
Ad 

Master of Science Thesis

Bayesian Identification of
Thermodynamic Parameters from

Shock Tube Data

Jacob Butler

February 2, 2018





Bayesian Identification of
Thermodynamic Parameters from

Shock Tube Data

Master of Science Thesis

For obtaining the degree of Master of Science in Aerospace Engineering
at Delft University of Technology

Jacob Butler

February 2, 2018

Faculty of Aerospace Engineering · Delft University of Technology



Delft University of Technology

Copyright c© Aerospace Engineering, Delft University of Technology
All rights reserved.



DELFT UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF AERODYNAMICS

The undersigned hereby certify that they have read and recommend to the Faculty of
Aerospace Engineering for acceptance the thesis entitled “Bayesian Identification of
Thermodynamic Parameters from Shock Tube Data” by Jacob Butler in fulfill-
ment of the requirements for the degree of Master of Science.

Dated: February 2, 2018

Supervisors:
Reader 1

Reader 2

Reader 3

Reader 4





Preface

This report concerns a project on the subject of Bayesian identification of thermodynamic
parameters of an equation of state of a dense gas, from shock tube data from the Flexible
Asymmetric Shock Tube (FAST) experiment.

I would like to thank my supervisors Richard Dwight and Matteo Pini for their invaluable
guidance and input. I would also like to thank Mauro Gallo for his crucial insight and
assistance regarding the experimental aspects.

I would also like to thank my family for their steadfast support and encouragement.

MSc Thesis Jacob Butler



vi Preface

Jacob Butler MSc Thesis



Summary

The objective of this project is to reduce the uncertainty on parameters of a thermodynamic
equation of state for a dense gas. The dense gas considered is the D6 siloxane and the equation
of state used is the polytropic van der Waals equation. The reduction of the uncertainty is
attempted by applying a Bayesian inference technique. A statistical model is chosen that
associates the results from a shock tube experiment with the output of a computer model.
The shock tube data comes from the flexible asymmetric shock tube experiment Mathijssen
et al. (2015) and the computer model is a Roe solver which solves quasi-one-dimensional Euler
equations with a source term that depends on time. A surrogate model based on sparse grids
and a sensitivity analysis using Sobol’ indices are both applied. The Markov chain Monte
Carlo technique is applied to arrive at the posterior probability distribution on the chosen
parameters of the computer model. The resulting probability distributions indicated that
some of the thermodynamic parameters were identified, but that those that were showed a
disagreement between the mean values that were found and the true values in the literature.
It is recommended that the approach be applied to a more complex equation of state.
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Chapter 1

Introduction

This introduction will present the context of the current project, explaining the need for the
uncertainty reduction in the specific field. First, the necessity of accurate thermodynamic
models for dense gases will be outlined. Next, the literature review will be presented. Finally,
the layout of the report will be described.

1.1 Accuracy of Dense Gas Thermodynamic Models

Siloxanes are a type of dense gas useful as a working fluid in organic Rankine cycle (ORC)
systems (Colonna et al. (2007)). There is a need for improving the accuracy of thermodynamic
models for these dense gases (e.g. Mathijssen et al. (2015)). Specifically, it is desirable to
specify in which thermodynamic states these gases will display certain nonclassical behaviour.
These special properties have application in improving the use of these gases in ORC systems.

Bayesian calibration is a statistical technique that permits the prior probability distribution
regarding the true value of a parameter to be updated using data collected about a measured
quantity thought to be a function of the parameters. In this situation, the procedure can
allow some prior knowledge about the value of some true parameters of the thermodynamic
model to be updated using the measured pressure data from the Flexible Asymmetric Shock
Tube (FAST) experiment, and a computer model that takes these parameters as input values.

The objective in this project is to apply the Bayesian calibration technique to an adjusted
version of the computer code thought to be appropriate to model the fluid in the experimental
setup, in order to determine if the uncertainty on the input parameters of the model (including
thermodynamic parameters) can be reduced.

MSc Thesis Jacob Butler



2 Introduction

1.2 Literature Review

1.2.1 Dense Gases

Dense gases, also known as Bethe-Zeldovich-Thompson (BZT) fluids, are a class of fluids
which theoretically display certain nonclassical behaviour in certain thermodynamic states,
examples of which are the siloxanes, discussed in Colonna et al. (2007). The authors point
out that the nonclassical region for these fluids, i.e. where the fundamental derivative of
thermodynamics is negative, occurs in the vapour region not the two-phase region. The
fundamental derivative,

Γ =
v3

2c2

(
∂2P

∂v2

)
s

= 1 +
c

v

(
∂c

∂P

)
s

, (1.1)

was defined by Thompson (1971), and c is the fluid’s speed of sound, the subscript s implies
constant entropy, ν is the specific volume and P is the pressure. Colonna et al. (2007)
obtain evidence for the presence of the region via calculations using the highly accurate Span-
Wagner thermodynamic model. Further, it is shown that the nonclassical region is sensitive
to the thermodynamic parameters, whose uncertainty is high due to lack of relevant data.
Additionally, a computational fluid dynamics calculation is made for a rarefaction shock wave
in the siloxane D6.

1.2.2 Equations of State

Several equations of state have been applied in the investigation of dense gases. In Colonna
and Guardone (2006), the authors use the van der Waals equation of state to gain insight into
how the molecular characteristics of the gas influence the change in the speed of sound in the
nonclassical region. The equation of state and the Euler equations are used to compute the
changing wave propagation behaviour for gases of different molecular complexity.

The Span-Wagner equation of state is a 12-parameter equation of state, and is used in Colonna
et al. (2006) to construct highly accurate thermodynamic models for several siloxanes, using
experimental data. Information on the value of the saturated vapor density was produced by
the Peng-Robinson equation of state with the Stryjeck and Vera modification (PRSV), to be
used where little experimental data was available. The problem of optimising the parameters
for minimum error is a non-linear regression problem, solved using existing software, and
each data point is weighted according to the uncertainty associated with it. The resulting
equations of state are checked against existing models and found to perform favourably.

1.2.3 Analytical and Numerical Investigation of Ducts and Shock Tubes

In Gottlieb and Igra (1983), the authors analyse the effect of a rarefaction wave incident on
an area reduction using a perfect gas model. Four possible quasi-steady wave patterns are
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1.2 Literature Review 3

identified as resulting from the starting condition. All four result in the incident rarefaction
wave producing a rarefaction wave transmitted by the duct and also a reflected rarefaction
wave. The patterns differ in that while the first pattern involves only the aforementioned
features, the second pattern also includes a stationary shock in the duct and a contact surface
traveling away from the duct. In the third pattern, there is a shock wave that faces upstream
towards the duct but cannot reach the duct because the flow from the duct is supersonic.
This pattern also features the contact surface. Finally, the fourth pattern involves no shock
or contact surface but rather a rarefaction wave emanating from the duct facing the same
direction as the incident wave but unable to travel towards the duct because the flow from the
duct is supersonic. The area reduction ratio of the convergent duct and the strength of the
incident rarefaction determine which pattern emerges. The non-stationary evolution from the
starting incident wave to the quasi-steady patterns described is investigated using a random
choice method to numerically solve the quasi-one-dimensional Euler equations.

The work in Igra et al. (1984) considers the counterpart case of the interaction of a rarefaction
wave with an area enlargement for a perfect gas and identifies two possible quasi-steady states
to which the flow will evolve over time. The first possibility is that a reflected shock wave
is produced traveling away from the divergent duct in the opposite direction to the incident
rarefaction wave, followed by a contact surface also traveling away from the duct in the
opposite direction to the incident rarefaction wave, and also a transmitted rarefaction wave.
The second possibility is as the first, except for the presence of an additional rarefaction wave
facing upstream but between the contact surface and the transmitted wave. This is due to the
flow through the area enlargement becoming supersonic, preventing the passage of the entire
rarefaction wave upstream. The authors determine that the emergence of one or the other
wave patterns depends on both the strength of the incident rarefaction and also on the area
ratio of the duct enlargement, using a quasi-steady analysis. This analysis also informs how
the strength of the transmitted wave depends on the duct ratio and incident wave strength,
and how the relatively weak reflected shock strength also changes with the incident wave
strength. Further, a non-stationary analysis is performed, which provides insight into the
precise evolution from the starting incident rarefaction wave to the described structures of
the steady flow state.

A computational study of a dense gas shock tube with constant cross section area is performed
in Argrow (1996). One-dimensional Euler equations are used, with real gas thermodynamic
states being captured by use of the van der Waals equation of state. Various initial conditions
allow for the production of nonclassical phenomena in the simulations. The equations are
solved using a Total Variation Diminishing (TVD) predictor-corrector scheme. This method
uses two steps: a forward differencing step to approximate the next solution in time, which
is used to calculate the flux function, and then a backward differencing step, combined with
the flux function to determine the actual solution at the next time step (LeVeque and Yee
(1990)). Solid boundary conditions are applied at the ends of the tube and the results include
periods of the simulation in which waves reflected by these boundaries interact with the flow
in the domain. Simulations at the limit of the van der Waals parameters that correspond to
a perfect gas are performed to check they correspond with perfect gas results. Three cases of
wave fields featuring nonclassical phenomena are described, all of which emerge from results
to some extent containing thermodynamic states in the region where Γ < 0. Expansion shocks
and compression fans occur where Γ < 0 and if Γ changes sign between thermodynamic states
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4 Introduction

in a single wave pattern, then so-called composite or split waves occur. Complex behaviour
is observed for nonclassical wave reflections. The authors advise an approximate Riemann
solver might be used in further analysis, as the adopted TVD MacCormack method is merely
adequate for capturing the waves in the field and suggest a more accurate equation of state
might be used. Furthermore, validation with experiments is suggested.

During the design of the Flexible Asymmetric Shock Tube facility, the designers undertook
a numerical simulation of the designed experiment, in Zamfirescu et al. (2006). Use is made
of a real gas equation of state, specifically, the PRSV equation of state, to calculate thermo-
dynamic states of the working fluid, the siloxane D6. An outline of the preliminary design
summarises how the design aims to record data about a phenomenon (rarefaction shock waves
in dense gases) that is highly sensitive to the initial conditions of the experiment. The numer-
ical simulation then performed involves numerical solution of the quasi-one-dimensional Euler
equations, where the intended experimental setup’s geometry is simplified and adapted to the
requirements of this computer model. There is further investigation of off-design conditions,
using different nozzle dimensions and the potential viability of different working fluids with
the chosen setup. Furthermore, the question of how thermodynamic model uncertainty affects
the simulation output is considered. It is found that the results are highly sensitive to the
accuracy of the thermodynamic model.

1.2.4 Dense Gas Shock Tube Experiments

Results using nitrogen as the working fluid from a shock tube designed for dense gases are
reported in Fergason et al. (2003). The design of the facility, including how the temperature
of the high pressure state is maintained and the pressure data recording setup is described.
Two static pressure sensors are present, one in each section of the shock tube. Two dynamic
pressure sensors are placed in the high pressure region. The high pressure and low pressure
states are separated using a copper diaphragm. An estimate is made of diaphragm open-
ing time using the method of characteristics and the estimate is checked by performing a
one-dimensional simulation of the shock tube. The finite opening time of the diaphragm is
accounted for by replacing the initial discontinuity data with initial data containing a linear
variation of pressure between the high and low pressure states. An investigation into the
potential incomplete bursting of the diaphragm, using a three-dimensional Euler flow simu-
lation showed that a partial diaphragm burst resulted in a slightly weaker rarefaction wave.
This was because the final rarefaction wave evolved through a different process, involving the
coalescing of a reflected, curved expansion front into the final primary wave.

The data used in the current project is produced by the TU Delft (FAST) Facility. This
is a Ludwieg tube designed to be used with D6. Data from the experiment are presented
and discussed in Mathijssen et al. (2015). The intention is to obtain data demonstrating
nonclassical behaviour in the D6 gas.
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1.2 Literature Review 5

1.2.5 Riemann Solvers

This project will apply an approximate Riemann solver to solve the quasi-one-dimensional
Euler equations. The equations feature sources term which capture the cross section area
varying along the length of the shock tube.

In LeVeque and Yee (1990), problems arising when solving equations with stiff source terms
due to coupling of conservation laws with source terms related to chemical reactions, were
studied. They apply two different implicit techniques to an advection equation with a source
term. They find splitting the conservation law and the chemical reaction laws into separate
steps is preferable.

An application of an approach to balance the flux gradients and the source terms when
using Roe’s approximate Riemann solver is shown in Hubbard and Garcia-Navarro (2000).
They discretise the governing equations in such a way as to better represent the balancing of
source terms and flux derivatives that is present in the mathematical model, and extend the
technique to slope and flux limited schemes, and in multiple dimensions.

A problem can arise when applying the Roe scheme (and other conservative schemes) to
certain flows, in which the method will not ensure that the density remains positive (Einfeldt
et al. (1991)). Certain types of initial data provided to the scheme are shown to result in
negative density or internal energy and the scheme fails. The authors show certain conditions
in which the Harten-Lax-van Leer scheme will be so-called “positively conservative”. An
approach is described in Pelanti et al. (2001) which involves applying a new entropy fix to
achieve a Roe scheme which is postively conservative with low dissipation. The authors apply
the entropy fix to check it achieves the original goal in the case of two rarefaction waves
moving away from each other.

1.2.6 Surrogate Modeling

The problem is expected to involve a computer model with some number of input parame-
ters, without knowing beforehand which parameter is the most important. The approach of
Gerstner and Griebel (2003) is to apply a sparse grid method, with some additional features.
The sparse grid method approximates the underlying function using a sum of individual ap-
proximations with each dimension treated the same. The authors then apply an adaptive
technique to improve the grid approximation by refining it for specific important dimensions.
Importance is quantified by adding index locations in such a way that the integration error on
the sparse grid is reduced, while still achieving an admissible index set. The index set is the
set of integer values, where each index represents the position of a grid point, and admissible
index sets include a variety of possible index sets including classical sparse grids. The authors
detail an efficient algorithm to determine an admissible set with low estimation error for a
particular application, show how the grid data can make efficient use of computer memory
and apply the approach to several applications.
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1.2.7 Sensitivity Analysis

Sobol’ devised a method of assessing global variance of a function output with uncertain
inputs (Sobol’ (2001)). This system of global sensitivity indices uses properties of functions
which can be subject to a so-called ANOVA decomposition. It is then possible to estimate
variances for combinations of parameters to assess how much of the variance of the function is
due to that combination of parameters. The advantage of this method is that it captures the
variation in the entire domain, not just at a single point. The sparse grid and Sobol’ index
code implements the previously described sparse grid quadrature and also the computation
of the global sensitivity indices (Dwight and Resmini (n.d.)).

1.2.8 Statistical Model and Bayesian Calibration

A statistical model can be used to treat the measured outputs as the result of some process and
such a model can incorporate uncertainty from the beginning. Bayesian calibration techniques
can be applied to reduce uncertainty on parameters of computer models that simulate the
true process. Certain issues arise when applying these techniques to particular problems, such
as when the model output is multivariate and high dimensional.

Sources of Error and Statistical Models

A framework for incorporating uncertainty in a statistical model of a process was introduced in
Kennedy and O’Hagan (2001). They suggest one possible structure in which the measurement
output is constructed as:

zi = ζ (xi) + ei = ρη (xi,θ) + δ (xi) + ei, (1.2)

where ζ (xi) is the true process and ei is the measurement error. They also define a vec-
tor of experimental observations and computer simulation outputs, d, and set the goal of
determining the posterior probability, which can be written:

p (θ|d) ∝ p(θ)p(d|θ), (1.3)

where p(θ) is the prior probability about the true value of the calibration parameters, and
p(d|θ) expresses the likelihood function. Amongst other derivations and manipulations, the
authors indicate that Markov chain Monte Carlo (MCMC) sampling is an appropriate tech-
nique to achieve the posterior for higher dimensioned (number of parameters) problems.

Bayesian Calibration Techniques and Algorithms

As mentioned, a numerical approach can be used to approximate the posterior distribution.
An algorithm that can be used to sample from the posterior distribution is the Metropolis-
Hastings algorithm (Hastings (1970)). This algorithm is a particular kind of MCMC sampling
method, involving a proposal step and an acceptance/rejection step. The form of the accep-
tance/rejection step is what is characteristic of this algorithm. Other sampling methods can
also be applied, as implemented in the PyMC3 software (Salvatier et al. (2016)).
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Multivariate Output and High Dimension Output

The current application involves many pressure values located in time. Care is needed when
applying these calibration techniques to multivariate output. McFarland et al. (2008) investi-
gate an application in which the model output is “highly multivariate”, i.e. consists of output
at many spatial or temporal points. The use of a Gaussian Process (GP) model becomes
problematic due to the need to express the covariance of the output locations. The authors
propose a method using an algorithm to choose a subset of the points to construct a GP
model. A different method is used by Higdon et al. (2012) who construct a GP model that
makes use of “Principal Component” basis vectors for a problem involving multi-dimensional
output (an image) across several experimental scenarios. Conti and O’Hagan (2010) look at
the use of surrogate models for time-varying output of computer models, suggesting several
approaches for accounting for the time variable.

Identifiability of the Model Inadequacy Term

Some statistical models make use of a so-called model inadequacy term in equation 1.2. This,
as described in Kennedy and O’Hagan (2001), is an additive or multiplicative term, itself a
Gaussian Process, that can be tuned to account for the difference between the true process and
the model output. The problem is whether the calibration process can distinguish between
errors due to uncertain parameters and errors due to model inadequacy. Arendt et al. (2012)
show how choices in the model structure affect the identifiability of the model inadequacy
and that sometimes inadequacy is identifiable but, in other situations, increasing the amount
of data does not improve identifiability.

1.2.9 Applications of Bayesian Calibration

Merle and Cinnella (2015) use a model of dense gas flow and a thermodynamic model in
an application of Bayesian calibration. They use a two-dimensional inviscid flow model and
several different complex thermodynamic models to calibrate on reference data. The computer
model is replaced with a surrogate model, and Sobol’ indices are computed to determine
sensitivity of the model output to parameters. Using a Markov chain simulation, they calibrate
two different statistical model structures. They conclude that the parameters of the model
are not working to give information about the real thermodynamic behaviour, but rather
have, in the author’s words, “become tuning parameters”.

Robinson et al. (2013) perform a calibration of a thermodynamic model directly and use
experimental thermodynamic data for the procedure. The experimental data are shock speeds
in aluminium 6061, and a computer model is used that computes shock speeds. There are
two calibration parameters. Their model has no model inadequacy terms and variance of
the observation error is not assumed to have a value but is rather treated as a calibration
parameter. The posterior distribution is approximated using a Markov chain simulation. The
authors go on to use the thermodynamic model with a hydrodynamic code. Boon et al. (2012)
use Bayesian calibration in a final step to investigate the results from a panel method analysis
of an airfoil that has uncertain geometry. This is related to experimental measurements of
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a wing with uncertain geometry. Model inadequacy is not incorporated, yielding a similar
statistical model to that of Robinson et al. (2013).

1.3 Structure

The objective of the project described in this report is to attempt to reduce the uncertainty
on thermodynamic parameters of an equation of state of a dense gas using shock tube data
and a computer model. The data used is pressure-time data from the FAST experiment for
the gas D6. The computer model used will be a Roe-type solver for the compressible quasi-
one-dimensional Euler equations, which is modified to approximately model the flow of the
gas in the experiment. Input parameters for the model will be selected and the approach of
Sobol’ indices will be applied for sensitivity analysis of the computer output. The sparse grid
interpolation technique will be used to replace the actual computer code with a surrogate
model. This surrogate model will be used to compute the Sobol’ indices. A statistical model
will provide the framework for a Bayesian inference approach in order to determine if the
experimental data informs about the parameters of the model.

Chapter 2 provides an overview of the experimental setup from which the already existing
data originated and also what the experimental data consists of. This is necessary in order to
explain certain features of the data and also in choosing how to model the process. Chapter
3 details the working of and changes made to the computer model used to simulate the gas
flow in the shock tube. Additionally, the qualitative aspects of the computer model output
are discussed. Chapter 4 presents the surrogate model and sensitivity analysis approach, and
also justifies the statistical model structure choice. Chapter 5 outlines the results of the inves-
tigation and a discussion of the surrogate model, sensitivity analysis and Bayesian inference
results is undertaken. The conclusions and recommendations are contained in Chapter 6.
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Chapter 2

Experimental Data

This chapter gives an overview of the experimental data that was obtained by Mathijssen et al.
(2015). An overview of the experimental setup is given. This is followed by presentation of
the data that will be used in the calibration.

2.1 Overview of the Experiment

The flexible asymmetric shock tube (FAST) experiment consists of a high pressure charge
tube, a nozzle, a fast-opening valve (FOV) and a low pressure plenum (LPP). Figure 2.1,
taken from Mathijssen et al. (2015), shows the overview of the experiment.

The areas of particular relevance to this project are the six segments of the charge tube,
and the LPP, within which resides the FOV. Before the experiment starts, the charge tube
contains the high pressure gas, maintained in a desired thermodynamic state. During the
experiment, the FOV opens, allowing gas to flow from the charge tube, into the LPP, which
is maintained as close to vacuum as possible. Figure 2.2, based on Mathijssen et al. (2015),
shows a simplified view of the experimental setup. Here, the nozzle and valve, which make
up the FOV are assumed to precede the LPP. This assumption is necessary because, later, a
quasi-one-dimensional model is used.

The nozzle and valve that make up the FOV are shown in Figure 2.3, taken from Mathijssen
et al. (2015), which shows a drawing of the cross section of the valve and the inlet nozzle
which precedes it. The important aspects are the inlet valve, the minimum throat area set
by the green adjustable element, and the venting holes which allow the air to outlet into
the LPP. The operation of the valve is described in Mathijssen et al. (2015). A number of
important issues from that work that arise in its practical employment are now highlighted,
as they are relevant in the later modeling decisions.
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Figure 2.1: Overview of the experimental setup. Source: T. Mathijssen, M. Gallo, E. Casati,
N. Nannan, C. Zamfirescu, A. Guardone, and P. Colonna. The flexible asymmetric shock tube
(FAST): a ludwieg tube facility for wave propagation measurements in high-temperature vapours
of organic fluids. Experiments in Fluids, 56 (10):112, 2015.

Figure 2.2: Simplified view of the experimental setup. Based on: C. Zamfirescu, A. Guardone,
and P. Colonna. Numerical simulation of the fast dense gas experiment. In Proceedings of the
European conference on computational fluid dynamics, ECCOMAS CFD, volume 2006, 2006.
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2.2 Pressure Data From Experiment 28 11

Figure 2.3: Drawing showing the FOV components. Source: T. Mathijssen, M. Gallo, E. Casati,
N. Nannan, C. Zamfirescu, A. Guardone, and P. Colonna. The flexible asymmetric shock tube
(fast): a ludwieg tube facility for wave propagation measurements in high-temperature vapours
of organic fluids. Experiments in Fluids, 56 (10):112, 2015.

• The valve is unheated in the actual experiments, meaning that condensible gases (such
as the dense gases) may condense in the valve and nozzle.

• The sliding cylinder, which moves to allow the gas to leave via the venting holes, does not
always move smoothly during the opening procedure. This is particularly the case for
non-condensible gases. The result is that the flow is choked at various minimum areas,
at each moment that the sliding cylinder pauses. This results in a stepped expansion
profile, rather than the usual smooth pressure drop. This behaviour is not predictable
in the current project.

• In the event that the sliding cylinder moves smoothly, there are always two very small
pressure drops that precede the main pressure drop. These occur because when the
cylinder is unclamped, the gas begins to escape through small pathways that unavoid-
ably exist in the mechanism, resulting in the flow being initially choked by those very
small throat areas, before the cylinder clears the vents and the main pressure drop
occurs.

• The opening that results at the nozzle throat is ring, not a circle.

2.2 Pressure Data From Experiment 28

This analysis makes use of data already collected and analysed by Mathijssen et al. (2015).
First, the gas state in the experiment is described. Afterwards, the pressure-time data is
presented.
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Table 2.1: Parameters used to plot the thermodynamic state P -v diagram for the polytropic van
der Waals gas. Pcr is the critical pressure, Tcr is the critical temperature, cv is the specific heat
at constant volume, and R is the specific gas constant.

Parameter Value

Pcr[Pa] 961000

Tcr [K] 645.8
cv
R [−] 90.9

2.2.1 High Pressure Initial State

The initial high pressure state in the charge tube (CT) in Experiment 28 was defined in
Mathijssen et al. (2015) as PCT = 1.27 × 105 Pa and TCT = 571.15 K. To show where this
thermodynamic state is located, the P -v diagram for a polytropic van der Waals gas with
a set of nominal parameters is shown. The nominal parameters used will be elaborated in
Chapter 3. For now, the parameters used are shown in Table 2.1.

The van der Waals equation of state’s pressure equation is

P (v, T ) =
RT

v − b
− a

v2
, (2.1)

where R is the specific gas constant, T is the temperature, v = V/m is the specific volume,
and a and b are material specific constants defined as:

a =
27

64

R2T 2
cr

Pcr
, (2.2)

b =
1

8

RTcr
Pcr

. (2.3)

The objective is to plot the initial high pressure state along with the critical isotherm line
(isotherm where T = Tcr), an approximation of the saturation curve, and the line Γ = 0,
where Γ is the fundamental derivative of equation 1.1. The idea, explained by Thompson
(1971), is that for values where Γ < 0, the isentropes on a P -v have increasing negative
gradient, and that unusual fluid behaviour is expected in this “inversion” region.

To derive the expression for Γ for a van der Waals gas, the isentropic constraint on the partial
derivative terms is noted. If the volume and temperature are both allowed to change then

ds =
∂s

∂v
dv +

∂s

∂T
dT = 0, (2.4)

along the isentropes. Using Maxwell’s relations (Bejan (2016)),(
∂s

∂v

)
T

=

(
∂P

∂T

)
v

, (2.5)
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which can be found from the van der Waals pressure equation, so(
∂s

∂v

)
T

=
R

v − b
. (2.6)

Using the definition of change in entropy, and assuming constant volume, it can be shown
that

(δQrev)v = (ds)v T = cvdT, (2.7)

where (δQrev)v is an infinitesimal increment of heat energy. Therefore:(
∂s

∂T

)
v

=
cv
T
, (2.8)

and substituting these terms into equation 2.4, and rearranging, it is found that

dT = − RT

cv (v − b)
dv, (2.9)

along the isentropes. To arrive at the expression for the fundamental derivative, first the
speed of sound for a general equation of state is given as

c =

√
−v2

(
∂P

∂v

)
s

. (2.10)

By deriving the total differential of P and substituting in the value of dT under constant
entropy as found above, the speed of sound in a polytropic van der Waals fluid is found to be

c(v, T ) =

√
−v2

(
− R2T

cv(v − b)2
− RT

(v − b)2
+

2a

v3

)
. (2.11)

The derivative with respect to specific volume is found for constant entropy, substituting in
the total derivative of temperature under constant entropy. The resulting derivative is(

∂c

∂v

)
s

=
(2RTc2vv

4 + 3R2Tcvv
4 +R3Tv4 − 6ac2vv

3 + 18abc2vv
2 − 18ab2c2vv + 6ab3c2v)

2cv(v − b)(RTcvv3 +R2Tv3 − 2acvv2 + 4abcvv − 2ab2cv)
.

(2.12)

This is then substituted into equation 1.1 to find the fundamental derivative.

The above form of the fundamental derivative is used in 2.4 showing the pressure-specific
density diagram for the van der Waals gas with the set of example parameters from Table
2.1, and the high pressure initial state shown by a red dot.

The van der Waals equation of state is known to be inaccurate near the inversion region
(Colonna and Guardone (2006)). The output of the van der Waals equation of state is
compared to the state diagram provided by the more accurate “improved Peng-Robinson
with Strycek Vera modification” (iPRSV) equation of state. The iPRSV equation of state is
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Figure 2.4: P -v diagram for the van der Waals gas, showing the saturation curve from the
Maxwell construction, the isotherm for the critical temperature, the Γ < 0 region shaded grey,
and the initial condition for the high pressure region in the experiment shown by the red dot.

an improved version of the PRSV cubic equation of state which removes a discontinuity in the
calculated properties (Van der Stelt et al. (2012)). The thermodynamic values are computed
using the FluidProp software (Colonna and Van der Stelt (2004)), and the results are shown
in Figure 2.5. Figure 2.5 shows the P -v diagrams for both van der Waals and iPRSV. It is
clear that the predicted regions of Γ < 0 differ greatly between the two equations of state.
A comparison between the computed thermodynamic states of the two equations is made
by plotting the isentrope which passes the high pressure initial state of Experiment 28, as
computed by each equation. This is shown in Figure 2.6 The locations of the initial state, and
the isentrope through it, are not identical between the two thermodynamic models, but the
computed states do not show the higher levels of discrepancy apparent closer to the inversion
region.

2.2.2 Pressure Data

The pressure data used in the subsequent calibration is now presented. The full data con-
sists of 10 seconds of pressure-time data from the four dynamic pressure sensors. This full
data is shown in Figure 2.7. The beginning of the data is the constant pressure before the
experiment starts. The latter part of the data is the complicated period when reflected waves
have propagated through the tube and interacted. Between these two regions is a theoret-
ically uncomplicated region containing an expansion which passes each of the four sensors
sequentially. Sensors P3 and P4 are located at the distant far end of the tube and are close
enough to the end of the tube that the expansion has not fully passed when the reflection of
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Figure 2.5: P -v diagram for the van der Waals equation of state (black), and the iPRSV
equation of state (blue) and the respective inversion regions shaded.
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Figure 2.6: P -v diagram for the iPRSV equation of state, with the isentropes through the high
pressure initial state, according to iPRSV and according to van der Waals.
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the head of it has already reached the sensor. As such, the data from sensor 4 is not used.
Some data from sensor 3 is used. The three rectangles in Figure 2.7 show the general region
of interest. This region corresponds to the region shown in Figure 2.8. This Figure shows
signals P1 and P2. The constant pressure ends with a very small pressure drop. This has
been attributed to the fact that before the valve opens, there is a small gap, as the clamps
are removed, which allows gas to escape (Mathijssen et al. (2015)). The flow is choked by a
very narrow cross section in the valve components. This happens more than once. Finally,
the valve starts to open, and the expansion waves can pass into the high pressure region. The
main expansion arrives at P1 at approximately 2.91 seconds into the data. The exact way
in which the processes in the nozzle and in the valve evolve to produce the expansion will
be examined in detail in Chapter 3. The expansion ends because the flow at the minimum
cross section becomes choked, and expansion waves can no longer pass into the high pressure
region.

At the end of the approximately constant pressure after the main expansion there is a differ-
ence in the way the pressure evolves at P1 and at P2. A compression passes sensor P1 earlier
than P2. This implies that the compression might be traveling from the low pressure region.
Further, there is a pressure drop in the P2 data at approximately 2.92 seconds that is not
obvious in the P1 data. This could be speculated to be because a reflected expansion arrives
at P2 before the compression, whereas the compression arrives at P1 before the expansion
passes it. However, without investigating the evolution of the flow field in a way that accounts
for reflections, no solid conclusions can be drawn on exactly how the flow in the channel is
behaving. Thus, the data are restricted to the region which is very likely free of reflections.
Furthermore, the data are shifted, such that the 0 seconds point corresponds to the arrival
of the expansion at P1. These data are shown in Figure 2.9, and this is the data that will be
used in the calibration.
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Figure 2.7: Pressure data from Experiment 28, from the four dynamic pressure sensor locations.
The box indicates the region of data shown in Figure 2.8.
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Figure 2.8: Pressure data from Experiment 28, from three of the dynamic pressure sensor
locations, only showing the region from shortly before until shortly after the main expansion
passes.
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Figure 2.9: Pressure data from Experiment 28, from three of the dynamic pressure sensor
locations, only showing the data to be used for the calibration procedure.
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Chapter 3

Computer Model of the Shock Tube Flow

The subject of this chapter is the computer model used to simulate the real gas flow. Section
3.1 outlines the pre-existing code which is the starting point for the work done. The modifi-
cations made to the model are detailed in section 3.2. Finally, the computer model output is
evaluated in section 3.3.

3.1 Existing Computer Model

The existing computer model is now described. First, the governing equations are shown.
Next, the solution procedure is addressed.

3.1.1 Governing Equations

Here the quasi-one-dimensional Euler equations are derived. The derivation is from Laney
(1998), but making the modification to the control volume to allow for the smooth variation
of local area of the channel.

Beginning with the conservation of mass it is stated that

∫ b

a
[ρ (x, t2)A (x, t2)− ρ (x, t1)A (x, t1)] dx

= −
∫ t1

t2

[ρ (b, t)A (b, t)u (b, t)− ρ (a, t)A (a, t)u (a, t)] dt, (3.1)
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where [a, b] defines the interval in x and [t1, t2] defines the time interval, ρ is density, A
is channel area and u is the flow velocity. A similar relation describes the conservation of
momentum, such that

∫ b

a
[ρ (x, t2)A (x, t2)u (x, t2)− ρ (x, t1)A (x, t1)u (x, t1)] dx

= −
∫ t1

t2

[
ρ (b, t)A (b, t)u2 (b, t)− ρ (a, t)A (a, t)u2 (a, t)

]
dt

−
∫ t1

t2

[p (b, t)A (b, t)− p (a, t)A (a, t)] dt, (3.2)

where p is the pressure. Finally, the integral relation describing conservation of energy,

∫ b

a
[ρ (x, t2)A (x, t2)E (x, t2)− ρ (x, t1)A (x, t1)E (x, t1)] dx

= −
∫ t1

t2

[ρ (b, t)A (b, t)u (b, t)H (b, t)− ρ (a, t)A (a, t)u (a, t)H (a, t)] dt, (3.3)

where E is the total energy per unit volume and H is the total enthalpy per unit volume, is
arrived at. The relation between H and E is

ρH = E + p. (3.4)

In order to complete the system of equations, a thermodynamic equation of state is required,
which will be addressed later. As in Laney (1998), the equations are expressed in conservation
form and the fact that the limits of integration are arbitrary is used. Omitting the dependence
of the variables on x and t,

∂ (ρA)

∂t
+
∂ (ρAu)

∂x
= 0, (3.5)

∂ (ρAu)

∂t
+
∂
(
ρAu2 + pA

)
∂x

= p
∂A

∂x
, (3.6)

∂ (AE)

∂t
+
∂ (ρAu)

∂x
= −p∂A

∂t
. (3.7)
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The terms on the right hand side of the momentum and energy equations appear when
converting the integrals of the pressure terms at the control volume surface to integrals in
the domain. By applying the product rule, and rearranging the equations, it is possible to
express the above conservation forms using vectors of conserved variables. Specifically,

∂U

∂t
+
∂F (U)

∂x
= S (U) , (3.8)

in which,

U =

 ρρu
E

 , (3.9)

is the state vector and

F (U) =

 ρu
ρu2 + p
u (E + p)

 , (3.10)

and

S (U) = −
(
u
Ax
A

) ρ
ρu

E + p

 . (3.11)

Note that the term At
A is absent from the source term. This is because the unmodified,

existing, solver makes the assumption that the area at each point in space is independent of
time.

Applying the chain rule to equation 3.8, yields the form showing the flux Jacobian matrix,
d(F)
dx , where, omitting the dependence of F and S on U,

∂U

∂t
+
dF

dU

∂U

∂x
= S. (3.12)

The polytropic van der Waals equation of state (as presented in the previous chapter) is used
to complete the system of equations.
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3.1.2 Solution Procedure

The solver is a high resolution upwind finite volume method, operating on a one-dimensional
grid with equidistant nodes. The flux at the one-dimensional cell boundaries used to advance
the state, U, is computed using Roe’s approximate method, making use of the solution at
the cell boundaries. The state at the cell boundaries is reconstructed using the slope-limited
value of the conservative variables which is assumed to be piecewise linear.

The flux Jacobian, A (U) = dF
dU , can be written, as in Gallouet et al. (2002), as

A (U) =

 0 1 0
K − u2 u (2− k) k

(K −H)u H − ku2 u (1 + k) ,

 (3.13)

with,

k =
1

ρ

∂p

∂ε

∣∣∣∣
ρ

K = c2 + k
(
u2 −H

)
c2 =

p

ρ2
∂p

∂ε

∣∣∣∣
ρ

+
∂p

∂ρ

∣∣∣∣
ε

ε =
E

ρ
− 1

2
u2.

(3.14)

The following explanation is as appears in Laney (1998). The procedure begins by replacing
the system of equations in equation 3.12, with an approximation. The flux term is replaced
so that

F (U) ≈ ARL (U−UL) + F (UL) , (3.15)

where UL is the state immediately to the left of the cell boundary and ARL is the approxi-
mation to the flux Jacobian that satisfies three conditions:

• ARL (UR,UL)→ A (U), when UL,UR → U

• F (UR)− F (UL) = ARL (UR −UL)

• ARL has only real eigenvalues and is diagonalisable.
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Unlike for the ideal gas, for real equations of state, the Roe linearisation is not unique (Cin-
nella (2006)). As Cinnella (2006) review, there are several proposed methods to arrive at a
linearisation for real gases. Their proposed simplified scheme was adopted and they show
that, while it does not satisfy the above list of requirements exactly, it is advantageous from
the point of view of computational efficiency.

As proposed in Cinnella (2006), the simplified Roe scheme for real gases inolves computing
the Roe-averaged variables uRL, ρRL, and HRL. Then the derivatives of pressure with respect
to ε and ρ are computed as a function of the state defined by the those three Roe-averaged
variables, such that

[
∂p

∂ε

∣∣∣∣
ρ

]
RL

=
∂p

∂ε

∣∣∣∣
ρ

(ρRL, εRL)[
∂p

∂ρ

∣∣∣∣
ε

]
RL

=
∂p

∂ρ

∣∣∣∣
ε

(ρRL, εRL) .

(3.16)

The order of accuracy of the solution is increased by computing the solution at the cell edges
assuming a linear solution in each cell and the MINMOD slope limiter is applied. Time
integration of the entire system is performed using the explicit Runge-Kutta 4 algorithm.

3.2 Modifications to the Computer Model

The necessary modifications that were made to the computer model to model the shock tube
experiment are now discussed. These relate to the governing equations, the source term, the
boundary and initial conditions and the solution procedure.

3.2.1 Changes to Governing Equations

The derivation of the source term in the modified version is exactly as for the existing solver,
except the assumption, made in equation 3.11, that the area is independent of time is not
made. Therefore the source term is now

S (U) = −
(
At
A

+ u
Ax
A

) ρ
ρu

E + p

 . (3.17)
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3.2.2 Form for the Source Term

A choice was made about the form of the source term that would attempt to model the motion
of the valve.

Assumptions about the mechanical behaviour of the valve

The opening of the valve is captured in the one-dimensional model as a change in the cross
section area of the channel over time. Specifically, the entire setup is assumed to be a cylin-
drically symmetrical channel with the area, A(x, t) of the channel at each point in the x
dimension and in time t. Therefore, a form for the area function must be chosen, taking into
account the following assumptions about the functioning of the valve.

1. The sliding cylinder is at rest at the start of the opening.

2. The sliding cylinder is at rest at the end of the opening.

3. The sliding cylinder moves smoothly.

4. The sliding cylinder moves in one direction.

5. The sliding cylinder does not stop moving until the opening process is complete.

Assumptions 1, 2 and 3 are chosen to ensure one of the assumptions made in the derivation of
the quasi-one-dimensional model is met. Specifically, it was assumed that the change in area of
the channel is smooth. Assumption 4 is not expected to differ greatly from reality. Assumption
5 is made to reduce the number of potential forms for the source term. It is important to
note that assumptions 1, 2, 3, and 5 may not reflect the real mechanical process. In fact, it is
expected that the behaviour of the valve is unpredictable and that in reality any of those four
assumptions may be invalid to different degrees in different experiments, particularly since
depending on the fluid and starting conditions, there may be, according to Mathijssen et al.
(2015) condensed fluid in the unheated valve when the valve opens.

Incorporating the Assumptions in the Model

The source term must capture the behaviour of the valve that can be appreciated in the
one-dimensional model. The important aspects of the behaviour are stated by Mathijssen
et al. (2015), and are summarised below.

1. The sliding cylinder begins moving, allowing a small area through which the gas is
choked.

2. The sliding cylinder moves further, choking the gas flow at a different, larger cross
section.
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Figure 3.1: Radius distribution (a) along length of domain, and (b) close to the nozzle.

3. The sliding cylinder moves past the outlet holes, meaning the flow is choked at the
nozzle throat.

4. Once the cylinder has fully moved past the outlet holes the opening process is complete.

Since the quasi-one-dimensional approach does not allow for a minimum channel area of zero,
the simulation must begin at the instant beginning point 2 in the above list. This means
the the simulation would start with a Riemann problem featuring an area distribution with
a very small minimum cross section that then smoothly widens until the opening process is
complete. Figure 3.1 shows a radius distribution that matches this model at the start and
the end of the opening process. The ending maximum radius of the variable part is estimated
from the valve geometry.

It is then left to define an explicit form for the transient period of the source term. This
is done by making sure the intermediate states are distributions similar to the starting one
except for the changing minimum cross section at the varying region. To comply with the
assumptions, a form for the minimum area is chosen that is a cubic function with zero first
and second derivatives at the start and end time points. Figure 3.2 shows the minimum cross
section area over time.

This means that there are two parameters relating to the source term which are left as
unknown. One is the total duration of the main opening process depicted in Figure 3.2. The
other is the throat cross section area setting of the static nozzle.
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Figure 3.2: Variation of the minimum cross section during the opening process in the simulation.

3.2.3 Boundary Conditions

Using the terminology also employed by Laney (1998), the modified method adopts a solid
boundary treatment of type 1. This means that the boundary is aligned with the cell border,
and that the solid aspect is ensured using ghost cells in the boundary. From Laney (1998),
and using two ghost cells, the left hand boundary is enforced in the conservative variables as

ρni=0 = ρni=3,

ρni=1 = ρni=2,
(3.18)

(ρu)ni=0 = (ρu)ni=3 ,

(ρu)ni=1 = (ρu)ni=2 ,
(3.19)

Eni=0 = Eni=3,

Eni=1 = Eni=2,
(3.20)

with analogous conditions at the right hand boundary. The boundary conditions do not
influence the results, however, given that the portion of the simulation that would inlude
reflected waves from the boundary is not included.
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3.2.4 Initial Conditions

The intial conditions are adopted are

T (x, t = 0) =

{
571.15 K if 0 ≤ x < 9.221

573.25 K if 9.221 ≤ x ≤ 12.958
, (3.21)

P (x, t = 0) =

{
126500 Pa if 0 ≤ x < 9.221

37950 Pa if 9.221 ≤ x ≤ 12.958
, (3.22)

from which the density in the intial state is computed using the equation of state. The
choice is made to assume that the low pressure region and valve are at room temperature,
and that there is no temperature gradient as a result of the unheated nozzle. In reality, the
temperature distribution of the unheated nozzle is unknown. It is also assumed that there
is a low, non-vacuum state in the low pressure chamber at the start of the experiment. In
reality, the state in the low pressure chamber is close to vacuum, however this is not possible
to model using the presently adopted model.

3.2.5 Solution Procedure

The modifications that were made to the solution procedure are now described.

Entropy Fix

Some solutions found using the approximate solver may violate criteria related to entropy
(Toro (2013)). In order to avoid the appearance of non-physical solutions, adjustments are
made to the solution procedure. Two fixes are implemented.

The entropy fixes replace the eigenvalues in the computation of the flux. The first fix of
Harten and Hyman (Harten and Hyman (1983)) adjusts the eigenvalues such that

λk,RL =

{
δk if |λk,RL| < δk

|λk,RL| if |λk,RL| ≥ δk
, (3.23)

where

δk = max{0, λk,RL − λk (UR) , λk (UL)− λk,RL}, (3.24)

λk is the kth eigenvalue and the subscript RL implies the eigenvalue is computed from the
Roe-average state.
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The fix according to Karni and Čanić is intended to deal with the situation of slow moving
shocks that can induce oscillations in the solution (Karni and Čanić (1997)), and it differs in
that

δk =
√
|uR − uL|. (3.25)

This fix is used in the subsequent computations.

Handling a Source Term Depends on Time (Solving the Non-Homogeneous Prob-
lem)

The existing code solves the governing equations using Roe’s approximate Riemann solver and
a fourth order accurate explicit time integration, with no special treatment of the source term.
The method is modified to incorporate the new source term form, and a splitting approach is
applied, as suggested in Toro (2013). Thus, the Riemann solver and fourth order accurate time
integration are retained for the homogeneous problem, and the non-homogeneous problem is
advanced separately. Toro (2013) states that this allows the best methods to be used for each
part of the problem.

The modifications to use the splitting approach are detailed in the following.

Non-Homogeneous Problem

While the existing high resolution scheme solves the problem without special treatment of
the source term, in the modified solver the non-homogeneous part of the problem is updated
separately and the system to be solved is

d

dt
U = S (U) , (3.26)

with the initial condition

U = U∗
i , (3.27)

where U∗
i is the solution output of the Riemann solver with no source term in the ith cell.

Following the approach advised in LeVeque (2002), this system of ordinary differential equa-
tions is solved in an implicit way, with second-order accuracy in time so that

Un+1
i = U∗

i +
∆t

2

[
S
(
U∗

i

)
+ S

(
Un+1

i

)]
, (3.28)
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where Un+1
i is the solution at the next time step in the ith cell.

3.3 Computer Model Output

The computer model as outlined in the preceding discussion is now supplied with a nominal
set of parameters and the output is discussed.

Firstly, a study of the grid convergence is performed. This is followed by the presentation of
the model output.

3.3.1 Grid Convergence

Figure 3.3 shows the computer model output when run with 1000, 2000, 4000, and 8000
nodes. The use of 1000 nodes is deemed sufficient. This is after noting several features of the
computer output. Firstly, the solutions exhibit most difference in the constant region before
the main expansion (before t = 0). However, this part of the computer output is not used in
the calibration. Secondly, the presence of oscillations (in the constant pressure region before
the expansion) is noted in the solutions with 4000 nodes and 8000 nodes.

3.3.2 Pressure-time Output

The computer model outputs the solution state at every time step for every cell. The presen-
tation of the computer output begins with the pressure variation over time at the cells that
correspond to the pressure sensor locations in the real experiment. These values will be the
output values selected to be used in the statistical analysis.

Figure 3.4 shows the pressure at the locations of sensors 1 and 2 over time, as produced by
the computer model using 4000 nodes. The output is limited to the region containing no
reflected waves and t = 0 is set to be the moment the main expansion wave arrives at sensor
1. This convention is used in all of the following analysis.

Once the expansion waves start traveling at the start of the experiment, two aspects are worth
noting when explaining the shape of the expansion fan that reaches the pressure sensors. One
aspect is that the flow in the nozzle accelerates up to the point at which the flow at the
throat is choked, when expansion waves no longer travel into the charge tube, after which the
flow through the nozzle is stationary. Another aspect is that the valve motion, simulated by
the widening cross section to the right of the nozzle, means the minimum throat area is not
constant until the moving cross section clears the static nozzle throat.

Figure 3.5 shows the pressure throughout the domain during the simulation. A number of
features are now noted and discussed. At the start of the simulation the minimum area of the
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Figure 3.3: Output of pressure values from the computer model in the cell at location corre-
sponding to pressure sensor P1 in the experiment, with 1000, 2000, 4000 and 8000 nodes.
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Figure 3.4: Output of pressure values from the computer model in the cells corresponding to
locations of pressure sensors P1 and P2 in the experiment, with 4000 nodes.
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Figure 3.5: x-t diagram showing the pressure values during the experiment.

nozzle and valve is small (9 mm2). As the waves emanate from the initial discontinuity at the
minimum cross section, some interact with each other in the high radius gradient area around
the nozzle and valve. Repeated reflections of the waves occur as the expansion interacts with
the channel area change. As such, a pressure oscillation propagates into the charge tube at
the start of the experiment. This is visible on the plot of the pressure over time at the sensor
location in Figure 3.5, as an oscillation in the pressure at the foot of the very small expansion
which arrives at P1 at -0.02 seconds. The oscillation itself is not visible on the x-t unless the
nozzle area is viewed more closely.

Figure 3.6 shows a closer view of the nozzle area at the start of the simulation. When viewed
more closely, it can be seen that the pressure after the expansion moves past is not constant.
Furthermore, the pressure gradients around the nozzle are extreme.
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Figure 3.6: x-t diagram showing the pressure variation close to nozzle at the start of the experi-
ment.

Figure 3.7: x-t diagram showing the pressure variation close to nozzle as the valve opens.
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Chapter 4

Surrogate Model, Sensitivity Analysis and
Statistical Model

The data used in the present investigation have been described and the computer model in
use has been described and its output has been discussed. The current chapter introduces
the surrogate model used, and describes the sensitivity analysis method. In addition, the
statistical model which binds these two components together is presented and the Bayesian
calibration approach is described.

4.1 Surrogate Model

Here the sparse grid approach is briefly overviewed, and then the application to the current
project is described.

4.1.1 Sparse Grid

Given the number of parameters, a surrogate model would require a large number of di-
mensions, and as such, a large of sample points. The computer model is replaced with an
approximation, which uses output sampled at various points. Use is made of the Sparse Grid
and Sobol’ Index Code (Dwight and Resmini (n.d.)). This code tackles the high dimension-
ality of the problem using a sparse grid approximation.

The basic approach is to construct an approximation of the computer model using a poly-
nomial interpolation upon a sparse grid of points. A family of one-dimensional quadrature
rules is chosen. Then, the Smolyak algorithm is used to construct a d-dimensional quadrature
formula. This algorithm is a weighted sum of product rules, that comply with a restiction
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placed on the total level of the rules in the sum (Barthelmann et al. (2000)). The total level |i|
is the sum of the level in each dimension. The result is the quadrature formula (Barthelmann
et al. (2000))

A(q, d) =
∑

q−d+1|i|≤q

(−1)q−|i|
(
d− 1

q − |i|

)(
U i1 ⊗ . . .⊗ U id

)
, (4.1)

where q is the level of the complete sparse grid, d is the number of dimensions, and U i is
the one-dimensional quadrature formula. The one-dimensional quadrature rule used here is
the Clenshaw-Curtis quadrature rule. This method consists of grid points being located at
the extrema of the polynomials (Clenshaw and Curtis (1960)). The sparse grid is a so-called
“classical” sparse grid, rather than a full tensor product grid. Each dimension is treated the
same, regardless of the importance determined in the later sensitivity analysis.

4.1.2 Applying the Sparse Grid Approach to the Computer Model Output

An aspect of this application is that the output of the model is a series of pressure values
in time. This pressure-time output is available at every point in the parameter space. As
such, the output is not a single value for a given set of parameters, but rather a series of
values for a given set of parameters. Two approaches are possible. Firstly, the time variable
could be treated as a parameter from the point of view of the surrogate model. Thus, the
scalar output would be a single pressure value for a given combination of specified parameters
and also specified time point. The disadvantage of this approach is that the accuracy of
the interpolation in the time dimension for a given set of parameters is poor, given that the
function is only sampled at the locations in the time dimension specified by the sparse grid.
Therefore, information about precise time of flight of the expansion is not well interpolated.

The second approach is to treat each point in time separately, with its own sparse grid model.
In this approach, if there are 25 points selected in the time domain of the data, there would
then be constructed 25 distinct sparse grids, to capture how the model output changes for
each point in the time domain. There are two disadvantages to this. The first disadvantage is
that the continuity in the time domain is not maintained. The second disadvantage is that, in
this application the signal in the time domain is an expansion followed by constant pressure.
The shape is therefore somewhat like a step. Next, consider that as the parameters change,
the step in the computer model pressure output (among other changes) shifts forwards or
backwards in time. Thus, a single point in the time domain with its own sparse grid that
captures how that value of pressure changes with the parameters, will find itself either at
the top of the step, the bottom of the step or somewhere in between, depending on the
specific value of the parameters. As such, there is a step shape in the parameter space of
that individual sparse grid interpolation. A polynomial interpolation may not capture such
a shape well.

After considering these options, the second approach is chosen, given the need to provide a
detailed interpolation in the time domain.
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4.2 Sensitivity Analysis Method

As introduced by Sobol’ (2001), Sobol’ indices are global sensitivity indices that will be used
to characterise the main effect on the computer model output of parameters and combinations
of parameters. This effect is assessed at each time point, considering the entire parameter
space at once. An overview of Sobol’ indices is given.

4.2.1 Sobol’ Indices

Sobol’ indices are computed from an ANOVA-decomposition of the underlying function, ac-
cording to Kucherenko et al. (2005), on which the following explanation is based. They
concern a function of several variables defined on the unit hypercube in n dimensions. This
is introduced as (Sobol’ (2001))

f(x) = f0 +

n∑
s=1

∑
i1<...<is

fi1...is(xi1 , . . . , xis) (4.2)

where,

f0 =

∫
f(x)dx, (4.3)

and

∫ 1

0
fi1...isdxip = 0, for 1 ≤ p ≤ s, (4.4)

for which 1 ≤ i1 < i2 < . . . < is ≤ n, 1 ≤ s ≤ n

The terms in the sum can be determined by applying the properties of ANOVA-
decompositions. The variances from the function can be described as

Di1...is =

∫
f2i1...isdxi1 . . . dxis . (4.5)
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Further, the total variance is defined using the squared mean value and the integral of the
square of the function,

D =

∫
f2(x)dx− f20 . (4.6)

From these variances, the global sensitivity indices of any combination of variables can be
found as

Si1...is =
Di1...is

D
(4.7)

which together sum to 1.

Finally, the total sensitivity index, Stot
y for a given subset of variables, y, is defined as the

sum of all sensitivity indices containing at least one index in the subset.

The sparse grid and Sobol’ index code approximates the Sobol’ main effect indices from the
sparse grid and the associated quadrature rules as in Tang et al. (2010).

4.3 Model Incorporating Uncertainty on True Output Values

Kennedy and O’Hagan (2001) provided a sophisticated structure for incorporating many
sources of uncertainty into a statistical model of measured output quantities. Kennedy and
O’Hagan (2001) state that

yi = ζ(xi) + ei = ρη(xi,θ) + δ(xi) + ei. (4.8)

The expression links the measured output quantity to an underlying true value plus some
random measurement error, and further relates the true value to some uncertain model output.
In this expression, yi is the measured output quantity, ζ is the true value (which depends on
some explanatory variables xi), and ei is the normally distributed measurement error with
zero mean. The true value is then made up of ρ, which is a constant multiplying term,
η(xi, θ), which is the output of the computer model, and δ(xi) which is a term accounting for
the inadequacy of the computer model to represent the true process.

The statistical model in the form shown in equation 4.8 is not used in this work as is. Several
assumptions are made that differ from those made to arrive at equation 4.8. Firstly, the work
of Kennedy and O’Hagan (2001) proceeds to construct a complex hierarchical model of the
above terms, making use of Gaussian Process models for the model output and the model
inadequacy terms. In this investigation, a surrogate model is used to replace the η, not a
Gaussian Process model. In addition, the appropriateness, for this investigation, of the model
inadequacy term is discussed.
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4.3.1 Model Inadequacy Term

The above term δ(xi) is assumed to depend on the explanatory variables of the measurement,
and not on the parameters, θ. The important issue to consider with this term, as is the
case for the parameters θ themselves, is that of identifiability. The question is whether,
upon including the term and calibrating the unknowns using data, it is actually possible
to distinguish between 1) discrepancies between experiment and computer model because of
uncertain model parameters, and 2) discrepancies because of model inadequacy.

With the issue of identifiability in mind, and considering the limited scope of the data used
in the present calibration (many points in the time domain, but from only one experiment),
it has been chosen to ignore the model inadequacy term. As such, the form of the statistical
model, relating the computer model output and the experimental data is

yi = η(xi, ti,θ) + ei, for i = 1, .., 3N (4.9)

where yi is the measured pressure, x is the location of the pressure sensor, t is the time of
the measured pressure, and N is the number of points of data used from each sensor (the
choice having been made of N = 25). As mentioned earlier, ei is the normally distributed
measurement error,

ei ∼ N (0, λ) , (4.10)

where λ is some unkown variance of the measurement error. The intention is to include this
as an unknown parameter in the calibration procedure.

4.4 Bayesian Calibration Approach

The statistical model adopted earlier is very simple. Due to equation 4.9, and replacing the
computer model output with the surrogate model output, ηs(xi, ti,θ),

ei = yi − ηs(xi, ti,θ) ∼ N (0, λ) . (4.11)

The data likelihood function can then be constructed as

p (y|θ) ∝
3N∏
i=1

e

[
− 1

2

(yi−ηs(xi,ti,θ))
2

λ

]
(4.12)
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Applying Bayes’ theorem yields a statement of the posterior probability (Gelman et al. (2014))

p (θ|y) ∝ p(θ)p(y|θ). (4.13)

where p(θ) is the prior probability, which in this case is uniform on each parameter in θ.

4.4.1 Computational Method for Sampling from the Posterior Distribution

The objective is to construct a Markov chain on the parameters whose stationary distribution
is the posterior probability distribution. This approximation of the posterior distribution
will allow the estimation of quantities which result from integrals over the multidimensional
posterior.

A Markov chain is a sequence of states (in this case, points in the parameter space), for
which the transition from the current state to the subsequent state only depends on the
current state. The Markov chain has a stationary distribution if the following properties are
satisfied(Wakefield (2013)):

• Irreducibility (any state in the probability distribution can be reached in finite time,
wherever the chain starts)

• Aperiodicity (no state is only visited at periodic increments of the chain).

4.4.2 Metropolis-Hastings Algorithm

The Metropolis-Hastings algorithm implemented in the PyMC3 software (Salvatier et al.
(2016)) allows a chain to be constructed which approximates the posterior distribution. At
a given state x(n), the next state is chosen by sampling a proposed state from a proposal
distribution. This is either added to the chain or not depending on whether a check is passed,
which is based on the ratio of the posterior probability density at the current and at the
proposed states. The specific steps are (Wakefield (2013)):

1. Generate a proposed new state y from the proposal distribution q(·|x(n)). The PyMC3
software features a tuning phase for the first 500 states in the chain, in which the
variance of the proposal distribution is modified to achieve the desired acceptance ratio
(next step).

2. Compute the acceptance probability α(x(n),y), which is

α(x(n),y) = min

[
π(y)

π(x(n))
× q(x(n)|y)

q(y|x(n))
, 1

]
, (4.14)

where π(·) is the posterior probability density evaluated at a given state.
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3. Accept the proposed state as the new state x(n+1) with probability α(x(n),y). Other-
wise, the previous state is maintained.

Once an approximation of the posterior distribution is obtained as a chain, quantities that rely
on quadrature of the posterior probability can be computed by enumeration of the samples
in the chain.
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Chapter 5

Results

The sensitivity analysis and calibration approach described in the preceding chapters is ap-
plied to the computer model and data from Experiment 28 of Mathijssen et al. (2015). The
results of the calibration procedure are presented and discussed in this chapter.

Firstly, the accuracy of the surrogate model is assessed. This will be followed by the sen-
sitivity analysis of the surrogate model. Next the results of the Markov chain Monte Carlo
simulation are presented, including an investigation of the convergence of the simulation.
The resulting joint posterior distribution over the parameters, from the Markov chain Monte
Carlo simulation is then discussed. Finally, the conclusions drawn from the presentation of
the results are reviewed.

5.1 Surrogate Model Accuracy

The surrogate model (i.e. the sparse grid interpolation) will be used for two main tasks:
assessing the sensitivity of the model output to the parameters, and for use in place of the
model for the statistical analysis. The accuracy of the surrogate model is assessed before these
tasks. Following the procedure of Merle and Cinnella (2015), 8 points are randomly selected
from the parameter space, and then for these parameter inputs, both the actual model and
the surrogate model are evaluated. The relative error at each location in the time domain is

Relative error =

∣∣∣∣η(θ)− ηs(θ)

η(θ)

∣∣∣∣ , (5.1)

where η(θ) is the computer model output and ηs(θ) is the surrogate model output. Two
versions of the surrogate model are assessed. One version has a level 2 sparse grid (using 12
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Table 5.1: Prior distributions for each of the model parameters

Parameter Description Prior distribution

θ0 Critical temperature, Tc (K) U(581.22, 774.96)

θ1 Critical pressure, Pc (MPa) U(0.913, 1.153)

θ2 Molecular weight, MW (g/mol) U(355.936, 533.904)

θ3 ln( cvR ) U(2.303, 13.816)

θ4 Nozzle throat area, A1 (mm2) U(300, 350)

θ5 Opening duration, t1 (ms) U(11, 20)

λ Measurement error s.d. (bar) U(0.0, 0.1)

sample points) and one has a level 3 sparse grid (using 97 sample points) and one has a level
4 sparse grid (using 389 sample points). Table 5.1 restates the 7 parameters of the statistical
model which will be used and the bounds of their respective uniform prior distributions.

Figure 5.1 shows the relative error for the eight randomly chosen parameter combinations at
each location in the time domain, with (a) the sparse grid of level 2, (b) the sparse grid of
level 3, and (c) the sparse grid of level 4.

The sparse grid of level 3 is selected for all of the subsequent analysis.

Again, following Merle and Cinnella (2015), a characterisation of the error introduced by the
surrogate model is provided in Figure 5.2, which shows the actual model and surrogate model
output for the set of parameters with the largest total relative error and the smallest total
relative error.
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Figure 5.1: Relative error of the surrogate model compared to the actual model output at 8
random points with (a) level 2 sparse grid interpolation, (b) level 3 sparse grid interpolation, and
(c) level 4 sparse grid interpolation.
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Figure 5.2: Surrogate model output and actual computer model output at points selected from
the eight randomly chosen sets of parameters where (a) shows the parameter set with the highest
relative error, and (b) shows the parameter set with the lowest relative error.
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5.2 Sensitivity Analysis Results and Discussion

The described approach of constructing a surrogate model based on a sparse grid of points in
the parameter space, followed by calculation of Sobol’ indices, is applied to the one dimen-
sional computer model.

A distinct sparse grid interpolation of the calculated pressure value is performed at each point
in the time domain. This results in a value of the global sensitivity at each of the time points
in question. Recalling the method described in Chapter 4, the sensitivity to the parameters
of the pressure value at each point in time is found. Figure 5.3 shows the Sobol’ variances
calculated for each of the 25 points in the time domain for each of the two pressure sensors,
respectively.

The delay before the arrival of the expansion in the second pressure sensor data is influenced
by the thermodynamic properties via the wave speed. This timing information of the arrival
of the expansion at the second sensor with respect to the arrival at the first sensor, means
that the variances of the points at the start of the P2 expansion imply sensitivity to the
thermodynamic parameters, with the opening time and nozzle diameter parameters being
less important here. The expansion itself, in the case of sensor locations 1 and 2, is more
strongly sensitive to the opening duration (Stot

5 ) than the thermodynamic parameters. It
can be observed that the variance in the later part of the pressure signal from sensors 1 and
2 is dominated by the area of the nozzle (Stot

4 ), with some thermodynamic parameters also
being relevant. This region of the data relates to the period when the expansion waves no
longer propagate from the nozzle due to sonic conditions at the nozzle throat. Once the
initial transient effects have ended, the signal is most affected by the factors of steady flow
at the nozzle: the nozzle geometry and the thermodynamic model properties. The pressure
output values from sensor 3 exhibit variation mostly due to the parameter corresponding to
molecular weight, with the delay before arrival of the expansion also being influenced by the
parameter ln

(
cv
R

)
.

Erroneous negative or large positive values appear at points close to zero seconds because
both the total variance and the total sensitivity is very small for those points in time (the
pressure is still constant at pressure sensor P2 in the simulation). This means that numerically
erroneous values are computed for the total sensitivity index. The value of the total variance
at each time point is plotted in Figure 5.4 for all the sensor locations. This shows the very
low variance at the start of the data. To further illustrate the sensitivity, Figure 5.5 shows
the global variances, corresponding to the values of sensitivity index in the earlier Figure 5.3.
It is worth noting at this point, that there appears to be no more than four points in the
simulation (at location P2, at around 0.005 seconds) for which the thermodynamic parameters
are close to the most important parameters of all. Even then, this only concerns one of the
thermodynamic parameters: molecular weight (θ2). At all other points non-thermodynamic
parameters are much more important. The most important contributors to the variation at
pressure sensor 3 are the thermodynamic parameters. This is explained by considering that
the sensor is much further from the valve and therefore the travel time of the wave changes
more as the parameters change. The Sobol’ variances of the main effect and cardinality 2 are
contained in the tables of Appendix A.
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Figure 5.3: Total sensitivity indices calculated from the surrogate model at points in time from
(a) simulation at pressure sensor 1, (b) simulation at pressure sensor 2, and (c) simulation at
pressure sensor 3.
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Figure 5.4: Total variance at each of the 25 time points, plotted for the two sensor locations.
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Figure 5.5: Global variances calculated from the surrogate model at points in time from (a)
simulation at pressure sensor 1, (b) simulation at pressure sensor 2, and (c) simulation at pressure
sensor 3.
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5.3 Results of the Markov Chain Monte Carlo Simulation

The Markov chain Monte Carlo (MCMC) simulation produces an approximation to the joint
posterior distribution over the parameters. The result is, specifically, the chain of samples from
the parameter space. The posterior distribution for which an approximation is sought was
defined in Chapter 4 to correspond to the stationary distribution of samples in the chain. The
PyMC3 software of Salvatier et al. (2016) is used to sample from the posterior distribution.
In this section, firstly the convergence of the chain is investigated. This is followed by the
resulting approximation of the joint posterior from the MCMC simulation. After that, the
results are discussed. In all of what follows, the distribution was sampled 60500 times, with
the first 500 samples being immediately discarded. The remaining 60000 samples were used
as the chain for the convergence investigation and as the approximation of the stationary
distribution.

5.3.1 Convergence of the MCMC Simulation

The resulting chain of samples is checked for convergence. This check will use the approach
of Geweke et al. (1991). The test works on each variable separately. Each chain is checked
for convergence by calculating the z-score of the mean of an early part of the chain and the
mean of a later part of the chain. Geweke et al. (1991) describe how the calculation of the
z-score makes use of spectral density estimation. This approach allows the variance of slices
of the chain to be approximated. The PyMC3 software used to produce the chains contains
a function which implements this convergence check, and the expression it uses is

z =
E[θa]− E[θb]√
V [θa] + V [θb]

, (5.2)

where θa refers to samples of the parameters early in the chain, and θb refers to samples later
in the chain. The first 10% is considered to be the early part, and the final 50% is considered
to be the later part. The function computes the z-score on slices of the chain that each start at
positions later and later in the chain. The results of this convergence check for each of the six
parameters is shown in Figure 5.6. For each parameter, the plot shows the result for the test
on slices which start at iterations indicated on the horizontal axis. The plots cannot prove
convergence, but for converged slices of the chains, the score should fall between 1 and -1
indicating that the computed scores distribution is standard normal, as described in Geweke
et al. (1991). This check is passed for each of the parameters individually, and therefore this
chain is used in the subsequent analysis. This check has been limited to a univariate check
on the parameters.

MSc Thesis Jacob Butler



52 Results

0 5000 10000 15000 20000 25000 30000
First sample in slice

−2

−1

0

1

2

z-
sc

or
e

(a) θ0

0 5000 10000 15000 20000 25000 30000
First sample in slice

−2

−1

0

1

2

z-
sc

or
e

(b) θ1

0 5000 10000 15000 20000 25000 30000
First sample in slice

−2

−1

0

1

2

z-
sc

or
e

(c) θ2

0 5000 10000 15000 20000 25000 30000
First sample in slice

−2

−1

0

1

2

z-
sc

or
e

(d) θ3

0 5000 10000 15000 20000 25000 30000
First sample in slice

−2

−1

0

1

2

z-
sc

or
e

(e) θ4

0 5000 10000 15000 20000 25000 30000
First sample in slice

−2

−1

0

1

2

z-
sc

or
e

(f) θ5

0 5000 10000 15000 20000 25000 30000
First sample in slice

−2

−1

0

1

2

z-
sc

or
e

(g) λ

Figure 5.6: Geweke plots showing results on slices of the chains of each parameter and also the
standard deviation of the normally distributed error term in the model.
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Table 5.2: Mean values calculated from posterior distribution marginalised over all but the pa-
rameter mentioned, with the standard deviation and, where relevant, the true value.

Parameter Mean Standard deviation True value

Tc (K) 656.78 19.097 645.8

Pc (MPa) 0.95355 0.023264 0.961

MW (g/mol) 472.68 5.8634 444.92

ln( cvR ) (-) 5.4917 0.76006 -

A1 (mm2) 317.80 2.6311 460

t1 (ms) 17.975 0.27204 -

5.3.2 Resulting Stationary Distribution

The results of the MCMC simulation are shown in the corner plot in Figure 5.7, plotted
using the corner.py package of Foreman-Mackey (2016). There are seven parameters: six
parameters from the computer model and the standard deviation, λ, of the measurement
error in the statistical model. Each of the two-dimensional contour plots shows the projection
of the 7-dimensional samples in the chain onto combinations of two of the variables, thereby
indicating any potential correlation between parameters in the model.

The bounds for the one-dimensional histograms are the same as the uniform prior distribu-
tions, with the exception of the statistical model error standard deviation, λ, which is plotted
with only part of the x axis shown, due to the very narrow posterior with respect to the
prior. These histograms show the stationary distribution marginalised over all but one of the
parameters. Table 5.2 shows the means and standard deviations of these distributions.

Comparing the posterior distributions to their respective priors, shows that the Tc, Pc and
ln( cvR ) (θ0, θ1and θ3) are not well informed by the data. Whilst the molecular weight appears
more well identified, the mean is not located at the true value of 444.92 g/mol. The fact
that the throat area, opening duration, and molecular weight parameters (θ2, θ4 and θ5) are
most narrowly specified is consistent with the observation from the sensitivity analysis that
these two variables are most responsible for the total variance at most time points. The high
importance in the computer model of θ4 and θ5, relative to the thermodynamic parameters,
seems to limit the ability of the data to inform about the thermodynamic parameters.

There is some correlation observed between the molecular weight and the critical temperature
in the thermodynamic model. In the sensitivity analysis, the portion of the model output
which was found to be most sensitive to the molecular weight parameter was the time of
the arrival of the main expansion at the second pressure sensor and the arrival and the
expansion at the third sensor. Combined with the fact that this is also where the model
was most sensitive to θ3, this may imply that including the very small portion of the data
from pressure sensor 3 that is not affected by reflected waves provides information about this
parameter.

Comparison of all of the calibrated parameters to true values is complicated by several factors.
While the critical temperature, critical pressure and molecular weight have a real meaning,
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Figure 5.7: Approximation of the joint posterior distribution resulting from the MCMC simulation.
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Table 5.3: Speed of sound before expansion using the computer model with van der Waals
equation of state, and also using FluidProp.

Method c at expansion start (m/s)

Computer model, van der Waals
(nominal θ)

97.7

Computer model, van der Waals
(calibrated θ)

94.5

Computer model, FluidProp
(D6 fluid using iPRSV)

95.5

Mathijssen et al. (2015) Exp. 28 lin-
ear fit of wave speeds

96.9

the value of cv
R used within the polytropic van der Waals equation of state does not have an

underlying true value for the dense gas in general. Furthermore, the true effective area of
the throat or the true opening duration (or the reasonableness of the assumptions about the
opening behaviour) are not available information by any means outside of the pressure data
from each experiment. Only one set of experimental data is considered here. As mentioned
earlier there is one part of the model output where one thermodynamic parameter (θ2, the
molecular weight) was expected to have an important influence, close to or more than the
opening behaviour and throat area. This was the arrival time of the main expansion. The
speed of sound calculated using the van der Waals model, with nominal parameters (before
calibration) and with calibrated parameters, can be compared to an accurate calculation per-
formed using the FluidProp software of Colonna and Van der Stelt (2004). Furthermore, the
original analysis of the experimental data by Mathijssen et al. (2015) includes an estimation
of the speed of sound in the fluid based on the experimental results. This is shown in Table
5.3.

The analysis and wave speed estimation by Mathijssen et al. (2015) was further employed by
those authors to project the pressure signal of the expansion back to what its shape would
theoretically have been at the nozzle exit. This allows the opening process duration to be
estimated by those authors. However, before comparing that time estimation to the calibrated
parameter of this work, it is worth noting that the estimate provided by Mathijssen et al.
(2015) contains two parts combined:

• The unsteady process induced by the mechanical opening procedure.

• The unsteady process of the flow through the static nozzle becoming steady.

The computer model used in this work does feature idealised versions of both of these processes
in the quasi-one-dimensional model with time-varying source term. However, because of the
variable and unpredictable mechanical processes, the assumption made here that the valve
smoothly opens without stopping and without a major change in opening speed (such as
discontinuous change in opening speed or a slow starting speed that rapidly accelerates) is
quite a significant one. For example, if the valve in reality opens very slowly at first and very
rapidly later, then in order to capture the shape at the start of the expansion whilst assuming
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Table 5.4: Calibrated opening duration parameter, compared to the start-up time computed by
Mathijssen et al. (2015) from the data.

Source Time (ms)

θ5 (t1) mean value 17.975

Start-up process calculated by Mathijssen et al. (2015) Exp. 28 7.5

a smooth valve opening, a much longer opening duration might be required in the simulation.
In practice, however, there are other issues with these results which are more important, as
can be understood when comparing the calibrated opening duration, and the value of process
start-up time computed by Mathijssen et al. (2015), as shown in Table 5.4.

In Table 5.4, it is shown that the computed start-up process time is much lower than the
calibrated opening duration. This means, specifically, that when projecting the pressure
signal back to what it is estimated to be at the nozzle exit, Mathijssen et al. (2015) found
that the signal became steady 10.475 ms faster than the time that the valve is in motion for
the present calibration results. The fact that the known start-up time estimate is much lower
than the calibrated opening duration parameter implies that, at the nozzle exit (i.e. before
the expansion fan has spread in width as it travels along the charge tube) the experimental
expansion width may be narrower than the computer model expansion width with calibrated
parameter inputs. This has the further, unfortunate implication that the opening duration
parameter seems to be ‘correcting’ the width of the expansion recorded in the simulation at
P1 and P2; i.e. the expansion in the simulation exhibits insufficient spreading under any
combination of thermodynamic parameters in the prior distribution, implying incorrectly
simulated behaviour. The calibration then has the effect of ensuring the ‘correct’ expansion
width by arriving at a longer opening process at the nozzle and valve than is estimated by
Mathijssen et al. (2015) from the experimental data alone. This is an important weakness of
this project’s results, and will be returned to in the recommendations.

The “effective area” was estimated by Mathijssen et al. (2015) from the data. This value is
found by looking at the constant pressure region after the expansion when the nozzle flow
is steady and computing the nozzle area that would provide such a pressure value. The
valve setting was 460mm2 and the effective area computed by Mathijssen et al. (2015) was
328mm2, which are somewhat comparable to the value found in this calibration. This is
consistent with the fact that the effective area was calculated by Mathijssen et al. (2015) by
assuming a quasi-one-dimensional isentropic flow from the state after the expansion, through
the choked nozzle.

Using more than one set of experiment data would be expected to improve the identifiability
of the parameters. Furthermore, a possible concern with the results relates to the use of only
25 points from the time domain of the data. It was mentioned in the sensitivity analysis
that only a small region in time exhibits substantial variation due to the thermodynamic
parameters, and as such it might be beneficial to ensure more points are located in these
regions by including more points overall.
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5.4 Conclusions

In conclusion, the computer model’s replacement with a surrogate model was presented and
assessed, with it being decided that a level 3 sparse grid was sufficient. The sensitivity anal-
ysis performed on the surrogate model revealed that the throat area and opening duration
were by far the most important parameters, with the thermodynamic parameters of much less
importance. The most important of the thermodynamic parameters is the molecular weight
parameter. The samples drawn from the joint posterior distribution using the MCMC sam-
pling technique are found to be consistent with convergence. The parameters most informed
by the data were the molecular weight, opening duration, and throat area, although these do
not reflect the expected true values based on the Experiment 28 definition.

MSc Thesis Jacob Butler



58 Results

Jacob Butler MSc Thesis



Chapter 6

Conclusions and Recommendations

6.1 Conclusions

The objective of this project was to use Bayesian inference to attempt to reduce the uncer-
tainty on thermodnyamic parameters of an equation of state for a dense gas, using shock
tube data and a computer model. The van der Waals equation of state, which was used
in the project, was introduced. The fundamental thermodynamic derivative was derived for
the equation of state. The data used in the calibration was also introduced. The data was
restricted to the region in time when the pressure signal was not affected by reflected waves
from the ends of the shock tube. This restriction allowed the use of some of the data from
the first 3 pressure sensors and none from sensor 4. Next, the quasi-one-dimensional com-
puter code was introduced. This computer model solved the Euler equations using Roe’s
approximate Riemann solver. The changes thought necessary to allow the computer code
to model the shock tube flow included changes to the governing equations, to allow for the
time-varying valve geometry, changes to the boundary conditions, and changes to the solution
procedure, including addition of the entropy fix. Example output from the code showed some
of the issues arising, including the wave pattern resulting from the unsteady flow during the
opening process. This was thought to be explained by the reflection and interaction of waves
through the converging-diverging nozzle, the motion of the time-varying channel width and
the evolution towards the steady nozzle flow state.

The methods of surrogate modeling and sensitivity analysis were described. The sparse
grid approach available in an existing library was introduced and the manner in which this
approach was applied to the problem was explained. Each point to be interpolated in time
was given a separate interpolation grid in the parameter space. The global sensitivity analysis
approach of Sobol’ was then applied using the existing Sobol’ index code. The construction
of the statistical model in which the measured output pressure are related to the true values
was described and justified.

MSc Thesis Jacob Butler



60 Conclusions and Recommendations

The sparse grid interpolation was checked by picking several points in the parameter space
and evaluating the computer code directly and also computing the interpolation using the
sparse grid surrogate model. Different level sparse grids were used and compared for the
error with respect to the direct evaluation of the code. The level 3 grid showed less relative
error than the level 2 grid but the level 4 grid had greater relative error than the level 3 grid.
The sensitivity analysis showed the importance of the non-thermodynamic parameters (nozzle
area and opening duration) for much of the computer model output, but that at some time
points the molecular weight parameter was important. The approximation of the posterior
distribution on the parameters, from the Markov chain Monte Carlo simulation showed that
the three parameters just mentioned were somewhat informed by the data, but that there
was a sizable discrepancy between the mean values and the true values of the parameters.

6.2 Recommendations

A further investigation of the quasi-one-dimensional simulation may provide insight into the
discrepancy between the computer model opening time and the experimentally determined
opening time. Furthermore, a different modeling approach could be used. Consideration may
be made of more spatial dimensions and whether the assumptions about how the expansion
fan is formed are justified or whether a more complicated process is what yields the shape
of the pressure drop. Investigation of the temperature distribution in the valve, the effect of
condensing fluid and the rate of motion of the valve sliding cylinder may be warranted.

Adopting one of the more complex equations of state, such as iPRSV, would allow for a
clearer answer to the question of whether these data inform the model in such a way as to
make more precise predictions on thermodynamic states in the various applications.

An investigation might determine if a higher level sparse grid interpolation may reduce the
relative error in the surrogate model. Furthermore, selecting more points in the time domain
for the calibration, while computationally much more costly, would make better use of the
available data.
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66 Sobol Indices for the Computer Model Output Points

Table A.1: Sobol variances for main effect and cardinality 2, for point 1.
Property Value for Level 2 (13 points) Value for Level 3 (85 points) Value for Level 4 (389 points)

Location P1 P2 P3 P1 P2 P3 P1 P2 P3

Mean 1.253 1.261 1.257 1.253 1.261 1.261 1.253 1.262 1.253
Variance 1.902e-08 2.479e-08 6.216e-06 1.444e-08 -1.382e-07 -0.0001644 -7.617e-09 -5.256e-07 0.0001385
D0 1.459e-10 1.08e-08 1.424e-08 2.238e-08 3.104e-09 2.033e-06 2.132e-08 1.664e-07 1.413e-06
D0,1 9.825e-10 1.109e-09 -7.835e-09 1.475e-08 8.056e-09 1.924e-06 7.592e-10 -2.669e-08 7.906e-07
D0,2 -7.462e-11 4.961e-09 1.522e-07 1.614e-08 1.397e-08 -2.112e-05 8.548e-09 -1.861e-08 1.837e-07
D0,3 -2.535e-10 -8.199e-10 -2.996e-08 1.197e-08 2.753e-09 1.405e-06 2.185e-08 -2.552e-08 8.81e-07
D0,4 -1.808e-10 -1.385e-09 -1.014e-08 6.54e-09 8.256e-09 2.416e-06 4.066e-08 -6.529e-08 -8.76e-08
D0,5 -1.809e-10 -2.22e-16 -1.904e-08 1.112e-08 1.191e-08 1.628e-06 2.793e-09 4.224e-09 8.165e-08
D1 7.313e-09 3.599e-10 2.232e-08 1.852e-08 6.172e-09 1.861e-06 1.069e-08 1.871e-07 1.344e-06
D1,2 5.03e-10 -6.439e-10 1.245e-07 1.681e-08 2.036e-08 -2.079e-05 4.064e-09 1.92e-08 2.471e-06
D1,3 1.709e-09 1.064e-10 -2.45e-08 6.964e-09 5.117e-09 1.706e-06 2.781e-08 -2.772e-08 4.139e-07
D1,4 1.219e-09 1.798e-10 -8.29e-09 7.699e-09 1.095e-08 2.864e-06 3.683e-08 -6.223e-08 9.776e-07
D1,5 1.219e-09 0 -1.557e-08 1.994e-08 1.668e-08 1.718e-06 9.64e-09 -6.188e-08 6.393e-07
D2 4.941e-10 8.214e-09 4.982e-06 1.159e-08 5.854e-09 7.453e-05 1.326e-08 3.254e-08 0.0001714
D2,3 -1.298e-10 4.761e-10 4.76e-07 1.288e-08 -1.336e-09 -1.046e-05 4.461e-08 5.744e-09 -8.471e-06
D2,4 -9.257e-11 8.041e-10 1.611e-07 1.276e-08 4.364e-09 -4.293e-06 6.471e-08 -2.154e-08 3.658e-06
D2,5 -9.26e-11 0 3.025e-07 1.884e-08 2.377e-08 -2.547e-05 1.287e-08 1.083e-08 -9.779e-07
D3 3.499e-09 2.007e-10 1.006e-07 1.025e-08 4.369e-08 1.37e-06 2.621e-09 3.32e-08 4.339e-07
D3,4 -3.145e-10 -1.329e-10 -3.17e-08 6.46e-09 -2.138e-08 1.293e-06 -3.543e-08 -6.581e-08 6.726e-07
D3,5 -3.146e-10 0 -5.954e-08 1.489e-08 7.431e-10 1.281e-06 1.091e-08 -1.829e-08 -1.273e-06
D4 1.286e-09 3.465e-10 1.143e-08 3.761e-09 1.757e-08 1.563e-06 1.676e-08 9.959e-08 5.284e-07
D4,5 -2.244e-10 0 -2.015e-08 8.916e-09 9.739e-09 2.336e-06 2.104e-08 -4.325e-08 6.885e-07
D5 2.504e-09 2.134e-10 9.511e-08 2.202e-09 7.198e-09 2.739e-06 2.375e-08 4.174e-08 2.804e-06

Table A.2: Sobol variances for main effect and cardinality 2, for point 2.
Property Value for Level 2 (13 points) Value for Level 3 (85 points) Value for Level 4 (389 points)

Location P1 P2 P3 P1 P2 P3 P1 P2 P3

Mean 1.24 1.261 1.256 1.241 1.261 1.261 1.24 1.262 1.252
Variance 7.253e-06 2.425e-08 2.015e-05 -1.493e-05 -1.891e-07 -0.0002218 -7.546e-07 -4.928e-07 0.0002085
D0 1.427e-08 7.761e-09 1.355e-08 1.276e-05 3.924e-09 3.011e-06 1.413e-05 1.077e-07 7.897e-07
D0,1 7.252e-08 -1.55e-09 -2.258e-09 2.294e-05 2.697e-08 2.497e-07 9.028e-06 -2.51e-08 8.007e-07
D0,2 -7.634e-09 3.812e-09 -3.174e-07 9.406e-06 2.276e-08 -3.437e-05 1.946e-05 -9.016e-09 3.811e-06
D0,3 -7.011e-08 1.063e-09 1.891e-08 1.797e-05 1.357e-08 3.438e-07 5.766e-06 -4.069e-08 1.183e-06
D0,4 8.673e-10 7.931e-10 2.193e-09 2.424e-05 2.379e-08 1.237e-06 4.499e-06 -6.213e-08 -1.708e-07
D0,5 -2.436e-08 7.274e-10 3.124e-08 1.287e-05 2.551e-08 -2.117e-07 1.015e-05 -2.019e-08 6.878e-07
D1 1.729e-06 7.106e-10 4.369e-10 6.199e-06 2.239e-08 1.747e-06 1.941e-05 1.651e-07 2.09e-06
D1,2 5.855e-08 1.588e-09 -5.903e-08 1.838e-05 4.387e-08 -3.029e-05 1.176e-05 -2.807e-08 3.553e-06
D1,3 5.377e-07 4.43e-10 3.516e-09 2.099e-05 1.121e-08 8.825e-07 1.03e-05 -3.824e-08 1.348e-07
D1,4 -6.652e-09 3.304e-10 4.078e-10 3.147e-05 1.757e-08 1.896e-06 1.956e-05 -6.962e-08 4.733e-07
D1,5 1.869e-07 3.031e-10 5.809e-09 1.682e-05 4.065e-08 1.567e-06 1.118e-05 -6.754e-08 1.253e-06
D2 6.164e-07 1.053e-08 1.891e-05 2.68e-06 3.556e-09 7.654e-05 1.292e-05 1.318e-07 0.0002326
D2,3 -5.66e-08 -1.09e-09 4.942e-07 8.918e-06 1.083e-08 -1.614e-05 8.182e-06 -2.018e-08 -9.785e-06
D2,4 7.003e-10 -8.128e-10 5.733e-08 1.348e-05 1.966e-08 -1.02e-05 1.529e-05 -2.195e-08 9.094e-07
D2,5 -1.967e-08 -7.455e-10 8.165e-07 5.083e-06 3.449e-08 -3.524e-05 5.935e-06 -2.46e-08 1.666e-06
D3 4.172e-06 5.172e-10 4.348e-08 4.786e-06 3.271e-08 1.141e-06 1.074e-05 3.885e-08 3.837e-07
D3,4 6.43e-09 -2.267e-10 -3.415e-09 2.276e-05 -1.692e-08 7.274e-07 1.185e-05 -6.372e-08 8.108e-08
D3,5 -1.806e-07 -2.079e-10 -4.863e-08 1.52e-05 1.123e-08 7.459e-07 6.894e-06 -3.698e-08 -1.112e-06
D4 2.4e-09 2.587e-10 3.962e-10 3.459e-06 2.048e-08 1.603e-06 2.557e-05 7.616e-08 1.138e-06
D4,5 2.235e-09 -1.551e-10 -5.642e-09 1.561e-05 2.552e-08 1.844e-06 1.128e-05 -3.172e-08 2.546e-07
D5 2.197e-07 1.998e-10 1.886e-07 2.751e-05 3.239e-08 2.49e-06 5.955e-06 4.133e-08 2.194e-06
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Table A.3: Sobol variances for main effect and cardinality 2, for point 3.
Property Value for Level 2 (13 points) Value for Level 3 (85 points) Value for Level 4 (389 points)

Location P1 P2 P3 P1 P2 P3 P1 P2 P3

Mean 1.226 1.26 1.255 1.227 1.259 1.26 1.226 1.26 1.25
Variance 2.377e-05 3.638e-07 3.794e-05 -2.995e-05 -2.25e-08 -0.0002744 -5.565e-06 1.536e-06 0.0002789
D0 1.783e-07 5.757e-08 5.048e-08 3.658e-05 6.958e-07 2.548e-06 5.169e-05 3.847e-07 7.038e-07
D0,1 2.639e-07 5.481e-08 -5.318e-08 6.366e-05 5.271e-08 2.66e-08 1.987e-05 8.638e-07 5.288e-07
D0,2 -4.66e-08 -2.046e-08 -7.757e-07 2.592e-05 -9.018e-08 -4.268e-05 5.492e-05 8.238e-07 6.353e-06
D0,3 -3.432e-07 -4.802e-08 1.972e-08 4.909e-05 5.917e-08 2.774e-08 1.58e-05 3.211e-07 1.108e-06
D0,4 -1.098e-08 -4.823e-08 -8.668e-09 6.703e-05 9.065e-08 5.189e-07 -2.453e-06 9.777e-07 -1.422e-07
D0,5 -1.126e-07 -3.879e-08 5.75e-08 3.241e-05 1.761e-08 2.312e-07 2.878e-05 5.682e-07 1.316e-06
D1 5.367e-06 6.664e-08 1.874e-07 1.81e-05 1.209e-06 1.711e-06 6.529e-05 6.695e-07 2.641e-06
D1,2 1.975e-07 2.166e-08 -1.054e-06 5.049e-05 6.509e-08 -3.467e-05 3.15e-05 5.864e-07 5.776e-06
D1,3 1.454e-06 5.085e-08 2.679e-08 5.448e-05 -7.645e-08 7.899e-07 2.645e-05 4.236e-07 -9.849e-08
D1,4 4.653e-08 5.107e-08 -1.177e-08 8.633e-05 4.894e-08 1.525e-06 5.489e-05 1.174e-06 8.72e-07
D1,5 4.771e-07 4.107e-08 7.81e-08 4.259e-05 1.232e-07 2.662e-06 2.963e-05 8.24e-07 1.037e-06
D2 3.966e-06 1.931e-07 3.787e-05 6.3e-06 4.436e-08 6.662e-05 3.851e-05 3.65e-06 0.0002999
D2,3 -2.568e-07 -1.898e-08 3.907e-07 2.504e-05 3.083e-08 -2.007e-05 1.965e-05 2.138e-07 -7.004e-06
D2,4 -8.216e-09 -1.906e-08 -1.717e-07 3.663e-05 5.522e-08 -1.407e-05 4.61e-05 3.435e-07 4.365e-07
D2,5 -8.425e-08 -1.533e-08 1.139e-06 9.402e-06 -1.212e-07 -3.912e-05 1.599e-05 6.429e-07 1.37e-05
D3 1.258e-05 7.04e-08 3.915e-08 1.25e-05 4.895e-08 1.148e-06 3.796e-05 4.538e-07 3.416e-07
D3,4 -6.051e-08 -4.474e-08 4.366e-09 6.49e-05 3.578e-09 3.985e-07 3.164e-05 3.676e-07 -1.009e-07
D3,5 -6.205e-07 -3.598e-08 -2.896e-08 4.025e-05 -6.398e-10 8.583e-07 2.085e-05 1.425e-07 -3.379e-07
D4 3.348e-08 4.546e-08 2.489e-09 1.066e-05 5.73e-08 1.797e-06 7.641e-05 1.278e-06 1.496e-06
D4,5 -1.985e-08 -3.614e-08 1.273e-08 3.984e-05 6.164e-08 1.594e-06 2.961e-05 4.619e-07 5.592e-07
D5 7.783e-07 3.69e-08 1.641e-07 7.316e-05 1e-06 1.721e-06 1.607e-05 2.26e-07 1.54e-06

Table A.4: Sobol variances for main effect and cardinality 2, for point 4.
Property Value for Level 2 (13 points) Value for Level 3 (85 points) Value for Level 4 (389 points)

Location P1 P2 P3 P1 P2 P3 P1 P2 P3

Mean 1.207 1.253 1.253 1.212 1.253 1.258 1.205 1.251 1.248
Variance 4.974e-05 3.453e-06 6.069e-05 -8.935e-05 1.309e-06 -0.0003124 -3.241e-05 1.309e-05 0.0003508
D0 6.806e-07 3.792e-07 1.105e-07 8.554e-05 7.743e-07 2.04e-06 8.555e-05 4.978e-07 1.138e-06
D0,1 1.215e-06 3.166e-08 -2.396e-07 0.0001095 4.976e-07 9.11e-07 6.762e-05 1.865e-07 7.12e-07
D0,2 -4.945e-07 4.863e-08 -1.503e-06 3.67e-05 4.664e-08 -4.563e-05 0.0001148 8.951e-07 4.365e-06
D0,3 -1.104e-06 -3.169e-07 -1.982e-08 8.079e-05 1.591e-07 -1.804e-07 4.022e-05 3.963e-07 8.792e-07
D0,4 -1.487e-07 -3.34e-07 -3.297e-08 0.0001158 3.083e-07 7.153e-08 2.911e-05 5.081e-07 5.814e-07
D0,5 -3.973e-07 -2.79e-07 4.149e-08 6.805e-05 2.467e-07 1.542e-06 6.534e-05 1.734e-06 4.242e-06
D1 1.246e-05 2.69e-07 1.655e-06 4.557e-05 3.033e-07 2.642e-06 0.0001087 5.278e-07 1.843e-06
D1,2 1.797e-06 -4.211e-09 -3.799e-06 8.548e-05 7.835e-07 -3.39e-05 6.225e-05 1.232e-06 9.018e-06
D1,3 4.011e-06 2.744e-08 -5.01e-08 0.0001001 3.827e-07 1.316e-06 6.521e-05 1.193e-07 4.439e-07
D1,4 5.405e-07 2.892e-08 -8.334e-08 0.0001634 -2.288e-08 1.553e-06 0.0001193 4.474e-07 2.582e-06
D1,5 1.444e-06 2.416e-08 1.049e-07 8.977e-05 9.321e-08 3.341e-06 6.604e-05 1.176e-06 1.038e-06
D2 8.14e-06 3.427e-06 6.461e-05 9.602e-06 1.503e-06 5.012e-05 9.486e-05 1.739e-05 0.0003748
D2,3 -1.633e-06 4.215e-08 -3.143e-07 3.925e-05 8.32e-08 -2.275e-05 4.095e-05 -1.398e-08 -3.088e-06
D2,4 -2.201e-07 4.443e-08 -5.229e-07 6.536e-05 6.346e-07 -1.623e-05 9.933e-05 -1.225e-08 -4.137e-06
D2,5 -5.879e-07 3.711e-08 6.58e-07 2.249e-05 3.245e-07 -3.941e-05 2.801e-05 5.112e-07 2.706e-05
D3 2.362e-05 2.808e-07 2.143e-08 2.729e-05 1.455e-07 1.584e-06 6.068e-05 7.279e-07 7.331e-07
D3,4 -4.912e-07 -2.895e-07 -6.894e-09 0.0001112 4.333e-07 7.998e-08 8.054e-05 1.536e-07 -1.307e-07
D3,5 -1.312e-06 -2.418e-07 8.676e-09 8.197e-05 1.028e-07 1.042e-06 3.71e-05 -1.576e-07 1.855e-06
D4 7.74e-08 3.057e-07 1.396e-08 1.839e-05 8.19e-08 2.698e-06 0.0001779 8.908e-07 1.747e-06
D4,5 -1.768e-07 -2.549e-07 1.443e-08 8.587e-05 5.648e-08 1.206e-06 7.263e-05 8.053e-07 2.675e-06
D5 2.317e-06 2.274e-07 2.273e-08 0.0001661 6.101e-07 1.593e-06 3.819e-05 4.439e-07 2.706e-06
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Table A.5: Sobol variances for main effect and cardinality 2, for point 5.
Property Value for Level 2 (13 points) Value for Level 3 (85 points) Value for Level 4 (389 points)

Location P1 P2 P3 P1 P2 P3 P1 P2 P3

Mean 1.193 1.241 1.252 1.196 1.241 1.255 1.189 1.238 1.245
Variance 6.931e-05 1.492e-05 9.239e-05 -0.0001236 -2.728e-05 -0.0003457 -1.616e-05 1.821e-05 0.0004328
D0 3.746e-07 1.821e-07 1.127e-07 0.0001034 8.38e-06 1.349e-06 0.0001082 1.661e-05 5.563e-06
D0,1 -2.912e-07 -1.842e-07 -4.407e-07 0.0001545 2.432e-05 1.986e-06 8.841e-05 5.247e-06 3.507e-06
D0,2 1.722e-08 6.209e-08 -1.684e-06 4.706e-05 9.604e-06 -4.608e-05 0.0001765 1.789e-05 -5.302e-06
D0,3 1.681e-07 1.024e-07 -4.647e-08 0.0001122 1.757e-05 9.063e-08 4.09e-05 3.996e-06 1.554e-06
D0,4 -3.757e-08 -1.116e-07 -2.184e-08 0.0001572 2.381e-05 2.877e-07 9.243e-06 -7.741e-07 2.034e-06
D0,5 5.95e-08 -1.501e-08 -2.274e-08 8.421e-05 1.375e-05 3.248e-06 9.407e-05 1.656e-05 1.368e-05
D1 1.981e-05 3.376e-06 6.268e-06 5.798e-05 4.43e-06 6.565e-06 0.0001308 1.738e-05 2.267e-06
D1,2 3.907e-07 1.236e-07 -9.579e-06 0.0001115 1.984e-05 -3.509e-05 7.068e-05 9.807e-06 9.062e-06
D1,3 3.813e-06 2.038e-07 -2.644e-07 0.0001409 2.177e-05 2.406e-06 7.624e-05 7.669e-06 3.985e-06
D1,4 -8.522e-07 -2.221e-07 -1.242e-07 0.0002157 2.948e-05 1.256e-06 0.0001384 1.14e-05 8.093e-06
D1,5 1.35e-06 -2.988e-08 -1.294e-07 0.0001102 1.4e-05 2.613e-06 7.904e-05 8.218e-06 2.423e-06
D2 1.283e-05 7.493e-06 0.0001003 1.574e-05 2.942e-06 3.782e-05 0.0001466 2.905e-05 0.0004991
D2,3 -2.255e-07 -6.868e-08 -1.01e-06 5.082e-05 7.273e-06 -2.404e-05 5.917e-05 5.898e-06 -1.067e-06
D2,4 5.04e-08 7.486e-08 -4.747e-07 8.431e-05 1.609e-05 -1.617e-05 0.000143 1.879e-05 -2.256e-05
D2,5 -7.983e-08 1.007e-08 -4.944e-07 2.845e-05 8.758e-06 -4.012e-05 3.57e-05 -1.695e-06 3.018e-05
D3 3.028e-05 3.543e-06 3.265e-08 3.134e-05 4.417e-06 2.095e-06 9.454e-05 9.986e-06 2.665e-06
D3,4 4.919e-07 1.235e-07 -1.31e-08 0.0001511 2.405e-05 2.499e-07 9.734e-05 1.072e-05 1.049e-06
D3,5 -7.79e-07 1.661e-08 -1.364e-08 9.774e-05 1.581e-05 1.853e-06 5.237e-05 8.206e-06 7.712e-06
D4 1.144e-07 1.376e-07 1.575e-08 2.408e-05 3.963e-06 4.145e-06 0.0002062 1.95e-05 5.893e-06
D4,5 1.741e-07 -1.81e-08 -6.412e-09 0.0001037 1.471e-05 1.424e-07 0.0001027 1.525e-05 8.154e-06
D5 1.653e-06 1.2e-07 2.156e-08 0.0001876 1.96e-05 4.312e-06 4.947e-05 7.137e-06 5.112e-06

Table A.6: Sobol variances for main effect and cardinality 2, for point 6.
Property Value for Level 2 (13 points) Value for Level 3 (85 points) Value for Level 4 (389 points)

Location P1 P2 P3 P1 P2 P3 P1 P2 P3

Mean 1.178 1.227 1.251 1.18 1.227 1.25 1.171 1.225 1.242
Variance 8.196e-05 4.188e-05 0.0001384 -0.0001597 -4.505e-05 -0.0003771 -5.777e-05 2.264e-05 0.0005382
D0 7.271e-07 3.973e-07 4.088e-08 0.0001151 2.642e-05 1.877e-06 0.0001367 5.698e-05 1.776e-05
D0,1 -6.2e-07 -2.376e-07 -3.074e-07 0.0001894 6.459e-05 2.125e-06 8.796e-05 9.889e-06 1.058e-05
D0,2 1.446e-07 1.447e-07 -9.005e-07 5.449e-05 2.777e-05 -4.717e-05 0.0002066 5.016e-05 -6.911e-06
D0,3 5.991e-07 2.531e-07 -1.173e-08 0.0001332 4.78e-05 6.86e-07 3.362e-05 1.139e-05 3.191e-06
D0,4 -4.52e-08 -1.126e-07 3.048e-09 0.0001902 6.52e-05 5.04e-07 -1.5e-05 -1.456e-05 5.869e-06
D0,5 2.092e-07 1.967e-08 -1.874e-08 9.733e-05 3.299e-05 3.968e-06 0.0001185 3.915e-05 3.763e-05
D1 2.325e-05 8.582e-06 1.55e-05 5.257e-05 1.284e-05 1.576e-05 0.0001391 5.609e-05 5.632e-06
D1,2 9.591e-07 4.045e-07 -1.806e-05 0.00013 5.134e-05 -3.985e-05 6.123e-05 2.675e-05 8.204e-06
D1,3 3.975e-06 7.075e-07 -2.352e-07 0.0001675 5.393e-05 2.745e-06 6.831e-05 1.948e-05 1.194e-05
D1,4 -2.999e-07 -3.146e-07 6.113e-08 0.000255 7.866e-05 -3.348e-07 0.0001383 3.393e-05 2.024e-05
D1,5 1.388e-06 5.498e-08 -3.758e-07 0.0001279 3.488e-05 -1.88e-06 7e-05 2.111e-05 5.747e-06
D2 1.745e-05 2.055e-05 0.0001443 2.072e-05 8.505e-06 2.915e-05 0.0001853 5.302e-05 0.0006479
D2,3 -9.267e-07 -4.308e-07 -6.892e-07 5.594e-05 2.554e-05 -2.511e-05 6.05e-05 1.683e-05 4.46e-06
D2,4 6.991e-08 1.916e-07 1.791e-07 0.0001027 4.136e-05 -1.658e-05 0.0001677 4.893e-05 -5.222e-05
D2,5 -3.235e-07 -3.348e-08 -1.101e-06 3.596e-05 1.378e-05 -4.428e-05 1.593e-05 1.382e-06 2.902e-05
D3 3.418e-05 1.075e-05 1.099e-08 3.391e-05 1.126e-05 1.721e-06 0.00011 3.173e-05 6.509e-06
D3,4 2.897e-07 3.351e-07 2.333e-09 0.0001865 6.561e-05 1.186e-06 0.0001003 2.767e-05 4.711e-06
D3,5 -1.341e-06 -5.856e-08 -1.434e-08 0.0001198 4.127e-05 2.561e-06 5.453e-05 2.212e-05 2.027e-05
D4 6.138e-08 1.764e-07 1.086e-09 3.109e-05 1.137e-05 5.77e-06 0.0002337 6.166e-05 1.985e-05
D4,5 1.012e-07 2.604e-08 3.727e-09 0.0001228 3.687e-05 -2.633e-06 0.0001194 3.721e-05 2.144e-05
D5 2.116e-06 4.724e-07 4.155e-08 0.0002045 5.71e-05 1.388e-05 5.648e-05 1.784e-05 1.007e-05
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Table A.7: Sobol variances for main effect and cardinality 2, for point 7.
Property Value for Level 2 (13 points) Value for Level 3 (85 points) Value for Level 4 (389 points)

Location P1 P2 P3 P1 P2 P3 P1 P2 P3

Mean 1.163 1.209 1.249 1.165 1.212 1.246 1.155 1.205 1.24
Variance 0.0001035 7.13e-05 0.0001984 -0.0002015 -0.0001008 -0.0004133 -8.919e-05 5.831e-06 0.0006797
D0 1.06e-06 4.496e-07 9.24e-09 0.0001276 6.796e-05 4.402e-06 0.000179 8.959e-05 4.138e-05
D0,1 -5.863e-07 3.527e-07 1.929e-07 0.0002265 0.0001045 -2.743e-07 0.0001016 5.021e-05 2.438e-05
D0,2 2.099e-07 -9.673e-08 4.803e-07 6.024e-05 2.822e-05 -5.073e-05 0.0002416 9.416e-05 7.599e-06
D0,3 7.147e-07 -3.226e-07 -1.923e-09 0.000155 7.256e-05 8.514e-07 3.167e-05 3.286e-05 7.115e-06
D0,4 -6.182e-08 -3.054e-09 -7.226e-09 0.0002224 0.0001051 -2.269e-07 -3.752e-05 7.335e-06 1.428e-05
D0,5 2.478e-07 -8.479e-08 8.494e-09 0.0001095 5.866e-05 2.128e-06 0.0001623 7.468e-05 8.323e-05
D1 3.142e-05 1.51e-05 2.974e-05 5.796e-05 3.289e-05 3.202e-05 0.0001519 9.392e-05 1.257e-05
D1,2 1.136e-06 8.026e-07 -2.889e-05 0.000151 7.572e-05 -5.061e-05 5.695e-05 4.791e-05 1.777e-05
D1,3 3.869e-06 2.677e-06 1.157e-07 0.0001999 9.801e-05 5.65e-07 7.583e-05 5.308e-05 2.588e-05
D1,4 -3.346e-07 2.534e-08 4.347e-07 0.0002974 0.0001458 -5.523e-06 0.0001506 8.746e-05 4.17e-05
D1,5 1.342e-06 7.035e-07 -5.11e-07 0.0001425 7.258e-05 -1.222e-05 7.399e-05 5.345e-05 1.126e-05
D2 2.453e-05 3.202e-05 0.0001966 2.816e-05 9.865e-06 2.706e-05 0.0002257 0.0001065 0.0008037
D2,3 -1.385e-06 -7.34e-07 2.879e-07 6.236e-05 3.052e-05 -2.71e-05 7.241e-05 3.281e-05 2.203e-05
D2,4 1.198e-07 -6.95e-09 1.082e-06 0.0001209 5.94e-05 -1.878e-05 0.0001958 9.388e-05 -7.991e-05
D2,5 -4.803e-07 -1.929e-07 -1.272e-06 4.293e-05 2.22e-05 -5.405e-05 7.877e-06 9.427e-06 4.38e-05
D3 4.042e-05 1.937e-05 1.562e-08 3.808e-05 2.388e-05 1.133e-06 0.0001354 6.088e-05 1.333e-05
D3,4 4.079e-07 -2.318e-08 -4.332e-09 0.0002222 0.000108 2.496e-06 0.0001132 7.026e-05 1.22e-05
D3,5 -1.635e-06 -6.434e-07 5.092e-09 0.0001431 7.62e-05 1.388e-06 7.216e-05 4.019e-05 4.078e-05
D4 7.356e-08 2.485e-09 1.639e-08 3.873e-05 1.922e-05 8.598e-06 0.0002678 0.0001496 4.441e-05
D4,5 1.415e-07 -6.092e-09 1.914e-08 0.0001437 7.494e-05 -9.023e-06 0.0001517 7.418e-05 4.488e-05
D5 2.257e-06 1.909e-06 2.256e-08 0.0002281 0.0001347 3.422e-05 7.257e-05 3.757e-05 1.888e-05

Table A.8: Sobol variances for main effect and cardinality 2, for point 8.
Property Value for Level 2 (13 points) Value for Level 3 (85 points) Value for Level 4 (389 points)

Location P1 P2 P3 P1 P2 P3 P1 P2 P3

Mean 1.148 1.194 1.247 1.15 1.195 1.24 1.139 1.19 1.238
Variance 0.000126 8.86e-05 0.0002862 -0.0002491 -0.000142 -0.0004628 -0.0001152 2.301e-05 0.0008519
D0 1.207e-06 5.359e-07 2.107e-07 0.0001457 8.414e-05 1.069e-05 0.0002136 0.0001163 7.303e-05
D0,1 -7.003e-07 -5.189e-07 1.891e-06 0.0002575 0.0001442 -6.266e-06 0.0001208 6.819e-05 4.787e-05
D0,2 2.886e-07 8.9e-08 4.442e-06 6.208e-05 3.87e-05 -5.495e-05 0.0002716 0.00016 3.989e-05
D0,3 8.487e-07 3.404e-07 -1.393e-07 0.000174 0.0001004 -7.279e-08 2.971e-05 2.9e-05 1.518e-05
D0,4 -5.905e-08 -1.045e-07 -2.131e-07 0.0002464 0.000142 -2.959e-06 -5.401e-05 -1.674e-05 3.129e-05
D0,5 3.2e-07 1.259e-07 7.766e-09 0.0001186 7.048e-05 -2.084e-06 0.0002011 0.0001072 0.0001503
D1 4.133e-05 2.289e-05 4.568e-05 6.545e-05 4.202e-05 5.353e-05 0.0001574 0.0001111 2.138e-05
D1,2 1.266e-06 6.748e-07 -4.002e-05 0.0001638 9.81e-05 -6.168e-05 5.099e-05 5.275e-05 3.954e-05
D1,3 3.723e-06 2.581e-06 1.255e-06 0.0002261 0.0001316 -6.483e-06 8.446e-05 5.962e-05 4.32e-05
D1,4 -2.591e-07 -7.925e-07 1.92e-06 0.0003279 0.0001912 -1.629e-05 0.0001596 0.0001038 7.096e-05
D1,5 1.404e-06 9.548e-07 -6.997e-08 0.000153 8.942e-05 -2.756e-05 7.979e-05 5.971e-05 1.503e-05
D2 3.295e-05 3.47e-05 0.0002636 3.134e-05 1.477e-05 3.208e-05 0.0002602 0.0001635 0.0009792
D2,3 -1.535e-06 -4.427e-07 2.949e-06 6.436e-05 4.213e-05 -2.994e-05 8.32e-05 5.399e-05 5.027e-05
D2,4 1.068e-07 1.359e-07 4.51e-06 0.0001297 7.81e-05 -2.229e-05 0.0002115 0.0001362 -0.000101
D2,5 -5.788e-07 -1.638e-07 -1.644e-07 4.685e-05 2.576e-05 -6.449e-05 1.053e-05 1.71e-05 7.477e-05
D3 4.443e-05 2.605e-05 1.197e-07 4.208e-05 2.745e-05 8.25e-07 0.0001618 9.256e-05 2.22e-05
D3,4 3.14e-07 5.199e-07 -1.414e-07 0.0002442 0.0001436 2.82e-06 0.0001272 8.011e-05 2.181e-05
D3,5 -1.702e-06 -6.264e-07 5.155e-09 0.0001599 8.824e-05 -3.228e-06 8.911e-05 5.656e-05 6.631e-05
D4 5.973e-08 1.652e-07 2.273e-07 4.441e-05 2.385e-05 1.277e-05 0.0002921 0.0001765 7.68e-05
D4,5 1.184e-07 1.923e-07 7.885e-09 0.0001613 8.935e-05 -2.033e-05 0.0001783 0.0001034 7.353e-05
D5 2.438e-06 1.304e-06 1.236e-07 0.0002476 0.0001488 6.48e-05 8.858e-05 4.961e-05 3.14e-05
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Table A.9: Sobol variances for main effect and cardinality 2, for point 9.
Property Value for Level 2 (13 points) Value for Level 3 (85 points) Value for Level 4 (389 points)

Location P1 P2 P3 P1 P2 P3 P1 P2 P3

Mean 1.134 1.179 1.245 1.135 1.181 1.235 1.122 1.173 1.237
Variance 0.0001369 0.000106 0.0003749 -0.0002878 -0.0001802 -0.0005052 -0.0001662 -6.586e-06 0.001044
D0 1.637e-06 1.029e-06 1.104e-06 0.0001567 9.703e-05 1.826e-05 0.0002303 0.0001479 0.0001027
D0,1 -8.893e-07 -5.956e-07 4.445e-06 0.0002723 0.0001762 -1.249e-05 0.0001353 7.045e-05 7.67e-05
D0,2 4.643e-07 2.676e-07 9.905e-06 6.238e-05 4.419e-05 -5.5e-05 0.0002821 0.0001889 7.933e-05
D0,3 1.198e-06 7.627e-07 -6.517e-07 0.0001813 0.0001194 -2.151e-06 2.143e-05 2.213e-05 2.312e-05
D0,4 -6.342e-08 -8.95e-08 -8.498e-07 0.0002573 0.0001705 -6.728e-06 -6.771e-05 -3.722e-05 5.302e-05
D0,5 4.799e-07 2.902e-07 -1.942e-07 0.0001194 8.158e-05 -4.508e-06 0.0002215 0.0001366 0.0002239
D1 4.842e-05 2.696e-05 5.954e-05 6.42e-05 3.866e-05 8.062e-05 0.0001404 0.0001206 3.022e-05
D1,2 1.296e-06 8.658e-07 -4.608e-05 0.000169 0.0001138 -6.874e-05 3.48e-05 4.677e-05 6.664e-05
D1,3 3.345e-06 2.468e-06 3.031e-06 0.0002403 0.0001547 -1.994e-05 8.198e-05 5.408e-05 5.682e-05
D1,4 -1.771e-07 -2.896e-07 3.953e-06 0.0003414 0.0002236 -3.317e-05 0.0001511 0.0001056 0.0001037
D1,5 1.34e-06 9.392e-07 9.032e-07 0.0001549 0.0001023 -4.406e-05 7.088e-05 5.145e-05 1.502e-05
D2 3.69e-05 4.337e-05 0.0003211 3.337e-05 1.923e-05 4.31e-05 0.0002804 0.0002054 0.001155
D2,3 -1.747e-06 -1.109e-06 6.755e-06 6.359e-05 4.47e-05 -3.263e-05 8.364e-05 5.776e-05 7.294e-05
D2,4 9.246e-08 1.301e-07 8.809e-06 0.000134 9.285e-05 -2.611e-05 0.0002045 0.0001548 -0.0001134
D2,5 -6.996e-07 -4.219e-07 2.013e-06 5.174e-05 3.2e-05 -7.062e-05 6.567e-06 2.097e-06 9.169e-05
D3 4.426e-05 3.026e-05 4.928e-07 4.139e-05 2.982e-05 1.588e-06 0.0001739 0.0001066 2.864e-05
D3,4 2.386e-07 3.709e-07 -5.795e-07 0.0002525 0.000173 2.973e-08 0.0001315 8.431e-05 2.998e-05
D3,5 -1.805e-06 -1.203e-06 -1.324e-07 0.0001682 0.0001072 -1.122e-05 9.396e-05 6.149e-05 8.945e-05
D4 2.249e-08 5.568e-08 8.079e-07 4.741e-05 3.027e-05 1.72e-05 0.0002997 0.0002025 0.000112
D4,5 9.555e-08 1.411e-07 -1.727e-07 0.0001715 0.0001047 -3.324e-05 0.0001867 0.0001221 0.0001052
D5 2.503e-06 1.792e-06 6.862e-07 0.0002509 0.0001622 9.693e-05 9.706e-05 5.772e-05 4.566e-05

Table A.10: Sobol variances for main effect and cardinality 2, for point 10.
Property Value for Level 2 (13 points) Value for Level 3 (85 points) Value for Level 4 (389 points)

Location P1 P2 P3 P1 P2 P3 P1 P2 P3

Mean 1.121 1.165 1.243 1.123 1.166 1.23 1.107 1.157 1.234
Variance 0.0001396 0.0001295 0.0004422 -0.000325 -0.0002152 -0.0004767 -0.0002389 -3.163e-05 0.001203
D0 2.811e-06 1.422e-06 2.989e-06 0.0001531 0.0001051 2.553e-05 0.0002343 0.0001883 0.0001244
D0,1 -1.224e-06 -5.37e-07 6.944e-06 0.0002738 0.0002072 -1.379e-05 0.0001545 8.38e-05 0.0001039
D0,2 7.716e-07 4.117e-07 1.43e-05 6.203e-05 4.752e-05 -4.85e-05 0.0002659 0.0002193 9.729e-05
D0,3 1.764e-06 9.47e-07 -1.262e-06 0.0001796 0.0001358 -3.31e-06 3.411e-06 1.966e-05 3.175e-05
D0,4 -2.001e-07 -1.236e-07 -1.855e-06 0.0002565 0.0001971 -8.263e-06 -8.567e-05 -5.824e-05 6.677e-05
D0,5 7.597e-07 3.57e-07 -4.617e-07 0.00012 8.953e-05 -3.536e-06 0.0002305 0.0001806 0.0002816
D1 5.306e-05 3.556e-05 6.788e-05 5.665e-05 4.244e-05 0.0001024 0.0001022 0.0001322 3.531e-05
D1,2 1.128e-06 9.72e-07 -4.585e-05 0.0001637 0.000131 -6.5e-05 1.041e-06 4.368e-05 8.713e-05
D1,3 2.578e-06 2.236e-06 4.045e-06 0.0002418 0.0001815 -3.096e-05 6.977e-05 6.104e-05 6.143e-05
D1,4 -2.925e-07 -2.918e-07 5.947e-06 0.0003362 0.0002587 -4.81e-05 0.0001287 0.0001159 0.0001251
D1,5 1.11e-06 8.429e-07 1.48e-06 0.0001529 0.0001104 -5.549e-05 3.989e-05 5.403e-05 8.591e-06
D2 3.688e-05 5.326e-05 0.0003624 3.708e-05 2.432e-05 5.942e-05 0.000276 0.000246 0.001306
D2,3 -1.626e-06 -1.714e-06 8.33e-06 5.933e-05 4.81e-05 -3.035e-05 7.354e-05 6.923e-05 7.478e-05
D2,4 1.845e-07 2.237e-07 1.225e-05 0.0001331 0.0001079 -2.475e-05 0.0001682 0.0001757 -0.0001204
D2,5 -7.003e-07 -6.462e-07 3.048e-06 6.163e-05 3.815e-05 -6.599e-05 -8.387e-06 -3.186e-06 9.503e-05
D3 4.115e-05 3.536e-05 8.01e-07 3.959e-05 3.275e-05 2.673e-06 0.0001677 0.0001292 3.075e-05
D3,4 4.216e-07 5.145e-07 -1.08e-06 0.0002453 0.0002037 -2.855e-06 0.0001186 9.484e-05 3.277e-05
D3,5 -1.601e-06 -1.486e-06 -2.689e-07 0.0001728 0.0001259 -1.685e-05 8.895e-05 7.938e-05 0.000102
D4 4.834e-08 7.743e-08 1.738e-06 4.807e-05 3.699e-05 2.164e-05 0.0002856 0.0002335 0.0001351
D4,5 1.816e-07 1.94e-07 -3.954e-07 0.0001779 0.0001197 -4.093e-05 0.0001799 0.0001528 0.0001307
D5 2.353e-06 1.89e-06 1.225e-06 0.0002342 0.0001835 0.0001232 9.816e-05 7.363e-05 5.78e-05
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Table A.11: Sobol variances for main effect and cardinality 2, for point 11.
Property Value for Level 2 (13 points) Value for Level 3 (85 points) Value for Level 4 (389 points)

Location P1 P2 P3 P1 P2 P3 P1 P2 P3

Mean 1.109 1.151 1.239 1.112 1.151 1.228 1.091 1.141 1.23
Variance 0.0001305 0.0001557 0.0004884 -0.000358 -0.000261 -0.000337 -0.0003659 -5.274e-05 0.00132
D0 4.479e-06 1.669e-06 5.804e-06 0.0001384 0.0001193 2.395e-05 0.000226 0.0002235 0.0001504
D0,1 -1.071e-06 -6.06e-07 6.696e-06 0.0002601 0.0002385 -1.314e-06 0.0001836 0.0001014 0.0001052
D0,2 8.827e-07 4.708e-07 1.296e-05 5.836e-05 5.118e-05 -3.818e-05 0.0002238 0.0002473 6.673e-05
D0,3 1.874e-06 1.077e-06 -1.455e-06 0.0001655 0.0001552 -4.342e-07 -2.718e-05 1.627e-05 2.279e-05
D0,4 -3.534e-07 -1.426e-07 -2.059e-06 0.0002401 0.0002228 -3.239e-06 -0.0001046 -7.644e-05 4.583e-05
D0,5 1.059e-06 4.179e-07 -6.505e-07 0.0001165 0.0001006 2.264e-06 0.0002275 0.0002227 0.0003099
D1 5.528e-05 4.592e-05 7.285e-05 4.609e-05 4.962e-05 8.747e-05 6.509e-05 0.0001393 3.394e-05
D1,2 6.528e-07 9.574e-07 -3.849e-05 0.0001464 0.0001454 -4.257e-05 -4.141e-05 3.999e-05 7.841e-05
D1,3 1.386e-06 2.19e-06 4.323e-06 0.0002283 0.000208 -2.099e-05 5.381e-05 6.931e-05 5.681e-05
D1,4 -2.613e-07 -2.9e-07 6.117e-06 0.0003067 0.0002898 -4.247e-05 8.653e-05 0.0001256 0.0001166
D1,5 7.833e-07 8.498e-07 1.932e-06 0.0001467 0.000121 -4.831e-05 -1.115e-05 5.816e-05 4.725e-07
D2 3.232e-05 6.431e-05 0.0003944 3.965e-05 2.775e-05 8.177e-05 0.0002509 0.000281 0.001451
D2,3 -1.142e-06 -1.701e-06 8.366e-06 4.927e-05 5.324e-05 -2.283e-05 5.348e-05 8.145e-05 5.234e-05
D2,4 2.154e-07 2.253e-07 1.184e-05 0.0001198 0.0001183 -1.439e-05 9.903e-05 0.0001898 -0.000132
D2,5 -6.455e-07 -6.601e-07 3.739e-06 7.178e-05 4.237e-05 -4.811e-05 -2.126e-05 1.176e-06 7.741e-05
D3 3.339e-05 3.977e-05 9.629e-07 3.674e-05 3.662e-05 1.468e-06 0.0001438 0.0001531 3.765e-05
D3,4 4.572e-07 5.153e-07 -1.33e-06 0.0002127 0.0002285 3.15e-06 8.757e-05 0.0001059 2.725e-05
D3,5 -1.37e-06 -1.51e-06 -4.2e-07 0.0001683 0.0001441 -9.035e-06 7.692e-05 9.841e-05 0.0001144
D4 9.558e-08 9.108e-08 2.191e-06 4.613e-05 4.334e-05 1.855e-05 0.0002444 0.0002574 0.0001264
D4,5 2.584e-07 2e-07 -5.943e-07 0.0001799 0.0001378 -3.604e-05 0.000149 0.0001809 0.0001486
D5 2.224e-06 1.977e-06 1.197e-06 0.0001885 0.0002003 0.0001179 9.436e-05 8.982e-05 6.85e-05

Table A.12: Sobol variances for main effect and cardinality 2, for point 12.
Property Value for Level 2 (13 points) Value for Level 3 (85 points) Value for Level 4 (389 points)

Location P1 P2 P3 P1 P2 P3 P1 P2 P3

Mean 1.1 1.137 1.234 1.103 1.137 1.226 1.076 1.126 1.226
Variance 0.0001067 0.0001688 0.0005213 -0.0003478 -0.0002937 -0.0002181 -0.0006199 -0.0001024 0.001447
D0 7.545e-06 1.877e-06 5.695e-06 0.0001071 0.0001324 1.364e-05 0.0002043 0.0002458 0.000186
D0,1 -3.412e-07 -6.604e-07 5.259e-06 0.0002185 0.0002532 8.143e-06 0.0002162 0.000117 8.73e-05
D0,2 8.027e-07 5.504e-07 9.128e-06 5.025e-05 5.106e-05 -3.167e-05 0.0001632 0.0002605 3.518e-05
D0,3 1.602e-06 1.301e-06 -5.937e-07 0.0001342 0.0001636 1.424e-07 -5.263e-05 1.117e-05 4.599e-06
D0,4 -5.926e-07 -1.493e-07 -8.193e-07 0.0001982 0.000234 -1.054e-06 -0.0001145 -8.788e-05 1.752e-05
D0,5 1.518e-06 5.323e-07 6.125e-08 9.992e-05 0.000101 1.634e-06 0.0002191 0.0002463 0.000329
D1 5.465e-05 5.378e-05 8.44e-05 3.3e-05 5.107e-05 8.608e-05 7.677e-05 0.0001314 3.114e-05
D1,2 8.823e-08 8.43e-07 -3.566e-05 0.0001163 0.0001503 -1.69e-05 -6.246e-05 3.01e-05 5.856e-05
D1,3 1.761e-07 1.992e-06 2.32e-06 0.0001897 0.0002226 -1.042e-05 3.716e-05 7.144e-05 5.515e-05
D1,4 -6.514e-08 -2.287e-07 3.201e-06 0.0002453 0.0003039 -3.782e-05 1.918e-05 0.0001237 9.134e-05
D1,5 1.668e-07 8.153e-07 -2.393e-07 0.0001241 0.0001217 -5.031e-05 -7.752e-05 5.573e-05 -3.018e-06
D2 2.067e-05 6.887e-05 0.0004383 3.925e-05 2.95e-05 0.0001118 0.0002158 0.0002977 0.001594
D2,3 -4.142e-07 -1.66e-06 4.026e-06 2.985e-05 5.205e-05 -1.558e-05 3.004e-05 8.513e-05 4.027e-05
D2,4 1.532e-07 1.906e-07 5.556e-06 8.738e-05 0.0001209 5.847e-07 1.162e-06 0.0001856 -0.0001394
D2,5 -3.925e-07 -6.795e-07 -4.154e-07 7.923e-05 4.62e-05 -2.901e-05 -2.381e-05 2.867e-06 7.545e-05
D3 1.962e-05 4.03e-05 6.046e-07 2.87e-05 3.674e-05 2.648e-07 0.0001087 0.0001687 5.098e-05
D3,4 3.058e-07 4.504e-07 -3.614e-07 0.0001483 0.0002374 1.33e-05 4.377e-05 0.0001135 2.524e-05
D3,5 -7.832e-07 -1.606e-06 2.702e-08 0.0001437 0.0001519 -1.547e-06 5.145e-05 0.0001064 0.0001348
D4 1.361e-07 5.626e-08 5.155e-07 4.444e-05 4.636e-05 2.016e-05 0.0002133 0.0002719 0.0001058
D4,5 2.897e-07 1.844e-07 3.728e-08 0.0001667 0.0001472 -3.248e-05 8.453e-05 0.000193 0.0001509
D5 1.561e-06 2.062e-06 2.491e-07 0.0001187 0.0002098 9.64e-05 8.572e-05 0.0001003 7.661e-05
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Table A.13: Sobol variances for main effect and cardinality 2, for point 13.
Property Value for Level 2 (13 points) Value for Level 3 (85 points) Value for Level 4 (389 points)

Location P1 P2 P3 P1 P2 P3 P1 P2 P3

Mean 1.093 1.124 1.23 1.097 1.124 1.222 1.063 1.111 1.223
Variance 8.332e-05 0.0001722 0.0005752 -0.0002745 -0.0003217 -0.0001989 -0.001002 -0.0001707 0.001577
D0 1.358e-05 2.892e-06 4.504e-06 6.495e-05 0.0001335 7.915e-06 0.0001919 0.0002539 0.0002236
D0,1 1.911e-06 -7.529e-07 5.294e-06 0.0001539 0.0002582 1.413e-05 0.0002224 0.0001349 7.662e-05
D0,2 5.149e-07 7.519e-07 8.035e-06 4.409e-05 5.147e-05 -2.349e-05 9.532e-05 0.0002523 3.059e-05
D0,3 5.409e-07 1.728e-06 -2.811e-07 9.554e-05 0.0001655 1.775e-06 -5.503e-05 -1.331e-06 -1.764e-06
D0,4 -7.799e-07 -2.46e-07 -6.892e-07 0.0001437 0.0002377 1.612e-06 -0.0001166 -0.0001013 -1.755e-06
D0,5 1.378e-06 7.455e-07 3.786e-07 7.018e-05 0.0001022 -4.298e-06 0.0002149 0.0002578 0.0003714
D1 5.137e-05 5.865e-05 9.6e-05 2.115e-05 4.739e-05 9.661e-05 0.0001594 0.0001027 3.652e-05
D1,2 -1.555e-07 6.712e-07 -3.255e-05 8.975e-05 0.0001484 4.786e-06 -4.222e-05 6.883e-06 5.023e-05
D1,3 -1.634e-07 1.542e-06 1.139e-06 0.0001418 0.0002279 -7.358e-06 2.27e-05 6.446e-05 5.249e-05
D1,4 2.356e-07 -2.196e-07 2.792e-06 0.0001768 0.000306 -4.047e-05 -5.138e-05 0.0001104 6.918e-05
D1,5 -4.161e-07 6.656e-07 -1.534e-06 8.924e-05 0.0001216 -7.01e-05 -0.0001347 3.43e-05 -2.076e-06
D2 7.091e-06 6.751e-05 0.0004866 3.761e-05 3.223e-05 0.0001423 0.0001845 0.0002918 0.001712
D2,3 -4.403e-08 -1.54e-06 1.729e-06 7.092e-06 5.013e-05 -1.014e-05 5.328e-06 7.919e-05 3.497e-05
D2,4 6.349e-08 2.193e-07 4.237e-06 4.385e-05 0.0001223 1.537e-05 -9.607e-05 0.0001579 -0.0001452
D2,5 -1.121e-07 -6.646e-07 -2.328e-06 8.213e-05 5.433e-05 -1.265e-05 -7.788e-06 -5.172e-06 9.483e-05
D3 7.589e-06 3.896e-05 1.236e-06 2.626e-05 3.556e-05 1.103e-06 7.428e-05 0.0001669 6.748e-05
D3,4 6.669e-08 5.038e-07 -1.483e-07 7.229e-05 0.0002372 2.248e-05 -8.004e-06 0.0001074 2.436e-05
D3,5 -1.178e-07 -1.527e-06 8.144e-08 0.0001073 0.0001584 -8.244e-07 1.679e-05 0.000105 0.0001557
D4 1.093e-07 7.413e-08 3.636e-07 4.547e-05 4.756e-05 2.43e-05 0.0002241 0.0002709 9.86e-05
D4,5 1.698e-07 2.174e-07 1.996e-07 0.0001375 0.0001544 -3.896e-05 6.89e-06 0.0001902 0.0001635
D5 4.886e-07 2.032e-06 1.782e-07 5.57e-05 0.0002038 8.411e-05 8.379e-05 0.0001029 8.519e-05

Table A.14: Sobol variances for main effect and cardinality 2, for point 14.
Property Value for Level 2 (13 points) Value for Level 3 (85 points) Value for Level 4 (389 points)

Location P1 P2 P3 P1 P2 P3 P1 P2 P3

Mean 1.088 1.113 1.226 1.094 1.113 1.216 1.052 1.096 1.219
Variance 7.358e-05 0.0001649 0.0006455 -0.0001774 -0.0003467 -0.0002173 -0.001424 -0.0002796 0.001704
D0 2.051e-05 4.266e-06 4.941e-06 2.721e-05 0.0001264 7.65e-06 0.0002231 0.0002516 0.0002573
D0,1 6.062e-06 -6.23e-07 6.592e-06 9.591e-05 0.0002537 2.206e-05 0.0001941 0.0001673 7.731e-05
D0,2 1.628e-06 8.17e-07 8.638e-06 4.095e-05 5.13e-05 -1.52e-05 3.79e-05 0.0002211 3.129e-05
D0,3 -6.051e-07 1.922e-06 -2.265e-07 6.222e-05 0.0001597 5.238e-06 -4.39e-05 -2.364e-05 -6.548e-06
D0,4 -1.179e-06 -4.111e-07 -1.253e-06 9.849e-05 0.0002319 6.89e-06 -0.0001206 -0.0001155 -1.472e-05
D0,5 7.418e-07 1e-06 3.878e-07 4.554e-05 0.0001032 -1.374e-05 0.000213 0.0002598 0.0004164
D1 4.393e-05 6.17e-05 0.0001053 2.265e-05 4.148e-05 0.0001097 0.0002697 6.709e-05 4.401e-05
D1,2 -9.29e-07 3.532e-07 -2.804e-05 7.364e-05 0.0001372 2.677e-05 3.079e-06 -2.575e-05 6.558e-05
D1,3 3.453e-07 8.309e-07 7.35e-07 9.994e-05 0.0002234 -4.768e-06 8.702e-06 5.503e-05 5.073e-05
D1,4 6.729e-07 -1.777e-07 4.066e-06 0.000126 0.0002923 -4.546e-05 -9.203e-05 8.739e-05 6.465e-05
D1,5 -4.234e-07 4.323e-07 -1.259e-06 5.674e-05 0.0001203 -9.988e-05 -0.0001712 -3.86e-06 -3.258e-06
D2 4.226e-07 6.045e-05 0.0005376 3.746e-05 3.398e-05 0.0001687 0.0001635 0.0002613 0.001831
D2,3 9.272e-08 -1.09e-06 9.631e-07 -9.964e-06 4.488e-05 -4.739e-06 -8.643e-06 6.527e-05 3.385e-05
D2,4 1.807e-07 2.331e-07 5.327e-06 8.556e-06 0.0001146 3.205e-05 -0.0001688 0.0001046 -0.0001561
D2,5 -1.137e-07 -5.67e-07 -1.649e-06 7.769e-05 6.48e-05 4.412e-06 2.678e-05 -1.135e-05 0.0001291
D3 1.985e-06 3.412e-05 2.226e-06 4.497e-05 3.393e-05 2.128e-06 5.12e-05 0.0001512 8.042e-05
D3,4 -6.716e-08 5.483e-07 -1.397e-07 1.133e-05 0.0002186 3.384e-05 -6.419e-05 8.768e-05 2.232e-05
D3,5 4.226e-08 -1.334e-06 4.324e-08 7.457e-05 0.0001604 -3.296e-06 -1.221e-05 9.781e-05 0.0001784
D4 1.574e-07 1.301e-07 7.922e-07 4.776e-05 4.63e-05 2.977e-05 0.0002758 0.0002477 0.0001086
D4,5 8.234e-08 2.853e-07 2.392e-07 0.0001035 0.0001605 -5.036e-05 -5.594e-05 0.0001701 0.0001956
D5 5.236e-08 1.997e-06 1.439e-07 2.306e-05 0.000178 8.447e-05 0.0001012 0.0001015 9.421e-05
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Table A.15: Sobol variances for main effect and cardinality 2, for point 15.
Property Value for Level 2 (13 points) Value for Level 3 (85 points) Value for Level 4 (389 points)

Location P1 P2 P3 P1 P2 P3 P1 P2 P3

Mean 1.086 1.103 1.223 1.094 1.104 1.212 1.045 1.082 1.216
Variance 7.72e-05 0.00014 0.0007122 -0.0001321 -0.000338 -0.0002224 -0.001729 -0.0004771 0.001833
D0 2.532e-05 6.492e-06 5.156e-06 7.144e-06 0.0001064 7.976e-06 0.0002968 0.0002323 0.0002876
D0,1 9.678e-06 -1.262e-08 6.858e-06 6.264e-05 0.000226 3.437e-05 0.0001636 0.0002089 7.739e-05
D0,2 4.783e-06 3.872e-07 7.561e-06 3.447e-05 4.623e-05 -1.133e-05 -4.674e-06 0.0001768 3.826e-05
D0,3 -1.368e-06 1.768e-06 5.814e-08 3.821e-05 0.0001382 1.015e-05 -3.437e-05 -4.843e-05 -9.472e-06
D0,4 -2.197e-06 -6.525e-07 -1.533e-06 6.515e-05 0.0002047 1.501e-05 -0.0001265 -0.0001218 -2.078e-05
D0,5 2.673e-07 1.388e-06 2.982e-07 3.432e-05 9.409e-05 -1.425e-05 0.0002211 0.0002537 0.0004512
D1 3.562e-05 6.186e-05 0.0001125 4.019e-05 3.356e-05 0.0001187 0.0003703 6.145e-05 5.015e-05
D1,2 -3.284e-06 2.024e-09 -2.399e-05 6.505e-05 0.0001143 4.573e-05 5.286e-05 -4.71e-05 8.481e-05
D1,3 9.392e-07 9.245e-09 -1.845e-07 7.351e-05 0.0001979 1.84e-06 1.83e-06 4.606e-05 5.054e-05
D1,4 1.508e-06 -3.411e-09 4.865e-06 9.777e-05 0.0002508 -4.553e-05 -0.0001002 4.176e-05 6.613e-05
D1,5 -1.835e-07 7.257e-09 -9.464e-07 3.511e-05 0.0001088 -0.0001111 -0.0001869 -5.757e-05 -6.434e-06
D2 4.138e-06 4.354e-05 0.0005926 4.625e-05 3.33e-05 0.0001829 0.0001617 0.0002236 0.001955
D2,3 4.642e-07 -2.836e-07 -2.034e-07 -2.228e-05 3.027e-05 -3.516e-06 -3.609e-06 4.762e-05 3.552e-05
D2,4 7.454e-07 1.046e-07 5.364e-06 -1.309e-05 8.907e-05 4.553e-05 -0.0002027 2.603e-05 -0.0001642
D2,5 -9.072e-08 -2.226e-07 -1.043e-06 7.126e-05 7.27e-05 1.948e-05 7.405e-05 -9.855e-06 0.0001699
D3 4.855e-07 2.386e-05 3.392e-06 7.131e-05 2.855e-05 2.65e-06 5.061e-05 0.000121 9.167e-05
D3,4 -2.132e-07 4.779e-07 4.124e-08 -2.327e-05 0.000169 4.492e-05 -0.0001042 5.413e-05 2.411e-05
D3,5 2.594e-08 -1.017e-06 -8.023e-09 5.461e-05 0.0001463 -1.508e-06 -2.633e-05 8.054e-05 0.0001959
D4 4.358e-07 2.075e-07 1.184e-06 4.993e-05 4.425e-05 3.516e-05 0.0003307 0.0002218 0.000121
D4,5 4.166e-08 3.751e-07 2.115e-07 8.026e-05 0.0001575 -5.555e-05 -8.572e-05 0.0001199 0.0002284
D5 7.57e-08 1.746e-06 1.415e-07 1.174e-05 0.000129 8.72e-05 0.0001285 9.505e-05 0.0001055

Table A.16: Sobol variances for main effect and cardinality 2, for point 16.
Property Value for Level 2 (13 points) Value for Level 3 (85 points) Value for Level 4 (389 points)

Location P1 P2 P3 P1 P2 P3 P1 P2 P3

Mean 1.085 1.096 1.218 1.093 1.098 1.208 1.042 1.069 1.212
Variance 8.695e-05 0.0001074 0.0007721 -0.0001195 -0.0002754 -0.0002919 -0.001896 -0.00081 0.001951
D0 2.717e-05 1.106e-05 5.916e-06 4.546e-06 7.427e-05 8.901e-06 0.0003648 0.0002112 0.000304
D0,1 1.164e-05 1.594e-06 7.466e-06 4.766e-05 0.0001743 4.139e-05 0.0001487 0.0002309 7.712e-05
D0,2 8.163e-06 -6.111e-07 6.712e-06 2.618e-05 4.134e-05 -1.536e-05 -2.764e-05 0.000123 5.81e-05
D0,3 -1.408e-06 1.028e-06 3.776e-07 2.298e-05 0.0001074 1.338e-05 -2.539e-05 -5.822e-05 -3.556e-06
D0,4 -2.891e-06 -9.07e-07 -1.891e-06 4.17e-05 0.0001609 1.93e-05 -0.0001261 -0.0001172 -1.986e-05
D0,5 7.563e-08 1.473e-06 3.442e-07 3.019e-05 7.45e-05 -1.263e-05 0.000237 0.0002415 0.0004667
D1 3.212e-05 5.925e-05 0.0001155 5.755e-05 2.552e-05 0.0001238 0.0004457 0.0001174 5.394e-05
D1,2 -5.996e-06 1.899e-07 -1.895e-05 5.994e-05 9.029e-05 5.249e-05 9.68e-05 -3.929e-05 0.0001007
D1,3 1.035e-06 -3.194e-07 -1.066e-06 5.965e-05 0.0001585 4.715e-06 -9.576e-07 3.494e-05 4.78e-05
D1,4 2.124e-06 2.818e-07 5.339e-06 8.3e-05 0.000194 -4.916e-05 -0.0001029 -2.269e-05 6.692e-05
D1,5 -5.556e-08 -4.578e-07 -9.72e-07 2.368e-05 8.585e-05 -0.0001102 -0.0001962 -0.0001147 -1.267e-05
D2 1.204e-05 2.207e-05 0.0006441 5.753e-05 3.15e-05 0.0001758 0.0001708 0.0001916 0.002072
D2,3 7.256e-07 1.225e-07 -9.587e-07 -2.52e-05 1.298e-05 -6.8e-06 1.279e-05 2.467e-05 3.782e-05
D2,4 1.489e-06 -1.08e-07 4.8e-06 -2.154e-05 5.355e-05 5.246e-05 -0.0002109 -6.316e-05 -0.0001614
D2,5 -3.896e-08 1.755e-07 -8.739e-07 6.893e-05 7.797e-05 2.457e-05 0.0001157 1.261e-06 0.0001949
D3 1.962e-07 1.152e-05 4.185e-06 8.909e-05 2.326e-05 2.881e-06 5.746e-05 8.666e-05 9.662e-05
D3,4 -2.57e-07 1.818e-07 2.7e-07 -3.941e-05 0.0001016 4.975e-05 -0.0001218 1.183e-05 2.666e-05
D3,5 6.722e-09 -2.952e-07 -4.916e-08 4.668e-05 0.0001185 -1.509e-06 -3.466e-05 4.643e-05 0.0001974
D4 6.334e-07 1.735e-07 1.514e-06 5.272e-05 4.383e-05 4.656e-05 0.0003674 0.0002278 0.0001359
D4,5 1.38e-08 2.605e-07 2.462e-07 7.091e-05 0.0001425 -6.223e-05 -0.0001018 4.461e-05 0.0002424
D5 1.739e-07 7.461e-07 1.28e-07 9.078e-06 7.244e-05 8.843e-05 0.0001492 8.743e-05 0.0001085
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Table A.17: Sobol variances for main effect and cardinality 2, for point 17.
Property Value for Level 2 (13 points) Value for Level 3 (85 points) Value for Level 4 (389 points)

Location P1 P2 P3 P1 P2 P3 P1 P2 P3

Mean 1.084 1.09 1.213 1.093 1.094 1.203 1.04 1.057 1.206
Variance 9.355e-05 8.242e-05 0.0008165 -0.000116 -0.0001859 -0.0004093 -0.001961 -0.001225 0.002036
D0 2.716e-05 1.782e-05 7.419e-06 8.046e-06 4.056e-05 8.465e-06 0.0003875 0.0002109 0.0002992
D0,1 1.221e-05 4.684e-06 7.517e-06 4.443e-05 0.0001166 4.154e-05 0.0001409 0.0002133 8.199e-05
D0,2 9.934e-06 -9.2e-07 5.186e-06 2.239e-05 3.969e-05 -3.075e-05 -4.059e-05 6.738e-05 9.356e-05
D0,3 -1.286e-06 -1.283e-07 8.325e-07 1.642e-05 7.485e-05 1.093e-05 -2.53e-05 -4.984e-05 7.877e-06
D0,4 -2.548e-06 -1.068e-06 -1.91e-06 3.152e-05 0.0001168 1.99e-05 -0.0001277 -0.0001134 -3.036e-05
D0,5 3.542e-08 1.059e-06 4.27e-07 2.954e-05 5.261e-05 -9.597e-06 0.0002373 0.0002311 0.000476
D1 3.238e-05 5.082e-05 0.0001139 6.521e-05 2.453e-05 0.0001235 0.0004757 0.0002174 5.409e-05
D1,2 -7.732e-06 4.914e-07 -1.365e-05 5.967e-05 7.538e-05 4.6e-05 0.0001211 -9.214e-06 0.000108
D1,3 1.001e-06 6.851e-08 -2.19e-06 5.632e-05 0.0001179 -4.039e-07 -3.213e-06 2.036e-05 4.313e-05
D1,4 1.983e-06 5.706e-07 5.025e-06 7.957e-05 0.0001452 -4.996e-05 -0.0001073 -7.509e-05 6.83e-05
D1,5 -2.757e-08 -5.658e-07 -1.123e-06 1.982e-05 6.14e-05 -0.0001032 -0.0002017 -0.000155 -1.645e-05
D2 1.744e-05 5.478e-06 0.0006871 6.556e-05 3.158e-05 0.0001577 0.0001727 0.0001682 0.00215
D2,3 8.147e-07 -1.346e-08 -1.511e-06 -2.322e-05 -2.186e-06 -1.421e-05 2.114e-05 1.996e-06 3.802e-05
D2,4 1.614e-06 -1.121e-07 3.467e-06 -2.075e-05 2.072e-05 5.137e-05 -0.0002132 -0.0001437 -0.0001454
D2,5 -2.244e-08 1.111e-07 -7.751e-07 6.809e-05 7.791e-05 2.27e-05 0.0001306 2.566e-05 0.0001955
D3 1.217e-07 3.698e-06 4.266e-06 9.973e-05 3.197e-05 2.58e-06 6.081e-05 5.741e-05 9.823e-05
D3,4 -2.09e-07 -1.562e-08 5.565e-07 -4.535e-05 3.782e-05 4.636e-05 -0.0001304 -3.933e-05 2.883e-05
D3,5 2.905e-09 1.549e-08 -1.244e-07 4.462e-05 8.611e-05 -6.319e-06 -4.098e-05 1.036e-05 0.0001872
D4 4.871e-07 1.376e-07 1.495e-06 5.474e-05 4.612e-05 5.386e-05 0.0003813 0.0002679 0.0001471
D4,5 5.756e-09 1.29e-07 2.854e-07 6.848e-05 0.0001157 -6.445e-05 -0.0001131 -2.795e-05 0.0002587
D5 1.953e-07 1.605e-07 2.516e-07 8.613e-06 3.28e-05 8.613e-05 0.0001539 9.6e-05 0.000111

Table A.18: Sobol variances for main effect and cardinality 2, for point 18.
Property Value for Level 2 (13 points) Value for Level 3 (85 points) Value for Level 4 (389 points)

Location P1 P2 P3 P1 P2 P3 P1 P2 P3

Mean 1.083 1.087 1.209 1.093 1.094 1.199 1.04 1.048 1.2
Variance 9.617e-05 7.307e-05 0.0008436 -0.0001112 -0.0001314 -0.0005758 -0.001969 -0.001581 0.002095
D0 2.684e-05 2.354e-05 8.616e-06 9.233e-06 1.449e-05 7.611e-06 0.0003936 0.0002643 0.0002962
D0,1 1.222e-05 8.345e-06 7.567e-06 4.305e-05 7.415e-05 4.521e-05 0.0001379 0.0001785 8.221e-05
D0,2 1.044e-05 1.148e-06 3.813e-06 2.136e-05 3.596e-05 -5.681e-05 -4.545e-05 2.144e-05 0.0001105
D0,3 -1.116e-06 -1.133e-06 3.494e-07 1.393e-05 4.847e-05 1.085e-05 -2.696e-05 -3.826e-05 -6.303e-06
D0,4 -2.175e-06 -1.691e-06 -2.244e-06 2.764e-05 8.039e-05 2.33e-05 -0.0001278 -0.000118 -4.809e-05
D0,5 5.8e-08 4.398e-07 3.327e-07 2.869e-05 3.78e-05 -4.517e-06 0.0002296 0.0002282 0.0004685
D1 3.312e-05 4.007e-05 0.0001089 6.929e-05 3.662e-05 0.0001124 0.0004882 0.0003244 4.78e-05
D1,2 -8.431e-06 -7.682e-07 -8.113e-06 5.906e-05 6.496e-05 3.59e-05 0.0001296 3.234e-05 0.0001001
D1,3 9.009e-07 7.584e-07 -7.433e-07 5.478e-05 8.549e-05 5.919e-06 -1.795e-06 8.439e-06 4.044e-05
D1,4 1.756e-06 1.132e-06 4.774e-06 7.781e-05 0.0001099 -4.266e-05 -0.0001083 -9.336e-05 6.289e-05
D1,5 -4.682e-08 -2.943e-07 -7.077e-07 1.764e-05 3.987e-05 -0.0001023 -0.0002044 -0.0001771 -1.493e-05
D2 1.987e-05 1.056e-07 0.000712 6.781e-05 3.824e-05 0.000137 0.0001728 0.0001588 0.002219
D2,3 7.701e-07 1.043e-07 -3.746e-07 -2.386e-05 -1.932e-05 -3.1e-05 2.396e-05 -4.938e-06 3.143e-05
D2,4 1.501e-06 1.557e-07 2.406e-06 -2.18e-05 -7.11e-06 4.48e-05 -0.000214 -0.0001893 -0.0001302
D2,5 -4.002e-08 -4.048e-08 -3.567e-07 6.71e-05 7.228e-05 1.972e-05 0.0001322 6.335e-05 0.0001748
D3 8.61e-08 9.115e-07 5.039e-06 0.0001043 5.76e-05 3.727e-06 6.106e-05 4.724e-05 0.0001006
D3,4 -1.604e-07 -1.537e-07 2.204e-07 -4.921e-05 -8.605e-06 5.083e-05 -0.0001319 -8.658e-05 2.1e-05
D3,5 4.277e-09 3.996e-08 -3.268e-08 4.338e-05 6.188e-05 1.297e-07 -4.199e-05 -1.268e-05 0.0001973
D4 3.885e-07 2.973e-07 1.739e-06 5.642e-05 4.877e-05 4.814e-05 0.0003838 0.0003184 0.0001417
D4,5 8.334e-09 5.965e-08 2.099e-07 6.654e-05 8.821e-05 -5.789e-05 -0.000118 -7.05e-05 0.0002709
D5 1.705e-07 4.604e-08 2.359e-07 8.345e-06 1.489e-05 7.342e-05 0.0001513 0.0001186 0.0001123
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Table A.19: Sobol variances for main effect and cardinality 2, for point 19.
Property Value for Level 2 (13 points) Value for Level 3 (85 points) Value for Level 4 (389 points)

Location P1 P2 P3 P1 P2 P3 P1 P2 P3

Mean 1.083 1.085 1.204 1.093 1.094 1.195 1.039 1.043 1.193
Variance 9.766e-05 7.824e-05 0.0008565 -0.000108 -0.0001185 -0.0007327 -0.001984 -0.001824 0.002219
D0 2.695e-05 2.668e-05 6.868e-06 9.081e-06 3.964e-06 6.16e-06 0.0004001 0.00034 0.0003098
D0,1 1.264e-05 1.088e-05 6.418e-06 4.189e-05 5.189e-05 4.919e-05 0.0001356 0.0001563 8.69e-05
D0,2 1.086e-05 5.117e-06 2.964e-06 2.158e-05 2.765e-05 -7.5e-05 -5.069e-05 -9.719e-06 0.0001194
D0,3 -1.081e-06 -1.445e-06 2.301e-09 1.365e-05 2.888e-05 1.383e-05 -2.754e-05 -2.7e-05 -1.599e-05
D0,4 -1.996e-06 -2.771e-06 -2.24e-06 2.686e-05 5.127e-05 2.722e-05 -0.0001291 -0.0001205 -5.692e-05
D0,5 9.416e-08 1.357e-07 2.181e-07 2.798e-05 3.092e-05 -3.081e-06 0.0002236 0.0002375 0.000475
D1 3.263e-05 3.341e-05 0.0001112 7.001e-05 5.359e-05 0.000106 0.0004932 0.0004127 4.471e-05
D1,2 -9.066e-06 -3.632e-06 -6.483e-06 5.803e-05 5.854e-05 3.343e-05 0.0001307 7.73e-05 9.1e-05
D1,3 9.024e-07 1.025e-06 -5.033e-09 5.368e-05 6.462e-05 1.674e-05 -1.773e-06 3.382e-06 4.222e-05
D1,4 1.666e-06 1.967e-06 4.901e-06 7.672e-05 8.807e-05 -3.276e-05 -0.0001096 -9.812e-05 5.954e-05
D1,5 -7.858e-08 -9.63e-08 -4.77e-07 1.653e-05 2.606e-05 -9.942e-05 -0.0002062 -0.0001895 -1.827e-05
D2 2.156e-05 4.792e-06 0.0007226 6.777e-05 4.896e-05 0.000134 0.0001728 0.000167 0.002381
D2,3 7.755e-07 4.824e-07 -2.324e-09 -2.48e-05 -2.803e-05 -4.428e-05 2.389e-05 6.694e-06 2.965e-05
D2,4 1.432e-06 9.253e-07 2.263e-06 -2.335e-05 -2.271e-05 4.315e-05 -0.000216 -0.0002069 -0.000131
D2,5 -6.753e-08 -4.531e-08 -2.203e-07 6.694e-05 6.848e-05 1.739e-05 0.0001322 0.0001028 0.0001593
D3 8.097e-08 2.888e-07 6.183e-06 0.000107 7.942e-05 5.337e-06 6.16e-05 5.363e-05 0.000109
D3,4 -1.425e-07 -2.613e-07 1.757e-09 -5.119e-05 -3.39e-05 5.959e-05 -0.0001335 -0.0001131 1.844e-05
D3,5 6.722e-09 1.279e-08 -1.71e-10 4.294e-05 4.901e-05 8.441e-06 -4.401e-05 -2.665e-05 0.0002114
D4 3.322e-07 6.161e-07 1.967e-06 5.721e-05 5.124e-05 4.598e-05 0.0003812 0.0003637 0.0001364
D4,5 1.241e-08 2.454e-08 1.665e-07 6.62e-05 7.293e-05 -4.966e-05 -0.0001218 -9.356e-05 0.0002747
D5 1.509e-07 1.405e-07 1.279e-07 8.27e-06 9.691e-06 6.376e-05 0.0001498 0.0001413 0.0001177

Table A.20: Sobol variances for main effect and cardinality 2, for point 20.
Property Value for Level 2 (13 points) Value for Level 3 (85 points) Value for Level 4 (389 points)

Location P1 P2 P3 P1 P2 P3 P1 P2 P3

Mean 1.083 1.084 1.199 1.093 1.093 1.191 1.039 1.041 1.186
Variance 9.837e-05 8.818e-05 0.0008829 -0.000112 -0.0001179 -0.000863 -0.002003 -0.001942 0.002405
D0 2.681e-05 2.708e-05 6.347e-06 9.545e-06 6.187e-06 5.568e-06 0.0004059 0.0003801 0.0003325
D0,1 1.298e-05 1.219e-05 6.062e-06 4.192e-05 4.553e-05 5.147e-05 0.0001329 0.0001445 9.068e-05
D0,2 1.115e-05 8.485e-06 3.112e-06 2.132e-05 2.259e-05 -8.65e-05 -5.282e-05 -3.128e-05 0.0001236
D0,3 -1.041e-06 -1.237e-06 -3.161e-08 1.316e-05 1.895e-05 1.629e-05 -2.929e-05 -2.439e-05 -2.158e-05
D0,4 -1.96e-06 -2.757e-06 -2.233e-06 2.618e-05 3.546e-05 3.024e-05 -0.0001319 -0.0001254 -6.373e-05
D0,5 1.197e-07 7.86e-08 2.642e-07 2.835e-05 2.956e-05 -5.644e-06 0.0002221 0.0002417 0.0004994
D1 3.23e-05 3.255e-05 0.000117 7.075e-05 6.362e-05 0.0001038 0.0004988 0.0004644 4.182e-05
D1,2 -9.613e-06 -6.561e-06 -6.887e-06 5.764e-05 5.818e-05 3.281e-05 0.0001297 0.000109 9.015e-05
D1,3 8.977e-07 9.561e-07 6.995e-08 5.367e-05 5.744e-05 2.38e-05 -1.539e-06 -1.623e-06 4.47e-05
D1,4 1.69e-06 2.132e-06 4.942e-06 7.671e-05 8.077e-05 -2.639e-05 -0.0001097 -0.000105 5.939e-05
D1,5 -1.032e-07 -6.078e-08 -5.848e-07 1.681e-05 2.052e-05 -9.961e-05 -0.0002062 -0.0001983 -2.312e-05
D2 2.256e-05 1.253e-05 0.0007427 6.838e-05 5.914e-05 0.0001458 0.0001729 0.0001706 0.002631
D2,3 7.711e-07 6.654e-07 3.591e-08 -2.492e-05 -2.685e-05 -5.484e-05 2.294e-05 1.777e-05 2.506e-05
D2,4 1.452e-06 1.484e-06 2.537e-06 -2.377e-05 -2.434e-05 4.624e-05 -0.0002176 -0.0002131 -0.0001396
D2,5 -8.864e-08 -4.23e-08 -3.002e-07 6.723e-05 6.819e-05 2.093e-05 0.0001324 0.0001258 0.0001584
D3 7.393e-08 1.299e-07 7.521e-06 0.0001093 9.405e-05 7.218e-06 6.288e-05 5.952e-05 0.0001176
D3,4 -1.356e-07 -2.162e-07 -2.577e-08 -5.188e-05 -4.364e-05 6.661e-05 -0.0001352 -0.0001275 1.77e-05
D3,5 8.278e-09 6.164e-09 3.049e-09 4.264e-05 4.542e-05 1.311e-05 -4.419e-05 -3.769e-05 0.0002257
D4 3.31e-07 5.606e-07 2.069e-06 5.754e-05 5.407e-05 4.658e-05 0.0003785 0.000383 0.0001391
D4,5 1.558e-08 1.374e-08 2.154e-07 6.616e-05 6.94e-05 -4.717e-05 -0.000123 -0.0001092 0.0002828
D5 1.613e-07 1.905e-07 8.971e-08 8.155e-06 8.859e-06 6.134e-05 0.0001526 0.0001534 0.0001237
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Table A.21: Sobol variances for main effect and cardinality 2, for point 21.
Property Value for Level 2 (13 points) Value for Level 3 (85 points) Value for Level 4 (389 points)

Location P1 P2 P3 P1 P2 P3 P1 P2 P3

Mean 1.083 1.084 1.194 1.093 1.093 1.186 1.039 1.04 1.179
Variance 9.906e-05 9.366e-05 0.0009408 -0.0001142 -0.000113 -0.0009959 -0.002009 -0.001971 0.002591
D0 2.69e-05 2.684e-05 6.27e-06 1.015e-05 8.887e-06 5.463e-06 0.0004064 0.0003906 0.0003616
D0,1 1.3e-05 1.218e-05 6.03e-06 4.149e-05 4.38e-05 5.477e-05 0.0001319 0.000139 9.925e-05
D0,2 1.129e-05 9.877e-06 3.758e-06 2.028e-05 2.127e-05 -0.0001039 -5.544e-05 -4.095e-05 0.0001316
D0,3 -1.124e-06 -1.136e-06 6.353e-08 1.201e-05 1.483e-05 1.79e-05 -3.01e-05 -2.678e-05 -2.336e-05
D0,4 -1.948e-06 -2.313e-06 -2.233e-06 2.449e-05 2.919e-05 3.315e-05 -0.000133 -0.0001272 -6.501e-05
D0,5 1.855e-07 6.028e-08 3.951e-07 2.81e-05 2.895e-05 -6.163e-06 0.0002205 0.0002336 0.000528
D1 3.204e-05 3.302e-05 0.0001231 7.098e-05 6.886e-05 0.0001067 0.0005018 0.0004828 3.964e-05
D1,2 -9.704e-06 -7.911e-06 -8.422e-06 5.717e-05 5.901e-05 2.146e-05 0.0001309 0.0001252 9.682e-05
D1,3 9.667e-07 9.102e-07 -1.424e-07 5.334e-05 5.577e-05 2.752e-05 -5.158e-07 -1.153e-06 4.679e-05
D1,4 1.674e-06 1.853e-06 5.005e-06 7.621e-05 7.909e-05 -2.255e-05 -0.0001099 -0.0001075 6.323e-05
D1,5 -1.595e-07 -4.828e-08 -8.855e-07 1.675e-05 1.824e-05 -9.875e-05 -0.0002061 -0.0002027 -3.19e-05
D2 2.335e-05 1.758e-05 0.0007941 6.838e-05 6.563e-05 0.0001578 0.0001727 0.0001725 0.002894
D2,3 8.397e-07 7.382e-07 -8.874e-08 -2.524e-05 -2.444e-05 -6.567e-05 2.266e-05 2.232e-05 2.771e-05
D2,4 1.454e-06 1.503e-06 3.119e-06 -2.439e-05 -2.203e-05 4.55e-05 -0.0002178 -0.0002146 -0.0001462
D2,5 -1.385e-07 -3.915e-08 -5.519e-07 6.643e-05 6.702e-05 1.316e-05 0.0001321 0.0001305 0.0001656
D3 8.473e-08 9.275e-08 8.617e-06 0.0001093 0.0001021 8.383e-06 6.303e-05 6.091e-05 0.0001221
D3,4 -1.449e-07 -1.729e-07 5.273e-08 -5.307e-05 -4.784e-05 7.089e-05 -0.000136 -0.000131 1.911e-05
D3,5 1.38e-08 4.505e-09 -9.33e-09 4.196e-05 4.364e-05 1.54e-05 -4.412e-05 -4.042e-05 0.000235
D4 3.2e-07 4.239e-07 2.105e-06 5.798e-05 5.577e-05 4.771e-05 0.0003802 0.0003866 0.0001481
D4,5 2.39e-08 9.171e-09 3.28e-07 6.49e-05 6.693e-05 -4.578e-05 -0.0001246 -0.0001162 0.0002934
D5 1.465e-07 1.883e-07 9.159e-08 7.874e-06 8.379e-06 6.097e-05 0.0001529 0.0001523 0.0001266

Table A.22: Sobol variances for main effect and cardinality 2, for point 22.
Property Value for Level 2 (13 points) Value for Level 3 (85 points) Value for Level 4 (389 points)

Location P1 P2 P3 P1 P2 P3 P1 P2 P3

Mean 1.083 1.083 1.188 1.093 1.093 1.181 1.039 1.039 1.172
Variance 9.983e-05 9.61e-05 0.001039 -0.0001103 -0.0001075 -0.001136 -0.002002 -0.001973 0.002774
D0 2.728e-05 2.676e-05 6.429e-06 1.032e-05 9.059e-06 5.575e-06 0.0004054 0.0003971 0.0003847
D0,1 1.303e-05 1.239e-05 6.2e-06 4.078e-05 4.238e-05 5.901e-05 0.0001327 0.0001376 0.0001064
D0,2 1.136e-05 1.047e-05 5.024e-06 2.052e-05 2.138e-05 -0.0001276 -5.52e-05 -4.654e-05 0.000152
D0,3 -1.252e-06 -1.014e-06 2.202e-07 1.236e-05 1.385e-05 1.943e-05 -2.904e-05 -2.658e-05 -2.45e-05
D0,4 -1.895e-06 -1.983e-06 -2.188e-06 2.46e-05 2.736e-05 3.619e-05 -0.0001316 -0.0001272 -6.464e-05
D0,5 1.053e-07 1.148e-07 5.101e-07 2.759e-05 2.821e-05 -5.85e-06 0.0002201 0.0002267 0.0005506
D1 3.194e-05 3.314e-05 0.000129 7.146e-05 7.064e-05 0.0001122 0.000504 0.000491 3.869e-05
D1,2 -9.612e-06 -8.677e-06 -1.141e-05 5.714e-05 5.81e-05 1.251e-06 0.0001333 0.0001312 0.0001065
D1,3 1.059e-06 8.408e-07 -5.003e-07 5.318e-05 5.422e-05 3.099e-05 -8.474e-08 -1.337e-06 4.94e-05
D1,4 1.604e-06 1.643e-06 4.971e-06 7.631e-05 7.722e-05 -1.929e-05 -0.0001093 -0.0001086 6.689e-05
D1,5 -8.909e-08 -9.518e-08 -1.159e-06 1.666e-05 1.67e-05 -9.972e-05 -0.0002054 -0.0002051 -4.131e-05
D2 2.362e-05 2.004e-05 0.0008876 6.848e-05 6.738e-05 0.0001689 0.0001727 0.0001728 0.003119
D2,3 9.237e-07 7.105e-07 -4.054e-07 -2.483e-05 -2.452e-05 -7.751e-05 2.405e-05 2.478e-05 2.941e-05
D2,4 1.398e-06 1.389e-06 4.028e-06 -2.473e-05 -2.242e-05 4.071e-05 -0.0002163 -0.000214 -0.0001499
D2,5 -7.769e-08 -8.042e-08 -9.392e-07 6.583e-05 6.682e-05 -2.821e-06 0.0001333 0.0001324 0.0001789
D3 1.021e-07 7.317e-08 9.39e-06 0.0001086 0.0001053 8.8e-06 6.292e-05 6.118e-05 0.0001239
D3,4 -1.541e-07 -1.346e-07 1.766e-07 -5.312e-05 -5.018e-05 7.531e-05 -0.0001365 -0.0001324 2.077e-05
D3,5 8.561e-09 7.793e-09 -4.117e-08 4.145e-05 4.322e-05 1.775e-05 -4.476e-05 -4.281e-05 0.0002424
D4 3.024e-07 3.321e-07 2.014e-06 5.865e-05 5.676e-05 5.02e-05 0.0003819 0.0003835 0.0001608
D4,5 1.296e-08 1.523e-08 4.09e-07 6.394e-05 6.637e-05 -4.481e-05 -0.0001259 -0.0001201 0.0003028
D5 1.65e-07 1.563e-07 1.107e-07 7.731e-06 8.349e-06 6.2e-05 0.000152 0.0001496 0.0001288
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Table A.23: Sobol variances for main effect and cardinality 2, for point 23.
Property Value for Level 2 (13 points) Value for Level 3 (85 points) Value for Level 4 (389 points)

Location P1 P2 P3 P1 P2 P3 P1 P2 P3

Mean 1.083 1.083 1.183 1.093 1.093 1.176 1.039 1.039 1.166
Variance 0.0001001 9.745e-05 0.001154 -0.0001072 -0.0001088 -0.00128 -0.002005 -0.001994 0.002947
D0 2.747e-05 2.685e-05 6.715e-06 1.045e-05 9.216e-06 5.986e-06 0.0004064 0.0004032 0.000396
D0,1 1.315e-05 1.287e-05 6.595e-06 3.995e-05 4.188e-05 6.473e-05 0.0001309 0.0001348 0.0001121
D0,2 1.135e-05 1.093e-05 6.816e-06 2.024e-05 2.157e-05 -0.0001537 -5.536e-05 -5.2e-05 0.0001778
D0,3 -1.281e-06 -1.043e-06 3.843e-07 1.204e-05 1.36e-05 2.13e-05 -2.927e-05 -2.839e-05 -2.252e-05
D0,4 -1.974e-06 -1.97e-06 -2.003e-06 2.405e-05 2.68e-05 3.997e-05 -0.0001325 -0.0001303 -6.544e-05
D0,5 5.876e-08 1.159e-07 6.631e-07 2.695e-05 2.809e-05 -5.246e-06 0.0002191 0.0002236 0.0005721
D1 3.18e-05 3.245e-05 0.0001346 7.081e-05 7.061e-05 0.0001195 0.0005045 0.0004959 3.902e-05
D1,2 -9.61e-06 -9.314e-06 -1.612e-05 5.649e-05 5.777e-05 -2.141e-05 0.0001332 0.0001304 0.0001214
D1,3 1.084e-06 8.889e-07 -9.088e-07 5.223e-05 5.36e-05 3.472e-05 3.33e-07 -1.511e-06 5.2e-05
D1,4 1.671e-06 1.679e-06 4.737e-06 7.554e-05 7.672e-05 -1.708e-05 -0.0001098 -0.00011 7.028e-05
D1,5 -4.974e-08 -9.876e-08 -1.568e-06 1.62e-05 1.651e-05 -0.0001032 -0.0002046 -0.0002062 -4.685e-05
D2 2.368e-05 2.154e-05 0.0009994 6.788e-05 6.784e-05 0.0001785 0.0001724 0.0001729 0.003296
D2,3 9.361e-07 7.546e-07 -9.393e-07 -2.55e-05 -2.502e-05 -8.872e-05 2.482e-05 2.305e-05 3.833e-05
D2,4 1.443e-06 1.425e-06 4.896e-06 -2.549e-05 -2.373e-05 3.603e-05 -0.0002166 -0.0002173 -0.0001555
D2,5 -4.294e-08 -8.384e-08 -1.621e-06 6.51e-05 6.703e-05 -2.491e-05 0.0001332 0.0001326 0.0002047
D3 1.06e-07 7.462e-08 1.002e-05 0.0001104 0.0001081 9.17e-06 6.351e-05 6.228e-05 0.0001267
D3,4 -1.628e-07 -1.36e-07 2.76e-07 -5.382e-05 -5.141e-05 8.077e-05 -0.0001375 -0.0001345 2.35e-05
D3,5 4.845e-09 8.001e-09 -9.138e-08 4.063e-05 4.271e-05 2.003e-05 -4.492e-05 -4.375e-05 0.0002484
D4 3.2e-07 3.299e-07 1.656e-06 5.862e-05 5.731e-05 5.287e-05 0.0003808 0.00038 0.000171
D4,5 7.468e-09 1.511e-08 4.763e-07 6.299e-05 6.608e-05 -4.49e-05 -0.0001279 -0.0001226 0.0003137
D5 1.705e-07 1.622e-07 1.622e-07 7.704e-06 8.217e-06 6.364e-05 0.0001531 0.0001518 0.000134

Table A.24: Sobol variances for main effect and cardinality 2, for point 24.
Property Value for Level 2 (13 points) Value for Level 3 (85 points) Value for Level 4 (389 points)

Location P1 P2 P3 P1 P2 P3 P1 P2 P3

Mean 1.083 1.083 1.177 1.093 1.093 1.17 1.039 1.039 1.159
Variance 9.989e-05 9.823e-05 0.001259 -0.0001083 -0.000114 -0.001397 -0.002006 -0.00201 0.0031
D0 2.727e-05 2.675e-05 7.021e-06 1.078e-05 9.707e-06 6.676e-06 0.0004092 0.0004062 0.0004023
D0,1 1.324e-05 1.302e-05 7.118e-06 3.992e-05 4.187e-05 7.093e-05 0.0001317 0.0001319 0.0001197
D0,2 1.129e-05 1.116e-05 8.525e-06 1.99e-05 2.068e-05 -0.000173 -5.562e-05 -5.428e-05 0.0001987
D0,3 -1.304e-06 -1.03e-06 6.079e-07 1.167e-05 1.25e-05 2.367e-05 -2.895e-05 -3.047e-05 -1.947e-05
D0,4 -1.949e-06 -1.945e-06 -1.883e-06 2.352e-05 2.529e-05 4.371e-05 -0.0001315 -0.0001333 -6.505e-05
D0,5 5.872e-08 2.025e-07 7.674e-07 2.7e-05 2.828e-05 -5.748e-06 0.0002215 0.0002207 0.0005986
D1 3.163e-05 3.219e-05 0.0001419 7.115e-05 7.099e-05 0.0001279 0.0005055 0.0005006 4.027e-05
D1,2 -9.628e-06 -9.64e-06 -2.147e-05 5.635e-05 5.721e-05 -4.209e-05 0.0001334 0.0001301 0.0001385
D1,3 1.112e-06 8.901e-07 -1.531e-06 5.198e-05 5.352e-05 3.834e-05 8.302e-07 -1.129e-06 5.481e-05
D1,4 1.663e-06 1.68e-06 4.743e-06 7.496e-05 7.63e-05 -1.664e-05 -0.0001087 -0.0001097 7.403e-05
D1,5 -5.01e-08 -1.75e-07 -1.933e-06 1.603e-05 1.693e-05 -0.0001093 -0.0002043 -0.0002062 -4.951e-05
D2 2.379e-05 2.262e-05 0.001101 6.746e-05 6.793e-05 0.0001855 0.0001729 0.0001727 0.003444
D2,3 9.483e-07 7.626e-07 -1.834e-06 -2.572e-05 -2.528e-05 -9.636e-05 2.477e-05 2.223e-05 5.806e-05
D2,4 1.418e-06 1.44e-06 5.68e-06 -2.592e-05 -2.404e-05 3.055e-05 -0.0002163 -0.0002184 -0.0001581
D2,5 -4.272e-08 -1.499e-07 -2.315e-06 6.518e-05 6.679e-05 -4.993e-05 0.0001349 0.000132 0.0002422
D3 1.102e-07 7.203e-08 1.036e-05 0.0001104 0.0001095 9.52e-06 6.383e-05 6.296e-05 0.0001303
D3,4 -1.638e-07 -1.329e-07 4.051e-07 -5.38e-05 -5.256e-05 8.594e-05 -0.0001376 -0.000136 2.729e-05
D3,5 4.934e-09 1.384e-08 -1.651e-07 4.062e-05 4.227e-05 2.232e-05 -4.428e-05 -4.434e-05 0.0002551
D4 3.066e-07 3.239e-07 1.429e-06 5.833e-05 5.78e-05 5.605e-05 0.0003797 0.0003795 0.0001836
D4,5 7.379e-09 2.613e-08 5.114e-07 6.291e-05 6.551e-05 -4.588e-05 -0.0001265 -0.000124 0.0003284
D5 1.766e-07 1.484e-07 2.094e-07 7.727e-06 7.978e-06 6.66e-05 0.000154 0.0001532 0.0001421
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Table A.25: Sobol variances for main effect and cardinality 2, for point 25.
Property Value for Level 2 (13 points) Value for Level 3 (85 points) Value for Level 4 (389 points)

Location P1 P2 P3 P1 P2 P3 P1 P2 P3

Mean 1.083 1.083 1.171 1.093 1.093 1.164 1.039 1.039 1.152
Variance 0.0001 9.927e-05 0.001354 -0.0001113 -0.0001099 -0.001475 -0.002005 -0.002002 0.003228
D0 2.718e-05 2.719e-05 7.356e-06 1.145e-05 1.029e-05 7.807e-06 0.0004104 0.0004054 0.0004193
D0,1 1.323e-05 1.298e-05 7.907e-06 3.988e-05 4.073e-05 7.842e-05 0.000131 0.0001331 0.0001306
D0,2 1.135e-05 1.127e-05 1.061e-05 1.961e-05 2.026e-05 -0.0001811 -5.532e-05 -5.499e-05 0.0002234
D0,3 -1.306e-06 -1.236e-06 7.748e-07 1.118e-05 1.215e-05 2.643e-05 -2.87e-05 -2.913e-05 -1.478e-05
D0,4 -2.001e-06 -1.927e-06 -1.872e-06 2.315e-05 2.437e-05 4.773e-05 -0.0001315 -0.0001315 -6.627e-05
D0,5 2.353e-08 1.283e-07 7.761e-07 2.723e-05 2.748e-05 -7.584e-06 0.0002224 0.0002216 0.000637
D1 3.146e-05 3.195e-05 0.0001544 7.259e-05 7.152e-05 0.0001422 0.0005077 0.0005034 4.437e-05
D1,2 -9.651e-06 -9.557e-06 -2.804e-05 5.661e-05 5.691e-05 -5.029e-05 0.0001335 0.0001331 0.0001545
D1,3 1.11e-06 1.049e-06 -2.048e-06 5.209e-05 5.311e-05 4.263e-05 3.185e-07 1.825e-07 6.013e-05
D1,4 1.701e-06 1.635e-06 4.948e-06 7.492e-05 7.615e-05 -1.805e-05 -0.0001078 -0.0001094 7.937e-05
D1,5 -2e-08 -1.088e-07 -2.051e-06 1.572e-05 1.626e-05 -0.0001222 -0.0002041 -0.0002061 -5.167e-05
D2 2.409e-05 2.322e-05 0.001187 6.865e-05 6.777e-05 0.0001898 0.0001736 0.0001726 0.003563
D2,3 9.523e-07 9.103e-07 -2.748e-06 -2.584e-05 -2.513e-05 -9.66e-05 2.498e-05 2.402e-05 8.232e-05
D2,4 1.459e-06 1.419e-06 6.64e-06 -2.593e-05 -2.484e-05 2.758e-05 -0.0002156 -0.0002164 -0.0001655
D2,5 -1.716e-08 -9.447e-08 -2.752e-06 6.543e-05 6.571e-05 -7.128e-05 0.0001363 0.0001339 0.0002749
D3 1.099e-07 1.012e-07 1.057e-05 0.0001105 0.0001089 9.674e-06 6.387e-05 6.284e-05 0.0001356
D3,4 -1.678e-07 -1.557e-07 4.849e-07 -5.332e-05 -5.334e-05 9.263e-05 -0.0001374 -0.0001358 3.207e-05
D3,5 1.974e-09 1.037e-08 -2.01e-07 4.043e-05 4.152e-05 2.473e-05 -4.476e-05 -4.418e-05 0.0002662
D4 3.187e-07 3.104e-07 1.319e-06 5.803e-05 5.839e-05 5.97e-05 0.0003815 0.0003813 0.0001987
D4,5 3.024e-09 1.616e-08 4.857e-07 6.268e-05 6.407e-05 -4.838e-05 -0.0001247 -0.0001252 0.0003479
D5 1.857e-07 1.595e-07 2.025e-07 7.619e-06 7.782e-06 7.284e-05 0.0001543 0.000152 0.0001547
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