/-45] - CS4;

- [0/45/-45/45/-45/45/-45/0] - CS5;

- [-45/45/45/45/-45/-45/-45/45] - CS6.

The laminate properties:
E; =385 GPa,E, = 8.1 GPa, Gy, = 2 GPa,vy, = 0.27,T; =792 MPa, T, = 39 MPa,
Sy, =108 MPa,C; = 679 MPa,C, =71 MPa

Each sample was loaded three times from 0 up to 150% of the critical load obtained with FEA, the
fourth test was performed up to failure. In order to determine the deflection of the walls strain
gauges and digital image correlation were used. After performing the tests buckling loads were
obtained using two methods:

- load versus square of deflection P — (g; — &,)? method M-1
- load versus deflection P — (g; — €,) curve inflection point method M-2

In the first method squared deflection becomes a straight line in the postbuckling state, which
enables linear approximation of the curve. The point of intersection with the load axis is then
assumed to be the critical force. In method M-2 the curve changes its concavity at the point called
inflection point or “top of the knee”. The vertical coordinate of this point is assumed to be the
critical buckling load.
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In numerical investigations both linear buckling and nonlinear static analysis were performed. The
buckling mode of the magnitude 0.1¢t, where t is thickness, was applied as initial imperfection in the
nonlinear analysis. The boundary conditions of the column:

- atthe unloaded side: uy = 0,uy = 0,u, =0
- atthe loaded side where point force is applied: uy = 0,u, =0

The comparison of the linear buckling analysis shows good agreement with the experimental data
when the manufacturing imperfections, in this case variation in wall thickness, are taken into
account.

As it can be seen from the graphs below the postbuckling curves obtained from the nonlinear static
analysis are in general in good agreement with the test data (except case (e), when the specimen
exhibited two modes; LBA critical buckling loads of these two mods were close together and the
difference between experimental and numerical results were distinct). It can be seen that the
experimental postbuckling paths of the symmetric layups are placed in between the FEA results; the
paths for asymmetric layups determined experimentally are above those determined numerically.

In general, the FEA model gives a good prediction for the buckling behaviour of the hollow column
with symmetric layups. The main conclusion was drawn that the problem lies in correct modelling of
initial imperfections, and a future analysis investigating the influence of manufacturing
imperfections on buckling load and postbuckling behaviour is necessary.
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Figure 2.2.7 Numerical and experimental postbuckling curves [13] p. 1165

Barbero and Trovillion (1998) [14] performed experimental measurement on axially loaded columns
where one of the points was to investigate the effect of damage accumulation. For that the columns
that were already tested were loaded for the second time. It was found that when the initial test
involved large postbuckling deflections the effect of damage was equal to magnification of the initial
imperfections in the specimens. The buckling shape was identical but exhibiting more noticeable
deflections under smaller load. However, the ultimate critical load was about the same as in the
initial test (figure 2.2.8). It was therefore concluded that damage accumulated during the first
loading has no effect on load carrying capacity of FRP element.

900 +
800 1
700 1
600 1
£ 500
° ]
g 400 ;
300 4 7 LVDT 1
i ” sample CP2
200 4,
1 undamaged
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displacement [mm]

Figure 2.2.8 Effect of damage accumulation [14] p. 1339

2.2.2 APPLICATION OF IMPERFECTIONS IN STANDARDS

JRC

The influence of the imperfections on buckling is considered implicitly in the models given in JRC
through considering the interaction between local and global buckling modes under axial
compression. FRP material behaviour remains linear for large strains and because of that the local
and the global buckling critical stress may be close to each other or coincide for columns of
intermediate lengths. The interaction of the two buckling modes can lead to a combined buckling
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mode, and it has been shown experimentally that the failure load is then lower than that predicted
load for local or global buckling.

Figure 2.2.9 Local buckling mode (top left), global buckling mode (top right) and interactive
buckling mode (bottom) [15] p. 270, 275

The postbuckling paths of local and global buckling are stable, but the one of the interaction mode is
not with no load capacity after buckling. A column that buckles into an interactive buckling mode is
imperfection-sensitive; this means that the failure load of such an element will be lower than the
buckling mode of the perfect element.

In Barbero (2000) [15] an imperfection sensitivity study was made, considering three shapes of
imperfections of local buckling mode shape, global buckling mode shape and the combination of
both. The amplitude of imperfections ranged from t/250 to t /2, with t being the thickness of the
column flange. The effect of the shape of imperfection is shown in figure 2.2.10 and the effect of
amplitude of imperfection is shown in figure 2.2.11. The combined imperfection shape has a larger
load reduction only because the combination of the two means a larger magnitude of imperfection,
and so it was concluded that the magnitude rather than the shape of imperfection and slenderness
has a significant influence on the behaviour of the column.
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Figure 2.2.10 Effect of imperfection shape [15] p. 278
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Figure 2.2.11 Effect of imperfection amplitude [15] p. 279

In design this behaviour is considered through an interaction constant ¢ which is a function of
geometry, material properties and initial imperfections.

The design force that causes instability of the element is given in JRC document by:
NRdZ,C =X Nloc,Rd
(2.2.1)

where Ni,. rq is the design value of the compressive force that causes local instability of the
element and was discussed in detail in the section 2.1.2.

x is a reduction factor that takes into account the interaction between local and global buckling and
is expressed as:

1
x=—=(0-Joz—c-22)
c-A?
(2.2.2)
with @ being shape function and A — slenderness;

c is taken equal to 0.65; and indicates the degree of interaction occurring between the two modes.
¢ = 1.0 would represent the situation when mode interaction has no effect on the critical load.

The value ¢ = 0.65 is based on experimental data provided by several researches: Barbero and
Tomblin (1994) [17], Zureick and Scott (1997) [18], Barbero and Trovillion (1998) [14], Brown,
Mottram and Anderson (1998) [19], and Barbero, Dede and Jones (1999) [20], and is a conservative
estimation:
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Figure 2.2.12 Comparison of the design equation and experimental results for buckling mode
interaction [16] p. 186

CUR96
In CUR the imperfections factors are given global buckling and lateral torsional buckling.
Critical buckling force is given as:

_nc'A'p'fc,k

Npra = X ”
M
(2.2.3)

where y is a reduction factor, A is area of cross-section, f  is characteristic compressive strength
and

— fc,stab,k <1
fc,k

(2.2.4)
which is a reduction factor for local wrinkling and imperfections.

The expression for the reduction factor is
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(2.2.5)

where the shape function depends on relative slenderness /Tf, imperfection factor a; and plateau
length of buckling curve A o:

(2.2.6)
1,20 * -
1,00 < - + Vierkanthohlprofile |
\ \ —— Euler
*
¢ 0,80 \\\ " —— Bemessungsmodell |
XI' = f e \\ ¥
ux 2 b
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0,00 T T T T T T T 1
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bezogene Schlankheit i, = VEx2 /Gy

Figure 2.2.13 Buckling curves for a hollow profile [3] p. 152

Parameters af and Zf depend on the shape of cross-sections and were determined experimentally
and numerically [3]:

Cross-section ar Ao
hollow 0.40 0.50
I-, U- (weak axis bending) 0.75 0.50
I-, U- (strong axis bending) 0.50 0.50

Table 2.5 oy and /_1f for column buckling

A comparison between the design procedures given in JRC and CUR96 for column and lateral
torsional buckling in given in Annex A.

In addition to column and lateral torsional buckling, CUR96 gives a guideline for buckling of plates as:

. Ne " Ocrc

fxrac =«
X c ]/M

(2.2.7)
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where o, . is critical buckling load that can be determined by plate formulas given in table 2.2 and «
is the imperfection factor, which is not specified further; for a conservative estimation it can be
taken as a maximum value of allowed bow imperfection of L /125, where L is the smallest value of
width or length of the plate.

2.2.3 LIMITING VALUES

EN 13706-2:2002 [21] is a standard for Reinforced plastics composites — Specifications for pultruded
profiles and Part 2 comprises test methods and general requirements.

ANNEX A lists visual defects with descriptions and acceptance levels, from which wrinkle depression
is of interest for the scope of this research. Wrinkle depression is an undulation or series of
undulations or waves on the surface of the pultruded profile and the dimensional tolerance is not
greater than 20% of thickness or 1,5 mm out of its plane.

ANNEX B gives dimensional tolerances for pultruded profiles. These tolerances are shown in table
2.7. Among various deviations in geometry of profiles there is also a tolerance for initial transverse
deflection of a flat plate, which is given as F < 0.008 - B, where B is the width of the plate. This
limiting value is basically the same as given in CUR96 with L/125 with L being the smallest
dimension (length or width) of the plate.

The straightness tolerance for profiles in EN 13706-2 is given as a function of length and depends on
cross-sectional dimensions. It is worth mentioning that ASTM Standard [22] specification for
dimensional tolerance of thermosetting glass-reinforced plastic pultruded shapes gives a different
limiting value for out-of-straightness L/240.

Zurieck and Scott [18] reported out-of-straightness measurements of |- and hollow section profiles.
It was found that the imperfections were well within the tolerances allowed by ASTM. Their
measured values were compared to the tolerances given in EN 13706-2 as:

e for I-columns and hollow columns VG13 to VG18: D < 0.0005 - L?
e for hollow columns VG19 to VG24: D < 0.001 - L?

These expressions provide much smaller values than those in ASTM and as a result not all the
measured imperfections were within the acceptable limit given by EN 13706-2.
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Property Tolerance
Wall thickness of open and closed profiles Nominal dimensions (mm)
e Thickness T )
<
Oto2 +0,15 +10 %
2to5 +0,20 with
5to 10 £8.35 minimum
+0,45 of £ 0,30
=
Flatness in transverse direction Tolerance

F<0,008 x B mm

Profile height and width of flange

&

Nominal dimensions (mm)
Band H:+£0,5 % with minimum = 0,20 mm

and maximum = 0,75 mm

Size of angle

o5

Tolerance
Y£i1,5°
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Straightness Tolerance (B and H are overall breadth and height dimensions)
\i D < 0,002 x L2 for sections with B or H < 50 mm
0 D < 0,001 x L2 for sections with B or H>50 and < 100 mm

D < 0,000 5 x L2 for sections with B or H= 100 mm

where D and L are in metres.

Twist Tolerance
V<i ,5° per metre maximum for thickness < 5 mm

Vi :O° per metre maximum for thickness = 5 mm

Table 2.7 Dimensional tolerances for pultruded profiles [21] p. 12-13

Laudiero, Minghini and Tullini (2014) [23] presented an extended study of I-section profile subjected
to pure compression with three types of geometric imperfections verifying the limiting values given
in standards and found in literature [24].

The three shapes of imperfections are:

e uniform bending in the minor axis plane (S)
e sinusoidal imperfection of web and flanges similar to the first local buckling mode (L)
e non-orthogonality between the planes of the web (A)

The two sets of imperfection values were evaluated:

e S:L/240and L/4500
. L:8-10‘3-bfand2-10‘5-bf
e A:1.5°and0°

The first limiting value for S-imperfection corresponds to the out-of-straightness imperfection given
by ASTM, while the first limiting value for L-imperfection is that of provided in EN for plate flatness.
For the first set of imperfection amplitudes in stocky columns it was found that the S-imperfection
and the superposition of S- and L-imperfections have the most detrimental influence on the
behaviour of the element. The A-imperfections turned out to be ineffective and the curve
representing the superposition of S- and A-imperfections just slightly differs from the curve of S-
imperfections acting alone (figure 2.2.14). Moreover, the numerical results did not agree with
previously obtained experimental data [25].
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Figure 2.2.14 Numerical results for the first set of imperfection amplitudes [23]

With the reduced magnitudes of imperfections (second set) higher ultimate loads were obtained and
the results were in good agreement with test data. For L-imperfections of original amplitude the
ratio between the ultimate load and local buckling load was 1.07 and for the second set of
amplitudes 1.27.
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Figure 2.2.15 Numerical results for the reduced set of imperfection amplitudes [23]

Thus, it was concluded that the limiting amplitudes were unrealistic and resulted in the failure
modes and ultimate loads that did not comply with experimental results.

This is in contradiction to what was concluded by Barbero and Trovillion [14].
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2.3 CHAPTER SUMMARY

Analytical models for plates and profiles were discussed in this chapter. While plate expressions
based on idealized boundary conditions, the plates which are a part of a profile are considered with
rotational restraints. This means that the interaction between web and flanges as to be taken into
account. Two approaches for that were described: JRC with Kollar’s work as a background and
CUR96 that is based on research by Barbero and Qiao.

JRC’s method takes into account the differences between material properties and thickness of webs
and flanges, while CUR96 does not. The difference in material properties can be taken into
consideration by using the expanded formula given in the CUR’s background document Step-by-Step
design equations [11], the thickness of the web however is only considered when calculating the
axial or bending stiffness of the element and therefore is not present in the expression of critical
buckling stress.

The approach for modelling local buckling behaviour of H. Trumpf is similar to the one that is used
for steel plates with effective cross-section and considering idealized boundary conditions, providing
plate buckling coefficients calculated only for certain material properties.

The analytical formulas for plates with idealized boundary conditions and for profiles do not account
for initial geometric imperfections. The plate whose geometry deviates from the intended one in a
form of initial transverse deflection shows a different buckling behaviour than a perfect plate. This
behaviour can be studied by performing a nonlinear analysis. The main difference is observed
around the Euler’s buckling load: while a perfect plate has a bifurcation point, the imperfect plate
does not. Because of the rounded-over load — deflection curve it is difficult to estimate critical
buckling load of an imperfect plate, however, because the postbuckling path is known it is possible
to estimate ultimate loads. In a study on effect of damage accumulation [14] it was found that the
presence of initial deformations did not degrade the load carrying capacity.

The influence of initial geometric imperfections is considered in JRC through the global and local
buckling modes interaction: for columns of intermediate length the two modes can be close or even
coincide forming a new unstable buckling mode. In this case a structural element is considered
imperfection-sensitive and its imperfections’ magnitude and not the shape has the biggest influence
of the behaviour. CUR96 provides imperfection coefficients for column buckling, the influence of
imperfections on the local buckling behaviour is not quantified but should be taken into account.
The buckling mode interaction is not a part of CUR96’s procedure for stability.

Dimensional tolerances are provided for pultruded profiles in EN 13706-2:2002, and give smaller
allowable levels than ASTM. The limiting values given in standards were concluded by some authors
[23] to be unrealistic compared to the actual measured imperfections and gave rise to results that
did not match the experimental data. The smaller magnitudes of initial imperfections resulted in
higher ultimate loads and matched the test results, which contradicts the conclusion that was drawn
in [14] based on the study on the effect of damage accumulation.

For a large part the research in local buckling of FRP structural elements is made for pultruded
profiles. No experimental or numerical data was found for VARTM-produced plates, columns or
beams. The imperfection-sensitivity analysis is mostly performed using the buckling modes obtained
from the linear analysis and focuses on mode interaction and influence of layer arrangement.
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3. PLATE BUCKLING ANALYSIS

The goal of the plate buckling analysis is to study buckling behaviour of orthotropic plates and to
establish what effect shape and amplitude of initial imperfection has on the buckling behaviour, and
the role of geometry and material properties in buckling behaviour of perfect and imperfect plates.
Several magnitudes of initial geometric imperfections including the limiting value provided in EN
13706-2 and vales found in literature will be examined.

3.1 EFFECT OF SHAPE AND MAGNITUDE OF IMPERFECTION

Both linear buckling analysis and geometrically nonlinear static analysis will be performed to
investigate buckling behaviour of plates with initial out of plane deformation. Linear buckling
analysis (LBA) will be used to obtain buckling modes of a plate and the results will be compared to
analytical solutions. In the geometrically nonlinear analysis four shapes of imperfections are
analysed. Three arbitrary amplitudes - B/3000,B/1000, B/300 - of imperfections are considered
to establish the sensitivity to the magnitude of initial deviations; fourth value B/125 is the limiting
value from the standard.

3.1.1 MODEL

The following model is used:
Rectangular plate with width B = 300 mm, length L = 900 mm, and thickness t = 4 mm
Layup I: [0,/45,/—45,/90,/0,]¢ with ply thickness is 0.2 mm (figure 3.1.1)

0" — 40%; 45" — 20%; —45" — 20%; 90" —20%

Figure 3.1.1 Ply stack plot layup I (Ex/E, = 1.27), t =4 mm
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The properties of the ply are calculated using strain limits for E-glass / Polyester UD ply given in table
3.1 and stiffness properties given in table 3.2:

Karakteristicke  Karakteristicke  Richtwaarden Richtwaarden Richtwaarden

waarden [%] waarden [%] [%] [%] [%]

Trek ey 20 13 31 12 07
e 02 03 04 07 04

Druk £ crk 12 07 18 07 05
e 09 13 09 Dy 21

Afschuiving Arme 19 25 15 17 18

Table 3.1 UD ply strain limits [2] p. 45

40 % 304 89 27 030

45% 338 10,1 30 0,29
50 % 37,2 14 34 0,29
55% 40,5 129 38 0,28
60 % 439 14,6 43 0,27
65% 473 168 50 0.27
70 % 50,7 19,4 5.8 0,26

Table 3.2 UD ply stiffness properties [2] p. 43
Taking into account Vy = 50%:
fit = E1 - €1t = 744 MPa — tensile strength in the longitudinal direction
fic = Ey - €1, = 446.4 MPa — compressive strength in the longitudinal direction
for = E5 - €3¢ = 22.8 MPa — tensile strength in the transversal direction
foc = E; - €10 = 102.6 MPa — compressive strength in the transversal direction
fi2 = G2 * Y12 = 64.6 MPa —in-plane shear strength
The resulting axial stiffness properties of the laminate are:
Ey = 2256 GPa E,, = 17.71 GPa; Gy, = 6.35 GPa; vy, = 0.323; v,, = 0.257
The stiffness ratio of axial moduli of elasticity in longitudinal and transverse direction: E, /E, = 1.27
Calculation of the equivalent laminate properties is presented in Annex B.
Boundary conditions:

e alongalledgesu, =0
e atx = 450;y = 150 (midpoint of the plate) u, = Ou, =0
. atx=900;y=150uy=0

The load is applied to a point at each side of the plate and is rigidly coupled to the loaded edges.
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Figure 3.1.2 Plate geometry, boundary and loading conditions for buckling analysis

The plate was modelled in Abaqus software. The element type used is S4R, with size of
18.75 X 19.57 mm (16 elements in y and 46 elements in x direction of the plate).

3.1.2 LINEAR BUCKLING ANALYSIS

The first six buckling modes obtained from the linear buckling analysis are presented in figure 3.1.3.

Figure 3.1.3 The first six buckling modes of the plate of layup I and t =4 mm

Using the analytical expression for a simply supported plate from table 2.1 the buckling loads were
calculated for the given plate geometry and number of halfwaves in the direction of the load (m).
The resulting values and the difference with the values from the finite element analysis are shown
below (table 3.3). The first number in the mode column relates to the number of the mode, the
value of m shows the number of halfwaves in corresponding buckling mode. For example, the first
buckling mode (1) has 3 halfwaves (m = 3).
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mode force FEA, N force analytical, N [difference, %
1; m=3 14696 14648.78 -0.3
2; m=2 15047 15439.69 2.5
3; m=4 17412 17183.06 -1.3
4; m=5 21744 21440.25 -1.4
5; m=6 27532 27024.97 -1.9
6; m=1 29234 3256.31 10.2

Table 3.3 Comparison of the critical loads obtain from the analytical formula and FEA
(layup I, t =4 mm)

The load values from FEA and the analytical formula are within 3% from each other, except for the
critical load for buckling mode 6, where the difference is about 10%, which is still within acceptable
limits. The plus sign in the difference column in the table 3.3 means that the result obtained with
FEA gives a lower value of the critical load compared to the analytical result. This happens in two
cases: form = 2 (buckling mode 2) and m = 1 (buckling mode 6). The largest difference in analytical
and FEA solutions is observed for m = 1; in this case the length of the halfwave (buckling length) is
the largest compared to all the other cases. In figure 3.1.4 it can be seen that the blue curve form =
1 intersects with the vertical dashed line AR = 3 with the ascending branch of the curve. This also
happens for m = 2, but the intersection point’s ordinate is a lot closer to the minimum critical load
value, than in case of m = 1 and could be the reason for better agreement between the results.
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Figure 3.1.4 Visualization of the analytical results for the plate of layup | and t =4 mm
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Figure 3.1.5 Dependence of buckling load and mode on plate aspect ratio for the plate of layup |
and t =4 mm

Figure 3.1.5 shows the dependence of the buckling mode and load on plate aspect ratio. From the
graph it is visible that plates with aspect ratio larger than 3 will buckle at almost the same load level
into corresponding buckling modes, which is represented by grey, yellow and blue curves that
become more linear with the increase of the aspect ratio. In case of a homogeneous plate (e.g.
steel), the minimum of the parabola (minimum critical load) for a given buckling mode coincides
exactly with the corresponding aspect ratio. In other words, a plate with AR = 3 will buckle into a
buckling mode m = 3 and the minimum of the buckling mode curve will be exactly at AR = 3. This is
not the case for an orthotropic plate, since the plate has different bending stiffness in longitudinal
and transverse directions (D;1/D,, # 1). For m = 3, according to figure 3.1.5, the minimum
buckling load will correspond to aspect ratio of = 3.4; it is determined by the measure

AR - \/Dy1/D,,. So, the minimum of curve m = 3 is located at 3 - 3/146.48/84.34 = 3.44; m = 2:

4/146.48/84.34 = 2.30, etc.

3.1.3 GEOMETRICALLY NONLINEAR ANALYSIS

Geometrically nonlinear analysis considers the presence of initial out of plane deformations of the
plate. The shape of the geometric initial imperfection is introduced to the non-linear model through
*IMPERFECTION command in Abaqus. The applied force is about 3 times higher than the critical
buckling load that was obtained in the linear buckling analysis.

In the geometrically nonlinear analysis several types of imperfections are considered:

e inthe shape of the first buckling mode from the linear buckling analysis — type 1;
e inthe shape of the second buckling mode — type 2;

e inthe shape of a single half-wave (buckling mode 6) — type 3;

e wrinkle imperfection — type 4
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Four magnitudes of imperfections are considered for the nonlinear analysis:
B/3000,B/1000,B/300,B /125, where B is the width of the plate. For a plate with the width of
B = 300 mm, the values of the imperfections are 0.1; 0.3; 1; 2.4 mm. The last amplitude is the
limiting value given in EN 13706-2.

Figure 3.1.6 Plate with initial imperfection in the shape of the first buckling mode (m=3)

FIRST BUCKLING MODE - TYPE 1

The initial and final shape of the plate at the first load increment P = 50 N and at the maximum
load P = 50000 N respectively with the initial imperfection of the amplitude B /125 is shown in the
figure 3.1.7. The plate with the imperfection type 1 has the same general initial shape and assumes
the same shape at the maximum value of the load for all magnitudes of imperfection; only the
values of the out of plane deformations differ depending on the imperfection amplitude.

Figure 3.1.7 Initial and final shapes of the imperfect plate type 1

The imperfection magnitude also affects how the plate assumes the buckled shape. To illustrate that
the contour plots (figure 3.1.8) of the plate displacements are shown at different load values for a
very small imperfection amplitude B /300000; intermediate amplitude B/1000 and the maximum
amplitude B/125. First the displacements are shown for the first increment at which P = 50 N;
increments 34 and 35 correspond to the values of P = 14589.1 N and P = 15089.1 N and the last
increment is the maximum load of P = 50000 N. The increments 34 and 35 are chosen because
they correspond to the load levels just before and after the buckling of the plate without initial
imperfections occurs. By selecting to view the magnitude of the displacement in Abaqus, the
contour plot will show the largest values of the displacement out of three directions (x, vy, z).

51



For the imperfection magnitude B/300000 it can be seen from the figure 3.1.8 that initially the
displacements of the plate are governed by the shortening of the plate (increment 1 and 34).
However, at the load just above the critical value the out of plane deflection increased rapidly. This
shows that between P = 14589.1 N and P = 15089.1 N the buckling occurred.

The plate with the initial imperfection of B/1000 already shows noticeable out of plane
deformation compared to the shortening in the first increment of the analysis, which continue to
grow with the load increase. There is no sudden increase of the out of plane deformation as in
previous case.

For the imperfection amplitude of B/125 the out of plane deflection is the governing displacement
on every stage of the analysis. Compared to the previous case (B/1000) larger deflections occur
under lower load values. At P = 50 N the out of plane deflection repeats the buckling mode 1,
showing three locations of the maximum deflection (red areas). As the load increases the more
prominent increase of the deformation is seen at the red areas at the edges of the plate.
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Figure 3.1.8 Displacements of the imperfect plate at different load levels (based on the absolute values)
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Figure 3.1.9 shows the force-deflection curves for a plate with initial geometric imperfection in a
shape of the first buckling mode. The transverse deflection is measured in the point of the maximum
deflection (shown with w_max in figure 3.1.7) at the final force increment. The dashed line
represents the Euler critical load obtained from the linear buckling analysis. The grey curve
represents the plate with a very small imperfection B/300000 to demonstrate that the behaviour is
very close to that of a perfect plate — the curve has a bifurcation point at the load level close to the
critical buckling load of the perfect plate. As expected, the larger the imperfection the bigger the
effect on the buckling behaviour. At B/125 the curve becomes very rounded over, which
corresponds to what was shown in figure 3.1.8 and indicates that the plate with an imperfection of
this magnitude does not buckle suddenly. For the intermediate magnitudes of B/300 and B/1000
there is no bifurcation buckling, but the transverse deflection grows slowly in the first part of the
graph, around the critical buckling load there is a knee in the curve after which the deflections
increase at a higher rate. Overall, the graph is very similar to the one in figure 2.2.2 and follows the
behaviour that is known from theory and practice.

plate t = 4mm; layup |; type 1
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10000

5000

0 2 4 6 8 10 12 14 16 18
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——B/300000 B/3000 B/1000 B/300 B/125 - --LBA

Figure 3.1.9 Force - deflection at maximum curves for a plate with the imperfection in the shape of
the first buckling mode

Based on these graphs it can be concluded that for a plate with given geometry the bifurcation
buckling does not occur when the values of initial imperfection are B/300 and B/125. For lower
amplitudes the buckling load can be approximated, since it is possible to distinct two regions of the
curves with different rate of change in out of plane deformation.
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plate t = 4mm; layup |; type 1

30000

25000

20000
=z
@ 15000
8
10000
/
/
5000
0
0 0.2 0.4 0.6 0.8 1 1.2
end shortening, mm
——B/300000 B/3000 B/1000 B/300 B/125 - --LBA

Figure 3.1.10 Force — end shortening curves for a plate with the imperfection in the shape of the
first buckling mode

Figure 3.1.10 shows the axial displacement of the plate. From these plots it can be seen that the
curves corresponding to the imperfection magnitudes of B/3000 and B/1000 almost coincide with
the curve of B/300000, which means that the initial “apparent” or equivalent stiffness of the plate
is the same in these three cases and begins to reduce around the critical buckling load. The
reduction is sudden in case of B/300000 and more gradual for the other two imperfection
amplitudes. For B/300 and B /125 there is a noticeable reduction in initial stiffness of the plate
almost from the start of loading. In relation to initial modulus of elasticity E, = 22.56 GPa the
reduction of apparent stiffness will be approximately 0.4% for B/1000, 9.6% for B /300 and 30% for
B/125 at P = 6089.06 N This is not the actual stiffness reduction, but the effect of additional
bending moment that results from the initial out of plane deformation. For loads higher than the
linear critical load the apparent stiffness for all imperfection magnitudes seem to be the same —the
curves are almost parallel to each other.

SECOND BUCKLING MODE - TYPE 2

The initial and final shapes of the plate with the imperfection type 2 are shown in the figure below.
As in the case of the imperfection type 1 the general buckled shape of the plate is the same for all
imperfection magnitudes.
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Figure 3.1.10 Initial and final shapes of the imperfect plate type 2
In general, the effect of imperfection in the shape of the second buckling mode is similar to the first
buckling mode. Plots for out of plane and axial deflections of the plate with initial imperfection type
2 can be found in Annex C.1, figures C.1.1 and C.1.2.
Figure 3.1.11 shows the comparison of out of plane deformations measured at maximum (w_max)
for imperfection amplitudes B/1000 and B /125.

comparison type 1 and type 2
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Figure 3.1.11 Comparison of imperfection shape type 1 and type 2 on out of plane deformations

At the beginning of loading the deflections coincide in both cases; after a certain level the
deflections in the plate with the imperfection type 2 (second buckling mode) increase faster than in
the plate with the imperfection type 1. In the geometrically linear analysis it was determined that
the first buckling mode of the plate has 3 halfwaves, and in the second buckling mode — halfwaves,
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therefore, the length of the halfwaves is different for type 1 and type2. For type 1itis L/m =
300 mm (L is the length of the plate and m is the number of halfwaves) and 450 mm for type 2.

comparison type 1 and type 2
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Figure 3.1.12 Comparison of imperfection shape type 1 and type 2 on end shortening

In 3.1.12 it is seen that for B/1000 mode 1, the initial apparent stiffness is the same as for mode 2,
but for B/125 plate with imperfection type 1 has larger axial displacement than plate with
imperfection type 2.

ONE HALFWAVE (SIXTH BUCKLING MODE) — TYPE 3

In contrast with two previous cases, the plate with the imperfection in the shape of one halfwave
over the whole length of the plate shows different behaviour for different amplitudes of
imperfection. This is illustrated in figures 3.1.13 to 3.1.15.

57



177

L
)

L]
§

Xy
DR
W

N
i

Figure 3.1.13 Initial and final shapes of the imperfect plate for B/3000 and B/1000 type 3

Figure 3.1.13 shows that for smaller amplitudes of imperfection (B/3000 and B/1000) the plate
gradually bends in the shape that is determined by the shape of initial imperfection — one halfwave

(buckling mode 6).
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Figure 3.1.14 Initial and final shapes of the imperfect plate for B/300 and B/125 type 3

Figure 3.1.14 shows that for imperfections with amplitudes B/300 and B/125 the initial
imperfection shape has one halfwave but the final shape of the plate has three halfwaves, which
corresponds to initial imperfection in the shape of the first buckling mode (m = 3).
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plate t = 4mm; layup I; mode 6
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Figure 3.1.15 Force — deflection at maximum curves for a plate with the imperfection in the shape
of the sixth buckling mode

Plot in figure 3.1.15 shows the force — deflection curves of the plate for the imperfection amplitudes
measured at the maximum of the final buckled shape (for B/30000, /3000 and B/1000
corresponding to the point w_max in figure 3.1.12 and for B/300 and B/125 - w_max in 3.1.13). As
is seen in the plot, the plate with smaller amplitudes of imperfection (B/30000, /3000 and
B/1000) buckles around the critical load corresponding to buckling mode 6, while imperfection

B /300 and B/125 causes plate to buckle around critical load of the first buckling mode (the
theoretical buckling load is slightly higher for B/125 than B /300).
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plate t = 4mm; layup I; type 3
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Figure 3.1.16 End shortening of a plate with the imperfection in the shape of the sixth buckling
mode

The plots in figure 3.1.16 show the end shortening of the plate with the imperfection of one
halfwave. These correspond to previous observations: for lower amplitudes of the imperfection the
plate buckles around the load corresponding to the mode 6 and for higher amplitudes — around the
critical buckling load of mode 1 (for B/125 the kink in the curve (blue) appears at the value that is a
little higher, around 17000 N).

The contour plots in figure 3.1.17 show step by step buckling of the plate for B/3000 and B /125 to
illustrate the change from the initial shape to the final buckled shape. As is seen, the plate with
imperfection B/3000 continuously bends in the shape of the buckling mode 6 (m = 1), first having
small out of plane deflections which then increase around critical load of the fist buckling mode. The
plate with imperfection B /125 begins with the imperfection with one halfwave and then changes
into shape with three halfwaves. Between P = 15338.1 N and P = 17338.1 N the plate with
imperfection B/125 changes shape from one halfwave to two halfwaves and at P = 18338.1 N it
shows three halfwaves. Because of this change from the shape of one halfwave into the two
halfwaves and eventually into three halfwaves, the theoretical critical load does not really
correspond exactly to any one the buckling modes critical loads.
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Figure 3.1.17 Buckling of the plate with imperfection type 3 with B/300 and B/125 (based on the
absolute values)

WRINKLE IMPERFECTION — TYPE 4

The wrinkle imperfection’s width is 19.57 mm (width of one element). In the preliminary analysis of
plate buckling behaviour with a wrinkle imperfection, it was established that a plate buckles into the
first buckling mode, with the maximum deflection at the point denoted as w_max in figure 3.1.18:

Figure 3.1.18 Initial and final shapes of the imperfect plate with a single wrinkle in the middle
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Therefore, the for more detailed analysis the two locations of the wrinkle imperfection were chosen;
assymetric (wrinkle 1) and symmetric (wrinkle 2):

wrinkle 1 wrinkle 2

Figure 3.1.19 Locations of the wrinkle imperfection

In both cases for all imperfection amplitudes the buckled shapes are similar to each other having
three halfwaves in longitudinal direction. In case of the asymmetric wrinkle imperfection the buckled
shape is also slightly asymmetric as expected; the two outside halfwaves are not equal and the
maximum deflection occurs at the point where the initial imperfection is applied (figure 3.1.20). For
symmetric wrinkle imperfection the buckled shape is symmetric, with maximum deflection occurring
at points denoted as w_max (figure 3.1.21).
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Figure 3.1.21 Initial and final shapes of the plate with symmetric wrinkle imperfection
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plate t = 4mm; layup I; wrinkle asymmetric
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Figure 3.1.22 Force — deflection curves for a plate with the asymmetric wrinkle imperfection

plate t = 4mm; layup I; wrinkle symmetric
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Figure 3.1.23 Force — deflection curves for a plate with the symmetric wrinkle imperfection
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From the plots in figures 3.1.22 and 3.1.23 it can be concluded that the influence of this type of
imperfection is not as severe as previously investigated shapes. While buckled plate shapes are
similar to those observed for imperfection in the shape of the first buckling mode, the behaviour is
different. There is a clear change in the slope of the load — deflection curves in case of wrinkle
imperfection for all imperfection amplitudes.

COMPARISON
After studying the effect of various shapes on plate’s behaviour the following can be summarized:

e the imperfections in the shape of the first and the second buckling mode have a similar
effect on the behaviour of the plate, the critical loads for these two buckling modes are close
and the difference lies in number and, therefore, length of one halfwave;

e the imperfection in the shape of the sixth buckling mode triggers different behaviour
depending on the imperfection amplitude: for B/3000 and B/1000 plate bends into the
shape determined by the shape of initial imperfection (one halfwave), but for B/300 and
B /125 the final buckled shape has three halfwave which is similar to the first buckling
mode;

e plate with wrinkle imperfection buckles into the shape corresponding to the first buckling
mode.

Since there are three cases in which the plate buckles in the shape of the first buckling mode, it
makes sense to further compare these three situations.
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Figure 3.1.24 Effect of various imperfection shapes on out of plane deformation
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Figure 3.1.24 illustrates the effect of the imperfection shape. In all the three cases the plate buckles
into the shape corresponding to the first buckling mode (m = 3). The most pronounce effect is seen
when an imperfection in the shape of the first buckling mode is applied. In this case, the plate
gradually bends into the predetermined shape, and the largest effect is seen in the prebuckling
region (loads below the critical load of a perfect plate), in which the curve is almost linear compared
to two other imperfection shapes. In two other case, the shape of initial imperfection was either
wrinkle or one halfwave (buckling mode 6). In case of the wrinkle imperfection (orange curve) the
growth of out of plane deformations is a lot slower compared to type 1 imperfection; there is still no
bifurcation point but there is a knee in the force — deflection curve around the critical buckling load.
In case of the imperfection in the shape of the buckling mode 6, the plate begins bending into the
shape determined by the initial imperfection but at approximately around critical buckling load (the
load level is a little higher, since the shape changes from one halfwave into two halfwaves and only
then into three halfwaves) of the first buckling mode it changes shape. As is seen in the graph the
postbuckling response corresponding to these two shapes (buckling mode 6 and wrinkle
imperfection) is somewhat similar.
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Figure 3.1.25 Effect of various imperfection shapes on plate’s end shortening

Figure 3.1.25 show the effect of imperfection shape on the reduction of the equivalent stiffness of
the plate. Again, the largest axial displacements are in a plate with initial imperfection in the shape
of the first buckling mode. The response of the pate with wrinkle imperfection and imperfection in
the shape of the buckling mode 6 is similar, apart from the area just above the critical buckling load.

From the studying the effect of different imperfection shapes, the imperfection type 1 seems to be
the most significant, as it coincides with the fundamental buckling mode of a plate. It was shown
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that plates with other imperfection shapes can also buckle into the first buckling mode, but since in
case of imperfection shape type 1 the initial shape of plate and buckled shape coincide, it has a
much noticeable effect than imperfection type 3 (6™ buckling mode) and wrinkle imperfection.

3.2 PARAMETER STUDY

The effect of different plate parameters on the nonlinear buckling behaviour is studied. Three
variables are considered: plate thickness, aspect ratio and layup. For each case linear buckling
analysis and geometrically nonlinear analysis will be employed. The imperfection is taken in the
shape of the first buckling mode.

3.2.1 THICKNESS

MODEL

To investigate the influence of laminate thickness a plate of t = 8 mm was modelled. The width and
the length stay the same (300 X 900 mm), so do the laminate elastic properties (E,/E, = 1.27)

LINEAR BUCKLING ANALYSIS

The first six buckling shapes of the plate with thickness of 8 mm are similar to those of the plate with
thickness t = 4 mm, and are shown in figure 3.2.1.

Figure 3.2.1 The first six buckling modes of the plate of layup | and t =8 mm

The comparison of the results from finite element analysis and analytical expression is presented in
table 3.4.
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mode force FEA, N force analytical, N |difference, %
1; m=3 112736 117194.97 3.8
2; m=2 114594 123520.2 7.2
3; m=4 134939 137472.87 1.8
4; m=5 166832 171535.29 2.7
5; m=6 212114 216219.18 1.9
6; m=1 219916 260495.78 15.6

Table 3.4 Comparison of the critical loads obtain from the analytical formula and FEA
(layup I, t =8 mm)

In general, the results from analytical expression gives slightly higher results than FEA. The largest
differences between the analytical and FEA results are observed for m = 2 (second buckling mode)
and m = 1 (sixth buckling mode) which are 7.23% and 15.58%, respectively. In figure 3.2.2, it can be
seen that the vertical line representing aspect ratio under consideration AR = 3 crosses the
ascending parts of curves m = 2 and m = 1. The same observation was made in case of the t =

4 mm plate and it seems that the difference between analytical and FEA results have to do with a
halfwave’s length.
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Figure 3.2.2 Visualization of the analytical results for the plate of layup | and t =8 mm

Figure 3.2.3 illustrates the dependence of critical load and buckling mode on orthotropic aspect
ratio. The position of the minimal critical load corresponding to m = 3 is again determined by

AR - 3/D11/D,,. For plate thickness t = 8 mm it will be at the same aspect ratio value of 3.44 as for
plate t = 4 mum, since the layup is the same in both cases.
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Figure 3.2.3 Dependence of buckling load and mode on plate aspect ratio for the plate of layup |
andt=8 mm

GEOMETRICALLY NONLINEAR ANALYSIS

The buckling behaviour and therefore the plots of the plate with a larger thickness are in general
very similar to those of the plate with t = 4 mm. The force — out of plane deflection and force — end
shortening diagrams for imperfection type 1 is given in Annex C.1, figures C.1.3. and C.1.4. Here the
comparison between plates witht = 4 mm and t = 8 mm will be shown.

As is known from theory, buckling strength relates to bending stiffness of a laminate. The bending

stiffness parameters of orthotropic material are calculated as D;; = 1/3 ZLI(QU)k (h,?; - h,3€_1)

with h being the vertical position of the ply from the midplane. Axial stiffness is defined as A;; =
2=1(Qif)k (hy — hx_1). Therefore, a plate with thickness t = 8 mm has a higher bending and axial

stiffness. Based on that, it is expected that the influence of initial imperfections will be less on a
thicker plate.

Figure 3.2.4 and 3.2.5 shows the comparison of out of plane deflections and axial displacements in
plates with thickness t = 4 mm and t = 8 mm for imperfection amplitudes B/1000 and B/125. As
expected, both out of plane and in plane deflections in the thicker plate are smaller at a certain load
level compared to deflections in the thinner plate. Since the critical load does not occur, exact
influence of the initial imperfection
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Figure 3.2.4 Comparison of thickness effect on out of plane deformation
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Figure 3.2.5 Comparison of thickness effect on axial displacement
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3.2.2 ASPECT RATIO

MODEL

To investigate the influence of aspect ratio a plate AR = 5 was modelled. The width and the length
are 300 X 1500 mm, t = 8 mm and the laminate elastic properties are such that Ex/Ey = 1.27
(layup 1). The element size is 25 X 25 mm (12 elements in y and 60 elements in x direction of the
plate).

LINEAR BUCKLING ANALYSIS

The first six buckling modes are shown in figure 3.2.6. In comparison to the plate with AR = 3, one
thing is immediately visible: the fully developed halfwaves (coloured red at the tips) all have about
the same length in longitudinal direction. The halfwaves corresponding to buckling modes 1, 2 and 4
are slightly longer in comparison to the other three. From the theory it is known that the longer the
plate is, the less influence aspect ratio has on the critical load, and for plates with AR > 5, the aspect
ratio and the number of halfwaves is excluded from the expressions for the critical load (expressions
in table 2.2). Therefore, it is expected that the critical loads for different number of halfwaves will be
closer to each other than in case of AR = 3. It is also expected that the critical load for buckling mode
2 with m = 5 will be the same as the critical load for buckling mode 1 (m = 3) of a plate with aspect
ratio 3, since in both cases the length of one halfwaves are the same:

AR=3:L =900mm,m = 3; Lpy. = L/m =300 mm

AR=5:L = 1500 mm,m = 5; Ly, = L/m = 300 mm

Figure 3.2.6 The first six buckling modes of the plate of layup I and AR = 5

The comparison of analytical solutions for plates AR = 3 and AR =5 are shown in figure 3.2.7.
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Figure 3.2.7 Comparison of the analytical results for the plate with AR =3 and AR =5

As is seen, the values for critical loads corresponding to various buckling modes for plate AR =5 are
indeed are closer to each other, compared to plate AR = 3. Also, the critical load for the first buckling
load AR = 3 (m = 3) equals to the critical load for the second buckling load AR=5(m =5): P =
117194.97 N.

mode force FEA, N force analytical, N |difference, %
1, m=4 107988 115800.03 6.8
2; m=5 109804 117194.97 6.3
3; m=6 123797 127377.83 2.8
4; m=3 123919 131979.20 6.1
5; m=7 140971 143338.06 1.7
6; m=8 158857 163818.15 3.0

Table 3.5 Comparison of the critical loads obtain from the analytical formula and FEA
(layup I, AR = 5)

The differences of 6.75%, 6.31% and 6.11% between analytical and FEA solutions are obtained for
buckling modes 1, 2 and 4, respectively (table 3.5). The theoretical lengths of halfwaves in these
cases are the longest; in previous cases the biggest differences were also found for the longest
buckling lengths. For buckling modes 1 and 4 (m = 4 and m = 3; AR = 5) also the observation as in
previous cases applies: the critical buckling load lies on the ascending branches of the curves. For
m = 5, which is buckling mode 2, this is not the case. The conclusion therefore is: the largest
difference between FEA and analytical solutions for layup | is found for the buckling modes in which
the length of a halfwave is longest (lowest m).
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GEOMETRICALLY NONLINEAR ANALYSIS

The applied imperfection is in the shape of the first buckling mode, the final shape of the plate is
determined by the shape of initial imperfection (figure 3.2.8):
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Figure 3.2.8 Initial and final shapes of the plate AR = 5 with imperfection type 1

The length of the halfwave in the first buckling mode theoretically is L/m = 375 mm (m = 4) for
plate with AR = 5; for the plate with AR =3 and m = 3 it is 300 mm. In the comparison of the effect
of imperfection type 1 and type 2 (3.1.3) larger out of plane deflections were found for larger
halfwave length and larger axial displacement for smaller number of halfwaves. In this case, it is
therefore expected that the out of plane deformations and axial displacements will be higher for
plate with aspect ratio 5, since in this case the length and the number of halfwaves is larger.

The force — out of plane deflection and force — end shortening diagrams for imperfection type 1 is
given in Annex C.1, figures C.1.5 and C.1.6. The diagrams in figures 3.2.9 and 3.2.10 show the
comparison of out of plane deflections and plate end shortening for two plates with different aspect
ratios and imperfection amplitudes of B/1000 and B/125.
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Figure 3.2.9 Comparison of out of plane deflections for plates with AR =3 and AR =5

In the beginning of loading the out of plane deflections are almost the same in both cases but shortly
after they begin increase faster for AR =5, as expected (figure 3.2.9).

In figure 3.2.10 it can be seen that the axial displacement is also larger for plate with aspect ratio 5.
Based on these comparisons it is concluded that for the same material properties the presence of
initial out of plane deformations has a more negative impact on the plate with AR = 5.
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comparison aspect ratio
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Figure 3.2.10 Comparison of end shortening for plates with AR =3 and AR = 5

3.2.3 LAYUP

MODEL

To examine the effect of different stiffness ratio on the buckling behaviour of a plate, the following
layup is considered:

Layup II: [05/45/—45/90/0,]; ply thickness is 0.25 mm (figure 3.2.11)

0" — 62.5%; 45° — 12.5%; —45° — 12.5%; 90" — 12.5%;

The equivalent laminate axial stiffness properties:

Ey, = 28.06 GPa; E, = 15.57 GPa; Gy, = 5.24 GPa; vy, = 0.318; v, = 0.176

The stiffness ratio of axial moduli of elasticity in longitudinal and transverse direction: E, /E, = 1.80
Calculation of the equivalent laminate properties is presented in Annex B.

The geometry (300 X 900 mm, t = 4 mm), boundary and loading conditions remain the same as
reported in §3.1.1.
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Figure 3.2.11 Ply stack plot layup Il (E,/E, = 1.80), t =4 mm

LINEAR BUCKLING ANALYSIS

The first six buckling modes obtained from the linear buckling analysis are presented in figure 3.2.12.

Figure 3.2.12 The first six buckling modes of the plate of layup Il and t =4 mm

The comparison of the results from finite element analysis and analytical expression is presented in
table 3.5.
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mode force FEA, N force analytical, N [difference, %
1, m=2 13248 13107.31 -1.1
2; m=3 13867 13320.7 -4.1
3; m=4 17534 16799.12 -4.4
4; m=5 22966 22143.51 -3.7
5; m=1 25351 27514.94 7.9
6; m=6 30066 29008.65 3.6

Table 3.6 Comparison of the critical loads obtained from the analytical formula and FEA

In terms of the difference between the FEA and analytical results for layup Il the following
observations are made. The largest difference is seen for buckling mode 5 (m = 1); in figure 3.2.13
the corresponding point of intersection lies on the ascending part of the m = 1 curve. This also
happens in case of the first buckling mode (m = 2) but the difference between the FEA and
analytical results is only 1.1%. It can also be concluded for layup Il, that the largest difference

(layup Il, t = 4 mm)

between the results is seen for the longest halfwave length.
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Figure 3.2.13 Visualization of the analytical results for the plate of layup Il and t = 4 mm

Since the layup Il has different stiffness properties, the behaviour in terms of buckling is also
different. The shift of the minimum of the buckling mode curve depends on the stiffness ratio
D11/D,,. For layup | D;;1/D,, = 1.15, for layup Il D11 /D5, = 1.25. The comparison is made
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between layup | and layup Il form = 1,m = 2 and m = 3 (table 3.7):

mode layup | layup Il
m=1 1.15 1.25
m=2 2.30 2.49
m=3 3.44 3.74

Table 3.7 Effect of orthotropy on buckling of perfect plates
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As is seen from the comparison, the shift of the minimum value compared to the isotropic material
is larger for layup Il. Layup | has less 0° fibres and more 90° fibres in comparison with layup I, and
therefore is “less orthotropic” (smaller ratio between stiffnesses in two directions).
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critical force

10000 Pcr=13107.31 N I
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aspect ratio

m=1 m=2 m=3 m=4 m=5 = -=-=-AR=3

Figure 3.2.14 Dependence of buckling load and mode on plate aspect ratio for the plate of layup I
andt=4mm

GEOMETRICALLY NONLINEAR ANALYSIS

The two first buckling modes of layup Il is swapped compared to layup I. Therefore, the imperfection
type 1 for layup Il corresponds to the second buckling mode (m = 3).

The force deflection diagrams for layup Il are presented in Annex C.1, figures C.1.7 to C.1.10. The
conclusions drawn for layup | are also true for layup II:

e the largest out of plane deflections depend on the halfwave buckling length; plate with the
imperfection in the shape of the first buckling mode (type 2, m = 2: L/m = 450 mm) has
larger out of plane deflections than a plate with imperfection in the shape of the second
buckling mode (type 1, m = 3, L/m = 300 mm);

e the largest axial displacements depend on the number of halfwaves in the imperfection
shape; plate with the imperfection in the shape of the first buckling mode (type 2, m = 2)
has smaller end shortening compared to a plate with imperfection in the shape of the
second buckling mode (type 1, m = 3);

In general, the behaviour of an imperfect plate with layup Il is similar to the behaviour of a plate
with layup I. Since a plate with layup Il has higher axial and bending stiffness in the longitudinal
direction, for the same plate geometry and the shape of initial imperfection it is expected that the
out of plane deflection and plate’s end shortening will be larger for layup I. Figures 3.2.15 and 3.2.16
prove that. The “prebuckling” out of plane deflections almost coincide for layup | and Il, and
gradually becoming larger in plate of layup I. Much more noticeable difference in layups is seen in
apparent stiffness, with plate of layup | having larger in plane deflection.
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Figure 3.2.15 Comparison of out of plane deflection for plates with layup | and layup Il
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Figure 3.2.16 Comparison of end shortening for plates with layup | and layup 11
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3.3 CHAPTER SUMMARY

The buckling behaviour of perfect and imperfect plates was studied and a comparison between the
effect of different imperfection shapes was made.

The difference between plate buckling of an isotropic and orthotropic material was established; in
case of orthotropic plates not only aspect ratio but also bending stiffness ratio plays a role in
buckling behaviour.

With geometrically nonlinear analysis it was shown that critical load only occurs for perfectly flat
plates. In an imperfect plate no bifurcation point occurs and instead of suddenly changing shape, a
plate with initial imperfection gradually bends (bows). The presence of initial out of plane
deformations results in additional bending moments, which means that an imperfect plate is loaded
both by uniform axial compression and bending moment. The effect of this additional bending
moment can be described as apparent stiffness reduction, because under the same compression
load level an imperfect plate will have much larger axial deflection. This apparent stiffness reduction
is influenced by shape and amplitude of initial imperfection. It was determined, that an imperfection
in the shape of plate’s buckling mode have the most negative effect and the shape of the
fundamental buckling mode is the most significant. Additionally, plate properties such as thickness,
aspect ratio and layup also influence imperfect plate’s structural behaviour.

Since there are many variables that contribute to the way plate with initial out of plane
deformations behaves, it is necessary to classify plates based on their properties. The measure that
ties together plate material and geometric properties and relates compression strength to buckling
strength is plate slenderness. Since there is dependence of the plate response on the number and
length of halfwaves of the buckling mode, it is important to use the full analytical formula to
determine the critical load (table 2.1) taking those parameter into account. Once plate slenderness
and failure criterion are defined, the effect of initial out of plane deformations can be quantified for
plates of various geometries and certain layups. This means that materially nonlinear analysis has to
be employed to determine the failure loads of plates with initial imperfections.
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4. PLATE FAILURE ANALYSIS

In this chapter plate slenderness, failure criteria and the relation between slenderness and failure
load reduction due to initial out of plane deformation determined. The objective is to derive buckling
curves that can be used for buckling design of fibre reinforced polymer plates with initial
imperfections.

4.1 PLATE SLENDERNESS

It was shown in chapter 3 that imperfect plates of different layups, aspect ratio and thickness show
similar buckling behaviour, but the exact influence of initial imperfections depending on these
properties was not determined. Plates with different geometric and material properties can be
classified by defining plate slenderness A. The plate slenderness is a parameter that ties together
plate strength, stiffness and geometry and is defined as:

Fue

O-C T

A=

(4.1.1)

where f,,;+ is the strength of a perfect plate under uniform compressive load (depending on the
considered failure criterion) and g, is the critical buckling load of a perfect plate. When A4 = 1, this
means that the compressive and critical loads coincide. The slenderness relates to a plate without
any imperfections and can be derived analytically, meaning that no nonlinear finite element analysis
is necessary.

When the failure criterion is defined, the fail load of a plate with initial imperfection f,;; can be
determined from finite element analysis. The failure load ff,;; will be lower than the compressive
strength f,,;+ because in case of an imperfect plate, next to axial load, a plate is loaded by bending
moments that result from the eccentricities cause by the transverse deflections of the plate, which
increase as the applied axial load increases.

With known buckling strength a reduction factor p can be derived as:

_ Jrait
p= fult
(4.1.2)

Once reduction factors are derived it is possible to construct buckling curves similar to the buckling
curves derived for steel. The horizontal axis will correspond to plate slenderness and the vertical axis
—to reduction factor.
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4.2 FAILURE CRITERIA

As said, the compressive strength relates to the chosen failure criterion. Commonly, there are a few
failure criteria that are used in the analysis of the laminate strength.

Due to their simplicity the maximum stress and maximum strain theories are often used. For a
failure to occur according to the maximum stress theory one of the conditions has to be met:

fic <01 < fies
f2c < 02 < far;

—f12 <712 < f12

The maximum strain criterion reads as:
li

glC < 51 < glt;
li

Erc < &y < Eats

Y12 < Y12 < V12

The maximum stress and maximum strain theories yield different results because the strains in a ply
coordinate system include the Poisson’s ratio. These results in general are not very accurate and do
not take interaction into account. One of the examples of the interaction-based theories is Tsai-Hill,
which is included in CUR96:

il v M

where
fi = fit if a1 = 0 (tension); f; = f1. if ; < 0 (compression);

f2=farifo, 20; f, = frifo, <0

This failure theory does not distinguish between the compressive and tensile strengths, and it will
not indicate the mode of failure unlike the maximum stress / strain theories. Other ply failure
theories based on stress interactions such as Tsai-Wu and Puck are allowed by CUR96 as well.

The mentioned above failure criteria are applicable to a ply. However, a first ply failure is usually a
conservative criterion, since a laminate consists of multiple plies with fibres in all direction and a
failure of one ply does not necessary mean a failure of the whole laminate. To have a more realistic
prediction of a laminate strength a progressive failure analysis has to be performed. Progressive
failure analysis involves a gradual reduction of stiffness properties of a laminate. When one of the
plies is considered failed according to one of the failure theories, its stiffness is fully or partially
reduced, then the laminate is loaded again up to the failure of the next ply [28]. This process is
repeated until no plies are left. Alternatively, CUR96 gives a simple failure strain limit for a laminate:
1.2% for longitudinal tension and compression and 1.6% for shear

In this study, the following four criteria will be considered to describe the influence of initial
imperfection on the structural behaviour of a plate. In paragraphs 4.4 to 4.7 these failure criteria will
be considered in more detail.
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CRITICAL LOAD

Critical load is one of the failure criterion that is currently used in design codes. It was shown that for
an imperfect plate the determination of the critical buckling load is a difficult task, especially for
larger amplitudes of imperfections, since bifurcation buckling does not take place. However, there
are methods to approximate the buckling loads.

In the paper by Czapski and Kubiak [13] two ways of approximating critical buckling load of imperfect
plates were briefly described. More detailed descriptions of various methods are presented in
“Selected Problems of Determining Critical Loads in Structures with Stable Post-Critical Behaviour”
by the same authors [26]. Out of all described methods, the P — w? method was chosen as the most
suitable one to attempt to approximate the buckling loads of the imperfect plates.

V=

w2

Figure 4.2.1 Determination of the critical load with P-w? method [26] p.84

In P —w?method square root of deflection plotted versus the load. In this case the postbuckling part
of the curve can be approximated with a straight line as shown in figure 4.2.1. The intersection of
this line with the load axis is considered as the critical load. The result obtained with this method
depends on which region of the curve is considered and is only an approximation.

HASHIN PROGRESSIVE FAILURE

Hashin progressive failure analysis is suitable for multiaxial stress situations and considers four
failure mechanisms: fibre failure in tension and compression and matrix failure in tension and
compression. The onset of damage takes place when one of these criteria is reached:

e fibre rupture in tension (g;; = 0),

=) + ()
(4.1.3)

e fibre buckling and kinking in compression (g,; < 0);

011\?
7=
I e

(4.1.4)
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e matrix cracking under transverse tension and shearing (g5, = 0);

e () ()

(4.1.5)
e matrix crushing under transverse compression and shearing (g,, < 0);
T2 \? 2 o T12\?
= () +|G) ) 2 ()
2f12 2f12 fZC f12
(4.1.6)

Abaqus finite element analysis software offers a progressive damage model for fibre reinforced
composites. Damage is defined by the degradation of material stiffness. The initiation of damage
corresponds to the Hashin’s failure modes. Once one of the four criteria is reached in one of the
plies in an certain element, the software will reduce the stiffness of the material until the ply in the
element is failed. As load increases more plies in more elements will fail until the load cannot be
increased any longer due to the severity of damage in a laminate. The rate at which the material
properties are reduced depends on damage evolution parameters input [29]. The maximum load
that can be applied to the plate will be considered to be the failure load.

Hashin damage model does not consider delamination failure mode, it is therefore will be important
to investigate whether or not the onset of delamination occurs before or after one of the Hashin
failure modes.

SERVICEABILITY LIMIT STATE STRAIN

SLS ply strain limit refers to the strain at which the cracks appear in the resin of the laminate. The
formation of cracks in resin by itself does not necessary lead to a failure in a laminate but the onset
of cracks can eventually lead to other failure modes and the stiffness reduction of the material.
Depending on the severity of cracks, this failure mechanism can lead to seepage of fluids through
the laminate or fracture. [27].

The strain limit for the matrix cracking in tension is 0.2%. This criterion is assumed to be satisfied
when the strain limit is reached in one of the plies, in other words this is a first ply failure criterion.

DELAMINATION

Delamination is a failure mode of composite materials which is characterized by separation of layers
in the laminate. Once delaminations are initiated they start to grow gradually. The onset of
delamination is difficult to predict, but it is known that there will be no initiation of delamination
before the cracks are formed in resin [27].

CUR96 provides the interlaminar shear stress limits for three kinds of matrix: polyester, vinylester
and epoxy. Once this limit is reached, cracks between plies initiate. The material that is considered in
this research is polyester and the interlaminar stress strength is given as fj,ss = 20 N/mm?.
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Harstype van het GVK-laminaat Interlaminaire afschuifsterkte ILSS [N/mm?]

Polyesterhars 20
Vinylesterhars 25
Epoxyhars 30

Table 4.1 Interlaminar shear stress limits [2] p. 49

When the interlaminar shear stress value of 20 N/mm2 is reached anywhere in a laminate, the
failure criterion is fulfilled.

4.3 MODEL

To investigate the influence of initial out of plane deformations the plate of layup | (Ex/E, = 1.27),
length L = 900 mm, width B = 300 mm is used. To obtain various plate slenderness values only
the plate thickness is changed.

The shape of initial imperfection is the shape of the first buckling mode. Two imperfection
amplitudes were considered: B/1000 and B/125. B/1000 is an arbitrary value of an imperfection
magnitude, B/125 is the limiting value suggested in the design code CUR96 in case no information
on initial imperfection tolerances is available.

The boundary conditions were modified; the linear buckling analysis results stay almost the same as
in case of original boundary conditions reported in 3.1.1, but for the geometrically and materially
nonlinear analysis the modified boundary conditions reduce the peak values that were found in the
model with the original boundaries. The detailed description is given in annex D.
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Figure 4.3.1 Plate geometry, boundary and loading conditions for failure analysis
Figure 4.3.1 shows the boundary and loading conditions used for plate failure analysis.
Boundary conditions:

e alongalledgesu, =0
e atx = 450;y = 150 (midpoint of the plate) u,, = 0
° atx=225;y=150andx=675;y=150uy=0

Initial displacement was applied in x direction at the plate edges x = 0 and x = 900.

The element type used is S4R (uses thick shell theory as the shell thickness increases and become
discrete Kirchhoff thin shell elements as the thickness decreases; the transverse shear deformation
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becomes very small as the shell thickness decreases [29]), with size of 18.75 X 19.57 mm (16
elements in y and 46 elements in x direction of the plate).

The determination of the ply properties for damage initiation is given in 3.1.1.

The values for damage evolution should be determined experimentally but due to absence of test
data for E-glass polyester laminates, the values for fracture energies based on data for E-glass epoxy
laminate are used [30]:

e |ongitudinal tensile: 12

e |ongitudinal compressive: 12
e transverse tensile: 1

e transverse compressive: 1

A sensitivity study of transverse tensile and compressive energies influence on fail load showed that
these parameters do not have a large effect. More details can be found in annex E.

4.4 CRITICAL LOAD CRITERION

It was decided to use the P — w? method to attempt to approximate the buckling loads of the
imperfect plates ff4j; crie. The more or less linear postbuckling region of the force - deflection? graph
was approximated with linear trendline. Setting x = 0, the y-coordinate was obtained from the
equation of the trendline, which according to the method’s description is the critical load.

Figures 4.4.1 and 4.4.2 show the application of P-w2 method to the plates with imperfection
B/1000 and B/125.

plate t = 4mm; layup I; type 1

40000
35000
30000
25000

=z y = 307.4x + 12487 /
g 20000

L
15000
10000
5000
0
0 5 10 15 20 25 30 35 40 45 50
deflection2, mm?2
—B/1000 B/1000 —Linear (B/1000)

Figure 4.4.1 Determination of the critical load of the imperfect plate B/1000
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plate t = 4mm; layup |; type 1
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Figure 4.4.2 Determination of the critical load of the imperfect plate B/125

f_fail,crit, N reduction, %
B/1000 12487 15.0
B/125 9178.1 37.5

Table 4.2 Approximated fail loads fii crit

Table 4.2 shows the obtained forces for the plate with imperfections. As it can be seen, the
reduction of the buckling force is 37.5% for B/125, which is significant. It has to be mentioned, that
it was very difficult to decide which part of the curve to approximate, especially in case of a larger
amplitude of imperfection. This observation brings up a question about the applicability and physical
meaning of the P-w? method.

When the imperfection has a small amplitude (> B/1000) or when the imperfection itself is small
(for example, a wrinkle imperfection considered in 3.1.3) then the two regions in load — deflection
diagram can be distinguished:

e the prebuckling region when the growth of out of plane deformations is slow

e the postbuckling region when the growth of out of plane deformations is a lot faster than in
the prebuckling region;

in between these two regions the load — deflection diagram has a rounded over part (“knee”)
instead of a bifurcation point. In this case applying P-w? method makes sense.

For large imperfections that coincide with the shape of plate’s buckling mode, it was shown that no
clear change in growth of deformations can be seen for larger imperfection amplitudes, e.g. the
behaviour of an imperfect plate is very different from that of a perfect plate. For that reason, it is
concluded that a different failure criterion should be applied to quantify the influence of initial
imperfections considered in this study.
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4.5 HASHIN PROGRESSIVE FAILURE CRITERION
4.5.1 GEOMETRICALLY LINEAR PROGRESSIVE FAILURE ANALYSIS

The ultimate compressive load (fy;¢ gasnin) Of a flat laminate was determined by performing
geometrically linear (no initial out of plane deformations present) and materially nonlinear analysis
(Abaqus Hashin progressive damage model). A perfectly flat plate loaded by uniform axial
compression was modelled, no imperfection was included to avoid buckling. The typical load — end
shortening curve is shown in figure 4.5.1.

As it can be seen, the curve has three peak values at 218.6; 229.09 and 208.56 N/mm?, which
represent the ply-by-ply failure loads. These results were checked using elamX? software.

layup |, t=6mm
300
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250 2nd ply failure

1st ply failure 229.09 N/mm2

225 218.6 N/mm2

200
3rd ply, failure
208.56\N/mm2
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§ 125
100
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end shortening, mm

Figure 4.5.1 Load - end shortening for Hashin damage criterion curve of a perfectly flat plate

First, the first ply failure and failure mode were determined, after which the stiffness of the failed ply
was reduced and the load that causes the second and the third ply failure respectively is found. Since
the first and second plies (90° and +45°) fail due to matrix compressive failure, the transverse
modulus of elasticity (Ey ) of a ply was reduced to zero, the rest of the properties were left
unchanged.

The table below shows the failure loads obtained from FEA and CLT, which are in good agreement
with each other:

FEA, N/mm2 | CLT, N/mm2
1st ply 90° 218.6 218.62
2nd ply +45° 229.09 229.72
last ply 0° 208.56 208.98

Table 4.3 Comparison of failure loads obtained from FEA and CLT
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After the initial first ply (all the 90° plies) failure at 218.6 MPa, the remaining +45° and 0° can still be
loaded up to 229.09 MPa. After the +45° plies fail, the remaining 0° plies can only withstand

208.56 MPa. Therefore, the maximum compressive load that can be applied to the laminate is
229.09 MPa. Almost the same ultimate load was determined for all plate thicknesses, in reality this
is not necessarily the case.

The longitudinal strain at the maximum load (corresponding to the second ply failure) has value of
1.11 - 10™2. However, this value relates to the reduced stiffness properties of the laminate, since the
90° plies have already failed. Relating the ultimate load to the initial stiffness of the material, the
strain in the laminate is:

0.
g, =—2  =1.02-1072

Ex,initial

which is a lower value than 1.2% given in CUR96 for laminates with have at least 12.5% fibres in each
direction (0°, 45°, -45° and 90°). Since the 1.2% strain limit is based on test data it is concluded that
the result obtained from FEA is conservative.

4.5.2 GEOMETRICALLY NONLINEAR PROGRESSIVE FAILURE ANALYSIS

The geometrically nonlinear progressive damage analysis was performed to determine the ultimate
load of the plate with initial imperfections due to buckling (ffai1,Hashin)-

HSNMTCRT

Envelope (max abs)

(Avg: 75%)
+1.000e+400
+9.169e-01
+8.338e-01
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+6.676e-01
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+5.014e-01
+4.183e-01
+3.352e-01
+2.521e-01
+1.690e-01
+8.585e-02
+2.744e-03

Figure 4.5.1 Damage initiation matrix tension in a plate with initial imperfection

Figure 4.5.1 depicts the damage initiation in matrix due to transverse tension. The areas in which
damage initiates are coloured red. Matrix cracking due to transverse tension is described by
equation 4.1.5:

= () + ()

When damage is initiated it means that:
El=1

The corresponding transverse (g,,) and shear (7;,) stresses are shown in figures 4.5.2 and 4.5.3.
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Figure 4.5.2 Transverse tensile stresses in the plate with initial imperfection at damage initiation
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Figure 4.5.3 Shear stresses in the plate with initial imperfection at damage initiation
The stress values from figures 4.5.2 and 4.5.3 in the areas were damage is initiated are:
0y = 22.72 N/mm?
71, = 5.60 N/mm?

Substituting these values and the ply strength properties given in 3.1.1 to equation for matrix
cracking initiation:

gt = (22.72)2 N ( 5.6 )2 _ 10

™o \228 64.6/
From this point on the software will start reducing the stiffness properties of the laminate. Figure
4.5.4 shows the comparison of materially linear and materially nonlinear behaviour of a plate:
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layup I, t=6mm

100

load, N/mm2
U1
o

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
end shortening, mm

—— B/1000 damage B/125 damage
—B/125 = = LBA

B/1000

Figure 4.5.4 Materially linear and nonlinear behaviour of a plate

The green and yellow curves correspond to the progressive failure analysis of a plate with thickness
t = 6 mm and two magnitudes of imperfection B/1000 and B/125, the blue and orange curves are
based on the materially linear analysis. The horizontal dashed line represents the critical load of a
perfect plate.

From this plot it can be seen that the stiffness reduction for the plate with initial out of plane
deformation begins at the load level around ~30 — 35 N/mm? and from this point the curves
associated with materially nonlinear analysis start to deviate from the curves that represent
materially linear analysis, which means stiffness reduction takes place.
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Figure 4.5.5 Damaged elements occurrence in the plate

Eventually the parameters will be reduced to a point that the element is considered damaged (figure
4.5.5), after that the number of damaged elements will be growing until the load can no longer be
increased. The maximum load that a plate is able to carry is considered the failure load. Figure 4.5.6
shows damage in the plate at failure.
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Figure 4.5.6 Damaged elements in the plate at failure

Plots in figures 4.5.7 and 4.5.8 show load — end shortening of a plate t = 6 mm with imperfection
amplitude B/1000 and B/125 and damage initiation / evolution values.

layup I, t=6mm, B/1000

100
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failure
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S 40 14304
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30 F=-==-
20
10
0

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
end shortening, mm

B/1000 damage B/1000 ===<=initiation ====damage ==== failure

Figure 4.5.7 Progressive failure analysis of a plate t = 6 mm with imperfection B/1000

In case of B/1000 before damage initiation there is a slope change in the graph which occurs
around the critical load value of a perfect plate (27.05 N/mm?) and failure of the plate occurs at
the load level almost two times higher then the critical load. For B/125 the slope is not a straight
line but it is difficult to determine where the change takes place because due to a large amplitude of
initial imperfection plate very gradually bends into the shape prescribed by the initial imperfection.
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layup |, t=6mm, B/125
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Figure 4.5.8 Progressive failure analysis of a plate t = 6 mm with imperfection B/125

It is seen that the damage initiation and occurrence (denoted by horizontal dashed lines named
‘initiation” and ‘damage’) take place at slightly lower load levels for the plate with imperfection
amplitude B/125 compared to the plate with imperfection B/1000. The failure load however is not
influenced by imperfection magnitude and is the same in both cases.

Figures 4.5.9 and 4.5.10 show behaviour of a thicker plate (t = 24 mm).

layup I, t=24mm, B/1000
320

280

240

218.49

«~ 200

/mm
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0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

end shortening, mm

—— B/1000 damage B/1000 ==--initiation ====damage -=-=--failure

Figure 4.5.9 Progressive failure analysis of a plate t = 24 mm with imperfection B/1000
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layup I, t=24mm, B/125
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Figure 4.5.10 Progressive failure analysis of a plate t = 24 mm with imperfection B/125

In case of a thicker plate, there is a noticeable difference in behaviour depending on the amplitude
of the applied initial imperfection. Not only damage initiation and evolution occur at a noticeably
lower load levels for imperfection magnitude B/125, but also the failure load is ~11% lower
compared to imperfection B/1000. It should also be noted that for B/1000 the damage initiation,
occurrence and failure loads are much closer together than in case of B/125. In the plate with
imperfection B/1000 damage is due to matrix crushing, while in the plate with imperfection B/125
the failure mode is matrix cracking(as in case of plate t = 16 mm). The critical load in case of a plate
with thickness t = 24 mm is above the failure load (o, = 380.19 N/mm? and therefore the
curves based on linearly and materially nonlinear analysis (green curve for B/1000 and yellow curve
B/125) almost fully coincide with the curves based on materially linear analysis and the slight
deviation is only seen after damage initiated in the plate with imperfection amplitude B/125.

From this study it can be concluded that there are two effects that have influence on the structural
behaviour of plates: additional bending moment due to initial imperfections that changes the
apparent stiffness of the material and the actual change in stiffness that is caused by material
degradation. In case of thinner plates, the amplitude of initial out of plane deformation has a little
effect on damage and failure load, in case of thicker plate the effect increases and there is a
significant difference for plate behaviour between imperfection amplitude B/1000 and B /125.

4.5.3 BUCKLING CURVES

The buckling curves for Hashin progressive failure are constructed by varying the thickness of a plate
of 300 x 900 mm to quantify the effect of initial imperfections depending on the plate slenderness.
Six different plate slenderness values corresponding to thicknesses 4, 6,8,12,16,24 and 54 mm and
two magnitudes of initial imperfections are considered - B/1000 = 0.3 mm and B/125 = 2.4 mm.
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Table 4.4 lists all the loads found for the plates of various thicknesses of a layup I. Figure 4.5.11

shows the derived buckling curves.

acr, fult, ffail, N/mm2 | ffail, N/mm2 | p Hashin | p Hashin | p, linear
t, mm A .
N/mm2 | N/mm?2 B/1000 B/125 B/1000 | B/125 | buckling
4 12.13 229.17 4.35 45.53 45.44 0.20 0.20 0.05
6 27.05 229.09 2.91 61.81 61.20 0.27 0.27 0.12
8 47.59 229.33 2.20 78.15 74.36 0.34 0.32 0.21
12 104.53 229.33 1.48 115.14 106.97 0.50 0.47 0.46
16 180.67 229.33 1.13 168.12 141.02 0.73 0.61 0.79
24 380.19 228.00 0.77 218.49 195.04 0.96 0.86 1.67
54 1381.7 229.33 0.41 220.5 214.84 0.96 0.94

Table 4.4 Plate slenderness and load reduction factors for Hashin damage criterion

Hashin progressive failure, Ex/Ey = 1.27
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reduction factor p
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0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 00 5

—&— Hashin B/1000 near buckiing near bucking

Figure 4.5.11 Buckling curves for Hashin progressive failure criterion for E,/E, = 1.27

In the figure above the blue curve corresponds to the plate with an initial imperfection of amplitude
B /1000 and the orange curve to the plate with an initial imperfection of B/125. The grey curve
represents the failure mode corresponding to buckling of a flat plate without initial imperfections.
The dashed part of the grey curve relates to reduction factors > 1 (in fact it is not a reduction factor
anymore), it means that for ideal plates with A > 1 the compressive failure will occur sooner than
buckling and so no reduction due to buckling is necessary (p = 1).

For thin plates (A > 2.5) the curves representing different values of imperfection amplitude almost
coincide, which means that the failure load is independent of the magnitude of initial out of plane
deformation and the reduction factor has (almost) the same value for imperfection B/1000 and
B/125.

For thicker plates (A < 2.5) the effect of imperfection amplitude becomes more pronounced as
slenderness becomes smaller, i.e. the larger the thickness becomes the larger is the difference
between the reduction for imperfection amplitude B/1000 and B/125. For example, a plate of
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layup | and 4 = 1.13 there is 16% difference between the failure load associated with imperfection
B/1000 and B/125.

However, for A = 0.41 the difference between reduction factor for B/1000 and B/125 becomes
smaller again. The failure mode in case of plate t = 54 mm for both amplitudes of imperfection and
in case of plate t = 24 mm with imperfection B/1000 is matrix crushing in compression and
shearing. It can be seen from the buckling curves that in these three cases the reduction factor is
closeto 1 (0.94 — 0.96), therefore, it can be concluded that for plate slenderness A = 0.41 with
imperfection up to B/125 and for slenderness A = 0.77 with imperfection up to B/1000 the effect
of initial imperfection is insignificant and will not cause plate to buckle but fail in compression.

Comparing the buckling curves derived for plates with imperfection (blue and orange, figure 4.5.11)
to buckling curve based on critical load criterion for flat plates (grey, figure 4.5.11) it can be seen
that the plates with slenderness 4 > 1.50 have load bearing capacity above the theoretical critical
load. For example, for layer | for a plate with A = 2.20 the failure load is 39% higher for B/1000 and
36% for B/125 than the critical load. While in case of A = 1.13 the critical load is higher than the
failure load by 7% for B/1000 and 22% for B /125.

Therefore, for plates with slenderness A > 1.50 and imperfection amplitudes up to B/125 the
critical load criterion (related to ideal plates, disregarding initial imperfections) would give
conservative results. The Hashin progressive failure buckling curves for plates with slenderness 1 <
1.50 are below the critical load buckling curve, so, for imperfect plates with A < 1.50 the critical
load criterion overestimates the plate buckling strength. At slenderness value A = 1 this would
mean that the critical load would be 30% higher for a plate with imperfection B/1000 and 18% for
B /125 than the plate failure load.

4.5.4 VALIDATION OF SLENDERNESS

The buckling curves in 4.5.3 were derived for various slenderness values based on different plate
thickness. As a check of the relation between plate slenderness and reduction factor two plates of
different dimensions were modelled:

e 400 X 600; (AR = 1.5) which leads to initial imperfection amplitudes of B/1000 = 0.4 mm
and B/125 = 3.2 mm and plate slenderness A = 2.41

Figure 4.5.12 First buckling mode of the plate A = 2.41
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e 700 X 1600; (AR = 2.29) which leads to initial imperfection amplitudes of
B/1000 = 0.7 mm and B/125 = 5.6 mm and plate slenderness 1 = 1.07

227
Z o

2582

Figure 4.5.13 First buckling mode of the plate A = 1.07

Four additional points were obtained and plotted over the buckling curve. Figure 4.5.14 shows that
the reduction factors for plates with slenderness A = 2.41 and A = 1.07 are in line with the derived
buckling curves.

Hashin progressive failure, Ex/Ey = 1.27
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Figure 4.5.14 Slenderness validation for buckling curves for Hashin progressive failure criterion

4.6 SERVICEABILITY LIMIT STATE STRAINS CRITERION

4.6.1 GEOMETRICALLY LINEAR MATERIALLY NONLINEAR ANALYSIS

For this criterion both longitudinal and transverse strains are checked. The ultimate compressive
load (fyit sLsstrain) is Obtained by checking the positive values of longitudinal and transverse strains.
Once the strain value reaches ~0.2 - 1072, the corresponding load level is registered.
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The limit is reached both for longitudinal (90° ply) and transverse (0°) strain at the same load level of
approximately 137.0 N/mm? (the exact value is given for each plate in 4.6.2 and 4.6.3 in tables 4.5
and 4.6).

The obtained values were checked with elamX? software (see figure 4.6.1). As seen the values of
0.2 - 1072 are obtained simultaneously for longitudinal (¢;) and transverse (&,;) strains in 90° and
0° plies, respectively. Dividing the applied distributed load by the laminate thickness the
compressive stress is obtained:

fuie = 137.58 N/mm?

which is very close to the values found with finite element analysis.

MMech, +  "Myygrotherm. = ABD-Matrix = £K
@n, = -825.48 0.0| [147847.3 38060.0 0.0 -0.0 -0.0 0.0 -0.006098 | =& O
@n = 0.0 0.0 38060.0 116068.3 0.0 -0.0 -0.0 0.0 0.002| =8 O
@y = ool | 0.0, 0.0 0.0 38099.3 0.0 0.0 -0.0 0.0 =Ny O
“| + - o = *
@M = 0.0 0.0 0.0 -0.0 0.0 494372.4 120551.8 17160.7] 00| =% O
@m = 0.0 0.0 -0.0 -0.0 0.0 120551.8 284630.8 17160.7 00| =%, O
@My = 0.0 0.0 0.0 0.0 -0.0 17160.7 17160.7 120669.5] 0.0 =% O
No. Name Angle Zn,i g &l €, YiiL

h 0 0.0 2.85 3.0 -0.006098 0.002 0.0

2.7 -0.006098 0.002 0.0

2 0 0.0 2.55 2.7 -0.006098 0.002 0.0

2.4 -0.006098 0.002 0.0

3 45 45.0 2.25 2.4 -0.002049 -0.002049 0.008098

2.1 -0.002049 -0.002049 0.008098

4 45 45.0 1.95 2.1 -0.002049 -0.002049 0.008098

1.8 -0.002049 -0.002049 0.008098

5 -45 -45.0 1.65 1.8 -0.002049 -0.002049 -0.008098

? 3o -0.002049 -0.002049 -0.008098

6 -45 -45.0 1.35 1.5 -0.002049 -0.002049 -0.008098

1.2 -0.002049 -0.002049 -0.008098

7 a0 90.0 1.05 1.2, 0.002 -0.006098 0.0

0.9 0.002 -0.006098 0.0

8 90 90.0 0.75 0.9 0.002 -0.006098 0.0

0.6 0.002 -0.006098 0.0

9 0 0.0 0.45 0.6 -0.006098 0.002 0.0

0.3 -0.006098 0.002 -0.0

10 0 0.0 0.15 0.3 -0.006098 0.002 -0.0

-0.0 -0.006098 0.002 -0.0

Figure 4.6.1 First ply failure determination for ideal plate t = 6 mm

4.6.2 LONGITUDINAL STRAIN &1t

Geometrically and materially nonlinear analysis was used to obtain failure loads of plates with initial
imperfections with amplitudes of B/1000 and B/125. Typical contour plot of longitudinal strains is
shown in figure 4.6.2.
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Different plate slenderness values were obtained by varying plate thickness: 3,4, 6,8,12,16, 24 and
54 mm. The values of pate slenderness (calculated using expression 4.1.1), loads of imperfect plates
at which longitudinal tensile strain reaches the limit value and reduction factors (calculated using
expression 4.1.2) are shown in table 4.5 and the associated buckling curves are presented in figure
4.6.3.

BEMIEET:
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(Avg: 75%)
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+7.408e-04
+5.647e-04
+3.885e-04
+2.124e-04 ™1
+3.626e-05 '
-1.39%-04

Figure 4.6.2 Longitudinal tensile strain contour plot (t = 6 mm)

p— acr, fult, A ffail, N/mm2 | ffail, N/mm2 | p SLS €x p SLS €1t
’ N/mm2 | N/mm2 B/1000 B/125 B/1000 B/125
3 6.85 137.19 4.48 23.26 22.90 0.17 0.17
4 12.13 137.19 3.36 29.04 28.17 0.21 0.21
6 27.05 137.19 2.25 39.29 36.60 0.29 0.27
8 47.59 136.26 1.69 52.63 46.71 0.39 0.34
12 104.53 136.26 1.14 95.15 67.15 0.70 0.49
16 180.67 136.26 0.87 124.65 86.96 0.91 0.64
24 380.19 137.08 0.60 135.15 108.59 0.99 0.79
54 1381.7 136.26 0.31 138.34 | 125.74 1.02 0.92

Table 4.5 Plate slenderness and load reduction factors for SLS longitudinal strain criterion

SLS e1t, Ex/Ey=1.27
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Figure 4.6.3 Buckling curves for SLS longitudinal strain criterion

The plot in figure 4.6.3 shows two curves. The orange curve is for a plate with an initial imperfection
with magnitude of B/125 and the blue curve is for a plate with an initial imperfection with
magnitude of B/1000.

The same trend as in case of Hashin progressive failure criterion can be seen in figure 4.6.3. For
plates with slenderness A > 2.5 (thin plates) the amplitude of imperfection has no or very little
effect on load reduction factor. For plates with slenderness A < 2.5 the reduction factor depends on
the amplitude of the imperfection: for amplitude B/1000 the reduction of plate capacity will be
smaller (larger value of the imperfection factor p), for amplitude B /125 the reduction will be larger
(smaller value of the imperfection factor p). The difference between reduction factors for plates
with imperfection B/1000 and B/125 increases as plate slenderness decreases up to A = 0.87,
after which the difference starts to become smaller.

4.6.3 TRANSVERSE STRAIN €2t

Table 4.6 shows the data necessary for constructing the buckling curve for the transverse strain limit
criterion (figure 4.6.4).

. ocr, fult, A ffail, N/mm2 | ffail, N/mm2 | pSLS€2t | pSLSe2t
! N/mm2 | N/mm2 B/1000 B/125 B/1000 B/125
3 6.85 137.19 4.48 17.50 17.03 0.13 0.12
4 12.13 137.19 3.36 21.88 19.83 0.16 0.14
6 27.05 137.19 2.25 30.34 27.68 0.22 0.20
8 47.59 136.26 1.69 46.57 34.13 0.34 0.25
12 104.53 136.26 1.14 84.59 50.68 0.62 0.37
16 180.67 136.26 0.87 112.51 64.65 0.83 0.47
24 380.19 137.08 0.60 128.01 84.23 0.93 0.61
54 1381.7 136.26 0.31 134.25 109.50 0.99 0.80
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Table 4.6 Plate slenderness and load reduction factors for SLS transverse strain criterion
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Figure 4.6.4 Buckling curves for SLS transverse strain criterion

As is seen in figure 4.6.4, for thin plates (1 > 2.5) according to serviceability limit state criterion for
transverse strains there is a slight difference between the reduction factor for imperfection
amplitudes B/1000 and B/125. However, it is much smaller than in case of thicker plates with 1 >
2.5.

SLS strain criterion comparison, Ex/Ey=1.27
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Figure 4.6.5 Comparison between the buckling curves for longitudinal and transverse strains

Figure 4.6.5 shows the comparison between the SLS longitudinal and transverse strains criteria. The
largest reduction (lowest values of reduction factors p) are obtained in case of the SLS transverse
strain criterion, which means that the cracks in the resin will occur due to tensile strains in the
transverse direction faster than in longitudinal direction. It can also be seen that the transverse
strains are more sensitive to amplitude of imperfection; e.g. for A = 1.14 according to SLS
longitudinal strain (&;;) criterion reduction factors are as follows:
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e forB/1000: p,; = 0.70
e forB/125:p.; = 0.49

and according to SLS transverse strain criterion (&,;):

e forB/1000: p,, = 0.62
e forB/125:p., = 0.37

So, the difference in case of SLS longitudinal strain criterion associated with different imperfection
amplitude is 30%, and 40% in case of SLS transverse strain criterion.

4.7 DELAMINATION

As the last failure criterion, delamination is considered. This criterion is considered to be fulfilled
when the interlaminar shear stress has reached the value of 20 N/mm? anywhere in the laminate.
Since the Hashin progressive failure model does not consider delamination failure mode, the
interlaminar shear stresses values were checked and compared with the critical value given in CUR96
to determine if delamination might occur before the failure load of a plate.

Figure 4.7.1 shows the contour plot of interlaminar shear stresses in a flat plate under uniform axial
compression from geometrically and materially linear analysis at ultimate load level (for a plate t =
6 mm f,; = 229.09 N/mm?).

TSHR13

Envelope (max abs)

(Avg: 75%)
+1.413e-14
+1.301e-14
+1.18%e-14
+1.078e-14
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+2.962e-15
+1.846e-15
+7.293e-16

Figure 4.7.1 ILSS at ultimate load in an ideal plate
The interlaminar shear stresses are very low, with the maximum value of 1.41 - 10~ * N /mm?

which is much less than the critical value of 20 N/mm?.
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Figure 4.7.2 ILSS at failure load in an imperfect plate

In figure 4.7.2 the contour plot of interlaminar shear stresses in a plate (t = 6 mm) with initial out of
plane deformation is shown. The maximum value (10.50 N/mm?) is almost two times lower than
the critical value.

The table 4.7 shows the maximum values of ILSS that occur in plates of various thicknesses obtained
both from geometrically linear (flat plates) and nonlinear analysis (plates with initial imperfection).

£ mm geom. linear B/1000 B/125
’ Hashin, N/mm2 | ILSS, 10~(-14) N/mmz2 | Hashin, N/mm2 [ ILSS, N/mm2 | Hashin, N/mm2 | ILSS, N/mm2
3 229.09 0.68 35.48 10.4 34.03 9.09
4 229.17 1.48 45.53 11.4 45.44 11.57
6 229.09 141 61.81 10.52 61.2 10.32
8 229.33 4.77 78.15 13.4 74.36 12.28
12 229.33 4.67 115.14 18.01 106.97 17.33
16 229.33 6.69 168.12 13.11 141.02 17.53
24 228 2.39 218.49 3.13 195.04 10.3
54 229.33 17.3 220.5 0.87 214.84 6.64

Table 4.7 ILSS values for ideal and imperfect plates
In all of the cases the values are below the critical value fj; ¢ = 20 N/mm?2.

Since from the interlaminar shear stresses check it was found that the values do not reach the
critical value of 20 N/mm?, it is concluded that delamination will not occur before the failure
according to Hashin progressive damage model.

4.8 COMPARISON FAILURE CRITERIA

Four failure criteria were considered. The critical load criterion is not applicable in case of imperfect
plates, since a plate with initial out of plane deformation does not have bifurcation buckling
behaviour. Delamination criterion was checked against progressive failure model and it was shown
that interlaminar shear stresses are below the critical value of 20 N/mm? specified in the design
code CUR96 for polyester resin. This leaves two failure criteria: Hashin progressive failure and
serviceability strain limit criterion, which includes longitudinal and transverse strain limits, and
therefore three sets of buckling curves were derived.
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To compare the buckling curves corresponding to the Hashin progressive failure and SLS strain limit
criteria, one plate slenderness definition is used:

A=
(4.8.1)
The reduction factors are calculated as:
e Hashin progressive failure: pyaspin = ffail,Hashin/fult,Hashin
e SLSlongitudinal limit strain: ps;seq = ffail,SLSel/fult,Hashin
e SLStransverse limit strain: ps;sex = frairsise2/ fuit Hashin
(4.8.2)

This allows to obtain the same plate slenderness values for all the criteria and the reduction factor in
relation to the failure load of the plate. The buckling curves related to a plate with initial
imperfection of magnitude B /1000 is shown in figure 4.8.1 and with initial imperfection of
magnitude B /125 in figure 4.8.2. The blue curve shows reduction factor according to Hashin
progressive failure criterion, green curve — SLS longitudinal strain criterion and orange curve — SLS
transverse strain criterion.
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Figure 4.8.1 Comparison of failure criteria for imperfection amplitude B/1000
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B/125, Ex/Ey=1.27
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Figure 4.8.2 Comparison of failure criteria for imperfection amplitude B/125

For both magnitudes of imperfection, the buckling curve associated with Hashin progressive failure
fits above the SLS strain limit curves. That makes sense and is explained by the fact that the SLS
strain limit criterion is a first ply failure and will occur at lower load levels than a failure of a laminate
as a whole. Out of three buckling curves the one related to SLS transverse strains gives the largest
reduction of ultimate load, so in case of serviceability limit state loads this would be the governing
buckling curve.

4.9 EFFECT OF ORTHOTROPY

Since plate slenderness defined as a square root of compressive strength to critical load ratio, it is
expected that for different layups different values of reduction factor p in relation to slenderness
will be derived.

To compare the buckling curves for Hashin progressive failure criterion for plates with different
material properties, two layups are considered:

- layup II: 0° -62.5%, 45° -12.5%, -45° -12.5%, 90° -12.5%
- layup IIl: 0° -25%, 45° -25%, -45° -25%, 90° -25%

which are often used in practice.

Figure 4.9.1 shows critical loads for the three layups for the first four buckling modes for laminate
thickness t = 6 mm. The longitudinal and transverse moduli of elasticity ratio and strength values
are as follows:

o layup l: Eqy/Ey = 1.27; Dy1/Dap = 1.74; fypr = 229.09 N/mm?
o |ayup I EC}C/Ecy = 180, Dll/DZZ = 24‘1, fult = 298.59 N/mm2
o layup lll: E.x/E.y = 1.0; D11/D,, = 1.45; fe = 182.78 N/mm?
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Layup Ill is quasi isotropic, which means that the axial stiffness in both directions is the same. The
bending stiffness in two directions however is not necessarily the same, although it can be achieved.
If D;1/D,, = 1.0, then the material behaviour will be similar to isotropic and the critical stress value
for AR = 3 will be lower, since there will be no shift and the minimum value will be located at AR =
m. In this study, however, the influence of stack sequence of a laminate is not considered further.
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Figure 4.9.1 Ideal plate’s critical forces

The highest critical loads are obtained for plates of layup Il (lowest Ecx/ECy ratio), at the same time
this layup has the lowest strength, determined by Hashin progressive damage analysis. The lowest
critical loads correspond to layup Il (highest E,/E,, ratio), which has the highest strength. It should
also be noted that for layups Il and Il the strain in the laminated related to initial modulus of
elasticity is 1.07% and 0.97%, respectively, which is again lower than 1.2%, and is a conservative
result, since the strain limit for failure of the laminate 1.2% is based on experimental data.

Based on these observations, it is clear that different reduction factors will be obtained for plates
with different laminates, since plate slenderness relates to both ultimate and buckling strengths. It is
expected that the lowest reduction factors will be obtained for layup Il and the highest for layup IIl.
Below the slenderness values, failure loads and buckling curves for layups Il and Il are presented.

acr, fult, ffail, N/mm2 | ffail, N/mm2 | p Hashin | p Hashin | p, linear
t, mm A
N/mm2 | N/mm2 B/1000 B/125 B/1000 | B/125 | buckling
4 10.94 298.91 5.23 43.60 43.68 0.15 0.15 0.04
6 24.48 298.59 3.49 58.65 58.58 0.20 0.20 0.08
8 43.23 298.91 2.63 74.45 73.97 0.25 0.25 0.14
12 95.80 298.89 1.77 105.23 102.56 0.35 0.34 0.32
16 167.31 298.90 1.34 149.35 135.44 0.50 0.45 0.56
24 356.15 | 298.90 0.92 272.61 | 207.42 0.91 0.69 1.19
54 1329.59 | 298.90 0.47 301.57 | 286.13 1.00 0.96

Table 4.8 Plate slenderness and load reduction factors for Hashin damage criterion for layup Il
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Hashin progressive failure, Ex/Ey = 1.8
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Figure 4.9.2 Buckling curves for Hashin damage criterion for layup Il
acr, fult, ffail, N/mm2 | ffail, N/mm2 | p Hashin | p Hashin | p, linear
t, mm A B/1000 B/12 ;
N/mm2 | N/mm2 / /125 B/1000 | B/125 | buckling
3 7.20 182.78 5.04 33.45 30.20 0.17 0.17 0.04
4 12.75 182.78 3.79 42.34 42.34 0.23 0.23 0.07
6 28.39 182.78 2.54 57.80 57.09 0.32 0.31 0.16
8 49.88 182.78 1.91 72.76 71.75 0.40 0.39 0.27
12 109.23 182.78 1.29 112.25 102.66 0.61 0.56 0.60
16 188.19 182.78 0.99 168.82 134.76 0.92 0.74 1.03
24 393.63 182.78 0.68 183.63 171.90 1.00 0.94 2.15

Table 4.9 Plate slenderness and load reduction factors for Hashin damage criterion for layup Il
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Hashin progressive failure, Ex/Ey = 1.0
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Figure 4.9.3 Buckling curves for Hashin damage criterion for layup Il

In general, the shape of the curves for layup Il and layup Il are very similar to each other and the
general trends are the same. For thin plates with slenderness ~A > 2.5 the magnitude of initial
imperfection does not play a role for reduction of strength: the curves for B/1000 and B/125
almost coincide and the reduction factor has the same value. As plate becomes stockier (1 < 2.5)
the influence of the imperfection amplitude becomes more pronounced but decreases at A = 0.47
for layup Il and A = 0.68 for layup Ill, when the reduction factor is = 1.

In terms of comparison with the ideal plate buckling curve, plates with slenderness A > 1.77 (layup
II) and A > 1.50 (layup 1) have capacity that exceeds the critical load of equivalent ideal plate (no
initial out of plane deformations present), so using critical load as failure criterion for these plates
would be conservative.

It can also be noticed that in case of layup Il (more orthotropic, larger E, /E,, ratio) the influence of
the amplitude of initial imperfection is more pronounced for stockier plates (~4 < 1.3) and less
pronounced for layup Il (quasi isotropic, Ex/E,, = 1).

Figures 4.9.4 and 4.9.5 show the comparison in terms of slenderness of buckling curves for three
different layups for imperfection amplitude B/1000 and B/125. The goal is to compare the
reduction of compressive strength that corresponds to a certain slenderness value of plates of three
different layups (i.e. for A = 2.5 pyayupr = 0.31, prayupr = 0.3, Prayupn = 0.23 and piayupir =
0.31).
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Figure 4.7.6 Buckling curves comparison for imperfection B/1000
B/125
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Figure 4.7.7 Buckling curves comparison for imperfection B/125

From the comparison diagrams it can be seen that the curves associated with layup | and layup Ill do
not differ that much. The buckling curve associated with layup Il shows larger reduction of
compression strength compared to buckling curves of layup | and Ill. As was reported, layup | and
layup lll have 40% and 50% of fibres in 0° direction and layup Ill — 62.5%. This suggests that in terms
of design for buckling the larger stiffness ratio has a negative effect on carrying capacity of plates.
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5. NUMERICAL EXAMPLE

To demonstrate how the derived buckling curves might be used in design of plated fibre reinforced
polymer structures, and to compare it with existing analytical models a numerical example is
presented.

This example shows the calculation of local buckling strength of a hollow profile under uniform axial
compression according to

- JRC/Kollar method
- CUR96 method
- Buckling curves method

5.1 INPUT DATA

The geometry of the cross-section is shown in figure 5.1.1

16

16

600

500

Figure 5.1.1 Cross-section geometry
The length of the profile is chosen L = 3000 mm,;
By = 484 mm tr = 16 mm
B,, = 584 mm ty = 16mm

Layup Il (with 62.5% fibres in the longitudinal direction, Ey/E,, = 1.8) is used in this profile, with the
following equivalent bending stiffness properties:

E, =31.78 GPa Gyxy = 4.81GPa
E, =13.11 GPa Vey = 0.356
Bending stiffness parameters obtained with CLT:

Dy, = 11351152.9 MPa - mm3 Dy, = 4712867.1 MPa - mm?3
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D, = 1640113.6 MPa - mm?® Dge = 1642346.5 MPa - mm?®

The geometry and material properties are chosen such, so that the webs and the flanges have the
same layup and thickness but different width, resulting in lower critical stress in the webs (vertical
plates in the cross-section drawing). In this case:

- according to JRC/Kollar method the flanges will give additional support to the webs, so the
increase of critical stress has to be calculated;

- method described in CUR96 can be applied directly, since both webs and flanges have the
same thickness.

5.2 JRC/KOLLAR METHOD

Since JRC method does not directly give the design procedure for hollow profiles, the extended
Kollar procedure is used. The necessary equations are given in table 2.3.

Step 1: determine the critical stress in webs and flanges assuming simply supported boundary
conditions.

Flange:

7'[2
(fioeic D7 057 {2 (D1 (D22) +2[(Pr2)y + 2(Dee) f]} = 64.46 MPa
Web:

2
Pl = -z {2V Pdw Do + 2012w + 20Ds)ul} = 4427 MPa

Since (fl‘g’g‘,?l > (f 2519155, the increase of the critical stress of the web will be considered
through the interaction with the flange.

Step 2: determine stiffness of the rotational spring provided by the flange.

= 2(D32)f S (Eres
kf = 1- axial\SS
bf (floc,k f (ELC)W

Step 3: recalculate “improved” critical stress of the web.

] = 6098.46 N

D

¢ = (~22)w _ 1323
Fbw

£ = 1+10§=0'070

(i85 = 7z {21+ 4139V 011w D2z)y + (2 + 0628 [(D12)w + 2(Dee) ]|
=47.90 MPa

By considering the interaction between webs and flanges, the critical stress of the web is increased
by 7.6%.
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5.3 CUR96 METHOD

Step 1: determine the critical load of the flange.
by

&= —=1.207
by

b = By = 484 mm

=1.979

_ 0., 0002
P=2lTe 13

f+02:1'057

qg=10+

T2 st 2
festabief = T (Ef) - [ﬁ- (2 - /Ex : Ey) +p- (Y vey +2- ny)] = 63.13 MPa
Step 2: determine the critical load of the web.

2
T
festabrw = PRI (2 /D11 Dagpy + 2 (Dizw + 2Dgew) = 44.27 MPa
w w

As it can be seen in the CUR96 method, the web is calculated using formula for a simply supported
plate. However, in case of a hollow section it is unclear which plates are webs and which are flanges.
By swapping the widths and taking By = 584 mm and B,, = 484 mm, the following results are
obtained:

2
T
festabjef = - (2 /Dll,f “Dyyp 42+ (Dyaf + 2Dgg r) = 64.46 MPa
f

w2 t,\?
fc,stab,k.w = E (?W) : [\/C_l (2 . ’Ex : Ey) +p- (y *Vyy +2- ny)] = 43.77 MPa

Since the difference is small, the first definition of the webs (vertical plates with reference to figure
5.1.1, same as in JRC/Kollar method) is adopted.

5.4 BUCKLING CURVES METHOD

Step 1: determine the compressive strength of the web and flange.

Both plates have the same layup and therefore f,;; r = fuit,w- Using eLamX software and Hashin
failure criterion, the strength of the laminate is determined as described in 4.5.1: first, the first ply
failure is determined, then the transverse elastic modulus is reduced to zero in the failed ply, and
the second ply failure is calculated, which is the maximum load that the plate can carry.

fues = fuiw = 298.94 MPa
Step 2: determine the critical load of the web and flange.

The critical loads were already calculated in 5.2:
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Flange:

(f3xialy%s = 64.46 MPa
Web:

(fXiah)SS = 44.27 MPa

These values were obtained using the simplified formula (table 2.2) for plates whose aspect ratio is
larger than 5 (AR > 5). For shorter plates, the relation between the number of halfwaves and aspect
ratio becomes important, and the full formula has to be used (table 2.1). Alternatively, eLamX can be
used to determine the critical load of the plate taking into account aspect ratio:

Oer,; = 64.42 MPa
Ocrw = 44.29 MPa

Step 3: calculate slenderness of the web and the flange.

Flange:

3= [ g
Ucr,f

Web

By = [ _ 560

Ocrw
Step 4: determine the failure load of the web and the flange using buckling curves.

From the buckling curves for layup Il the reduction factors are obtained and the failure loads are
calculated:

Hashin progressive failure, Ex/Ey = 1.8
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Figure 5.4.1 Determination of reduction factors
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Flange:

pf = 0.30 ffail,f = pf 'fult,f = 89.68 MPa
Web:
pw = 0.26 ffail,w = Pw 'fult,w =74.74 MPa

Since both flange and web are rather slender, the reduction factors for imperfection amplitude
B /1000 and B/125 are almost the same. As it can be seen, by using failure load instead of critical
load, the carrying capacity of the flange is increased by 28% and the web by 40%.

5.5 DISCUSSION OF RESULTS

Table 5.1 shows the comparison of the results obtained by JRC/Kollar method, CUR96 method and
buckling curves method. Also, the results from finite element analysis are presented. All the values
given in [MPa].

JRC/ CUR96 buckling FEA
Kollar curves
flange 64.46 63.13 89.68 |[94.39/93.29
web 47.9 44.27 74.74 |79.43/79.30

Table 5.1 Results obtained from four different methods

The first that can be noticed is that the results obtained with JRC/Kollar method and CUR96 method
give load values that are close to each other. The difference is that in JRC/Kollar the flange and the
web are first evaluated to determine which plate will buckle first, and then the restraining plate (the
one that buckles later) will provide additional strength to the plate that already buckled. In CUR96
the formula that takes into account interaction between the web and the flange is given only for
flanges, while for webs an analytical formula for a simply supported plate is used, which gives a
conservative result.

The buckling curves method gives higher load values both for the flange and the web because this
method considers not critical load but failure load. It was shown that thin plates have “postbuckling”
capacity and therefore can carry loads higher than critical load. For the flange, the failure load
obtained with buckling curves method gives a value that is 28% higher than the value obtained with
JRC/Kollar method and 29% higher than the value obtained with CUR96 method. For the web the
difference is 36% and 40%. The larger difference in case of the web is based on the fact that web has
a higher plate slenderness than the flange and is in line with what was described in chapter 4.

The results that were obtained with finite element analysis (the two values correspond to plates
with two different imperfection amplitudes B/1000 / B/125) are slightly higher the values obtained
with buckling curves. The difference is about 5% for the flange and 6% for the web.

Below the table that shows the difference between the obtained loads is given. The values obtained
with the three methods: JRC/Kollar, CUR96 and buckling curves are compared to the results taken
directly from the finite element analysis.
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JRC/ Kollar, % CUR96, % buckling curves, %

B/1000 B/125 B/1000 B/125 B/1000 B/125
flange 32 31 33 29 5 4
web 40 40 44 44 6 6

Table 5.2 Comparison of results obtained from design procedures and FEA

The largest difference of 44% relates to the critical load of the web calculated with the analytical
formula for a simply supported plate in CUR96 method for both imperfection values. This difference
means that the plate with slenderness 1,, = 2.60 can carry load almost two times the critical load.
The buckling strength of the flange according to the JRC/Kollar method is also calculated using
formula for a simply-supported plate but the difference with the failure load is 32% and 31%, since
slenderness of the flange has a lower value As = 2.15 than slenderness of the web. The load
calculated by considering interaction between webs and flanges gives a difference of 33% and 29%
for B/1000 and B/125, respectively.

This example shows that by using the failure load that can be estimated from the buckling curves the
carrying capacity of the slender plates (A > 2.5) can be improved significantly.
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6. CONCLUSION

6.1 CONCLUSIONS BASED ON THE RESULTS

Behaviour of orthotropic plates was studies using geometrically and materially nonlinear finite
element analysis. Various shapes and amplitudes of imperfections were considered, and plate
geometric and material parameters were studied. The following conclusions were made based on
the analysis.

e Orthotropic materials have different linear buckling behaviour than isotropic materials.

In case of an isotropic material (for example, steel) the relation between pate aspect ratio and
buckling mode (number of halfwaves m) reads as: AR = m; and the minimum critical stress
corresponds to plates, in which aspect ratio is such that the length of one halfwave equals exactly to
the width of the plate. For an orthotropic material, the difference in stiffness in longitudinal and
transverse directions has to be taken into consideration. The relation between aspect ratio and

number of halfwave is given as: AR = m?3/D;/D,,, which means that the minimal critical stress of a
certain buckling mode will no longer only depend on the aspect ratio but also on the bending
stiffness ratio.

e Critical load only occurs in plates with no initial out of plane deformations.

The load — deflection diagram of a perfect plate has a bifurcation point, which ordinate gives plate’s
critical load. Until that point there is only increase of load and no increase of out of plane
deformation. In an imperfect plate the out of plane deflections begin to increase as soon as load
increases and instead of a bifurcation point there is a rounded over “knee” in the diagram, which
means that a critical load value is difficult to determine. So, in other words, an imperfect plate
gradually bends or bows, rather than suddenly changes shape.

e Relating the limiting value of imperfection only to plate width might result in very large
initial out of plane deformations in relation to plate thickness.

When constructing buckling curves, plates of 300 X 900 mm with various thicknesses were
analysed. So, for plate thickness t = 3 mm the limiting value of initial imperfection is B/125 =

2.4 mm, which is almost equal to thickness and is unlikely to happen in practice. Relating the limiting
value of imperfection to both width and thickness (slenderness) would be more sensible.

e Small imperfection (single / double wrinkle) causes plate buckling in the first buckling mode,
large imperfection (imperfection in the shape of one of the buckling mode) causes plate
buckling into the shape that coincides with the shape of initial imperfection.

When a single or a double wrinkle imperfection is present in a plate, the plate will buckle into the
first buckling mode and will show small increase of initial out of plane deformations at the load
levels below the theoretical critical load. Imperfection in the shape of the first buckling mode also
causes plate buckling in the first buckling mode shape but with a larger out of plane deformations
compared to the plate with wrinkle imperfection. Imperfections in the shape of the second buckling
mode causes the plate to buckle into the second buckling mode, etc.

e There are two effects that account for strength reduction of a composite plate with initial
geometric imperfections.
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The first effect is due to additional bending moment that results from eccentricities caused by initial
out of plane deformations. The degree of this effect depends on plate thickness, aspect ratio and
layup. The other effect is due to material degradation. According to Hashin progressive failure
analysis, the governing failure mode is matrix cracking in tension. However, for very stocky plates
(A~0.41 — 0.7, depending on the layup and the amplitude of imperfection) the failure mode
becomes matrix crushing.

e |Initial imperfection amplitude does not have an effect on failure load of thin plates with
slenderness ~A > 2.5.

In case of imperfect plates of slenderness approximately 4 > 2.5, the reduction factor p does not
depend on the imperfection amplitude, meaning that the same values of p are to be applied to
plates with imperfection B/1000 and B/125.

However, as the pate slenderness decreases the failure load starts to depend on the amplitude of
initial imperfection: larger magnitude of initial deformation associates with lower failure load and
smaller magnitude of initial deformation associates with higher failure load of a plate with a certain
slenderness.

e Slender plates with initial imperfections can carry load higher than the critical load of an
ideal plate with the same geometric and material properties.

Slender plates (A > 1.50 for layup | and lll; A > 1.77 for layup II) have “postbuckling” capacity (load
levels higher than the critical load associated with a perfect plate). That means that the critical
buckling load criterion (disregarding presence of initial imperfections) for slender plates will give
conservative results.

In case of stocky plates (A < 1.50 for layup I and lll; A < 1.77 for layup Il) the critical load criterion
will be an overestimation of carrying capacity and can give results up to 18% and 30% higher for
plate of layup | with imperfection B/1000 and B /125, respectively. This difference varies depending
on material properties of a plate (layup Il: 38% and 18%; layup Ill: 28% and 8%).

e The design procedures described in JRC/Kollar and CUR96 documents relate to critical load.

It was shown through a numerical example for a profile with a specific gecometry and material
properties that the analytical models described in JRC/Kollar and CUR96 taking into account web /
flange interaction can give the buckling strength up to 40% less than the results obtained from the
finite element analysis. It also means that for stocky plates (4 < 1.50 for layup I and lll; A < 1.77 for
layup Il) these design procedures might overestimate the buckling strength.

6.2 RECOMMENDATION FOR FURTHER RESEARCH

While reviewing the literature on the topic, it was suggested in one of the papers that the limiting
value of imperfections give unrealistic results. It should be noted that this limiting value is given for
pultruded structural elements. It was also difficult to find information in literature on the measured
initial out of plane deformations of the test specimens. To evaluate the sensibility of the purposed
limiting values given in standard, it would be good to have some statistics on the actual
imperfections that occur in the elements produced by VARTM.
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Another point of attention would be the research data for material properties required for
progressive damage analysis. In this research the values calibrated for E-glass / epoxy laminate were
used in the absence of information for E-glass / polyester laminates. In addition, test data for VARTM
produced elements would be helpful to verify the results obtained from finite element analysis.

Next to geometric imperfections the fibre reinforced composites can have material imperfections
such as wrinkling of fabric. The influence of material imperfections was not a part of this thesis but
such imperfections could also influence the behaviour of FRP plates.
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ANNEX

A. DESIGN FOR BUCKLING ACCORDING TO JRC AND CUR96

The equations for column and lateral-torsional buckling according to JRC and CUR96 are listed in the

table below.
JRC \ CUR96
Column Buckling
Nrazc=x"N Ne A p-fer
Rd2,c X loc,Rd Nb,Rd =y- [+ C
Ym
1 1
r=— (o —Jor—c R2) fm <1
c-A @+ P2 — 2
2
1= Nloc,Rd A_f _ A'p'fc,k
NRd,E Ncr
Lateral (Flexural) Torsional Buckling
MRd,Z = XFT " Mloc,Rd M _ . Ne Wy p 'fb,c,k
b,Rd = XLT
Ym
1 ) ) _ 1
XFT = 12 Ppr Gpr® —c - Agr XLT = <1
, =
T O + ,/(DLT — Ay
1 + A%‘T d)LT =0.5- (1 + 0.75- af : (A_LT - A_LT,O)
FT 2 + A_%T)
Ao = Mloc,Rd 1. = Wy P fb,c,k
Fr Mpga rr Lr M.,

Table A.1 Design procedures for buckling according to JRC and CUR96

The general procedure is very similar in both methods: the buckling resistance equals to the
multiplication of the reduction factor and the local buckling resistance. If the expression of Ny g4
given in CUR96 is rearranged, it will coincide with Ng4, . given in JRC:
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fcstabk
_ r]c'A'p'fc,k_ e fc,k ka_ nc'A'fc,stab,k_
Nppa =X ————=X" =X = X" Ncstab,ra
Ym Ym Ym

(A.1)

The buckling reduction factor y in JRC procedure takes into account the interaction of global and
local bucking modes of a profile. This is reflected in the interaction factor ¢ which is a function of
geometry, material properties and initial imperfections. For column buckling ¢ = 1.0. In CUR96 the
buckling reduction factor depends on the shape function and the slenderness.

In both design codes the definition of slenderness is actually the same:

. fc,stab,k . f
1 A'p'fc,k: fc,k ek
d Ner Ner

(A.2)
N¢ = Ngg g, in both methods it is a critical value of buckling load.

The parameter @ in JRC is a function of slenderness; in CU96 it depends on slenderness,
imperfection factor ar and plateau length of buckling curve /Tf,o- The two latter factors depend on

the shape of cross-section. Their values were determined experimentally and numerically and are
given in table A.2 (2.5).

Cross-section ar Ao
hollow 0.40 0.50
I-, U- (weak axis bending) 0.75 0.50
I-, U- (strong axis bending) 0.50 0.50

Table A.2 a; and A for column buckling

The difference in design for lateral torsional buckling is similar as for column buckling with an
exception of different values of ¢, ar and /Tf,o. In case of lateral torsional buckling ¢ = 0.7 and
imperfection factor and plateau length is given in table A.2.

Cross-section ar /Tf,o

all (weak axis bending) 0.50 0.50

Table A.3 a; and iLT,O for lateral torsional buckling

The derivation of imperfection factors and the plateau lengths of the buckling curves can be found in
the work by H. Trompf [3].

The procedure given in JRCis focused on the interaction between the global and local buckling modes.
In this case the imperfections are considered implicitly through the interaction constant c. The
interaction constant is introduced in the expression of the reduction factor y. If the global buckling is
prevented, then the buckling resistance will be equal to local buckling resistance, since y = 1.0.
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The buckling resistance In CUR96 is expressed in the same way as in JRC. However, the imperfections
are considered explicitly through the imperfection factors a. The imperfection factors together with
the lengths of horizontal lines in the buckling curve diagrams (plateau lengths) are included in the
expression of the shape functions @. The mode interaction is not a part of this design procedure.
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B. LAMINATE STIFFNESS MATRICES

B.1 CLASSICAL LAMINATION THEORY CALCULATIONS

1. The reduced stiffness matrix of a unidirectional ply - describes the elastic behaviour of the
material

Q1 Qiz 0
Qij:[le Q22 0]

0 0 Qe
with
E2
= E, _V}z "Ep
Q12 = 2 E21 5
Ey —viy - E;
E,-E
Qes = G12
2. The transformed reduced stiffness matrix — takes into account fibre orientation in each ply
I T
Qs Q26 Qee
with
Q11 = Q11 (c0s0)* + 2(Q12 + 2Qg6) * (cos 8)? - (sin )% + Q; * (sin 6)*
Q12 = Q21 = Q12" ((cos 0)* + (sin 6)*) + (Q11 + Q22 — 4Qs6) * (c0s0)? - (sin 6)?
Q16 = Q61 = (Q11 — Q12 — 2Qs6) " (c0s)® - sin 6 — (Q22 — Q12 — 2Qe6) * cOs 8 - (sin 6)°
Q22 = Q11 ° (sin0)* + 2(Q12 + 2Qe6) * (cos 8)? - (sin)* + Q; - (cos H)*
Q26 = Q62 = (Q11 — Q12 — 2Qg6) * €05 0+ (sin0)* — (@22 — Q12 — 2Q66) * (c0s6)* * sin 6
Qo6 = (Qu1 + Q22 — 2Q12 — 2Qs6) * (c0s )% - (sin 6)? + Qg * ((cos 8)* + (sin 6)*)
3. 4jj, B;j and D;; matrices of the laminate

The extensional stiffness matrix:

Ajj = Z(Qij)k (hi — hg-1)
=1

The strain-curvature coupling stiffness matrix:
1 n
By =5 (@), (hf = h}-1)
k=1
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The bending stiffness matrix:

n
1 —
Dy =3 ) (@), (1} = ki)
k=1

with h being the vertical position of the ply from the midplane

1 e v
h,| & 2
h, * 3 h/2
h| §
2 h,
¥
‘hk‘l k-1
' 4§ k
k+1 h/2 ¥z
n-1
ny n

Figure B.1 Laminate with n plies [5]

4. Equivalent stiffness properties of the laminate

Axial:
Ey =1/(tay)
E, = 1/(tayy)
Gxy = 1/(taee)
Vyy = —ay2/a4;
Vyx = —ay2/ 0z,
Flexural:

Ey =12/(t%dy1)
E, =12/(t3dy;)
Gyy = 12/(t3dgs)
Vyxy = —di2/d1q
Vyx = —di2/dy;

Where a;; and d;; are the values from the inverse of A or D matrices, and ¢ is thickness of a
laminate.

B.2 LAYUP AND MATERIAL PROPERTIES

Laminate properties are computed for three layups:
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- layup I: 0° -40%, 45° -20%, -45° -20%, 90° -20%
- layup I1: 0° -62.5%, 45° -12.5%, -45° -12.5%, 90° -12.5%
- layup llI: 0° -25%, 45° -25%, -45° -25%, 90° -25%

LAYUP | LAYUP Il LAYUP llI
00 00 00
00 0 o
15° 0 45
45° 0° 45°
IS -45° 45° IS -45° E
& s £ £ £
N = 1S -45° 1e) -45° o
90° 3 o S o S
90°
0° | 0° i | 90°
o _ 0° 0°
line of symmetry

Figure B.2 Ply sequence for layup | and Il

Laminate properties are calculated based on the indicative values given in table 3.6 [2] p. 43.

B.3 A, B AND D MATRICES

Layup |
[98.56 25.37 0

A=12537 7738 0 | GPa-mm
0 0 254
[0 0 O
B=]0 0 O
0 0 O

[146.48 35.72 5.08
D =13572 8434 5.08
| 5.08 5.08 35.75

GPa - mm?3

Layup Il

[118.88 20.95 0

A=12095 6591 0 GPa-mm

0 0 20.97

[0 0 O

B=10 0 0]
0 0 O
[177.36 25.63 1.66

D =|2563 73.64 1.66|GPa-mm?3
| 1.66 1.66 25.66

131




Layup Il

[85.02 28.32 0
A =12832 85.02 0
0 0 28.35
[0 0 O
B=[0 0 O
0 0 O
[128.62 42.37 8.28
D =14237 8889 8.8
| 8.28 8.28 4241

GPa-mm

GPa - mm?3

B.4 EQUIVALENT LAMINATE PROPERTIES

Layup |
[ 0.0111 —0.0036
A1 =1-0.0036 0.0141
0 0
[ 0.0076 —0.0032
D~ '=1-0.0032 0.0133
[—0.0006 —0.0014
Axial:
E, = 22.56 GPa
E, = 17.71 GPa
Gyy = 6.35 GPa
Vyy = 0.323
Vyx = 0.257
Layup Il
[ 0.0055 —0.0017
A1 =1-0.0017 0.0157
0 0
[ 0.0059 —0.0021
D1 =(-0.0021 0.0143
[—0.0003 —0.0008
Axial:

E, = 28.06 GPa

0
0 ] 1/(GPa - mm)
0.0394
—0.0006
—0.0014|1/(GPa - mm?)
0.0283
Flexural:
E, = 24.67 GPa
E, = 14.10 GPa
Gyxy = 6.63 GPa
Vyy = 0.421
vy = 0.241
0
0 1/(GPa - mm)
0.0477
—0.0003
—0.0008|1/(GPa - mm?)
0.0390
Flexural:

E, =31.78 GPa
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E, = 15.57 GPa E, = 13.11 GPa

Gy = 5.24 GPa Gyy = 4.81GPa
Vyy = 0.318 Vyy = 0.356
Vyx = 0.176 Vyx = 0.147
Layup Il
[ 0.0132 —0.0044 0
A1 =1]-0.0044 0.0132 0 1/(GPa - mm)
0 0 0.0353
[ 0.0093 —0.0043 —-0.0010
D '=1-0.0043 0.0135 —0.0018]|1/(GPa-mm?)
|—0.0010 -0.0018 0.0241
Axial: Flexural:
E, = 1890 GPa E, = 20.24GPa
E, =18.90 GPa E, =13.91GPa
Gxy = 7.09 GPa Gyy =7.77 GPa
Vyy = 0.333 Vyy = 0.467
Vyx = 0.333 vy, = 0.321
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C. LOAD — DEFLECTION DIAGRAMS

plate t = 4 mm; layup I; type 2
50000

45000
40000
35000

30000

N

25000

force

20000
15047

15000 e R
10000

5000

0 2 4 6 8 10 12 14 16 18
deflection at maximum, mm

——B/300000 ——B/3000 -——B/1000 B/300 ——B/125 - --LBA

Figure C.1.1 Force — deflection at maximum curves for a plate t = 4 mm with the imperfection in the
shape of the second buckling mode

plate t =4 mm; layup I; type 2

30000

25000

20000

N

15000

force,

10000

5000

0 0.2 0.4 0.6 0.8 1 1.2
end shortening, mm

——B/300000 ——B/3000 ——B/1000 B/300 ——B/125 - - LBA

Figure C.1.2 End shortening of a plate t = 4 mm with the imperfection in the shape of the second
buckling mode
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plate t = 8mm; layup I; type 1

350000

300000

250000

200000

force, N

150000

112736

100000

50000

0 4 8 12 16 20 24 28 32
deflection at maximum, mm

——B/300000 ——B/3000 ——B/1000 B/300 ——B/125 - --LBA

Figure C.1.3 Force — deflection at maximum curves for a plate t = 8 mm with the imperfection in the
shape of the first buckling mode

plate t = 8mm; layup [; type 1
175000

150000

125000 | 115736

100000

force, N

75000

50000

25000

0 0.5 1 1.5 2 2.5 3 3.5 4
end shortening, mm

——B/300000 ——B/3000 ——B/1000 B/300 —B/125 - - LBA

Figure C.1.4 End shortening of a plate t = 8 mm with the imperfection in the shape of the first
buckling mode
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plate t = 8mm; layup I; AR = 5; type 1

350000

300000

250000

200000

force, N

150000

107988

100000

50000

0 4 8 12 16 20 24 28 32
deflection at maximum, mm

—B/30000 ——B/3000 ——B/1000 B/300 ——B/125 - --LBA

Figure C.1.5 Force — deflection at maximum curves for a plate AR = 5 with the imperfection in the
shape of the first buckling mode

plate t = 8mm; layup |; AR = 5; type 1
175000

150000

125000

107988

100000

force, N

75000

50000

25000 /

0 0.5 1 1.5 2 25 3 3.5 4
end shortening, mm

——B/30000 ——B/3000 ——B/1000 B/300 ——B/125 - --LBA

Figure C.1.6 End shortening of a plate AR = 5 with the imperfection in the shape of the first
buckling mode
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50000

45000

40000
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30000

N

25000

force,

20000

15000

10000

5000

plate t = 4mm; layup II; type 1

0 2 4 6 8 10 12 14 16 18
deflection at maximum, mm

——B/30000 ——B/3000 ——B/1000 B/300 —B/125 - - LBA

Figure C.1.7 Force — deflection at maximum curves for a plate layup Il with the imperfection in the

50000

45000

40000

35000

30000

25000

force, N

20000

15000

10000

5000

shape of the second buckling mode

plate t = 4mm; layup II; type 2

13779
0 2 4 6 8 10 12 14 16 18
deflection at maximum, mm
——B/30000 ——B/3000 ——B/1000 B/300 ——B/125 - --LBA

Figure C.1.8 Force — deflection at maximum curves for a plate layup Il with the imperfection in the

shape of the first buckling mode
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plate t = 4mm; layup II; type 1

30000

27500

25000

22500

20000

17500

N

15000

force

12500

10000

7500

5000

2500

0 01 02 03 04 05 06 07 08 09 1 11 1.2
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—B/30000 ——B/3000 ——B/1000 B/300 ——B/125 -- LBA

Figure C.1.9 End shortening of a plate with the imperfection in the shape of the second buckling
mode

plate t = 4mm; layup II; type 2
30000
27500
25000
22500
20000

17500

N

15000

force,

12500
10000
7500
5000

2500 | 4

0 01 02 03 04 05 06 07 08 09 1 11 1.2
end shortening, mm

—B/30000 —B/3000 -—B/1000 B/300 —B/125

Figure C.1.10 End shortening of a plate with the imperfection in the shape of the first buckling
mode
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D. BOUNDARY CONDITIONS

When analysing the plates for transverse shear stresses, very high localized stress values (red areas)
compared to the rest of the plate were observed in the corner elements:

TSHR13

Envelope (max abs)

(Avg: 75%)
+2.051e+01
+1.881e+01
+1.710e+01
+1.540e+01

+1.370e+01
+1.199e+01
+1.029e+01
+8.585e+00
+6.881e+00
+5.177e+00
+3.473e+00
+1.769e+00
+6.561e-02

Figure D.1 Transverse shear stresses contour plot

A question which arises is whether this caused by the unrealistically rigid boundary conditions or if
delamination can initiate and propagate from the corners of the plate. In order to attempt to answer
this question alternative boundary conditions were modelled.

Uz
/UXlUy Uy\ 8
o
.Rpc Uz uz ’RP‘ "
m
e, =
* L =900 ==
L‘
[ 0 <=
R <4
- Ty 7 - 2
-y |u:z uz| <m ‘;"’
S -
= <=
y. Uz -
= -
* L =900

Figure D.2 Original (top) and alternative (bottom) boundary conditions
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The main difference is that in the original boundary conditions a concentrated force was applied to a
reference point that was rigidly coupled to a plate’s edge. In the new boundary conditions instead of
the concentrated force initial axial displacement was applied in the x direction and the rigid coupling
was removed, making the plate edge unrestrained.

Further the study of the effect of the boundary conditions is presented. The investigated plate has
thickness of 6 mm. The initial imperfection amplitude is taken as B/125 = 2.4 mm. Geometrically
and materially nonlinear model is used.

EFFECT OF BOUNDARY CONDITIONS ON INTERLAMINAR SHEAR STRESSES

Since the goal is to establish whether delamination might occur before Hashin failure, the ultimate
Hashin progressive failure load was determined first. In case of the original boundary conditions:
Pyt or = 67.95 kN, and for the alternative boundary conditions: Py 5y = 107.9 kN. The
interlaminar shear stresses for a plate with original boundary conditions are shown in the contour
plot in figure D.3 and with alternative boundary conditions in figure D.4.

TSHR13

Envelope (max abs)

(Avg: 75%)
+3.522e+01
+3.22%e+01
+2.936e+01
+2.644e+01

+2.351e+01
+2.058e+01
+1.765e+01
+1.472e+01
+1.179%e+01
+8.859e+00
+5.92%9e+00
+3.000e+00
+7.061e-02

Figure D.3 Interlaminar shear stresses in the plate with original boundary conditions at Pup,or

Very high interlaminar stresses are seen in the corner of the plates of 35.22 MPa and much lower
values elsewhere in the plate ~3.0 MPa.

For the plate with alternative boundary conditions for the same load level lower values of
interlaminar shear stresses were found:

TSHR13

Envelope (max abs)

(Avg: 75%)
+1.332e+01
+1.223e+01
+1.114e+01
+1.005e+01
+8.953e+00
+7.860e+00
+6.767e+00
+5.674e+00
+4.581e+400
+3.488e+-00
+2.395e+00
+1.302e+00
+2.086e-01
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Figure D.4 Interlaminar shear stresses in the plate with modified boundary conditions at Py,q

Peak values are 13.32 MPa, and general distribution of interlaminar shear stresses is more uniform
than in case of the original boundary conditions.

Since it was discovered that the ultimate Hashin progressive failure load values also differ depending
on the boundary conditions, it was decided to look closer how they influence the results.

EFFECT OF BOUNDARY CONDITIONS ON HASHIN PROGRESSIVE FAILURE

The difference between the ultimate Hashin progressive failure loads is ~¥35%. In both cases
governing failure mode is matrix cracking:

DAMAGEMT
Envelope (max abs)
(Avg: 75%)

+2.500e-01
+1.667e-01
+8.333e-02

+1.000e+00
+9.167e-01
+8.333e-01
+7.500e-01
+6.667e-01
+5.833e-01
+5.000e-01
+4.167e-01
+3.333e-01
+0.000e+00

Figure D.5 Damage in the plate with original boundary conditions

DAMAGEMT
Envelope (max abs)
(Avg: 75%)

+2.500e-01
+1.667e-01
+8.333e-02

+1.000e+00
+9.166e-01
+8.333e-01
+7.500e-01
+6.667e-01
+5.833e-01
+5.000e-01
+4.167e-01
+3.333e-01
+0.000e+00

Figure D.6 Damage in the plate with modified boundary conditions

As seen in the figures above, in the original plate the critical points are close to the corners, while
the alternative plate does not have them. The damage in the original situation occurs at lower load
levels than in the plate with modified boundary conditions at P = 58.04 kN and P = 77.07 kN. So,
the software will start reducing stiffness of the laminate sooner and the ultimate strength of the
plate will be lower. The plot below shows the load — end shortening curves comparison between a
plate with original and alternative boundary conditions with imperfection amplitude B /1000 and

B /125, where it can be seen that in case of the original boundary conditions the reduction and the
failure of the laminate occurs sooner than for the alternative situation.
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BCs comparison
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Figure D.7 Load — end shortening curves for the original and modified boundary conditions

CONCLUSIONS

The effect of boundary conditions and load introduction on the interlaminar shear stresses and the
progressive damage analysis was presented.

It was found that when a reference point that is rigidly coupled to the plate’s edge is used, very high
localized transverse shear stresses occur in the plate’s corners. In case of modified boundary
conditions, when the load is introduced directly to the plate’s edge, the maximum values also occur
at the edges, however, they are much lower for the same load level.

The boundaries also have an effect on the ultimate progressive damage analysis load. In the original
situation with the plate edge being rigidly coupled to the reference point, damage occurs in the
corner area of the plate at the lower load compared to the modified constraints. Higher ultimate
loads were obtained for the plate with alternative boundary: 35% higher.

Based on these results, it is concluded that the high localized transverse shear stresses are caused by
the rigid constraint of the plate’s edge. The alternative boundary conditions reduce these high
values and prevent the damage evolution at the points close to the plate’s corners in the progressive
analysis. The linear buckling analysis results with the alternative boundary conditions stay almost
unchanged compared to the results obtained with the original boundary conditions. It is therefore
decided to continue analysis with the alternative boundary conditions.
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E. DAMAGE EVOLUTION PARAMETERS

A small sensitivity analysis was performed to see the influence of the fracture energy parameters.
The damage initiates due to matrix cracking. The fracture energy values are given for E-glass epoxy,
but the resin under consideration is polyester. Therefore, the transverse tensile and compressive
fracture energies were varied.

The model used for this study is of a plate with layup | (Ex/E,, = 1.27),t = 6 mm, L = 900 mm,
B = 300 mm and alternative boundary conditions as reported in 4.3.

Figure 4.5.1 shows the load — end shortening curves for a plate with two different amplitudes of
imperfection and three difference values for transverse tensile and compressive fracture energies,
denoted as 1/1 (the original values for E-glass / epoxy laminate), 0/0 and 4/4.

fracture energies comparison

load, N/mm2

w D Ul ()] ~ (0]

o o o o o o
)

N
o

\!

=
o

o

0O 05 1 15 2 25 3 35 4 45 5 55
end shortening, mm

—B/1000 1/1 B/125 1/1 ——B/1000 0/0
B/1250/0 ——B/1000 4/4 B/125 4/4

Figure E.1 Effect of transverse fracture energies input values

B/1000 B/125

1/1 61.61 N/mm2 | 59.93 N/mm?2
0/0 60.52 N/mm2 | 58.8 N/mm2
4/4 65.57 N/mm2 | 63.62 N/mm?2

Table E.1 Failure loads corresponding to different values of transverse fracture energies

As expected, the largest difference in ultimate loads is between the 1/1 and the 4/4 values; around
6% increase for B/1000 and B/125. The reduction of material stiffness is more pronounced in case
of transverse energies being set to zero, and the least reduction can be observed for fracture
energies in transverse direction set to 4. Since the fracture energy properties for transverse tension
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and compression do not seem to have a large influence on the ultimate load, it is decided to use the
values available for E-glass epoxy laminate.
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F. MODEL VALIDATION

Buckling curves for FRP plates were derived by H. Trumpf [3] based on FEA simulations and
experimental results.

1,20 =
ideale Beultheorie
------- Karman
1,00 = & Versuche Stegbeulen V240
k \ A Versuche Flanschbeulen U120 & U140
0.80 l(wx - m  Quetschversuch 1240 und 1200 ]
X ' + FE-Simulation Stegbeulen
= e \+ ” \ . X  FE-Simulation Flanschbeulen
Fex 0,60 + e —o— Beultragspannungskurve Steg
& \\ E —=a— Beultragspannungskurve Flansch

0,40

0,20

0,00 T T T T T T T T

000 050 100 150 200 250 300 350 400 450
bezogene Schlankheit A, = [f., /0.,

Figure 4.7.1 Buckling curves for plates with various supports [3] p. 141

The curve that corresponds to the simply supported boundary conditions is denoted as
Beultragspannungskurve Steg and experimental results Versuche Stegbeulen V240. The material
properties of the laminate are such that E, /E., = 2.45. As it can be seen the derived buckling

curve is below the curve that is based on the perfect plate buckling theory (ideale Beultheorie), even

for large values of plate slenderness, unlike what was observed in the analysis in chapter 4.

The material properties for layup | result in much lower ratio between longitudinal and transverse

modulus of elasticity E.,/E., = 1.27, compared to the values from Trumpf’s work. The exact layup

from [3] is not known, but the slenderness corresponding to experimental results is A = 1.45. To
match slenderness and ratio between moduli of elasticity in two directions the following layup was
used:

-
-
5o

45°

-45°
i
0
0°

8 mm

1 mm

line of symmetry

Figure 4.7.2 Layup for model validation
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Which results in E./E¢, = 2.51 and for a plate with dimensions 300 X 900,t = 16 mm
slenderness is A = 1.46. Two amplitudes of imperfections were considered B/1000 and B/125. The
resulting reduction factors are shown over the results from [3]:

Hashin damage

1.2

~——— ideale Beultheorie

¢ Versuche Stegbeulen V240

A \Versuche Flanschbeulen U120 & U140
m  Quetschwersuch 1240 und 1200
+
X
O

ot
o0

FE-Simulation Stegbeulen
FE-Simulation Flanschbeulen
Beultragspannungskurve Steq

Sat —a— Beultragspannungskurve Flansch

reduction factor p
o
[e)]

Py
4
q

£ A | s

s W T e
0.2 e L ——— 4
Vet - O ——
ﬂ»_‘-‘»»_ R ——— o ————
e — ———
0 |
0 0.5 1 15 2 25 3 35 4 4.5

slenderness A

linear buckling e=@=»B/1000 e=@==B/125

Figure 4.7.3 Comparison of FEA with experimental results

For given slenderness the results obtained from the finite element model are slightly optimistic
compared to the test results. This could be due to uncertainties in modelling the laminate: ply
properties and layup had to be assumed. Also, there is uncertainty in terms of the failure load
determined experimentally. According to [3] the drop of the load was considered as failure, which in
case of plate with very small imperfection can also mean critical load.
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G. PROGRESSIVE DAMAGE DIAGRAMS

The following load — end shortening diagrams are derived for plates of layup | (E;/E,, = 1.27).

Slenderness A = 4.35

layup I, t=4mm, B/1000

70
60
20 4553 failure
=
£ 40
~
2
T 30
o
20
.
10
0
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
end shortening, mm
——— B/1000 damage LBA ====initiation ====damage ==---failure
Figure G.1 Load — end shortening diagram, A = 4.35 B/1000
layup |, t=4mm, B/125
70
60
50 45.44 failure
%‘ _________________________________
~
= 30.64 damage
T30 Femssossssossss
2 initiation
20 21.54
10

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
end shortening, mm

B/125 damage LBA =--<=initiation ====damage =----failure

Figure G.2 Load — end shortening diagram, A = 4.35 B/125
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Slenderness A = 2.91

layup I, t=6mm, B/1000
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0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
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Figure G.3 Load — end shortening diagram, A = 2.91 B/1000
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Figure G.4 Load — end shortening diagram, A = 2.91 B/125
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Slenderness A = 2.20

layup I, t=8mm, B/1000
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Figure G.5 Load — end shortening diagram, A = 2.20 B/1000
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Figure G.6 Load — end shortening diagram, A = 2.20 B/125
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Slenderness A = 1.48

load, N/mm?2
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Figure G.7 Load — end shortening diagram, A = 1.48 B/1000
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Figure G.8 Load — end shortening diagram, A = 1.48 B/125

150



Slenderness A = 1.13
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Figure G.9 Load — end shortening diagram, A = 1.13 B/1000

layup |, t=16mm, B/125
220
200
2 T e o e A
160

=
B
o

=
N
o
|
[EN
=
o
o
co
o
QU
3
Q
o
[¢]

[y
o
o

load, N/mm?2

[0
o

N B O
o O O o

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
end shortening, mm

B/125 damage ====LBA ====initiation ====-damage =-=---failure

Figure G.10 Load - end shortening diagram, A = 1.13 B/125
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Slenderness A = 0.77
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Figure G.11 Load - end shortening diagram, A = 0.77 B/1000
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Figure G.12 Load - end shortening diagram, A = 0.77 B/125
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Slenderness A = 0.41
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Figure G.13 Load - end shortening diagram, A = 0.41 B/1000
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Figure G.14 Load - end shortening diagram, A = 0.41 B/125
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