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Cramér-Rao lower bound and maximum-likelihood estimation in ptychography with Poisson noise
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We investigate the performance of ptychography with noisy data by analyzing the Cramér-Rao lower bound.
The lower bound of ptychography is derived and numerically computed for both top-hat plane wave and
structured illumination. The influence of Poisson noise on the ptychography reconstruction is discussed. The
computation result shows that, if the estimator is unbiased, the minimum variance for Poisson noise is mostly
determined by the illumination power and the transmission function of the object. Monte Carlo analysis is
conducted to validate our calculation results for different photon flux numbers. Furthermore, the performance of
the maximum-likelihood method and the approach of amplitude-based cost-function minimization is studied in

the Monte Carlo analysis.

DOI: 10.1103/PhysRevA.102.043516

I. INTRODUCTION

Ptychography [1-6] is a scanning coherent diffraction
imaging method for reconstructing a complex-valued object
function from intensity measurements recorded in the Fraun-
hofer or Fresnel diffraction region. In ptychography the object
is partially illuminated multiple times with varying position of
the illumination spot, so that the entire object is covered and
adjacent illuminations partially overlap [7]. The technique is
found very suitable for extreme ultraviolet (EUV) [8,9] and
x-ray imaging applications [10-13] due to its high fidelity
and its minimum requirement on optical imaging elements.
Moreover, abundant studies show that ptychography is able
to provide a wide field of view and retrieve the illumination
probe also [14,15]. During the last two decades, ptychogra-
phy has been successfully demonstrated with x-ray radiation
sources [11,16,17], electron beams [18], and visible light
sources [19]. More recently, many extensions of ptychography
have been proposed, including Fourier ptychography [20-22],
spatially partial coherent ptychography [23-25], broadband
ptychography [26,27], three-dimensional (3D) ptychography
[28-30], on-the-fly scanning ptychograhy [31,32], and inter-
ference probe ptychography [33].

For retrieving the object from a ptychographic data set, the
key is to find a solution which fulfills both the ptychographic
illumination condition in real space and the correspond-
ing measured diffraction intensities in reciprocal space. A
commonly used approach for solving the problem is the
ptychography iterative engine (PIE) [5,15], which can be de-
rived by sequentially minimizing the distance between the
estimated amplitude of the diffracted wave field and the
measurements [6]. Another popular choice is the difference
map algorithm, which can be formulated in terms of finding
the intersection of two constraint sets [14,34]. Based on the
augmented Lagrangian methods for solving the conventional

“x.wei-2 @tudelft.nl

2469-9926/2020/102(4)/043516(14)

043516-1

constrained optimization problems, several interesting pty-
chographic algorithms have been developed during the past
10 years [35-38].

However, obtaining a unique reconstruction and a recon-
struction with minimum error in ptychography is considered
difficult and there is still room for improvement. On the one
hand, ambiguities due to a constant scaling factor, a global
phase shift, and raster grid pathology, occur in particular when
the probe is unknown [39]. Although many algorithms have
been presented to enhance the robustness of ptychography
[19,35,37,38], a good starting point and proper parameter
settings (e.g., update step size, regularization factor, etc.) are
needed in general. Furthermore, noise in the measurements of
the diffracted intensity cause inaccuracies in the reconstruc-
tions [40—42]. To prevent the effect caused by the saturation
of the detector, dark-field and near-field ptychography have
been introduced [43,44]. Moreover, it was shown that adaptive
step-size strategies are able to improve the performance of
ptychography in the presence of noise [19,45]. In general,
the most powerful and robust denoising methods are based
on the maximum-likelihood principle [21,40-42,46]. The
likelihood function used in the maximum-likelihood method
depends on the noise model. Common choices for the noise
model in ptychography are Poisson noise, Gaussian noise,
and the mixed Poisson-Gaussian model. It has been demon-
strated [22,40,41,47] that, by using the variance stabilization
transform given by Bartlett [48] and Anscombe [49], one
can approximate the maximum-likelihood method of Poisson
noise by the amplitude-based cost minimization algorithm.
Therefore, both the approach of maximum-likelihood and the
amplitude-based cost-minimization algorithms can be used as
a refinement method in ptychography with noisy data.

In this paper our work contains two parts. In the first
part, we investigate the Cramér-Rao lower bound (CRLB)
for the variance of any unbiased estimator in ptychography
[50-52]. We study the lower bound for Poisson distributed
photon-counting noise, which is the most dominant source
of noise which occurs even under the best experimental

©2020 American Physical Society
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conditions [40,41]. In Sec. II, we briefly discuss ptychog-
raphy, Poisson photon-counting noise, and the maximum-
likelihood method. We compute the Fisher information matrix
of ptychography with Poisson noise and introduce the CRLB.
In Sec. III, the CRLB is numerically computed and the influ-
ence of illumination and of the object is discussed in detail.
To validate the obtained CRLB, Monte Carlo analysis is im-
plemented in Sec. IV.

For the second part of this paper, the performance of the
maximum-likelihood method and the approach of amplitude-
based cost-function minimization is also compared using
Monte Carlo simulations. Details of the implementation of
the algorithms can be found in the Appendix. We investigate
the statistical property of the algorithms for various photon
counts in Sec. IV. The paper is concluded with a summary
and outlook in the last section.

II. THEORY

A. Ptychography, Poisson noise,
and maximum-likelihood method

The goal of ptychography is to reconstruct a complex-
valued object O from a set of diffraction intensity patterns
which are recorded in the Fraunhofer or Fresnel region. Let
r and r’ be two-dimensional (2D) coordinates in the object
plane and the detector plane, respectively. The exit wave
immediately behind the object is denoted by ¥ (r) and the
measured diffraction intensity measurement /(r). According
to the thin object model, the exit wave ¥ (r) for an illumina-
tion with a probe function P(r) which is centered on position
R,, is given by

Yn(r) = P(r —Ry,) - O(r)
= Py(r) - O(r), (D
where the object O(r) can be decomposed into two real-
valued functions A(r) and ¢(r):

O(r) = A(r) - ¢, 2

where A is the object’s local transmission function and ¢
stands for the phase of the exit wave immediately behind the
object. The probe function is assumed to have a finite support
with, for instance, circular boundary:

P(r), [r[<ro

Po={," )

For a detector located at distance z in the far field, the
diffraction intensity pattern I(r’) for the mth illumination

J
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where F is the discrete Fourier transform operator.

The task of ptychography is to find an object function
which takes account of the a priori knowledge, while a cost
function £ is minimized. In our case, the a priori knowledge
is the exact information of the probe function and the set of
relative positions R,,. The cost function & is defined as the /,
distance between the modulus of the far-field diffraction pat-
tern | F (¥;,)(&)| and the squared root of the measured intensity

e (§):
E =2 2 [VIFE) — | F (¥ &I, (5)

where & = r'(Az)~! is the spatial spectrum coordinate.
From )%, one can estimate the number of detected pho-
tons:

2

, “4)

2mce

Imea(g)
o ©

., where w =

nm(§) =

Among a variety of noise models, we consider Poisson noise.
The probability distribution of detecting n,, (&) photons by the
detector at every & for all measurements im =1,2,..., M) is
given by

Ny (§ym®  _ .
Pp = Hm HE nj(E)‘ e, 0

where the cumulative product is over both the 2D coordinate
& and the probe position R,,. The negative log-likelihood
functional is defined by

ﬁp = —lan

_—ZZ[nmlnN —N,,

m

— Inny!]. (®)

The average number of photons N, (&) depends on the object
function O(r) through Egs. (4) and (6). To find the object
function for which the negative log-likelihood functional is
maximum, the derivative of Lp with respect to O is set equal
to zero. Hence, for any small perturbation §O of the object
function it should hold

Lp(80) =0, 9)

where

- 1>81m(80(r))
(PnO)E)F(P,80(r))*(§)]

(10)
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In Eq. (10), the generalized Parseval’s theorem was used. Re denotes the real part and F~! the inverse Fourier transform. The
local perturbation of the value of O on a discretized grid r; is written as

50(r) = Z 5O(r)S(r — 1) = Z [l,A(‘Z‘)E;;)(ri)]ew(ri)(g(r . (11

The solution of Eq. (10) can be found by the method of steepest descent [27,46,54]:
{MMH=M®+%ZJHW‘WPﬂ”—)ﬂ%@mm,
Bt (1) = Gu(X) + g 3, Im{PiAre % F1[ (e — 1) F (P, 00)] }(x),

where k is the iteration number, and a4 and « are the step sizes, which are normally chosen to be a constant, i.e., they are
independent on the iteration number. Im denotes the imaginary part. Alternatively, the projection-based method or conjugate-
gradient method can be applied to achieve maximum likelihood [40].

12)

B. CRLB and the Fisher matrix

In estimation theory, the CRLB gives a lower bound on the variance of any unbiased estimator for the parameter which must
be estimated. The estimators that can reach the lower bound are called the minimum variance unbiased estimators. Minimum
variance unbiased estimators are often not available [50,55].

We recall the definition of the CRLB, using the notation as in [50]. Suppose we wish to retrieve a real-valued vector
parameter @ = [0, 0, . .. 17 from a set of measurements X = [X;, X5, . ..]7. There are an infinite number of possible outcomes
X, Xy, ..., X, ... occurring with probabilities Py, P», ..., Ps, ..., respectively. To determine the lower bound on the variance
of estimator ©, one computes the Fisher information matrix Ir, given by

I(©) = —E[ 7o), (13)

where P(X;; ®) = P, is the conditional probability distribution function and E is the expectation operator. The element i, j of
Ir(O®) is given by

2 .
Z MP(XS; 0). (14)

Ir(®); =~ 960,30,

The CRLB is then given by the diagonal elements of the inverse of matrix I, i.e.,
Var(6;) > [I;'(©)], (15)

where Var(6;) stands for the variance of estimator ; for the unknown parameter 6;. .
It is important to note that the estimator based on the maximum-likelihood principle 8y, asymptotically becomes unbiased
and achieves the CRLB for large data sets [50], that is,

6w ~ N{©, diag[I;'(©)]}, (16)
where N stands for the normal distribution and diag takes the diagonal elements of a matrix.

C. Fisher matrix with Poisson noise in ptychography

To find the Fisher information matrix, we start by computing the second-order derivative of the likelihood functional L£p with
respect to O(r):

82Lp(60,80) = (ﬁ Gl ZZ 2 GO (30N = £ ZZ (3 —1)¥*m0.50, (7

where 80 is the local perturbation of the value of O on a discretized grid as well:

SA(r i~(rj) .
0= Z[u\(r})aq’s(r,} e, e

By taking the expectation of Eq. (17), we get

(mlo)z > §E{1"V—:;1[51m<50>][51m<56>]} -y ;E (R - )Fmeos0) a9

E(8*Lp)(80,80) =
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in which we commute the expectation and summation because the measurements n,,(§) are independent photon measurements
for all pixels &. Using the properties of the Poisson distribution [52]

(20a)

(20b)

and using Eq. (10), we find

~ 1 1 ~
E(8*Lp)(80,80) = —— —61,(80)481,(80
(82Lp)( )= Gar ;%:Nm(s) (80)81,,(50)

1n(8)

ZZR [ F () @) f(Pmao)*f(Pmaé)*] +

in which we use the following relation:

% Z Z Re[F(P,80)F(P,60) 1 (21)
m §

Re(z1)Re(z2) = 5[Re(z122) + Re(z123)], (22)

where 7, 2 are arbitrary complex numbers.

From Egs. (11), (18), and (21) we can derive the discretized Fisher information matrix with respect to the transmission and

the thickness function of the object:
[(IF)AA,ij (IF)A¢,ij]
Ur)pa,ij  UF)pg,ij

_ 2 Re[f(x;, r)]
) ; [Im[A(l'i)fm(l'i, r;)]

Ir;; =

where the auxiliary function f is given by

F (W)

Jm(xi ;) =F |:]:(Wm)*

where we used Eq. (4) and the Kronecker’s symbol §;;.

In Eq. (23) we see that the first term is symmetric and
the second one is diagonal. The analytical expression for the
CRLB, which is obtained from the inverse of the Fisher ma-
trix, cannot be easily derived, but this inverse can be computed
numerically. Detailed examples are presented in the next sec-
tion.

III. DIRECT CALCULATION OF THE CRLB

As shown in Eq. (15), the CRLB is given by the diagonal
elements of the inverse of matrix /r, which can be obtained by
numerical computations. In this section, we present the results
of some computed CRLB. To investigate how the illumina-
tion (i.e., the probe function P) and the object O influence
the CRLB, we study four cases separately, as described in
Table 1. Note that only Poisson noise is applied throughout
our simulations. Other noise models (e.g., Gaussian noise or
Poisson-Gaussian noise [22]) should be included when these
are dominant. All of the calculation results given in this sec-
tion are compared to the Monte Carlo experiment result that
are presented in the next section.

For all cases shown in Table I, the probe moves over the
object by a 2 x 2 regular grid. In line with the conventional
ptychography configuration, the overlap ratio between ad-
jacent illuminated areas is 70%. The overlap ratio in each

Im[A(rj)fm(rivrj)] i |:|P (r1)| 81] 0 i|
bAoA ) T e | 0 Aareors,] @

}(ri + 1)) - PE(r)PL (e 10 tem)l, 24)

(

dimension is defined as follows. Suppose the diameter of the
circular support is L, and the distance between corresponding
points in adjacent illumination positions is d, where 0 < d <
L. The overlap ratio is then defined by

d
overlap ratio = 1 — 2 (25)

TABLE I. Four cases that are considered in the computation of
the CRLB.

Both the transmission and thickness function of the
object are uniform. The probe has structured

wavefront but uniform illumination power in the
circular support.

Case 1

Both the transmission and thickness function of the
object are uniform. The probe has structured
wavefront and structured illumination power in

the circular support.

Case 2

The object has nonuniform transmission but
uniform thickness function. The probe is a plane wave
with circular support.

Case 3

The object has uniform transmission but
nonuniform thickness function. The probe is a
plane wave with circular support.

Case 4

043516-4
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TABLE II. The characteristic parameters for the simulations.

Probe Grid size Grid spacing Wavelength Scanning grid Overlap ratio Radius of circular support
60 x 60 1 pm 30 nm 2x2 70% 30 um
Object Grid size Grid spacing Pixel number Pixel size Propagation distance
Detector
70 x 70 1 um 60 x 60 50 um 5 cm

which is usually chosen between 60% and 85% to achieve
optimal performance of the reconstruction algorithm [56].
The overlap ratio and the actual probe function are regarded
as a priori knowledge and employed in the reconstruction
algorithm.

The characteristic parameters for the numerical computa-
tions are shown in Table II. The object is discretized and zero
padded by a 70 x 70 square grid with grid spacing 1 um. The
total illuminated area is roughly 40 x 40 um?. The circular
probe has radius of 30 um and is discretized by a square
grid of 60 x 60 grid points with grid spacing of 1 um. The
wavelength is 30 nm. The far-field intensities are measured
with a detector at propagation distance of 5 cm behind the
object. The detector consists of an array of 60 x 60 pixels
with a pixel size of 50 um. Hence, the maximum spatial
frequency (without factor 277) that is measured is 1 um~! and
the frequency is sampled with distance (30)~!um™!

To compute the CRLB, we first construct the Fisher in-
formation matrix Ir using Eq. (23). Although the number
of degrees of freedom used to describe the object is small,
namely, 70 x 70 x 2 elements, where the factor 2 is due to
the fact that the object function is complex, the discretized
Fisher matrix already includes 9800 x 9800 elements. The
CRLB is obtained by numerically computing the inverse of
Ir. Since I ;; is a symmetric matrix with real entries, one can
apply the eigenvalue decomposition to find the inverse of the
Fisher matrix. We select the eigenvalues of Ir that are bigger
than a default tolerance, then use these eigenvalues and the
corresponding eigenvectors to compute the inverse of /5. This
calculation is done by utilizing the “pinv” routine in MATLAB.
The diagonal elements of the inverse matrix 7' consist of
an array of 70 x 70 x 2 elements, of which the first 70 x 70
elements correspond to the CRLB of A(r) and the last 70 x 70
elements contain the CRLB of ¢(r).

We define the illumination power by means of the total
photon-number (PN) counting over the cross section of the
probe, given by

> 1P
fiw ’

An important property of the CRLB is that it is proportional to
the reciprocal of the illumination power. This property follows
from the fact that Eqgs. (23) and (24) are proportional to the
input power or the square of the probe P,. The observation
that the CRLB scales with the reciprocal of the illuminating
power is confirmed by the computations discussed below.

In the remainder of this section we show the computed
CRLB for high illumination power, i.e., PN = 10°, and for
low illumination power, i.e., PN = 103, as examples. The
influence of the object and the probe on the CRLB will be
discussed separately.

PN = (26)

A. Influence of the illumination on the CRLB

In order to investigate the influence of the illumination on
the CRLB, we start by studying cases 1 and 2 described in Ta-
ble L. For these cases, the actual object, the actual illumination
and the computed CRLB are shown in Figs. 1 and 2. We let the
object have uniform transmission and thickness function for
the time being. For case 1, the probe function P has uniform
power throughout its circular support and zero value outside
its support, but the phase of the probe has variation in the
form of two characters “P” as shown in Fig. 1(a4). On the
other hand, the illumination in case 2 has the shape of the
character “P” and truncated by the circular support as shown
in Fig. 2(a3), and its phase has the same features consisting
of two characters P as in case 1 [see Figs. 2(a3) and 2(a4)].
Considering that a perfectly collimated beam is difficult to
obtain, we have chosen the wavefront of the illumination to
be nonuniform for both cases 1 and 2.

It is seen in Fig. 1 that the CRLB of the object resembles
the normalized sum of the intensities of the illuminations
shown in Fig. 1(a5). In particular, the part of the object
which is illuminated four times reaches a variance approxi-
mately four times smaller than the part which is illuminated
only once, and this conclusion holds for both the object’s

y-axis meshgrid

W N =
o O o

[ o]

o - N
W N =
o o o

)

N =) e

102030 102030

x-axis meshgrid (a2)
@) S IP-R,)2
P —
T PO] | phaselpy) xR ]
10 10
20 0.520 0.5 20
30 30
0
1020 30 1020 30 10 20 30
(a3) (a4) (a5)
PN=10° i PN=103

CRLB of A(r) 107 CRLBofg(r) <107 ‘ CRLB of A(r) CRLB of ¢(r)

S A IR RIS

102030 1020 30 : 1020 30 102030
(bl) (b2) : (cl) (c2)
FIG. 1. The CRLB computed from the Fisher matrix for case 1.
(al), (a2) The object’s actual transmission A(r) and actual phase
function ¢(r), respectively. (a3), (a4) Show the actual amplitude and
phase of the probe function, respectively. (a5) Shows the normalized
sum of the intensities of the illuminations. (b1), (b2) Show the CRLB
of A(r) and ¢(r), respectively, for the case of PN = 10°. (cl), (c2)
The CRLB for the case of PN = 10°.
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x-axis meshgrid @2)
\1(9?1)\) 2IP(r-Rp)|?
r
phase[P(r)] max[ > |P(r-Ru)| 2]

maxPO]
10
0520 0520 rr
30
0

102030

(ad) (as)

CRLB of A(r) x107 CRLBof §(r) x10° ‘ CRLB of A(r) CRLB of ¢(r)

ORISR

[
[
[
102030 102030 ! 102030 102030
[
[

(d1) (b2) (ch) (c2)

FIG. 2. The calculated CRLB for case 2. (al)—(a5) The actual
object, probe, and the normalized sum of the intensities of the il-
luminations, respectively. (bl), (b2) The CRLB of A(r) and ¢(r),
respectively, for PN = 10°. (c1), (c2) The CRLB for the case of

=10%.

local transmission A(r) and phase function ¢ (r). Interestingly,
when the dose distribution of the illumination is more com-
plicated as given in Figs. 2(a3) and 2(a4), the CRLB shown
in Figs. 2(b) and 2(c) again resemble the overall illumination
pattern shown in Fig. 2(a5). In other words, the more illumi-
nation power we apply to the object, the lower the minimum
variance of the obtained reconstruction. One can notice that
the maximum of the CRLB in Figs. 2(c) and 2(d) is in the
yellow corner and is larger than the CRLB in Fig. 1. This
is because for case 2 the illuminating power is concentrated
in the P character, as shown in Fig. 2(a3). Around the yellow
corner there are parts of the object where the computed CRLB
is zero. These parts of the object are not illuminated. For the
areas where I is zero, the computed CRLB is also set equal to
zero because we ignore these singular values of /. In reality,
the CRLB there is infinite.

Moreover, we can see in Figs. 1 and 2 that the CRLB is
linearly proportional to the inverse of PN (i.e., the illumi-
nation power). This calculation result is in agreement with
Eq. (23) because the probe function P(r) can be written as
the factor +/PN times the normalized P(r). On the other hand,
the computed CRLB of both A(r) and ¢(r) do not show any
influence due to the spatial variation of the phase of the probe.
Therefore, we conclude that it is the illumination intensity
pattern, i.e., the dose distribution, which strongly determines
the CRLB in ptychography for Poisson noise.

B. Influence of the object on the CRLB

The Fisher matrix in Eq. (23) is in fact a function of the
object, and hence so is the CRLB. To find the influence of
A(r) and ¢(r) on the CRLB, we focus on cases 3 and 4
from now on. To reduce the influence of the illumination to
a minimum, we let the probe function be a plane wave with

Case-3
] A(r) ’ $(r) p
en
=10 10
£20 A 20 Ho
230 30
£ 05 p
>~ 102030 1020 30
x-axis meshgrid (a2)
(al) 2
) 2|P(r-Ra)|
r
max[PO  phaselP(r)] maX[ > |P(r-Ry)| 2]
10 10
20 0520 0 20
30 30
0
1020 30 1020 30 1020 30
(a3) (a4) (ad5)
PN=10° PN=103
CRLB ofA(r) %107 CRLB of §(r) x10° \ CRLB ofA(r) CRLB of ¢(r)

\ 10 2
\
2o 2 20 1 zo 02 20
30 \/ 30 ‘ 30
0 0 0

1020 30 10 20 30 : 102030 1020 30
(bl) (b2) } (cl) (c2)
FIG. 3. The CRLB for case 3. (al)—(a5) The actual object, probe,
and the normalized sum of the intensities of the illuminations, re-
spectively. (bl), (b2) The CRLB of A(r) and ¢(r), respectively, for
N = 10°. (c1), (c2) The CRLB when PN = 10°.

circular support. The influence of the object’s transmission
and phase function is investigated separately. In case 3 we let
the function A(r) have the shape of the character A while ¢(r)
is kept uniform, as shown in Fig. 3. The minimum value of
A(r) is 0.1. For case 4, the function A(r) is uniform whereas
the phase function ¢(r) has the shape of the character T as
shown in Fig. 4.

The computed CRLB of the object for cases 3 and 4 is illus-
trated in Figs. 3(b), 3(c), 4(b), and 4(c), respectively. It is clear
that our conclusion in Sec. IIT A still holds, i.e., the CRLB

Case-4

<] A(r) #(r)

) 2 1

7 10 10

g 20 120 1

g 0

= 1020 30 1020 30

x-axis meshgrid (a2)
\S(ﬂ;\ 3 PR
r
max[[P(r)]] phase[P(r)] max[ S 1P(r-Ra)| 2]

1
10 10
20 0.520 0 20
30 30

0

102030 102030 102030
(a3) (a4) (as5)
PN=10° PN=103
CRLB of A(r) =107 CRLBofg(r) =107 \ CRLB ofA(r) CRLB of¢(r)

10 4 10 \ 10 04 10
\
20 , 20 2 20 o 20
30 30 ‘ 30
0 0

102030 102030 102030 102030

(b1) (b2) (cl) (c2)

FIG. 4. The CRLB for case 4. (al)—(a5) The actual object, probe,
and the normalized sum of the intensities of the illuminations, re-
spectively. (b1), (b2) The CRLB of A(r) and ¢ (r), respectively, when

= 10°. (cl), (c2) The CRLB for PN = 10°.

043516-6



CRAMER-RAO LOWER BOUND AND ...

PHYSICAL REVIEW A 102, 043516 (2020)

is very similar to the pattern of the sum of the intensities of
the illuminations. On the other hand, we can see also that the
object’s local transmission A is predominant in determining
the CRLB of ¢, as shown in Figs. 3(b2) and 3(c2). This result
agrees with Eq. (23) because the function A appears in the
terms of Ir which relates to ¢. However, the influence of ¢
on the CRLB is much less than A. Therefore, we conclude
that the second term in Eq. (23) is dominant. In other words,
when the estimator of ptychography is unbiased, the variance
of the object’s transmission A(r) is strongly determined by
the illumination power and dose distribution, whereas the
variance of the object’s phase ¢(r) is influenced by both of
the transmission A(r), the illumination power, and the dose
distribution.

In the next section, the CRLB shown in Figs. 1-4 are used
as references for Monte Carlo experiments.

IV. MONTE CARLO ANALYSIS

To validate our calculation of the CRLB, Monte Carlo
computations have been performed. For consistency, we dis-
cretize the probe and the object in the same way as described
in Table II. The wavelength, object, probe, far-field measure-
ments, and grid sizes are as described in Table II also. The
Fresnel number of the system is 0.15. Hence, for this configu-
ration the detector is in the Fraunhofer region.

The ptychographic data with various level of noise is gen-
erated as follows. For every ptychography simulation and for
every probe position, we first assign the probe function with
corresponding photon numbers in accordance with the PN that
is chosen. Then, the noise-free diffracted wave field in the far
field is calculated, and the Poisson random number generator
in MATLAB is applied to generate the noisy data.

To verify the asymptotic property of the maximum-
likelihood method of Eq. (16), we developed and implemented
Algorithm 1 as described in the Appendix. To mitigate ambi-
guity problems of ptychography [27], e.g., the global phase
shift, the conjugate reconstruction, and the raster grid pathol-
ogy, it is assumed that the probe used in the Monte Carlo
experiment is known. To shorten the computation time and
to improve the convergence, the conjugate-gradient method
[40,57] is implemented in Algorithm 1.

For comparison, the performance of another popular
method, namely, the amplitude-based cost-function mini-
mization approach [6], was investigated in the Monte Carlo
experiment also. This is implemented in Algorithm 2. The
idea of this algorithm is to retrieve the object by mini-
mizing the cost function defined in Eq. (5). We remark
that one can alternatively derive Algorithm 2 from the
maximum-likelihood method by using the variance stabiliza-
tion transform [22,40,41,48,49]. Algorithm 2 is also described
in the Appendix.

To investigate the performance of the above-mentioned
algorithms, the variance and the squared bias of the estimator
are evaluated in our Monte Carlo analysis. Explicitly, the
variance of an estimator O(r) is defined by [50]

Var[O(r)] = E{[O(r) — (O(r))*}, 27)

Case-1
Algorithm 1 : Algorithm 2
N e PN=10°
2 Vard(m] <107 Bias’[A(r)] <10 Var[A(r)] - 07 Bias?[A(r)] =107
5
%0 10 4+ 40 110 10
2 2
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230 30 130 30
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> 102030 1020 30 I 102030 1020 30
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FIG. 5. The result of Monte Carlo experiment for Case-1. (al)
and (a2) are the variance and bias squared of the object’s transmis-
sion A when PN = 10°, respectively, obtained with Algorithm 1. (a3)
and (a4) are the variance and bias squared of the object’s thickness
¢, respectively. (bl)-(b4) show the variance and bias squared when

= 103, respectively, obtained with Algorithm 1. (c1)-(c4) and
(d1)-(d4) show the results obtained with Algorithm 2 when PN =
10° and PN = 10, respectively.

where
(O(r)) = E[O(r)], (28)

and the squared bias of the estimator is given by

(O(r)) —

where O, is the actual object function.

In order to compute the expectation accurately, 2000 in-
dividual ptychographic data sets have been generated for all
for cases mentioned in Table I and for different value of PN.
These data sets have been post-processed by Algorithms 1
and 2, respectively, and the results are discussed next.

Bias’[O(r)] = 0.0, (29)

A. Statistic properties of the maximum-likelihood method
and the amplitude-based cost-minimization method,
and the influence of the illumination

We begin with the case of uniform object function and
structured illumination, i.e., cases 1 and 2. For these cases,
the actual object and probe function are as in Figs. 1(a) and
Fig. 2(a).

When the illumination has a uniform dose distribution but a
structured wavefront, the variance and bias of both Algorithms
1 and 2 are shown in Fig. 5. In line with the CRLB given
in Fig. 1(b), we see that both algorithms that asymptotically
achieve the CRLB when PN = 10°. The squared bias of the
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FIG. 6. The Monte Carlo experiment result for case 2.

two algorithms is 100 times smaller than the variance, hence,
both Algorithms 1 and 2 are asymptotically unbiased when the
photon number is high. Meanwhile, by inspecting Figs. 5(a)
and 5(c), one can infer that the variance of both algorithms
is related to the local illuminating power as mentioned in
Sec. III A, i.e., the parts of the object that are illuminated four
times have a variance that is four times smaller than the parts
that are illuminated only once. A very similar conclusion can
be made for case 2, i.e., when the illumination’s local dose
distribution is not uniform. As shown in Figs. 6(a) and 6(c),
the variance of both algorithms agrees with the CRLB given in
Fig. 2(b) and is inversely proportional to the local illumination
power given in Fig. 2(a5).

When the photon number is low, i.e., PN = 103, Algo-
rithms 1 and 2 behave differently with the current data set.
In particular, we see in Figs. 5 and 6 that Algorithm 1 in
fact reaches smaller bias than Algorithm 2 when the photon
number is low. This suggests that the approach based on the
maximum-likelihood principle can provide less bias than the
amplitude-based cost-function minimization method. Mean-
while, the variance of the estimator Algorithm 2 tends to be
smaller than Algorithm 1. This can be explained from the fact
that minimizing the amplitude-based cost-function minimiza-
tion can approximately be regarded as a variance stabilizing
denoising algorithm [22,40,41,48]. On the other hand, the two
algorithms share certain properties. For low photon count,
both Algorithms 1 and 2 have lower variance than the CRLB,
which indicates they cannot converge to unbiased estimators
and cannot reach the CRLB with the current Monte Carlo data
set. More discussion about the case of low photon count is
given in Sec. V A.
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FIG. 7. The Monte Carlo experiment result for case 3.

In Figs. 5 and 6 we see that the wavefront profile of the
probe only appears in the bias of the reconstruction when the
photon count is low. The local illumination power determines
the bias for cases 3 and 4 for PN = 10% as well. For higher
photon number, e.g., PN = 10°, there is no trace of the illu-
mination in the bias for case 3 and only negligible trace of
illumination’s local power for case 4. Therefore, we conclude
that the illumination’s wavefront profile only influences the
statistic property of the algorithms when the photon count is
low, whereas the illumination’s local power always influences
the variance.

B. Influence of the object on the variance and bias

Next, we consider case 3 where the object has a spatially
varying amplitude but the phase is uniform and case 4, where
the amplitude is uniform but the phase has variation. In both
cases, the probe is a plane wave truncated by a circular aper-
ture. We use the object and probe as in Figs. 3(a) and 4(a).
The Monte Carlo results obtained with Algorithms 1 and 2 for
case 3 are shown in Fig. 7 and for case 4 in Fig. 8.

When PN = 10°, the variance shown in Figs. 7 and 8 agree
with the computed CRLB in Figs. 3 and 4. To be explicit, the
variance of the phase of the object ¢(r) is determined by both
the object’s transmission A(r) and the power of the illumi-
nation. The part of the object with lower local transmission
will have high variance in reconstruction of the phase. On the
other hand, the variance of A(r) is influenced by the sum of
the intensities of the illuminations only. These conclusions are
true for both algorithms. Meanwhile, we see that the object
itself does not influence the bias of the reconstruction when
the photon count is high, which means that both algorithms
are unbiased for high photon count.
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FIG. 8. The Monte Carlo experiment result for case 4.

When the photon number is low, i.e., PN = 103, the profile
of the variance deviates from the computed CRLB which is
given in Sec. III B. This statement is true for both Algorithms
1 and 2, and is particularly obvious for ¢(r) as shown in
Figs. 7 and 8. We can see that there is trace of the actual A(r)
in Figs. 7(b2) and in 7(d2), and trace of the actual ¢(r) in
Figs. 8(b2) and 8(d2), respectively. This trace indicates that,
with the current data set, both algorithms cannot converge to
the CRLB for low photon counts.

Interestingly, although the object’s transmission A(r) pre-
dominantly determines the variance of the object’s phase
function ¢(r), there is no effect of A on the bias of ¢ for
any value of PN. In the meantime, we see that ¢ do not
influence the bias of A for any value of PN, as shown in Figs. 7
and 8. Together with Figs. 5 and 6 in the previous section, we
conclude that the profile of the illumination and the object has
more influence on the variance of the solutions obtained with
Algorithms 1 and 2, more strongly than on the amount of bias.

C. The CRLB, variance, and bias-variance ratio
in ptychography
It is seen in Figs. 5-8 that the ratio of the bias and the
variance, as obtained with both algorithms, tend to increase
when the photon count is lower. To further investigate this
trend and the property of the two algorithms, we define the
bias-variance ratio (BVR) of the estimator O by

3, Blasz[O(r)]
>, Var[O(r)]

In Fig. 9 we show the BVR of Algorithms 1 and 2 for
various photon counts and for case 1 to case 4. The overall
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FIG. 9. The CRLB, variance, and bias-variance ratio of two al-
gorithms for various of values of PN. The value of BVR(¢) in (c4)
is much smaller than BVR(A) in (c3), which agrees with the Monte
Carlo result shown in Figs. 7(b) and 7(d).

CRLB and variance of A(r) and ¢ (r) obtained from both algo-
rithms are also shown. We see that the overall variance of both
algorithms is the same as the computed CRLB asymptotically
when the photon number is high. For lower photon counts, the
variance becomes lower than the CRLB, meanwhile, the BVR
of both algorithms increases. For our current configuration,
this threshold is at PN = 10°. When PN < 10°, the variance
of Algorithm 1 is higher than Algorithm 2 for all case 1
to case 4. On the other hand, the BVR of Algorithm 1 is
higher than Algorithm 2, which indicates that the Algorithm 1
generally has lower bias than Algorithm 2.

V. DISCUSSION

A. Discussion about improving the sufficiency of the
ptychographic data set

It is seen in the Monte Carlo results that, for low photon
counts, the variance with both Algorithms 1 and 2 is lower
than the computed CRLB. This observation indicates that,
with the current data set, the two estimators are unbiased for
high photon count but cannot converge to the CRLB when the
photon count is low.

One may argue that the variances shown in Fig. 9 are lower
than the CRLB when PN < 10° because the current data
set is insufficient [50]. In particular, if sufficient amount of
data are given, the maximum-likelihood estimator should be
asymptotically unbiased and achieves the CRLB if sufficient
amount of data are given, as shown in Eq. (16). Indeed, we
see in the simulation that Eq. (16) holds when PN > 10°,
which indicates that the current data set is already sufficient
when PN > 10°. However, for low photon counts, the current
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FIG. 10. The CRLB, variance and bias-variance ratio of two
algorithms for various number of measurements 7. This plot is for
case 1 and for PN = 10°.

data set is insufficient for the maximum-likelihood estimator
to converge to the CRLB.

To explain this fact, we first investigate the signal-to-noise
ratio (SNR) of each mth ptychographyic measurement with
Poisson noise:

For typical far-field diffraction patterns the intensities are not
uniform. Hence, the SNR should be a function of & and the
value of SNR should vary per pixel on the detector. Never-
theless, we can still see that the SNR will in general decrease
when the number of photons detected is decreased. Therefore,
for Poisson noise, one can extract less and less information
about the actual signal when the photon counts are decreasing.

Moreover, we note that the measurement ,,(£) is discrete
and contains natural numbers only, which is associated with
the particle nature of light leading to a quantization error
at the detector. This discreteness has more disruptive effect
on the measurement for the case of low photon counts than
the case of high photon counts. Taking an extreme example,
suppose only one photon is detected, this photon will most
likely appear at & = 0. Therefore, almost all of the spatial
information about the object is lost in the measurement, and
hence it is more difficult for estimators to converge to the
CRLB.

If we want to increase the size of data set while keeping
the current characteristic simulation parameters, one way is
to take multiple measurements for each mth probe’s position.
Suppose for each probe’s position we take 7 measurements,
denoted by n,,,(§), where t = 1,2, ..., T. A straightforward
way to process the data is simply to compute the mean of the
measurements:

(T) _ Zt Ny i (§)
wh@ = )

It has been shown that, when T is large enough, Eq. (32) is a
sufficient statistic for Poisson distribution. That is, n{/’ carries
all the information as in the data set: n,,,, t =1,2,...,T.
In Fig. 10 the Monte Carlo result with data set n, (&) is
shown. To give an example, we study case 1 for low photon
counts, i.e., PN = 103. We note that, by summing over all T
measurements, the total photon number PN") counting in the

probe is now given by

(32)

P 2
PN(T) — le‘;& *T = PNxT, (33)
w

and the CRLB is proportional to the reciprocal of PN ac-
cording to Eq. (23).

Figure 10(a) shows the computed CRLB and the variance
of reconstruction for various of number of measurements 7.
We see that, for both algorithms, the variances approach the
CRLB as the number of measurements is increasing. In par-
ticular, the variance of Algorithm 1 have reached the CRLB
when T is up to 200. Meanwhile, it is seen in Fig. 10(b)
that the bias of Algorithm 1 is considerably small compared
to the variance when T > 200. Therefore, we confirm that,
for low photon counts, Algorithm 1 can be asymptotically
unbiased and converge to the CRLB by increasing the number
of measurements. We see in Fig. 10 that this conclusion is true
for Algorithm 2 also. However, the speed of this convergence
for Algorithm 2 is slower than for Algorithm 1.

On the other hand, the method proposed in this section can
be regarded as a way to increase the total photon flux for
each probe’s positions. This method can be implemented by
taking multiple acquisitions (with number T') for each probe’s
position. In this way, one can illuminate the sample with
relatively high photon flux, while avoiding the influence of the
limited dynamic range of the detector. Whether there are other
approaches to improve the sufficiency of the ptychography
data set is above the scope of this paper, but the subject will
be studied in the future.

B. Comparison with the Wigner distribution deconvolution
method and discussion on the minimization of the CRLB

Until now we have investigated the statistic property of
the iterative ptychographic algorithms. The Wigner distribu-
tion deconvolution (WDD) method [2,3,58,59] on the other
hand, is a noniterative ptychographic method and provides
an approximate closed-form solution to ptychography. The
framework of the WDD method is given as follows. We can
regard the ptychographic measurement be a four-dimensional
(4D) data set with indices & and R,,. By taking the Fourier
transform of these 4D data set with respect to R,, and the
inverse Fourier transform with respect to &, we arrive at a 4D
array which is denoted by H [2]:

H(r,K) ~ Wo(r,K) - Wp(r, —K), (34)

where Wy and Wp are the Wigner distribution of the object
O(r) and the probe P(r):

Wo(r,K) = Y 0*(F)O(r + F)exp (—iK - F),  (39)
P
where T is an auxiliary coordinate in object plane. K is a 2D

coordinate in reciprocal space. Suppose K and R,,, are meshed
in rectangular grids and have the spacing

K = [m,AK,, myAK,]", (36a)
R, = [mAR,, myAR,]", (36b)
wherem, =1,...,M,andm, =1, ..., M, are the indices of

probe position along the x and y directions. The relation of K
and R, is

[AK,, AK,)" =27 [(M,AR,)™", (MyAR,)™"1".  (37)

Once H(r,K) has been computed and if we have the
knowledge about P(r), we can obtain Wy(r, K) through
an elementwise division. When the measurement is noisy
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or the array Wp contains zero value, this division is re-
placed by applying Wiener filter. To reconstruct the object O
from Wy (r, K), many strategies have been proposed [2,3,58].
Note that the resolution obtained through the WDD method
equals to the spacing of the scanning step of the probe.
Therefore, in order to achieve the same resolution and the
same field of view as obtained from the iterative ptycho-
graphic methods, one needs to take finer scanning steps
and to record more diffraction measurements in the WDD
scheme. However, the line of thinking of the WDD method
may provide an alternative insight of the mechanism of
ptychography.

For the WDD scheme, it has been proposed [58] that
a probe with a strong curved wavefront or a probe cre-
ated by a diffuser is preferred in practice. This is because
such probes are more evenly distributed over the function
Wp(r, K), hence, it is less likely to divide H (r, K) by zero in
Eq. (34). For the iterative ptychographic methods, it has been
shown experimentally that using such probes can give a more
promising reconstruction than using plane-wave illumination
with a finite support [59,60]. Indeed, comparing to plane-wave
illumination, such probes ease up the effect of the limited
dynamic range of the detector and meanwhile change the dis-
tribution of SNR over the detector plane. However, to the best
of our knowledge, it is still inconclusive in theory that whether
such probes lead to a more noise-robust scheme in ptychog-
raphy. This is because of the following: (1) For iterative
ptychographic methods, one does not compute the division as
given in Eq. (34), but instead one updates the reconstruction of
the object by applying optimization algorithms, e.g., gradient
descent method or alternative projection method. Although
regularization techniques are used in iterative ptychographic
methods as shown in the Appendix, the regularization does not
directly relate to the spatial-frequency spectrum of the probe.
(2) For iterative ptychographic methods, the grid size of the
probe’s position is determined by the overlap ratio as given in
Eq. (25). It has been reported that the preferred overlap ratio is
60%—-80% [56] so that one can obtain optimal reconstruction
in ptychography. Hence, the grid size of the probe’s position
is smaller than the grid size of the discretized object function.
For instance, we have shown in Table II that we can recon-
struct a 70 x 70 array object with a 2 x 2 grid of R,,. Hence,
K is merely meshed on a 2 x 2 grid according to Eq. (37). If
we wish to apply the WDD analysis to this case, it is reason-
able to design a probe which maximizes Wp(r, K) rather than
use a probe which has a evenly distributed spatial-frequency
spectrum.

Although the computed CRLB and the Monte Carlo results
presented in this paper show that the CRLB is predomi-
nantly determined by the local illuminating power and the
object’s local transmission, we note that the wavefront of
the probe may influence the reconstruction. Referring to the
first term on the right-hand side of Eq. (23), we see that
the Fisher matrix is a function of the actual object and the
complex-valued probe. Therefore, for a certain object, it is
possible to engineer the probe so that the CRLB is mini-
mized. This minimization process can be done numerically
because the CRLB is obtained by computing the inverse
of the Fisher matrix. It is likely that for different shape of
object we will arrive at different design of the probe. This

optimization of the CRLB is out of the scope of this paper
but is certainly an interesting subject which deserves further
research.

VI. CONCLUSION

In the first part of this paper we have studied the influence
of Poisson noise on ptychography by analyzing the CRLB.
The CRLB was theoretically derived and numerically
computed from the Fisher matrix for four different cases. It
was found that if the estimator is unbiased, the minimum
variance in the presence of Poisson noise is mostly determined
by both the illumination’s local dose distribution and the
object’s local transmission. The calculations of the CRLB
indicate that the minimum variance is inversely proportional
to the number of photons in the illumination beam. The
computations of the CRLB using the Fisher matrix were
validated with Monte Carlo analysis. It was confirmed that
the local illumination power has a strong effect on the variance
of the reconstruction of both object’s transmission and phase
function. Meanwhile, the object’s actual local transmission
strongly influences the reconstruction of the object’s phase.

In the second part of this work, the statistical properties
of the maximum-likelihood method and the amplitude-based
cost-function minimization algorithm are studied. Both algo-
rithms were applied in the Monte Carlo simulations, using a
conjugate-gradient-based implementation. It was shown that
both approaches are asymptotically unbiased with variances
that are slightly larger than the CRLB when the photon counts
are high. For the case of lower photon number, the Monte
Carlo analysis showed that both methods require more mea-
surement to converge to the CRLB. While increasing the
number of data, it was shown that the maximum-likelihood
method converges to the CRLB faster than the amplitude-
based cost-function minimization algorithm.

Our result can help to understand the defects that occur in
the ptychograghy reconstruction from noisy data. Our conclu-
sions suggest that more illumination power should be given
to the part of object which is of most interest, although this
may be difficult to realize in a practical ptychography exper-
iment. As next steps of research, the performance of other
ptychographic denoising algorithm [19,35,37,38,47] deserve
further investigation. Investigating the CRLB and the statistic
properties of the two algorithms for Gaussian noise and the
mixed Poisson-Gaussian noise is also an interesting topic for
further research.
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APPENDIX

The detail of Algorithm 1 is described in the pseudocode.
Unlike Eq. (12), the update step size « is not a constant
anymore in Algorithm 1. Instead, an optimal « for every
iteration k is obtained in the manner described in [61]: (1)
Based on the computed kth local gradient, calculate the value
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Algorithm 1 Maximum-likelihood method with Poisson noise.

It ke = 10%,8, =107,y = 107°,A; = A,,
¢'l = ¢0, k=1

2: repeat

3: compute the steepest descent gradient of A and ¢ using Eq. (12):
8Ak _
=3, —Re(Bre " F (5 — DF (P00,

84,k
=, —Im{PiAe” % F (= — D F (P01}

m Nin+y
4: if k = 1 then
S5: Apk = 8aks Dok = 8pik-
6: else
7: use the formula of Polak-Ribiere:
PR _ ((8A.k—8Ak—1)I8A.k)
Ak lgas—1l3
,BPR _ <(8¢.k*g¢k—|§|g¢,k)
b,k llggk—113 ’

8: Bax =max (B, 0), Byx = max (85K, 0),
9: compute the conjugate direction:

Ask = 8ak + BarDa-1,

Dy k= 8ok T By kg i1
10: end if.

11: optimize the update step size:
o = argmin Lp(Ax + aa D),
ap

g = argmin Lp(Pp + oty Ay k).
%

12: update the object function:
App1 = Ap +ap i Daks Gry1 = Gk + g Ay
13:if k = 11 then

14:y = 1072,
15: end if.
16:k=k+ 1.

17: until k = max O |£pyk — £P.k*l| < 8£-

of the likelihood function Lp for at least three different values
of a, e.g., [0.01,0.5,1]. (2) Approximate Lp by a quadratic
function of «. To do this we apply the “polyfit” routine in
MATLAB. (3) Choose the value for o for which the quadratic
function is minimum. The parameter B is chosen such that the
update direction of the object function is conjugate between
two subsequent iterations, for which many proposals exist
[62]. Based on the formula of Polak-Ribiere [63], we choose
B = max (BFR, 0), where SR is given by

PR _ ((gk — gk—1)lgk)

Al
lgels (AD
where g, is the gradient of Lp with respect to O(r) in the
kth iteration. When the calculated ﬂ,f’ R has negative value, S
resets the search direction from the conjugate gradient back to
the local decent gradient direction, i.e., Ay = gy.

In order to prevent that the algorithm terminates in a local
minimum, the initial guess of the object is selected to be the

Algorithm 2 Amplitude-based cost-function minimization
approach.

1: knax = 103,82 = 10720,y = 1073, A} = A, ¢ = o,
k=1,
2: repeat
3: compute the steepest descent gradient of A and ¢:
84k
=Y, —RelPre * FI (2 — DF(P,00]),
8o.k
=Y, —Im{PAe % F (2 — DF(P,00)]).
4: follow 4th—10th steps of Algorithm 1.
5: optimize the update step size:

aa = argmin E(A; + aaAay),
a

Qg = argmin E(¢y + 0y Ay k).
L

6: follow 12th—16th steps of Algorithm 1.
7 until £ = k. or |E — 1] < Se.

actual object A, (r) and ¢, (r). The denominator N, in Eq. (12)
is a function of &, and may be close to zero for some &. Hence,
the maximum-likelihood method can be unstable. To avoid
the instability, a regularization parameter y is introduced in
Algorithm 1, of which the value can be determined in practice
depending on the noise level. Throughout this paper, we let
y be 107> (note that N,, is non-negative integer) for the first
10 iterations, then reset y to 10729 after the 10th iteration.
Algorithm 1 terminates when the change of the likelihood
function between two subsequent iterations is smaller than
a threshold §,, or when the number of iteration reaches a
maximum Kpay.

For comparison, the performance of another popular
method, namely, the amplitude-based cost-function mini-
mization approach [6], is investigated in the Monte Carlo
experiment. The approach is described in Algorithm 2, in
which the search of the optimal step size o and the method of
conjugate gradient is added too. Similar to Algorithm 1, Al-
gorithm 2 stops when the change of the cost function between
two subsequent iterations is smaller than a threshold é¢, or
when the number of iteration reaches a maximum k..

Finally, we note that the characteristic parameters shown in
the first step of Algorithms 1 and 2, i.e., kyqy, ¥, 8, and §¢ are
chosen through a “trial-and-error” process. For each Monte
Carlo simulation, we start with a relative large regularization
factor, i.e., y = 107>, After the algorithms have converged,
we decrease the value of y for final refinement. The error
tolerance §,. and d¢ is visually determined such that the algo-
rithms are indeed converged. Throughout the simulation, we
observed that the most influential factor which may devastate
the simulation result is the choice of the initial guess of the
object. How to obtain a initial guess which is closed to the
actual object is an important issue in practice but is out of the
scope of this paper.
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