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Abstract

When analysing social interactions, manual labour
is often required to identify what is happening. An
automated method of detecting who is interacting
with who would already prove to be a significant
help. This paper looks at how automated inter-
action detecting can be established. We look at
methods of detecting proximity and look deeper
into detecting F-formations using proximity. An
f-formation is a group of people who are stand-
ing together with the intention of conversing. We
show that it is possible to detect f-formations us-
ing a data-set containing proximity information and
f-formations as ground truths. Our results show
that using only proximity data from this dataset; we
can detect f-formations better than the baseline pro-
vided in that dataset.

1 Introduction
Smart wearable devices are becoming ever more present in
day-to-day life. These wearables have varying sensors that
can obtain data about activities the user undertakes. Using
this data, we can analyse behaviour that can be relevant, for
example, for health care, fitness tracking, and smart assistants
[1], [2]. Smart fitness tracking is already widely available
in order to improve and track ones’ performance [3]. How-
ever, these sensors are capable of monitoring much more than
would be apparent at first.

One of the recent usages of these sensors is the contact
tracing of Covid-19, for this Google and Apple created De-
centralized Privacy-Preserving Proximity Tracing [4]. Which
uses Bluetooth Low Energy (BLE) to estimate if two phones
are closely situated and can anonymously notify users if they
have been in contact with someone who has been infected
with Covid-19. This shows that BLE proximity data is capa-
ble of determining physical proximity.

Research has also been conducted to determine if BLE can
determine social interactions between users carrying BLE ca-
pable devices [5]. This method allows researchers to cap-
ture this data automatically instead of using observations or
surveys that can be unreliable because of human errors [6].
Using sensors can provide a quantitative approach to study

group dynamics that is also scale-able and ubiquitous, given
the rise of smart devices with capable sensors.

The BLE sensors report back the Received Signal Strength
Indicator (RSSI) of the BLE devices discovered. It is an es-
timate of the strength of the signal it’s receiving. However,
it is dependent on the manufacturer of the device how these
values are calculated, including what range the RSSI might
have. Therefore the RSSI is the relative signal strength and
not a direct measurement. However, universally applicable is
that the closer to 0, the better the signal. Because it’s a radio
signal, it’s also susceptible to interference and becomes un-
reliable after even a short-range [7]. Another aspect of this
is that it’s Omnidirectional and therefore only approximates
the range and not the direction. Adding onto this RSSI value
is calculated at the receiving end of the signal, which could
mean that the values reported by both devices are different
[8].

Other methods of detecting proximity have been investi-
gated in the past. For instance, the use of Radio Frequency
Identification (RFID) tags has been studied [9]. These tags
can detect proximity on a much lower distance scale than
BLE. This is done by tuning the power levels on both receiv-
ing and sending ends. Lowering the power levels allows them
to assess face-to-face proximity because the tags are localised
to detect only tags facing towards them.

A different modality tested is using infrared (IR) sensors.
These sensors are directional, do not pass through partici-
pants, and can detect participants facing each other [10], [11].

Another method to detect proximity is using Wi-Fi signals.
This can be done by using wireless access points as beacons
and recording them for each participant [12]. This reveals in-
formation about the general whereabouts of participants and
not face-to-face interactions. However, it has been shown that
using Wi-Fi can be a viable way to detect physical proxim-
ity but has not been tested against ground truth data. But has
been demonstrated to detect interactions in which a high RSSI
between two Bluetooth capable devices is present [13].

Proximity can be used to infer important aspects of inter-
personal relationships and character features. We can define
this more rigidly by looking at F-formations. An F-formation
is a form of focused encounter wherein a group of individuals
contribute to maintaining a prolonged conversation. Kendon
[14] more clearly defines it as a formation in which people
gather that has a convex space, that every member of the F-
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formation has equal access to. In the past work has been to
detect F-formations using a multitude of methods and differ-
ent modalities [11], [15]–[17]. One of those modalities is
proximity, which we can be estimated using RSSI.

One method of approximating f-formations is to formulate
it as a graph-theory problem, that of identifying dominant sets
(DS) [18]. DS represent maximal clique using edge-weighted
cases. All nodes in the graph will represent a person, while
the edge weight will represent the affinity or similarity be-
tween two pairs. This follows naturally from f-formations
because intuitively the affinity between two people inside a
f-formations would be higher than that of those outside of the
f-formation [16].

For this paper, we will be looking at the Conflab data set
of the Socially Perceptive Computing Lab (SPCL) at the TU
Delft. The SPCL has created a smart wearable badge called
a Midge [19] that has sensors for collecting low-frequency
audio, BLE proximity and 9-axis Inertial Measurement Unit
data. The badges were used to gather data from a mingling
event [20]. In this event 48, socially interacting people are
all wearing the Midge, recording the sensor data. The Con-
flab data sets also include manually annotated f-formations
for part of the event. For this body of work, we will only be
looking at the BLE capabilities of this badge to calculate f-
formations. While we know that using BLE can be used to
approximate vicinity. What is still unknown is whether using
the BLE data from the badges developed at the SPCL can de-
tect f-formations and how accurate they are compared to the
manually annotated f-formations.

First, we will explain how the data was extracted from the
Conflab data set. We then propose multiple parameters for
pre-processing and transforming the data. This data is then
used in a clustering algorithm to find f-formations. After
which the evaluation method is explained, we discuss the re-
sults with the different parameters.

2 Methodology
We used an established method of calculating F-formations.
The adaption here is how we pre-process the data before us-
ing DS clustering to find the F-formations. First, we describe
how we extracted the data from the Conflab data set. Then in
the next section, we show how this data is transformed, using
different parameters for usage in the DS clustering method.
Lastly, our evaluation method is explained. The appendix
contains figure 1 in the appendix which shortly explains how
and where the data is processed.

2.1 Dataset
We use the Conflab Data set conflab containing BLE and
ground truth data. The data set consists of 48 Midges which
each have separate data files for the different modalities it has
recorded. There are around 190.000 data points for each of
the separate Midges used for the BLE data.

The ground truth data from the annotations consist of 1277
entries that denote the different F-formations at that second
of video data; this comes down to roughly 21 minutes. The
F-formations are manually annotated from the video cameras.
The ground-truth is synchronised with the proximity readings
by using timestamp T .

The Midges broadcast packets every second. However, this
does not automatically mean that all Midges will receive ev-
ery packet from every Midge. There could be multiple rea-
sons for this, one being interference. This is why it’s essen-
tial to look at what time the RSSI was recorded. The last time
Midge A has seen Midge B might show a relatively strong
signal; this quickly becomes less interesting as time passes. A
time-out parameter K was created to account for this. When
the time difference is larger than the parameter, it will replace
the RSSI value with the lowest value, in our case -100. So
the used RSSI is calculated as follows. Here ti is the time
that the RSSI value vi was measured for Midge i and T the
timestamp of the F-formation in the ground truth.

RSSIi =

{
vi if | T − ti |<= K

−100 else
(1)

A problem was that one of the Midges misreported all RSSI
values as 1. We used a simple data reconstruction method to
overcome this problem. The data were reconstructed using
the RSSI values that the other had Midges estimated from
the signal it received from this Midge. More on this in the
Affinity Matrix section.

Another critical factor is that because the number of partic-
ipants n differed from frame to frame, we extracted only the
data corresponding with Midges used in the annotated scene.
This required parsing the ground truths to find who was par-
ticipating at what timestamp—then extracting only the BLE
proximity data from those Midges.

2.2 Dominant Set Clustering
The method we used to find F-formations is DS Clustering,
which requires a pair-wise affinity matrix. The scores are a
value between 1 and 0, where 1is the maximum. How this
was created is explained in the next paragraph. This algo-
rithm is practical because it does not require a preset number
of clusters to be found. Because in our case, the proximity
data alone does not indicate how many f-formations should
be found.

We used Hayley et al. [16] algorithm for detecting F-
formations as Dominant sets for this paper.

2.3 Affinity Matrix
The affinity matrix represents a matrix of all pair-wise simi-
larity scores. To use the DS clustering method, we first cre-
ated a matrix of n by n.

The matrix is then filled with the respective RSSI value
received from each Midge. Depending on the parameter set
in equation 1.

Because the RSSI signals between two Midges are not
symmetrical, we can choose to symmetrise the Matrix to re-
duce noise. Three methods of symmetrisation were selected.
Taking the minimum value, the maximum value or the aver-
age.

Here we used a form of feature engineering by transform-
ing the RSSI value depending on a cut-off. This was done
because the further two Bluetooth devices become apart, the
more susceptible they become to interference and noise. They
are showing strong unreliability after even a short-range. To



do this, a simple cut-off algorithm was used, setting a thresh-
old C for calculating the affinity ai for Midge i:

ai =

{
1 if vi <= C

0 else
(2)

2.4 Evaluation method
To evaluate our methods, we calculated the precision, recall,
and f-measure for each F-formation found using the DS clus-
tering. We chose to calculate the F1 score, meaning that for
a group to be considered a true positive, all members of that
group should be included in the ground truth and no more. A
false positive is a group that is detected but does not exist in
the ground truth, and false negatives are groups that have not
been detected.

F1 =
truepositive

truepositive+ 1
2 (falsepositive+ falsenegative)

(3)
Groups of 1 were also included as F-formations in the

ground truths. The performance results are categorised with
the different parameters it used. For threshold, we used a
value of -55, which was calculated by resampling other por-
tions of the data as a test group and a training group to miti-
gate overfitting.

3 Results
A summary of the results is shown in table 1. For all of the
results in the summarized table we used data reconstruction
when the broken Midge was in the annotated frame. the Full
table can be found in the appendix in table 2.

In total 1252 seconds of annotated frames were used to cal-
culate all the f-measures. The best results were found when
taking a maximum time difference of 30 seconds and sym-
metrisation using the average.

4 Conclusion and discussion
Detection of f-formations using the BLE proximity in the
Conflab data-set shows promising results. Comparing our
best f1 score to the best f1 score in baseline shows we per-
form 52% higher. This is highly likely when looking at the
table 2 because 25167 values were replaced with -100, and
then taking average means that it is more conservative when
the Midge was last seen longer than 30 seconds ago.

We present many important parameters when using the
Conflab data-set to calculate f-formations. The recall signifi-
cantly decreases when symmetrising using the max function.
This is because the number of true positives decreases with
more detected f-formations than in the ground truths.

The method also fails heavily as f-formations are broken
and created. This is highly likely because of the interference
caused by more participants moving throughout the room. It
would be interesting if we labelled these events and saw the
average f-measure around them.

Another issue we ran into was that parts of the annotated
file contained errors. This is why 25 annotated frames of f-
formations were discarded.

Timeout Sym F1 measure Precision Recall
10 avg 0.605 0.679 0.546

max 0.531 0.645 0.452
min 0.573 0.636 0.521

20 avg 0.617 0.692 0.557
max 0.533 0.649 0.452
min 0.581 0.645 0.529

30 avg 0.625 0.696 0.568
max 0.530 0.649 0.447
min 0.582 0.648 0.528

40 avg 0.617 0.687 0.559
max 0.530 0.646 0.448
min 0.583 0.646 0.532

50 avg 0.619 0.695 0.557
max 0.526 0.650 0.442
min 0.577 0.642 0.524

60 avg 0.613 0.691 0.550
max 0.528 0.650 0.445
min 0.584 0.646 0.534

Table 1: Summary of the results for the average F1-measure, Preci-
sion and recall. The bold value is the highest F1 measure that was
found using the DS clustering. The values for the different parame-
ters chosen are also shown in the table.

What could also improve the results is instead of using the
RSSI values directly, is using them to calculate vectors and
see how they are moved over time. This could increase the f-
measure when looking at moments where a lot of movements
are happening, this is where our method currently fails.

The most significant improvement that probably can be
made is instead of using a simple cut-off algorithm; we could
try to map the RSSI values to actual distance and compensate
for the noise. This would require altering how the Midges
recorded the RSSI values. But would increase the perfor-
mance of finding the f-formations.

5 Responsible Research
Our results show that the usage of widely available and cheap
BLE sensor hardware can be used to estimate f-formations.
While this might seem innocent at first, if widely deployed
it can be used to determine someones social circle. For this
however a lot more information would be required about the
devices the BLE sensor is able to observe. The methods we
use only works because of the Conflab dataset. For which the
decision was made to try and maximize data fidelity while
persevering participants privacy.

Given the parameters and access to the Conflab dataset, re-
producing the results will not be a problem. As most methods
are trivial to implement.



A Schematic of data flow and processing

Figure 1: Simple schematic of how the data flows through the vari-
ous parts of our method and where they are used



B Full table

Timeout Symmetrisation Reconstruction F1 measure Precision Recall Timeouts occurred
10 avg FALSE 0.010 0.041 0.006 52308
10 max FALSE 0.505 0.614 0.428 52308
10 min FALSE 0.572 0.635 0.520 52308
10 avg TRUE 0.605 0.679 0.546 52308
10 max TRUE 0.531 0.645 0.452 52308
10 min TRUE 0.573 0.636 0.521 52308
20 avg FALSE 0.007 0.028 0.004 32677
20 max FALSE 0.495 0.606 0.418 32677
20 min FALSE 0.585 0.649 0.533 32677
20 avg TRUE 0.617 0.692 0.557 32677
20 max TRUE 0.533 0.649 0.452 32677
20 min TRUE 0.581 0.645 0.529 32677
30 avg FALSE 0.007 0.025 0.004 25167
30 max FALSE 0.489 0.604 0.411 25167
30 min FALSE 0.586 0.648 0.535 25167
30 avg TRUE 0.625 0.696 0.568 25167
30 max TRUE 0.530 0.649 0.447 25167
30 min TRUE 0.582 0.648 0.528 25167
40 avg FALSE 0.007 0.029 0.004 20865
40 max FALSE 0.487 0.602 0.409 20865
40 min FALSE 0.578 0.644 0.524 20865
40 avg TRUE 0.617 0.687 0.559 20865
40 max TRUE 0.530 0.646 0.448 20865
40 min TRUE 0.583 0.646 0.532 20865
50 avg FALSE 0.006 0.024 0.004 17812
50 max FALSE 0.494 0.605 0.417 17812
50 min FALSE 0.586 0.647 0.536 17812
50 avg TRUE 0.619 0.695 0.557 17812
50 max TRUE 0.526 0.650 0.442 17812
50 min TRUE 0.577 0.642 0.524 17812
60 avg FALSE 0.007 0.030 0.004 15446
60 max FALSE 0.488 0.608 0.408 15446
60 min FALSE 0.585 0.652 0.530 15446
60 avg TRUE 0.613 0.691 0.550 15446
60 max TRUE 0.528 0.650 0.445 15446
60 min TRUE 0.584 0.646 0.534 15446

Table 2: Summary of the results for the average F1-measure, Preci-
sion and recall. The values for the different parameters chosen are
also shown in the table. The number of times a value was replaced
because of equation 1 is also shown.
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