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SPARSEST NETWORK SUPPORT ESTIMATION:
A SUBMODULAR APPROACH

Mario Coutino, Sundeep Prabhakar Chepuri, Geert Leus

Delft University of Technology

ABSTRACT
In this work, we address the problem of identifying the underlying
network structure of data. Different from other approaches, which
are mainly based on convex relaxations of an integer problem, here
we take a distinct route relying on algebraic properties of a matrix
representation of the network. By describing what we call possible
ambiguities on the network topology, we proceed to employ sub-
modular analysis techniques for retrieving the network support, i.e.,
network edges. To achieve this we only make use of the network
modes derived from the data. Numerical examples showcase the ef-
fectiveness of the proposed algorithm in recovering the support of
sparse networks.

Index Terms— Graph signal processing, graph learning, sparse
graphs, network deconvolution, network topology inference.

1. INTRODUCTION

In recent years, large efforts have been made to understand how tra-
ditional tools from signal processing can be adapted for cases where
the acquired data is not defined over a regular domain but over a net-
work [1]. This surge of interest is due to the fact that such network-
supported signals are able to model complex transport networks [2],
the activity of the brain [3], epidemic dynamics and gene coexpres-
sion [4], to name a few. As a result, the field of graph signal process-
ing (GSP) has emerged [5, 6].

Assuming the topology of the network which supports a sig-
nal directly influences the behaviour of it, GSP develops algorithms
which exploit the network structure to perform classical signal pro-
cessing tasks such as estimation, detection and filtering [7–9]. As a
result, appropriate knowledge of the relations (edges) among the el-
ements (nodes) of the network (graph) is required for any algorithm
that requires connectivity information. Therefore, in this paper, we
focus on the problem of estimating the underlying network structure
in which the data is embedded.

Several works have been devoted to find the underlying network
(graph) structure within the data [10–17]. Some of those works fit
the observed data to particular structural models [12, 13], or find
a network which renders the observed signal smooth in its topol-
ogy [17]. In addition, similar to the approach presented here, there
are works [10] that use the network modes to retrieve a sparse net-
work support by means of a convex problem. However, despite the
fact that those works successfully address the problem of network
estimation, each of them making different structural assumptions,
they do not completely address the characterization of general net-
work matrices, i.e., networks with disconnected components, net-
works with self loops, etc. Moreover, even though that for sim-
ple graphs (networks), [10] provides theoretical guarantees for the
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recovery of the adjacency and normalized Laplacian matrix, in the
general case, due to the convex formulation of the recovery problem,
solutions that only retrieve the support approximately are obtained,
i.e., thresholding operations are required.

Taking this issue into account, and following arguments closely
related to the ones used for network topology estimation through
spectral templates [10], the main aim of this work is twofold: (i) to
provide a proper characterization of a particular set of matrices that
are of high importance within graph signal processing: fixed-support
matrices with the same eigenbasis, and (ii) to provide a pure com-
binatorial algorithm, based on the submodular machinery that has
been proven useful in subset selection problems within signal pro-
cessing [18–22], as an alternative to traditional convex relaxations.

2. PRELIMINARIES

Consider a network being represented by an undirected graph G =
{V, E}, which consists of a finite set of nodes V with |V| = N and a
set of edges (connections) E with |E| = M . If there is a connection
in the network between nodes i and j, then (i, j) ∈ E . A signal
or function f : V → R defined on the nodes of the network can
be collected in a length-N vector x, where the nth element of x
represents the function value at the nth node in V . Since x resides
on the graph (network), we refer to the function x as a graph signal.

Let us introduce a network topology matrix S ∈ RN×N , where
the (i, j)th entry of S denoted by si,j can only be nonzero if (i, j) ∈
E . This matrix acts as a possible representation of the network con-
nectivity. Within the field of GSP, this matrix is usually referred to
as graph shift operator [6].

For undirected graphs, S is symmetric, and thus it admits the
following eigenvalue decomposition

S = UΛUT (1)

where the eigenvectors U and the eigenvalues Λ of S provide a
notion of frequency in the graph setting [5,6]. Specifically,U forms
an orthonormal Fourier-like basis for graph signals with the graph
frequencies denoted by {λn}Nn=1.

For a general network matrix, S, that does not admit an or-
thonormal eigenvalue decomposition, we might consider a decom-
position through its singular values. Although, the SVD decompo-
sition does not carry a graph frequency interpretation as in the case
of the eigenvalue decomposition, the theory of network support esti-
mation presented in this work holds for both decompositions.

In this work, we aim to reconstruct the support of the network S
by means of a set of output data, i.e., {yi}

Q
i=1, under the assumption

that the matrix representation of the network, S, and the covariance
matrix of the data, Ry , E{yyT }, share the same eigenspace [23,
24]. Therefore, the only side information used for this purpose are
the so called modes of the network.
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3. THE AMBIGUOUS CLASS OF NETWORK MATRICES

Following the assumption thatRy and S share the same eigenbasis,
we have the following property:

RyS = SRy. (2)

Now, let us assume that from the set of available data, {yi}
Q
i=1,

both the covariance matrix, Ry , and its eigenvalue decomposi-
tion, UΩUT , are obtained. Similar to the spectral templates
approach [10], we know that S = UΛUT , for some diagonal
matrix Λ ∈ RN×N . Hence, the support identification problem is
reduced to finding a matrix Λ which meets the desired properties for
a particular choice of network matrix, e.g., integer-valued matrix,
nonnegativity, zero diagonal, etc. That is,

minimize
Λ∈D

‖S‖0 subject to S = UΛUT
, (3)

where D is the set of permissible matrices, i.e., constraint set.
Differently from [10], here we are interested in a generative so-

lution based on algebraic properties of fixed-support sparse matri-
ces. This approach is motivated from the fact that for a particular
problem instance (nature of the data) there is no clear distinction
between network matrices with the same support sharing the same
eigenbasis. That is, given

Si = UΛiU
T and Sj = UΛjU

T 6= Si, (4)

where Λi and Λj are diagonal matrices, and Si and Sj have the
same support, which network matrix should be employed?

To tackle this problem, first we have to understand the class of
matrices that falls within this ambiguous family, i.e., the family of
jointly diagonalizable matrices sharing the same sparsity support.
This family of matrices is formally defined as the set

JAU = {S : S = UΛUT and [vec(S)]i = 0, ∀ i ∈ A}, (5)

where A and U are the index set defining the zero entries of the
matrix and the eigenbasis, respectively. In the following section,
we characterize this set of matrices to leverage their properties for
support identification.

4. NETWOK SUPPORT NULLSPACE PROPERTY

Recall that from the definition of the set JAU [cf. (5)] we have the
following property:

[vec(S)]i = 0, ∀i ∈ A. (6)

This condition can be expressed through a linear equality of the form

ΦAvec(S) = 0, (7)

where ΦA ∈ {0, 1}|A|×N2

is the selection matrix whose rows are
the rows of an N2 ×N2 identity matrix indexed by the setA ⊆ N ,
withN denoting the set of indices of the entries of anN×N matrix.
Furthermore, using the vectorization operation we obtain the relation

ΦAvec(S) = ΦA(U ⊗U)vec(Λ) = 0, (8)

where ⊗ denotes the Kronecker product.
As the matrix Λ is a diagonal matrix, we can equivalently write

this condition using the Khatri-Rao product (∗), i.e.,

ΦAvec(S) = ΦA(U ∗U)λ = 0, (9)

where λ = diag{Λ} is the eigenvalue vector. From this relation,
it is seen that the eigenvalue vector should lie in the intersection of
the nullspace of ΦA and the range of U ∗ U . This statement is
equivalent to the following condition:

λ ∈ null{TAU}, (10)

where we have defined TAU = ΦA(U ∗U) ∈ R|A|×N .
Alternatively, we can consider another formulation for the con-

dition expressed in (8) in terms of the covariance matrix Ry and its
inverse. That is, considering [cf. (2)]

S = R−1SR (11)

and applying the vectorization operation to (11), we obtain

[I − (Ry ⊗R−1
y )]ΦT

AcΦAcvec(S) = 0. (12)

whereAc is the set that indexes the nonzero entries of vec(S). Note
that while condition (10) characterizes the matrices in terms of miss-
ing links and leverages the spectral decomposition of S, the condi-
tion (12) characterizes more general kind of matrices, i.e., not eigen-
decomposable matrices, in terms of connections between nodes.

Using the previous results [cf. (6)-(12)], we can summarize the
main result of this section in the following theorem:

Theorem 1. (Nullspace Property)
Given an orthonormal basis U , and a sparsity pattern defined by a
set A, the matrices within the set JAU are the matrices of the form
S = UΛUT whose eigenvalues are given by

Λ = diag{BAUα}. (13)

Here, the matrix BAU ∈ RN×d is a basis for the nullspace of TAU ,
i.e.,

span{BAU} = null{TAU},

and α ∈ Rd is the expansion coefficient vector.

Proof. The proof directly follows from the expressions in (6)-(10).
�

The result of the theorem provides a certificate of uniqueness
of the network matrix in the following sense: the network matrix is
considered unique, for a fixed sparsity pattern A, if the set JAU has
elements given by

S = αS0, (14)

for some matrix S0 = UΛ0U
T . That is, the elements of the set are

scaled versions of each other. This property can be stated formally
through the following proposition:

Proposition 1. (Uniqueness of the Symmetric Network Matrix)
Given an orthogonal basisU and a sparsity pattern defined by setA,
we say that the network matrix is unique (up to a scaling ambiguity
[cf. (14)]) if and only if

d , dim(null{TAU}) = 1.

Otherwise, for d > 1 we say that there are infinite network matrices
sharing the same support and being diagonalizable by the same ba-
sis. For cases with d = 0, we say that no matrix with supportA and
diagonalizable by U exists.

Proof. The proof is due to (13). �

A similar statement can be made with respect to condition (12).
In the following proposition, we make this result more precise.

Proposition 2. (Uniqueness of the General Network Matrix)
Given a covariance matrixRy and a sparsity pattern defined by set
A, we say that the network matrix is unique if and only if

dim(null{[I −Ry ⊗R−1
y ]ΦT

Ac} = 1. (15)

Proof. The proof follows from (12). �
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Algorithm 1: ITERATED GREEDY ALGORITHM [26]
Data: A0,N , B and submodular functions f(·), g(·)
Result: A
initialization A = A0;
for t = 1, 2, · · · , T do

Choose surrogate modular functions f̂t and ĝt for f and
g respectively, tight at At−1;
At ← Greedy optimizer of (18) with f̂t and ĝt instead of
f and g.

end
A ← At

As in this work we restrict ourselves to symmetric network ma-
trices, the task of retrieving the support of the network from knowl-
edge of the eigenbasis U reduces to finding a set A with the largest
cardinality such that the condition d > 0 is met. In the following,
we introduce a greedy approach based on submodularity to retrieve
the support of the sparsest network with eigenmodes U .

5. NETWORK SUPPORT ESTIMATOR

Using the results from the previous section, we can rewrite the op-
timization problem in (3) using the parametrization in terms of the
nullspace of TAU as follows

(A∗, α∗) ∈ arg max
α
|A| subject to λ = BAUα, (16)

where |A| denotes the cardinality of the set A. Note that under this
formulation without assuming any constraints on D it can be seen
that there is no unique solution to the topology identification prob-
lem if it is not regularized in a particular way. Therefore, instead of
trying to estimate the value of the entries of the non-zero elements,
we focus on another reasonable problem: the estimation of a set of
matrices JAU , whose sparsity pattern indexed by A has the largest
cardinality and guarantees d > 0.

Mathematically, this can written as

A∗ ∈ max
A⊆N

|A| subject to rank(TAU ) ≤ N − 1, (17)

Differently from typical convex methods for solving the support
identification problem, here the feasible set is described by a con-
straint involving the rank of TAU .

5.1. Submodular Optimization

Observing (17) we notice that it has a special structure. That is, it is
the maximization of a submodular set function, with a submodular
constraint, particularly a budget constraint, i.e.,

max
A⊆N

g(A) subject to f(A) ≤ B , (18)

where g(A) and f(A) are normalized submodular set functions, i.e.,
f(∅) = g(∅) = 0, and B is a knapsack budget. This is due to the
fact that the cost set function is the cardinality of a set which is a
modular set function, and the rank of TAU is the rank function of a
linear matroid [25], which is a submodular function.

This kind of optimization problems are known in the literature
as submodular constrained submodular knapsack (SCSK) problems.
This family of problems has near-to-optimal guarantees through a
series of bi-approximation algorithms [26]. Furthermore, they share
characteristics with other kinds of common submodular optimization
problems such as the submodular constrained submodular coverage
(SCSC) problem, and the minimization of the difference of submod-
ular functions [27]. A general form of a bi-approximation algorithm
to solve problem (18) is given in Algorithm 1 [26]. This algorithm

Algorithm 2: NETWORK SUPPORT KNAPSACK PURSUIT

Data: A0,N , B and submodular functions f(·), g(·)
Result: A
initialization A = A0;
while feasible do
I = argmin

i∈N
f(A ∪ i);

if ∃ i∗ ∈ I : f(A ∪ i∗) ≤ B then
A ← A∪ i∗;
N ← N \ i∗;

else
return A;

end
end

as input only requires: the ground set N , the maximum budget B
and an initial set A0 for obtaining the local tight bounds. In many
instances, A0 can even be the empty set.

Typically, the common surrogate functions employed for Algo-
rithm 1 are obtained through modular upper and lower bounds [27]
that are analogous to the bounds used in majorization/minimization
algorithms within the convex optimization literature [28]. Alterna-
tively, for the particular case of our problem: modular cost and a
saturated submodular set function (submodular set function with a
total curvature equal to one [26]) as a constraint, instead of using a
tight modular upper bound as suggested in Algorithm 1, we can use a
property of our constraint to devise a greedy algorithm that generates
a feasible path.

As the rank function is an integer saturated set function, we no-
tice that any upper bound f̂t will lead to an integer set function which
either increases by one or not increases at all when a new element is
added to a fixed set (f̂t is a modular set function). Therefore, when
solving the inner optimization problem of Algorithm 1 in most of the
instances only one new element is added to the set At−1 due to the
possibility of constraint violation. Notice, that due to the fact that
the set At−1 does not increase the knapsack weight, this set is al-
ways chosen as part of the solutionAt, i.e., its elements increase the
cost without adding any cost. Hence, using this two properties we
can obtain a simplified version of Algorithm 1 which at every step is
guaranteed to increase the cost set function value while keeping the
solution set feasible. Here, by feasible path we refer to a set of incre-
mental solutions, defined by inclusion-wise closure, such that each
element of these set is a feasible element, i.e., sparse fixed-support
matrix diagonalizable with the selected basis U . This procedure is
summarized in Algorithm 2. As the network matrix is assumed to
be a symmetric matrix, note that the elements of A can be treated
as pairs (off diagonal entries) and singlenton elements (diagonal en-
tries). The greedy approach here presented is akin to the simplifi-
cation that can be obtained when an ellipsoidal approximation [29]
is used to obtain a surrogate function for f when its total curvature
is equal to one, however there is no overhead due to computing the
approximation f̂ .

5.2. Adding Extra Constraints

In many cases, we have some information with respect to our net-
work connections, e.g., some edges are known, there are no self-
loops, etc., or some properties of the matrix, e.g., the constant eigen-
vector has a zero as eigenvalue, hollow matrix, etc. Hence, in the
following we present examples of how to include such constraints in
the proposed framework for network identification.

First, we discuss the most straightforward constraint: edge
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(a) Erdõs-Rényi (b) Small Network Example (c) Zachary’s Karate Network
Fig. 1: (a) Difference of nnz elements between the recovered sparsity pattern and the nnz elements of the true adjacency matrix. (b) Recovered
network support comparison. (c) Recovered Zachary’s Karate club network comparison.

knowledge. This constraint is added by either subtracting from the
ground set N a fixed set M (known nonzero entries of S) mak-
ing them ineligible for the algorithm, or by adding a fixed set of
elements to the starting set A0 (knowledge of disconnected nodes).
This last case is applicable when we are identifying a hollow matrix
for example (adjacency matrix).

Now, let us consider another common constraint: bandlimitness
of the network matrix. Mathematically, this constraint implies that a
subset of the eigenvectors of the network matrix are linked to eigen-
values with zero values. A typical instance for constraints of this
kind is, for example, when the desired network matrix has its con-
stant eigenvector linked to a zero eigenvalue, e.g., Laplacian matrix.
For this case, the following condition must hold:

(a ∗U)λ = 0, (19)

where a = 1TU = [N, 0, . . . , 0]T as it is assumed that 1 is an
eigenvector of the network matrix. Condition (19) implies that λ
lies in the intersection of null{TAU} and null{a ∗U} which is tan-
tamount to saying that

λ ∈ null{T̃AU}. (20)

Here, T̃
A
U is the matrix resulting from stacking the matrices TAU and

(a ∗ U) as [(TAU )
T , (a ∗ U)T ]. As a result, we can substitute the

matrix TAU in the rank constraint by T̃
A
U and apply Algorithm 2.

In general, other types of constraints that are expressible as ma-
troids [30], e.g., node partitions, node degree constraints, to name a
few, can be included in the presented framework. However, differ-
ent from the previous constraints, the introduction of such structures
comes with a degradation in the approximation quality and compu-
tational complexity (an oracle for the independent sets is needed).

6. NUMERICAL RESULTS

In this section, we present a series of numerical simulations in or-
der to demonstrate the developed theory and the proposed method
for network support estimation. First, we illustrate the performance
of the proposed method for recovering the sparsest symmetric ma-
trix sharing a particular eigenbasis. To do so, we generate a se-
ries of Monte Carlo simulations involving Erdõs-Rényi [31] graphs
of varying size. For these simulations we select graphs of sizes
N ∈ {10, 14, 22, 25, 32, 35} and with different edge-formation
probabilities p ∈ {0.1, 0.3, . . . , 0.9}. For each pair (N, p) we gen-
erate 100 Erdõs-Rényi graphs and aim to recover the sparsest matrix
which shares the eigenbasis with the adjacency matrix, A, of the
generated graphs. The goal is not to necessarily obtain the original
adjacency matrix but the matrix with the largest possible quantity
of zero entries such that the eigenspace is given by the one of the
true adjacency matrix. Here, the results of this experiment, shown
in Fig. 1a, are reported in terms of the difference of the number of

nonzero (nnz) elements between the sparsity pattern recovered by
the proposed method, i.e., nnz(S∗) = N2 − |A| and the number
of nnz elements of the adjacency matrix A. From Fig. 1a, we no-
tice that for low p-values the proposed method is able to retrieve
valid network matrices with a sparsity level greater than the one of
the original adjacency matrix A. However, as the p-value increases
(higher connectivity in the graphs), the eigenbasis becomes more
selective leading to the recovery of sparsity patterns with the same
number of nonzeros as the trueA. In these instances, as the sparsity
pattern results to be unique, the basis that is recovered, BA

∗
U , has

right dimension one. Hence, this gives the certificate that the adja-
cency matrix is the unique network matrix. These results are con-
sistent with the results shown in [10], where they show that through
their convex formulation it is possible to retrieve with higher accu-
racy the adjacency matrix for intermediate p-values. Note that our
method can recover the sparsity pattern of the sparsest network ma-
trix for small p-values . Now, we consider two particular instances
of unique network matrix recovery. For this, we use an Erdõs-Rényi
network with parameters (N, 0.9) and Zachary’s Karate club net-
work [32] for showing the performance of our method. The latter
network consists of 34 nodes representing members of the club and
78 undirected edges representing the relationships among members.
For this case, we consider that the network modes, i.e., eigenvectors
of the network matrix, are known. For this example, we obtain the
modes of the network from the eigendecomposition of the adjacency
matrix. The results of applying Algorithm 2 (green diamonds) and
the method in [10] (red crosses) are shown in Figs. 1b-1c. In Fig. 1b,
it can be seen that perfect recovery of the support is obtained for the
knapsack pursuit method where [10] overestimates the support. This
is due to the fact that for this network its associate network matrix
is not unique, and the convex method fails to find the appropriate
support. In contrast, for Zachary’s network the dimension of the
nullspace of the matrix TAU is d = 1, which implies the uniqueness
of the associate network matrix. Hence, in this case both methods
are able to exactly recover the support of the original network (blue
circles).

7. CONCLUSIONS

In this paper, we investigated the problem of identifying the underly-
ing network structure based on algebraic properties of fixed-support
jointly diagonalizable matrices. Diverging from typical approaches
that rely on convex methods, we leverage these algebraic properties
of the matrix network representation to devise a submodular method
for network support identification. We show that a greedy variant
of the submodular analogue of the majorization/minimization tech-
nique can be employed to retrieve the unknown support of the net-
work from knowledge of its modes. Numerical examples showcased
the proposed algorithm in recovering the support of sparse networks.
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