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ABSTRACT 
 

The increasing use of Fibre Reinforced Polymers produced by Vacuum Assisted Resin Transfer 

Molding in civil infrastructure applications leads to the need for an appropriate research data. The 

VARTM produced structural elements are not limited in dimensions and material properties and 

typically are slender structures parts of which are susceptible to plate buckling. The latest standards 

- CUR96 Vezelversterkte kunststoffen in bouwkundige en civieltechnische draagconstructies and JRC 

Prospect for New Guidance in the Design of FRP – are for a large part based on the research data of 

pultruded profiles and in terms of design for buckling, focus on the flange / web interaction. The goal 

of this thesis is to investigate the effect of initial out of plane deformations on buckling of FRP plates 

produced by VARTM.  

Literature study includes a detailed overview of the currently available analytical models and design 

procedures for plate buckling, and a summary of the research dedicated to study of the effect of 

initial imperfections on buckling behaviour of FRP structural elements. Although the limiting values 

for initial out of plane deformations are provided, they are not included directly in the design 

procedures given in standards, referring designer to determine the influence of the imperfections 

either from tests or numerically. From experimental and finite element analysis studies it seems that 

the suggested limiting values of the initial imperfections are unrealistically large. 

The first step of this research was to determine the shape of the imperfection that has the largest 

effect on plate’s structural behaviour. The effect of the shape and amplitude of the initial out of 

plane deformation was studied with geometrically nonlinear finite element analysis using Abaqus 

software. Four different shapes (first two buckling modes, one halfwave over the whole length of 

the plate, wrinkle imperfections) and four amplitudes of imperfections were considered with the 

maximum being the limiting value suggested in standards. The effects of material layup, plate 

thickness and aspect ratio were investigated. It was found that an imperfect plate does not buckle, 

meaning there no sudden growth of out of plane deformations and thus no bifurcation point in the 

load – deflection diagram, which leads to difficulty of determining the critical buckling load. A couple 

of methods to approximate the critical load were considered, however, none of them are useful 

when it comes to larger amplitudes of imperfections. 

Since it was impossible to quantify the influence of initial imperfections in terms of critical buckling 

load, another failure criterion had to be chosen. Three possibilities were considered: serviceability 

limit strain, Hashin progressive failure and delamination. It was shown that delamination would not 

be critical compared to the Hashin progressive failure criterion. By varying plate’s thickness several 

values of plate slenderness were obtained and the corresponding failure loads determined. Based on 

the results buckling curves were derived showing the relation between plate slenderness and 

compressive load reduction due to buckling.   

Lastly, a numerical example is presented that demonstrates the application of the three methods for 

design for local buckling of a profile: JRC/Kollar, CUR96 and buckling curves.  

The general conclusion is that for thin plates the critical load criterion gives quite conservative 

results, as thin plates have “postbuckling” capacity. This “postbuckling” capacity is (almost) 

independent of the amplitude of imperfection. In case of thick plates, it was shown that failure 

occurs below the critical load and depends on the amplitude of initial imperfection. 
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1. INTRODUCTION 

 

1.1 MOTIVATION AND BACKGROUND RELEVANCE 
 

Fibre Reinforced Polymers (FRP) properties such as very high strength-to-weight ratio and low 

maintenance make it a very attractive material to use in infrastructure applications. Usually 

pultruded profiles with hollow, I-shape, and channel sections are used in bridge construction. 

However, next to pultrusion, Vacuum Assisted Resin Transfer Moulding (VARTM) is becoming one of 

the most used manufacturing processes for FRP in civil engineering. Typically, large monocoque 

structures are produced in this manner. Quality of the final product produced by VARTM is largely 

dependent on skill and experience of workers as the placement of fibres is done manually. Due to 

high slenderness and initial imperfections introduced during manufacturing these structures are 

susceptible to buckling. 

Some of the structures in which buckling might be critical are listed next. In all of these examples, 

the critical parts can be regarded as plates under longitudinal compression: 

- composite bridge decks; two types of instability can be identified: “wrinkling” of the top face 

of the deck due to longitudinal compressive stresses, which results from the deck bending 

and buckling of the web at the supports and under wheel loading; 

 

Figure 1.1.1 Composite bridge deck [31] p.46 

- bridge superstructure; in the structural system as shown in the figure 1.1.2 due to bending 

of the bridge, tensile forces are developing in the tie and compressive forces in the chord, 

which is a hollow profile with thin walls and is susceptible to local buckling; 

 

Figure 1.1.2 Paradis bridge [32] p.19 
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- bridge tower structure; due to global bending of the whole structure the parts of the cross 

section are locally compressed giving rise to buckling; 

 

Figure 1.1.3 Landmark tower [32] p.74 

Current design standards for FRP structures are still in development and are largely based on 

experimental data of pultruded profiles. Design procedures for local buckling that are available in 

the existing codes do not account for influence of initial imperfections but focus on the interaction 

between webs and flanges. Therefore, there is a great need for research data on VARTM-produced 

structural elements and on the influence of initial imperfections on buckling behaviour of plates. 

Both pultrusion and VARTM are cost effective processes for production of FRP elements. Pultrusion 

is a continuous process in which fibres are lead into a resin bath for wetting, then pulled through a 

heated die where it is formed into the intended shape. After curing in the die the profiles are ready 

to be cut into desired lengths. VARTM is a closed mould process in which the placement of the fibres 

is done manually. After the fibres are placed in the mould, the resin inlet tubes are placed followed 

by a vacuum bad that is made of a transparent flexible material. The air is then sucked out and the 

resin starts to flow. The composite is removed from the mould after curing. 

The key differences between structural elements produced by pultrusion and VARTM are: 

Pultrusion VARTM 

• Prismatic profiles with open and closed 

cross-sections 

• Constant cross-section and layup over 

the whole length of the profile 

• In general, thicker plates; variation 

between the thickness within the cross-

section is small 

• Large thin-walled elements, closed 

cross-section profiles 

• Freedom in geometry and layup over 

the length of the element 

• Large variations of material properties 

and dimensions in the cross-section 

• Better dimensional tolerances 

For the design of the elements produced by VARTM this means that the difference in thickness of 

webs and flanges - 𝑡𝑤; 𝑡𝑓 - and various ratios of longitudinal and transverse elastic moduli 𝐸𝑥 𝐸𝑦⁄  of a 

plate (flange or web), as well as difference in material properties – 𝐸𝑥; 𝐸𝑦; 𝜈𝑥𝑦 - of webs and flanges 

have to be accounted for. The analytical models that have been developed for pultruded profiles 

often leave out one or more of these considerations, simplifying the design procedure.  
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1.2 OBJECTIVE AND RESEARCH QUESTIONS 

 

The objectives of this research are to clarify the design recommendations for buckling given in the 

two latest standards for FRP: CUR96 Vezelversterkte kunststoffen in bouwkundige en 

civieltechnische draagconstructies and JRC Prospect for New Guidance in the Design of FRP and to 

quantify the influence of initial geometric imperfections on the structural behaviour of FRP plates. 

The main research question to be answered is: 

- How do initial out of plane deformations influence the structural behaviour of Fibre 

Reinforced Polymer plates produced by Vacuum Assisted Resin Transfer Molding? 

The key questions to be addressed are: 

- What is the effect of shape and magnitude of imperfection? 

- How much does the presence of initial imperfections degrade the load carrying capacity?  

- Do the limiting values given in standards make sense in terms of design for buckling? 

The methodology used in this project include literature research, which includes an overview of 

present design guidance and research papers on buckling of FRP plates, and finite element analysis. 

Linear, geometrically nonlinear and materially nonlinear analyses were used. 
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2. LITERATURE STUDY 
 

The two topics that are the main focus of this literature study are the analytical models and the role 

of initial geometric imperfections in buckling of FRP plates and profiles. The goal is to answer the 

following questions: 

• What are the applicability and limitations of the analytical models currently available in 

standards and literature? 

• What is the role of boundary conditions and web / flange interaction? 

• How are initial geometric imperfections considered in standards? 

• What is the significance of buckling modes interaction? 

• What is the effect of initial geometric imperfections on buckling behaviour of plates? 

 

2.1 ANALYTICAL MODELS 
 

Buckling of plates can be approached in two ways. A plate can be considered as a separate element 

with certain standard boundary conditions – simply supported, clamped, etc. Another way to look at 

plate buckling is to consider a plate as a part of an assembly, namely a profile. In latter case the local 

buckling (buckling of flanges or webs) of profiles is considered. The second approach is more 

practical for designers because in practice idealized boundary conditions can rarely be seen. The 

currently available analytical models for buckling of FRP profiles consider flanges and webs as 

separate plates and the main focus lies on the correct modelling of their boundary conditions taking 

into account the interaction between webs and flanges. 

In this chapter an overview of analytical models dealing with buckling of FRP plates is presented, 

which include explicit expressions for plates with standard boundaries under uniform compression 

and linearly varying in-plane load, and design equations for profiles of various shapes given in the 

following documents: JRC Prospect for New Guidance in the Design of FRP (JRC) [1], CUR96 

Vezelversterkte kunststoffen in bouwkundige en civieltechnische draagconstructies (CUR96) [2] and 

Stabilitätsverhalten ebener Tragwerke aus pultrudierten faserverstärkten Polymerprofilen by Heiko 

Trumpf [3] and the relevant background papers.  

 

2.1.1 BUCKLING OF PLATES 
 

 

Figure 2.1.1 Perfect plate geometry [4] p. 227 
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Buckling of a plate is a sudden deviation from a flat state under in-plane loading (x-axis) into a state 

that is bowed in the normal direction (z-axis). The load under which the plate buckles is called critical 

buckling load. The value of this load depends on geometry of the plate and the material properties 

and can be determined with a linear eigenvalue analysis. What happens after the buckling load is 

reach can only be described by nonlinear analysis. Plates exhibit stable postbuckling behaviour, 

which means that a plate can still carry load after it buckles, which is illustrated in the following 

diagram. 

 

Figure 2.1.2 In-plane load versus out of plane deflection curves 

Figure 2.1.2 describes the classical bifurcation behaviour. With increasing longitudinal loading, the 

plate deflection follows the ordinate upwards showing no out of plane deflection (1) – a plate only 

shortens in the load direction while remaining flat. Theoretically after the in-plane loading exceeds 

the critical buckling load 𝑁𝑐𝑟, the curve might continue upwards up to the failure load. More 

realistically, at 𝑁 = 𝑁𝑐𝑟, which is called bifurcation point, assuming that the load is applied in the 

midplane of a perfectly flat plate, a plate will buckle and take a new shape and equilibrium state but 

still will be able to carry load with a reduced stiffness. This is shown by curve 2. In reality, initial 

imperfections in form of load eccentricities and geometric imperfections will be introduced, which 

will result in deviation from the curve 1-2 and postbuckling path will then look similar to the curve 3.  

Horizontal line 4 illustrates a neutral postbuckling behaviour, in this case a structural element (a bar) 

cannot carry load after the critical buckling load is reached. 

 

2.1.2 PLATE BUCKLING DESIGN EXPRESSIONS 
 

The equation of the deflected surface of symmetrically laminated perfectly flat plate is: 

𝐷11
𝜕4𝑤

𝜕𝑥4
+ 4𝐷16

𝜕4𝑤

𝜕𝑥3𝜕𝑦
+ 2(𝐷12 + 𝐷66)

𝜕4𝑤

𝜕𝑥2𝜕𝑦2
+ 4𝐷26

𝜕4𝑤

𝜕𝑥𝜕𝑦3
+ 𝐷22

𝜕4𝑤

𝜕𝑦4
−𝑁𝑥

𝜕2𝑤

𝜕𝑥2
− 2𝑁𝑥𝑦

𝜕2𝑤

𝜕𝑥𝜕𝑦

− 𝑁𝑦
𝜕2𝑤

𝜕𝑦2
= 0 

(2.1.1) 

For symmetrical composite plate with cross-ply lamination there is no coupling between bending 

and twisting, which means that 𝐷16 = 𝐷26 = 0 and the equation becomes: 
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𝐷11
𝜕4𝑤

𝜕𝑥4
+ 2(𝐷12 + 𝐷66)

𝜕4𝑤

𝜕𝑥2𝜕𝑦2
+ 𝐷22

𝜕4𝑤

𝜕𝑦4
−𝑁𝑥

𝜕2𝑤

𝜕𝑥2
− 2𝑁𝑥𝑦

𝜕2𝑤

𝜕𝑥𝜕𝑦
− 𝑁𝑦

𝜕2𝑤

𝜕𝑦2
= 0 

(2.1.2) 

𝐷11, 𝐷22, 𝐷66, 𝐷16, 𝐷26 are the orthotropic plate stiffnesses defined as: 

𝐷𝑖𝑗 =
1

3
∑(𝑄̅𝑖𝑗)𝑘

𝑛

𝑘=1

(ℎ𝑘
3 − ℎ𝑘−1

3 ) 

 

Figure 2.1.3 Laminate with n plies [5] 

An exact solution of this equation is possible when the shear loading 𝑁𝑥𝑦 is equal to zero and 𝑁𝑥  and 

𝑁𝑦 are constants.  

For a plate that is loaded by uniform uniaxial loading: 

𝐷11
𝜕4𝑤

𝜕𝑥4
+ 2(𝐷12 + 𝐷66)

𝜕4𝑤

𝜕𝑥2𝜕𝑦2
+ 𝐷22

𝜕4𝑤

𝜕𝑦4
−𝑁𝑥

𝜕2𝑤

𝜕𝑥2
= 0 

(2.1.3) 

The boundary conditions for a plate simply supported at all four edges are (with respect to figure 

2.1): 

• at 𝑥 = 0, 𝑎: 𝑤 = 𝑀𝑥 = 0;  

𝑀𝑥 = −(𝐷11
𝜕2𝑤

𝜕𝑥2
+ 𝐷22

𝜕2𝑤

𝜕𝑦2
) → 𝑤(𝑥) =

𝜕2𝑤

𝜕𝑥2
= 0 

• at 𝑦 = 0, 𝑏: 𝑤 = 𝑀𝑦 = 0 

𝑀𝑦 = −(𝐷12
𝜕2𝑤

𝜕𝑥2
+𝐷22

𝜕2𝑤

𝜕𝑦2
) → 𝑤(𝑦) =

𝜕2𝑤

𝜕𝑦2
= 0 

(2.1.4) 

Where 𝑀𝑥 and 𝑀𝑦 are bending moments. 

The buckling mode may be taken in the form: 

𝑤(𝑥, 𝑦) = 𝑐𝑚𝑛 ∙ sin
𝑚𝜋𝑥

𝑎
∙ sin

𝑛𝜋𝑦

𝑏
 

(2.1.5) 
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where 𝑐𝑚𝑛 is arbitrary amplitude coefficient. 

Substituting (2.1.5) into (2.1.3) yields a fourth order ordinary differential equation which has an 

exact closed form solution. This equation was solved for plates with various boundary conditions 

under uniaxial loading; the most common cases are listed in the Table 2.1.  

It can be seen that the buckling load 𝑁 is a function of 𝑚, a number of half-waves in 𝑥 direction of 

the plate (for uniaxial loading the number of half-waves in 𝑦 direction is 𝑛 = 1) and the aspect ratio 

𝐴𝑅 = 𝑎 𝑏⁄ . The fundamental buckling mode shape can have any number of half-waves in the 

direction of loading, depending on the aspect ratio and the stiffness ratio of a particular plate. For 

small plate aspect ratios the plate buckles into a single half-wave in 𝑥 direction. As the aspect ratio 

increases, the number of half-waves 𝑚 in the direction of the load increases. Figure 2.1.4 illustrates 

dependence of buckling load on aspect ratio for isotropic (𝐷11 = 𝐷22) plate. For a certain stiffness 

ratio there is a corresponding plate aspect ratio for which the plate buckles with a minimum in-plate 

loading into a certain buckled shape: 

𝐴𝑅 = 𝑚 ∙ √
𝐷11
𝐷22

4

 

 (2.1.6) 

Substituting 2.1.6 into the first formula given in Table 2.1 the equation for the buckling load of a long 

plate with simply supported edges is derived. The design equations for the calculation of the critical 

buckling stress of long plates with various boundary conditions are presented in Table 2.2. 

More in-depth derivations and investigations of plate equations for various loading and boundary 

conditions can be studied in works of S. G. Lekhnitskii [7] and A. W. Leissa [8]. 

 

Figure 2.1.4 Dependence of aspect ratio of a plate on buckling load [6] p.129
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Table 2.1 Buckling load of plates with various boundary and loading conditions [6] p.146
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𝜎𝑐𝑟,𝑐 =
𝜋2

𝑡𝑏2
[2√𝐷11𝐷22 + 2(𝐷12 + 2𝐷66)] 

 

 

 

𝜎𝑐𝑟,𝑐 =
𝜋2

𝑡𝑏2
[3,125√𝐷11𝐷22 + 2,33(𝐷12 + 2𝐷66)] 

 

𝜎𝑐𝑟,𝑐 =
𝜋2

𝑡𝑏2
[4,53√𝐷11𝐷22 + 2,44(𝐷12 + 2𝐷66)] 

 

𝜎𝑐𝑟,𝑐 = 12
𝐷66
𝑡𝑏2

  

 

 

𝜎𝑐𝑟,𝑐 =
1

𝑡𝑏2
√𝐷11𝐷22[15,1𝐾√1 − 𝜐 + 7(1 − 𝐾)]   

for K ≤ 1 

𝜎𝑐𝑟,𝑐 =
1

𝑡𝑏2
√𝐷11𝐷22[15,1𝐾√1 − 𝜐 + 6(𝐾 −

1)(1 − 𝜐)]  for K > 1 

 

 

 

 

 

 

 

𝜎𝑐𝑟,𝑏 =
𝜋2

𝑡𝑏2
[13,4√𝐷11𝐷22 + 10,4(𝐷12 + 2𝐷66)]  

 

𝜎𝑐𝑟,𝑏 =
𝜋2

𝑡𝑏2
[26,8√𝐷11𝐷22 + 12,9(𝐷12 + 2𝐷66)]  

for K ≤ 3 

𝜎𝑐𝑟,𝑏 =
𝜋2

𝑡𝑏2
[30,1√𝐷11𝐷22 + 11,5(𝐷12 + 2𝐷66)]  

for K > 3 
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Table 2.2 Buckling load of long plates with various boundary and loading conditions [2] p. 75-76 

Where:  

𝑎 is the plate length 

𝑏 is the plate width 

𝑡 is the plate thickness 

𝐷11 =
𝐸𝐿 ∙ 𝑡

3

12 ∙ (1 − 𝜈𝐿𝑇 ∙ 𝜈𝑇𝐿)
 

(2.1.7) 

𝐷22 =
𝐸𝑇 ∙ 𝑡

3

12 ∙ (1 − 𝜈𝐿𝑇 ∙ 𝜈𝑇𝐿)
 

(2.1.8) 

𝐷12 = 𝜈𝐿𝑇 ∙ 𝐷22 

(2.1.9) 

𝐷66 =
𝐺𝐿𝑇 ∙ 𝑡

3

12
 

(2.1.10) 

𝜐 =
𝐷12

2𝐷66 +𝐷12
 

(2.1.11) 

𝐾 =
2𝐷66 + 𝐷12

√𝐷11 ∙ 𝐷22
 

(2.1.12) 

 

 

 

Free edge 

Simply supported edge 

Clamped edge  
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2.1.3 JRC PROSPECT FOR NEW GUIDANCE IN THE DESIGN OF FRP 
 

DESIGN PROCEDURE 

Design procedure for local instability under longitudinal compression for pultruded doubly 

symmetric elements is given in ANNEX C. 

𝑁𝑙𝑜𝑐,𝑅𝑑 is the design value of compressive force which determines the local instability of the element 

and can be calculated as: 

𝑁𝑙𝑜𝑐,𝑅𝑑 = 𝐴 ∙ 𝑓𝑙𝑜𝑐,𝑑
𝑎𝑥𝑖𝑎𝑙           

(2.1.13) 

The design value of local critical stresses is the minimum design value of critical stresses in the 

uniformly compressed flanges or the web: 𝑓𝑙𝑜𝑐,𝑑
𝑎𝑥𝑖𝑎𝑙 =

𝜂𝑐

𝛾𝑀
min⁡{(𝑓𝑙𝑜𝑐,𝑘

𝑎𝑥𝑖𝑎𝑙)
𝑓
, (𝑓𝑙𝑜𝑐,𝑘

𝑎𝑥𝑖𝑎𝑙)
𝑤
} 

Procedure to evaluate local critical stresses in the web and the flanges is given for I-cross section 

(figure 2.1.5).  

 

Figure 2.1.5 I-section [1] p. 151 

Subscripts used: 

𝑓 – flange; 𝑤 – web; 𝐿- longitudinal direction; 𝑇- transversal direction. 

First, the critical stresses are calculated assuming hinged connections between the flange and the 

web: 

(𝑓𝑙𝑜𝑐,𝑘
𝑎𝑥𝑖𝑎𝑙)𝑓

𝑆𝑆 = 4 ∙ 𝐺𝐿𝑇 ∙ (
𝑡𝑓

𝑏𝑓
)

2

 

           (2.1.14) 

(𝑓𝑙𝑜𝑐,𝑘
𝑎𝑥𝑖𝑎𝑙)𝑤

𝑆𝑆 = 𝑘𝑐 ∙
𝜋2 ∙ 𝐸𝑇𝑐

12 ∙ (1 − 𝜈𝐿𝑇 ∙ 𝜈𝑇𝐿)
∙ (
𝑡𝑤
𝑏𝑤

)
2

; ⁡𝑘𝑐 = 2√
𝐸𝐿𝑐
𝐸𝑇𝑐

+ 4
𝐺𝐿𝑇
𝐸𝑇𝑐

∙ (1 − 𝜈𝐿𝑇 ∙ 𝜈𝑇𝐿) + 2 ∙ 𝜈𝐿𝑇⁡ 

           (2.1.15) 

(𝑓𝑙𝑜𝑐,𝑘
𝑎𝑥𝑖𝑎𝑙)𝑓

𝑆𝑆 corresponds with the analytical solution for an orthotropic symmetrical plate that is 

loaded in longitudinal compression and is simply supported at three edges and has one unloaded 



18 
 

edge free and represents half of a flange of an I-section. (𝑓𝑙𝑜𝑐,𝑘
𝑎𝑥𝑖𝑎𝑙)𝑤

𝑆𝑆 is the solution for an orthotropic 

symmetrical plate which is simply supported at all four edges and is loaded by uniform compression 

and represents simplified boundary conditions for a web. 𝑘𝑐 is called the plate buckling coefficient. 

The element (web or flange) with lower critical stress will buckle first. It is then assumed that 

through the interaction between the flange and the web the element that has a higher critical stress   

will restrain the plate with lower critical buckling stress. The lower critical stress is then evaluated 

using expressions given in ANNEX E taking into account the interaction between the flange and the 

web.  

In order to evaluate (𝑓𝑙𝑜𝑐,𝑘
𝑎𝑥𝑖𝑎𝑙)𝑓, when (𝑓𝑙𝑜𝑐,𝑘

𝑎𝑥𝑖𝑎𝑙)𝑓
𝑆𝑆 < (𝑓𝑙𝑜𝑐,𝑘

𝑎𝑥𝑖𝑎𝑙)𝑤
𝑆𝑆, the stiffness of the rotational 

constraint 𝑘̃ exercised by the web on the flanges has to be taken into account: 

(𝑓𝑙𝑜𝑐,𝑘
𝑎𝑥𝑖𝑎𝑙)𝑓 =

√(𝐷11)𝑓 ∙ (𝐷22)𝑓

𝑡𝑓 ∙ (
𝑏𝑓
2
)
2 ∙ {𝐾 ∙ [15.1 ∙ 𝜂 ∙ √1 − 𝜌 + 6 ∙ (1 − 𝜌) ∙ (1 − 𝜂)] +

7 ∙ (1 − 𝐾)

√1 + 4.12 ∙ 𝜁
}, 

𝐾 ≤ 1 

           (2.1.16) 

(𝑓𝑙𝑜𝑐,𝑘
𝑎𝑥𝑖𝑎𝑙)𝑓 =

√(𝐷11)𝑓 ∙ (𝐷22)𝑓

𝑡𝑓 ∙ (
𝑏𝑓
2 )

2 ∙ [15.1 ∙ 𝜂 ∙ √1 − 𝜌 + 6 ∙ (1 − 𝜌) ∙ (𝐾 − 𝜂)], 𝐾 > 1 

           (2.1.17) 

𝜁 =
(𝐷22)𝑓

𝑘̃ ∙
𝑏𝑓
2

 

           (2.1.18) 

𝜌 =
(𝐷12)𝑓

2 ∙ (𝐷66)𝑓 + (𝐷12)𝑓
 

           (2.1.19) 

𝜂 =
1

√1 + (7.22 − 3.55 ∙ 𝜌) ∙ 𝜁
 

          (2.1.20) 

𝐾 =
2 ∙ (𝐷66)𝑓 + (𝐷12)𝑓

√(𝐷11)𝑓 ∙ (𝐷22)𝑓
 

          (2.1.21) 

𝑘̃ =
(𝐷22)𝑤
𝑏𝑤

∙ [1 −

𝑡𝑓 ∙ (𝑓𝑙𝑜𝑐,𝑘
𝑎𝑥𝑖𝑎𝑙)𝑓

𝑆𝑆 ∙
1

(𝐸𝐿𝑐)𝑓 ∙ 𝑡𝑓

𝑡𝑤 ∙ (𝑓𝑙𝑜𝑐,𝑘
𝑎𝑥𝑖𝑎𝑙)𝑤

𝑆𝑆 ∙
1

(𝐸𝐿𝑐)𝑤 ∙ 𝑡𝑤

] ≥ 0 

          (2.1.22) 
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The expression to evaluate (𝑓𝑙𝑜𝑐,𝑘
𝑎𝑥𝑖𝑎𝑙)𝑤, in case (𝑓𝑙𝑜𝑐,𝑘

𝑎𝑥𝑖𝑎𝑙)𝑤
𝑆𝑆 < (𝑓𝑙𝑜𝑐,𝑘

𝑎𝑥𝑖𝑎𝑙)𝑓
𝑆𝑆 takes into account the 

torsional stiffness 𝐺𝐼𝑡 of the constraint given by the flanges: 

(𝑓𝑙𝑜𝑐,𝑘
𝑎𝑥𝑖𝑎𝑙)𝑤 =

𝜋2

𝑡𝑤 ∙ 𝑏𝑤
2

∙ {2 ∙ √1 + 4.139 ∙ 𝜉′ ∙ √(𝐷11)𝑤 ∙ (𝐷22)𝑤 + (2 + 0.62 ∙ 𝜉′
2
)

∙ [(𝐷12)𝑤 + 2 ∙ (𝐷66)𝑤]} 

           (2.1.23) 

⁡𝜉′ =
1

1 + 10 ∙ 𝜁′
 

           (2.1.24) 

𝜁′ =
(𝐷22)𝑤 ∙ 𝑏𝑤

𝐺𝐼𝑡
 

           (2.1.25) 

𝐺𝐼𝑡 = 4 ∙ (𝐷66)𝑓 ∙ 𝑏𝑓 ∙ [1 −
𝑡𝑤 ∙ (𝑓𝑙𝑜𝑐,𝑘

𝑎𝑥𝑖𝑎𝑙)𝑤
𝑆𝑆 ∙

1
(𝐸𝐿𝑐)𝑤 ∙ 𝑡𝑤

𝑡𝑓 ∙ (𝑓𝑙𝑜𝑐,𝑘
𝑎𝑥𝑖𝑎𝑙)𝑓

𝑆𝑆 ∙
1

(𝐸𝐿𝑐)𝑓 ∙ 𝑡𝑓

] 

           (2.1.26) 

Design procedure for local instability under bending loading for pultruded doubly symmetric 

elements is given in ANNEX D. 

The design value of the bending moment which determines the local instability can be determined 

using the following expression: 

𝑀𝑙𝑜𝑐,𝑅𝑑 = 𝑊 ∙ 𝑓𝑙𝑜𝑐,𝑑
𝑓𝑙𝑒𝑥

          

(2.1.27) 

When the element is subjected to bending the top flange is in compression and the web is in 

bending, the design value of the critical stress for flexure is 𝑓𝑙𝑜𝑐,𝑑
𝑓𝑙𝑒𝑥

=
𝜂𝑐

𝛾𝑀
min⁡{(𝑓𝑙𝑜𝑐,𝑘

𝑎𝑥𝑖𝑎𝑙)
𝑓
, (𝑓𝑙𝑜𝑐,𝑘

𝑓𝑙𝑒𝑥
)
𝑤
}.  

(𝑓𝑙𝑜𝑐,𝑘
𝑎𝑥𝑖𝑎𝑙)

𝑓
, when (𝑓𝑙𝑜𝑐,𝑘

𝑎𝑥𝑖𝑎𝑙)𝑓
𝑆𝑆 < (𝑓𝑙𝑜𝑐,𝑘

𝑓𝑙𝑒𝑥
)𝑤
𝑆𝑆, can be determined in the same way as described in the 

procedure for uniform compression loading, first assuming simply supported edges, and then 

evaluating the critical stress using expressions 2.1.16 to 2.1.22. 

(𝑓𝑙𝑜𝑐,𝑘
𝑓𝑙𝑒𝑥

)
𝑤

 , when (𝑓𝑙𝑜𝑐,𝑘
𝑓𝑙𝑒𝑥

)𝑤
𝑆𝑆 < (𝑓𝑙𝑜𝑐,𝑘

𝑎𝑥𝑖𝑎𝑙)𝑓
𝑆𝑆 is determined using the conservative expression: 

(𝑓𝑙𝑜𝑐,𝑘
𝑓𝑙𝑒𝑥

)
𝑤
= (𝑓𝑙𝑜𝑐,𝑘

𝑓𝑙𝑒𝑥
)𝑤
𝑆𝑆 = 𝑘𝑓 ∙

𝜋2 ∙ 𝐸𝑇𝑐
12 ∙ (1 − 𝜈𝐿𝑇 ∙ 𝜈𝑇𝐿)

∙ (
𝑡𝑤
𝑏𝑤

)
2

; 

𝑘𝑓 = 13.9 ∙ √
𝐸𝐿𝑐
𝐸𝑇𝑐

+ 22.2 ∙
𝐺𝐿𝑇
𝐸𝑇𝑐

∙ (1 − 𝜈𝐿𝑇 ∙ 𝜈𝑇𝐿) + 11.1 ∙ 𝜈𝐿𝑇 

           (2.1.28) 
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Rearranging the expression (2.1.28) will result in the Lekhnitskii’s formula for a plate that is simply 

supported and is loaded by linearly varying load: 

𝜎𝑐𝑟 =
𝜋2

𝑡𝑏2
[13.9√𝐷11𝐷22 + 11.1(𝐷12 + 2𝐷66)] 

(2.1.29) 

It is the same as reported in JRC 15.2.4 and in Table 2.2 in 2.1.2 of this report but for the constants 

13.9 and 11.1. The explanation for that is found in Trajan, Sapkas and Kollar (2010) [9]. It was 

concluded that these coefficients (13.9 and 11.1) are a little high and 13.4 and 10.4 give better 

approximation. 

 

BACKGROUND 

More detailed insight into the procedures given in JRC can be gained by studying the research paper 

by L. P. Kollar “Local Buckling of Fiber Reinforced Plastic Composite Structural Members with Open 

and Closed Cross Sections” [10], which provides calculation procedures for box, I-, C-, Z- and L- 

sections under compression and bending loads. This report will focus on I- and box sections. 

Webs and flanges of a profile are considered as separate plates with rotationally restrained edges. 

Two ways of restrain are possible: 

• edges rotationally restrained by springs 

• edges rotationally restrained by stiffeners 

In the first case, the rotational spring constant 𝑘0 is considered: 

𝑘0 =
𝑐 ∙ (𝐷22)𝑟𝑠

𝐿𝑟𝑠
 

           (2.1.30) 

Coefficient 𝑐 takes into account boundary conditions of the restraining plate and 𝐿 is the width of 

the restraining plate. However, this expression is only valid when no axial load is applied. To take the 

effect of axial loading into account the amplification factor is used: 

𝑟 =
1

1 −
𝑡𝑏𝑢 ∙ (𝑓𝑙𝑜𝑐,𝑘

𝑎𝑥𝑖𝑎𝑙)𝑏𝑢
𝑆𝑆 ∙

1
(𝐸𝐿𝑐)𝑏𝑢 ∙ 𝑡𝑏𝑢

𝑡𝑟𝑠 ∙ (𝑓𝑙𝑜𝑐,𝑘
𝑎𝑥𝑖𝑎𝑙)𝑟𝑠

𝑆𝑆 ∙
1

(𝐸𝐿𝑐)𝑟𝑠 ∙ 𝑡𝑟𝑠

 

           (2.1.31) 

Subscript 𝑏𝑢 stands for the element that buckles, 𝑟𝑠 – the element that restrains. If (𝑓𝑙𝑜𝑐,𝑘
𝑎𝑥𝑖𝑎𝑙)𝑓

𝑆𝑆 <

(𝑓𝑙𝑜𝑐,𝑘
𝑎𝑥𝑖𝑎𝑙)𝑤

𝑆𝑆, then the flange buckles first and the web will be the restraining plate and vice versa. 

The torsional spring stiffness can be written as: 
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𝑘̃ = 𝑘0 ∙
1

𝑟
=
𝑐 ∙ (𝐷22)𝑟𝑠

𝐿𝑟𝑠
∙ [1 −

𝑡𝑏𝑢 ∙ (𝑓𝑙𝑜𝑐,𝑘
𝑎𝑥𝑖𝑎𝑙)𝑏𝑢

𝑆𝑆 ∙
1

(𝐸𝐿𝑐)𝑏𝑢 ∙ 𝑡𝑏𝑢

𝑡𝑟𝑠 ∙ (𝑓𝑙𝑜𝑐,𝑘
𝑎𝑥𝑖𝑎𝑙)𝑟𝑠

𝑆𝑆 ∙
1

(𝐸𝐿𝑐)𝑟𝑠 ∙ 𝑡𝑟𝑠

] 

           (2.1.32) 

Coefficient 𝑐 depends on the edge conditions of the restraining element and is given in the Figure 

2.1.6: 

 

Figure 2.1.6 Coefficient c for different edge conditions [10] p. 1507 

When the edges are restrained by stiffeners, the torsional stiffness is given as 

𝐺𝐼𝑡0 = 4 ∙ (𝐷66)𝑟𝑠 ∙ 𝐿𝑟𝑠          

(2.1.33) 

Taking into account the effect of axial loading: 

𝐺𝐼𝑡 = 4 ∙ (𝐷66)𝑟𝑠 ∙ 𝐿𝑟𝑠 ∙ [1 −
𝑡𝑏𝑢 ∙ (𝑓𝑙𝑜𝑐,𝑘

𝑎𝑥𝑖𝑎𝑙)𝑏𝑢
𝑆𝑆 ∙

1
(𝐸𝐿𝑐)𝑏𝑢 ∙ 𝑡𝑏𝑢

𝑡𝑟𝑠 ∙ (𝑓𝑙𝑜𝑐,𝑘
𝑎𝑥𝑖𝑎𝑙)𝑟𝑠

𝑆𝑆 ∙
1

(𝐸𝐿𝑐)𝑟𝑠 ∙ 𝑡𝑟𝑠

] 

           (2.1.34) 

In case of an I-section under the axial loading the same procedure as described by equations 2.1.14 

to 2.1.26 applies. If the flange buckles first, the web is the restraining plate and the flange is the 

buckling plate, coefficient 𝑐 = 2 and a factor of 1 2⁄  is introduced because the web restrains two 

“half” flanges: 

𝑘̃ =
1

2
∙
𝑐 ∙ (𝐷22)𝑟𝑠

𝐿𝑟𝑠
∙ [1 −

𝑡𝑏𝑢 ∙ (𝑓𝑙𝑜𝑐,𝑘
𝑎𝑥𝑖𝑎𝑙)𝑏𝑢

𝑆𝑆 ∙
1

(𝐸𝐿𝑐)𝑏𝑢 ∙ 𝑡𝑏𝑢

𝑡𝑟𝑠 ∙ (𝑓𝑙𝑜𝑐,𝑘
𝑎𝑥𝑖𝑎𝑙)𝑟𝑠

𝑆𝑆 ∙
1

(𝐸𝐿𝑐)𝑟𝑠 ∙ 𝑡𝑟𝑠

] 

(2.1.35) 

After rewriting the expression 2.1.35 it will become identical to expression 2.1.22 given in JRC. 

For the situation when the web of the I-section buckles first under uniform compression and the 

torsional stiffness 𝐺𝐼𝑡 is considered, it should be noted that the expression 2.1.24 from JRC is not the 

same as given by Kollar: 

𝜉′ =
1

1 + 0.6 ∙ 𝜁′1.2
 

(2.1.36) 
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For a hollow section in compression the same general procedure applies, except in case of box 

members the boundary conditions for the webs are the flanges are identical. Therefore, to evaluate 

critical stress for both the webs and the flanges the rotational spring constant is used. Also, in a 

hollow section when calculating spring constant factor of 1 2⁄  is omitted and the expression 

becomes: 

𝑘̃ =
𝑐 ∙ (𝐷22)𝑟𝑠

𝐿𝑟𝑠
∙ [1 −

𝑡𝑏𝑢 ∙ (𝑓𝑙𝑜𝑐,𝑘
𝑎𝑥𝑖𝑎𝑙)𝑏𝑢

𝑆𝑆 ∙
1

(𝐸𝐿𝑐)𝑏𝑢 ∙ 𝑡𝑏𝑢

𝑡𝑟𝑠 ∙ (𝑓𝑙𝑜𝑐,𝑘
𝑎𝑥𝑖𝑎𝑙)𝑟𝑠

𝑆𝑆 ∙
1

(𝐸𝐿𝑐)𝑟𝑠 ∙ 𝑡𝑟𝑠

] 

           (2.1.37) 

with 𝑐 = 2. 

Under linearly varying loading (bending) for an I-section the spring constant according to Kollar is 

calculated with equation 2.1.35 with 𝑐 = 4 because when a profile is in bending, only one flange is in 

compression and the tensile flange stabilizes the web. The introduction of coefficient 𝑐 = 4 will 

result in a different value of rotational spring constant than described in JRC.  

For flanges of a hollow section in bending the spring constant is calculated using equation 2.1.37 

with 𝑐 = 4.  

No closed form solution was in given for a plate with rotationally restrained edges subjected to a 

linearly varying normal force and therefore the webs both of I- and box sections should be calculated 

using the conservative expression 2.1.29. 

Table 2.3 summarizes design equations proposed by Kollar for I- and hollow cross-sections under 

uniform compression and bending. 

Table 2.4 gives a comparison of equations given in JRC and by Kollar for an I-profile in compression 

and in bending. 
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I-section Hollow section 

Compression Bending Compression Bending 

(𝑓𝑙𝑜𝑐,𝑘
𝑎𝑥𝑖𝑎𝑙)𝑓

𝑆𝑆 =
12(𝐷66)𝑓

𝑡𝑓(𝑏𝑓/2)
2 (𝑓𝑙𝑜𝑐,𝑘

𝑎𝑥𝑖𝑎𝑙)𝑓
𝑆𝑆 =

𝜋2

𝑡𝑓𝑏𝑓
2 {2√(𝐷11)𝑓(𝐷22)𝑓 + 2[(𝐷12)𝑓 + 2(𝐷66)𝑓]} 

(𝑓𝑙𝑜𝑐,𝑘
𝑎𝑥𝑖𝑎𝑙)𝑤

𝑆𝑆 =
𝜋2

𝑡𝑤𝑏𝑤
2
{2√(𝐷11)𝑤(𝐷22)𝑤

+ 2[(𝐷12)𝑤 + 2(𝐷66)𝑤]} 

(𝑓𝑙𝑜𝑐,𝑘
𝑓𝑙𝑒𝑥

)𝑤
𝑆𝑆 =

𝜋2

𝑡𝑤𝑏𝑤
2
{13.9√(𝐷11)𝑤(𝐷22)𝑤

+ 11.1[(𝐷12)𝑤 + 2(𝐷66)𝑤]} 

(𝑓𝑙𝑜𝑐,𝑘
𝑎𝑥𝑖𝑎𝑙)𝑤

𝑆𝑆 =
𝜋2

𝑡𝑤𝑏𝑤
2
{2√(𝐷11)𝑤(𝐷22)𝑤

+ 2[(𝐷12)𝑤 + 2(𝐷66)𝑤]} 

(𝑓𝑙𝑜𝑐,𝑘
𝑓𝑙𝑒𝑥

)𝑤
𝑆𝑆 =

𝜋2

𝑡𝑤𝑏𝑤
2
{13.9√(𝐷11)𝑤(𝐷22)𝑤

+ 11.1[(𝐷12)𝑤 + 2(𝐷66)𝑤]} 

flange buckles first: 

𝑘̃ =
(𝐷22)𝑤
𝑏𝑤

[1 −
(𝑓𝑙𝑜𝑐,𝑘

𝑎𝑥𝑖𝑎𝑙)𝑓
𝑆𝑆(𝐸𝐿𝑐)𝑤

(𝑓𝑙𝑜𝑐,𝑘
𝑎𝑥𝑖𝑎𝑙)𝑤

𝑆𝑆(𝐸𝐿𝑐)𝑓
] 

web buckles first: 

𝐺𝐼𝑡 = 4(𝐷66)𝑓𝑏𝑓 [1 −
(𝑓𝑙𝑜𝑐,𝑘

𝑎𝑥𝑖𝑎𝑙)𝑤
𝑆𝑆(𝐸𝐿𝑐)𝑓

(𝑓𝑙𝑜𝑐,𝑘
𝑎𝑥𝑖𝑎𝑙)𝑓

𝑆𝑆(𝐸𝐿𝑐)𝑤
] 

flange buckles first: 

𝑘̃ =
2(𝐷22)𝑤

𝑏𝑤
[1 −

(𝑓𝑙𝑜𝑐,𝑘
𝑎𝑥𝑖𝑎𝑙)𝑓

𝑆𝑆(𝐸𝐿𝑐)𝑤

(𝑓𝑙𝑜𝑐,𝑘
𝑓𝑙𝑒𝑥

)𝑤
𝑆𝑆(𝐸𝐿𝑐)𝑓

] 

web buckles first: 

𝐺𝐼𝑡 = 4(𝐷66)𝑓𝑏𝑓 [1 −
(𝑓𝑙𝑜𝑐,𝑘

𝑓𝑙𝑒𝑥
)𝑤
𝑆𝑆(𝐸𝐿𝑐)𝑓

(𝑓𝑙𝑜𝑐,𝑘
𝑎𝑥𝑖𝑎𝑙)𝑓

𝑆𝑆(𝐸𝐿𝑐)𝑤
] 

flange buckles first: 

𝑘̃𝑤 =
2(𝐷22)𝑤

𝑏𝑤
[1 −

(𝑓𝑙𝑜𝑐,𝑘
𝑎𝑥𝑖𝑎𝑙)𝑓

𝑆𝑆(𝐸𝐿𝑐)𝑤

(𝑓𝑙𝑜𝑐,𝑘
𝑎𝑥𝑖𝑎𝑙)𝑤

𝑆𝑆(𝐸𝐿𝑐)𝑓
] 

web buckles first: 

𝑘̃𝑓 =
2(𝐷22)𝑓

𝑏𝑓
[1 −

(𝑓𝑙𝑜𝑐,𝑘
𝑎𝑥𝑖𝑎𝑙)𝑤

𝑆𝑆(𝐸𝐿𝑐)𝑓

(𝑓𝑙𝑜𝑐,𝑘
𝑎𝑥𝑖𝑎𝑙)𝑓

𝑆𝑆(𝐸𝐿𝑐)𝑤
] 

flange buckles first: 

𝑘̃𝑤 =
4(𝐷22)𝑤

𝑏𝑤
[1 −

(𝑓𝑙𝑜𝑐,𝑘
𝑎𝑥𝑖𝑎𝑙)𝑓

𝑆𝑆(𝐸𝐿𝑐)𝑤

(𝑓𝑙𝑜𝑐,𝑘
𝑓𝑙𝑒𝑥

)𝑤
𝑆𝑆(𝐸𝐿𝑐)𝑓

] 

web buckles first: 

𝑘̃𝑓 =
4(𝐷22)𝑓

𝑏𝑓
[1 −

(𝑓𝑙𝑜𝑐,𝑘
𝑓𝑙𝑒𝑥

)𝑤
𝑆𝑆(𝐸𝐿𝑐)𝑓

(𝑓𝑙𝑜𝑐,𝑘
𝑎𝑥𝑖𝑎𝑙)𝑓

𝑆𝑆(𝐸𝐿𝑐)𝑤
] 

(𝑓𝑙𝑜𝑐,𝑘
𝑎𝑥𝑖𝑎𝑙)𝑓 =

√(𝐷11)𝑓(𝐷22)𝑓

𝑡𝑓(𝑏𝑓/2)
2 {𝐾[15.1𝜂√1 − 𝜌 + 6(1 − 𝜌)(1 − 𝜂)] +

7(1 − 𝐾)

√1 + 4.12𝜁
} , 𝐾 ≤ 1 

(𝑓𝑙𝑜𝑐,𝑘
𝑎𝑥𝑖𝑎𝑙)𝑓 =

√(𝐷11)𝑓(𝐷22)𝑓

𝑡𝑓(𝑏𝑓/2)
2 [15.1𝜂√1 − 𝜌 + 6(1 − 𝜌)(𝐾 − 𝜂)], 𝐾 > 1 

𝜁 =
(𝐷22)𝑓

𝑘̃𝑏𝑓/2
; ⁡𝜌 =

(𝐷12)𝑓

2(𝐷66)𝑓 + (𝐷12)𝑓
; ⁡𝜂 =

1

√1 + (7.22 − 3.55𝜌)𝜁
; ⁡𝐾 =

2(𝐷66)𝑓 + (𝐷12)𝑓

√(𝐷11)𝑓(𝐷22)𝑓
 

 

(𝑓𝑙𝑜𝑐,𝑘
𝑎𝑥𝑖𝑎𝑙)𝑓 =

𝜋2

𝑡𝑓𝑏𝑓
2 {2√1+ 4.139𝜉√(𝐷11)𝑓(𝐷22)𝑓 + (2 + 0.62𝜉2)[(𝐷12)𝑓 + 2(𝐷66)𝑓]} 

𝜉 =
1

1 + 10𝜁
; ⁡𝜁 =

(𝐷22)𝑓

𝑘̃𝑤𝑏𝑓
 

 

 

(𝑓𝑙𝑜𝑐,𝑘
𝑎𝑥𝑖𝑎𝑙)𝑤 =

𝜋2

𝑡𝑤𝑏𝑤
2
{2√1 + 4.139𝜉′√(𝐷11)𝑤(𝐷22)𝑤

+ (2 + 0.62𝜉′
2
)[(𝐷12)𝑤

+ 2(𝐷66)𝑤]} 

𝜉′ =
1

1 + 0.61𝜁′1.2
; 𝜁′ =

(𝐷22)𝑤𝑏𝑤
𝐺𝐼𝑡

 

(𝑓𝑙𝑜𝑐,𝑘
𝑓𝑙𝑒𝑥

)
𝑤
=

𝜋2

𝑡𝑤𝑏𝑤
2
{13.9√(𝐷11)𝑤(𝐷22)𝑤

+ 11.1[(𝐷12)𝑤 + 2(𝐷66)𝑤]} 

(𝑓𝑙𝑜𝑐,𝑘
𝑎𝑥𝑖𝑎𝑙)𝑤 =

𝜋2

𝑡𝑤𝑏𝑤
2
{2√1 + 4.139𝜉√(𝐷11)𝑤(𝐷22)𝑤

+ (2 + 0.62𝜉2)[(𝐷12)𝑤

+ 2(𝐷66)𝑤]} 

𝜉 =
1

1 + 10𝜁
; ⁡𝜁 =

(𝐷22)𝑤

𝑘̃𝑓𝑏𝑤
 

 

(𝑓𝑙𝑜𝑐,𝑘
𝑓𝑙𝑒𝑥

)
𝑤
=

𝜋2

𝑡𝑤𝑏𝑤
2
{13.9√(𝐷11)𝑤(𝐷22)𝑤

+ 11.1[(𝐷12)𝑤 + 2(𝐷66)𝑤]} 

Table 2.3 Formulas for web and flange buckling stresses of I- and hollow cross sections according to Kollar (2003)
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JRC Kollar 

Compression 

(𝑓𝑙𝑜𝑐,𝑘
𝑎𝑥𝑖𝑎𝑙)𝑓

𝑆𝑆 =
12(𝐷66)𝑓

𝑡𝑓(𝑏𝑓/2)
2 ; ⁡(𝑓𝑙𝑜𝑐,𝑘

𝑎𝑥𝑖𝑎𝑙)𝑤
𝑆𝑆 =

𝜋2

𝑡𝑤𝑏𝑤
2
{2√(𝐷11)𝑤(𝐷22)𝑤 + 2[(𝐷12)𝑤 + 2(𝐷66)𝑤]} 

flange buckles first: 

𝑘̃ =
(𝐷22)𝑤
𝑏𝑤

[1 −
(𝑓𝑙𝑜𝑐,𝑘

𝑎𝑥𝑖𝑎𝑙)𝑓
𝑆𝑆(𝐸𝐿𝑐)𝑤

(𝑓𝑙𝑜𝑐,𝑘
𝑎𝑥𝑖𝑎𝑙)𝑤

𝑆𝑆(𝐸𝐿𝑐)𝑓
] 

web buckles first: 

𝐺𝐼𝑡 = 4(𝐷66)𝑓𝑏𝑓 [1 −
(𝑓𝑙𝑜𝑐,𝑘

𝑎𝑥𝑖𝑎𝑙)𝑤
𝑆𝑆(𝐸𝐿𝑐)𝑓

(𝑓𝑙𝑜𝑐,𝑘
𝑎𝑥𝑖𝑎𝑙)𝑓

𝑆𝑆(𝐸𝐿𝑐)𝑤
] 

(𝑓𝑙𝑜𝑐,𝑘
𝑎𝑥𝑖𝑎𝑙)𝑓 =

√(𝐷11)𝑓(𝐷22)𝑓

𝑡𝑓(𝑏𝑓/2)
2 {𝐾[15.1𝜂√1 − 𝜌 + 6(1 − 𝜌)(1 − 𝜂)] +

7(1 − 𝐾)

√1 + 4.12𝜁
} , 𝐾 ≤ 1 

(𝑓𝑙𝑜𝑐,𝑘
𝑎𝑥𝑖𝑎𝑙)𝑓 =

√(𝐷11)𝑓(𝐷22)𝑓

𝑡𝑓(𝑏𝑓/2)
2 [15.1𝜂√1 − 𝜌 + 6(1 − 𝜌)(𝐾 − 𝜂)], 𝐾 > 1 

𝜁 =
(𝐷22)𝑓

𝑘̃𝑏𝑓/2
; ⁡𝜌 =

(𝐷12)𝑓

2(𝐷66)𝑓 + (𝐷12)𝑓
; ⁡𝜂 =

1

√1 + (7.22 − 3.55𝜌)𝜁
; ⁡𝐾 =

2(𝐷66)𝑓 + (𝐷12)𝑓

√(𝐷11)𝑓(𝐷22)𝑓
 

(𝑓𝑙𝑜𝑐,𝑘
𝑎𝑥𝑖𝑎𝑙)𝑤 =

𝜋2

𝑡𝑤𝑏𝑤
2
{2√1 + 4.139𝜉′√(𝐷11)𝑤(𝐷22)𝑤

+ (2 + 0.62𝜉′
2
)[(𝐷12)𝑤 + 2(𝐷66)𝑤]} 

𝝃′ =
𝟏

𝟏 + 𝟏𝟎𝜻′
; 𝜁′ =

(𝐷22)𝑤𝑏𝑤
𝐺𝐼𝑡

 

(𝑓𝑙𝑜𝑐,𝑘
𝑎𝑥𝑖𝑎𝑙)𝑤 =

𝜋2

𝑡𝑤𝑏𝑤
2
{2√1 + 4.139𝜉′√(𝐷11)𝑤(𝐷22)𝑤

+ (2 + 0.62𝜉′
2
)[(𝐷12)𝑤 + 2(𝐷66)𝑤]} 

𝝃′ =
𝟏

𝟏 + 𝟎. 𝟔𝟏𝜻′𝟏.𝟐
; 𝜁′ =

(𝐷22)𝑤𝑏𝑤
𝐺𝐼𝑡

 

Bending 

(𝑓𝑙𝑜𝑐,𝑘
𝑎𝑥𝑖𝑎𝑙)𝑓

𝑆𝑆 =
12(𝐷66)𝑓

𝑡𝑓(𝑏𝑓/2)
2 ; ⁡(𝑓𝑙𝑜𝑐,𝑘

𝑓𝑙𝑒𝑥
)𝑤
𝑆𝑆 =

𝜋2

𝑡𝑤𝑏𝑤
2
{13.9√(𝐷11)𝑤(𝐷22)𝑤 + 11.1[(𝐷12)𝑤 + 2(𝐷66)𝑤]} 

flange buckles first: 

𝒌̃ =
(𝑫𝟐𝟐)𝒘
𝒃𝒘

[𝟏 −
(𝒇𝒍𝒐𝒄,𝒌

𝒂𝒙𝒊𝒂𝒍)𝒇
𝑺𝑺(𝑬𝑳𝒄)𝒘

(𝒇𝒍𝒐𝒄,𝒌
𝒇𝒍𝒆𝒙

)𝒘
𝑺𝑺(𝑬𝑳𝒄)𝒇

] 

web buckles first: 

𝐺𝐼𝑡 = 4(𝐷66)𝑓𝑏𝑓 [1 −
(𝑓𝑙𝑜𝑐,𝑘

𝑓𝑙𝑒𝑥
)𝑤
𝑆𝑆(𝐸𝐿𝑐)𝑓

(𝑓𝑙𝑜𝑐,𝑘
𝑎𝑥𝑖𝑎𝑙)𝑓

𝑆𝑆(𝐸𝐿𝑐)𝑤
] 

flange buckles first: 

𝒌̃ =
𝟐(𝑫𝟐𝟐)𝒘

𝒃𝒘
[𝟏 −

(𝒇𝒍𝒐𝒄,𝒌
𝒂𝒙𝒊𝒂𝒍)𝒇

𝑺𝑺(𝑬𝑳𝒄)𝒘

(𝒇𝒍𝒐𝒄,𝒌
𝒇𝒍𝒆𝒙

)𝒘
𝑺𝑺(𝑬𝑳𝒄)𝒇

] 

web buckles first: 

𝐺𝐼𝑡 = 4(𝐷66)𝑓𝑏𝑓 [1 −
(𝑓𝑙𝑜𝑐,𝑘

𝑓𝑙𝑒𝑥
)𝑤
𝑆𝑆(𝐸𝐿𝑐)𝑓

(𝑓𝑙𝑜𝑐,𝑘
𝑎𝑥𝑖𝑎𝑙)𝑓

𝑆𝑆(𝐸𝐿𝑐)𝑤
] 

(𝑓𝑙𝑜𝑐,𝑘
𝑎𝑥𝑖𝑎𝑙)𝑓 =

√(𝐷11)𝑓(𝐷22)𝑓

𝑡𝑓(𝑏𝑓/2)
2 {𝐾[15.1𝜂√1 − 𝜌 + 6(1 − 𝜌)(1 − 𝜂)] +

7(1 − 𝐾)

√1 + 4.12𝜁
} , 𝐾 ≤ 1 

(𝑓𝑙𝑜𝑐,𝑘
𝑎𝑥𝑖𝑎𝑙)𝑓 =

√(𝐷11)𝑓(𝐷22)𝑓

𝑡𝑓(𝑏𝑓/2)
2 [15.1𝜂√1 − 𝜌 + 6(1 − 𝜌)(𝐾 − 𝜂)], 𝐾 > 1 

𝜁 =
(𝐷22)𝑓

𝑘̃𝑏𝑓/2
; ⁡𝜌 =

(𝐷12)𝑓

2(𝐷66)𝑓 + (𝐷12)𝑓
; ⁡𝜂 =

1

√1 + (7.22 − 3.55𝜌)𝜁
; ⁡𝐾 =

2(𝐷66)𝑓 + (𝐷12)𝑓

√(𝐷11)𝑓(𝐷22)𝑓
 

(𝑓𝑙𝑜𝑐,𝑘
𝑓𝑙𝑒𝑥

)
𝑤
=

𝜋2

𝑡𝑤𝑏𝑤
2
{13.9√(𝐷11)𝑤(𝐷22)𝑤 + 11.1[(𝐷12)𝑤 + 2(𝐷66)𝑤]} 

Table 2.4 Local buckling of an I-section according to JRC and Kollar  



25 
 

2.1.4 CUR96 VEZELVERSTERKTE KUNSTSTOFFEN IN BOUWKUNDIGE EN CIVIELTECHNISCHE 

DRAAGCONSTRUCTIES 
 

DESIGN PROCEDURE 

Annex E provides analytical formulas to determine characteristic buckling strength that accounts for 

wrinkling but does not account for imperfections. The given equations can be applied for I-, H- and 

hollow sections. 

For a profile under longitudinal compression critical stress of the flange is given by the following 

expression: 

𝑓𝑐,𝑠𝑡𝑎𝑏,𝑘,𝑓 =
𝜋2

12
∙ (
𝑡𝑓

𝑏
)
2

∙ [√𝑞 ∙ (2 ∙ √𝐸𝑥 ∙ 𝐸𝑦) + 𝑝 ∙ (𝑦 ∙ 𝜈𝑥𝑦 + 2 ∙ 𝐺𝑥𝑦)] 

           (2.1.38) 

𝑝, 𝑞 are constants that are defined by the coefficient of restraint 𝜉; for I- and H-shaped cross 

sections: 

𝑝 = 0.3 +
0.004

𝜉 − 0.5
; ⁡⁡𝑞 =

0.025 +
0.065
𝜉 + 0.4

𝜃𝑐𝑜𝑟𝑟
2 ; ⁡⁡𝜉 = ⁡

2 ∙ 𝑏𝑤
𝑏𝑓

; ⁡⁡𝑏 =
𝑏𝑓

2
;⁡𝜃𝑐𝑜𝑟𝑟 = 1.1 

           (2.1.39) 

 

Figure 2.1.7 I-. H- sections [2] p. 151 

For hollow sections: 

𝑝 = 2.0 +
0.002

𝜉 − 1.3
; ⁡⁡𝑞 = 1.0 +

0.08

𝜉 + 0.2
; ⁡⁡𝜉 = ⁡

𝑏𝑤
𝑏𝑓

; ⁡⁡𝑏 = 𝑏𝑓 

(2.1.40) 
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Figure 2.1.8 Hollow section [2] p. 152 

Critical buckling stress of the web is calculated assuming simply supported connection to the flanges: 

𝑓𝑐,𝑠𝑡𝑎𝑏,𝑘,𝑤 =
𝜋2

𝑡𝑤 ∙ 𝑏𝑤
2
∙ (2 ∙ √𝐷11,𝑤 ∙ 𝐷22,𝑤 + 2 ∙ (𝐷12,𝑤 + 2𝐷66,𝑤) 

           (2.1.41) 

The critical stress for flanges in a profile in bending is given by expression 2.1.38.  

For I- and H-shaped cross sections: 

𝑝 = 0.3 +
0.004

𝜉 − 0.5
; ⁡⁡𝑞 = 0.025 +

0.065

𝜉 + 0.4
; ⁡⁡𝜉 = ⁡

𝑏𝑤
𝑏𝑓

; ⁡⁡𝑏 =
𝑏𝑓

2
 

           (2.1.42) 

For hollow sections: 

𝑝 = 2.0 +
0.002

𝜉 − 1.3
; ⁡⁡𝑞 = 1.0 +

0.08

𝜉 + 0.2
; ⁡⁡𝜉 = ⁡

𝑏𝑤
𝑏𝑓

; ⁡⁡𝑏 = 0.85 ∙ (𝑏𝑓 − 𝑡𝑤) 

           (2.1.43) 

Critical buckling stress of the web is then determined with the expression: 

𝑓𝑏,𝑠𝑡𝑎𝑏,𝑘,𝑤 =
𝜋2

𝑡𝑤 ∙ 𝑏𝑤
2
∙ (13.4 ∙ √𝐷11,𝑤 ∙ 𝐷22,𝑤 + 10.4 ∙ (𝐷12,𝑤 + 2𝐷66,𝑤) 

           (2.1.44) 

As it can be seen, the difference in calculating critical buckling stress for axial compression and 

bending for I- and H- sections lies in definition of coefficient of constraint 𝜉. For calculating critical 

buckling stress in the flange which is a part of profile in bending the same formula as for uniaxial 

compression is used. In case of bending the flange in tension supports the web, while under uniform 

compression both flanges will buckle. For hollow sections the flange width 𝑏 is reduced in case of 

bending by 15% compared to case of axial compression. 
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BACKGROUND 

It should be noted, that the equations given in CUR96 do not take into account the difference 

between material properties of flanges in webs. The coefficient of constraint 𝜉 is calculated based 

only on geometry of the cross-section. If material properties of the webs and flanges differ, the 

expression for the coefficient of restraint 𝜉 should be calculated according to the background 

document Step-by-Step Engineering Design Equations for Fiber-reinforced Plastic Beams for 

Transportation Structures [11]: 

For I- and H-shaped cross sections: 

𝜉 = ⁡
2 ∙ 𝑏𝑤
𝑏𝑓

∙
𝐸𝑇,𝑓

𝐸𝑇,𝑤
 

           (2.1.45) 

For hollow sections: 

𝜉 = ⁡
𝑏𝑤 − 𝑡𝑓

𝑏𝑓 − 𝑡𝑤
∙
𝐸𝑦,𝑓

𝐸𝑦,𝑤
 

           (2.1.46) 

The critical force is calculated depending on the loading conditions. The example is given for three-

point bending: 

 

Figure 2.1.9 Three-point bending [11] p. 29 

In this case the maximum moment in the midspan of the beam is given as: 

𝑀𝑚𝑎𝑥 =
𝑃 ∙ 𝐿

4
→ 𝑃 =

4 ∙ 𝑀𝑚𝑎𝑥

𝐿
 

(2.1.47) 

From the well-known bending stress expression the moment can be expressed: 

𝜎 =
𝑀𝑃

𝑊
→ 𝑀𝑃 = 𝜎 ∙ 𝑊 

(2.1.48) 

and  

𝑊 =
𝐼

𝑏𝑤 2⁄
 

(2.1.49) 
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Substituting 2.1.48 and 2.1.49 into 2.1.47: 

𝑃 =
8 ∙ 𝜎 ∙ 𝐼

𝑏𝑤 ∙ 𝐿
 

(2.1.50) 

Beam stiffness for I- and hollow sections can be defined by equations 2.1.51 and 2.1.52 respectively: 

𝐷 =
1

2
∙ 𝐸𝐿,𝑓 ∙ 𝑡𝑓 ∙ 𝑏𝑤

2 ∙ 𝑏𝑓 +
1

12
∙ 𝐸𝐿,𝑤 ∙ 𝑡𝑤 ∙ 𝑏𝑤

3 +
1

6
∙ 𝐸𝐿,𝑓 ∙ 𝑡𝑓

3 ∙ 𝑏𝑓 

(2.1.51) 

𝐷 =
1

2
∙ 𝐸𝐿,𝑓 ∙ 𝑡𝑓 ∙ 𝑏𝑤

2 ∙ 𝑏𝑓 +
1

6
∙ 𝐸𝐿,𝑤 ∙ 𝑡𝑤 ∙ 𝑏𝑤

3 +
1

6
∙ 𝐸𝐿,𝑓 ∙ 𝑡𝑓

3 ∙ 𝑏𝑓 

(2.1.52) 

The critical force then is: 

𝑃𝑐𝑟
𝑙𝑜𝑐𝑎𝑙 =

8 ∙ 𝐷 ∙ 𝜎𝑐𝑟
𝐸𝐿,𝑓 ∙ 𝑏𝑤 ∙ 𝐿

 

(2.1.53) 

with 𝜎𝑐𝑟 defined by 2.1.38. 

Comparing the expression from CUR96 for the critical local buckling stress in the flange to 2.1.53 for 

the critical force, it can be seen that the stress expression does not take into consideration the 

thickness of the web because the 𝑡𝑤 comes into calculations only when the critical force, not stress, 

is computed. This means that CUR96 equations for local buckling of the flange are applicable for 

cross-sections where thickness of the flange equals to thickness of the web. 

 

2.1.5 STABILITÄTSVERHALTEN EBENER TRAGWERKE AUS PULTRUDIERTEN 

FASERVERSTÄRKTEN POLYMERPROFILEN 
 

The design procedure proposed in this research is similar to the one that is used for checking the 

stability of steel plates and is developed for pultruded profiles of hollow, I- and C- cross-sections 

with 𝐸𝐿 𝐸𝑇 = 2.45⁄  and 𝑓𝐿 𝑓𝑇 = 2.85⁄ .  

The first step is to determine the class of the cross-section of individual parts of the profile. There 

are 2 cross-sectional classes defined: 

• class 3: cross-sections of this class reach the strength limit in the most unfavourable fibre 

and further stressing is not stressing is employed; 

• class 4: to determine the resistance of cross-sections of class 4 the local buckling of 

compressed parts has to be taken into account. 

Maximum values of width-to-thickness ratios are given for the class 3 in tables 5.1 and 5.2 in [3]. If 

these values are exceeded, then the cross-section belongs to class 4.  
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The plate buckling factor 𝑘𝜎𝑥 is determined next. The plate buckling factor depends on the boundary 

conditions and loading conditions. In case of pultruded profiles two types of plates are considered: 

plates that are simply supported at the two edges (webs) and plates that are simply supported at 

one edge (flange of an open section). Values of 𝑘𝜎𝑥 are calculated for the two types of plates and 13 

load cases, which include pure compression, pure bending and various combinations of compression 

combined with bending and are given in tables 3.1 to 3.3. 

Once the plate buckling is known, critical plate buckling stress can be calculated with the expression: 

𝜎𝑐𝑟𝑥,𝑝 = 𝑘𝜎𝑥 ∙
𝜋2√𝐸𝑐𝐿 ∙ 𝐸𝑐𝑇

12 ∙ (1 − 𝜈𝐿𝑇 ∙ 𝜈𝑇𝐿)
∙ (
𝑡

𝑏
)
2

 

           (2.1.54) 

The buckling stress of a plate (flange, web) is given as 𝑓𝑢𝑥⁡𝑖 = 𝜒𝑝 ∙ 𝑓𝑐𝑥; 𝜒𝑝 is a reduction factor and 

can be determined from buckling curves or using the following expression: 

𝜒𝑝 =
1

𝛷 +√𝛷2 − 𝜆̅𝑝
𝛾
⁡≤ 0 

           (2.1.55) 

𝜒𝑝 = 1,0 for sections of class 4 and the resistance is calculated using the full area of the section. 

Shape function is defined as 𝛷 = 0.5 ∙ (1 + 𝛼𝑝 ∙ (𝜆̅𝑝 − 𝜆̅𝑝,0) + 𝜆̅𝑝
𝛾
) 

Parameter 𝜆̅𝑝 is plate slenderness and is a square root of ratio of compressive strength and critical 

buckling load: 

𝜆̅𝑝 = √
𝑓𝑐𝑥

𝜎𝑐𝑟𝑥,𝑝
 

           (2.1.56) 

Parameters 𝛼𝑝 – imperfection factor, 𝜆̅𝑝,0 – length of horizontal plateau in the buckling curve 

diagram and 𝛾 – restraint coefficient are determined experimentally and numerically. 

For webs: 

𝛾 = 2;⁡𝜆̅𝑝,0 = 0.37;⁡𝛼𝑝 = 1.15⁡⁡ 

and flanges: 

𝛾 = 1;⁡𝜆̅𝑝,0 = 0.37;⁡𝛼𝑝 = 1.0⁡⁡ 

𝑓𝑢𝑥⁡2 = 𝑚𝑎𝑥(𝑓𝑢𝑥⁡𝑖) is the capacity of the strongest part of the profile. The effective widths are given 

in tables 5.3 and 5.4; 

𝐴𝑒𝑓𝑓⁡𝑖 = 𝐴𝑖 ∙
𝑓𝑢𝑥⁡𝑖
𝑓𝑢𝑥⁡2

 

           (2.1.57) 

And the resistance of the cross-section can then be calculated based on the effective cross-section. 
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This model takes the influence of initial geometrical imperfections into account by incorporating the 

imperfection factor 𝛼𝑝. However, this influence is applied to the ultimate load, not the buckling load. 

For the critical buckling stress this model assumes simply supported boundary conditions between 

webs and flanges, giving a conservative estimation of the buckling strength.  

 

2.2 IMPERFECTIONS 
 

The imperfections of FRP structural elements can be divided in two groups: internal and external. 

Internal imperfections, or material imperfections, are the imperfections that occur in the material 

itself. Some examples are voids, local waviness of fabrics, initial delamination. External imperfections 

have to do with the deviations of the intended geometry of the considered element: flatness and 

straightness of the element or variations in thickness, or load and support eccentricities. This study 

focuses on the geometric imperfections of plates and profiles.  

The analytical models for local buckling in standards focus on the web/flange interaction. This 

chapter will describe the effect of initial imperfections on buckling behaviour of plates, how the 

initial imperfections are implemented in the standards in the design equations, and what limiting 

values of geometric imperfections found in literature. 

 

2.2.1 EFFECT OF INITIAL IMPERFECTIONS 
 

 

Figure 2.2.1 Perfect and imperfect plate buckling [4] p. 22 

For the symmetric stable postbuckling behaviour, which is characteristic for plates, effects of initial 

imperfections result in a path deviation from the postbuckling curve of a perfect structure in a 

manner shown in the figure 2.2.1. The degree of deviation of the imperfect postbuckling path 

depends on the magnitude and nature of the initial imperfection. The most detrimental geometric 

imperfection is assumed to be the one in a shape of a buckling mode of a perfect plate. The most 

noticeable effect of initial imperfections occurs around the load values where buckling of a perfect 

plate occurs. The larger the imperfection magnitude, the more rounded – over load versus 

displacement curve becomes.  

While classical bifurcation buckling is an eigenvalue problem, the imperfect plate buckling is an 

equilibrium problem. The postbuckling paths can be determined with a nonlinear analysis. 
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Figure 2.2.2 Buckling of a square plate with initial imperfections 

As it can be seen from the figure 2.2.2 it is problematic to determine the critical load for an actual 

imperfect plate because of a rounded-over postbuckling path with no clear bifurcation point. It can 

also be noticed that when the magnitude of imperfection is very large then the curve becomes 

almost linear. In principle, an imperfect plate does not buckle; it begins with an initial bow which 

gradually increases without changing shape. Often large increase in transversal deformation occurs 

near the bifurcation load of a perfect plate. Next to that, a plate with initial out of plane deformation 

can buckle into a different shape at loads that are higher than the critical buckling load of a perfect 

plate. This effect is called secondary buckling. 

Even though an imperfect plate does not have a clearly defined buckling load, there are methods to 

approximate this value for design purposes: 

- strain-reversal method 

- top-of-the-knee method. 

In strain-reversal method two compressive strains in the x-direction are considered: on the concave 

side (𝜀1) and on the convex side (𝜀2) of the bowed plate. As the in-plane compressive load increases, 

so do the strains. At the critical stress strain 𝜀2 stops increasing and begins decreasing, this point is 

estimated as the buckling load. In top-of-the-knee method the portion of the postbuckling curve, 

where the rate of increase of out of plane deformation goes from low to high, is called “knee”. The 

top of it corresponds to the approximate buckling load. Both methods are subjective as different 

observers might determine the load values slightly differently and become more difficult to apply as 

the magnitude of initial imperfection becomes larger. 

A square composite plate that is clamped at all edges was researched in [12]. This paper presents 

finite element and experimental modelling of composite plates with initial transversal imperfection 

and finite element modelling of delaminated composite plates. The plate that is analysed is a part of 

a ship hull structure that is placed between two pairs of stiffeners. The plate has a square shape with 

the length of the side of 320 mm and thickness of 4.96 mm. Material that is used has the following 

properties: 

𝐸𝑥 = 46⁡𝐺𝑃𝑎, 𝐸𝑦 = 13⁡𝐺𝑃𝑎, 𝐸𝑧 = 13⁡𝐺𝑃𝑎, 𝐺𝑥𝑦 = 5⁡𝐺𝑃𝑎, 𝐺𝑥𝑧 = 5⁡𝐺𝑃𝑎, 𝐺𝑦𝑧 = 4.6⁡𝐺𝑃𝑎, 𝜇𝑥𝑦 = 0.3, 

𝜇𝑦𝑧 = 0.42, 𝜇𝑥𝑧 = 0.3, with 𝐸𝑥 𝐸𝑦 = 3.54⁄  
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traction strengths 𝑅𝑥 = 1.062⁡𝐺𝑃𝑎, 𝑅𝑦 = 0.031⁡𝐺𝑃𝑎, compression strength 𝑅𝑦 = 0.118⁡𝐺𝑃𝑎, shear 

strength 𝑅𝑥𝑦 = 0.72⁡𝐺𝑃𝑎.  

The initial imperfection shape is the first buckling mode of the flat plate that is clamped at all sides. 

Figure 2.2.3 Plate layup and initial transversal deformation [12] p. 390, 393 

The analysis is presented for the most usual imperfection magnitudes that is introduced after ship 

deck fabrication: 𝑤0 = 1.06⁡𝑚𝑚,𝑤0 = 3.2⁡𝑚𝑚,𝑤0 = 9.6⁡𝑚𝑚.  

The finite element analysis was presented for the following cases: compressive buckling, shear 

buckling, mixed compressive and shear buckling. Only the first case is of interest for this research 

and, therefore, only this case will be described here. 

The plate was modelled as clamped at all edges with the boundary conditions defined as 

(displacements u and rotations r): 

- on the sides parallel with x-axis: 𝑢z = 0, ⁡𝑟x = 0, 𝑟y = 0 

- on the sides parallel with y-axis:  

- clamped side: 𝑢x = 0, 𝑢y = 0, 𝑢z = 0, ⁡𝑟x = 0, 𝑟y = 0, 𝑟z = 0 

- loaded side: 𝑢y = 0, 𝑢z = 0, ⁡𝑟x = 0, 𝑟y = 0, 𝑟z = 0 

using shell elements and nonlinear analysis of the buckling behaviour. 

The results are presented in a graph which shows the in-plane loading versus the transversal 

deformation of the midpoint of the plate. As it can be seen from this diagram the buckling load of a 

plate with initial transversal imperfection is difficult to determine since the curves do not have 

bifurcation points as in case of plates with perfect geometry. By drawing the asymptote to the curve 

where the slope changes almost suddenly the buckling load 𝑝𝑐𝑟 , is estimated to be between 

140⁡𝑀𝑃𝑎 < 𝑝𝑐𝑟 < 175⁡𝑀𝑃𝑎.  

These results were validated by the experiments. The tested plate has the initial transversal 

deformation of 9.6 mm. The measurements were done with the stretching machine, displacement 

transducer, strain gauge measurement system. A very rigid frame was used to assure the proper 

boundary conditions. The comparison is done in diagram in figure 2.13 and shows good agreement 

between the FEA and tests and demonstrates the behaviour described by theory. 
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Figure 2.2.4 Buckling and post buckling behaviour of compression buckling of imperfect plate [12] 

p. 392 

 

Figure 2.2.5 Variation of compression load versus displacement of the midpoint of the imperfect 

plate [12] p. 394 
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Experimental programme was presented by Czapski and Kubiak (2015) [13] for square hollow cross-

section columns under concentric compression. Tests specimens were produced using autoclaving 

technique and have the dimensions shown in figure 2.2.6. The main aim of the tests to validate the 

FE model and study the influence of layer arrangement on buckling behaviour. 

 

Figure 2.2.6 Geometry of the columns [13] p. 1161 

Six different layups were considered of which three are symmetric and the other three are 

asymmetric: 

- [45/-45/45/-45/-45/45/-45/45] - CS1; 

- [45/-45/0/0/0/0/-45/45] – CS2; 

- [45/-45/45/0/0/45/-45/45] – CS3; 

- [45/-45/45/0/0/-45/45/-45] – CS4; 

- [0/45/-45/45/-45/45/-45/0] – CS5; 

- [-45/45/45/45/-45/-45/-45/45] – CS6. 

The laminate properties: 

𝐸1 = 38.5⁡𝐺𝑃𝑎, 𝐸2 = 8.1⁡𝐺𝑃𝑎, 𝐺12 = 2⁡𝐺𝑃𝑎, 𝜈𝑥𝑦 = 0.27, 𝑇1 = 792⁡𝑀𝑃𝑎, 𝑇2 = 39⁡𝑀𝑃𝑎, 

𝑆12 = 108⁡𝑀𝑃𝑎, 𝐶1 = 679⁡𝑀𝑃𝑎, 𝐶2 = 71⁡𝑀𝑃𝑎 

Each sample was loaded three times from 0 up to 150% of the critical load obtained with FEA, the 

fourth test was performed up to failure. In order to determine the deflection of the walls strain 

gauges and digital image correlation were used. After performing the tests buckling loads were 

obtained using two methods: 

- load versus square of deflection 𝑃 − (𝜀1 − 𝜀2)
2 method M-1 

- load versus deflection 𝑃 − (𝜀1 − 𝜀2) curve inflection point method M-2 

In the first method squared deflection becomes a straight line in the postbuckling state, which 

enables linear approximation of the curve. The point of intersection with the load axis is then 

assumed to be the critical force. In method M-2 the curve changes its concavity at the point called 

inflection point or “top of the knee”. The vertical coordinate of this point is assumed to be the 

critical buckling load. 
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In numerical investigations both linear buckling and nonlinear static analysis were performed. The 

buckling mode of the magnitude 0.1𝑡, where 𝑡 is thickness, was applied as initial imperfection in the 

nonlinear analysis. The boundary conditions of the column: 

- at the unloaded side: 𝑢x = 0, 𝑢y = 0, 𝑢z = 0 

- at the loaded side where point force is applied: 𝑢x = 0, 𝑢y = 0 

The comparison of the linear buckling analysis shows good agreement with the experimental data 

when the manufacturing imperfections, in this case variation in wall thickness, are taken into 

account.  

As it can be seen from the graphs below the postbuckling curves obtained from the nonlinear static 

analysis are in general in good agreement with the test data (except case (e), when the specimen 

exhibited two modes; LBA critical buckling loads of these two mods were close together and the 

difference between experimental and numerical results were distinct). It can be seen that the 

experimental postbuckling paths of the symmetric layups are placed in between the FEA results; the 

paths for asymmetric layups determined experimentally are above those determined numerically. 

In general, the FEA model gives a good prediction for the buckling behaviour of the hollow column 

with symmetric layups. The main conclusion was drawn that the problem lies in correct modelling of 

initial imperfections, and a future analysis investigating the influence of manufacturing 

imperfections on buckling load and postbuckling behaviour is necessary. 
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Figure 2.2.7 Numerical and experimental postbuckling curves [13] p. 1165 

Barbero and Trovillion (1998) [14] performed experimental measurement on axially loaded columns 

where one of the points was to investigate the effect of damage accumulation. For that the columns 

that were already tested were loaded for the second time. It was found that when the initial test 

involved large postbuckling deflections the effect of damage was equal to magnification of the initial 

imperfections in the specimens. The buckling shape was identical but exhibiting more noticeable 

deflections under smaller load. However, the ultimate critical load was about the same as in the 

initial test (figure 2.2.8). It was therefore concluded that damage accumulated during the first 

loading has no effect on load carrying capacity of FRP element. 

 

Figure 2.2.8 Effect of damage accumulation [14] p. 1339 

 

2.2.2 APPLICATION OF IMPERFECTIONS IN STANDARDS  
 

JRC 

The influence of the imperfections on buckling is considered implicitly in the models given in JRC 

through considering the interaction between local and global buckling modes under axial 

compression. FRP material behaviour remains linear for large strains and because of that the local 

and the global buckling critical stress may be close to each other or coincide for columns of 

intermediate lengths. The interaction of the two buckling modes can lead to a combined buckling 
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mode, and it has been shown experimentally that the failure load is then lower than that predicted 

load for local or global buckling.  

 

 

Figure 2.2.9 Local buckling mode (top left), global buckling mode (top right) and interactive 

buckling mode (bottom) [15] p. 270, 275 

The postbuckling paths of local and global buckling are stable, but the one of the interaction mode is 

not with no load capacity after buckling. A column that buckles into an interactive buckling mode is 

imperfection-sensitive; this means that the failure load of such an element will be lower than the 

buckling mode of the perfect element.  

In Barbero (2000) [15] an imperfection sensitivity study was made, considering three shapes of 

imperfections of local buckling mode shape, global buckling mode shape and the combination of 

both. The amplitude of imperfections ranged from 𝑡/250 to 𝑡/2, with 𝑡 being the thickness of the 

column flange. The effect of the shape of imperfection is shown in figure 2.2.10 and the effect of 

amplitude of imperfection is shown in figure 2.2.11. The combined imperfection shape has a larger 

load reduction only because the combination of the two means a larger magnitude of imperfection, 

and so it was concluded that the magnitude rather than the shape of imperfection and slenderness 

has a significant influence on the behaviour of the column. 

 

Figure 2.2.10 Effect of imperfection shape [15] p. 278 



38 
 

 

Figure 2.2.11 Effect of imperfection amplitude [15] p. 279 

In design this behaviour is considered through an interaction constant 𝑐 which is a function of 

geometry, material properties and initial imperfections. 

The design force that causes instability of the element is given in JRC document by: 

𝑁𝑅𝑑2,𝑐 = 𝜒 ∙ 𝑁𝑙𝑜𝑐,𝑅𝑑 

(2.2.1) 

where 𝑁𝑙𝑜𝑐,𝑅𝑑 is the design value of the compressive force that causes local instability of the 

element and was discussed in detail in the section 2.1.2. 

𝜒 is a reduction factor that takes into account the interaction between local and global buckling and 

is expressed as: 

𝜒 =
1

𝑐 ∙ 𝜆2
(𝛷 − √𝛷2 − 𝑐 ∙ 𝜆2) 

(2.2.2) 

with 𝛷 being shape function and 𝜆 – slenderness; 

𝑐 is taken equal to 0.65; and indicates the degree of interaction occurring between the two modes. 

𝑐 = 1.0 would represent the situation when mode interaction has no effect on the critical load. 

The value 𝑐 = 0.65 is based on experimental data provided by several researches: Barbero and 

Tomblin (1994) [17], Zureick and Scott (1997) [18], Barbero and Trovillion (1998) [14], Brown, 

Mottram and Anderson (1998) [19], and Barbero, Dede and Jones (1999) [20], and is a conservative 

estimation: 
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Figure 2.2.12 Comparison of the design equation and experimental results for buckling mode 

interaction [16] p. 186 

 

CUR96 

In CUR the imperfections factors are given global buckling and lateral torsional buckling. 

Critical buckling force is given as: 

𝑁𝑏,𝑅𝑑 = 𝜒 ∙
𝜂𝑐 ∙ 𝐴 ∙ 𝜌 ∙ 𝑓𝑐,𝑘

𝛾𝑀
 

(2.2.3) 

where 𝜒 is a reduction factor, 𝐴 is area of cross-section, 𝑓𝑐,𝑘 is characteristic compressive strength 

and  

𝜌 =
𝑓𝑐,𝑠𝑡𝑎𝑏,𝑘
𝑓𝑐,𝑘

≤ 1 

(2.2.4) 

which is a reduction factor for local wrinkling and imperfections. 

The expression for the reduction factor is  
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𝜒 =
1

𝛷 + √𝛷2 − 𝜆̅2
≤ 1 

(2.2.5) 

where the shape function depends on relative slenderness 𝜆̅𝑓, imperfection factor 𝛼𝑓 and plateau 

length of buckling curve 𝜆̅𝑓,0: 

𝛷 = 0.5 ∙ (1 + 𝛼𝑓 ∙ (𝜆̅𝑓 − 𝜆̅𝑓,0) + 𝜆̅𝑓
2) 

(2.2.6) 

 

Figure 2.2.13 Buckling curves for a hollow profile [3] p. 152 

Parameters 𝛼𝑓 and 𝜆̅𝑓 depend on the shape of cross-sections and were determined experimentally 

and numerically [3]: 

Cross-section 𝛼𝑓 𝜆̅𝑓,0 

hollow 0.40 0.50 

I-, U- (weak axis bending) 0.75 0.50 

I-, U- (strong axis bending) 0.50 0.50 

Table 2.5 𝜶𝒇 and 𝝀̅𝒇 for column buckling 

A comparison between the design procedures given in JRC and CUR96 for column and lateral 

torsional buckling in given in Annex A. 

In addition to column and lateral torsional buckling, CUR96 gives a guideline for buckling of plates as: 

𝑓𝑥,𝑅𝑑,𝑐 = 𝛼 ∙
𝜂𝑐 ∙ 𝜎𝑐𝑟,𝑐

𝛾𝑀
 

(2.2.7) 
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where 𝜎𝑐𝑟,𝑐 is critical buckling load that can be determined by plate formulas given in table 2.2 and 𝛼 

is the imperfection factor, which is not specified further; for a conservative estimation it can be 

taken as a maximum value of allowed bow imperfection of 𝐿 125⁄ , where 𝐿 is the smallest value of 

width or length of the plate. 

 

2.2.3 LIMITING VALUES 
 

EN 13706-2:2002 [21] is a standard for Reinforced plastics composites – Specifications for pultruded 

profiles and Part 2 comprises test methods and general requirements.  

ANNEX A lists visual defects with descriptions and acceptance levels, from which wrinkle depression 

is of interest for the scope of this research. Wrinkle depression is an undulation or series of 

undulations or waves on the surface of the pultruded profile and the dimensional tolerance is not 

greater than 20% of thickness or 1,5 mm out of its plane.  

ANNEX B gives dimensional tolerances for pultruded profiles. These tolerances are shown in table 

2.7. Among various deviations in geometry of profiles there is also a tolerance for initial transverse 

deflection of a flat plate, which is given as 𝐹 < 0.008 ∙ 𝐵, where 𝐵 is the width of the plate. This 

limiting value is basically the same as given in CUR96 with 𝐿 125⁄  with 𝐿 being the smallest 

dimension (length or width) of the plate.  

The straightness tolerance for profiles in EN 13706-2 is given as a function of length and depends on 

cross-sectional dimensions. It is worth mentioning that ASTM Standard [22] specification for 

dimensional tolerance of thermosetting glass-reinforced plastic pultruded shapes gives a different 

limiting value for out-of-straightness 𝐿 240⁄ . 

Zurieck and Scott [18] reported out-of-straightness measurements of I- and hollow section profiles. 

It was found that the imperfections were well within the tolerances allowed by ASTM. Their 

measured values were compared to the tolerances given in EN 13706-2 as: 

• for I-columns and hollow columns VG13 to VG18: 𝐷 < 0.0005 ∙ 𝐿2 

• for hollow columns VG19 to VG24: 𝐷 < 0.001 ∙ 𝐿2 

These expressions provide much smaller values than those in ASTM and as a result not all the 

measured imperfections were within the acceptable limit given by EN 13706-2. 
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Table 2.7 Dimensional tolerances for pultruded profiles [21] p. 12-13 

Laudiero, Minghini and Tullini (2014) [23] presented an extended study of I-section profile subjected 

to pure compression with three types of geometric imperfections verifying the limiting values given 

in standards and found in literature [24].  

The three shapes of imperfections are: 

• uniform bending in the minor axis plane (S) 

• sinusoidal imperfection of web and flanges similar to the first local buckling mode (L) 

• non-orthogonality between the planes of the web (A) 

The two sets of imperfection values were evaluated: 

• S: 𝐿 240⁄  and 𝐿 4500⁄  

• L: 8 ∙ 10−3 ∙ 𝑏𝑓 and 2 ∙ 10−5 ∙ 𝑏𝑓 

• A: 1.5° and 0° 

The first limiting value for S-imperfection corresponds to the out-of-straightness imperfection given 

by ASTM, while the first limiting value for L-imperfection is that of provided in EN for plate flatness. 

For the first set of imperfection amplitudes in stocky columns it was found that the S-imperfection 

and the superposition of S- and L-imperfections have the most detrimental influence on the 

behaviour of the element. The A-imperfections turned out to be ineffective and the curve 

representing the superposition of S- and A-imperfections just slightly differs from the curve of S-

imperfections acting alone (figure 2.2.14). Moreover, the numerical results did not agree with 

previously obtained experimental data [25]. 
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Figure 2.2.14 Numerical results for the first set of imperfection amplitudes [23] 

With the reduced magnitudes of imperfections (second set) higher ultimate loads were obtained and 

the results were in good agreement with test data. For L-imperfections of original amplitude the 

ratio between the ultimate load and local buckling load was 1.07 and for the second set of 

amplitudes 1.27. 

 

Figure 2.2.15 Numerical results for the reduced set of imperfection amplitudes [23] 

Thus, it was concluded that the limiting amplitudes were unrealistic and resulted in the failure 

modes and ultimate loads that did not comply with experimental results. 

This is in contradiction to what was concluded by Barbero and Trovillion [14]. 

 



45 
 

2.3 CHAPTER SUMMARY 
 

Analytical models for plates and profiles were discussed in this chapter. While plate expressions 

based on idealized boundary conditions, the plates which are a part of a profile are considered with 

rotational restraints. This means that the interaction between web and flanges as to be taken into 

account. Two approaches for that were described: JRC with Kollar’s work as a background and 

CUR96 that is based on research by Barbero and Qiao.  

JRC’s method takes into account the differences between material properties and thickness of webs 

and flanges, while CUR96 does not. The difference in material properties can be taken into 

consideration by using the expanded formula given in the CUR’s background document Step-by-Step 

design equations [11], the thickness of the web however is only considered when calculating the 

axial or bending stiffness of the element and therefore is not present in the expression of critical 

buckling stress.  

The approach for modelling local buckling behaviour of H. Trumpf is similar to the one that is used 

for steel plates with effective cross-section and considering idealized boundary conditions, providing 

plate buckling coefficients calculated only for certain material properties. 

The analytical formulas for plates with idealized boundary conditions and for profiles do not account 

for initial geometric imperfections. The plate whose geometry deviates from the intended one in a 

form of initial transverse deflection shows a different buckling behaviour than a perfect plate. This 

behaviour can be studied by performing a nonlinear analysis. The main difference is observed 

around the Euler’s buckling load: while a perfect plate has a bifurcation point, the imperfect plate 

does not. Because of the rounded-over load – deflection curve it is difficult to estimate critical 

buckling load of an imperfect plate, however, because the postbuckling path is known it is possible 

to estimate ultimate loads. In a study on effect of damage accumulation [14] it was found that the 

presence of initial deformations did not degrade the load carrying capacity. 

The influence of initial geometric imperfections is considered in JRC through the global and local 

buckling modes interaction: for columns of intermediate length the two modes can be close or even 

coincide forming a new unstable buckling mode. In this case a structural element is considered 

imperfection-sensitive and its imperfections’ magnitude and not the shape has the biggest influence 

of the behaviour. CUR96 provides imperfection coefficients for column buckling, the influence of 

imperfections on the local buckling behaviour is not quantified but should be taken into account. 

The buckling mode interaction is not a part of CUR96’s procedure for stability. 

Dimensional tolerances are provided for pultruded profiles in EN 13706-2:2002, and give smaller 

allowable levels than ASTM. The limiting values given in standards were concluded by some authors 

[23] to be unrealistic compared to the actual measured imperfections and gave rise to results that 

did not match the experimental data. The smaller magnitudes of initial imperfections resulted in 

higher ultimate loads and matched the test results, which contradicts the conclusion that was drawn 

in [14] based on the study on the effect of damage accumulation. 

For a large part the research in local buckling of FRP structural elements is made for pultruded 

profiles. No experimental or numerical data was found for VARTM-produced plates, columns or 

beams. The imperfection-sensitivity analysis is mostly performed using the buckling modes obtained 

from the linear analysis and focuses on mode interaction and influence of layer arrangement.  
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3. PLATE BUCKLING ANALYSIS 
 

The goal of the plate buckling analysis is to study buckling behaviour of orthotropic plates and to 

establish what effect shape and amplitude of initial imperfection has on the buckling behaviour, and 

the role of geometry and material properties in buckling behaviour of perfect and imperfect plates. 

Several magnitudes of initial geometric imperfections including the limiting value provided in EN 

13706-2 and vales found in literature will be examined.  

 

3.1 EFFECT OF SHAPE AND MAGNITUDE OF IMPERFECTION 
 

Both linear buckling analysis and geometrically nonlinear static analysis will be performed to 

investigate buckling behaviour of plates with initial out of plane deformation. Linear buckling 

analysis (LBA) will be used to obtain buckling modes of a plate and the results will be compared to 

analytical solutions. In the geometrically nonlinear analysis four shapes of imperfections are 

analysed. Three arbitrary amplitudes - 𝐵 3000,𝐵 1000,𝐵 300⁄⁄⁄  - of imperfections are considered 

to establish the sensitivity to the magnitude of initial deviations; fourth value 𝐵/125 is the limiting 

value from the standard. 

 

3.1.1 MODEL 
 

The following model is used: 

Rectangular plate with width 𝐵 = 300⁡𝑚𝑚, length 𝐿 = ⁡900⁡𝑚𝑚, and thickness 𝑡 = 4⁡𝑚𝑚 

Layup I: [02/452/−452/902/02]𝑠  with ply thickness is 0.2⁡𝑚𝑚 (figure 3.1.1) 

0° − 40%;⁡45° − 20%;⁡−45° − 20%;⁡⁡90° − 20% 

 

Figure 3.1.1 Ply stack plot layup I (Ex/Ey = 1.27), t = 4 mm 
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The properties of the ply are calculated using strain limits for E-glass / Polyester UD ply given in table 

3.1 and stiffness properties given in table 3.2: 

 

Table 3.1 UD ply strain limits [2] p. 45 

 

Table 3.2 UD ply stiffness properties [2] p. 43 

Taking into account 𝑉𝑓 = 50%: 

𝑓1𝑡 = 𝐸1 ∙ 𝜀1𝑡 = 744⁡𝑀𝑃𝑎 – tensile strength in the longitudinal direction 

𝑓1𝑐 = 𝐸1 ∙ 𝜀1𝑐 = 446.4⁡𝑀𝑃𝑎 – compressive strength in the longitudinal direction 

𝑓2𝑡 = 𝐸2 ∙ 𝜀2𝑡 = 22.8⁡𝑀𝑃𝑎 – tensile strength in the transversal direction 

𝑓2𝑐 = 𝐸2 ∙ 𝜀1𝑐 = 102.6⁡𝑀𝑃𝑎 – compressive strength in the transversal direction 

𝑓12 = 𝐺12 ∙ 𝛾12 = 64.6⁡𝑀𝑃𝑎 – in-plane shear strength 

The resulting axial stiffness properties of the laminate are: 

𝐸𝑥 = 22.56⁡𝐺𝑃𝑎⁡𝐸𝑦 = 17.71⁡𝐺𝑃𝑎;⁡𝐺𝑥𝑦 = 6.35⁡𝐺𝑃𝑎;⁡𝜈𝑥𝑦 = 0.323;⁡𝜈𝑦𝑥 = 0.257 

The stiffness ratio of axial moduli of elasticity in longitudinal and transverse direction: 𝐸𝑥 𝐸𝑦 = 1.27⁄  

Calculation of the equivalent laminate properties is presented in Annex B. 

Boundary conditions: 

• along all edges 𝑢𝑧 = 0 

• at 𝑥 = 450; 𝑦 = 150 (midpoint of the plate) 𝑢𝑥 = 0; 𝑢𝑦 = 0 

• at 𝑥 = 900; 𝑦 = 150 𝑢𝑦 = 0 

The load is applied to a point at each side of the plate and is rigidly coupled to the loaded edges. 
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Figure 3.1.2 Plate geometry, boundary and loading conditions for buckling analysis 

The plate was modelled in Abaqus software. The element type used is S4R, with size of 

18.75 × 19.57⁡𝑚𝑚 (16 elements in 𝑦 and 46 elements in 𝑥 direction of the plate). 

 

3.1.2 LINEAR BUCKLING ANALYSIS 
 

The first six buckling modes obtained from the linear buckling analysis are presented in figure 3.1.3. 

 

Figure 3.1.3 The first six buckling modes of the plate of layup I and t = 4 mm 

Using the analytical expression for a simply supported plate from table 2.1 the buckling loads were 

calculated for the given plate geometry and number of halfwaves in the direction of the load (𝑚). 

The resulting values and the difference with the values from the finite element analysis are shown 

below (table 3.3). The first number in the mode column relates to the number of the mode, the 

value of 𝑚 shows the number of halfwaves in corresponding buckling mode. For example, the first 

buckling mode (1) has 3 halfwaves (𝑚 = 3). 

1 2 3

4 5 6
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Table 3.3 Comparison of the critical loads obtain from the analytical formula and FEA              

(layup I, t = 4 mm) 

The load values from FEA and the analytical formula are within 3% from each other, except for the 

critical load for buckling mode 6, where the difference is about 10%, which is still within acceptable 

limits. The plus sign in the difference column in the table 3.3 means that the result obtained with 

FEA gives a lower value of the critical load compared to the analytical result. This happens in two 

cases: for 𝑚 = 2 (buckling mode 2) and 𝑚 = 1 (buckling mode 6). The largest difference in analytical 

and FEA solutions is observed for 𝑚 = 1; in this case the length of the halfwave (buckling length) is 

the largest compared to all the other cases. In figure 3.1.4 it can be seen that the blue curve for 𝑚 =

1 intersects with the vertical dashed line 𝐴𝑅 = 3 with the ascending branch of the curve. This also 

happens for 𝑚 = 2, but the intersection point’s ordinate is a lot closer to the minimum critical load 

value, than in case of 𝑚 = 1 and could be the reason for better agreement between the results. 

 

Figure 3.1.4 Visualization of the analytical results for the plate of layup I and t = 4 mm 

mode force FEA, N force analytical, N difference, %

1; m=3 14696 14648.78 -0.3

2; m=2 15047 15439.69 2.5

3; m=4 17412 17183.06 -1.3

4; m=5 21744 21440.25 -1.4

5; m=6 27532 27024.97 -1.9

6; m=1 29234 3256.31 10.2

0

5000

10000

15000

20000

25000

30000

35000

0 1 2 3 4 5 6

cr
it

ic
al

 fo
rc

e,
 N

aspect ratio

m=1 m=2 m=3 m=4 m=5 m=6 AR=3

14648.78 N
15439.68 N

17183.05 N

21440.24 N

27024.96 N

32561.31 N



50 
 

 

Figure 3.1.5 Dependence of buckling load and mode on plate aspect ratio for the plate of  layup I 

and t = 4 mm 

Figure 3.1.5 shows the dependence of the buckling mode and load on plate aspect ratio. From the 

graph it is visible that plates with aspect ratio larger than 3 will buckle at almost the same load level 

into corresponding buckling modes, which is represented by grey, yellow and blue curves that 

become more linear with the increase of the aspect ratio. In case of a homogeneous plate (e.g. 

steel), the minimum of the parabola (minimum critical load) for a given buckling mode coincides 

exactly with the corresponding aspect ratio. In other words, a plate with 𝐴𝑅 = 3 will buckle into a 

buckling mode 𝑚 = 3 and the minimum of the buckling mode curve will be exactly at 𝐴𝑅 = 3. This is 

not the case for an orthotropic plate, since the plate has different bending stiffness in longitudinal 

and transverse directions (𝐷11 𝐷22 ≠ 1⁄ ). For 𝑚 = 3, according to figure 3.1.5, the minimum 

buckling load will correspond to aspect ratio of ≈ 3.4; it is determined by the measure                   

𝐴𝑅 ∙ √𝐷11 𝐷22⁄4
. So, the minimum of curve 𝑚 = 3 is located at 3 ∙ √146.48 84.34⁄

4
= 3.44; 𝑚 = 2: 

√146.48 84.34⁄4
= 2.30, etc. 

 

3.1.3 GEOMETRICALLY NONLINEAR ANALYSIS 
 

Geometrically nonlinear analysis considers the presence of initial out of plane deformations of the 

plate. The shape of the geometric initial imperfection is introduced to the non-linear model through 

*IMPERFECTION command in Abaqus. The applied force is about 3 times higher than the critical 

buckling load that was obtained in the linear buckling analysis.  

In the geometrically nonlinear analysis several types of imperfections are considered: 

• in the shape of the first buckling mode from the linear buckling analysis – type 1; 

• in the shape of the second buckling mode – type 2; 

• in the shape of a single half-wave (buckling mode 6) – type 3; 

• wrinkle imperfection – type 4 
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Four magnitudes of imperfections are considered for the nonlinear analysis: 

𝐵 3000⁄ , 𝐵 1000⁄ , 𝐵 300⁄ , 𝐵 125⁄ , where 𝐵 is the width of the plate. For a plate with the width of 

𝐵 = 300⁡𝑚𝑚, the values of the imperfections are 0.1; 0.3; 1; ⁡2.4⁡𝑚𝑚. The last amplitude is the 

limiting value given in EN 13706-2. 

 

Figure 3.1.6 Plate with initial imperfection in the shape of the first buckling mode (m=3) 

 

FIRST BUCKLING MODE – TYPE 1 

The initial and final shape of the plate at the first load increment 𝑃 = 50⁡𝑁 and at the maximum 

load 𝑃 = 50000⁡𝑁 respectively with the initial imperfection of the amplitude 𝐵/125 is shown in the 

figure 3.1.7. The plate with the imperfection type 1 has the same general initial shape and assumes 

the same shape at the maximum value of the load for all magnitudes of imperfection; only the 

values of the out of plane deformations differ depending on the imperfection amplitude. 

 

Figure 3.1.7 Initial and final shapes of the imperfect plate type 1 

The imperfection magnitude also affects how the plate assumes the buckled shape. To illustrate that 

the contour plots (figure 3.1.8) of the plate displacements are shown at different load values for a 

very small imperfection amplitude 𝐵 300000⁄ ; intermediate amplitude 𝐵 1000⁄  and the maximum 

amplitude 𝐵 125⁄ . First the displacements are shown for the first increment at which 𝑃 = 50⁡𝑁; 

increments 34 and 35 correspond to the values of 𝑃 = 14589.1⁡𝑁 and 𝑃 = 15089.1⁡𝑁 and the last 

increment is the maximum load of 𝑃 = 50000⁡𝑁. The increments 34 and 35 are chosen because 

they correspond to the load levels just before and after the buckling of the plate without initial 

imperfections occurs. By selecting to view the magnitude of the displacement in Abaqus, the 

contour plot will show the largest values of the displacement out of three directions (x, y, z). 

w_max
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For the imperfection magnitude 𝐵 300000⁄  it can be seen from the figure 3.1.8 that initially the 

displacements of the plate are governed by the shortening of the plate (increment 1 and 34). 

However, at the load just above the critical value the out of plane deflection increased rapidly. This 

shows that between 𝑃 = 14589.1⁡𝑁 and 𝑃 = 15089.1⁡𝑁 the buckling occurred. 

The plate with the initial imperfection of 𝐵 1000⁄  already shows noticeable out of plane 

deformation compared to the shortening in the first increment of the analysis, which continue to 

grow with the load increase. There is no sudden increase of the out of plane deformation as in 

previous case. 

For the imperfection amplitude of 𝐵/125 the out of plane deflection is the governing displacement 

on every stage of the analysis. Compared to the previous case (𝐵 1000⁄ ) larger deflections occur 

under lower load values. At 𝑃 = 50⁡𝑁 the out of plane deflection repeats the buckling mode 1, 

showing three locations of the maximum deflection (red areas). As the load increases the more 

prominent increase of the deformation is seen at the red areas at the edges of the plate.  
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 Figure 3.1.8 Displacements of the imperfect plate at different load levels (based on the absolute values)

B/300000 B/1000 B/125

1

P = 50

34

P = 14589.1

35

P = 15089.1

105

P=50000
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Figure 3.1.9 shows the force-deflection curves for a plate with initial geometric imperfection in a 

shape of the first buckling mode. The transverse deflection is measured in the point of the maximum 

deflection (shown with 𝑤_𝑚𝑎𝑥 in figure 3.1.7) at the final force increment. The dashed line 

represents the Euler critical load obtained from the linear buckling analysis. The grey curve 

represents the plate with a very small imperfection 𝐵 300000⁄  to demonstrate that the behaviour is 

very close to that of a perfect plate – the curve has a bifurcation point at the load level close to the 

critical buckling load of the perfect plate. As expected, the larger the imperfection the bigger the 

effect on the buckling behaviour. At 𝐵 125⁄  the curve becomes very rounded over, which 

corresponds to what was shown in figure 3.1.8 and indicates that the plate with an imperfection of 

this magnitude does not buckle suddenly. For the intermediate magnitudes of 𝐵 300⁄  and 𝐵 1000⁄  

there is no bifurcation buckling, but the transverse deflection grows slowly in the first part of the 

graph, around the critical buckling load there is a knee in the curve after which the deflections 

increase at a higher rate. Overall, the graph is very similar to the one in figure 2.2.2 and follows the 

behaviour that is known from theory and practice. 

 

Figure 3.1.9 Force – deflection at maximum curves for a plate with the imperfection in the shape of 

the first buckling mode 

Based on these graphs it can be concluded that for a plate with given geometry the bifurcation 

buckling does not occur when the values of initial imperfection are 𝐵/300 and 𝐵/125. For lower 

amplitudes the buckling load can be approximated, since it is possible to distinct two regions of the 

curves with different rate of change in out of plane deformation. 
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Figure 3.1.10 Force – end shortening curves for a plate with the imperfection in the shape of the 

first buckling mode 

Figure 3.1.10 shows the axial displacement of the plate. From these plots it can be seen that the 

curves corresponding to the imperfection magnitudes of 𝐵 3000⁄  and 𝐵 1000⁄  almost coincide with 

the curve of 𝐵 300000⁄ , which means that the initial “apparent” or equivalent stiffness of the plate 

is the same in these three cases and begins to reduce around the critical buckling load. The 

reduction is sudden in case of 𝐵 300000⁄  and more gradual for the other two imperfection 

amplitudes. For 𝐵 300⁄  and 𝐵 125⁄  there is a noticeable reduction in initial stiffness of the plate 

almost from the start of loading. In relation to initial modulus of elasticity 𝐸𝑥 = 22.56⁡𝐺𝑃𝑎 the 

reduction of apparent stiffness will be approximately 0.4% for 𝐵 1000⁄ , 9.6% for 𝐵 300⁄ ⁡and 30% for 

𝐵 125⁄  at 𝑃 = 6089.06⁡𝑁 This is not the actual stiffness reduction, but the effect of additional 

bending moment that results from the initial out of plane deformation. For loads higher than the 

linear critical load the apparent stiffness for all imperfection magnitudes seem to be the same – the 

curves are almost parallel to each other.  

 

SECOND BUCKLING MODE – TYPE 2 

The initial and final shapes of the plate with the imperfection type 2 are shown in the figure below. 

As in the case of the imperfection type 1 the general buckled shape of the plate is the same for all 

imperfection magnitudes. 
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Figure 3.1.10 Initial and final shapes of the imperfect plate type 2 

In general, the effect of imperfection in the shape of the second buckling mode is similar to the first 

buckling mode. Plots for out of plane and axial deflections of the plate with initial imperfection type 

2 can be found in Annex C.1, figures  C.1.1 and C.1.2. 

Figure 3.1.11 shows the comparison of out of plane deformations measured at maximum (𝑤_𝑚𝑎𝑥) 

for imperfection amplitudes 𝐵/1000 and 𝐵/125. 

 

Figure 3.1.11 Comparison of imperfection shape type 1 and type 2 on out of plane deformations 

At the beginning of loading the deflections coincide in both cases; after a certain level the 

deflections in the plate with the imperfection type 2 (second buckling mode) increase faster than in 

the plate with the imperfection type 1. In the geometrically linear analysis it was determined that 

the first buckling mode of the plate has 3 halfwaves, and in the second buckling mode – halfwaves, 
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therefore, the length of the halfwaves is different for type 1 and type2. For type 1 it is 𝐿 𝑚⁄ =

300⁡𝑚𝑚 (𝐿 is the length of the plate and 𝑚 is the number of halfwaves) and 450⁡𝑚𝑚 for type 2. 

 

Figure 3.1.12 Comparison of imperfection shape type 1 and type 2 on end shortening 

In 3.1.12 it is seen that for 𝐵/1000 mode 1, the initial apparent stiffness is the same as for mode 2, 

but for 𝐵/125 plate with imperfection type 1 has larger axial displacement than plate with 

imperfection type 2. 

 

ONE HALFWAVE (SIXTH BUCKLING MODE) – TYPE 3 

In contrast with two previous cases, the plate with the imperfection in the shape of one halfwave 

over the whole length of the plate shows different behaviour for different amplitudes of 

imperfection. This is illustrated in figures 3.1.13 to 3.1.15. 
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Figure 3.1.13 Initial and final shapes of the imperfect plate for B/3000 and B/1000 type 3 

Figure 3.1.13 shows that for smaller amplitudes of imperfection (𝑩/𝟑𝟎𝟎𝟎 and 𝑩/𝟏𝟎𝟎𝟎) the plate 

gradually bends in the shape that is determined by the shape of initial imperfection – one halfwave 

(buckling mode 6). 

 

Figure 3.1.14 Initial and final shapes of the imperfect plate for B/300 and B/125 type 3 

Figure 3.1.14 shows that for imperfections with amplitudes 𝐵/300 and 𝐵/125 the initial 

imperfection shape has one halfwave but the final shape of the plate has three halfwaves, which 

corresponds to initial imperfection in the shape of the first buckling mode (𝑚 = 3). 
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Figure 3.1.15 Force – deflection at maximum curves for a plate with the imperfection in the shape 

of the sixth buckling mode 

Plot in figure 3.1.15 shows the force – deflection curves of the plate for the imperfection amplitudes 

measured at the maximum of the final buckled shape (for 𝐵/30000, /3000 and 𝐵/1000 

corresponding to the point 𝑤_𝑚𝑎𝑥 in figure 3.1.12 and for 𝐵/300 and 𝐵/125 - 𝑤_𝑚𝑎𝑥 in 3.1.13). As 

is seen in the plot, the plate with smaller amplitudes of imperfection (𝐵/30000, /3000 and 

𝐵/1000) buckles around the critical load corresponding to buckling mode 6, while imperfection 

𝐵/300 and 𝐵/125 causes plate to buckle around critical load of the first buckling mode (the 

theoretical buckling load is slightly higher for 𝐵/125 than 𝐵/300). 
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Figure 3.1.16 End shortening of a plate with the imperfection in the shape of the sixth buckling 

mode 

The plots in figure 3.1.16 show the end shortening of the plate with the imperfection of one 

halfwave. These correspond to previous observations: for lower amplitudes of the imperfection the 

plate buckles around the load corresponding to the mode 6 and for higher amplitudes – around the 

critical buckling load of mode 1 (for 𝐵/125 the kink in the curve (blue) appears at the value that is a 

little higher, around 17000⁡𝑁).  

The contour plots in figure 3.1.17 show step by step buckling of the plate for 𝐵/3000 and 𝐵/125 to 

illustrate the change from the initial shape to the final buckled shape. As is seen, the plate with 

imperfection 𝐵/3000 continuously bends in the shape of the buckling mode 6 (𝑚 = 1), first having 

small out of plane deflections which then increase around critical load of the fist buckling mode. The 

plate with imperfection 𝐵/125 begins with the imperfection with one halfwave and then changes 

into shape with three halfwaves. Between 𝑃 = 15338.1⁡𝑁 and 𝑃 = 17338.1⁡𝑁 the plate with 

imperfection 𝐵/125 changes shape from one halfwave to two halfwaves and at 𝑃 = 18338.1⁡𝑁 it 

shows three halfwaves. Because of this change from the shape of one halfwave into the two 

halfwaves and eventually into three halfwaves, the theoretical critical load does not really 

correspond exactly to any one the buckling modes critical loads. 
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Figure 3.1.17 Buckling of the plate with imperfection type 3 with B/300 and B/125  (based on the 

absolute values) 

 

WRINKLE IMPERFECTION – TYPE 4 

The wrinkle imperfection’s width is 19.57⁡𝑚𝑚 (width of one element). In the preliminary analysis of 

plate buckling behaviour with a wrinkle imperfection, it was established that a plate buckles into the 

first buckling mode, with the maximum deflection at the point denoted as 𝑤_𝑚𝑎𝑥 in figure 3.1.18: 

 

Figure 3.1.18 Initial and final shapes of the imperfect plate with a single wrinkle in the middle 
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Therefore, the for more detailed analysis the two locations of the wrinkle imperfection were chosen; 

assymetric (wrinkle 1) and symmetric (wrinkle 2): 

 

Figure 3.1.19 Locations of the wrinkle imperfection 

In both cases for all imperfection amplitudes the buckled shapes are similar to each other having 

three halfwaves in longitudinal direction. In case of the asymmetric wrinkle imperfection the buckled 

shape is also slightly asymmetric as expected; the two outside halfwaves are not equal and the 

maximum deflection occurs at the point where the initial imperfection is applied (figure 3.1.20). For 

symmetric wrinkle imperfection the buckled shape is symmetric, with maximum deflection occurring 

at points denoted as 𝑤_𝑚𝑎𝑥 (figure 3.1.21). 

 

Figure 3.1.20 Initial and final shapes of the plate with asymmetric wrinkle imperfection 

 

Figure 3.1.21 Initial and final shapes of the plate with symmetric wrinkle imperfection 
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Figure 3.1.22 Force – deflection curves for a plate with the asymmetric wrinkle imperfection  

 

Figure 3.1.23 Force – deflection curves for a plate with the symmetric wrinkle imperfection  
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From the plots in figures 3.1.22 and 3.1.23 it can be concluded that the influence of this type of 

imperfection is not as severe as previously investigated shapes. While buckled plate shapes are 

similar to those observed for imperfection in the shape of the first buckling mode, the behaviour is 

different. There is a clear change in the slope of the load – deflection curves in case of wrinkle 

imperfection for all imperfection amplitudes.  

 

COMPARISON 

After studying the effect of various shapes on plate’s behaviour the following can be summarized: 

• the imperfections in the shape of the first and the second buckling mode have a similar 

effect on the behaviour of the plate, the critical loads for these two buckling modes are close 

and the difference lies in number and, therefore, length of one halfwave; 

• the imperfection in the shape of the sixth buckling mode triggers different behaviour 

depending on the imperfection amplitude: for 𝐵/3000 and 𝐵/1000 plate bends into the 

shape determined by the shape of initial imperfection (one halfwave), but for 𝐵 300⁄  and 

𝐵 125⁄  the final buckled shape has three halfwave which is similar to the first buckling 

mode; 

• plate with wrinkle imperfection buckles into the shape corresponding to the first buckling 

mode. 

Since there are three cases in which the plate buckles in the shape of the first buckling mode, it 

makes sense to further compare these three situations. 

 

Figure 3.1.24 Effect of various imperfection shapes on out of plane deformation 
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Figure 3.1.24 illustrates the effect of the imperfection shape. In all the three cases the plate buckles 

into the shape corresponding to the first buckling mode (𝑚 = 3). The most pronounce effect is seen 

when an imperfection in the shape of the first buckling mode is applied. In this case, the plate 

gradually bends into the predetermined shape, and the largest effect is seen in the prebuckling 

region (loads below the critical load of a perfect plate), in which the curve is almost linear compared 

to two other imperfection shapes. In two other case, the shape of initial imperfection was either 

wrinkle or one halfwave (buckling mode 6). In case of the wrinkle imperfection (orange curve) the 

growth of out of plane deformations is a lot slower compared to type 1 imperfection; there is still no 

bifurcation point but there is a knee in the force – deflection curve around the critical buckling load. 

In case of the imperfection in the shape of the buckling mode 6, the plate begins bending into the 

shape determined by the initial imperfection but at approximately around critical buckling load (the 

load level is a little higher, since the shape changes from one halfwave into two halfwaves and only 

then into three halfwaves) of the first buckling mode it changes shape. As is seen in the graph the 

postbuckling response corresponding to these two shapes (buckling mode 6 and wrinkle 

imperfection) is somewhat similar.  

 

Figure 3.1.25 Effect of various imperfection shapes on plate’s end shortening 

Figure 3.1.25 show the effect of imperfection shape on the reduction of the equivalent stiffness of 

the plate. Again, the largest axial displacements are in a plate with initial imperfection in the shape 

of the first buckling mode. The response of the pate with wrinkle imperfection and imperfection in 

the shape of the buckling mode 6 is similar, apart from the area just above the critical buckling load. 

From the studying the effect of different imperfection shapes, the imperfection type 1 seems to be 

the most significant, as it coincides with the fundamental buckling mode of a plate. It was shown 
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that plates with other imperfection shapes can also buckle into the first buckling mode, but since in 

case of imperfection shape type 1 the initial shape of plate and buckled shape coincide, it has a 

much noticeable effect than imperfection type 3 (6th buckling mode) and wrinkle imperfection. 

 

3.2 PARAMETER STUDY 
 

The effect of different plate parameters on the nonlinear buckling behaviour is studied. Three 

variables are considered: plate thickness, aspect ratio and layup. For each case linear buckling 

analysis and geometrically nonlinear analysis will be employed. The imperfection is taken in the 

shape of the first buckling mode. 

 

3.2.1 THICKNESS 
 

MODEL 

To investigate the influence of laminate thickness a plate of 𝑡 = 8⁡𝑚𝑚 was modelled. The width and 

the length stay the same (300⁡ × 900⁡𝑚𝑚), so do the laminate elastic properties (𝐸𝑥 𝐸𝑦 = 1.27⁄ ) 

 

LINEAR BUCKLING ANALYSIS 

The first six buckling shapes of the plate with thickness of 8 mm are similar to those of the plate with 

thickness 𝑡 = 4⁡𝑚𝑚, and are shown in figure 3.2.1.  

 

Figure 3.2.1 The first six buckling modes of the plate of layup I and t = 8 mm 

The comparison of the results from finite element analysis and analytical expression is presented in 

table 3.4. 

2 3

4 5 6

1
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Table 3.4 Comparison of the critical loads obtain from the analytical formula and FEA              

(layup I, t = 8 mm) 

In general, the results from analytical expression gives slightly higher results than FEA. The largest 

differences between the analytical and FEA results are observed for 𝑚 = 2 (second buckling mode) 

and 𝑚 = 1 (sixth buckling mode) which are 7.23% and 15.58%, respectively. In figure 3.2.2, it can be 

seen that the vertical line representing aspect ratio under consideration AR = 3 crosses the 

ascending parts of curves 𝑚 = 2 and 𝑚 = 1. The same observation was made in case of the 𝑡 =

4⁡𝑚𝑚 plate and it seems that the difference between analytical and FEA results have to do with a 

halfwave’s length. 

 

Figure 3.2.2 Visualization of the analytical results for the plate of layup I and t = 8 mm 

Figure 3.2.3 illustrates the dependence of critical load and buckling mode on orthotropic aspect 

ratio. The position of the minimal critical load corresponding to 𝑚 = 3 is again determined by      

𝐴𝑅 ∙ √𝐷11 𝐷22⁄4
. For plate thickness 𝑡 = 8⁡𝑚𝑚 it will be at the same aspect ratio value of 3.44 as for 

plate 𝑡 = 4⁡𝑚𝑚, since the layup is the same in both cases. 

 

mode force FEA, N force analytical, N difference, %

1; m=3 112736 117194.97 3.8

2; m=2 114594 123520.2 7.2

3; m=4 134939 137472.87 1.8

4; m=5 166832 171535.29 2.7

5; m=6 212114 216219.18 1.9

6; m=1 219916 260495.78 15.6
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Figure 3.2.3 Dependence of buckling load and mode on plate aspect ratio for the plate of  layup I 

and t = 8 mm 

 

GEOMETRICALLY NONLINEAR ANALYSIS 

The buckling behaviour and therefore the plots of the plate with a larger thickness are in general 

very similar to those of the plate with 𝑡 = 4⁡𝑚𝑚. The force – out of plane deflection and force – end 

shortening diagrams for imperfection type 1 is given in Annex C.1, figures C.1.3. and C.1.4. Here the 

comparison between plates with 𝑡 = 4⁡𝑚𝑚 and 𝑡 = 8⁡𝑚𝑚 will be shown. 

As is known from theory, buckling strength relates to bending stiffness of a laminate. The bending 

stiffness parameters of orthotropic material are calculated as ⁡𝐷𝑖𝑗 = 1 3⁄ ∑ (𝑄̅𝑖𝑗)𝑘
𝑛
𝑘=1 (ℎ𝑘

3 − ℎ𝑘−1
3 ) 

with ℎ being the vertical position of the ply from the midplane. Axial stiffness is defined as 𝐴𝑖𝑗 =

∑ (𝑄̅𝑖𝑗)𝑘
𝑛
𝑘=1 (ℎ𝑘 − ℎ𝑘−1). Therefore, a plate with thickness 𝑡 = 8⁡𝑚𝑚 has a higher bending and axial 

stiffness. Based on that, it is expected that the influence of initial imperfections will be less on a 

thicker plate. 

Figure 3.2.4 and 3.2.5 shows the comparison of out of plane deflections and axial displacements in 

plates with thickness 𝑡 = 4⁡𝑚𝑚 and 𝑡 = 8⁡𝑚𝑚 for imperfection amplitudes 𝐵/1000 and 𝐵/125. As 

expected, both out of plane and in plane deflections in the thicker plate are smaller at a certain load 

level compared to deflections in the thinner plate. Since the critical load does not occur, exact 

influence of the initial imperfection  
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Figure 3.2.4 Comparison of thickness effect on out of plane deformation 

 

Figure 3.2.5 Comparison of thickness effect on axial displacement 
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3.2.2 ASPECT RATIO 
 

MODEL 

To investigate the influence of aspect ratio a plate AR = 5 was modelled. The width and the length 

are 300⁡ × 1500⁡𝑚𝑚, 𝑡 = 8⁡𝑚𝑚 and the laminate elastic properties are such that 𝐸𝑥 𝐸𝑦 = 1.27⁄  

(layup I). The element size is 25 × 25⁡𝑚𝑚 (12 elements in 𝑦 and 60 elements in 𝑥 direction of the 

plate). 

 

LINEAR BUCKLING ANALYSIS 

The first six buckling modes are shown in figure 3.2.6. In comparison to the plate with AR = 3, one 

thing is immediately visible: the fully developed halfwaves (coloured red at the tips) all have about 

the same length in longitudinal direction. The halfwaves corresponding to buckling modes 1, 2 and 4 

are slightly longer in comparison to the other three. From the theory it is known that the longer the 

plate is, the less influence aspect ratio has on the critical load, and for plates with AR > 5, the aspect 

ratio and the number of halfwaves is excluded from the expressions for the critical load (expressions 

in table 2.2). Therefore, it is expected that the critical loads for different number of halfwaves will be 

closer to each other than in case of AR = 3. It is also expected that the critical load for buckling mode 

2 with 𝑚 = 5 will be the same as the critical load for buckling mode 1 (𝑚 = 3) of a plate with aspect 

ratio 3, since in both cases the length of one halfwaves are the same: 

AR = 3: 𝐿 = 900⁡𝑚𝑚,𝑚 = 3; ⁡𝐿𝑏𝑢𝑐 = 𝐿 𝑚 = 300⁡𝑚𝑚⁄  

AR = 5: 𝐿 = 1500⁡𝑚𝑚,𝑚 = 5;⁡𝐿𝑏𝑢𝑐 = 𝐿 𝑚 = 300⁡𝑚𝑚⁄  

 

Figure 3.2.6 The first six buckling modes of the plate of layup I and AR = 5 

The comparison of analytical solutions for plates AR = 3 and AR = 5 are shown in figure 3.2.7. 

1 2 3

4 5 6
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Figure 3.2.7 Comparison of the analytical results for the plate with AR = 3 and AR = 5 

As is seen, the values for critical loads corresponding to various buckling modes for plate AR = 5 are 

indeed are closer to each other, compared to plate AR = 3. Also, the critical load for the first buckling 

load AR = 3 (𝑚 = 3) equals to the critical load for the second buckling load AR = 5 (𝑚 = 5): 𝑃 =

117194.97⁡𝑁. 

 

Table 3.5 Comparison of the critical loads obtain from the analytical formula and FEA              

(layup I, AR = 5) 

The differences of 6.75%, 6.31% and 6.11% between analytical and FEA solutions are obtained for 

buckling modes 1, 2 and 4, respectively (table 3.5). The theoretical lengths of halfwaves in these 

cases are the longest; in previous cases the biggest differences were also found for the longest 

buckling lengths. For buckling modes 1 and 4 (𝑚 = 4 and 𝑚 = 3; AR = 5) also the observation as in 

previous cases applies: the critical buckling load lies on the ascending branches of the curves. For 

𝑚 = 5, which is buckling mode 2, this is not the case. The conclusion therefore is: the largest 

difference between FEA and analytical solutions for layup I is found for the buckling modes in which 

the length of a halfwave is longest (lowest 𝑚). 
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GEOMETRICALLY NONLINEAR ANALYSIS 

The applied imperfection is in the shape of the first buckling mode, the final shape of the plate is 

determined by the shape of initial imperfection (figure 3.2.8): 

 

Figure 3.2.8 Initial and final shapes of the plate AR = 5 with imperfection type 1 

The length of the halfwave in the first buckling mode theoretically is 𝐿 𝑚⁄ = 375⁡𝑚𝑚 (𝑚 = 4) for 

plate with AR = 5; for the plate with AR = 3 and 𝑚 = 3 it is 300⁡𝑚𝑚. In the comparison of the effect 

of imperfection type 1 and type 2 (3.1.3) larger out of plane deflections were found for larger 

halfwave length and larger axial displacement for smaller number of halfwaves. In this case, it is 

therefore expected that the out of plane deformations and axial displacements will be higher for 

plate with aspect ratio 5, since in this case the length and the number of halfwaves is larger. 

The force – out of plane deflection and force – end shortening diagrams for imperfection type 1 is 

given in Annex C.1, figures C.1.5 and C.1.6. The diagrams in figures 3.2.9 and 3.2.10 show the 

comparison of out of plane deflections and plate end shortening for two plates with different aspect 

ratios and imperfection amplitudes of 𝐵/1000 and 𝐵/125.  
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Figure 3.2.9 Comparison of out of plane deflections for plates with AR = 3 and AR = 5 

In the beginning of loading the out of plane deflections are almost the same in both cases but shortly 

after they begin increase faster for AR = 5, as expected (figure 3.2.9). 

In figure 3.2.10 it can be seen that the axial displacement is also larger for plate with aspect ratio 5. 

Based on these comparisons it is concluded that for the same material properties the presence of 

initial out of plane deformations has a more negative impact on the plate with AR = 5. 
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Figure 3.2.10 Comparison of end shortening for plates with AR = 3 and AR = 5 

 

3.2.3 LAYUP 
 

MODEL 

To examine the effect of different stiffness ratio on the buckling behaviour of a plate, the following 

layup is considered: 

Layup II: [03/45/−45/90/02]𝑠; ply thickness is 0.25⁡𝑚𝑚 (figure 3.2.11) 

0° − 62.5%;⁡45° − 12.5%;⁡−45° − 12.5%;⁡⁡90° − 12.5%; 

The equivalent laminate axial stiffness properties: 

𝐸𝑥 = 28.06⁡𝐺𝑃𝑎;⁡𝐸𝑦 = 15.57⁡𝐺𝑃𝑎;⁡𝐺𝑥𝑦 = 5.24⁡𝐺𝑃𝑎;⁡𝜈𝑥𝑦 = 0.318;⁡𝜈𝑦𝑥 = 0.176 

The stiffness ratio of axial moduli of elasticity in longitudinal and transverse direction: 𝐸𝑥 𝐸𝑦 = 1.80⁄  

Calculation of the equivalent laminate properties is presented in Annex B. 

The geometry (300 × 900⁡𝑚𝑚, 𝑡 = 4⁡𝑚𝑚), boundary and loading conditions remain the same as 

reported in §3.1.1. 
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Figure 3.2.11 Ply stack plot layup II (Ex/Ey = 1.80), t = 4 mm 

 

LINEAR BUCKLING ANALYSIS 

The first six buckling modes obtained from the linear buckling analysis are presented in figure 3.2.12. 

 

Figure 3.2.12 The first six buckling modes of the plate of layup II and t = 4 mm 

The comparison of the results from finite element analysis and analytical expression is presented in 

table 3.5. 
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Table 3.6 Comparison of the critical loads obtained from the analytical formula and FEA              

(layup II, t = 4 mm) 

In terms of the difference between the FEA and analytical results for layup II the following 

observations are made. The largest difference is seen for buckling mode 5 (𝑚 = 1); in figure 3.2.13 

the corresponding point of intersection lies on the ascending part of the 𝑚 = 1 curve. This also 

happens in case of the first buckling mode (𝑚 = 2) but the difference between the FEA and 

analytical results is only 1.1%. It can also be concluded for layup II, that the largest difference 

between the results is seen for the longest halfwave length. 

 

Figure 3.2.13 Visualization of the analytical results for the plate of layup II and t = 4 mm 

Since the layup II has different stiffness properties, the behaviour in terms of buckling is also 

different. The shift of the minimum of the buckling mode curve depends on the stiffness ratio 

𝐷11 𝐷22⁄ . For layup I 𝐷11 𝐷22⁄ = 1.15, for layup II 𝐷11 𝐷22⁄ = 1.25. The comparison is made 

between layup I and layup II for 𝑚 = 1,𝑚 = 2 and 𝑚 = 3 (table 3.7): 

 

Table 3.7 Effect of orthotropy on buckling of perfect plates 

 

mode force FEA, N force analytical, N difference, %

1; m=2 13248 13107.31 -1.1

2; m=3 13867 13320.7 -4.1

3; m=4 17534 16799.12 -4.4

4; m=5 22966 22143.51 -3.7

5; m=1 25351 27514.94 7.9

6; m=6 30066 29008.65 3.6
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As is seen from the comparison, the shift of the minimum value compared to the isotropic material 

is larger for layup II. Layup I has less 0⁰ fibres and more 90⁰ fibres in comparison with layup II, and 

therefore is “less orthotropic” (smaller ratio between stiffnesses in two directions). 

 

Figure 3.2.14 Dependence of buckling load and mode on plate aspect ratio for the plate of layup II 

and t = 4 mm 

 

GEOMETRICALLY NONLINEAR ANALYSIS 

The two first buckling modes of layup II is swapped compared to layup I. Therefore, the imperfection 

type 1 for layup II corresponds to the second buckling mode (𝑚 = 3).  

The force deflection diagrams for layup II are presented in Annex C.1, figures C.1.7 to C.1.10. The 

conclusions drawn for layup I are also true for layup II:  

• the largest out of plane deflections depend on the halfwave buckling length; plate with the 

imperfection in the shape of the first buckling mode (type 2, 𝑚 = 2:⁡ 𝐿 𝑚⁄ = 450⁡𝑚𝑚) has 

larger out of plane deflections than a plate with imperfection in the shape of the second 

buckling mode (type 1, 𝑚 = 3, 𝐿 𝑚⁄ = 300⁡𝑚𝑚); 

• the largest axial displacements depend on the number of halfwaves in the imperfection 

shape; plate with the imperfection in the shape of the first buckling mode (type 2, 𝑚 = 2) 

has smaller end shortening compared to a plate with imperfection in the shape of the 

second buckling mode (type 1, 𝑚 = 3); 

In general, the behaviour of an imperfect plate with layup II is similar to the behaviour of a plate 

with layup I. Since a plate with layup II has higher axial and bending stiffness in the longitudinal 

direction, for the same plate geometry and the shape of initial imperfection it is expected that the 

out of plane deflection and plate’s end shortening will be larger for layup I. Figures 3.2.15 and 3.2.16 

prove that. The “prebuckling” out of plane deflections almost coincide for layup I and II, and 

gradually becoming larger in plate of layup I. Much more noticeable difference in layups is seen in 

apparent stiffness, with plate of layup I having larger in plane deflection. 
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Figure 3.2.15 Comparison of out of plane deflection for plates with layup I and layup II 

 

Figure 3.2.16 Comparison of end shortening for plates with layup I and layup II 
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3.3 CHAPTER SUMMARY 
 

The buckling behaviour of perfect and imperfect plates was studied and a comparison between the 

effect of different imperfection shapes was made.  

The difference between plate buckling of an isotropic and orthotropic material was established; in 

case of orthotropic plates not only aspect ratio but also bending stiffness ratio plays a role in 

buckling behaviour. 

With geometrically nonlinear analysis it was shown that critical load only occurs for perfectly flat 

plates. In an imperfect plate no bifurcation point occurs and instead of suddenly changing shape, a 

plate with initial imperfection gradually bends (bows). The presence of initial out of plane 

deformations results in additional bending moments, which means that an imperfect plate is loaded 

both by uniform axial compression and bending moment. The effect of this additional bending 

moment can be described as apparent stiffness reduction, because under the same compression 

load level an imperfect plate will have much larger axial deflection. This apparent stiffness reduction 

is influenced by shape and amplitude of initial imperfection. It was determined, that an imperfection 

in the shape of plate’s buckling mode have the most negative effect and the shape of the 

fundamental buckling mode is the most significant. Additionally, plate properties such as thickness, 

aspect ratio and layup also influence imperfect plate’s structural behaviour. 

Since there are many variables that contribute to the way plate with initial out of plane 

deformations behaves, it is necessary to classify plates based on their properties. The measure that 

ties together plate material and geometric properties and relates compression strength to buckling 

strength is plate slenderness. Since there is dependence of the plate response on the number and 

length of halfwaves of the buckling mode, it is important to use the full analytical formula to 

determine the critical load (table 2.1) taking those parameter into account. Once plate slenderness 

and failure criterion are defined, the effect of initial out of plane deformations can be quantified for 

plates of various geometries and certain layups. This means that materially nonlinear analysis has to 

be employed to determine the failure loads of plates with initial imperfections. 
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4. PLATE FAILURE ANALYSIS 
 

In this chapter plate slenderness, failure criteria and the relation between slenderness and failure 

load reduction due to initial out of plane deformation determined. The objective is to derive buckling 

curves that can be used for buckling design of fibre reinforced polymer plates with initial 

imperfections.  

 

4.1 PLATE SLENDERNESS 
 

It was shown in chapter 3 that imperfect plates of different layups, aspect ratio and thickness show 

similar buckling behaviour, but the exact influence of initial imperfections depending on these 

properties was not determined. Plates with different geometric and material properties can be 

classified by defining plate slenderness 𝜆. The plate slenderness is a parameter that ties together 

plate strength, stiffness and geometry and is defined as: 

𝜆 = √
𝑓𝑢𝑙𝑡
𝜎𝑐𝑟

 

(4.1.1) 

where 𝑓𝑢𝑙𝑡 is the strength of a perfect plate under uniform compressive load (depending on the 

considered failure criterion) and 𝜎𝑐𝑟 is the critical buckling load of a perfect plate. When 𝜆 = 1, this 

means that the compressive and critical loads coincide. The slenderness relates to a plate without 

any imperfections and can be derived analytically, meaning that no nonlinear finite element analysis 

is necessary. 

When the failure criterion is defined, the fail load of a plate with initial imperfection 𝑓𝑓𝑎𝑖𝑙 can be 

determined from finite element analysis. The failure load 𝑓𝑓𝑎𝑖𝑙 will be lower than the compressive 

strength 𝑓𝑢𝑙𝑡 because in case of an imperfect plate, next to axial load, a plate is loaded by bending 

moments that result from the eccentricities cause by the transverse deflections of the plate, which 

increase as the applied axial load increases. 

With known buckling strength a reduction factor 𝜌 can be derived as: 

𝜌 =
𝑓𝑓𝑎𝑖𝑙

𝑓𝑢𝑙𝑡
 

(4.1.2) 

Once reduction factors are derived it is possible to construct buckling curves similar to the buckling 

curves derived for steel. The horizontal axis will correspond to plate slenderness and the vertical axis 

– to reduction factor. 
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4.2 FAILURE CRITERIA 
 

As said, the compressive strength relates to the chosen failure criterion. Commonly, there are a few 

failure criteria that are used in the analysis of the laminate strength.  

Due to their simplicity the maximum stress and maximum strain theories are often used. For a 

failure to occur according to the maximum stress theory one of the conditions has to be met: 

𝑓1𝑐 < 𝜎1 < 𝑓1𝑡;⁡ 

𝑓2𝑐 < 𝜎2 < 𝑓2𝑡;⁡ 

−𝑓12 < 𝜏12 < 𝑓12 

The maximum strain criterion reads as: 

𝜀1𝑐 < 𝜀1
′ < 𝜀1𝑡;⁡ 

𝜀2𝑐 < 𝜀2
′ < 𝜀2𝑡;⁡ 

−𝛾12 < 𝛾12
′ < 𝛾12 

The maximum stress and maximum strain theories yield different results because the strains in a ply 

coordinate system include the Poisson’s ratio. These results in general are not very accurate and do 

not take interaction into account. One of the examples of the interaction-based theories is Tsai-Hill, 

which is included in CUR96: 

[
𝜎1
𝑓1
]
2

− [
𝜎1𝜎2

𝑓1
2 ] + [

𝜎2
𝑓2
]
2

+ [
𝜏12
𝑓12

]
2

< 1 

where  

𝑓1 = 𝑓1𝑡 if 𝜎1 ≥ 0 (tension); 𝑓1 = 𝑓1𝑐 if 𝜎1 < 0 (compression); 

𝑓2 = 𝑓2𝑡 if 𝜎2 ≥ 0; 𝑓2 = 𝑓2𝑐 if 𝜎2 < 0 

This failure theory does not distinguish between the compressive and tensile strengths, and it will 

not indicate the mode of failure unlike the maximum stress / strain theories. Other ply failure 

theories based on stress interactions such as Tsai-Wu and Puck are allowed by CUR96 as well. 

The mentioned above failure criteria are applicable to a ply. However, a first ply failure is usually a 

conservative criterion, since a laminate consists of multiple plies with fibres in all direction and a 

failure of one ply does not necessary mean a failure of the whole laminate. To have a more realistic 

prediction of a laminate strength a progressive failure analysis has to be performed. Progressive 

failure analysis involves a gradual reduction of stiffness properties of a laminate. When one of the 

plies is considered failed according to one of the failure theories, its stiffness is fully or partially 

reduced, then the laminate is loaded again up to the failure of the next ply [28]. This process is 

repeated until no plies are left. Alternatively, CUR96 gives a simple failure strain limit for a laminate: 

1.2% for longitudinal tension and compression and 1.6% for shear  

In this study, the following four criteria will be considered to describe the influence of initial 

imperfection on the structural behaviour of a plate. In paragraphs 4.4 to 4.7 these failure criteria will 

be considered in more detail. 
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CRITICAL LOAD 

Critical load is one of the failure criterion that is currently used in design codes. It was shown that for 

an imperfect plate the determination of the critical buckling load is a difficult task, especially for 

larger amplitudes of imperfections, since bifurcation buckling does not take place. However, there 

are methods to approximate the buckling loads. 

In the paper by Czapski and Kubiak [13] two ways of approximating critical buckling load of imperfect 

plates were briefly described. More detailed descriptions of various methods are presented in 

“Selected Problems of Determining Critical Loads in Structures with Stable Post-Critical Behaviour” 

by the same authors [26]. Out of all described methods, the P – w2 method was chosen as the most 

suitable one to attempt to approximate the buckling loads of the imperfect plates. 

 

Figure 4.2.1 Determination of the critical load with P-w2 method [26] p.84 

In P – w2 method square root of deflection plotted versus the load. In this case the postbuckling part 

of the curve can be approximated with a straight line as shown in figure 4.2.1. The intersection of 

this line with the load axis is considered as the critical load. The result obtained with this method 

depends on which region of the curve is considered and is only an approximation. 

 

HASHIN PROGRESSIVE FAILURE 

Hashin progressive failure analysis is suitable for multiaxial stress situations and considers four 

failure mechanisms: fibre failure in tension and compression and matrix failure in tension and 

compression. The onset of damage takes place when one of these criteria is reached: 

• fibre rupture in tension (𝜎11 ≥ 0); 

𝐹𝑓
𝑡 = (

𝜎11
𝑓1𝑡

)
2

+ (
𝜏12
𝑓12

)
2

 

(4.1.3) 

• fibre buckling and kinking in compression (𝜎11 < 0); 

𝐹𝑓
𝑐 = (

𝜎11
𝑓1𝑐

)
2

 

(4.1.4) 
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• matrix cracking under transverse tension and shearing (𝜎22 ≥ 0); 

𝐹𝑚
𝑡 = (

𝜎22
𝑓2𝑡

)
2

+ (
𝜏12
𝑓12

)
2

 

(4.1.5) 

• matrix crushing under transverse compression and shearing (𝜎22 < 0); 

𝐹𝑚
𝑐 = (

𝜎22
2𝑓12

)
2

+ [(
𝑓2𝑐
2𝑓12

)
2

− 1] ∙
𝜎22
𝑓2𝑐

+ (
𝜏12
𝑓12

)
2

 

(4.1.6) 

Abaqus finite element analysis software offers a progressive damage model for fibre reinforced 

composites. Damage is defined by the degradation of material stiffness. The initiation of damage 

corresponds to the Hashin’s failure modes. Once one of the four criteria is reached in one of the 

plies in an certain element, the software will reduce the stiffness of the material until the ply in the 

element is failed. As load increases more plies in more elements will fail until the load cannot be 

increased any longer due to the severity of damage in a laminate. The rate at which the material 

properties are reduced depends on damage evolution parameters input [29]. The maximum load 

that can be applied to the plate will be considered to be the failure load. 

Hashin damage model does not consider delamination failure mode, it is therefore will be important 

to investigate whether or not the onset of delamination occurs before or after one of the Hashin 

failure modes. 

 

SERVICEABILITY LIMIT STATE STRAIN  

SLS ply strain limit refers to the strain at which the cracks appear in the resin of the laminate. The 

formation of cracks in resin by itself does not necessary lead to a failure in a laminate but the onset 

of cracks can eventually lead to other failure modes and the stiffness reduction of the material. 

Depending on the severity of cracks, this failure mechanism can lead to seepage of fluids through 

the laminate or fracture. [27].  

The strain limit for the matrix cracking in tension is 0.2%. This criterion is assumed to be satisfied 

when the strain limit is reached in one of the plies, in other words this is a first ply failure criterion. 

 

DELAMINATION 

Delamination is a failure mode of composite materials which is characterized by separation of layers 

in the laminate. Once delaminations are initiated they start to grow gradually. The onset of 

delamination is difficult to predict, but it is known that there will be no initiation of delamination 

before the cracks are formed in resin [27]. 

CUR96 provides the interlaminar shear stress limits for three kinds of matrix: polyester, vinylester 

and epoxy. Once this limit is reached, cracks between plies initiate. The material that is considered in 

this research is polyester and the interlaminar stress strength is given as 𝑓𝐼𝐿𝑆𝑆 = 20⁡𝑁/𝑚𝑚2. 
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Table 4.1 Interlaminar shear stress limits [2] p. 49 

When the interlaminar shear stress value of 20⁡𝑁/𝑚𝑚2 is reached anywhere in a laminate, the 

failure criterion is fulfilled. 

 

4.3 MODEL 
 

To investigate the influence of initial out of plane deformations the plate of layup I (𝐸𝑋 𝐸𝑦 = 1.27⁄ ), 

length 𝐿 = 900⁡𝑚𝑚, width 𝐵 = 300⁡𝑚𝑚 is used. To obtain various plate slenderness values only 

the plate thickness is changed.  

The shape of initial imperfection is the shape of the first buckling mode. Two imperfection 

amplitudes were considered: 𝐵/1000 and 𝐵/125. 𝐵/1000 is an arbitrary value of an imperfection 

magnitude, 𝐵/125 is the limiting value suggested in the design code CUR96 in case no information 

on initial imperfection tolerances is available. 

The boundary conditions were modified; the linear buckling analysis results stay almost the same as 

in case of original boundary conditions reported in 3.1.1, but for the geometrically and materially 

nonlinear analysis the modified boundary conditions reduce the peak values that were found in the 

model with the original boundaries. The detailed description is given in annex D. 

 

Figure 4.3.1 Plate geometry, boundary and loading conditions for failure analysis 

Figure 4.3.1 shows the boundary and loading conditions used for plate failure analysis. 

Boundary conditions: 

• along all edges 𝑢𝑧 = 0 

• at 𝑥 = 450; 𝑦 = 150 (midpoint of the plate) 𝑢𝑥 = 0 

• at 𝑥 = 225; 𝑦 = 150 and 𝑥 = 675; 𝑦 = 150 𝑢𝑦 = 0 

Initial displacement was applied in 𝑥 direction at the plate edges 𝑥 = 0⁡and 𝑥 = 900. 

The element type used is S4R (uses thick shell theory as the shell thickness increases and become 

discrete Kirchhoff thin shell elements as the thickness decreases; the transverse shear deformation 
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becomes very small as the shell thickness decreases [29]), with size of 18.75 × 19.57⁡𝑚𝑚 (16 

elements in 𝑦 and 46 elements in 𝑥 direction of the plate).  

The determination of the ply properties for damage initiation is given in 3.1.1. 

The values for damage evolution should be determined experimentally but due to absence of test 

data for E-glass polyester laminates, the values for fracture energies based on data for E-glass epoxy 

laminate are used [30]: 

• longitudinal tensile: 12 

• longitudinal compressive: 12 

• transverse tensile: 1 

• transverse compressive: 1 

A sensitivity study of transverse tensile and compressive energies influence on fail load showed that 

these parameters do not have a large effect. More details can be found in annex E. 

 

4.4 CRITICAL LOAD CRITERION 
 

It was decided to use the P – w2 method to attempt to approximate the buckling loads of the 

imperfect plates 𝑓𝑓𝑎𝑖𝑙,𝑐𝑟𝑖𝑡. The more or less linear postbuckling region of the force - deflection2 graph 

was approximated with linear trendline. Setting 𝑥 = 0, the y-coordinate was obtained from the 

equation of the trendline, which according to the method’s description is the critical load.  

Figures 4.4.1 and 4.4.2 show the application of P-w2 method to the plates with imperfection 

𝐵/1000 and 𝐵/125. 

 

Figure 4.4.1 Determination of the critical load of the imperfect plate B/1000 

y = 307.4x + 12487

0

5000

10000

15000

20000

25000

30000

35000

40000

0 5 10 15 20 25 30 35 40 45 50

fo
rc

e,
 N

deflection2, mm2

plate t = 4mm; layup I; type 1

B/1000 B/1000 Linear (B/1000)



86 
 

 

Figure 4.4.2 Determination of the critical load of the imperfect plate B/125 

 

Table 4.2 Approximated fail loads ffail,crit 

Table 4.2 shows the obtained forces for the plate with imperfections. As it can be seen, the 

reduction of the buckling force is 37.5% for 𝐵/125, which is significant. It has to be mentioned, that 

it was very difficult to decide which part of the curve to approximate, especially in case of a larger 

amplitude of imperfection. This observation brings up a question about the applicability and physical 

meaning of the P-w2 method. 

When the imperfection has a small amplitude (> 𝐵 1000⁄ ) or when the imperfection itself is small 

(for example, a wrinkle imperfection considered in 3.1.3) then the two regions in load – deflection 

diagram can be distinguished:  

• the prebuckling region when the growth of out of plane deformations is slow 

• the postbuckling region when the growth of out of plane deformations is a lot faster than in 

the prebuckling region; 

in between these two regions the load – deflection diagram has a rounded over part (“knee”) 

instead of a bifurcation point. In this case applying P-w2 method makes sense.  

For large imperfections that coincide with the shape of plate’s buckling mode, it was shown that no 

clear change in growth of deformations can be seen for larger imperfection amplitudes, e.g. the 

behaviour of an imperfect plate is very different from that of a perfect plate. For that reason, it is 

concluded that a different failure criterion should be applied to quantify the influence of initial 

imperfections considered in this study. 
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4.5 HASHIN PROGRESSIVE FAILURE CRITERION 
 

4.5.1 GEOMETRICALLY LINEAR PROGRESSIVE FAILURE ANALYSIS 
 

The ultimate compressive load (𝑓𝑢𝑙𝑡,𝐻𝑎𝑠ℎ𝑖𝑛) of a flat laminate was determined by performing 

geometrically linear (no initial out of plane deformations present) and materially nonlinear analysis 

(Abaqus Hashin progressive damage model). A perfectly flat plate loaded by uniform axial 

compression was modelled, no imperfection was included to avoid buckling. The typical load – end 

shortening curve is shown in figure 4.5.1. 

As it can be seen, the curve has three peak values at 218.6; 229.09 and 208.56⁡𝑁 𝑚𝑚2⁄ , which 

represent the ply-by-ply failure loads. These results were checked using elamX2 software. 

 

Figure 4.5.1 Load – end shortening for Hashin damage criterion curve of a perfectly flat plate  

First, the first ply failure and failure mode were determined, after which the stiffness of the failed ply 

was reduced and the load that causes the second and the third ply failure respectively is found. Since 

the first and second plies (90⁰ and ±45⁰) fail due to matrix compressive failure, the transverse 

modulus of elasticity (𝐸𝑦) of a ply was reduced to zero, the rest of the properties were left 

unchanged. 

The table below shows the failure loads obtained from FEA and CLT, which are in good agreement 

with each other: 

 

Table 4.3 Comparison of failure loads obtained from FEA and CLT 
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After the initial first ply (all the 90⁰ plies) failure at 218.6⁡𝑀𝑃𝑎, the remaining ±45⁰ and 0⁰ can still be 

loaded up to 229.09⁡𝑀𝑃𝑎. After the ±45⁰ plies fail, the remaining 0⁰ plies can only withstand 

208.56⁡𝑀𝑃𝑎. Therefore, the maximum compressive load that can be applied to the laminate is 

229.09⁡𝑀𝑃𝑎. Almost the same ultimate load was determined for all plate thicknesses, in reality this 

is not necessarily the case. 

The longitudinal strain at the maximum load (corresponding to the second ply failure) has value of 

1.11 ∙ 10−2. However, this value relates to the reduced stiffness properties of the laminate, since the 

90⁰ plies have already failed. Relating the ultimate load to the initial stiffness of the material, the 

strain in the laminate is: 

𝜀𝑥 =
𝜎𝑢𝑙𝑡

𝐸𝑥,𝑖𝑛𝑖𝑡𝑖𝑎𝑙
= 1.02 ∙ 10−2 

which is a lower value than 1.2% given in CUR96 for laminates with have at least 12.5% fibres in each 

direction (0⁰, 45⁰, -45⁰ and 90⁰). Since the 1.2% strain limit is based on test data it is concluded that 

the result obtained from FEA is conservative. 

 

4.5.2 GEOMETRICALLY NONLINEAR PROGRESSIVE FAILURE ANALYSIS 
 

The geometrically nonlinear progressive damage analysis was performed to determine the ultimate 

load of the plate with initial imperfections due to buckling (𝑓𝑓𝑎𝑖𝑙,𝐻𝑎𝑠ℎ𝑖𝑛).  

 

Figure 4.5.1 Damage initiation matrix tension in a plate with initial imperfection 

Figure 4.5.1 depicts the damage initiation in matrix due to transverse tension. The areas in which 

damage initiates are coloured red. Matrix cracking due to transverse tension is described by 

equation 4.1.5: 

𝐹𝑚
𝑡 = (

𝜎22
𝑓2𝑡

)
2

+ (
𝜏12
𝑓12

)
2

 

When damage is initiated it means that: 

𝐹𝑚
𝑡 = 1 

The corresponding transverse (𝜎22) and shear (𝜏12) stresses are shown in figures 4.5.2 and 4.5.3. 
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Figure 4.5.2 Transverse tensile stresses in the plate with initial imperfection at damage initiation  

 

Figure 4.5.3 Shear stresses in the plate with initial imperfection at damage initiation  

The stress values from figures 4.5.2 and 4.5.3 in the areas were damage is initiated are: 

𝜎22 = 22.72⁡𝑁 𝑚𝑚2⁄  

𝜏12 = 5.60⁡𝑁 𝑚𝑚2⁄  

Substituting these values and the ply strength properties given in 3.1.1 to equation for matrix 

cracking initiation: 

𝐹𝑚
𝑡 = (

22.72

22.8
)
2

+ (
5.6

64.6
)
2

= 1.0 

From this point on the software will start reducing the stiffness properties of the laminate. Figure 

4.5.4 shows the comparison of materially linear and materially nonlinear behaviour of a plate: 
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Figure 4.5.4 Materially linear and nonlinear behaviour of a plate 

The green and yellow curves correspond to the progressive failure analysis of a plate with thickness 

𝑡 = 6⁡𝑚𝑚 and two magnitudes of imperfection 𝐵/1000 and 𝐵/125, the blue and orange curves are 

based on the materially linear analysis. The horizontal dashed line represents the critical load of a 

perfect plate. 

From this plot it can be seen that the stiffness reduction for the plate with initial out of plane 

deformation begins at the load level around ~30 − 35⁡𝑁/𝑚𝑚2 and from this point the curves 

associated with materially nonlinear analysis start to deviate from the curves that represent 

materially linear analysis, which means stiffness reduction takes place. 

 

Figure 4.5.5 Damaged elements occurrence in the plate 

Eventually the parameters will be reduced to a point that the element is considered damaged (figure 

4.5.5), after that the number of damaged elements will be growing until the load can no longer be 

increased. The maximum load that a plate is able to carry is considered the failure load. Figure 4.5.6 

shows damage in the plate at failure. 
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Figure 4.5.6 Damaged elements in the plate at failure  

Plots in figures 4.5.7 and 4.5.8 show load – end shortening of a plate 𝑡 = 6⁡𝑚𝑚 with imperfection 

amplitude 𝐵/1000 and 𝐵/125 and damage initiation / evolution values. 

 

Figure 4.5.7 Progressive failure analysis of a plate t = 6 mm with imperfection B/1000 

In case of 𝐵/1000 before damage initiation there is a slope change in the graph which occurs 

around the critical load value of a perfect plate (27.05⁡𝑁 𝑚𝑚2⁄ ) and failure of the plate occurs at 

the load level almost two times higher then the critical load. For 𝐵/125 the slope is not a straight 

line but it is difficult to determine where the change takes place because due to a large amplitude of 

initial imperfection plate very gradually bends into the shape prescribed by the initial imperfection. 
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Figure 4.5.8 Progressive failure analysis of a plate t = 6 mm with imperfection B/125 

It is seen that the damage initiation and occurrence (denoted by horizontal dashed lines named 

‘initiation’ and ‘damage’) take place at slightly lower load levels for the plate with imperfection 

amplitude 𝐵/125 compared to the plate with imperfection 𝐵/1000. The failure load however is not 

influenced by imperfection magnitude and is the same in both cases.  

Figures 4.5.9 and 4.5.10 show behaviour of a thicker plate (𝑡 = 24⁡𝑚𝑚). 

 

Figure 4.5.9 Progressive failure analysis of a plate t = 24 mm with imperfection B/1000 
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Figure 4.5.10 Progressive failure analysis of a plate t = 24 mm with imperfection B/125 

In case of a thicker plate, there is a noticeable difference in behaviour depending on the amplitude 

of the applied initial imperfection. Not only damage initiation and evolution occur at a noticeably 

lower load levels for imperfection magnitude 𝐵/125, but also the failure load is ~11% lower 

compared to imperfection 𝐵/1000. It should also be noted that for 𝐵/1000 the damage initiation, 

occurrence and failure loads are much closer together than in case of 𝐵/125. In the plate with 

imperfection 𝐵/1000 damage is due to matrix crushing, while in the plate with imperfection 𝐵/125  

the failure mode is matrix cracking(as in case of plate 𝑡 = 16⁡𝑚𝑚). The critical load in case of a plate 

with thickness 𝑡 = 24⁡𝑚𝑚 is above the failure load (𝜎𝑐𝑟 = 380.19⁡𝑁 𝑚𝑚2⁄  and therefore the 

curves based on linearly and materially nonlinear analysis (green curve for 𝐵/1000 and yellow curve 

𝐵/125) almost fully coincide with the curves based on materially linear analysis and the slight 

deviation is only seen after damage initiated in the plate with imperfection amplitude 𝐵/125. 

From this study it can be concluded that there are two effects that have influence on the structural 

behaviour of plates: additional bending moment due to initial imperfections that changes the 

apparent stiffness of the material and the actual change in stiffness that is caused by material 

degradation. In case of thinner plates, the amplitude of initial out of plane deformation has a little 

effect on damage and failure load, in case of thicker plate the effect increases and there is a 

significant difference for plate behaviour between imperfection amplitude 𝐵/1000 and 𝐵/125.  

 

4.5.3 BUCKLING CURVES 
 

The buckling curves for Hashin progressive failure are constructed by varying the thickness of a plate 

of 300⁡ × 900⁡𝑚𝑚 to quantify the effect of initial imperfections depending on the plate slenderness. 

Six different plate slenderness values corresponding to thicknesses 4, 6, 8, 12, 16, 24 and 54⁡𝑚𝑚 and 

two magnitudes of initial imperfections are considered - 𝐵 1000 = 0.3⁡𝑚𝑚⁄  and 𝐵 125 = 2.4⁡𝑚𝑚⁄ .  
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Table 4.4 lists all the loads found for the plates of various thicknesses of a layup I. Figure 4.5.11 

shows the derived buckling curves. 

 

Table 4.4 Plate slenderness and load reduction factors for Hashin damage criterion 

 

Figure 4.5.11 Buckling curves for Hashin progressive failure criterion for Ex/Ey = 1.27 

In the figure above the blue curve corresponds to the plate with an initial imperfection of amplitude 

𝐵/1000 and the orange curve to the plate with an initial imperfection of 𝐵/125. The grey curve 

represents the failure mode corresponding to buckling of a flat plate without initial imperfections. 

The dashed part of the grey curve relates to reduction factors > 1 (in fact it is not a reduction factor 

anymore), it means that for ideal plates with 𝜆 > 1 the compressive failure will occur sooner than 

buckling and so no reduction due to buckling is necessary (𝜌 = 1). 

For thin plates (𝜆 > 2.5) the curves representing different values of imperfection amplitude almost 

coincide, which means that the failure load is independent of the magnitude of initial out of plane 

deformation and the reduction factor has (almost) the same value for imperfection 𝐵/1000 and 

𝐵/125. 

For thicker plates (𝜆 ≤ 2.5) the effect of imperfection amplitude becomes more pronounced as 

slenderness becomes smaller, i.e. the larger the thickness becomes the larger is the difference 

between the reduction for imperfection amplitude 𝐵/1000 and 𝐵/125. For example, a plate of 

4 12.13 229.17 4.35 45.53 45.44 0.20 0.20 0.05

6 27.05 229.09 2.91 61.81 61.20 0.27 0.27 0.12

8 47.59 229.33 2.20 78.15 74.36 0.34 0.32 0.21

12 104.53 229.33 1.48 115.14 106.97 0.50 0.47 0.46

16 180.67 229.33 1.13 168.12 141.02 0.73 0.61 0.79

24 380.19 228.00 0.77 218.49 195.04 0.96 0.86 1.67

54 1381.7 229.33 0.41 220.5 214.84 0.96 0.94
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layup I and 𝜆 = 1.13 there is 16% difference between the failure load associated with imperfection 

𝐵/1000 and 𝐵/125. 

However, for 𝜆 = 0.41 the difference between reduction factor for 𝐵/1000 and 𝐵/125 becomes 

smaller again. The failure mode in case of plate 𝑡 = 54⁡𝑚𝑚 for both amplitudes of imperfection and 

in case of plate 𝑡 = 24⁡𝑚𝑚 with imperfection 𝐵/1000 is matrix crushing in compression and 

shearing. It can be seen from the buckling curves that in these three cases the reduction factor is 

close to 1 (0.94 − 0.96), therefore, it can be concluded that for plate slenderness 𝜆 = 0.41 with 

imperfection up to 𝐵/125 and for slenderness 𝜆 = 0.77 with imperfection up to 𝐵/1000 the effect 

of initial imperfection is insignificant and will not cause plate to buckle but fail in compression. 

Comparing the buckling curves derived for plates with imperfection (blue and orange, figure 4.5.11) 

to buckling curve based on critical load criterion for flat plates (grey, figure 4.5.11) it can be seen 

that the plates with slenderness 𝜆 > 1.50 have load bearing capacity above the theoretical critical 

load. For example, for layer I for a plate with 𝜆 = 2.20 the failure load is 39% higher for 𝐵/1000 and 

36% for 𝐵/125 than the critical load. While in case of 𝜆 = 1.13 the critical load is higher than the 

failure load by 7% for 𝐵/1000 and 22% for 𝐵/125. 

Therefore, for plates with slenderness 𝜆 > 1.50 and imperfection amplitudes up to 𝐵/125 the 

critical load criterion (related to ideal plates, disregarding initial imperfections) would give 

conservative results. The Hashin progressive failure buckling curves for plates with slenderness 𝜆 <

1.50 are below the critical load buckling curve, so, for imperfect plates with 𝜆 < 1.50 the critical 

load criterion overestimates the plate buckling strength. At slenderness value 𝜆 = 1 this would 

mean that the critical load would be 30% higher for a plate with imperfection 𝐵/1000 and 18% for 

𝐵/125 than the plate failure load. 

 

4.5.4 VALIDATION OF SLENDERNESS 
 

The buckling curves in 4.5.3 were derived for various slenderness values based on different plate 

thickness. As a check of the relation between plate slenderness and reduction factor two plates of 

different dimensions were modelled: 

• 400⁡ × 600; (AR = 1.5) which leads to initial imperfection amplitudes of 𝐵 1000 = 0.4⁡𝑚𝑚⁄  

and 𝐵 125 = 3.2⁡𝑚𝑚⁄  and plate slenderness 𝜆 = 2.41 

 

Figure 4.5.12 First buckling mode of the plate λ = 2.41 
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• 700⁡ × 1600; (AR = 2.29) which leads to initial imperfection amplitudes of 

𝐵 1000 = 0.7⁡𝑚𝑚⁄  and 𝐵 125 = 5.6⁡𝑚𝑚⁄  and plate slenderness 𝜆 = 1.07 

 

Figure 4.5.13 First buckling mode of the plate λ = 1.07 

Four additional points were obtained and plotted over the buckling curve. Figure 4.5.14 shows that 

the reduction factors for plates with slenderness 𝜆 = 2.41 and 𝜆 = 1.07 are in line with the derived 

buckling curves. 

 

Figure 4.5.14 Slenderness validation for buckling curves for Hashin progressive failure criterion 

 

4.6 SERVICEABILITY LIMIT STATE STRAINS CRITERION 
 

4.6.1 GEOMETRICALLY LINEAR MATERIALLY NONLINEAR ANALYSIS 
 

For this criterion both longitudinal and transverse strains are checked. The ultimate compressive 

load (𝑓𝑢𝑙𝑡,𝑆𝐿𝑆𝑠𝑡𝑟𝑎𝑖𝑛) is obtained by checking the positive values of longitudinal and transverse strains. 

Once the strain value reaches ~0.2 ∙ 10−2, the corresponding load level is registered.  
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The limit is reached both for longitudinal (90⁰ ply) and transverse (0⁰) strain at the same load level of 

approximately 137.0⁡𝑁 𝑚𝑚2⁄  (the exact value is given for each plate in 4.6.2 and 4.6.3 in tables 4.5 

and 4.6).  

The obtained values were checked with elamX2 software (see figure 4.6.1). As seen the values of 

0.2 ∙ 10−2 are obtained simultaneously for longitudinal (𝜀1𝑡) and transverse (𝜀2𝑡) strains in 90⁰ and 

0⁰ plies, respectively. Dividing the applied distributed load by the laminate thickness the 

compressive stress is obtained:  

𝑓𝑢𝑙𝑡 = 137.58⁡𝑁 𝑚𝑚2⁄  

which is very close to the values found with finite element analysis. 

 

Figure 4.6.1 First ply failure determination for ideal plate t = 6 mm 

 

4.6.2 LONGITUDINAL STRAIN ε1t 
 

Geometrically and materially nonlinear analysis was used to obtain failure loads of plates with initial 

imperfections with amplitudes of 𝐵/1000 and 𝐵/125. Typical contour plot of longitudinal strains is 

shown in figure 4.6.2. 
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Different plate slenderness values were obtained by varying plate thickness: 3, 4, 6, 8, 12, 16, 24⁡and 

54⁡𝑚𝑚. The values of pate slenderness (calculated using expression 4.1.1), loads of imperfect plates 

at which longitudinal tensile strain reaches the limit value and reduction factors (calculated using 

expression 4.1.2) are shown in table 4.5 and the associated buckling curves are presented in figure 

4.6.3. 

 

Figure 4.6.2 Longitudinal tensile strain contour plot (t = 6 mm) 

 

Table 4.5 Plate slenderness and load reduction factors for SLS longitudinal strain criterion 

 

3 6.85 137.19 4.48 23.26 22.90 0.17 0.17

4 12.13 137.19 3.36 29.04 28.17 0.21 0.21

6 27.05 137.19 2.25 39.29 36.60 0.29 0.27

8 47.59 136.26 1.69 52.63 46.71 0.39 0.34

12 104.53 136.26 1.14 95.15 67.15 0.70 0.49

16 180.67 136.26 0.87 124.65 86.96 0.91 0.64

24 380.19 137.08 0.60 135.15 108.59 0.99 0.79

54 1381.7 136.26 0.31 138.34 125.74 1.02 0.92
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Figure 4.6.3 Buckling curves for SLS longitudinal strain criterion 

The plot in figure 4.6.3 shows two curves. The orange curve is for a plate with an initial imperfection 

with magnitude of 𝐵 125⁄  and the blue curve is for a plate with an initial imperfection with 

magnitude of 𝐵 1000⁄ . 

The same trend as in case of Hashin progressive failure criterion can be seen in figure 4.6.3. For 

plates with slenderness 𝜆 > 2.5 (thin plates) the amplitude of imperfection has no or very little 

effect on load reduction factor. For plates with slenderness 𝜆 ≤ 2.5 the reduction factor depends on 

the amplitude of the imperfection: for amplitude 𝐵/1000 the reduction of plate capacity will be 

smaller (larger value of the imperfection factor 𝜌), for amplitude 𝐵/125 the reduction will be larger 

(smaller value of the imperfection factor 𝜌). The difference between reduction factors for plates 

with imperfection 𝐵/1000 and 𝐵/125 increases as plate slenderness decreases up to 𝜆 ≈ 0.87, 

after which the difference starts to become smaller. 

 

4.6.3 TRANSVERSE STRAIN ε2t 
 

Table 4.6 shows the data necessary for constructing the buckling curve for the transverse strain limit 

criterion (figure 4.6.4). 

 

Table 4.6 Plate slenderness and load reduction factors for SLS transverse strain criterion 

3 6.85 137.19 4.48 17.50 17.03 0.13 0.12

4 12.13 137.19 3.36 21.88 19.83 0.16 0.14

6 27.05 137.19 2.25 30.34 27.68 0.22 0.20

8 47.59 136.26 1.69 46.57 34.13 0.34 0.25

12 104.53 136.26 1.14 84.59 50.68 0.62 0.37

16 180.67 136.26 0.87 112.51 64.65 0.83 0.47

24 380.19 137.08 0.60 128.01 84.23 0.93 0.61

54 1381.7 136.26 0.31 134.25 109.50 0.99 0.80

t, mm
σcr, 

N/mm2

fult, 

N/mm2
λ

ffail, N/mm2 

B/1000

ffail, N/mm2 

B/125

ρ SLS ε2t 

B/1000
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Figure 4.6.4 Buckling curves for SLS transverse strain criterion 

As is seen in figure 4.6.4, for thin plates (𝜆 > 2.5) according to serviceability limit state criterion for 

transverse strains there is a slight difference between the reduction factor for imperfection 

amplitudes 𝐵/1000 and 𝐵/125. However, it is much smaller than in case of thicker plates with 𝜆 >

2.5.  

 

Figure 4.6.5 Comparison between the buckling curves for longitudinal and transverse strains 

Figure 4.6.5 shows the comparison between the SLS longitudinal and transverse strains criteria. The 

largest reduction (lowest values of reduction factors 𝜌) are obtained in case of the SLS transverse 

strain criterion, which means that the cracks in the resin will occur due to tensile strains in the 

transverse direction faster than in longitudinal direction. It can also be seen that the transverse 

strains are more sensitive to amplitude of imperfection; e.g. for 𝜆 = 1.14 according to SLS 

longitudinal strain (𝜀1𝑡) criterion reduction factors are as follows: 
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• for 𝐵/1000: 𝜌𝜀1 = 0.70 

• for 𝐵/125: 𝜌𝜀1 = 0.49 

and according to SLS transverse strain criterion (𝜀2𝑡): 

• for 𝐵/1000: 𝜌𝜀2 = 0.62 

• for 𝐵/125: 𝜌𝜀2 = 0.37 

So, the difference in case of SLS longitudinal strain criterion associated with different imperfection 

amplitude is 30%, and 40% in case of SLS transverse strain criterion. 

 

4.7 DELAMINATION 
 

As the last failure criterion, delamination is considered. This criterion is considered to be fulfilled 

when the interlaminar shear stress has reached the value of 20⁡𝑁 𝑚𝑚2⁄  anywhere in the laminate. 

Since the Hashin progressive failure model does not consider delamination failure mode, the 

interlaminar shear stresses values were checked and compared with the critical value given in CUR96 

to determine if delamination might occur before the failure load of a plate. 

Figure 4.7.1 shows the contour plot of interlaminar shear stresses in a flat plate under uniform axial 

compression from geometrically and materially linear analysis at ultimate load level (for a plate 𝑡 =

6⁡𝑚𝑚 𝑓𝑢𝑙𝑡 = 229.09⁡𝑁 𝑚𝑚2⁄ ). 

 

Figure 4.7.1 ILSS at ultimate load in an ideal plate 

The interlaminar shear stresses are very low, with the maximum value of 1.41 ∙ 10−14𝑁 𝑚𝑚2⁄  

which is much less than the critical value of 20𝑁 𝑚𝑚2⁄ .  
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Figure 4.7.2 ILSS at failure load in an imperfect plate 

In figure 4.7.2 the contour plot of interlaminar shear stresses in a plate (𝑡 = 6⁡𝑚𝑚) with initial out of 

plane deformation is shown. The maximum value (10.50⁡𝑁 𝑚𝑚2⁄ ) is almost two times lower than 

the critical value. 

The table 4.7 shows the maximum values of ILSS that occur in plates of various thicknesses obtained 

both from geometrically linear (flat plates) and nonlinear analysis (plates with initial imperfection). 

 

Table 4.7 ILSS values for ideal and imperfect plates 

In all of the cases the values are below the critical value 𝑓𝐼𝐿𝑆𝑆 = 20⁡𝑁/𝑚𝑚2. 

Since from the interlaminar shear stresses check it was found that the values do not reach the 

critical value of 20𝑁 𝑚𝑚2⁄ , it is concluded that delamination will not occur before the failure 

according to Hashin progressive damage model. 

 

4.8 COMPARISON FAILURE CRITERIA 
 

Four failure criteria were considered. The critical load criterion is not applicable in case of imperfect 

plates, since a plate with initial out of plane deformation does not have bifurcation buckling 

behaviour. Delamination criterion was checked against progressive failure model and it was shown 

that interlaminar shear stresses are below the critical value of 20⁡𝑁 𝑚𝑚2⁄ ⁡specified in the design 

code CUR96 for polyester resin. This leaves two failure criteria: Hashin progressive failure and 

serviceability strain limit criterion, which includes longitudinal and transverse strain limits, and 

therefore three sets of buckling curves were derived. 

Hashin, N/mm2 ILSS, 10^(-14) N/mm2 Hashin, N/mm2 ILSS, N/mm2 Hashin, N/mm2 ILSS, N/mm2

3 229.09 0.68 35.48 10.4 34.03 9.09

4 229.17 1.48 45.53 11.4 45.44 11.57

6 229.09 141 61.81 10.52 61.2 10.32

8 229.33 4.77 78.15 13.4 74.36 12.28

12 229.33 4.67 115.14 18.01 106.97 17.33

16 229.33 6.69 168.12 13.11 141.02 17.53

24 228 2.39 218.49 3.13 195.04 10.3

54 229.33 17.3 220.5 0.87 214.84 6.64

t, mm
B/1000 B/125geom. linear
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To compare the buckling curves corresponding to the Hashin progressive failure and SLS strain limit 

criteria, one plate slenderness definition is used: 

𝜆 = √
𝑓𝑢𝑙𝑡,𝐻𝑎𝑠ℎ𝑖𝑛

𝜎𝑐𝑟
 

(4.8.1) 

The reduction factors are calculated as: 

• Hashin progressive failure: 𝜌𝐻𝑎𝑠ℎ𝑖𝑛 = 𝑓𝑓𝑎𝑖𝑙,𝐻𝑎𝑠ℎ𝑖𝑛 𝑓𝑢𝑙𝑡,𝐻𝑎𝑠ℎ𝑖𝑛⁄  

• SLS longitudinal limit strain: 𝜌𝑆𝐿𝑆𝜀1 = 𝑓𝑓𝑎𝑖𝑙,𝑆𝐿𝑆𝜀1 𝑓𝑢𝑙𝑡,𝐻𝑎𝑠ℎ𝑖𝑛⁄  

• SLS transverse limit strain: 𝜌𝑆𝐿𝑆𝜀2 = 𝑓𝑓𝑎𝑖𝑙,𝑆𝐿𝑆𝜀2 𝑓𝑢𝑙𝑡,𝐻𝑎𝑠ℎ𝑖𝑛⁄  

(4.8.2) 

This allows to obtain the same plate slenderness values for all the criteria and the reduction factor in 

relation to the failure load of the plate. The buckling curves related to a plate with initial 

imperfection of magnitude 𝐵/1000 is shown in figure 4.8.1 and with initial imperfection of 

magnitude 𝐵/125 in figure 4.8.2. The blue curve shows reduction factor according to Hashin 

progressive failure criterion, green curve – SLS longitudinal strain criterion and orange curve – SLS 

transverse strain criterion. 

 

Figure 4.8.1 Comparison of failure criteria for imperfection amplitude B/1000 
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Figure 4.8.2 Comparison of failure criteria for imperfection amplitude B/125 

For both magnitudes of imperfection, the buckling curve associated with Hashin progressive failure 

fits above the SLS strain limit curves. That makes sense and is explained by the fact that the SLS 

strain limit criterion is a first ply failure and will occur at lower load levels than a failure of a laminate 

as a whole. Out of three buckling curves the one related to SLS transverse strains gives the largest 

reduction of ultimate load, so in case of serviceability limit state loads this would be the governing 

buckling curve. 

 

4.9 EFFECT OF ORTHOTROPY  
 

Since plate slenderness defined as a square root of compressive strength to critical load ratio, it is 

expected that for different layups different values of reduction factor 𝜌 in relation to slenderness 

will be derived. 

To compare the buckling curves for Hashin progressive failure criterion for plates with different 

material properties, two layups are considered: 

- layup II: 0⁰ -62.5%, 45⁰ -12.5%, -45⁰ -12.5%, 90⁰ -12.5% 

- layup III: 0⁰ -25%, 45⁰ -25%, -45⁰ -25%, 90⁰ -25% 

which are often used in practice. 

Figure 4.9.1 shows critical loads for the three layups for the first four buckling modes for laminate 

thickness 𝑡 = 6⁡𝑚𝑚. The longitudinal and transverse moduli of elasticity ratio and strength values 

are as follows: 

• layup I: 𝐸𝑐𝑥 𝐸𝑐𝑦⁄ = 1.27; 𝐷11 𝐷22⁄ = 1.74; 𝑓𝑢𝑙𝑡 = 229.09⁡𝑁/𝑚𝑚2 

• layup II: 𝐸𝑐𝑥 𝐸𝑐𝑦⁄ = 1.80; 𝐷11 𝐷22⁄ = 2.41; 𝑓𝑢𝑙𝑡 = 298.59⁡𝑁/𝑚𝑚2 

• layup III: 𝐸𝑐𝑥 𝐸𝑐𝑦⁄ = 1.0; 𝐷11 𝐷22⁄ = 1.45; 𝑓𝑢𝑙𝑡 = 182.78⁡𝑁/𝑚𝑚2 
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Layup III is quasi isotropic, which means that the axial stiffness in both directions is the same. The 

bending stiffness in two directions however is not necessarily the same, although it can be achieved. 

If 𝐷11 𝐷22⁄ = 1.0, then the material behaviour will be similar to isotropic and the critical stress value 

for AR = 3 will be lower, since there will be no shift and the minimum value will be located at 𝐴𝑅 =

𝑚. In this study, however, the influence of stack sequence of a laminate is not considered further. 

 

Figure 4.9.1 Ideal plate’s critical forces 

The highest critical loads are obtained for plates of layup III (lowest 𝐸𝑐𝑥 𝐸𝑐𝑦⁄  ratio), at the same time 

this layup has the lowest strength, determined by Hashin progressive damage analysis. The lowest 

critical loads correspond to layup II (highest 𝐸𝑐𝑥 𝐸𝑐𝑦⁄  ratio), which has the highest strength. It should 

also be noted that for layups II and III the strain in the laminated related to initial modulus of 

elasticity is 1.07% and 0.97%, respectively, which is again lower than 1.2%, and is a conservative 

result, since the strain limit for failure of the laminate 1.2% is based on experimental data. 

Based on these observations, it is clear that different reduction factors will be obtained for plates 

with different laminates, since plate slenderness relates to both ultimate and buckling strengths. It is 

expected that the lowest reduction factors will be obtained for layup II and the highest for layup III. 

Below the slenderness values, failure loads and buckling curves for layups II and III are presented. 

 

Table 4.8 Plate slenderness and load reduction factors for Hashin damage criterion for layup II 
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Figure 4.9.2 Buckling curves for Hashin damage criterion for layup II 

 

Table 4.9 Plate slenderness and load reduction factors for Hashin damage criterion for layup III 
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6 28.39 182.78 2.54 57.80 57.09 0.32 0.31 0.16

8 49.88 182.78 1.91 72.76 71.75 0.40 0.39 0.27

12 109.23 182.78 1.29 112.25 102.66 0.61 0.56 0.60
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Figure 4.9.3 Buckling curves for Hashin damage criterion for layup III 

In general, the shape of the curves for layup II and layup III are very similar to each other and the 

general trends are the same. For thin plates with slenderness ~𝜆 > 2.5 the magnitude of initial 

imperfection does not play a role for reduction of strength: the curves for 𝐵/1000 and 𝐵/125 

almost coincide and the reduction factor has the same value. As plate becomes stockier (𝜆 < 2.5) 

the influence of the imperfection amplitude becomes more pronounced but decreases at 𝜆 = 0.47 

for layup II and 𝜆 = 0.68 for layup III, when the reduction factor is ≅ 1. 

In terms of comparison with the ideal plate buckling curve, plates with slenderness 𝜆 > 1.77 (layup 

II) and 𝜆 > 1.50 (layup III) have capacity that exceeds the critical load of equivalent ideal plate (no 

initial out of plane deformations present), so using critical load as failure criterion for these plates 

would be conservative.  

It can also be noticed that in case of layup II (more orthotropic, larger 𝐸𝑥 𝐸𝑦⁄  ratio) the influence of 

the amplitude of initial imperfection is more pronounced for stockier plates (~𝜆 < 1.3) and less 

pronounced for layup III (quasi isotropic, 𝐸𝑥 𝐸𝑦⁄ = 1).  

Figures 4.9.4 and 4.9.5 show the comparison in terms of slenderness of buckling curves for three 

different layups for imperfection amplitude 𝐵/1000 and 𝐵/125. The goal is to compare the 

reduction of compressive strength that corresponds to a certain slenderness value of plates of three 

different layups (i.e. for 𝜆 = 2.5 𝜌𝑙𝑎𝑦𝑢𝑝𝐼 = 0.31, 𝜌𝑙𝑎𝑦𝑢𝑝𝐼 = 0.3, 𝜌𝑙𝑎𝑦𝑢𝑝𝐼𝐼 = 0.23 and 𝜌𝑙𝑎𝑦𝑢𝑝𝐼𝐼𝐼 =

0.31). 
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Figure 4.7.6 Buckling curves comparison for imperfection B/1000 

 

Figure 4.7.7 Buckling curves comparison for imperfection B/125 

From the comparison diagrams it can be seen that the curves associated with layup I and layup III do 

not differ that much. The buckling curve associated with layup II shows larger reduction of 

compression strength compared to buckling curves of layup I and III. As was reported, layup I and 

layup III have 40% and 50% of fibres in 0⁰ direction and layup III – 62.5%. This suggests that in terms 

of design for buckling the larger stiffness ratio has a negative effect on carrying capacity of plates. 
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5. NUMERICAL EXAMPLE 
 

To demonstrate how the derived buckling curves might be used in design of plated fibre reinforced 

polymer structures, and to compare it with existing analytical models a numerical example is 

presented.  

This example shows the calculation of local buckling strength of a hollow profile under uniform axial 

compression according to 

- JRC/Kollar method 

- CUR96 method 

- Buckling curves method 

 

5.1 INPUT DATA 
 

The geometry of the cross-section is shown in figure 5.1.1 

 

Figure 5.1.1 Cross-section geometry 

The length of the profile is chosen 𝐿 = 3000⁡𝑚𝑚; 

𝐵𝑓 = 484⁡𝑚𝑚  𝑡𝑓 = 16⁡𝑚𝑚 

𝐵𝑤 = 584⁡𝑚𝑚  𝑡𝑤 = 16⁡𝑚𝑚 

Layup II (with 62.5% fibres in the longitudinal direction, 𝐸𝑥 𝐸𝑦 = 1.8⁄ ) is used in this profile, with the 

following equivalent bending stiffness properties: 

𝐸𝑥 = 31.78⁡𝐺𝑃𝑎 𝐺𝑥𝑦 = 4.81⁡𝐺𝑃𝑎  

𝐸𝑦 = 13.11⁡𝐺𝑃𝑎 𝜈𝑥𝑦 = 0.356 

Bending stiffness parameters obtained with CLT: 

𝐷11 = 11351152.9⁡𝑀𝑃𝑎 ∙ 𝑚𝑚3 𝐷22 = 4712867.1⁡𝑀𝑃𝑎 ∙ 𝑚𝑚3 
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𝐷12 = 1640113.6⁡𝑀𝑃𝑎 ∙ 𝑚𝑚3  𝐷66 = 1642346.5⁡𝑀𝑃𝑎 ∙ 𝑚𝑚3 

The geometry and material properties are chosen such, so that the webs and the flanges have the 

same layup and thickness but different width, resulting in lower critical stress in the webs (vertical 

plates in the cross-section drawing). In this case:  

- according to JRC/Kollar method the flanges will give additional support to the webs, so the 

increase of critical stress has to be calculated; 

- method described in CUR96 can be applied directly, since both webs and flanges have the 

same thickness. 

 

5.2 JRC/KOLLAR METHOD 
 

Since JRC method does not directly give the design procedure for hollow profiles, the extended 

Kollar procedure is used. The necessary equations are given in table 2.3. 

Step 1: determine the critical stress in webs and flanges assuming simply supported boundary 

conditions. 

Flange:  

(𝑓𝑙𝑜𝑐,𝑘
𝑎𝑥𝑖𝑎𝑙)𝑓

𝑆𝑆 =
𝜋2

𝑡𝑓𝑏𝑓
2 {2√(𝐷11)𝑓(𝐷22)𝑓 + 2[(𝐷12)𝑓 + 2(𝐷66)𝑓]} = 64.46⁡𝑀𝑃𝑎 

Web: 

(𝑓𝑙𝑜𝑐,𝑘
𝑎𝑥𝑖𝑎𝑙)𝑤

𝑆𝑆 =
𝜋2

𝑡𝑤𝑏𝑤
2 {2√(𝐷11)𝑤(𝐷22)𝑤 + 2[(𝐷12)𝑤 + 2(𝐷66)𝑤]} = 44.27⁡𝑀𝑃𝑎 

Since (𝑓𝑙𝑜𝑐,𝑘
𝑎𝑥𝑖𝑎𝑙)𝑓

𝑆𝑆 > (𝑓𝑙𝑜𝑐,𝑘
𝑎𝑥𝑖𝑎𝑙)𝑤

𝑆𝑆, the increase of the critical stress of the web will be considered 

through the interaction with the flange. 

Step 2: determine stiffness of the rotational spring provided by the flange. 

𝑘̃𝑓 =
2(𝐷22)𝑓

𝑏𝑓
[1 −

(𝑓𝑙𝑜𝑐,𝑘
𝑎𝑥𝑖𝑎𝑙)𝑤

𝑆𝑆(𝐸𝐿𝑐)𝑓

(𝑓𝑙𝑜𝑐,𝑘
𝑎𝑥𝑖𝑎𝑙)𝑓

𝑆𝑆(𝐸𝐿𝑐)𝑤
] = 6098.46⁡𝑁 

Step 3: recalculate “improved” critical stress of the web. 

𝜁 =
(𝐷22)𝑤

𝑘̃𝑓𝑏𝑤
= 1.323 

𝜉 =
1

1 + 10𝜁
= 0.070 

(𝑓𝑙𝑜𝑐,𝑘
𝑎𝑥𝑖𝑎𝑙)𝑤 =

𝜋2

𝑡𝑤𝑏𝑤
2 {2√1 + 4.139𝜉√(𝐷11)𝑤(𝐷22)𝑤 + (2 + 0.62𝜉2)[(𝐷12)𝑤 + 2(𝐷66)𝑤]}

= 47.90⁡𝑀𝑃𝑎 

By considering the interaction between webs and flanges, the critical stress of the web is increased 

by 7.6%. 
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5.3 CUR96 METHOD  
 

Step 1: determine the critical load of the flange. 

𝜉 = ⁡
𝑏𝑤
𝑏𝑓

= 1.207 

𝑏 = 𝐵𝑓 = 484⁡𝑚𝑚 

𝑝 = 2.0 +
0.002

𝜉 − 1.3
= 1.979 

𝑞 = 1.0 +
0.08

𝜉 + 0.2
= 1.057 

𝑓𝑐,𝑠𝑡𝑎𝑏,𝑘,𝑓 =
𝜋2

12
∙ (
𝑡𝑓

𝑏
)
2

∙ [√𝑞 ∙ (2 ∙ √𝐸𝑥 ∙ 𝐸𝑦) + 𝑝 ∙ (𝑦 ∙ 𝜈𝑥𝑦 + 2 ∙ 𝐺𝑥𝑦)] = 63.13⁡𝑀𝑃𝑎 

Step 2: determine the critical load of the web. 

𝑓𝑐,𝑠𝑡𝑎𝑏,𝑘,𝑤 =
𝜋2

𝑡𝑤 ∙ 𝑏𝑤
2
∙ (2 ∙ √𝐷11,𝑤 ∙ 𝐷22,𝑤 + 2 ∙ (𝐷12,𝑤 + 2𝐷66,𝑤) = 44.27⁡𝑀𝑃𝑎 

As it can be seen in the CUR96 method, the web is calculated using formula for a simply supported 

plate. However, in case of a hollow section it is unclear which plates are webs and which are flanges. 

By swapping the widths and taking 𝐵𝑓 = 584⁡𝑚𝑚 and 𝐵𝑤 = 484⁡𝑚𝑚, the following results are 

obtained: 

𝑓𝑐,𝑠𝑡𝑎𝑏,𝑘,𝑓 =
𝜋2

𝑡𝑓 ∙ 𝑏𝑓
2 ∙ (2 ∙ √𝐷11,𝑓 ∙ 𝐷22,𝑓 + 2 ∙ (𝐷12,𝑓 + 2𝐷66,𝑓) = 64.46⁡𝑀𝑃𝑎 

𝑓𝑐,𝑠𝑡𝑎𝑏,𝑘,𝑤 =
𝜋2

12
∙ (
𝑡𝑤
𝑏
)
2

∙ [√𝑞 ∙ (2 ∙ √𝐸𝑥 ∙ 𝐸𝑦) + 𝑝 ∙ (𝑦 ∙ 𝜈𝑥𝑦 + 2 ∙ 𝐺𝑥𝑦)] = 43.77⁡𝑀𝑃𝑎 

Since the difference is small, the first definition of the webs (vertical plates with reference to figure 

5.1.1, same as in JRC/Kollar method) is adopted. 

 

5.4 BUCKLING CURVES METHOD  
 

Step 1: determine the compressive strength of the web and flange. 

Both plates have the same layup and therefore 𝑓𝑢𝑙𝑡,𝑓 = 𝑓𝑢𝑙𝑡,𝑤. Using eLamX software and Hashin 

failure criterion, the strength of the laminate is determined as described in 4.5.1: first, the first ply 

failure is determined, then the transverse elastic modulus is reduced to zero in the failed ply, and 

the second ply failure is calculated, which is the maximum load that the plate can carry. 

𝑓𝑢𝑙𝑡,𝑓 = 𝑓𝑢𝑙𝑡,𝑤 = 298.94⁡𝑀𝑃𝑎 

Step 2: determine the critical load of the web and flange. 

The critical loads were already calculated in 5.2: 
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Flange:  

(𝑓𝑙𝑜𝑐,𝑘
𝑎𝑥𝑖𝑎𝑙)𝑓

𝑆𝑆 = 64.46⁡𝑀𝑃𝑎 

Web: 

(𝑓𝑙𝑜𝑐,𝑘
𝑎𝑥𝑖𝑎𝑙)𝑤

𝑆𝑆 = 44.27⁡⁡𝑀𝑃𝑎 

These values were obtained using the simplified formula (table 2.2) for plates whose aspect ratio is 

larger than 5 (AR > 5). For shorter plates, the relation between the number of halfwaves and aspect 

ratio becomes important, and the full formula has to be used (table 2.1). Alternatively, eLamX can be 

used to determine the critical load of the plate taking into account aspect ratio: 

𝜎𝑐𝑟,𝑓 = 64.42⁡𝑀𝑃𝑎 

𝜎𝑐𝑟,𝑤 = 44.29⁡𝑀𝑃𝑎 

Step 3: calculate slenderness of the web and the flange. 

Flange: 

𝜆𝑓 = √
𝑓𝑢𝑙𝑡,𝑓

𝜎𝑐𝑟,𝑓
= 2.15 

Web: 

𝜆𝑤 = √
𝑓𝑢𝑙𝑡,𝑤
𝜎𝑐𝑟,𝑤

= 2.60 

Step 4: determine the failure load of the web and the flange using buckling curves. 

From the buckling curves for layup II the reduction factors are obtained and the failure loads are 

calculated: 

 

Figure 5.4.1 Determination of reduction factors 
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Flange: 

𝜌𝑓 = 0.30  𝑓𝑓𝑎𝑖𝑙,𝑓 = 𝜌𝑓 ∙ 𝑓𝑢𝑙𝑡,𝑓 = 89.68⁡𝑀𝑃𝑎 

Web: 

𝜌𝑤 = 0.26  𝑓𝑓𝑎𝑖𝑙,𝑤 = 𝜌𝑤 ∙ 𝑓𝑢𝑙𝑡,𝑤 = 74.74⁡𝑀𝑃𝑎 

Since both flange and web are rather slender, the reduction factors for imperfection amplitude 

𝐵/1000 and 𝐵/125 are almost the same. As it can be seen, by using failure load instead of critical 

load, the carrying capacity of the flange is increased by 28% and the web by 40%. 

 

5.5 DISCUSSION OF RESULTS  
 

Table 5.1 shows the comparison of the results obtained by JRC/Kollar method, CUR96 method and 

buckling curves method. Also, the results from finite element analysis are presented. All the values 

given in [MPa]. 

 

Table 5.1 Results obtained from four different methods 

The first that can be noticed is that the results obtained with JRC/Kollar method and CUR96 method 

give load values that are close to each other. The difference is that in JRC/Kollar the flange and the 

web are first evaluated to determine which plate will buckle first, and then the restraining plate (the 

one that buckles later) will provide additional strength to the plate that already buckled. In CUR96 

the formula that takes into account interaction between the web and the flange is given only for 

flanges, while for webs an analytical formula for a simply supported plate is used, which gives a 

conservative result. 

The buckling curves method gives higher load values both for the flange and the web because this 

method considers not critical load but failure load. It was shown that thin plates have “postbuckling” 

capacity and therefore can carry loads higher than critical load. For the flange, the failure load 

obtained with buckling curves method gives a value that is 28% higher than the value obtained with 

JRC/Kollar method and 29% higher than the value obtained with CUR96 method. For the web the 

difference is 36% and 40%. The larger difference in case of the web is based on the fact that web has 

a higher plate slenderness than the flange and is in line with what was described in chapter 4. 

The results that were obtained with finite element analysis (the two values correspond to plates 

with two different imperfection amplitudes 𝐵/1000 / 𝐵/125) are slightly higher the values obtained 

with buckling curves. The difference is about 5% for the flange and 6% for the web. 

Below the table that shows the difference between the obtained loads is given. The values obtained 

with the three methods: JRC/Kollar, CUR96 and buckling curves are compared to the results taken 

directly from the finite element analysis. 

flange 64.46 63.13 89.68 94.39 / 93.29

web 47.9 44.27 74.74 79.43 / 79.30

JRC/  

Kollar
CUR96

buckling 

curves
FEA
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Table 5.2 Comparison of results obtained from design procedures and FEA 

The largest difference of 44% relates to the critical load of the web calculated with the analytical 

formula for a simply supported plate in CUR96 method for both imperfection values. This difference 

means that the plate with slenderness 𝜆𝑤 = 2.60 can carry load almost two times the critical load. 

The buckling strength of the flange according to the JRC/Kollar method is also calculated using 

formula for a simply-supported plate but the difference with the failure load is 32% and 31%, since 

slenderness of the flange has a lower value 𝜆𝑓 = 2.15 than slenderness of the web. The load 

calculated by considering interaction between webs and flanges gives a difference of 33% and 29% 

for 𝐵/1000 and  𝐵/125, respectively. 

This example shows that by using the failure load that can be estimated from the buckling curves the 

carrying capacity of the slender plates (𝜆 > 2.5) can be improved significantly. 

  

B/1000 B/125 B/1000 B/125 B/1000 B/125

flange 32 31 33 29 5 4

web 40 40 44 44 6 6

JRC/  Kollar, % CUR96, % buckling curves, %
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6. CONCLUSION 
 

6.1 CONCLUSIONS BASED ON THE RESULTS 
 

Behaviour of orthotropic plates was studies using geometrically and materially nonlinear finite 

element analysis. Various shapes and amplitudes of imperfections were considered, and plate 

geometric and material parameters were studied. The following conclusions were made based on 

the analysis. 

• Orthotropic materials have different linear buckling behaviour than isotropic materials. 

In case of an isotropic material (for example, steel) the relation between pate aspect ratio and 

buckling mode (number of halfwaves 𝑚) reads as: 𝐴𝑅 = 𝑚; and the minimum critical stress 

corresponds to plates, in which aspect ratio is such that the length of one halfwave equals exactly to 

the width of the plate. For an orthotropic material, the difference in stiffness in longitudinal and 

transverse directions has to be taken into consideration. The relation between aspect ratio and 

number of halfwave is given as: 𝐴𝑅 = 𝑚√𝐷11 𝐷22⁄4
, which means that the minimal critical stress of a 

certain buckling mode will no longer only depend on the aspect ratio but also on the bending 

stiffness ratio. 

• Critical load only occurs in plates with no initial out of plane deformations. 

The load – deflection diagram of a perfect plate has a bifurcation point, which ordinate gives plate’s 

critical load. Until that point there is only increase of load and no increase of out of plane 

deformation. In an imperfect plate the out of plane deflections begin to increase as soon as load 

increases and instead of a bifurcation point there is a rounded over “knee” in the diagram, which 

means that a critical load value is difficult to determine. So, in other words, an imperfect plate 

gradually bends or bows, rather than suddenly changes shape. 

• Relating the limiting value of imperfection only to plate width might result in very large 

initial out of plane deformations in relation to plate thickness. 

When constructing buckling curves, plates of 300 × 900⁡𝑚𝑚 with various thicknesses were 

analysed. So, for plate thickness 𝑡 = 3⁡𝑚𝑚 the limiting value of initial imperfection is 𝐵 125⁄ =

2.4⁡𝑚𝑚, which is almost equal to thickness and is unlikely to happen in practice. Relating the limiting 

value of imperfection to both width and thickness (slenderness) would be more sensible. 

• Small imperfection (single / double wrinkle) causes plate buckling in the first buckling mode, 

large imperfection (imperfection in the shape of one of the buckling mode) causes plate 

buckling into the shape that coincides with the shape of initial imperfection. 

When a single or a double wrinkle imperfection is present in a plate, the plate will buckle into the 

first buckling mode and will show small increase of initial out of plane deformations at the load 

levels below the theoretical critical load. Imperfection in the shape of the first buckling mode also 

causes plate buckling in the first buckling mode shape but with a larger out of plane deformations 

compared to the plate with wrinkle imperfection. Imperfections in the shape of the second buckling 

mode causes the plate to buckle into the second buckling mode, etc. 

• There are two effects that account for strength reduction of a composite plate with initial 

geometric imperfections. 
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The first effect is due to additional bending moment that results from eccentricities caused by initial 

out of plane deformations. The degree of this effect depends on plate thickness, aspect ratio and 

layup. The other effect is due to material degradation. According to Hashin progressive failure 

analysis, the governing failure mode is matrix cracking in tension. However, for very stocky plates 

(𝜆~0.41 − 0.7, depending on the layup and the amplitude of imperfection) the failure mode 

becomes matrix crushing. 

• Initial imperfection amplitude does not have an effect on failure load of thin plates with 

slenderness ~𝜆 > 2.5. 

In case of imperfect plates of slenderness approximately 𝜆 > 2.5, the reduction factor 𝜌 does not 

depend on the imperfection amplitude, meaning that the same values of 𝜌 are to be applied to 

plates with imperfection 𝐵/1000 and 𝐵/125.  

However, as the pate slenderness decreases the failure load starts to depend on the amplitude of 

initial imperfection: larger magnitude of initial deformation associates with lower failure load and 

smaller magnitude of initial deformation associates with higher failure load of a plate with a certain 

slenderness.  

• Slender plates with initial imperfections can carry load higher than the critical load of an 

ideal plate with the same geometric and material properties. 

Slender plates (𝜆 > 1.50 for layup I and III; 𝜆 > 1.77 for layup II) have “postbuckling” capacity (load 

levels higher than the critical load associated with a perfect plate). That means that the critical 

buckling load criterion (disregarding presence of initial imperfections) for slender plates will give 

conservative results.  

In case of stocky plates (𝜆 ≤ 1.50 for layup I and III; 𝜆 ≤ 1.77 for layup II) the critical load criterion 

will be an overestimation of carrying capacity and can give results up to 18% and 30% higher for 

plate of layup I with imperfection 𝐵/1000 and 𝐵/125, respectively. This difference varies depending 

on material properties of a plate (layup II: 38% and 18%; layup III: 28% and 8%). 

• The design procedures described in JRC/Kollar and CUR96 documents relate to critical load. 

It was shown through a numerical example for a profile with a specific geometry and material 

properties that the analytical models described in JRC/Kollar and CUR96 taking into account web / 

flange interaction can give the buckling strength up to 40% less than the results obtained from the 

finite element analysis. It also means that for stocky plates (𝜆 ≤ 1.50 for layup I and III; 𝜆 ≤ 1.77 for 

layup II) these design procedures might overestimate the buckling strength.  

 

6.2 RECOMMENDATION FOR FURTHER RESEARCH 
 

While reviewing the literature on the topic, it was suggested in one of the papers that the limiting 

value of imperfections give unrealistic results. It should be noted that this limiting value is given for 

pultruded structural elements. It was also difficult to find information in literature on the measured 

initial out of plane deformations of the test specimens. To evaluate the sensibility of the purposed 

limiting values given in standard, it would be good to have some statistics on the actual 

imperfections that occur in the elements produced by VARTM.  
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Another point of attention would be the research data for material properties required for 

progressive damage analysis. In this research the values calibrated for E-glass / epoxy laminate were 

used in the absence of information for E-glass / polyester laminates. In addition, test data for VARTM 

produced elements would be helpful to verify the results obtained from finite element analysis.  

Next to geometric imperfections the fibre reinforced composites can have material imperfections 

such as wrinkling of fabric. The influence of material imperfections was not a part of this thesis but 

such imperfections could also influence the behaviour of FRP plates. 
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ANNEX 
 

A. DESIGN FOR BUCKLING ACCORDING TO JRC AND CUR96 
 

The equations for column and lateral-torsional buckling according to JRC and CUR96 are listed in the 

table below. 

JRC CUR96 

Column Buckling 

𝑁𝑅𝑑2,𝑐 = 𝜒 ∙ 𝑁𝑙𝑜𝑐,𝑅𝑑 

 

𝑁𝑏,𝑅𝑑 = 𝜒 ∙
𝜂𝑐 ∙ 𝐴 ∙ 𝜌 ∙ 𝑓𝑐,𝑘

𝛾𝑀
 

𝜒 =
1

𝑐 ∙ 𝜆2
(𝛷 − √𝛷2 − 𝑐 ∙ 𝜆2) 𝜒 =

1

𝛷 + √𝛷2 − 𝜆̅2
≤ 1 

𝛷 =
1 + 𝜆2

2
 

𝛷 = 0.5 ∙ (1 + 𝛼𝑓 ∙ (𝜆̅𝑓 − 𝜆̅𝑓,0) + 𝜆̅𝑓
2) 

𝜆 = √
𝑁𝑙𝑜𝑐,𝑅𝑑
𝑁𝑅𝑑,𝐸

 𝜆̅𝑓 = √
𝐴 ∙ 𝜌 ∙ 𝑓𝑐,𝑘

𝑁𝑐𝑟
 

Lateral (Flexural) Torsional Buckling 

𝑀𝑅𝑑,2 = 𝜒𝐹𝑇 ∙ 𝑀𝑙𝑜𝑐,𝑅𝑑  
𝑀𝑏,𝑅𝑑 = 𝜒𝐿𝑇 ∙

𝜂𝑐 ∙ 𝑊𝑦 ∙ 𝜌 ∙ 𝑓𝑏,𝑐,𝑘

𝛾𝑀
 

𝜒𝐹𝑇 =
1

𝑐 ∙ 𝜆𝐹𝑇
2 (𝛷𝐹𝑇 −√𝛷𝐹𝑇

2 − 𝑐 ∙ 𝜆𝐹𝑇
2 ) 𝜒𝐿𝑇 =

1

𝛷𝐿𝑇 +√𝛷𝐿𝑇
2 − 𝜆̅𝐿𝑇

2

≤ 1 

𝛷𝐹𝑇 =
1 + 𝜆𝐹𝑇

2

2
 

𝛷𝐿𝑇 = 0.5 ∙ (1 + 0.75 ∙ 𝛼𝑓 ∙ (𝜆̅𝐿𝑇 − 𝜆̅𝐿𝑇,0)

+ 𝜆̅𝐿𝑇
2 ) 

𝜆𝐹𝑇 = √
𝑀𝑙𝑜𝑐,𝑅𝑑

𝑀𝑅𝑑,𝐹𝑇
 𝜆̅𝐿𝑇 = √

𝑊𝑦 ∙ 𝜌 ∙ 𝑓𝑏,𝑐,𝑘

𝑀𝑐𝑟
 

Table A.1 Design procedures for buckling according to JRC and CUR96 

The general procedure is very similar in both methods: the buckling resistance equals to the 

multiplication of the reduction factor and the local buckling resistance. If the expression of 𝑁𝑏,𝑅𝑑 

given in CUR96 is rearranged, it will coincide with 𝑁𝑅𝑑2,𝑐 given in JRC: 
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𝑁𝑏,𝑅𝑑 = 𝜒 ∙
𝜂𝑐 ∙ 𝐴 ∙ 𝜌 ∙ 𝑓𝑐,𝑘

𝛾𝑀
= 𝜒 ∙

𝜂𝑐 ∙ 𝐴 ∙
𝑓𝑐,𝑠𝑡𝑎𝑏,𝑘
𝑓𝑐,𝑘

∙ 𝑓𝑐,𝑘

𝛾𝑀
= 𝜒 ∙

𝜂𝑐 ∙ 𝐴 ∙ 𝑓𝑐,𝑠𝑡𝑎𝑏,𝑘
𝛾𝑀

= 𝜒 ∙ 𝑁𝑐,𝑠𝑡𝑎𝑏,𝑅𝑑 

(A.1) 

The buckling reduction factor 𝜒 in JRC procedure takes into account the interaction of global and 

local bucking modes of a profile. This is reflected in the interaction factor 𝑐 which is a function of 

geometry, material properties and initial imperfections. For column buckling 𝑐 = 1.0. In CUR96 the 

buckling reduction factor depends on the shape function and the slenderness.  

In both design codes the definition of slenderness is actually the same: 

𝜆̅𝑓 = √
𝐴 ∙ 𝜌 ∙ 𝑓𝑐,𝑘

𝑁𝑐𝑟
=
√
𝐴 ∙

𝑓𝑐,𝑠𝑡𝑎𝑏,𝑘
𝑓𝑐,𝑘

∙ 𝑓𝑐,𝑘

𝑁𝑐𝑟
= √

𝑁𝑐,𝑠𝑡𝑎𝑏,𝑘
𝑁𝑐𝑟

 

(A.2) 

𝑁𝑐𝑟 = 𝑁𝑅𝑑,𝐸, in both methods it is a critical value of buckling load. 

The parameter 𝛷 in JRC is a function of slenderness; in CU96 it depends on slenderness, 

imperfection factor 𝛼𝑓 and plateau length of buckling curve 𝜆̅𝑓,0. The two latter factors depend on 

the shape of cross-section. Their values were determined experimentally and numerically and are 

given in table A.2 (2.5). 

Cross-section 𝛼𝑓 𝜆̅𝑓,0 

hollow 0.40 0.50 

I-, U- (weak axis bending) 0.75 0.50 

I-, U- (strong axis bending) 0.50 0.50 

Table A.2 𝜶𝒇 and 𝝀̅𝒇 for column buckling 

The difference in design for lateral torsional buckling is similar as for column buckling with an 

exception of different values of 𝑐, 𝛼𝑓 and 𝜆̅𝑓,0. In case of lateral torsional buckling 𝑐 = 0.7 and 

imperfection factor and plateau length is given in table A.2. 

Cross-section 𝛼𝑓 𝜆̅𝑓,0 

all (weak axis bending) 0.50 0.50 

Table A.3 𝜶𝒇 and 𝝀̅𝑳𝑻,𝟎 for lateral torsional buckling 

The derivation of imperfection factors and the plateau lengths of the buckling curves can be found in 

the work by H. Trompf [3]. 

The procedure given in JRC is focused on the interaction between the global and local buckling modes. 

In this case the imperfections are considered implicitly through the interaction constant 𝑐. The 

interaction constant is introduced in the expression of the reduction factor 𝜒. If the global buckling is 

prevented, then the buckling resistance will be equal to local buckling resistance, since 𝜒 = 1.0.  
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The buckling resistance In CUR96 is expressed in the same way as in JRC. However, the imperfections 

are considered explicitly through the imperfection factors 𝛼. The imperfection factors together with 

the lengths of horizontal lines in the buckling curve diagrams (plateau lengths) are included in the 

expression of the shape functions 𝛷. The mode interaction is not a part of this design procedure. 
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B. LAMINATE STIFFNESS MATRICES 
 

B.1 CLASSICAL LAMINATION THEORY CALCULATIONS 
 

1. The reduced stiffness matrix of a unidirectional ply - describes the elastic behaviour of the 

material 

𝑄𝑖𝑗 = [

𝑄11 𝑄12 0
𝑄12 𝑄22 0
0 0 𝑄66

] 

with  

𝑄11 =
𝐸1
2

𝐸1 − 𝜈12
2 ∙ 𝐸2

 

𝑄12 =
𝜈12 ∙ 𝐸1 ∙ 𝐸2

𝐸1 − 𝜈12
2 ∙ 𝐸2

 

𝑄22 =
𝐸1 ∙ 𝐸2

𝐸1 − 𝜈12
2 ∙ 𝐸2

 

𝑄66 = 𝐺12 

2. The transformed reduced stiffness matrix – takes into account fibre orientation in each ply 

𝑄𝑖𝑗̅̅ ̅̅ = [

𝑄11̅̅ ̅̅ ̅ 𝑄12̅̅ ̅̅ ̅ 𝑄16̅̅ ̅̅ ̅

𝑄12̅̅ ̅̅ ̅ 𝑄22̅̅ ̅̅ ̅ 𝑄26̅̅ ̅̅ ̅

𝑄16̅̅ ̅̅ ̅ 𝑄26̅̅ ̅̅ ̅ 𝑄66̅̅ ̅̅ ̅
] 

with 

𝑄11̅̅ ̅̅ ̅ = 𝑄11 ∙ (cos𝜃)
4 + 2(𝑄12 + 2𝑄66) ∙ (cos𝜃)

2 ∙ (sin 𝜃)2 + 𝑄22 ∙ (sin𝜃)
4 

𝑄12̅̅ ̅̅ ̅ = 𝑄21̅̅ ̅̅ ̅ = 𝑄12 ∙ ((cos 𝜃)
4 + (sin𝜃)4) + (𝑄11 + 𝑄22 − 4𝑄66) ∙ (cos 𝜃)

2 ∙ (sin 𝜃)2 

𝑄16̅̅ ̅̅ ̅ = 𝑄61̅̅ ̅̅ ̅ = (𝑄11 − 𝑄12 − 2𝑄66) ∙ (cos 𝜃)
3 ∙ sin 𝜃 − (𝑄22 − 𝑄12 − 2𝑄66) ∙ cos𝜃 ∙ (sin𝜃)

3 

𝑄22̅̅ ̅̅ ̅ = 𝑄11 ∙ (sin𝜃)
4 + 2(𝑄12 + 2𝑄66) ∙ (cos 𝜃)

2 ∙ (sin𝜃)2 + 𝑄22 ∙ (cos𝜃)
4 

𝑄26̅̅ ̅̅ ̅ = 𝑄62̅̅ ̅̅ ̅ = (𝑄11 − 𝑄12 − 2𝑄66) ∙ cos 𝜃 ∙ (sin𝜃)
3 − (𝑄22 − 𝑄12 − 2𝑄66) ∙ (cos𝜃)

3 ∙ sin 𝜃 

𝑄66̅̅ ̅̅ ̅ = (𝑄11 + 𝑄22 − 2𝑄12 − 2𝑄66) ∙ (cos 𝜃)
2 ∙ (sin𝜃)2 + 𝑄66 ∙ ((cos𝜃)

4 + (sin 𝜃)4) 

3. 𝐴𝑖𝑗, 𝐵𝑖𝑗  and 𝐷𝑖𝑗 matrices of the laminate 

The extensional stiffness matrix: 

𝐴𝑖𝑗 = ∑(𝑄̅𝑖𝑗)𝑘

𝑛

𝑘=1

(ℎ𝑘 − ℎ𝑘−1) 

The strain-curvature coupling stiffness matrix: 

𝐵𝑖𝑗 =
1

2
∑(𝑄̅𝑖𝑗)𝑘

𝑛

𝑘=1

(ℎ𝑘
2 − ℎ𝑘−1

2 ) 
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The bending stiffness matrix: 

𝐷𝑖𝑗 =
1

3
∑(𝑄̅𝑖𝑗)𝑘

𝑛

𝑘=1

(ℎ𝑘
3 − ℎ𝑘−1

3 ) 

with ℎ being the vertical position of the ply from the midplane 

 

Figure B.1 Laminate with n plies [5] 

4. Equivalent stiffness properties of the laminate 

Axial: 

𝐸𝑥 = 1 (𝑡𝑎11)⁄  

𝐸𝑦 = 1 (𝑡𝑎22)⁄  

𝐺𝑥𝑦 = 1 (𝑡𝑎66)⁄  

𝜈𝑥𝑦 = −𝑎12 𝑎11⁄  

𝜈𝑦𝑥 = −𝑎12 𝑎22⁄  

Flexural: 

𝐸𝑥 = 12 (𝑡3𝑑11)⁄  

𝐸𝑦 = 12 (𝑡3𝑑22)⁄  

𝐺𝑥𝑦 = 12 (𝑡3𝑑66)⁄  

𝜈𝑥𝑦 = −𝑑12 𝑑11⁄  

𝜈𝑦𝑥 = −𝑑12 𝑑22⁄  

Where 𝑎𝑖𝑗  and 𝑑𝑖𝑗  are the values from the inverse of A or D matrices, and 𝑡 is thickness of a 

laminate. 

 

B.2 LAYUP AND MATERIAL PROPERTIES 
 

Laminate properties are computed for three layups: 
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- layup I: 0⁰ -40%, 45⁰ -20%, -45⁰ -20%, 90⁰ -20% 

- layup II: 0⁰ -62.5%, 45⁰ -12.5%, -45⁰ -12.5%, 90⁰ -12.5% 

- layup III: 0⁰ -25%, 45⁰ -25%, -45⁰ -25%, 90⁰ -25% 

 

Figure B.2 Ply sequence for layup I and II 

Laminate properties are calculated based on the indicative values given in table 3.6 [2] p. 43. 

 

B.3 A, B AND D MATRICES 
 

Layup I 

𝐴 = [
98.56 25.37 0
25.37 77.38 0
0 0 25.4

] ⁡𝐺𝑃𝑎 ∙ 𝑚𝑚 

𝐵 = [
0 0 0
0 0 0
0 0 0

] 

𝐷 = [
146.48 35.72 5.08
35.72 84.34 5.08
5.08 5.08 35.75

]𝐺𝑃𝑎 ∙ 𝑚𝑚3 

 

Layup II 

𝐴 = [
118.88 20.95 0
20.95 65.91 0
0 0 20.97

] ⁡𝐺𝑃𝑎 ∙ 𝑚𝑚 

𝐵 = [
0 0 0
0 0 0
0 0 0

] 

𝐷 = [
177.36 25.63 1.66
25.63 73.64 1.66
1.66 1.66 25.66

]𝐺𝑃𝑎 ∙ 𝑚𝑚3 
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Layup III 

𝐴 = [
85.02 28.32 0
28.32 85.02 0
0 0 28.35

] ⁡𝐺𝑃𝑎 ∙ 𝑚𝑚 

𝐵 = [
0 0 0
0 0 0
0 0 0

] 

𝐷 = [
128.62 42.37 8.28
42.37 88.89 8.28
8.28 8.28 42.41

]𝐺𝑃𝑎 ∙ 𝑚𝑚3 

 

B.4 EQUIVALENT LAMINATE PROPERTIES 
 

Layup I 

𝐴−1 = [
0.0111 −0.0036 0
−0.0036 0.0141 0

0 0 0.0394
]⁡1 (𝐺𝑃𝑎 ∙ 𝑚𝑚)⁄  

𝐷−1 = [
0.0076 −0.0032 −0.0006
−0.0032 0.0133 −0.0014
−0.0006 −0.0014 0.0283

]1 (𝐺𝑃𝑎 ∙ 𝑚𝑚3)⁄  

 

Axial:         Flexural:

𝐸𝑥 = 22.56⁡𝐺𝑃𝑎 

𝐸𝑦 = 17.71⁡𝐺𝑃𝑎 

𝐺𝑥𝑦 = 6.35⁡𝐺𝑃𝑎 

𝜈𝑥𝑦 = 0.323 

𝜈𝑦𝑥 = 0.257 

𝐸𝑥 = 24.67⁡𝐺𝑃𝑎 

𝐸𝑦 = 14.10⁡𝐺𝑃𝑎 

𝐺𝑥𝑦 = 6.63⁡𝐺𝑃𝑎 

𝜈𝑥𝑦 = 0.421 

𝜈𝑦𝑥 = 0.241 

 

Layup II 

𝐴−1 = [
0.0055 −0.0017 0
−0.0017 0.0157 0

0 0 0.0477
]⁡1 (𝐺𝑃𝑎 ∙ 𝑚𝑚)⁄  

𝐷−1 = [
0.0059 −0.0021 −0.0003
−0.0021 0.0143 −0.0008
−0.0003 −0.0008 0.0390

]1 (𝐺𝑃𝑎 ∙ 𝑚𝑚3)⁄  

 

Axial:       Flexural: 

𝐸𝑥 = 28.06⁡𝐺𝑃𝑎 𝐸𝑥 = 31.78⁡𝐺𝑃𝑎 
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𝐸𝑦 = 15.57⁡𝐺𝑃𝑎 

𝐺𝑥𝑦 = 5.24⁡𝐺𝑃𝑎 

𝜈𝑥𝑦 = 0.318 

𝜈𝑦𝑥 = 0.176 

𝐸𝑦 = 13.11⁡𝐺𝑃𝑎 

𝐺𝑥𝑦 = 4.81⁡𝐺𝑃𝑎 

𝜈𝑥𝑦 = 0.356 

𝜈𝑦𝑥 = 0.147 

 

Layup III 

𝐴−1 = [
0.0132 −0.0044 0
−0.0044 0.0132 0

0 0 0.0353
]⁡1 (𝐺𝑃𝑎 ∙ 𝑚𝑚)⁄  

𝐷−1 = [
0.0093 −0.0043 −0.0010
−0.0043 0.0135 −0.0018
−0.0010 −0.0018 0.0241

]1 (𝐺𝑃𝑎 ∙ 𝑚𝑚3)⁄  

 

Axial:       Flexural: 

𝐸𝑥 = 18.90⁡𝐺𝑃𝑎 

𝐸𝑦 = 18.90⁡𝐺𝑃𝑎 

𝐺𝑥𝑦 = 7.09⁡𝐺𝑃𝑎 

𝜈𝑥𝑦 = 0.333 

𝜈𝑦𝑥 = 0.333 

𝐸𝑥 = 20.24𝐺𝑃𝑎 

𝐸𝑦 = 13.91⁡𝐺𝑃𝑎 

𝐺𝑥𝑦 = 7.77⁡𝐺𝑃𝑎 

𝜈𝑥𝑦 = 0.467 

𝜈𝑦𝑥 = 0.321 

 



134 
 

C. LOAD – DEFLECTION DIAGRAMS 
 

 

Figure C.1.1 Force – deflection at maximum curves for a plate t = 4 mm with the imperfection in the 

shape of the second buckling mode 

 

Figure C.1.2 End shortening of a plate t = 4 mm with the imperfection in the shape of the second 

buckling mode 
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Figure C.1.3 Force – deflection at maximum curves for a plate t = 8 mm with the imperfection in the 

shape of the first buckling mode 

 

Figure C.1.4 End shortening of a plate t = 8 mm with the imperfection in the shape of the first 

buckling mode  
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Figure C.1.5 Force – deflection at maximum curves for a plate AR = 5 with the imperfection in the 

shape of the first buckling mode 

 

Figure C.1.6 End shortening of a plate AR = 5 with the imperfection in the shape of the first 

buckling mode  
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Figure C.1.7 Force – deflection at maximum curves for a plate layup II with the imperfection in the 

shape of the second buckling mode 

 

Figure C.1.8 Force – deflection at maximum curves for a plate layup II with the imperfection in the 

shape of the first buckling mode 
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Figure C.1.9 End shortening of a plate with the imperfection in the shape of the second buckling 

mode  

 

Figure C.1.10 End shortening of a plate with the imperfection in the shape of the first buckling 

mode  
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D. BOUNDARY CONDITIONS 
 

When analysing the plates for transverse shear stresses, very high localized stress values (red areas) 

compared to the rest of the plate were observed in the corner elements:  

 

Figure D.1 Transverse shear stresses contour plot  

A question which arises is whether this caused by the unrealistically rigid boundary conditions or if 

delamination can initiate and propagate from the corners of the plate. In order to attempt to answer 

this question alternative boundary conditions were modelled. 

 

Figure D.2 Original (top) and alternative (bottom) boundary conditions 
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The main difference is that in the original boundary conditions a concentrated force was applied to a 

reference point that was rigidly coupled to a plate’s edge. In the new boundary conditions instead of 

the concentrated force initial axial displacement was applied in the 𝑥 direction and the rigid coupling 

was removed, making the plate edge unrestrained. 

Further the study of the effect of the boundary conditions is presented. The investigated plate has 

thickness of 6⁡𝑚𝑚. The initial imperfection amplitude is taken as 𝐵 125⁄ = 2.4⁡𝑚𝑚. Geometrically 

and materially nonlinear model is used. 

 

EFFECT OF BOUNDARY CONDITIONS ON INTERLAMINAR SHEAR STRESSES 

Since the goal is to establish whether delamination might occur before Hashin failure, the ultimate 

Hashin progressive failure load was determined first. In case of the original boundary conditions: 

𝑃𝑢𝑙𝑡,𝑜𝑟 = 67.95⁡𝑘𝑁, and for the alternative boundary conditions: 𝑃𝑢𝑙𝑡,𝑎𝑙 = 107.9⁡𝑘𝑁. The 

interlaminar shear stresses for a plate with original boundary conditions are shown in the contour 

plot in figure D.3 and with alternative boundary conditions in figure D.4. 

 

 

Figure D.3 Interlaminar shear stresses in the plate with original boundary conditions at Pult,or 

Very high interlaminar stresses are seen in the corner of the plates of 35.22⁡𝑀𝑃𝑎 and much lower 

values elsewhere in the plate ~3.0⁡𝑀𝑃𝑎. 

For the plate with alternative boundary conditions for the same load level lower values of 

interlaminar shear stresses were found: 
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Figure D.4 Interlaminar shear stresses in the plate with modified boundary conditions at Pult,al 

Peak values are 13.32⁡𝑀𝑃𝑎, and general distribution of interlaminar shear stresses is more uniform 

than in case of the original boundary conditions. 

Since it was discovered that the ultimate Hashin progressive failure load values also differ depending 

on the boundary conditions, it was decided to look closer how they influence the results. 

 

EFFECT OF BOUNDARY CONDITIONS ON HASHIN PROGRESSIVE FAILURE 

The difference between the ultimate Hashin progressive failure loads is ~35%. In both cases 

governing failure mode is matrix cracking: 

 

 

Figure D.5 Damage in the plate with original boundary conditions 

 

Figure D.6 Damage in the plate with modified boundary conditions 

As seen in the figures above, in the original plate the critical points are close to the corners, while 

the alternative plate does not have them. The damage in the original situation occurs at lower load 

levels than in the plate with modified boundary conditions at 𝑃 = 58.04⁡𝑘𝑁 and 𝑃 = 77.07⁡𝑘𝑁. So, 

the software will start reducing stiffness of the laminate sooner and the ultimate strength of the 

plate will be lower. The plot below shows the load – end shortening curves comparison between a 

plate with original and alternative boundary conditions with imperfection amplitude 𝐵/1000 and 

𝐵/125, where it can be seen that in case of the original boundary conditions the reduction and the 

failure of the laminate occurs sooner than for the alternative situation.  
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Figure D.7 Load – end shortening curves for the original and modified boundary conditions 

 

CONCLUSIONS 

The effect of boundary conditions and load introduction on the interlaminar shear stresses and the 

progressive damage analysis was presented.  

It was found that when a reference point that is rigidly coupled to the plate’s edge is used, very high 

localized transverse shear stresses occur in the plate’s corners. In case of modified boundary 

conditions, when the load is introduced directly to the plate’s edge, the maximum values also occur 

at the edges, however, they are much lower for the same load level.  

The boundaries also have an effect on the ultimate progressive damage analysis load. In the original 

situation with the plate edge being rigidly coupled to the reference point, damage occurs in the 

corner area of the plate at the lower load compared to the modified constraints. Higher ultimate 

loads were obtained for the plate with alternative boundary: 35% higher. 

Based on these results, it is concluded that the high localized transverse shear stresses are caused by 

the rigid constraint of the plate’s edge. The alternative boundary conditions reduce these high 

values and prevent the damage evolution at the points close to the plate’s corners in the progressive 

analysis. The linear buckling analysis results with the alternative boundary conditions stay almost 

unchanged compared to the results obtained with the original boundary conditions. It is therefore 

decided to continue analysis with the alternative boundary conditions. 
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E. DAMAGE EVOLUTION PARAMETERS 

 

A small sensitivity analysis was performed to see the influence of the fracture energy parameters. 

The damage initiates due to matrix cracking. The fracture energy values are given for E-glass epoxy, 

but the resin under consideration is polyester. Therefore, the transverse tensile and compressive 

fracture energies were varied. 

The model used for this study is of a plate with layup I (𝐸𝑋 𝐸𝑦 = 1.27⁄ ), 𝑡 = 6⁡𝑚𝑚, 𝐿 = 900⁡𝑚𝑚, 

𝐵 = 300⁡𝑚𝑚 and alternative boundary conditions as reported in 4.3. 

Figure 4.5.1 shows the load – end shortening curves for a plate with two different amplitudes of 

imperfection and three difference values for transverse tensile and compressive fracture energies, 

denoted as 1/1 (the original values for E-glass / epoxy laminate), 0/0 and 4/4.  

 

Figure E.1 Effect of transverse fracture energies input values 

 

Table E.1 Failure loads corresponding to different values of transverse fracture energies 

As expected, the largest difference in ultimate loads is between the 1/1 and the 4/4 values; around 

6% increase for 𝐵/1000 and 𝐵/125. The reduction of material stiffness is more pronounced in case 

of transverse energies being set to zero, and the least reduction can be observed for fracture 

energies in transverse direction set to 4. Since the fracture energy properties for transverse tension 
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and compression do not seem to have a large influence on the ultimate load, it is decided to use the 

values available for E-glass epoxy laminate. 
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F. MODEL VALIDATION 
 

Buckling curves for FRP plates were derived by H. Trumpf [3] based on FEA simulations and 

experimental results.  

 

Figure 4.7.1 Buckling curves for plates with various supports [3] p. 141 

The curve that corresponds to the simply supported boundary conditions is denoted as 

Beultragspannungskurve Steg and experimental results Versuche Stegbeulen V240. The material 

properties of the laminate are such that 𝐸𝑐𝑥 𝐸𝑐𝑦⁄ = 2.45. As it can be seen the derived buckling 

curve is below the curve that is based on the perfect plate buckling theory (ideale Beultheorie), even 

for large values of plate slenderness, unlike what was observed in the analysis in chapter 4. 

The material properties for layup I result in much lower ratio between longitudinal and transverse 

modulus of elasticity 𝐸𝑐𝑥 𝐸𝑐𝑦⁄ = 1.27, compared to the values from Trumpf’s work. The exact layup 

from [3] is not known, but the slenderness corresponding to experimental results is 𝜆 = 1.45. To 

match slenderness and ratio between moduli of elasticity in two directions the following layup was 

used: 

 

Figure 4.7.2 Layup for model validation 
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Which results in 𝐸𝑐𝑥 𝐸𝑐𝑦⁄ = 2.51 and for a plate with dimensions 300⁡ × 900, 𝑡 = 16⁡𝑚𝑚 

slenderness is 𝜆 = 1.46. Two amplitudes of imperfections were considered 𝐵/1000 and 𝐵/125. The 

resulting reduction factors are shown over the results from [3]: 

 

Figure 4.7.3 Comparison of FEA with experimental results 

For given slenderness the results obtained from the finite element model are slightly optimistic 

compared to the test results. This could be due to uncertainties in modelling the laminate: ply 

properties and layup had to be assumed. Also, there is uncertainty in terms of the failure load 

determined experimentally. According to [3] the drop of the load was considered as failure, which in 

case of plate with very small imperfection can also mean critical load. 
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G. PROGRESSIVE DAMAGE DIAGRAMS 
 

The following load – end shortening diagrams are derived for plates of layup I (𝐸𝑥 𝐸𝑦⁄ = 1.27). 

 

Slenderness 𝜆 = 4.35 

 

Figure G.1 Load – end shortening diagram, λ = 4.35 B/1000 

 

Figure G.2 Load – end shortening diagram, λ = 4.35 B/125 
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Slenderness 𝜆 = 2.91 

 

Figure G.3 Load – end shortening diagram, λ = 2.91 B/1000 

 

Figure G.4 Load – end shortening diagram, λ = 2.91 B/125 
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Slenderness 𝜆 = 2.20 

 

Figure G.5 Load – end shortening diagram, λ = 2.20 B/1000 

 

Figure G.6 Load – end shortening diagram, λ = 2.20 B/125 
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Slenderness 𝜆 = 1.48 

 

Figure G.7 Load – end shortening diagram, λ = 1.48 B/1000 

 

Figure G.8 Load – end shortening diagram, λ = 1.48 B/125 
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Slenderness 𝜆 = 1.13 

 

Figure G.9 Load – end shortening diagram, λ = 1.13 B/1000 

 

Figure G.10 Load – end shortening diagram, λ = 1.13 B/125 
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Slenderness 𝜆 = 0.77 

 

Figure G.11 Load – end shortening diagram, λ = 0.77 B/1000 

 

Figure G.12 Load – end shortening diagram, λ = 0.77 B/125 
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Slenderness 𝜆 = 0.41 

 

Figure G.13 Load – end shortening diagram, λ = 0.41 B/1000 

 

Figure G.14 Load – end shortening diagram, λ = 0.41 B/125 
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