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Abstract

Modern retail stores are increasingly implementing automated systems with the aim of assisting both the
customer and employee. Much research is conducted on robotic applications within such environments;
one of these applications concerns deploying an autonomous mobile manipulator to assist humans in retail
stores. Such a robot requires the ability to cope with unexpected environmental changes, like encountering
obstructions in retail store aisles. Generally, the first step in the pipeline of an autonomous mobile robot is
focused on gathering and processing environmental information using perception sensors like cameras and
LiDARs. Subsequently, this information is used to plan the mobile robot’s path, which is typically done with-
out allowing interaction with the environment. For object detection techniques, objects are first localized,
after which they are classified towards their object type category. Another approach is to classify objects to-
wards their functional categories, which are commonly referred to as affordances. Research in the field of
affordance classification mostly focuses on kitchen, garden and working tools due to the availability of affor-
dance datasets for these objects. However, no work on affordances in retail store environments has been con-
ducted to this date. More specifically, there is no dataset publicly available that allows mobile manipulators
to identify how to interact with retail store related objects in such environments. This work has investigated
the adaptation of an instance segmentation network to localize and classify objects on floors of retail stores
into affordance classes. These affordance classes relate to the functional capabilities of mobile manipulators,
like graspable or pushable. To achieve this, an affordance dataset consisting of retail store related objects is
essential. To overcome the scarcity in this data, a novel dataset consisting of 3237 images with pixel-level af-
fordance annotations was successfully created using an automated data generation approach. This work has
shown that such an approach can be used to minimize human labour in terms of acquiring annotated data
drastically. A state-of-the-art instance segmentation network was trained using this synthetically generated
data and was tested on both synthetic and real image data. The evaluation revealed that the use of synthetic
data for training allows for inference on real image data, yet this may compromise the localization and espe-
cially the classification performance. Further, the observation of objects that are assigned to both affordance
classes has introduced the aspect of the subjectivity of affordances.
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Nomenclature

AUC Area Under Curve

DOF Degree Of Freedom

FN False Negative

FP False Positive

FPN Feature Pyramid Network

GUI Graphical User Interface

IoU Intersection over Union

LiDAR Light Detection And Ranging

mAP mean Average Precision

R-CNN Region-Convolutional Neural Network

RoI Region of Interest

RPN Region Proposal Network

SGD Stochastic Gradient Descent

TN True Negative

TP True Positive
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1
Introduction

1.1. AIRLab Delft
This master’s thesis research was conducted within the AI for Retail (AIR) Lab Delft, which is a joint TU
Delft-Ahold Delhaize industry lab focused on research in robotics in retail environments. The possibilities
of implementing robots to assist humans in such a retail environment are endless. The lab has chosen to
invest in a mobile manipulator robot named Albert, consisting of a mobile base with a 7-DOF manipula-
tor arm mounted to it. Combining a mobile base with a manipulator arm offers a wide variety of options
in performing actions autonomously. The possibility to use Albert in AIRLab’s mock-up retail store envi-
ronment enables realistic testing. Also, the lab provides high-performance desktops for computationally
expensive tasks, like the training of a neural network. For more information on AIRLab Delft, please visit
https://icai.ai/airlab-delft/.

Figure 1.1: Albert, the 7-DOF mobile manipulator performing a banana-grasping action in AIRLab’s mock-up store.

1.2. Motivation
Generally, the first step in the pipeline of an autonomous mobile robot is focused on gathering and process-
ing environmental information. This is generally done using perception sensors, like mono cameras, stereo
cameras or LiDAR sensors. The content of this research lies in the domain of computer vision, in which per-
ception sensor data is processed to obtain specific information on the robot’s environment.

The aim of Albert the robot is to autonomously drive through a retail environment and perform actions to
assist customers and employees. This requires the ability to cope with unexpected changes, like encountering
obstructions. Presumably, the robot would run across many people, shopping carts and baskets. However,
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2 1. Introduction

obstructions like products that have fallen of shelves and other unpredictable encounters must also be tack-
led. In the domain of computer vision, much research has been conducted in the field of object detection, in
which visual features are classified into object type categories. Another approach is to classify these features
into functional categories, also known as affordances, which will shortly be explained below.

Affordances
The human brain is trained to correlate object appearances to its function. For instance, humans know that
a soccer ball can be rolled by giving it a push. Or that a concave-shaped object, e.g. a bowl or a cup, can
contain liquid substances. This brings up the biologically inspired concept of affordances, introduced by the
American psychologist J.J. Gibson [11].

"The affordances of the environment are what it offers the animal, what it provides or furnishes,
either for good or ill. The verb to afford is found in the dictionary, the noun affordance is not. I
have made it up. I mean by it something that refers to both the environment and the animal in
a way that no existing term does. It implies the complementarity of the animal and the environ-
ment."

J.J. Gibson

This biologically inspired concept has been successfully applied to the field of robotics, which will be
covered in the next chapter. Generally, these applications focus on the detection of affordances of kitchen,
garden and working tools. To this date, the application of affordances in retail environments using mobile
manipulation has not been explored to the best of my knowledge. This concept is believed to have great po-
tential in detecting the interactability of encountered objects in a retail environment, which will therefore be
investigated in this work. More specifically, the use of a synthetically generated affordance image dataset for
retail products will be explored. The reason for this exploration roots in the lack of a suitable retail object im-
age dataset that is labelled towards affordance classes in terms of interactability, e.g. graspable and pushable.
The work conducted in this research is based on several research questions and assumptions, which will be
introduced next.

1.3. Research Question
The main research question of this master’s thesis is formulated as follows.

• How can the concept of affordances be adopted to classify objects that are commonly found in retail en-
vironments into their ability to be interacted with, given the use of a mobile manipulator?

This main research question can be divided into several sub-questions, whose answers aim to contribute
to the answer of the main research question.

1. How can a conventional object detection model for 2D images be adapted to classify into affordance
labels?

2. Can the use of a synthetically generated retail product image dataset solve the issue of the lack of ap-
propriate affordance training data?

3. Is the resulting affordance model able to generalize objects into their level of interactability, e.g. being
graspable or pushable?

1.4. Assumptions
• The objects that are commonly found in retail store environments consist of products, e.g. packaged

food, drinks, fruits, vegetables, household products and shopping baskets.

• Only objects that are located on floors of retail environments are aimed to be detected.

• All objects are considered to be static, meaning that objects are not changing location over time.

• This work is aimed for mobile manipulators deployed in a human shared retail environment, e.g. su-
permarkets.

• There is a clear visual distinction between graspable and pushable objects.
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1.5. Contributions
• The generation of a novel affordance dataset of 3237 annotated images that fills the gap in affordance

datasets for retail store environments, publicly available at https://doi.org/10.4121/14557965.
v1

• The design of a synthetic image data generation script that generates images accompanied with their
semantic masks, consisting of object CAD models combined with real background images on the fly.
A labelling application was created to annotate the created semantic masks towards object affordance
classes efficiently.

• A state-of-the-art instance segmentation network was adopted to detect and classify retail store related
objects located on floors into affordance classes using this novel dataset.

1.6. Thesis Outline
This finalizes the Introduction 1. In chapter 2, related work concerning various affordance applications in
robotics will be discussed. In the Methods chapter (3), the content of this work’s research will be covered by
elaborating on the chosen object detector, the approach of synthetic data generation and the experimental
setup that aims to answer the research question. Subsequently, the Results chapter (4) covers the experiment’s
outcome, which is analyzed in the Discussion (5). This master’s thesis will be concluded in the Conclusion (6)
by answering the main research question. Finally, several suggestions for further research are proposed in the
Future Work chapter (7).

https://doi.org/10.4121/14557965.v1
https://doi.org/10.4121/14557965.v1




2
Affordance Detection in Robotics

The biologically inspired concept of affordances has been applied to robotic applications, reviewed in several
surveys [15], [22], [36], [38]. Generally, these applications seek to detect what objects can afford, meaning that
a set of actions may be taken, given the object and its environment. Imagine the case of a robot manipulator
arm in a cluttered environment of random objects, one of which is a hammer. Classical object classification
can be used to detect whether these objects can be manipulated or not by classifying objects by their type and
use a priori knowledge of that type. In contrast, the approach of affordances aims to classify visual features
that relate to an object’s function, rather than its type. As an example, we may look at the hammer again,
which consists of a relatively long stick with a specifically shaped head at its end. As humans, we perceive
this stick as a grip that we know should be taken in our hand. Regardless of the object, all objects which have
similarly shaped sticks, are known to be graspable by our hands. This is the basis of the idea of affordances in
robotics and this is where it differs from classical object classification.

2.1. Learning-Free

Most affordance detection methods are based on trained models; however, some work shows that positive
results can be obtained from approaches without the use of machine learning techniques by using methods
based on conditional approaches or geometric shape fitting, for instance. As no training procedure takes
place, there is no need for a priori annotated training data. However, this simplistic approach tends to gener-
alize object shapes and therefore is not applicable for more complex affordance detection scenarios.

Ten Pas and Platt [32] are roboticists who chose such a conditional approach in which they identify a set
of geometric conditions for the existence of a grasp affordance using a 3D point cloud model. A quadratic
curve fitting function is applied to the data to find handle-shaped and hole-shaped object areas, which imply
a grasp affordance. Due to the nature of this general conditional approach, the authors claim that this model
is well applicable to many real-world robot application scenarios. Also, the authors incorporated their work
into a ROS package, which is made publicly available [31]. Similarly, Kaiser et al. [16] segment RGB-D point
cloud data and match these segments to their geometric primitives, such as planes, cylinders and spheres,
whereafter a rule-based system is employed to obtain affordance predictions.

5



6 2. Affordance Detection in Robotics

Figure 2.1: Kaiser et al.’s approach of obtaining affordances from RGB-D point cloud data, by comparing the data with geometric
primitives (planes, cylinders and spheres). In (d), affordances such as, lean (Ln), support (S) and Push (P) are labeled together with its

primitive shapes. [16]

Another non-trained approach is proposed by Yu et al. [37], who analyse thoroughly scanned container
objects for the affordance of containability of liquid under specific angular poses with respect to the gravita-
tional direction. They first voxelized the data, whereafter an iterative process is started from the bottom to
the top part of the object to search for holes in the hollow structure. This voxelization may cause errors where
small holes are not detected, depending on the voxel resolution. A significant benefit of this method, as well
as the other methods that do not require trained machine learning models, is that there is no need for large
amounts of prior training data.

2.2. Supervised Learning
The majority of the work found on affordances in robotics for the last years is based on affordance learning in
a supervised way. The model is trained on a priori annotated data, generally obtained from publicly available
affordance datasets of kitchen, garden and working tools, like the UMD affordance dataset [23] or the IIT-
AFF dataset [25]. These supervised learning methods can be categorized into three model approaches. In
Probabilistic Network Models, the relations between input sensor data and the desired affordance output are
generally captured in probabilistic network models like Bayesian/Markov Networks or other types of graph
models. Secondly, Conventional Machine Learning Models may be used to train manually defined features
to be classified or regressed to an affordance class label. Finally, a similar but more end-to-end affordance
detection approach using Deep Learning Models can be used. These methods generally have high training
times and low run times, which makes them useful to real-time applications. Below, the last approach will be
elaborated as it contains the basis of this work.

Deep Learning
In contrast to the conventional supervised machine learning approaches, deep learning approaches do not
use manually defined features but rather learn deep, complex features using convolutional layers. Addition-
ally, deep learning is able to combine multiple steps into a single network. Object localization and object
classification may be combined into a single network to obtain better performance.

AffordanceNet [9], is an example of this end-to-end approach, where an image is fed to a Convolutional
Neural Network (CNN) for feature extraction. Important Regions of Interest (RoIs) are selected using a Re-
gion Proposal Network (RPN) [26]. Finally, a sequence of convolutional-deconvolutional and a softmax layer
are used to classify by affordances and output an affordance mask. The strength of this method lays in the
end-to-end way that object masks and affordance classes are detected. Resulting in a runtime of 150ms per
RGB image on a Titan X GPU, allowing it to run on real-time applications. AffordanceNet uses an instance
segmentation network named Mask R-CNN [14], which is a proven and publicly accessible model that will
be used in this work. Similarly, the method proposed by Roy and Todorovic [28], runs at 150ms per RGB im-
age on an NVIDIA Tesla K80 GPU. An RGB image is fed to three multi-scale CNNs to obtain a depth map,
surface normals and semantic object labels. A fourth multi-scale CNN uses these three maps, together with
the input RGB image, to acquire a final affordance prediction mask. The affordance detector may fail in the
presence of object clutter and partial occlusion. A different approach is proposed by Kokic et al. [17], who
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voxelized 3D point cloud data in a pre-processing step into a binary 3D occupancy grid. The voxel grid is fed
to an affordance detection network (AFF-CNN), which outputs grasping locations. In parallel, the voxel grid is
passed on to an object classification and orientation estimation network (CO-CNN). Object class, orientation
and grasp locations are used to formulate grasp constraints, which are needed for higher-level affordance
tasks, like poking using a screwdriver after having grasped it. The authors have shown that all three entities
are essential to a good affordance execution by their manipulator arm. For the 2017 pick-and-place Amazon
Robotics Challenge, the MIT-Princeton Team took first place in the stowing task, using their multi-affordance
grasping system [39]. They use two Fully Convolutional Networks (FCNs) for the detection of suction and
grasping affordances, given multi-view RGB and depth images (RGB-D). Both FCNs output an affordance
heat map that shows successful affordance probabilities for suction and grasping, respectively. The major
limitation of this pick-and-place approach is that the method is unable to pick up objects that are occluded
by other objects. The authors praise reinforcement learning techniques, as a promising solution.

Figure 2.2: Examples of the output of affordance detection methods, where input images are shown in the first column and affordance
predictions are visualized in the last two columns as; a heat map, a semantic mask, bounding boxes and as part pose frames. [24], [25]

Similarly to previously mentioned methods, Nguyen et al. [24] use a CNN. But before passing the RGB
and depth image data on to the network, they decompose the depth image into a horizontal disparity im-
age, a height above ground image and an image containing information on the angle between pixels’ surface
normals and the estimated gravity direction. With a runtime of 90ms on an NVIDIA Titan X GPU, CNN-
HHA seems to be quite competitive. However, the same CNN but without depth image decomposition out-
performs the method in terms of accuracy. The authors point to the nature of the used UMD dataset [23],
for the inability of estimating a reliable gravity direction from a single depth image. As a consequence, the
same authors have published follow-up work [25], in which their improved framework (BB-CNN-CRF) is de-
scribed. Along with their improved framework, a newly published IIT-AFF affordance dataset was published,
which has a broad variety of background scenes as opposed to the content of the UMD dataset. The authors
show that object localization is paramount in such non-constant backgrounds, therefore they propose to pre-
process images with an object detector network to narrow down the RoI. Nonetheless, this extra processing
step may cause failure cases due to incorrect object localization. After the affordance detection network, the
pixel-wise labelled output is post-processed, using dense Conditional Random Fields (CRFs). Affordance la-
bel probabilities and neighbourhood pixel labels are used in a dense CRF to remove inconsistencies and as a
result improve accuracy.

2.3. Unsupervised and Self-Supervised Learning
Generally, supervised machine learning models increase in accuracy when trained on large amounts of an-
notated data. In areas where these large datasets may not be available, alternative approaches based on
unsupervised and/or self-supervised learning may be useful. Here, the model finds patterns in data in an
unsupervised way by clustering for instance. These clusters may be used as data to train a classifier, which
in turn is referred to as self-supervising learning. However, if a comparison between unsupervised clustered
data and supervised human-annotated data would be made, the latter would get the better hand in terms of
accuracy.

An example of this approach is proposed by Ridge et al. [27], who use a multi-view learning method [30]
to first cluster data from multiple feature spaces, into affordance category estimates in an unsupervised way.
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The clusters are passed on to a classifier for training. One feature space consists of a large variety of pre-
defined object shape features detected prior to interaction, whereas a second feature space contains effect
features that are detected during and after interaction, using both 3D point cloud and 2D image data. Ob-
ject detection limitations may occur due to the assumption that objects must lie on flat surfaces to be able
to segment the object using a plane segmentation algorithm. Similar to this approach, Mar et al. [20] clus-
ter Oriented Multi-Scale Extended Gaussian Image (OMS-EGI) geometric features, obtained from voxelized
point cloud data, into tool-pose-based categories. Assuming that similar tool-poses have similar affordances,
Generalized Regression Neural Networks (GRNNs) [26] are trained on these clusters to obtain a self-learned
affordance detection model. Moreover, this method is an improvement of precedent work published by the
same authors [21], but differs in the more simplistically used geometric feature representations and the use
of a one-versus-all SVM model. The performance of this model is dependent on well clustered tool-pose
data, in that regard the authors admit that clustering these kinds of categories is quite complex and may
therefore be problematic. Ugur and Piater published work [33], [34], where feature extraction is performed
on RGB-D point cloud data. More specifically, they differentiate between low-level human-defined geomet-
ric features and high-level self-learned features by exploration. Which in turn are clustered into basic effect
categories at first, whereafter effect category complexity increases with the number of exploratory actions. A
multiclass SVM model is self-trained using this unsupervised data generation approach. According to the au-
thors, clustering into more complex effect categories is a challenging task, which may be solved by increasing
exploratory actions, however this is a time-consuming process.

2.4. Reinforcement Learning
Finally, the concept of reinforcement learning in affordances will be introduced, where the robot is trained
on its own successful or failed interaction with the environment, instead of relying on annotated examples.
Authors point out that during early learning stages, these environments must be rather simplistic for the
robot to be able to categorize its actions. As opposed to the other learning methods, reinforcement learning
focuses on learning actions that can be performed using a specific robot and its environment, which is in line
with Gibson’s definition of affordances.

This concept is used by Ugur et al. in [35], where initially a robot discovers motion primitives by per-
forming simple reach-and-enclose-on-contact actions on objects, whereafter it observes the caused effects
visually and saves the action-effect combinations. In the next stage, the robot learns object affordances by
applying specific actions to new objects and compares the result with the predicted effect. Whenever the
observed result corresponds or does not correspond to the predicted effect, the action prediction is marked
as a success or failure, respectively. An SVM is trained to map between an input object feature vector and
the prediction of success or failure for certain actions. Cluttered environments may pose difficulties for this
approach, as action-effect observations will be inconsistent and therefore, predictions may be less accurate.
Also, in this particular approach the robot is not starting its learning curve from scratch, as it initially starts
with simple pre-learned reach-and-enclose-on-contact actions. Another reinforcement learning method is
proposed by Glover et al. [12], who use a Distributed Semi-Markov Decision Process (DSMDP). The robot
uses this model together with an object as a goal position to learn the mapping between visually detected
object positions and specific wheel movement actions (e.g. turn left, go forward). Also, the robot is equipped
with a binary proximity sensor to detect whether an object is located between the robot’s grippers. The affor-
dance of being graspable is learned for specific objects. In the conducted experiments, objects were visually
easily distinguishable by colour for simplicity, which would pose problems in real non-simplistic scenarios.
The approach of detecting affordances using these reinforcement learning techniques are in line with Gib-
son’s definition of affordances. Because, in contrast to both the learning-free and the other learning-based
methods, reinforcement learning methods specifically focus on the robot and the object as twofold, instead
of learning a model uniquely based on object information.

2.5. Summary
The state-of-the-art affordance approaches implemented for robotic use, may be categorized into four dif-
ferent types of learning approaches. Learning-Free approaches are the most simplistic and may be based
on conditional or geometric shape fitting approaches. The second and most commonly used approach is
based on Supervised Learning, in which a training stage processes large batches of labelled examples before
performing inference on unseen data. Deep Learning is a promising sub-field in this category. Thirdly, Unsu-
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pervised and Self-Supervised Learning methods obtain labelled data by finding patterns in an unsupervised
way (e.g. clustering), which is then used as training data, hence the name Self-Supervised Learning. Lastly,
Reinforcement Learning applications were discussed, in which an agent learns affordances by following an
action reward-based system.

In conclusion, the Supervised Learning approach and more specifically the sub-category of Deep Learn-
ing, has been proven to be a successful end-to-end approach in detecting and classifying objects and their
affordances. Generally, these approaches aim to classify objects related to kitchen, garden and working tools
due to the availability of affordance datasets for these object categories. However, no work on affordances
in retail store environments has been conducted to this date. More specifically, there is no dataset publicly
available that allows mobile manipulators to identify how to interact with retail store related objects in such
environments. This work will investigate the approach of synthetically generating images to overcome this
scarcity in data. Subsequently, the data will be used to train an instance segmentation model with the aim of
detecting retail store related objects and their affordance classes. In the next chapter, this approach will be
explained in more detail.
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3.1. Model Choice: Mask R-CNN
3.1.1. Affordances using Mask R-CNN
For an autonomous mobile manipulator in a retail environment, the knowledge of the ability of objects to be
grasped by the robot has great value. Products may fall from shelves and end up lying on the floor, which in
many aspects poses problems. In terms of customer and employee safety but also in terms of the aesthetics
of a retail store interior. A Region-based Convolutional Neural Network for instance segmentation (Mask R-
CNN) [14] was used in this work to first localize these objects within an image and then classify these objects
into a graspable or pushable affordance class. This approach differs from the conventional application in
which objects are classified towards their object type labels after being localized in the image. As an example,
we take the classification of apples versus pears which have two different classes in the conventional object
type classification, yet share the same graspable affordance label in this work’s affordance classification. Do
et al. showed in their work on AffordanceNet [9], that the use of Mask R-CNN in combination with affordance
datasets resulted in strong results. But also the availability and documentation of the model were reasons
to choose Mask R-CNN. This instance segmentation network takes a 2D image as input and is able to pre-
dict labels on pixel-level, which results in labelled semantic masks as output. In contrast to bounding box
predictions, these masks allow object shapes to be described precisely. As this work aims to classify objects
towards their ability to be manipulated, knowledge of their precise shape is of great importance for the actual
manipulation step. This subsequent manipulation step of the robot lies outside of the scope of this work. The
working principle of Mask R-CNN is elaborated below.

3.1.2. Network Architecture
Mask R-CNN is an instance segmentation network that uses a Region Proposal Network (RPN) [26] to select
Regions of Interest (RoIs) from feature maps generated by a backbone network. These initial object localiza-
tion steps are also referred to as the first stage of Mask R-CNN. Subsequently, the second stage or the head
part of the network aims to obtain the object masks, refine the bounding box coordinates and classify objects
for every RoI. Below, the process of each part of Mask R-CNN will be explained in more detail and the overall
network architecture can be seen in Figure 3.1.

Figure 3.1: Mask R-CNN network architecture. [7]

11
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Backbone: Feature Pyramid Network
The Feature Pyramid Network (FPN) [19] is the backbone network of Mask R-CNN that extracts high-level
semantic feature maps at different scales. This is beneficial in detecting objects that differ in size due to the
difference in distance from the camera. This backbone may be pre-trained on large datasets like COCO [18]
or ImageNet [8], which saves training time by bypassing the part where initial features are learned by the
network. The network uses a deep Residual Network with 101 layers (ResNet-101) [13] that processes the
input image through convolutional layers for feature map extraction at different pyramid scales (C2-C5 in
Figure 3.2). As a consequence of this pathway, the resolution decreases which results in less detailed feature
maps and therefore the semantic value of the feature map increases. At every pyramid level, these feature
maps are added through a lateral connection to its corresponding up-scaled feature map which contains a
higher semantic value. This lateral connection allows the final feature maps (P2-P5 in Figure 3.2) to have
value in both the semantic and the resolution aspect at different scales.

Figure 3.2: Feature Pyramid Network using a deep Residual Network (ResNet) as backbone image feature extractor. [19]

Region Proposal Network
After the set of feature maps have been computed, the Region Proposal Network (RPN) object detector [26] is
run on these maps to obtain a set of RoIs from the image. This method applies sliding windows with multiple
scales and aspect ratios, known as anchor boxes, on the set of feature maps. Each 2D window will be flattened
into a vector, whereafter it is passed through a binary classification layer. This layer outputs two confidence
scores, which aim to quantify the confidence of the window containing an object or not. Next to this classifi-
cation layer, the window will be passed to a regression layer that aims to refine the pre-defined window into a
more precise bounding box around the object. For the definition of a bounding box four values are required,
the x and y locations and the width and height of the box.

Figure 3.3: Region Proposal Network that applies a sliding window on the obtained multi-scale feature maps. [26]
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RoI Align
The bounding boxes (RoIs) obtained from the windows that were classified as an object, are sized relative to
their corresponding feature map. The next step in the Mask R-CNN pipeline is to align these RoIs to have
identical dimensions. This is required for the head part of the network which will infer the object’s mask and
class from these fixed-sized RoIs. The size of all the RoIs is reduced to a squared shaped matrix of n×n using
bilinear interpolation, more details on this can be found in the published work of Mask R-CNN [14].

Head Network
After the alignment, the network starts its second stage. All RoIs along with their corresponding feature map
are passed to the network’s head, which is visualized in Figure 3.4. The upper branch includes fully connected
layers to derive the exact bounding box in terms of the x and y locations and the width and height of the box.
The upper branch also identifies the class for each RoI in terms of a probability ranging from 0 to 1 for each
of the K + 1 possible classes; K being the desired number of classes plus one background class. The lower
part of the head uses a series of convolutional layers to infer the masks corresponding to each class, the mask
output will take the shape of m ×m × (K +1).

Figure 3.4: Mask R-CNN’s head part. [14]

3.1.3. Network Training
Before the network can be used for object affordance detection, it needs to be trained to recognize the desired
objects and classify them into affordance labels. For this, a training dataset with annotated ground truth
examples is required, which is generated using a data generation approach explained in the next section. The
first stage of the network is not trained due to the availability of the pre-trained ResNet-101 on the COCO
dataset, which consists of around 2,000,000 annotated objects from 200,000 images. The second stage of
the network is trained by adjusting the network weights towards a minimization of the difference between
the predicted network output and the annotated ground truth. This difference is commonly referred to as a
training Error or a Loss, which is calculated for the predicted object affordance class, bounding box and mask.
These individual Losses are combined into a general Loss function (Equation 3.1), which will be minimized
using a Stochastic Gradient Descent (SGD) optimization approach [29]. This training process will adjust the
network weights iteratively for a set of mini-batches obtained from the total training data.

L = Lcl s + Lbox + Lmask (3.1)

The Loss that relates to an RoI’s class (Lcl s ) is defined as the average cross-entropy Loss between the predicted
class labels and their ground truth labels for all RoI’s. A probability of pi = 1 is optimal and must result in a
low Loss value, which explains the suitability of this logarithmic Loss function. The -1 serves to compensate
for the resulting negative values for all pi < 1.

Lcl s = − 1

Ncl s

Nbox∑
i=1

[pi log(p̂i )+ (1−pi ) log(1− p̂i )] (3.2)

i = Index of an RoI in a mini-batch. (3.3)

Ncl s = Normalization term set to the mini-batch size. (3.4)

Nbox = Normalization term set to the number of RoIs in a mini-batch. (3.5)

p̂i = Predicted probability of RoI i being an object of a given class. (3.6)

pi = Ground truth binary label of RoI i being an object of a given class. (3.7)
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The second part of the general Loss function (Lbox ) concerns the Loss in terms of the predicted RoI bound-
ing boxes compared with their ground truth bounding boxes. The difference between the bounding box co-
ordinates is given to an Lsmooth

1 Loss function, which increases the Loss value if the deviation from the ground
truth is large. The binary pi parameter aims to only consider correctly detected bounding boxes.

Lbox = λ
1

Nbox

Nbox∑
i=1

pi Lsmooth
1 (t̂i − ti ) (3.8)

i = Index of an RoI in a mini-batch. (3.9)

λ = Balancing factor of Lbox for the overall Loss function. (3.10)

Nbox = Normalization term set to the number of RoIs in a mini-batch. (3.11)

pi = Ground truth binary label of RoI i being an object of a given class. (3.12)

t̂i = (t̂ x
i , t̂ y

i , t̂ w
i , t̂ h

i ), predicted coordinates of RoI i . (3.13)

ti = (t x
i , t y

i , t w
i , t h

i ), ground truth coordinates of RoI i . (3.14)

Lsmooth
1 (t ) =

{
0.5t 2 if |t | < 1
|t |−0.5 otherwise

(3.15)

The final term (Lmask ), catches the Loss between the ground truth mask pixels and the predicted mask
pixels for a given class. The average cross-entropy Loss is calculated for the predicted binary mask labels and
their corresponding ground truth labels. The Loss function calculates the cross-entropy for all pixels in the
predicted mask, the more similarity between the masks the lower the Loss value.

Lmask = − 1

m2

m∑
i , j=1

[yi j log(ŷu
i j )+ (1− yi j ) log(1− ŷu

i j )] (3.16)

u = Ground truth class label of RoI (3.17)

m = Mask size in pixels. (3.18)

i , j = Pixel coordinates. (3.19)

ŷu
i j = Predicted binary pixel label of mask for ground truth class. (3.20)

yi j = Ground truth binary pixel label of ground truth mask. (3.21)

3.2. Data Generation
3.2.1. Synthetic Image Data
As explained earlier in this report, the choice of a Supervised Learning-based approach requires a significant
amount of annotated images to train the Mask R-CNN model. The work of Do et al. in AffordanceNet [9],
used a totality of 8,835 annotated images for 9 different affordance classes related to kitchen and working
tools. Given that AffordanceNet performed well using around 1,000 training images per class, this work aims
to generate a dataset with a minimum of 2,000 annotated training images for 2 classes, i.e. graspable and
pushable. To avoid the intensive human labour of creating and annotating such an amount of images, the
choice was made to generate a so-called synthetic image dataset for training. This automated data generation
process is described next.

Image and Mask Generation Pipeline
The process of generating synthetic images and their corresponding masks is implemented in a Blender script
that is able to iteratively load and render 3D models in a custom environment. The pipeline of the Blender
script created for this work is visualized using a simplified pseudocode-style structure in Algorithm 1. In
short, the script takes as input a list of 3D models and a list of background images captured in a retail store
environment. It loads a 3D model, randomizes parameters, adds realistic lighting conditions and finally ren-
ders and saves the synthetic image and mask, which is done iteratively for all 3D models. This process is
repeated N times, depending on the required size of the dataset. Below, the data generation script will be
elaborated in more detail.
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Algorithm 1 Blender data generation script in pseudocode.

Input: list of 3D models, list of background images
Output: synthetic images, semantic masks

1: for i = 1,2, . . . , N do . Variable to control resulting dataset size
2: for model in l i st_model s do . Loop through all 3D models
3: env = new_envi r onment () . Create new Blender environment
4:

5: backg r ound_i mag e = r andom() . Randomize parameters for environment
6: or i ent ati on = r andom()
7: locati on = r andom()
8:

9: env.model = l oad_model (model , l ocati on,or i ent ati on)
10: env.l i g ht = add_l i g hti ng ()
11: env.pl ane = add_pl ane(locati on)
12: env.cam = add_camer a()
13:

14: r ender (env,backg r ound_i mag e) . Render and save image + mask
15: end for
16: end for

Input and Output
The 3D models are configured using the glTF file format and contain an added file called height_estimate.txt,
which contains an integer number that represents an estimate of the length of the object along its largest axis.
This is required to correctly define the 3D model’s relative size towards the other models. The list of images
captured in a retail store environment will serve as a background image for the synthetic image. The final
affordance dataset was created using 121 3D models of commonly found objects in supermarkets, varying
from groceries to cardboard boxes and 311 background images.

(a) 3D Model (b) Background image

Figure 3.5: An example of a possible set of inputs to the Blender script.

(a) Synthetic image (b) Mask

Figure 3.6: The resulting outputs from the example inputs shown in Figure 3.5.
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Randomizing Environmental Parameters
For the generation of the affordance dataset, the requirement of variety in images is an important aspect. To
obtain such variety, randomized parameters are initialized. First, for every iteration a random background
image is chosen from the list of background images, after which the location and orientation of the 3D model
are randomized. The horizontal location of the object is limited to the area in the centre of the image, due
to the nature of the background images. These generally have obstructions, like shelves, at both sides of the
image. The vertical location is randomly chosen from a range of numbers that still allow for a realistic setting
with respect to the object sizes compared to the background image. Orientations with respect to the x- and
y-axis are limited to increments of 90°, to maintain realistic object orientation w.r.t. gravity. The possible sets
of orientations are mathematically defined below.

θx ∈Z | θx = {0,90, ...,270} (3.22)

θy ∈Z | θy = {0,90, ...,270} (3.23)

θz ∈Z | 0 ≤ θz < 360 (3.24)

3D Model on Plane
After the initialization of the parameters, the 3D model corresponding to the current iteration is loaded into
the newly created Blender environment, given the initialized location and orientation. To enhance the syn-
thetic image in terms of realism, lighting conditions are added to obtain reflections and shadows. To simulate
the indoor lighting conditions of a retail store, a 2x2 grid of virtual light spots are added around the object at
a ceiling height of 3 meters. A horizontal plane is added to the bottom of the 3D model to replicate the retail
store’s floor surface on which the object is located and on which the object’s shadow will appear. This Blender
environment can be seen in Figure 3.7.

Figure 3.7: Example of the Blender environment created by the script and visualized in the Blender GUI.

Rendering and Saving
One of the final steps of the script is the addition of a virtual camera, from which the synthetic image will be
captured. This camera with a focal length of 50mm is located at a fixed position of (2,2, 1

2 )m with respect to
the 3D object and is pointing towards the 3D object. The synthetic image can now be rendered using the cam-
era’s perspective of the environment, together with the chosen background image that is set to be rendered
behind the object. Next to this synthetic image, a binary mask is rendered, which saves pixels corresponding
to the object as HIGH and the background pixels to LOW. This allows for semantic distinction between the
object and its background on pixel-level accuracy. Some examples of the output images and masks are shown
below.
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Figure 3.8: Examples of the Blender data generation script output with the synthetic images on the left and the corresponding masks on
the right.

Data Labeling
For this work, the choice was made to distinguish objects between graspable and pushable affordance classes,
yet the implementation of other affordance classes might also be possible. In terms of applications for mo-
bile manipulation, these specific affordance classes are of great importance, think of obstacle clearance or
even product restocking. The distinction between the two object affordance classes for the synthetic image
training dataset is made through the manual labelling of the image masks. The classes are distinguished by
the definition of a human interpretation of an object being able to be grasped using a single hand. If an ob-
ject does not satisfy this condition, then it is assigned the pushable class. This decision was made with the
purpose of having a general distinction between graspable and pushable objects, instead of focussing on a
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specific manipulator gripper. However, this assumption comes with the limitation of having subjectivity in
the affordance labels, as each person has another interpretation of an object being graspable by a single hand
or not. Therefore, a grey area between the two classes is expected, in which an object may be considered to be
graspable or pushable depending on a person’s interpretation of the scenario. This aspect will be discussed
later in this report. Some examples of graspable and pushable labelled images are displayed in Figure 3.9.

Grasp Push

Figure 3.9: Three synthetic images labelled as graspable can be seen in the left column. In the right column, objects with a pushable
affordance label are displayed. Note that the same object may be labelled differently according to the scenario (see last row).

Another notable difference in classifying affordance labels compared to object type labels can be observed
in the last row of the examples. A particular object can be labelled as either of the affordance classes depend-
ing on the situation, this is generally caused by the orientation of the object. As an example, such a situation
was added to the last row of Figure 3.9. The box of cereals can easily be grasped when it is positioned in an
upright orientation, but cannot if it is lying flat on the floor and thus only affords to be pushed.
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Figure 3.10: Affordance labeling tool for the synthetically generated images.

The ability to process data fast and efficient is key when labelling large amounts of images. For this rea-
son, a labelling tool application was created to allow for fast data labelling. The Graphical User Interface (GUI)
can be seen in Figure 3.10. After selecting a directory that contains synthetic images with their corresponding
masks, the application will iterate through the images. At every displayed image, two label options are given
to the user as well as a delete button that removes the current image and its mask from the directory. When
a label button is pressed, a text file containing the label string will be generated and saved in the directory.
This results in three files per labelled image; the synthetic image, the binary mask and the file containing the
label. These three files are now ready to be loaded into the Mask R-CNN dataset structure.

Final Synthetic Image Dataset
After the synthetic data generation and labelling, a dataset of purely synthetic images was obtained that is
ready to be used for training. This dataset was generated using 121 3D models of objects that are commonly
found in supermarkets, which were obtained from 3D model providers like Sketchfab [6] and TurboSquid [1].
The 311 acquired background images were manually taken in two different supermarkets. The Blender script
generated a final dataset that contains 3237 synthetic images with their corresponding masks and affordance
label files. In Figures 3.8 and 3.9 various examples of these images are visualized.

3.2.2. Real Image Data
These synthetic images may be a good approach to obtain a large amount of data for the training stage of the
model. However, the model may learn features that are unique to these synthetic images and do not occur in
real images. Therefore, the performance of the model must be evaluated on real image data to replicate a real
scenario as accurately as possible. This data was manually obtained by making images of scenarios with one
or more objects on the ground. These images were obtained in three different supermarkets to obtain some
variation in objects and backgrounds. The required masks and corresponding labels were annotated with the
use of the Visual Geometry Group’s (VGG) image annotator [10]. The final real image dataset consists of 204
images and will be used to validate the model. Some examples from the dataset are shown below in Figure
3.11.
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Grasp Push

Figure 3.11: Examples of images from the real image dataset. In the left column, graspable objects are displayed and pushable objects
are located in the right column. Note that the real image dataset can contain images with multiple objects in a single image, unlike in

the synthetically generated dataset.

3.3. Model Setup
3.3.1. Default Model Parameters
The hyperparameters of a neural network determine the learning process of the model. For this work, most
hyperparameters were set to the default values obtained from the Mask R-CNN repository [4]. The optimiza-
tion of the performance of the model is not a goal of this work, but a performance evaluation of the generated
affordance dataset is. Therefore the default model parameters are assumed to perform sufficiently well to
compare performance between the different datasets. The parameter configuration is listed in Table 3.1.
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Parameters Values
BACKBONE resnet101
BACKBONE_STRIDES [4, 8, 16, 32, 64]
BATCH_SIZE 28
BBOX_STD_DEV [0.1 0.1 0.2 0.2]
COMPUTE_BACKBONE_SHAPE None
DETECTION_MAX_INSTANCES 100
DETECTION_MIN_CONFIDENCE 0.5
DETECTION_NMS_THRESHOLD 0.3
FPN_CLASSIF_FC_LAYERS_SIZE 1024
GPU_COUNT 1
GRADIENT_CLIP_NORM 5.0
IMAGES_PER_GPU 1
IMAGE_CHANNEL_COUNT 3
IMAGE_MAX_DIM 1024
IMAGE_META_SIZE 15
IMAGE_MIN_DIM 800
IMAGE_MIN_SCALE 0
IMAGE_RESIZE_MODE square
IMAGE_SHAPE [1024 1024 3]
INTERSECTION_OVER_UNION 0.5
LEARNING_MOMENTUM 0.9
LEARNING_RATE 0.001
LOSS_WEIGHTS

rpn_class_loss 1.0
rpn_bbox_loss 1.0
mrcnn_class_loss 1.0
mrcnn_bbox_loss 1.0
mrcnn_mask_loss 1.0

MASK_POOL_SIZE 14
MASK_SHAPE [28, 28]
MAX_GT_INSTANCES 100
MEAN_PIXEL [123.7 116.8 103.9]
MINI_MASK_SHAPE (56, 56)
NAME affordances
NUM_CLASSES 3
NUM_EPOCHS 28
POOL_SIZE 7
POST_NMS_ROIS_INFERENCE 1000
POST_NMS_ROIS_TRAINING 2000
PRE_NMS_LIMIT 6000
ROI_POSITIVE_RATIO 0.33
RPN_ANCHOR_RATIOS [0.5, 1, 2]
RPN_ANCHOR_SCALES (32, 64, 128, 256, 512)
RPN_ANCHOR_STRIDE 1
RPN_BBOX_STD_DEV [0.1 0.1 0.2 0.2]
RPN_NMS_THRESHOLD 0.7
RPN_TRAIN_ANCHORS_PER_IMAGE 256
STEPS_PER_EPOCH 100
TOP_DOWN_PYRAMID_SIZE 256
TRAIN_BN False
TRAIN_ROIS_PER_IMAGE 200
USE_MINI_MASK True
USE_RPN_ROIS True
VALIDATION_STEPS 50
WEIGHT_DECAY 0.0001

Table 3.1: Overview of the parameter configuration for the Mask R-CNN model. This configuration is based on the default parameters
from the Mask R-CNN repository and includes parameter changes shown in bold, which will be discussed in the subsequent section.

3.3.2. Tuned Model Parameters
Batch size, Steps per Epoch
When training a neural network like Mask R-CNN, the training data passes multiple times through the net-
work while updating its weights according to an optimization process of a predefined Loss function. This
training process was explained in section 3.1.3. A single cycle through the whole training dataset is referred
to as an Epoch. Due to the size of the training dataset, one Epoch is too large to be processes at once and
therefore is divided into several smaller mini-batches with a certain Batch Size. Finally, the Steps per Epoch or
the number of Iterations tell us how many batches are needed to finish a single Epoch.

Steps per Epoch = Training Dataset Size

Batch Size
(3.25)

100 = 2800

Batch Size
(3.26)

,→ Batch Size = 28 (3.27)

Due to the relatively small size of ±2800 images in the training dataset, the Steps per Epoch were set to 100
steps, as was done in a similarly sized training dataset example from the Mask R-CNN repository [4]. This
choice results in a Batch Size of 28 samples per batch.

Number of Classes
The number of classes for this network equals the amount of affordance classes plus one. This is due to the
background, which is configured as a class as well. In this case the total number of classes is 3, given the
graspable and pushable affordances classes along with the background class.

Number of Epochs
The number of Epochs is a critical parameter to tune for the avoidance of network under- or overfitting. When
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training with a low amount of Epochs, the network will not capture the pattern from the training data enough
to predict reliable results and therefore the model will experience underfitting. On the other hand, when
training with too many Epochs the network will learn patterns that are too specific to the training data, con-
sequently experiencing overfitting. To obtain the optimal amount of Epochs, which is positioned between
under- and overfitting, the graph of the Loss vs. the number of Epochs will be examined, which typically looks
like the example in Figure 3.12. During the training stage, the Loss parameter quantifies the error between the
predicted output of the network and the ground truth. For Mask R-CNN, the Loss parameter covers the overall
Loss in terms of the network’s affordance class, bounding box and mask predictions, as discussed earlier in
this chapter (3.1.3). It is calculated during the training stage for both the train and validation sets after every
Epoch. The optimal amount of Epochs is referred to as the Early Stopping point in this example and it occurs
when the Loss of the validation data reaches a global minimum.

With this theory in mind, the optimal amount of Epochs for this work’s affordance model will be deter-
mined by training the model following two scenarios. In both scenarios the network is trained on the same
split of the synthetic image dataset, resulting in an 87%/13% distribution of training and validation data. The
training data thus consists of 2816 images. The first validation set consists of the validation set correspond-
ing to the previously mentioned split from the synthetic image dataset resulting in 421 images. The second
validation set will fully consist of the real image dataset, which contains 204 images. The reason to train the
network according to these two scenarios is that synthetic image data may perform differently than real im-
age data. Therefore, both should be considered when determining the optimal amount of Epochs. The Loss
vs. Epochs graph will be plotted, after which the optimal number of Epochs will be determined by visually
finding the global minimum.

Figure 3.12: Visualization of the Loss plotted against the number of training Epochs. [5]

3.4. Model Evaluation
3.4.1. Evaluation Metrics
In summary, the following evaluation metrics will be used for the evaluation of the model performance on
different validation sets.

Metrics
True Positives, False Positives, False Negatives
Precision
Recall
(mean) Average Precision

Table 3.2: Overview of the used metrics for the model evaluation.

In the next part, these metrics are explained in more detail. For this object affordance detection model
the pipeline can be globally split up into two parts. First, the correct RoIs are obtained, whereafter those RoIs
are classified into an affordance class. To evaluate the performance of the trained network, several commonly
used metrics for object detection evaluation are introduced. The first step in evaluating the model is done
by calculating the amount of True/False Positives and True/False Negatives. True Positive and True Negative
being the parameters that correlate to the correct predictions considering the ground truth, either positive
or negative detections, respectively. On the other hand, the parameters False Positive and False Negative aim
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to quantify the number of incorrect predictions that are either positive or negative, respectively. The sum of
the True Positives and False Negatives result in the total amount of ground truth objects. More concisely, the
parameters are defined as follows.

• TP = Positive detection with a correctly detected RoI and affordance class.

• FP = Positive detection with an incorrectly detected RoI and/or affordance class.

• FN = Objects that were not detected, but should have been.

• TN = Objects that were not detected and should not have been. (Since this holds for the whole back-
ground of the image, this parameter is generally not considered for the evaluation of object detection
methods.)

An important model parameter that influences the number of Positives and Negatives is the Minimum
Level of Confidence of the network, which is referred to as the MINIMUM_DETECTION_CONFIDENCE in Ta-
ble 3.1. This is a threshold that determines the minimum Level of Confidence for the resulting detections to
be accepted. The Level of Confidence is defined as the probability that a detection falls into an assigned class.
According to this Minimum Level of Confidence, a detection is labelled as Positive when its Level of Confidence
is positioned above the threshold and Negative otherwise.

The Intersection over Union (IoU) is a geometric measure used to compare the area of the predicted mask
with respect to the ground truth mask and thus decides whether an RoI is correctly detected or not. This
metric is computed by dividing the Area of Overlap by the Area of Union. Typically, this metric is used to
distinguish predictions in terms of being True Positive or False Positive, by putting a minimum threshold on
the metric.

Figure 3.13: Visual definition of the Intersection of Union metric. [2]

Next, the metrics of Precision and Recall will be defined. The Precision metric quantifies the proportion
of all positive predictions that are actually true based on the ground truth. The proportion of all ground truth
objects that were identified correctly, is referred to as the Recall.

Precision = TP

TP + FP
(3.28)

Recall = TP

TP + FN
(3.29)

These metrics are used for the evaluation of test data at a specific minimum Level of Confidence, but
can be plotted in a Precision vs. Recall curve for an overall model performance comparison. This is done
by calculating the Precision and Recall values across all minimum Level of Confidence thresholds. Also, this
curve serves as a graphical explanation for the Average Precision (AP), which is calculated using a smoothed
version of the curve (Figure 3.14) and will be explained below.
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Figure 3.14: Example of a original Precision vs. Recall curve and it’s interpolated version. [3]

Using the parameters explained above, the Average Precision (AP) is calculated for a given IoU threshold
and class by computing the Area Under Curve (AUC) of the Precision vs. Recall curve, given a validation set.
For convenience, the original noisy pattern of the curve is transformed into a more smooth version, which
is used to calculate the AUC. The mean Average Precision (mAP) is obtained by averaging all APs over the
number of classes, which summarizes the overall performance of the model in a single value. This can be
mathematically described as the following.

mAPIoU =
∑N

n=0 APIoU

N
(3.30)

APIoU =
∫ 1

0
p(r )dr (3.31)

p,r = Precision, Recall @ IoU (3.32)

N = Number of Classes (3.33)

3.4.2. Evaluation on Synthetic and Real Image Data
The model was trained purely on synthetically generated images to overcome the problem of the acquisition
of large amounts of real image data for training. However, for manipulator robots to be able to use this model
it requires to perform on real image data. A performance comparison is made by comparing the evaluation
metrics for both the synthetic and real image validation set. Also, a performance analysis on the first step of
the network, i.e. the object localization step, will be conducted. The number of True Positive, False Positive
and False Negative mask detections, regardless of the assigned affordance class, will be counted. This enables
a comparison between the performance of the object localization part and the object classification part. For
all calculations of the number of True Positives, False Positives and False Negatives, the minimum Confidence
Level was set to 0.5 to allow comparisons between these metrics for different tests. The overall differences
in performance between the real and synthetic validation set will be analyzed by introducing hypotheses for
possible causes of these differences. For each hypothesis, an experiment will be conducted, which will yield
an acceptance or rejection of the corresponding hypothesis.

3.5. Summary
In short, this work will investigate the use of synthetically generated image data for object affordance classi-
fication in retail environments. More specifically, obstructions that are found on the floor in a supermarket
will be detected and classified to their possibility to be moved by a mobile manipulator. The obstructions will
either have a pushable or graspable affordance label, depending on whether an object is able to be grasped by
a single human hand. In this chapter, the chosen instance segmentation model Mask R-CNN was introduced.
Several reasons for the choice of this network were given, after which the network architecture was explained
in more detail. Also, the Loss function that is minimized during the training stage was enlightened. Next, the
synthetic data generation approach was explained in detail along with several generated image and mask ex-
amples. In addition, the acquisition of annotated real image data for the evaluation of the trained model was
shortly described. Thirdly, the model setup in terms of the default and tuned parameters were listed. Finally,
the evaluation process of the model that will be trained using synthetically generated images, was described.
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Results

4.1. Model Setup
4.1.1. Number of Epochs
In Figure 4.1, the results of the two scenarios that were described in the previous chapter are visualized. In
short, both scenarios were trained on the same synthetic image dataset. However, one scenario was validated
using synthetic images and the other using real images. In the next part, these scenarios will be referred to as
synthetic and real scenarios, respectively.

Figure 4.1: The top and bottom figure visualize the training and validation Loss vs. the number of Epochs, respectively. The
pink-coloured lines correspond to the synthetic image validation scenario and the green-coloured lines to the real image validation

scenario. The bold lines represent a smoothed approximation of the faded lines.
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An initial observation of these graphs shows a large number of fluctuations in the validation Loss. The
actual Loss is plotted as the faded lines, and a bold line visualizes a smoothed approximation. Also, higher
fluctuations are found in the validation Loss for the real validation set compared to the synthetic validation
set. Further, nearly identical decreasing lines are observed in the training data Loss, which is expected as the
training data is identical in this case. At approximately 20 Epochs, the validation Loss curves start to decrease
at a lower rate and tend to start converging to a Loss of 0.55 and 0.3 for the real and synthetic image validation
sets, respectively. For the validation Loss, considering the smoothed line, the global minimum of the real
validation set’s curve occurs at 28 Epochs, whereafter the Loss slowly starts to increase. This convergence
is not as noticeable for the synthetic validation set, which slightly keeps on decreasing over the number of
Epochs, yet a local minimum is found around 28 Epochs. These minima point out that the optimal amount of
Epochs is equal to 28, which is used for all further model training purposes.

4.2. Model Evaluation on Synthetic and Real Image Data
4.2.1. Object Localization Performance
In this section, the model performance in terms of localizing the object in the image was evaluated. More
specifically, the classified affordance label was temporally ignored to determine the extent to which the net-
work can correctly localize objects of interest and infer their shape using a mask representation. In Table
4.1 the results in terms of True Positives, False Positives and False Negatives are listed for both the synthetic
and real image validation sets. The metrics do not take into account an object’s class, thus a predicted mask
that has significant overlap with the ground truth mask (I oU > 0.5) is captured in the True Positives, whereas
detected masks without significant overlap are quantified in the False Positives. Further, the False Negatives
capture the number of undetected objects. An initial observation of these results shows that the trained net-
work obtains a perfect Recall score of 100%. In other words, it can detect all objects in the synthetic validation
set for a minimum Confidence Level of 0.5. In the real image validation set, a total of 31 out of 391 (360+31)
ground truth objects were missed, resulting in a Recall of 92.1%. Further, the results indicate that 55.0% and
68.0% of the predicted masks concern true detections for the synthetic and real image validation sets, respec-
tively.

Confidence level > 0.5 Synthetic Real
TPloc 465 360
FPl oc 380 170
FN loc 0 31
Precision [%] 55.0 68.0
Recall [%] 100 92.1

Table 4.1: An overview of the number of True Positives, False Positives and False Negatives, along with the resulting Precision and Recall
in terms of the localization of objects in the synthetic and real image validation sets.

4.2.2. Overall Performance
Next to global minima, there are other observations to be made from the Loss vs. Epochs graph plotted in
Figure 4.1. First, the Loss of the real image validation is higher than the Loss of the synthetic scenario at
any Epoch. This translates to a higher error for real image data when comparing the network prediction
with the ground truth. Furthermore, a larger amount of fluctuations is found in the real image validation
data Loss. The categorizing of the detections into True Positive, False Positive and False Negative detections
results in the distribution listed in Table 4.2. It covers all obtained detections except for detections that have a
Confidence Level lower than 0.5. The first notable difference between the synthetic and real validation sets is
the significant difference in total Recall. This difference is caused by the grasp class, which scores strongly for
the synthetic image validation set and notably less in the real image validation set. The Recall values for the
push class are lower for both validation sets but almost have identical values. The Precision is considerably
lower, which is expected due to the high amount of detections that also include False Positives.

A comparison between the object localization performance (Table 4.1) and the overall performance (Ta-
ble 4.2), results in the performance in terms of the object classification. Considerably more False Negative
or missed detections are observed in the second table due to wrongly classified affordance labels. For the
synthetic image validation set, all 23 False Negatives are caused by misclassification and for the real image
validation set, this number has doubled due to misclassification. Further, the distribution of True and False
Positives shifted towards the False Positives having the overhand caused by misclassification.
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Confidence level > 0.5 Synthetic Real
push grasp total push grasp total

TP 63 335 398 100 138 238
FP 134 313 447 147 145 292
FN 20 3 23 32 31 63
Precision [%] 32.0 51.7 47.1 40.5 48.8 44.9
Recall [%] 75.9 99.1 94.5 75.8 81.7 79.1

Table 4.2: An overview of the amount of True Positives, False Positives and False Negatives per affordance class, along with the resulting
Precision and Recall. The synthetic and real image validation sets are evaluated in terms of both the localization and classification

performance, resulting in the overall model performance.

The difference in performance is confirmed by comparing the mAP values for both validation sets, where
the synthetic validation set outperforms the real validation set with a difference of 19.4% in mAP (Table 4.3).
When comparing the individual classes, a significant performance difference is found in the grasp affordance
class. The corresponding curve in Figure 4.2, confirms this observation and shows that for this scenario, the
Precision maintains a higher value than others at higher Recall values.

Figure 4.2: A comparison of the Precision-Recall curves for synthetic and real image validation sets, accompanied with their
corresponding Area Under Curve value. These lines show the ratio between the Precision and Recall values at different Confidence Level

thresholds.

Synthetic Real
push grasp mean push grasp mean

AP0.5 [%] 49.4 90.1 69.8 47.9 52.9 50.4

Table 4.3: A comparison of the model’s overall performance for synthetic and real image validation sets, in terms of Average Precision at
an IoU of 0.50.
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4.2.3. Performance Analysis

Having analyzed the object localization and overall performance of the model for both synthetic and real
validation sets, the next part will focus on particular aspects that influence this performance. Two hypotheses
were set to analyze observed differences in performance, with the aim of highlighting areas in which the
approach may be improved. First, the hypothesis in question will be explained, after which an experiment is
set up to evaluate the ability to reject or accept this hypothesis. The following hypotheses were set up.

1. The subjective nature of affordances has an influence on the ability to generalize into pushable and
graspable objects, which causes duplicate detections.

2. The relatively lower performance on real images compared to synthetic images is partly due to the more
complex scenarios found in real images, i.e. objects that are located against shelves, located close to
another or stacked on top of each other.

Hypothesis 1
The subjective nature of affordances has an influence on the ability to generalize into pushable and graspable

objects, which causes duplicate detections.

Figure 4.3: Three examples of duplicate detections that have overlap with the ground truth object mask.

Experiment
In contrast to object type classification, in which a detection generally clearly fits a certain class, affordance
classification does not always have this clear distinction between classes. In this work, the line between an
object being pushable or graspable lies in the human interpretation of that action being possible.
To tackle this hypothesis, the problem and its influence on the performance evaluation will be enlightened
by counting the resulting amount of duplicate detections in the validation sets. Duplicate detections are de-
fined as two detections that have significant mask overlap (IoU > 0.5) and have been classified as different
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affordance classes. Next to the total number of duplicates, the number of detections that significantly over-
lap with a ground truth object will be counted as well. This latter number of duplicates is directly related to
the amount of True Positive and False Positive detections. One of the detections must be correct while the
other is incorrect. On the other hand, duplicates that have no overlap with ground truth masks account for
two False Positives. These numbers for duplicate detections and their fractions of the total amount of True
Positives and False Positives will show the impact of duplicates on the model’s overall performance. To get a
better understanding of these duplicate detections, several examples are shown in Figure 4.3.

Results
The total count of duplicate detections for both the synthetic and real validation sets are listed in Table 4.4.
The total count is split up into duplicates that have significant overlap with the ground truth mask and dupli-
cates that do not have significant overlap with the ground truth mask. As mentioned, the duplicates directly
affect the number of True Positives and False Positives in the overall model performance. The fraction of the
total amount of True and False Positives caused by these duplicates is listed in Table 4.4 as well.

Confidence level > 0.5 Synthetic Real
Total count 53 92

Ground truth overlap 44 89
No ground truth overlap 9 3

Contribution to TPs [%] 11 37
Contribution to FPs [%] 14 33

Table 4.4: The total number of duplicate detections, along with the fractions that do and do not have significant overlap with a ground
truth object mask (IoU > 0.5). Also, the contribution of these duplicates to the total amount of True Positives and False Positives is

expressed in a percentage.

Hypothesis 2
The lower performance on real images compared to synthetic images is partly due to the more complex scenar-
ios found in real images, i.e. objects that are located against shelves, located close to another or stacked on top
of each other.

Experiment
To evaluate the ability to reject or accept this hypothesis, the real image validation dataset was modified.
Complex scenarios in which objects that were stacked on top of each other, located close to another or lo-
cated close to surrounding shelves were removed from the dataset. A comparison in performance between
the original real image validation set and the adjusted non-complex version of this validation set will yield
a rejection of acceptance of this hypothesis. If the performance ameliorates, then this proves that complex
scenarios are partly causing lower performance on the real image validation set.

Results
Below, the results of the comparison between the original real image validation and the adjusted non-complex
validation set are listed. In total, 44 out of 301 objects were removed from the validation set by deleting the
annotation or the image as a whole. Logically, the total amount of ground truth detections (True Positives +
False Negatives) slightly decreased due to the removed scenarios. A notable difference can be observed in the
amount of missed detections (False Negatives) that almost decrease by half, especially considering the push
class, that dropped with a relatively large amount. The drop in False Negatives is higher relative to the drop in
True Positive detections, which is observed by the 6.5% increase in Recall.
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Confidence level > 0.5 Real Real non-complex
push grasp total push grasp total

TP 100 138 238 87 133 220
FP 147 145 292 141 127 268
FN 32 31 63 13 24 37
Precision [%] 40.5 48.8 44.9 38.2 51.2 45.1
Recall [%] 75.8 81.7 79.1 87.0 84.7 85.6

Table 4.5: An overview of the amount of True Positives, False Positives and False Negatives per affordance class, along with the resulting
Precision and Recall. The comparison is made between the original real image validation set and the same validation set without

complex scenarios.

To get a better understanding of the overall performance between these two validation sets, the Precision
vs. Recall curves are plotted in Figure 4.4 and the AP is compared in Table 4.6. This metric improved for both
the push and grasp classes when removing complex scenarios. A comparison of the average of the two classes
shows an increase of 4.2% in mAP, which results in an overall improvement of performance.

Figure 4.4: A comparison of the Precision-Recall curves of the real validation set when removing non-complex scenarios. Each curve is
accompanied by its corresponding Area Under Curve.

Real Real non-complex
push grasp mean push grasp mean

AP0.5 [%] 47.9 52.9 50.4 52.5 56.8 54.6

Table 4.6: A comparison of the model’s performance for the original real image validation set and the non-complex validation set in
terms of Average Precision.
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Discussion

5.1. Localization & Affordance Classification
As explained in the section covering the architecture of Mask R-CNN (3.1.2), the network consists of two
stages. The first stage localizes the object in the image. The results in Table 4.1 show that for this setting, the
network can localize most objects from both the synthetic and real validation sets with a Recall of up to 100%
and 92.1%, respectively. Thus, in terms of object localization, the network has learned well which objects
are of interest from the training images. The subsequent stage of Mask R-CNN classifies these objects into
their affordance classes. Classification performance can be observed by comparing the localization evalu-
ation with the overall performance results (Table 4.1 & 4.2). Logically, both the Precision and Recall values
drop when including classification into the evaluation. However, this drop is significantly higher for real im-
age data with 23.1 % and 13.0% compared to the synthetic data that drops with 7.9% and 5.5% representing
the Precision and Recall, respectively. The synthetic training and validation images have been split up before
the data generation process. This means that the background images and 3D models used to generate these
synthetic images were fully split between both sets. Therefore, there cannot be a bias concerning the recog-
nition of backgrounds or products in the synthetic validation data. In short, the network that was trained on
synthetic images performs strongly in terms of localizing objects in both synthetic and real images. Regarding
the classification performance, the network shows some weaknesses in classifying real image data.

5.2. Synthetic Dataset
One of the main contributions of this work is the novel affordance dataset that was synthetically generated.
This dataset is aimed to be used for the training stage of supervised learning-based affordance applications,
e.g. the detection and classification of object affordances for mobile manipulation. The ability to generate
training images and their masks on the fly is a great advantage over manual human data acquisition and an-
notation, which is a time-consuming process. The dataset consists of 3237 images accompanied with pixel-
wise annotated masks for both graspable and pushable affordance classes. Another substantial benefit of this
method is the possibility to easily enlarge the training dataset using this work’s automated data generation
script. For this approach of using synthetically generated data for training, it is important to minimize the
training data’s differences compared to the real-world evaluation data. This is to minimize the difficulties for
the network to infer the desired detections in real applications. The results show that, in general, the trained
model performs better on synthetic images than on real images; this is due to a better representation of data
between training and validation. This observation is expressed in the difference in validation Loss, visual-
ized in Figure 3.12. This graph shows that the real validation set converges at a higher Loss of 0.55 than the
synthetic validation set Loss of 0.3. Also, the overall performance comparison between the synthetic and real
image validation sets results in a significantly higher mAP of 69.8% for the synthetic image validation set,
compared to 50.4% for the real image validation set. The difference in performance on real and synthetic
data is not purely related to the nature of the synthetic images, as proven in hypothesis 2. This hypothesis
is accepted as the results show that the presence of complex scenario images, like stacked objects, have an
influence on the model performance evaluation. The corresponding experiment shows that the current con-
tent of the synthetic training dataset does not provide enough variation to perform accurate detections on
more complex scenarios.
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In general, real scenarios in which objects are lying on the floor of retail store environments are accurately
represented by the synthetically generated dataset. Still, these results show that this representation can be
improved in areas that will be proposed in chapter 7.

5.3. Subjectivity of Affordances
An important aspect that goes in hand with object affordance classification is the subjectivity of the affor-
dance labels. Classifying an object towards being graspable or only pushable is arguably more subjective
than classifying whether an object is an apple or a banana. When can one tell that an object is graspable? For
this work, this boundary was defined as a human interpretation of an object being able to be grasped with
a single human hand. If an object does not satisfy this condition, it is pushable. The influence of this sub-
jectivity in the model performance is pointed out by the acceptance of the first hypothesis (4.2.3), regarding
the performance analysis of both the synthetic and real validation sets. For this hypothesis, the subjectivity
of affordances is expressed in duplicate detections. The results on the real image validation set show that up
to 97% of the duplicates have overlap with ground truth object masks. In these cases, two detections of the
same object that have similar Level of Confidences and are classified as different classes, one of which is cor-
rect. This double classification is possible because the network allows masks with different classes to overlap.
These duplicates show that the network recognizes visual features that relate to both classes, which affects
the results of the model performance evaluation in terms of True and False Positives. For the real image val-
idation set, the 92 duplicate detections account for 37% of the total amount of True Positives and 33% of the
False Positives. For the synthetic image validation set, the 53 duplicates account for 11% and 14%, respec-
tively. These numbers show the impact of duplicates on the evaluation of the model performance, for the
real images in particular. The fluctuations that are found in the evaluation Losses plotted in the bottom graph
in Figure 4.1 confirm this subjectivity. The network encounters difficulties in classifying certain objects into
one particular affordance class. A consequence would be that the network outputs incorrect classes, which
in turn results in high errors with respect to the ground truth, i.e. a high Loss peak.

These numbers show that duplicates generally have a negative impact on the model performance met-
rics. Affordances are functional categories, and in this work objects are defined to be classified into a single
affordance class. This is due to the assumption that there is a clear visual distinction between the graspable
and pushable classes. However, the duplicate detections show that there are objects that contain more than
one functional category, which was not taken into consideration in the evaluation process. This is an inter-
esting finding, which generally is not common in conventional object type classification. Yet, in affordance
classification this information may add great value to the decision making process of a mobile manipulator
for choosing a grasping or pushing action.
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Conclusion

In this chapter, the research question of this master’s thesis will be answered by means of the sub-research
questions along with the discussed results.

How can the concept of affordances be adopted to classify objects that are commonly found in retail envi-
ronments into their ability to be interacted with, given the use of a mobile manipulator?

6.1. Intermediate Conclusions
To obtain a concise answer to the main research question, the sub-questions proposed in the introduction
will be tackled first.

1. How can a conventional object detection model for 2D images be adapted to classify into affordance
labels?

This work has successfully adopted a conventional object detection model to localize the object of in-
terest in the image and subsequently classify it according to a set of affordance classes. Mask R-CNN
was trained on the synthetically generated affordance data, in which objects are located on supermar-
ket floors and are assigned affordance labels instead of object type labels. Therefore, the network will
train on visual features that correspond to the objects’ functional categories rather than their type cat-
egories. The model evaluation shows that the network can localize objects located on floors quite well
and does generally not detect objects on shelves. In terms of the evaluation of affordance classification
between graspable and pushable labels, the network’s performance is not yet optimal. The subjectivity
of affordance is partly to blame for this, and several suggestions to improve the classification are made
in the Future Work chapter.

2. Can the use of a synthetically generated retail product image dataset solve the issue of the lack of ap-
propriate affordance training data?

The lack of a dataset that consists of retail store related objects annotated with affordance labels was
the reason for this question to be asked. A solution to this data gap was found by the design of a data
generation script, which was used to generate a synthetic dataset consisting of 3237 semi-labelled im-
ages. The term semi-labelled refers to the semantic masks automatically returned by the script. A
minimal human effort is needed to link affordance labels to these masks. The use of this synthetic data
in the training process of Mask R-CNN has yielded results showing that the network hands in 15.2%
mAP when performing inference on real image data compared to synthetic image data. Meaning that
the network has learned some characteristics specific to synthetic data, which are not appearing in
real data. However, the benefit of not having to create such a dataset manually may outweigh the per-
formance deficit that comes along with this approach for some applications. Also, several aspects of
improving the synthetic data generation approach with the aim of more resembling real image data are
suggested in chapter 7.

33



34 6. Conclusion

3. Is the resulting affordance model able to generalize objects into their level of interactability, e.g. being
graspable or pushable?

In the introduction of this work, the assumption of the presence of a clear visual distinction between
graspable and pushable objects was stated. This work shows that in terms of object localization within
an image, the trained network performs quite well by capturing most objects. The subsequent object
classification stage showed a significant drop in performance which was discussed to be accountable
to the subjectivity of affordances. The subjectivity lies in objects that, even for a human, are difficult
to classify as either graspable or pushable. In other words, objects that are clearly distinguishable by
humans are handled quite well by the network. However, objects that can arguably have both labels are
generally inferred by the network as duplicate detections, meaning that for these objects generalizing
affordance classes poses some difficulties. A solution is proposed by introducing joint classes, which
will be elaborated on in the next chapter.

6.2. Final Conclusion
This work’s main contribution lies in the generation of a novel affordance dataset, which was applied to an
instance segmentation network. This allowed localization of objects on retail store floors and subsequently
classification into graspable or pushable affordance labels. This novel dataset was obtained by the design of
a data generation script that filled the data gap by generating a retail store related object affordance dataset
consisting of 3237 pixel-level annotated images.

A concise answer to the main research question can be formulated, given the answers to the sub-questions.
In short, an affordance dataset consisting of retail store related object is essential. This may be obtained using
a synthetic data generation approach to avoid intensive manual labour. However, it has been shown that this
may compromise the network’s performance. In this dataset, objects are labelled towards affordance labels
that relate to functional capabilities of mobile manipulators, like graspable and pushable. A state-of-the-art
instance segmentation network can be adopted by training the network on the dataset, after which objects
of interest can be accurately localized and classified by a general definition of distinguishing these object
affordance classes.

6.3. Limitations
Using the concept of affordances in object detection comes along with its limitations. Primarily, in terms of
classifying objects, one must bear in mind the subjectivity of affordance classes. A clear definition to dis-
tinct objects of different affordance classes is required. Further, the current approach is designed for mobile
manipulators with grasping capabilities that are similar to human hands, meaning that refinement may be
needed for other manipulator grippers. Finally, the lack of complex scenarios, e.g. stacked objects, limits the
detection capabilities of singular objects. These limitations will be further elaborated upon along with several
suggestions for future work in the subsequent chapter.
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Future Work

7.1. Synthetic Dataset Improvements
7.1.1. Variety in Blender Environment
The first area in which the synthetic dataset can be improved focuses on the variety of the content. In the
Blender data generation script, many more conditions can be added to create more variety in the dataset.
Lighting conditions were set to a specific setup throughout all images in terms of the location of the lights
as well as their intensity and colour. Next to this, 3D object models were generally set to a location within
a small range of the image centre. This was required due to the nature of the background images, that not
always allowed the object to be placed at another part of the image due to obstructions. Also, more variety in
background images may contribute to a better representation of real-world scenarios, especially due to the
variety in floor pattern that is accompanied by it. The background images used in this work were limited to
two different retail stores. This diversity in floor patterns is important, as these patterns generally are the part
of the background image that is directly surrounding the object aimed to be detected.

7.1.2. Complex Scenarios
Several complex scenarios in which the network showed some limitations were touched upon in the second
hypothesis under the Results chapter (4.2.3). These complex scenarios, like stacked products and products
that are lying close to the shelves, were not included in the current synthetic training dataset. Therefore, the
model has difficulties in detecting the individual objects as desired under these complex scenarios. Extending
the dataset by including these complex scenarios in the data generation phase would enable the network to
cope with these detections.

7.1.3. Dataset Size
The third possible amelioration in the synthetic dataset is the training dataset size. A general rule of thumb
for supervised learning-based approaches is that more training data results in better generalization capabil-
ities between classes and thus better performance. This is especially important for affordance detection, in
which generalization is more difficult to obtain compared to conventional object detection. An important
difference is that the classification of object types deals with clear visual features. To catch the variety in
features for a specific affordance class, a lot of training examples are required to get a good generalization.
The current synthetic dataset size is around 3200 images, from which 2800 images are available for training.
This is enough to enable the network to learn features needed to generalize between the classes. However,
the model performance evaluation shows that this generalization is not perfect. The amount of False Positive
and Negative detections listed in section 4.2.2, show that this generalization can be improved.

7.2. Joint Classes
For any future work regarding affordance detection, one must bear in mind the subjectivity of these classes.
A focus may be set on the creation of a more objective definition to distinguish between affordance classes
with the aim of minimizing duplicate detections. However, this work shows that some objects fall into both
affordance classes. This contradicts the assumption introduced in the introduction, which states that there
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is a clear visual distinction between graspable and pushable classes. Therefore, further research in the use of
joint classes, in which an object may have multiple affordance classes, is proposed. Along with this proposal,
an extension to this work may be conducted by incorporating more affordance classes in terms of interacting
with objects.

7.3. Model Parameter Optimization
In this work, most of the Mask R-CNN model parameters were set to the default values that were found in
its repository. These parameters met the requirements for comparison in performance between different
datasets. However, extensive optimization of the model parameters may be conducted as a continuation of
this work to improve performance.

7.4. Robot Specific Learning
The implementation of the affordance model on a mobile manipulator was out of reach for this work. Due
to the general distinction that was made between the affordance classes, the model will perform differently
across various manipulator grippers. The closer the gripper is to the capabilities of a single human hand, to
better the model will perform. As a possible continuation, it is believed that a great leap in performance may
be achieved by implementing a reinforcement learning approach, on top of this work’s general affordance
classification. This action- and reward-based approach was discussed in section 2.4. This work’s affordance
model can be used to cover all initial learning steps, after which the reinforcement learning approach aims to
learn robot specific capabilities and thus specifies affordance detection for a particular robot.

7.5. Summary
In general, the difference in data between the synthetic and real image dataset is suggested to be improved,
especially in terms of improving variety in background images, object locations and lighting conditions. Also,
the inclusion of complex scenarios to the synthetic training dataset is believed to be important for retail store
applications, and a focus on increasing the synthetic dataset used for training is suggested as future work.
Next to these dataset improvements, a proposal was made to investigate the use of joint classes, in which
multiple affordance categories are allowed for an object. In terms of increasing the model performance, ex-
tensive parameters optimization may be conducted. Finally, the implementation of a reinforcement learning
approach on top of this work’s affordance detection model is suggested to learn robot specific affordances.
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