

Delft University of Technology

A Serious Game Approach to Introduce the Code Review Practice

Ardic, Baris; Tuzun, Eray

DOI
10.1002/smr.2750
Publication date
2024
Document Version
Final published version
Published in
Journal of Software: Evolution and Process

Citation (APA)
Ardic, B., & Tuzun, E. (2024). A Serious Game Approach to Introduce the Code Review Practice. Journal of
Software: Evolution and Process, 37 (2025)(2), Article e2750. https://doi.org/10.1002/smr.2750

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1002/smr.2750
https://doi.org/10.1002/smr.2750

1 of 26Journal of Software: Evolution and Process, 2025; 37:e2750
https://doi.org/10.1002/smr.2750

Journal of Software: Evolution and Process

RESEARCH ARTICLE - EMPIRICAL OPEN ACCESS

A Serious Game Approach to Introduce the Code
Review Practice
Baris Ardic1  | Eray Tuzun2

1Department of Computer Science, Delft University of Technology, Delft, The Netherlands  |  2Department of Computer Engineering, Bilkent University,
Ankara, Turkey

Correspondence: Baris Ardic (b.ardic@tudelft.nl)

Received: 22 June 2022  |  Revised: 20 June 2024  |  Accepted: 24 November 2024

Funding: This study was supported by the Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung.

Keywords: code inspection | code review | serious games | software engineering education

ABSTRACT
Code review is a widely utilized practice that focuses on improving code via manual inspections. However, this practice is not ad-
dressed adequately in a typical software engineering curriculum. We aim to help address the code review practice knowledge gap
between the software engineering curricula and the industry with a serious game approach. We determine our learning objec-
tives around the introduction of the code review process. To realize these objectives, we design, build, and test the serious game.
We then conduct three case studies with a total of 280 students. We evaluated the results by comparing the student's knowledge
and confidence about code review before and after case studies, as well as evaluating how they performed in code review quizzes
and game levels themselves. Our analysis indicates that students had a positive experience during gameplay, and an in-depth
examination suggests that playing the game also enhanced their knowledge. We conclude that the game had a positive impact
on introducing the code review process. This study represents a step taken toward moving code review education from industry
starting positions to higher education. The game and its auxiliary materials are available online.

1   |   Introduction

The code review process is established as an essential part of
the application lifecycle management and is frequently applied
in modern software development [1]. Performing code reviews
properly has been shown to play an important role in reducing
software defects and improving software quality [2]. Despite
widespread usage and the emphasis given in the industry [3],
code review practice is often not adequately addressed in typi-
cal Software Engineering or Computer Science curricula [4, 5].
Furthermore, during a literature review on peer code review
education, Indriasari et al. [6] reported the lack of student learn-
ing engagement and consistency in the review quality to be
major barriers to establishing an effective code review process.
Our personal experiences with teaching software engineer-
ing courses are paralleled by these barriers; we noticed a lack

of maturity in the students' code review processes, attributing
this to their limited training on the subject when using tool-
supported reviews. Therefore, we have the following overall re-
search goal:

Addressing these barriers requires teaching best practices,
workflow, and potential code quality improvements in the code
review process with greater student engagement. Serious games
are a viable way to address these barriers because game-based
formats are proven to increase user engagement [7]. Unlike

To evaluate how a serious game approach improves software
engineering students' comprehension and execution of the
code review process, particularly in addressing engagement
and quality issues.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is

properly cited.

© 2024 The Author(s). Journal of Software: Evolution and Process published by John Wiley & Sons Ltd.

https://doi.org/10.1002/smr.2750
https://doi.org/10.1002/smr.2750
mailto:
https://orcid.org/0000-0002-5550-7816
mailto:b.ardic@tudelft.nl
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fsmr.2750&domain=pdf&date_stamp=2024-12-22

2 of 26 Journal of Software: Evolution and Process, 2025

traditional games, serious games have educational purposes and
can be designed around learning objectives [8].

To address these barriers, educators would require a platform that
conveys the basics of the code review process while allowing par-
ticipants to practice their defect detection skills. Moreover, any ad-
ditional exercise demonstrating the author's role in the code review
process will allow for a more realistic representation of the pro-
cess. A combination of these aspects will allow students to begin
participating in a more mature code review process.

Another useful effect of such a platform is to help with moving
code review–related education and training from the industry to
higher education. This shift could decrease the orientation load
of new engineers while obtaining code review–related knowl-
edge earlier should help students during their undergraduate
software projects.

We already proposed a prototype serious game–based approach
as the platform for introducing the code review process in our
previous study [9] and proceeded with a design overhaul [10].
The initial design of the code review serious game (CRSG) was
promising based on a small trial run.

Moreover, using a custom exercise platform allows us to have
more control over how the process is presented and how inter-
action data can be collected. Therefore, to introduce the code
review process in a class environment, this platform might be
preferable to existing industrial code review tools. Another
strength of a game approach is the perceived simplicity com-
pared to more industry-oriented options.

To further validate our approach, we present the following re-
search questions:

	RQ1.	 How effective is CRSG for introducing students to code
review and its related concepts?

	RQ2.	 How feasible it is to use CRSG to introduce code re-
view concepts within a course curriculum?

This study reports on the latest stage of our larger project in de-
livering this platform. The main objective of this stage of the
overall study is to evaluate CRSG to see if it can be integrated
into software engineering–related courses without occupying
lecture time. The overall study made the following contributions:

•	 Developed the first publicly available CRSG1

•	 Designed quizzes and surveys to be able to evaluate the ef-
fectiveness of CRSG.2

This study's main contribution is the following:

•	 Conducted multiple case studies with a total of 280 unique
students to evaluate CRSG on scale, and then, we shared
our results and findings. We also made improvements to
the platform between the case studies by developing a new
game mode.

This paper reports on the last version that has a new game
mode. This additional game mode allows us to approach the

code review from the author's perspective, complementing the
reviewer's viewpoint in the original mode. However, the actual
focus is on the evaluation of CRSG. Building upon the previous
studies [9, 10] that detailed the prototype, this paper reports the
analysis of all three case studies conducted throughout a period
of two years. The scope of this paper is to analyze all the data
that we gathered throughout the overall process and to deter-
mine the role of CRSG in our arsenal of software engineering
education. We also reflect on our experiences regarding building
an in-house learning tool and threats to its effectiveness.

The rest of the paper is organized as follows. The next section
provides a background, while Section 3 provides a detailed in-
sight into the game including its learning objectives, compo-
nents, and flow. Section 4 describes the case studies in detail,
while Section 5 presents the results of the case studies alongside
their analysis. Section 6 provides our discussion regarding the
study then Section 7 provides the threats to validity. Section 8
concludes the paper.

2   |   Background

Code review is a manual inspection of source code by developers
other than the author of the source code [2]. A simplified over-
view of the code review process is provided in Figure 1, which
is adapted from [11]. The process starts with the initial code
segment, which is altered until all concerns of the reviewer are
eliminated. The final version of the segment is accepted into the
codebase.

The code review process is an established part of modern soft-
ware development and is seen as a vital part by the leading soft-
ware companies in the industry [3, 12]. Most of the foundational
knowledge in the literature on modern code review comes from
analyzing open-source projects [13].

Collaborations between researchers and companies are not ab-
sent from the literature either because a better understanding of
the process is directly beneficial for practitioners. A case study
done in Google [2] shows that a mature and mandatory code re-
view process was accepted and its benefits were acknowledged
by the engineers. Another study by Microsoft [14] compiles the
challenges to expect and the best practices to apply while estab-
lishing a modern code review process. In addition to such collab-
orative studies, the benefits of code review have been a topic of
empirical research in software engineering. McIntosh et al. [15]

FIGURE 1    |    An overview of the code review process [11].

 20477481, 2025, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sm

r.2750 by T
u D

elft, W
iley O

nline L
ibrary on [10/02/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

3 of 26

have provided empirical evidence regarding the relationship be-
tween code review coverage and postrelease defects. Using code
review data from popular and well-documented open-source
projects such as Qt,3 they show that both low code review cover-
age and participation produce artifacts with up to five additional
postrelease defects. Similarly, Doğan and Tüzün [16] show that
popular open-source projects are prone to code review–related
process smells as they detect at least one process smell in around
72% of the open-source code reviews. Conducting the process
correctly seems to be a nontrivial problem increasing the im-
portance of code review education for the next generations of
practitioners.

The rest of this section focuses on two main points. The first is
to document the benefits of code review with empirical evidence
in order to support the motivation of the study. The second point
of focus is to demonstrate the viability of our approach by pre-
senting the usage of serious games regarding teaching software
engineering practices. We consider studies that aim to interac-
tively teach code review or other software engineering processes
as the studies that relate to this one.

2.1   |   Interactive Platforms for SE Concepts

Game-based platforms are often utilized for teaching software
engineering–related concepts. A systematic mapping study by
Souza et al. [17] investigates 156 studies between 1974 and 2016
about the use of game concepts to teach software engineering
practices. A common motivating theme for these studies is the
shortcomings in university lectures on software development–
specific concepts.

There are two main approaches regarding the scope of these
studies. First are the studies that combine multiple development
concepts or oversee software development as a whole in their
game flow; therefore, focus on multiple aspects of software en-
gineering at once. A leading study in this regard is simSE by
Navarro and van der Hoek [18] where the player controls a soft-
ware engineering project by making decisions from a manage-
rial perspective. Second are the studies that focus on a specific
software engineering process or skill. For example, Sonchan
and Ramingwong [19] tackle software engineering risk man-
agement skills with the card-based game ARMI where players
identify and analyze the risks to strategize correctly for risk
management during a software development project.

It is also possible to integrate a traditional course format with
an interactive platform where the platform itself facilitates bet-
ter learning by helping the instructor convey information. For
instance, Farah et al. [20] utilize code review notebooks to intro-
duce the process via code snippets in an online setting. Similarly,
Haendler et al. [21] proposed a tutoring system for code refactor-
ing training where they integrated feedback for the correctness
and design quality.

2.2   |   Serious Games for Code Review

Serious games are learning tools that aim to increase
player engagement by leveraging game elements. They are

learner-centered approaches, where the user controls the learn-
ing process in an interactive manner [22]. Unlike a traditional
game, they are designed around learning objectives [23]. We
have compiled the existing studies that were the closest to this
one via purpose or execution. The purpose is to teach the code
review practice in a higher education setting, and a serious game
is used to fulfill this goal.

Pex4Fun is a serious game designed by Xie et al. [24, 25]. The
gameplay consists of coding duels where players aim to reach
the correct behavior by introducing code modifications. Players
are provided feedback for these changes and the overall pro-
cess indirectly simulates code review. Skills like software test-
ing, debugging, and code inspection are practiced throughout
the game.

Anukarna is a decision-making-based serious game by Atal
and Sureka [26]. The players are presented with events that
might occur during the code review workflow of a project.
These events are resolved by players' decisions, where the in-
tention is to manage their overall resources (time, budget, and
labor) by moving the project forward. These events are imple-
mented as a decision tree that moves players to the nodes with
higher reward points when they continue making desirable
decisions.

InspectorX is a code review simulation game featuring three
types of players. Authors submit software artifacts to the sys-
tem; inspectors review these artifacts, and moderators man-
age the assignment of artifacts among players. A ranking
system is used to dynamically evaluate players regarding their
defect detection capabilities in order to help moderators with
their tasks. Additionally, a list of reasons can be provided with
the software artifacts for inspectors to mark the defects they
have found. The correctness of the review is decided by the
moderators [27].

Lastly, Guimarães [28] developed a game flow where players
identify intentionally planted mistakes or undesirable prac-
tices in a code snippet. Players then select a reason for the de-
fect from a list provided by the tool. The gameplay supports a
collaborative multiplayer mode in which players vote for the
existence and reasons for these defects. After the defect list
is refined by team discussions, the captain submits the final
shared review.

3   |   Game Design

This section consists of three subsections. Section 3.1 describes
our learning objectives while Section 3.2 reports on the pre-
liminary experiment and the feedback we gathered from it.
Section 3.3 demonstrates the flow of the game modes while pro-
viding a detailed breakdown of its components.

3.1   |   Learning Objectives

The overall research goal is to address the barriers mentioned
by Indriasari et al. [6]. These barriers are review quality con-
sistency and student learning engagement. The serious game

 20477481, 2025, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sm

r.2750 by T
u D

elft, W
iley O

nline L
ibrary on [10/02/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

4 of 26 Journal of Software: Evolution and Process, 2025

nature of the proposed platform intends to handle the engage-
ment aspect. Therefore, we construct our learning objectives to
specifically address the review quality consistency barrier. We
intend to overcome this by increasing code review competency,
both in process knowledge and practical skills required to carry
out the process effectively.

Therefore, CRSG is designed around realizing two main ob-
jectives. The first is to convey general information regarding
the code review concepts, whereas the second is to allow play-
ers (used interchangeably with students and participants in
this work) to train the skills that allow for effective defect de-
tection during code review. While coming up with the general
structure of the game, we further broke down these objectives
and created game elements and components around these
smaller objectives following the gamified design principles
developed in [29].

The first objective consists of code review roles, duties, and
workflow while the second objective consists of finding code
errors, learning to classify these defects to better communicate
them, and practicing reviewing code. After this initial design,
we manually tested the gameplay and made additions to the
base game structure until we were satisfied with the emphasis
that was given to each miniature objective. Several features in
the final version of the game originated from this developmental
phase. To improve engagement in defect detection exercises, we
incorporated elements such as “submission feedback” and “an-
swer explanations.” These additions, which are elaborated on
later in this section, significantly enhance the game's interactiv-
ity and educational value.

This process is represented by Steps 2 and 3 in the overall work-
flow diagram in Figure 2. The mapping between the base ob-
jectives and game components can be seen in Figure 3, where
rows a and c refer to the first and second objectives respectively,
while row b refers to the game components and arrows indicate
which objective is realized by which components. The author
mode feature was added after the initial design was completed
to simulate both roles involved in code review. Because it is a

standalone game mode, it also inherits most of the features of
the reviewer mode.

3.2   |   Prototype, Preliminary Experiment,
and Feedback

After defining our learning objectives, we constructed a pro-
totype and prepared quizzes and surveys for evaluation.
Furthermore, we carried out a preliminary experiment with
seven senior or graduate-level students to gather feedback and
address the shortcomings of both the prototype and the initial
evaluation experiment. The details of this process are shared
in [9]. We initiated this small experiment with a code review
survey and a quiz and then introduced the participants to the
game by playing a tutorial level followed by a gameplay session
where all game levels were played to completion by all partic-
ipants. We concluded this experiment with a postquiz and a
postsurvey.

The main goal of this preliminary experiment was to gather
feedback. We also conducted follow-up interviews where we

FIGURE 2    |    Workflow of the overall study. Note: This study aims to report on steps [9–17], but for completeness, we reiterate earlier steps from
the previous studies.

FIGURE 3    |    The mapping between game features and learning
objectives.

 20477481, 2025, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sm

r.2750 by T
u D

elft, W
iley O

nline L
ibrary on [10/02/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

5 of 26

asked participants to evaluate the quiz on a per-question basis.
The experiment took about 3 h from start to finish, because we
wanted the participants to raise their opinions as they arose
while we took notes. The follow-up interviews took about 30 min
per participant.

We evaluated the feedback from the participants throughout the
experiment and the interviews, then used our findings to im-
prove the evaluation materials. This was done by adding new
features, reducing the size of the quiz and the survey by drop-
ping the questions that were deemed to be the least clear or rel-
evant to our learning objectives. By doing so, we improved the
quality of the whole experiment and reduced the experiment du-
ration to a more feasible interval which was necessary for larger
scale case studies. These steps are represented with Steps 3–7
in Figure 2. Before starting the large-scale case studies, we also
overhauled the game by improving its theme and added several
features that were desired by the participants of the preliminary
experiment. These additions are indicated by Steps 8 and 9 in the

overall workflow (Figure 2). Furthermore, the content related
to Steps 10–17 covers our case studies, evaluations, and adjust-
ments in between.

3.3   |   Game Components and Flow

This subsection starts with a short overall description of CRSG
and the rest of it presents the details of each component and
game flow. To provide a broader view, we depict the overall lay-
out of the game components in Figure 4.

The final configuration of the game after the third case study
consists of a tutorial, a practice level, two reviewer mode lev-
els, and two author mode levels. The configuration before
Phase IV in Figure 2 had four reviewer mode levels. The tu-
torial consists of various short code snippets, each of which
demonstrates a defect type. The initial level in the game is a
practice level where the aim is to demonstrate how the game
interface works.

The game's actual levels feature lengthier code snippets with
various manually introduced defects. In the reviewer mode lev-
els, players aim to identify all defects and their classifications
to fully complete a level. However, moving on to the next level
doesn't necessitate complete success. In the author mode levels,
players must effectively address comments provided by the re-
viewer. Although players can access answers for a level, once
viewed, they cannot resubmit answers for that level. If players
find themselves stuck during a level, hints and other resources
we have prepared can be used for assistance. The typical flow
for each game mode is illustrated in Figure 5. An older version of
CRSG's design choices and key components have been detailed
in [10].

3.3.1   |   Reviewer Mode

A reviewer mode level starts with players trying to identify de-
fects in the code segment. Upon finding a defect, they select it FIGURE 4    |    Layout of game components.

FIGURE 5    |    Typical level flow for both game modes.

 20477481, 2025, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sm

r.2750 by T
u D

elft, W
iley O

nline L
ibrary on [10/02/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

6 of 26 Journal of Software: Evolution and Process, 2025

while also determining the reason for the defect by utilizing our
pre-existing taxonomy adapted from [30]. Repeating this pro-
cess, the players create a list of defects that they found during
the code review. Once satisfied with their defect list, they can
submit it for evaluation. Our scoring algorithm checks each de-
fect in the submission against our answer key. A defect consists
of its starting line, reason, and ending line. As one can see in
Algorithm 1, our scoring method awards the players a point
when they successfully detect the starting and ending lines of a
defect. Only then, the player can get an additional two points if
they also assign the correct reason for the defect. In this struc-
ture, each defect ends up being worth 3 points.

In order to guide the player in the right direction regarding find-
ing the defects, we provide feedback to each submission sent by
the player. This feedback is tied in with our scoring. Each defect
is matched with a color in our scale, and the border of the defec-
tive snippet is changed to that color. Red is used for a defect that
got 0 points from the scoring algorithm, which means that the
player was wrong about the location of the defect. In a similar
fashion, yellow is used for defects submitted on the right lines
but with an incorrect reason. Green refers to a correctly submit-
ted defect. The state of the game with the progress feedback after
a defect list submission can be seen in Figure 6.

The right-hand side shows the defective code, and the left-hand
side is divided between the defect list and the support menu. The

left-hand side of Figure 5 demonstrates how a reviewer level is
typically played.

3.3.1.1   |   Defect Taxonomy.  We wanted to use a realistic list
of defect reasons for players to select from while playing; there-
fore, we started with the defect taxonomy mined from review
data by Mäntylä and Lassenius [30]. We further trim and adapt
it to be used in CRSG. Most of the changes made to the taxon-
omy are made to make it more compliant with the Java language
and to simplify it for players' convenience. For example, we sub-
tracted some subcategories like “timing” and “memory leak.”
We present the taxonomy to the player as a UI element that they
can hover, inspect, and select a relevant reason for their defects.

FIGURE 6    |    A reviewer mode level.

FIGURE 7    |    The defect taxonomy used in CRSG.

 20477481, 2025, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sm

r.2750 by T
u D

elft, W
iley O

nline L
ibrary on [10/02/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

7 of 26

Figure 7 represents the overall taxonomy that we use in the cur-
rent version of CRSG.

3.3.1.2   |   Auxiliary Game Components.  The reviewer game
mode has small built-in components that help the player in case
they are stuck with a level. These are not as detailed as the tuto-
rial, but they are a good way to help the player without leaving
the review screen. These helpers are arranged as tabs located in
the bottom left part of the screen as can be seen in Figure 6.

Guide offers a comprehensive view of the defect taxonomy, akin
to Figure 7. It is color coded for players' convenience and pres-
ents concise definitions for each defect type.

Checklist fulfills the same purpose as a code review checklist that
is used in some code review workflows. Checklists are shown to
help beginners with the review process [31]. In our context, the
list provides players pointers regarding where to look in the code
snippet. The items are ordered in a specific way to help players
start with easier-to-detect defects like style, variable naming,
and magic numbers proceed with more contextual defects.

Hints are another helpful way to keep players from getting stuck
on a particular level. They are written by hand and differ between
levels. Each level has at least three hints ranging from “the num-
ber of defects in a level” to a vague statement meant to nudge the
player in the right direction regarding hunting a particular defect.

See Answers is pressed, the level ends officially, and the players
cannot change their defect lists anymore. The correct defects are
displayed to the player on the left-hand side, and the defective
lines are highlighted. We also switch the “description” tab with
explanations of the defects so the player can read the solutions
before proceeding to the next level.

3.3.2   |   Author Mode

This study aimed to obtain an accurate representation of the
code review process. The previous version of the serious game
only provided gameplay for the reviewer role. With the current
version, we intend to cover both sides of the code review process;

therefore, we introduced a new game mode that approaches the
process from the code change author's perspective.

Every level of this author game mode begins with a previously
reviewed code segment, complete with comments and context
from the initial review iteration. Using the information given,
players examine both the code and reviewer comments, deter-
mining the validity of the remarks. We have provided a straight-
forward mechanism to dismiss false positive comments. All
reviewer comments also have source code lines attached to them
for the player to be able to go through them with ease. These
components are demonstrated in Figure 8, where reviewer com-
ments reside on the lower left-hand side while the editable code
segment resides on the right-hand side. The top left side keeps a
reference for the starting point of a level in case players need to
revert to the original.

Using the reviewer comments, players try to apply their fixes
to the source code for the reviewer comments that they intend
to fix. After finishing their first iteration of fixes (the player's
first iteration corresponds to the second iteration of the code
review process that is being simulated), the updated version
of the code can be submitted to CRSG. We evaluate these sub-
missions in the back-end against our test cases. The player is
awarded points for the reviewer comments that they were able
to apply correctly. For the comments that were missed, the
corresponding reviewer comments are updated to show that
the problem persists.

At any point during the level, players can also utilize hints that
are specific to each comment and are created by us similarly
to the reviewer mode. This approach ensures that players can
smoothly apply the review comments without getting stuck eas-
ily. Differences in the flow of the two game modes can be ob-
served by comparing the respective parts of Figure 5.

3.3.3   |   UI Components

The UI of the game is made to look like the player is controlling
a character named Stella through space. We utilized this char-
acter to convey code review–related advice. The advice is a

FIGURE 8    |    An author mode level.

 20477481, 2025, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sm

r.2750 by T
u D

elft, W
iley O

nline L
ibrary on [10/02/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

8 of 26 Journal of Software: Evolution and Process, 2025

compilation of our experiences and code review guidelines of
Thoughtbot [32]. An interaction with Stella from the game is
shown in Figure 9.

Each level in the game is represented by a space station includ-
ing the practice level and the tutorial. This is done to comply
with the overall theme of the game, where Stella helps these
stations by reviewing their code. The individual space stations
reflect the increases in difficulty by their representations. Each
successive level is a shape with a larger number of vertices. For
example, we start with three vertices for the tutorial and pro-
ceed with four vertices for the practice level as can be seen in
Figure 10. The visual assets for the game were prepared using
Adobe Photoshop software.

3.3.4   |   Tutorial

The tutorial intends to familiarize the players via defect defini-
tions and examples with the defective and nondefective versions
of small code segments. In its current version, there are 10 pan-
els, each with a different minicode segment planted with a sin-
gle defect. The player can interact with the tutorial to discover
the classification and the reason for each defect alongside defi-
nitions for the defect category. The “Show the Defect” button on
the screen allows them to see a nondefected version of the same
snippet while explaining how to avoid or fix the defect. One of
the tutorial panels is shown in Figure 11.

4   |   Research Design

In this section, we describe the research design format for
evaluating CRSG using our main research questions on effec-
tiveness and feasibility. Our methodology blends elements of
case study and action research, as discussed by Staron [33].
The integration of action research is the result of the research-
ers' dual roles as course staff. Consequently, since its inception,
the platform has been intended for our students. Therefore, the
overall research design is not exactly a case study; however,
because we use the guidelines from Runeson and Höst [34] to
carry out and report on our research, we prefer to use the term
case study for our lab sessions with students. The rest of this
section focuses on the details of our research design by report-
ing on objectives, case study setting, ethics, data sources, and
data analysis hypotheses. Subsequently, we also addressed is-
sues related to validity to ensure adherence to these guidelines.

4.1   |   Case Study Setting

This section details the setting and structure of the case stud-
ies conducted to evaluate the effectiveness of the CRSG. These
sessions were adapted for remote delivery due to the COVID-19
pandemic and integrated into specific software engineering
courses. The following subsections describe the integration with
courses, adjustments made for remote delivery, participant de-
tails, and the general flow of each case study.

FIGURE 9    |    An interaction with Stella.

FIGURE 10    |    Main menu screen.

 20477481, 2025, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sm

r.2750 by T
u D

elft, W
iley O

nline L
ibrary on [10/02/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

9 of 26

4.1.1   |   Adjustment to Remote Delivery

The original intention of case studies was to conduct laboratory
sessions in person. Due to the university's transition to online
education due to COVID-19 pandemic regulations, we per-
formed these case studies with video conferencing. There are
three case studies, which are represented by Steps 10, 12, and
16 in Figure 2.

4.1.2   |   Case Studies and Course Integration

From here on, we mention each case study by chronologically
numbering them as CS1, CS2, and CS3. CS1 was done in CS319
[35] which is a must-course taken by third-year students. CS2
was done in CS453 [36] which is an elective course generally
taken by fourth-year students. Similarly, CS3 was done in CS319
of the next year.

•	 CS319 Object-Oriented Software Engineering is a must
course for third-year bachelor students. Students are re-
quired to have achieved passing marks in fundamental
courses on programming and data structures. Key objec-
tives include learning the basics of the software engineer-
ing process lifecycle, understanding the object-oriented
approach through principles and design patterns, learning
UML, and developing practical skills in visual modeling.
Additionally, the course emphasizes the development of
teamwork and communication skills, particularly through
a group project that allows students to practice the appli-
cation of object-oriented software development principles.

•	 CS453 Application Lifecycle Management (ALM). This
fourth-year elective requires passing marks from CS319.
The course offers an in-depth study of ALM in the context
of large-scale IT software development. It explores the en-
tire ALM process, including agile software development,
project management, requirements management, archi-
tecture and design, software test management, change

management, and more. The curriculum is designed to pro-
vide a comprehensive understanding of how these compo-
nents interact in real-world scenarios, preparing students to
effectively manage and optimize the software development
lifecycle in professional environments.

4.1.3   |   Participation and Ethics

In all case studies, the CRSG was integrated as a mandatory
code review lab session within the course. Participation was
required for all students, but their performance in these ses-
sions was not graded to ensure a stress-free environment. An
attendance-based grade, similar to an attendance quiz, was as-
signed. Exemptions were provided for students who were unable
to participate in the lab sessions.

The total number of participants in all case studies was 280, al-
though not all completed the study. Out of 276 complete submis-
sions, the distribution was as follows: CS1 had 52 participants,
CS2 had 80, and CS3 had 144. Table 1 provides detailed informa-
tion on each case study.

The study received approval from our institution's ethics board
and informed consent was obtained from all students. Personally
identifiable information was used solely to match pregameplay
and postgameplay materials, and all data were permanently an-
onymized before analysis.

4.1.4   |   Flow and Structure of a Case Study

We have compiled various auxiliary materials aiming for both
numerical evaluations and players' personal evaluations regard-
ing their experience with the CRSG.

The flow of a case study can be seen in Figure 12, which starts
with a presurvey that was sent out a day before. In all case stud-
ies, the scheduled meeting started with a short verbal tutorial

FIGURE 11    |    A panel from the tutorial.

 20477481, 2025, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sm

r.2750 by T
u D

elft, W
iley O

nline L
ibrary on [10/02/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

10 of 26 Journal of Software: Evolution and Process, 2025

and was followed by the prequiz component. After that, the
players proceeded to play the tutorial and the practice level. At
any point, they could ask us questions using the private chat
function of the video conferencing application Zoom.4 The
study then continued with the actual gameplay of Levels 1–4.
The players who have completed the main gameplay levels com-
pleted the postquiz before signing off. We sent out the postsur-
vey a day after the main session. We closed any access to the
game or the material between case studies.

4.2   |   Data Collection

In this study, we used three different sources to collect data. The
first source consists of our surveys done before and after the vir-
tual lab session. The presurvey aims to determine the CR knowl-
edge and overall experience of the participants before coming
into the case study. The postsurvey aims to measure the overall
participant impressions and individuals' subjective familiarity
and confidence after the case study. They share common Likert
scale questions for participants to self-reflect which we then uti-
lize for evaluations. The surveys are available in Appendix A
(Tables A1–A3).

The second source consists of the prequizzes and postquizzes.
They are identical; therefore, we can directly observe how the
participants' answers change after playing the game. This “pre–
post testing” is the most popular method of evaluation in digital
games for engineering education [37].

Although the main purpose of the quiz is to enable observa-
tion regarding learning, it also acts as a comprehensive quiz
with questions on CR knowledge, defect taxonomy, and pro-
gramming. The majority of the quiz consists of high-rated
questions from the participants of the preliminary experiment
interviews (Step 6 in Figure 2). These are accompanied by a
few questions that we added after the preliminary experiment,
totaling up to 24 questions [9]. The quizzes were the same for
all case studies.

Our third source for data collection are the player logs of the
game. Our cloud database logs most of the player activity

during gameplay. From these data, we can deduce the time
spent on each level by each user, how many times a defect
list was submitted to each level, the contents of the submis-
sion, and scores related to the submissions. These are comple-
mented by player IDs to recognize players and differentiate
between participants of different rounds to conduct a more
in-depth analysis.

4.3   |   Data Analysis

To address our primary research questions:

	RQ1.	 How effective is CRSG for introducing students to code
review and its related concepts?

	RQ2.	 How feasible is it to use CRSG to introduce code re-
view concepts within a course curriculum?

We have formulated the following hypotheses to guide our data
analysis and detail how each hypothesis is tested, which vari-
ables were used, and the source of the data:

4.3.1   |   Assessing the Effectiveness of CRSG (RQ1)

1.	 Hypothesis 1.1 (H1.1): Players' self-reported knowledge
of code review will significantly improve after playing
CRSG.
•	 Reason: Improvement in self-reported knowledge indi-

cates effective learning.
•	 Data source: Presurvey and postsurvey responses.
•	 Variables: Likert scale data on CR knowledge question

(Q1) in Code Review Knowledge Sections in presurvey
and postsurvey.

•	 Testing method: Median and mod measures.

2.	 Hypothesis 1.2 (H1.2): Players' self-reported confidence
in performing code reviews will significantly improve after
playing CRSG.
•	 Reason: Improvement in self-reported confidence indi-

cates development in practical application of code re-
view–related skills.

FIGURE 12    |    The flow of the case studies.

TABLE 1    |    Case study details.

Case Study No. Class Participants Reviewer levels Author level

CS0 (preliminary) — 7 4 —

CS1 CS319 52 4 —

CS2 CS453 80 4 —

CS3 CS319 144 2 2

 20477481, 2025, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sm

r.2750 by T
u D

elft, W
iley O

nline L
ibrary on [10/02/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

11 of 26

•	 Data source: Presurvey and postsurvey responses.
•	 Variables: Likert scale data on CR confidence question

(Q2) in Code Review Knowledge Sections in presurvey
and postsurvey.

•	 Testing method: Median and mod measures.

3.	 Hypothesis 1.3 (H1.3): Players' perceived importance
of code review will significantly increase after playing
CRSG.
•	 Reason: Understanding the importance of code review is

important for long-term retention.
•	 Data source: Presurvey and postsurvey responses.
•	 Variables: Likert scale data on CR confidence question

(Q3) in Code Review Knowledge Sections in presurvey
and postsurvey.

•	 Testing method: Median and mod measures.

4.	 Hypothesis 1.4 (H1.4): Players' familiarity with code
review concepts will significantly increase after playing
CRSG.
•	 Reason: Familiarity with code review–related concepts

is a requirement for a mature code review process.
•	 Data source: Presurvey and postsurvey responses.
•	 Variables: Likert scale data on CR concepts question

(Q4) in Code Review Knowledge Sections in presurvey
and postsurvey.

•	 Testing method: Median and mod measures.

5.	 Hypothesis 2 (H2): Players' scores on a comprehensive code
review quiz will significantly improve after playing CRSG.
•	 Reason: Objective performance metrics provide evidence

of learning.
•	 Data source: Prequiz and postquiz scores.
•	 Variables: Average number of correct answers on quiz

questions.
•	 Testing method: Paired-sample t test to compare prequiz

and postquiz scores.

4.3.2   |   Feasibility of CRSG (RQ2)

6.	Hypothesis 3 (H3): Players will maintain a consistent
level of engagement throughout gameplay.

•	 Reason: To demonstrate the usability of CRSG.
•	 Data source: Time metrics from gameplay.
•	 Variables for analysis: Time spent on each level.
•	 Testing method: Similarity of time spent per defect for

each level.

7.	Hypothesis 4 (H4): The auxiliary components of the game
will be positively received by players.

•	 Reason: To better understand the player experience.
•	 Data source: Postsurvey component evaluations.
•	 Variables for analysis: Players' ratings of game compo-

nents in Likert scale.
•	 Testing method: Average and standard deviation statistics

for the usefulness of each auxiliary game component.

The results section will follow this subsection, presenting find-
ings related to the efficacy and feasibility of CRSG as an educa-
tional tool. Contrary to this section, the results are organized by
data sources instead of research questions.

5   |   Case Study Evaluation

5.1   |   Survey Results

To provide a better understanding of the demographics of par-
ticipants, we asked questions regarding their industry and Java
language experience in the presurvey. Most of the industry ex-
perience consists of summer internships and part-time jobs. 46%
of the participants have 0–3 months, while 18% have 3–6 months
and 12% have more than 6 months of experience. Ninety-four
percent of the participants claim to have some practice with Java
while 57% considered themselves intermediates.

The rest of the questions were related to CR knowledge, impor-
tance, and related concepts alongside a question on participants'
confidence regarding performing CR (Section 4.3, H1). These
questions were asked in both surveys to evaluate the changes
in the answers. A detailed view of the answers and differences
can be seen in Figure 13. Each bar in the figure represents the
percentage of participants that chose the respective option from a
1–5 Likert scale. For the majority of the questions, we can see the
shift to more positive choices on the Likert scale from presurvey
to postsurvey.

The findings presented in this figure are summarized in
Table 2. Here, we observe a consistent increase in the median of
responses toward more positive options across most questions,
with the notable exception of the question about the importance
of code review. A more elaborate breakdown of this data and the
original surveys are available in Appendix A.

Upon analyzing both presurvey and postsurvey results, the
most striking change noted pertains to participants' confidence
in their code review knowledge and skills. Initially, in the pre-
survey, 46% of the participants predominantly selected the most
negative option for this question. However, in the postsurvey,
there was a notable shift with the majority now choosing the
neutral, middle option. This change underscores a significant
improvement in participants' self-perceived proficiency and con-
fidence in code reviews.

5.2   |   Quiz Results

The prequizzes and postquizzes consisted of the same 24 ques-
tions. A list of the quiz questions can be found in Appendix B
(Tables B1–B2). The average scores on the prequiz and postquiz
are 61 and 70, respectively. The overall score improvement be-
tween quiz installations is around 10 points out of 100. However,
because the number of suboptions varies among quiz questions,
affecting the points a question is worth, we use only the quiz
scores as an indicator. Thus, the analysis of the quiz is based on
the difference in the number of correct options between prequiz-
zes and postquizzes (Section 4.3, H2).

To condense the quiz results, we have created three question
groups, which are “CR Knowledge,” “Defect Taxonomy,” and
“Programming.”

The “Defect Taxonomy” category consists of Questions 6–8.
Here, we ask the participants to differentiate between functional

 20477481, 2025, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sm

r.2750 by T
u D

elft, W
iley O

nline L
ibrary on [10/02/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

12 of 26 Journal of Software: Evolution and Process, 2025

and nonfunctional defect types (Question 6), organization-
related structural defects (Question 7), and logic-related func-
tional defects (Question 8).

Similarly, questions between 14 and 23 besides Question 20 are
grouped under “Programming” where we ask about the behav-
iors and defects of small code segments.

FIGURE 13    |    Results of the overlapping questions in the presurveys and postsurveys from worst (1) to best (5) option.

Familiarity with reviewer comments

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Pre

Post

Familiarity with code review standards

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Pre

Post

Familiarity with coding style guidelines

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Pre

Post

Familiarity with code review workflow

1 2 3 4 5

Pre

Post

What is the extent of your previous knowledge on code review?

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Pre

Post

How confident are you about your code review knowledge/skills?

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Pre

Post

How important do you think code review process is?

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Pre

Post

Familiarity with review checklists

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Pre

Post

Familiarity with code review actors

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Pre

Post

 20477481, 2025, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sm

r.2750 by T
u D

elft, W
iley O

nline L
ibrary on [10/02/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

13 of 26

The remaining questions are grouped as “CR Knowledge”
because they are about the overall knowledge of the code re-
view process. The quiz questions themselves are available in
Appendix B, and the original quizzes including the code seg-
ments can be accessed from our online resource package.5

For each question group, we calculated the average number of
correct answers in the prequiz and postquiz. The improvement
is the difference between these averages.

Figure 14 demonstrates the distribution of the quiz scores in
each round. Each column in the figure corresponds to a case

study. The top row compares the prequizzes and postquizzes.
Each point belongs to a participant, and the points over the x = y
line refer to a participant who improved their score after playing
the game. The plots in the second row of Figure 14 are obtained
by sorting the participants regarding their prequiz scores in as-
cending order where each vertical line drawn on the plot that
passes through one orange and one blue point represents a par-
ticipant. Orange and blue points on the same vertical line refer
to the postquiz and prequiz scores of a participant, respectively.
Compared to other case studies, for example, we can see that
CS1 shows a clearer pattern of improvement and the lowest av-
erage postquiz score.

FIGURE 14    |    Changes in quiz scores.

TABLE 2    |    Summary of code review knowledge sections in surveys.

Question (Table A3) Premedian Mod Postmedian Mod

CR Knowledge (Q1) 2 1 3 3

CR Confidence (Q2) 2 1 3 3

CR Importance (Q3) 4 4 4 4

CR Concepts (Q4)

Review checklists 1 1 3 3

Code review actors 1 1 4 5

Reviewer comments 2 1 4 4

Code review standards 1 1 3 3

Coding style guidelines 2 1 4 4

Code review workflow 1 1 4 4

 20477481, 2025, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sm

r.2750 by T
u D

elft, W
iley O

nline L
ibrary on [10/02/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

14 of 26 Journal of Software: Evolution and Process, 2025

A paired-sample t test was performed to evaluate the signifi-
cance of the quiz results by comparing the success of the quiz
before and after playing the game. Because CS3 includes a dif-
ferent game mode, we perform this test between CS1 and CS2.
First, to confirm that a paired-sample t test is applicable, we per-
formed the Shapiro–Wilk test [38] to verify that the data for each
quiz in each case study are normally distributed. The p values
for this test are [0. 247,0. 299,0. 344,0.279] for each case study and
prequizzes and postquizzes, respectively. As the p values are
greater than � = 0.05, the quiz results are normally distributed.

Then, we performed the paired-sample t test for case studies fol-
lowed by Bonferroni correction [39] with � = 0.05 to avoid false
positives. We find that the corrected p values for CS1 and CS2
are [9.350 × 10−14, 1.239 × 10−5]. Therefore, we can reject the
null hypothesis and conclude that our results between prequiz-
zes and postquizzes are statistically significant.

5.3   |   Player Score Analysis

We used a cloud database to record each submission of each
player. The average score for the game levels besides the prac-
tice level is around 71%, while each level took about 10 min on
average. More detailed information on scores and time spent per
level is available in Table 3. We see that the time spent on a sin-
gular defect is similar between all levels, indicating that there
were no major drops of attention during the case study period
(Section 4.3, H3). To demonstrate the players' progress through-
out the base game, we separated player scores for each level
and calculated the average scores of all players on their specific
number of submissions (e.g., averaged scores from every fifth
submission on Level 3 for all the players). The results indicate
a plot similar to linear lines as demonstrated in Figure 15. The
linearity of the plots in the figure summarizes how consistently
a player's effort is converted into points. The data points of this
section came from CS1 and CS2, which were later used to help
determine the maximum number of submissions in CS3.

5.4   |   Player Satisfaction and Feedback

5.4.1   |   Component Analysis

Component analysis data are gathered from each player in
the postsurvey in the form of a question that lists the major
game components and asks the participants to evaluate

the usefulness of the components on a 5-point Likert scale
(Section 4.3, H4). The distributions of the responses of the
participants and the averages for each component can be seen
in Figure 16. According to the participant responses, the most
useful component is “answer explanations,” while the least
useful component is “Stella.” The standard deviations for all
components are around 1, meaning that most participants
agree with the average usefulness of a component. A relatively
poor score for Stella is understandable, with her being the only
component that does not alter the game flow. For participants'
convenience, we included the code review quiz and the author
mode as a component in our component evaluation question
in the postsurvey as opposed to asking a separate question.
The results indicate that nearly all components were received
positively regarding their contribution to the game itself. The
data in Figure 16 include all case studies except the author
mode because it was developed between CS2 and CS3 as can
be traced in Phase IV of Figure 2.

5.4.2   |   Free-Text Answers

The postsurvey included two free-text questions. In the first
question, we asked participants to write down three things they
had learned during the case study. We compiled their answers
and performed open coding [40], where we organized each item
from each participant into categories according to the concept
the item was about. The final concepts we came up with at the
end of open coding were “Defect detection skills,” “Benefits of
performing CR,” “Benefits from practicing code inspection,”
“CR best practices,” “Programming,” and “Merit of serious
games.” We present the frequency of each concept in Figure 17.
Note that each participant accounted for about three items in
the figure.

The second free-text question asked for feedback from partici-
pants on their experience with the whole process. The negative
part of the feedback was generally about minor bugs related to
the user interface in the system or shortcomings of a particular
game component. Positive feedback consisted of feature sugges-
tions and component-specific and general praise. We provide
some examples of these free-text answers below:

TABLE 3    |    Player averages per level in CS1 and CS2.

Level Score (%)
Time

spent (s)
of

defects
Ts/

defect

1 73 557 4 139

2 64 733 4 183

3 76 376 3 125

4 71 780 6 130

Mean 71 612 — 144 FIGURE 15    |    Average player scores per submission in reviewer
mode.

 20477481, 2025, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sm

r.2750 by T
u D

elft, W
iley O

nline L
ibrary on [10/02/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

15 of 26

I find the game tutorial really useful, since it was
explaining each type of code error by giving examples.
The examples were simple and explained the topic
well.

I really liked the game. It was enjoyable and
informative at the same time, but there is room for
improvement.

Stella is a nice touch, the information that she gives
is full of important details of the code review process
that is mostly overlooked. Adding another quiz for the
information that Stella gives throughout the game, or
updating the postquiz for that matter, might be a good
idea.

6   |   Discussion

6.1   |   RQ1: How Effective is CRSG for Introducing
Students to Code Review and Its Related Concepts?

By investigating the data from the code review knowledge seg-
ment of the surveys, we see that participants believe that they
increased their code review knowledge and are more confident
about conducting reviews. The shift to more positive options on
the Likert scale can be examined in Figure 13 while the medians
of these options for all case studies can be observed in Table 2. We
were able to observe a drastic decline in the lowest option on the

Likert scale besides the question on the importance of code review
(H1.3). This question was different from the rest, as the presurvey
answers were already positive. There is some noise with the sec-
ond lowest option as we saw a very small bump from one person
to three people.

For the rest of the questions, we saw an improvement in code
review knowledge (Section 4.3, H1.1). The most prevalent op-
tion changed from “1” to “3” on the Likert scale, but there is
no real increase in options “4” and “5.” This result is appro-
priate for the scope of CRSG as it is an introductory activity.
A large increase in option “5” could have meant that the stu-
dents underestimated the expertise required to conduct code
reviews effectively. Similar statements can be made about CR
confidence (H1.2) questions because the answer patterns are
extremely similar. It is plausible that self-reported confidence
and knowledge are similar.

In the presurvey, answers to all of the six different code re-
view concept familiarity (H1.4) questions are mostly “1” or
“2.” Asking about a relatively intuitive concept like the ac-
tors of code review might seem redundant at first; however,
it turned out to be a worthwhile question given the students'
apparent confusion in the presurvey answers. After engag-
ing with CRSG, reported familiarity with all of the concepts
increased by exposure to the code review process. The least
improved concepts are “review checklists” and “code review
standards.” The CR checklist in CRSG does not truly reflect
an actual list that could be used by a reviewer. Our list was
designed to help with the game levels as there is no univer-
sal code review checklist; however, students still have a rough
idea of what an actual checklist will resemble. Teaching code
review standards is not the main objective of CRSG, but we
were still able to convey some information by changing the
most prevalent answer from “1” to “3.”

In general, we found the survey data to be satisfactory regard-
ing self-evaluations of players. The increase in the confidence
of students in Table 2 is indicative of the effectiveness of CRSG
in introducing code review. The quiz-related data again shows
that the players improved after playing; however, it is not as
straightforward as the survey data. While interpreting this
portion, one first needs to realize the differences between
rounds. Participants in CS1 and CS3 are much more likely to
have no prior knowledge about code review, as the syllabus of
CS453 involves a brief chapter on code review. We observed
the effects of these fundamental differences in rounds in the

FIGURE 16    |    Evaluation of game components by participants.

FIGURE 17    |    Open coding concepts extracted from the first free-text
question.

 20477481, 2025, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sm

r.2750 by T
u D

elft, W
iley O

nline L
ibrary on [10/02/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

16 of 26 Journal of Software: Evolution and Process, 2025

prequiz scores. The average of CS1 regarding the prequiz
is around 50 while CS2 averaged around 65. However, the
postquiz averages are much more similar.

There were a couple of variables that collectively resulted in
CS1 showing more improvement. Firstly, a significant part
of the points collected from the quiz is not directly related
to the game contents because the quiz was designed to be a
standalone evaluation. In parallel to these points, most of the
improvement shown in the quiz comes from the defect taxon-
omy part, which is the part of the quiz that directly relates to
gameplay.

Another point of variation is the difference between case
study dates. CS1 was done in lecture time more than a week
before the university's “finals week” started. CS2 was done in
the evening, two days before the start of the finals period. We
believe that this was a contributing factor in the varying im-
provement rates between these rounds. As our expectations
and the data we collected indicate, the timing of our intro-
ductory activity seems to affect the results. Due to scheduling
and course load factors, it is not always possible to perform
this activity in its ideal setting, which is an in-person, in-class
activity.

Improvements in quiz results are achievable when the ideal
setting is provided. We chose not to compare CS3 with prior
versions because our author mode component did not uti-
lize the defect taxonomy, reducing player exposure to it.
Considering that this was the portion of the quiz with the
greatest improvement in the previous cases, the comparison
would not be fair. We think of this as a trade-off for future
users. They can choose to use the author mode and have a
complete simulation of the code review process, or they can
use the original version to give players more time with the de-
fect taxonomy.

Moreover, our students favored the interactive session over a
regular class. In the CS3 postsurvey, we added the following
question to target this claim.

Do you think that this interactive session was more
enjoyable and beneficial to you than a regular class?

Seventy-seven percent of the respondents to this question agreed
or strongly agreed with the above question on a 1–5 Likert scale.
Students favoring these types of activities is enough of a reason
to pursue them. Moreover, the general results indicate that the
activity is more beneficial as an introduction to CR, which sup-
ports our claims.

Taking into account the results of case studies and the factors
mentioned above, we deduce that CRSG has merit in introduc-
ing code review. The extent of learning is not easy to interpret
from our limited data; however, it is possible to say that the ac-
tivity better resonated with players who were completely un-
familiar with code review. The best use case for CRSG seems
to be an “introduction to code review” activity for people who
are unfamiliar with code review, which is in line with our
purpose.

6.2   |   RQ2: How Feasible It Is to Use CRSG to
Introduce Code Review Concepts Within a Course
Curriculum?

We have already addressed the benefits of CRSG in the previous
research question. The ease of application and time-wise feasi-
bility remain to be discussed. So far, we have presented CRSG
as the main component of case studies in a setting that we use
to evaluate the outcomes of gameplay sessions. However, for the
intended use case of the game, as a code review-focused class
activity, feasibility plays a large role. In our case, the reserved
time for the activity was 2.5 h. In all rounds, most of the stu-
dents completed the session (from the prequiz to the postquiz
in Figure 12) around 2 h. We deduced that the gameplay (the
game content portion of Figure 12) takes 45 min to an hour for
the majority, while the rest of the time was spent on the other
components.

To perform the activity in a classroom setting, the quiz and sur-
vey components of our case studies are not required to be in-
cluded. Excluding these auxiliary components would allow for
the gameplay to be completed in an hour, indicating that the
activity can be feasibly performed in class time or as an online
session. With our online sessions, we observed that the students
were largely autonomous, which means that they had little to no
confusion or technical problems during the game. This was also
considered to be a factor that increases the applicability of CRSG
regardless of the setting.

For short-term evaluations of CRSG as a one-time activity, we
can say that the evaluation results are satisfactory considering
that the time spent per participant interacting with the game
content (demonstrated in Figure 12) is mostly consistent be-
tween levels. This indicates that the activity we presented to the
students was engaging.

6.3   |   Defect Detection Skills

On its own, theoretical code review knowledge is not enough for
the development lifecycle to benefit from code review because
reviewer experience is a contributing factor for a successful re-
view process [41]. Practical benefits, in addition to educational
purposes, are related to the reviewer's ability to detect defects or
other unwanted attributes of the code in review.

We have broken down the process of detecting defects into two
stages consisting of detecting the defect and determining the
reason. The reason behind the defect was important to us be-
cause we observed that some students were able to review the
code but were inefficient or unable to communicate the defect,
resulting in subpar review comments. To address this part of the

TABLE 4    |    Quiz summary.

Focus (averaged) Pre Post Improvement

CR Knowledge 208 219 11 (5%)

Defect Taxonomy 182 224 42 (23%)

Programming 184 197 13 (7%)

 20477481, 2025, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sm

r.2750 by T
u D

elft, W
iley O

nline L
ibrary on [10/02/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

17 of 26

communication process between the author and the reviewer,
we integrate the defect taxonomy into our game. The quiz had
direct questions on taxonomy and some programming questions
that addressed both detection and reasoning, the results can be
examined in Table 4.

The participants seem to do well on taxonomy-related ques-
tions with 23% improvement on average. However, we acknowl-
edge that some of the taxonomy would be forgotten over time.
Determining the long-term benefits regarding overall defect
detection skills would require follow-up review sessions or
experiments.

6.4   |   Content Creation Challenges

Creating additional levels for CRSG proved to be a more difficult
task than expected. Here, we elaborate on the aspects that make
level creation challenging and the reasons behind them.

Game levels use code snippets that are equivalent to an actual
source code file at best. This limited context is intentional to
keep the overall complexity of the process low. We want players
to focus on experiencing the code review process without wor-
rying about understanding a complex piece of code. Therefore,
the levels we designed are simple and the purpose of the code is
very apparent even at a single glance. This intentional simplicity
has a side effect. It is harder to represent a realistic code review
scenario using a simple snippet. In real-world applications of
code review, the scope of the code in review is larger. Because
our players do not see an actual repository, each level has to be
self-contained. This aspect is good for overall gameplay but in
turn makes designing levels harder.

Moreover, defects that are planted into a level cannot produce
compile-time errors. In a realistic code review scenario, a piece
of code that is sent for review is complete [2] and a compile-time
error would indicate the opposite. Therefore, we refrain from
using defects that would introduce compile-time errors as well
as very apparent behavioral changes. Our attempts to keep this
aspect of level design is another limiting factor.

Having these limiting factors causes the content to move to-
ward simplistic and static errors, for instance, bad comments or

indentation-related defects. These types of error occur in real-
world applications of code review [30], but it is also possible to
detect them with static analysis tools. Although they are not the
ideal type of defects to demonstrate the unique benefits of code
review, we have decided to use them.

Trying to avoid simplistic defects can also result in a level con-
sisting of complex defects, which makes the challenges too
difficult or detail oriented. More demanding content might be
desirable for some settings, but CRSG does not intend to test
programming skill. To be able to focus on introducing the code
review process, we attempted to create a nice balance using the
defects that made sense for a realistic code review setting.

6.5   |   Comparing CRSG to Related Work

There are a variety of approaches to delivering an introduction
to code review. The dominant method is to use a traditional
lecture or capstone project. In this study, we explore the extent
of what CRSG is capable of and whether it can replace tradi-
tional lectures on the topic as an autonomous activity. As we
demonstrated in Section 2, there are other studies that create
serious games and other interactive material. The four studies
that we were able to find in serious games for code review were
Pex4Fun [25], Anukarna [26], InspectorX [27], and Guimarães
[28]. Table 5 summarizes these studies.

Among CRSG and the four studies we identified, Anukarna
[26] is the only one that does not simulate the review process
with code editing. Instead, it focuses on the bigger picture de-
cisions and resource management. These concepts could be in-
tegrated with the other games to increase the scope. This type
of decision-based resource management technique might be a
more explicit way to convey information on code review concept
familiarity questions in Figure 13. The rest of the studies had
more similar objectives and execution to CRSG. InspectorX [27]
provided a game flow in which players provide the content to be
reviewed. This is an alternative approach to the content that we
provide ourselves. Creating content for CRSG came with a fair
amount of challenges mainly because we wanted to have realis-
tic code review scenarios. It is unlikely that exercises provided
by the student could preserve this design aspect. Choosing be-
tween player-provided content and curated content is a trade-off

TABLE 5    |    Comparison of code review–related serious games.

Name Focus Game elements

Pex4Fun [25] Coding duels covering debugging,
testing, and inspection

Points, player rankings, and
feedback during gameplay

Anukarna [26] Decision-making during code review Scoring based on technical debt

InspectorX [27] Player-provided code snippet
inspection for error detection

Player rankings, multiple
player roles, and points

Guimarães [28] Code snippet inspection for error detection Badges, points, and player
collaboration via voting

CRSG Code snippet inspection for error detection
and application of reviewer comments

Points, leaderboards, feedback
during gameplay, multiple game

modes, and story elements

 20477481, 2025, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sm

r.2750 by T
u D

elft, W
iley O

nline L
ibrary on [10/02/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

18 of 26 Journal of Software: Evolution and Process, 2025

between realism and repeatability. The replay value could be
preferable in situations where a game is not utilized as a lab ses-
sion in a software engineering course.

The serious game created by Guimarães [28] has the closest
design to CRSG; however, our approach provides a more com-
prehensive breakdown of code review–related concepts while
also creating multiple mediums for data collection which are
being used for a detailed evaluation of the platform. Previous
studies on the topic lacked detailed evaluations of their methods.
Furthermore, the process of applying review comments is not
addressed. We believe this to be an important element because
the actual benefits of code review are obtained from successfully
applied review comments.

The main advantages of CRSG over the tools from previous
studies are mostly from a more in-depth view of the code review
process because it includes dynamic feedback and guides for
gameplay while also allowing players to experience author and
reviewer roles separately.

7   |   Threats to Validity

7.1   |   Internal Validity

To decrease the uncontrollable variables and to expand our con-
trol over the case studies, we intended to perform laboratory ses-
sions in person. By doing so, we would make sure that there would
not be any communication between the participants or that they
would not make use of online resources. Because we were un-
able to perform the case studies in our preferred setting due to the
COVID-19 pandemic, it was performed in a video conferencing
format using Zoom [42] which was the preferred application by
the university administration. Due to this change, we have taken
some measures to protect the evaluation results. We prepared in-
game resources so that participants would not seek help outside
of the game. We also emphasized on several occasions that there
was no incentive to utilize online resources. Additionally, we
measured the time players spent where the level screen was out
of focus (meaning that they were looking at some other program
or page). These logs were prompted to the players after the level
screen was back in focus.

To prevent cheating during the activity, we emphasized that the
grading would be done on a participation and completion basis
instead of individual performance. Even with these precautions,
we identified some participants that exploited the gameplay pro-
cess; fortunately from our follow-up interactions with the partic-
ipants, we found out that their numbers are small enough (two
people) to not affect the evaluation results. We did not consider
their scores for the related part of the analysis. As we gained
experience in performing this activity in an online format, ad-
ditional features were added to the platform to keep the activity
fair, such as email verification or a maximum limit on the num-
ber of submissions made to the platform. Furthermore, because
we created the game content and its auxiliary components by
ourselves, human error could always affect the process nega-
tively. We tried to negate this effect with feedback from the pre-
liminary experiment and interviews with its participants. This
process is denoted in Steps 5–9 in Figure 2.

There is another threat to internal validity that stems from the
use of different versions of CRSG in our case studies. The expe-
riences of conducting CS1 and CS2 highlighted opportunities to
improve our platform. As a result, we developed the author mode
and replaced less effective content in the reviewer mode, culmi-
nating in a more comprehensive version of CRSG. Consequently,
CS3 shares only about half of its gameplay content with its pre-
decessors. This variation means that the CS3 participants were
engaged in an updated version of the game, which could poten-
tially influence our findings and conclusions.

To address this concern, we have strategically excluded CS3
from our more quantitatively focused evaluation methods. This
includes the paired-sample t test used for quiz analysis and
player score analysis, as half of the content in CS3 is evaluated
differently. By doing so, we aim to maintain the integrity of our
results and ensure a more accurate assessment of the impact
of CRSG.

7.2   |   External Validity

The rest of this section investigates the external validity of our
results, which is defined as the generalizability of the sample
results to the population of interest, across different measures,
persons, settings, or times [43]. The target audience for CRSG is
university-level students in departments whose graduates could
fill software development–related positions (e.g., software en-
gineering, computer science). By selecting our participants di-
rectly from Bilkent University's software engineering–focused
courses CS319 [35] and CS453 [36], we intend to match the case
study audience with the population of interest of CRSG. Using
these courses as the audience guarantees a uniform minimum
background for participants, because to take CS319, one needs
to complete two introductory programming and two data struc-
ture–related courses. CS453 has an additional prerequisite,
which is CS319.

To further increase our claim of generalizability regarding the
results of our case studies, in the future, we intend to continue to
perform the activity annually in these courses while implement-
ing it in other related courses both inside and outside of Bilkent
University by collaborating with other instructors.

Another required point of discussion is our quiz component.
Ideally, one should avoid having students fill out the same
quiz two times. However, because the case studies aim to
obtain data on the changes that might occur before and after
the game, the most direct route of repeating the quiz was in-
tentionally chosen. This is because any other measurement
would require us to balance two different quizzes regarding
their content & difficulty or would have taken more than a
single session to complete a case study. Long-term measure-
ment could be provided by giving multiple code review tasks
to students throughout the semester to observe immediate or
long-term improvements of students. For our introductory ac-
tivity, this type of measurement would be over the top because
one also needs to consider conserving the workload balance
of the classes and student's time. Another strategy that could
have been employed for our measurements is to create a quiz
that directly focuses entirely on the game itself. This was

 20477481, 2025, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sm

r.2750 by T
u D

elft, W
iley O

nline L
ibrary on [10/02/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

19 of 26

considered but not realized because we preferred to see the
participants' results with a general code review quiz. The com-
prehensive aspect of these components provided us valuable
insights to improve our teaching material as well because we
were able to observe which pieces of information were missing
from the students after all code review–related class activities
were completed (these activities end with the postquiz).

Moreover, we also acknowledge that applying the same test
twice could also affect the results gathered from the postquiz
because participants interacted with the same questions in the
prequiz. This phenomenon is known as a testing threat which is
prevalent in single-group pre–post research methodologies. In
our case, the limited time frame of the case studies is a mitigat-
ing factor for the testing threat because the participants did not
have any free time between the quizzes. This means that they
also did not have the time to think passively and improve their
answers to the quiz questions on their own.

Furthermore, one could also say that a certain decrease in inter-
est regarding the questions would have manifested because the
participants are taking the same test a second time. This decrease
in interest would have led to a decrease in the overall score. We
believe that, when combined, these two factors mitigated most
of the testing threat. We also suspect that the latter factor played
a role in the postquiz results by masking some portion of the
participant improvement from the analysis or introducing some
negative results. We believe that there is a correlation between
negative results and interest decline in postquiz data because
of the postsurvey results. The postsurvey was sent out the day
following the lab session to give students time to reflect and we
did not observe the same amount of “noise” in that portion of
the data.

7.3   |   Construct Validity

The biggest threat to construct validity in this study comes
from the comprehensiveness of the code review knowledge
quiz. We use quizzes as an alternative to the survey to look
for evidence of participant improvement. However, we also
wanted to observe the general level of competency of the par-
ticipants regarding the overall code review process. This does
not directly contribute to the evaluation of the game but al-
lows us to better understand the knowledge gaps of the partic-
ipants. The caveat of the comprehensive quiz is that it involves
things that are not directly thought by CRSG. For example,
there is a question about the reviewer's responsibility toward
design patterns; however, this information is not explicit in-
game content.

Consequently, this means that quizzes are not ideal for measur-
ing the outcomes of the game. We mitigate this threat by making
the quiz-related measurement an alternative to survey which is
the more widely used data source in the literature.

Another threat to construct validity is our efforts in measuring
engagement. There is no standard way to quantify engagement
that applies to our case studies. However, we were able to measure
whether the participants spent a consistent amount of time per de-
fect (on average). This is only an indicator. We similarly mitigated

this threat by directly asking the participants if they would prefer
this activity over a traditional lecture as discussed in Section 6
and received highly positive feedback from the participants.

8   |   Conclusion and Future Directions

Throughout this study, we have proposed, designed, imple-
mented, and evaluated CRSG. Our motivation comes from the
lack of representation regarding code review in curricula of
computer science, software engineering, etc. We designed the
game to directly address our learning objectives and performed
a preliminary evaluation in order to gather feedback to be able to
improve the game to better meet the requirements of the learn-
ing objectives. We then proceeded to the evaluation of the game,
where we utilized three case studies with 280 students in total.
During each case study, participants filled out pregameplay and
postgameplay surveys and quizzes that we used as data for eval-
uating the game.

We present our data and analysis where the analysis attempts
to answer our two research questions that refer to teaching CR
practices and the general feasibility of using CRSG as an in-
class activity. The results indicate that the game can be used
as an introductory activity regarding the code review practice.
Furthermore, the structure of CRSG can potentially be extended
to demonstrate other software engineering processes (e.g., bug
tracking) or other related soft skills regarding programming.
The benefits of the game for students can be summarized as
follows:

•	 Understanding the workflow of the code review process.

•	 Learning the benefits and best practices of the code review
process.

•	 Learning different categories of errors that can come up
while reviewing code.

To further document the study and allow educators to use
CRSG, we share our case study materials, as well as the data and
the game itself as online resources. In the future, we would like
to add a collaborative multiplayer section to the game to address
team building and knowledge transfer during the code review
process, making the platform an even more complete package.

The current design of our code review tool extends its potential
application beyond traditional course settings. For instance, in-
tegrating this tool or its design with a massive open online course
(MOOC) focused on code review could significantly broaden its
reach, overcoming limitations like game duration inherent to
course-based implementation. Additionally, incorporating our
material into an industrial orientation program presents an-
other viable direction. However, given that our current version
is primarily geared toward introducing the code review process,
it may be oversimplistic for professional environments.

To adapt to these broader applications, a few essential enhance-
ments are necessary. Currently, the process of curating game
content is challenging. Using generative artificial intelligence
technologies to automate content creation could dramatically
increase replayability and appeal of CRSG. This advancement

 20477481, 2025, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sm

r.2750 by T
u D

elft, W
iley O

nline L
ibrary on [10/02/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

20 of 26 Journal of Software: Evolution and Process, 2025

is seen as a critical step in expanding the game's audience and
adapting it for diverse contexts, including industrial training
and large-scale online education platforms.

Besides the practical uses, the current design can also present
more opportunities for researchers. Most aspects of CRSG are
designed from scratch, but the point we managed to reach could
allow for a valuable head start for other researchers who are
looking to enhance software engineering education even out-
side of the code review process. With some reconsideration, it is
plausible to utilize aspects of CRSG for other processes such as
software testing or teaching programming, in general.

Data Availability Statement

The data that support the findings of this study are openly available in
CRSG case study data at https://​figsh​are.​com/s/​56791​2dbc8​e39e4​1350c​.

Endnotes
1https://​coder​eview​serio​usgame.​web.​app/​.
2https://​bit.​ly/​3kvXiAb.
3https://​www.​qt.​io/​.
4www.​zoom.​us.
5https://​figsh​are.​com/s/​56791​2dbc8​e39e4​1350c​.

References

1. A. Bacchelli and C. Bird, “Expectations, Outcomes, and Challenges of
Modern Code Review,” in 2013 35th International Conference on Software
Engineering (ICSE) (San Francisco, CA, USA: IEEE, 2013), 712–721.

2. C. Sadowski, E. Söderberg, L. Church, M. Sipko, and A. Bacchelli,
“Modern Code Review: A Case Study at Google,” in ICSE (SEIP) Ed-
ited by F. Paulisch and J. Bosch, (Gothenburg, Sweden: ACM, 2018),
181–190.

3. J. Klünder, R. Hebig, P. Tell, et al., “Catching Up With Method and
Process Practice: An Industry-Informed Baseline for Researchers,” in
ICSE (SEIP) Edited by H. Sharp and M. Whalen, (Montreal, QC, Canada:
IEEE/ACM, (2019), 255–264.

4. S. Sripada, Y. R. Reddy, and A. Sureka, “In Support of Peer Code
Review and Inspection in an Undergraduate Software Engineering
Course,” in 2015 IEEE 28th Conference on Software Engineering Educa-
tion and Training (Florence, Italy: IEEE, 2015), 3–6.

5. V. Garousi, G. Giray, and E. Tuzun, “Understanding the Knowledge
Gaps of Software Engineers: An Empirical Analysis Based on SWE-
BOK,” ACM Transactions on Computing Education 20, no. 1 (2019):
1–33, https://​doi.​org/​10.​1145/​3360497.

6. T. D. Indriasari, A. Luxton-Reilly, and P. Denny, “A Review of Peer
Code Review in Higher Education,” ACM Transactions on Computing
Education 20, no. 3 (2020): 1–25, https://​doi.​org/​10.​1145/​3403935.

7. T. M. Connolly, M. Stansfield, and T. Hainey, “An Application of
Games-Based Learning Within Software Engineering,” British Journal
of Educational Technology 38, no. 3 (2007): 416–428, https://​doi.​org/​10.​
1111/j.​1467-​8535.​2007.​00706.​x.

8. T. Susi, M. Johannesson, and P. Backlund, “Serious Games: An Over-
view,” (2007).

9. B. Ardiç, I. Yurdakul, and E. Tüzün, “Creation of a Serious Game
for Teaching Code Review: An Experience Report,” in 2020 IEEE 32nd
Conference on Software Engineering Education and Training (CSEE&T)
(Munich, Germany: IEEE, 2020), 1–5.

10. K. Ünlü, B. Ardıç, and E. Tüzün, “CRSG: A Serious Game for
Teaching Code Review,” in Proceedings of the 28th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, ESEC/FSE 2020 (New York, NY,
USA: Association for Computing Machinery, 2020), 1561–1565, https://​
doi.​org/​10.​1145/​33680​89.​3417932.

11. M. Beller, A. Bacchelli, A. Zaidman, and E. Juergens, “Modern
Code Reviews in Open-Source Projects: Which Problems Do They
Fix?,” in Proceedings of the 11th Working Conference on Mining Soft-
ware Repositories, MSR 2014 (New York, NY, USA: Association for
Computing Machinery, 2014), 202–211, https://​doi.​org/​10.​1145/​25970​
73.​2597082.

12. SMARTBEAR, “The State of Code Review in 2019: Trends, Tools,
and Insights for dev Collaboration,” (2019), https://​smart​bear.​com/​
resou​rces/​ebooks/​the-​state​-​of-​code-​revie​w-​2019/​.

13. N. Davila and I. Nunes, “A Systematic Literature Review and Tax-
onomy of Modern Code Review,” Journal of Systems and Software 177
(2021): 110951, https://​www.​scien​cedir​ect.​com/​scien​ce/​artic​le/​pii/​
S0164​12122​1000480.

14. L. MacLeod, M. Greiler, M.-A. D. Storey, C. Bird, and J. Czerwonka,
“Code Reviewing in the Trenches: Challenges and Best Practices,” IEEE
Software 35, no. 4 (2018): 34–42.

15. S. McIntosh, Y. Kamei, B. Adams, and A. E. Hassan, “The Impact
of Code Review Coverage and Code Review Participation on Software
Quality: A Case Study of the qt, VTK, and ITK Projects,” in Proceed-
ings of the 11th Working Conference on Mining Software Repositories,
MSR 2014 (New York, NY, USA: Association for Computing Machinery,
2014): 192–201, https://​doi.​org/​10.​1145/​25970​73.​2597076.

16. E. Doğan and E. Tüzün, “Towards a Taxonomy of Code Review
Smells,” Information and Software Technology 142 (2022): 106737,
https://​www.​scien​cedir​ect.​com/​scien​ce/​artic​le/​pii/​S0950​58492​
1001877.

17. M. R. A. Souza, L. Veado, R. T. Moreira, E. Figueiredo, and H. Costa,
“A Systematic Mapping Study on Game-Related Methods for Soft-
ware Engineering Education,” Information and Software Technology
95 (2018): 201–218, http://​www.​scien​cedir​ect.​com/​scien​ce/​artic​le/​pii/​
S0950​58491​7303518.

18. E. O. Navarro and A. van der Hoek, “Design and Evaluation of an
Educational Software Process Simulation Environment and Associated
Model,” in 18th Conference on Software Engineering Education Training
(CSEET'05) (Ottawa, ON, Canada: IEEE, 2005), 25–32.

19. P. Sonchan and S. Ramingwong, “ARMI 2.0: An Online Risk Man-
agement Simulation,” in 2015 12th International Conference on Electrical
Engineering/Electronics, Computer, Telecommunications and Information
Technology (ECTI-CON) (Hua Hin, Thailand: IEEE, 2015), 1–5.

20. J. C. Farah, B. Spaenlehauer, M. J. Rodríguez-Triana, S. Ingram, and
D. Gillet, “Toward Code Review Notebooks,” in 2022 International Confer-
ence on Advanced Learning Technologies (ICALT) (2022), 209–211.

21. T. Haendler, G. Neumann, and F. Smirnov, “An Interactive Tutoring
System for Training Software Refactoring,” in 11th International Con-
ference on Computer Supported Education, Vol. 1 (Heraklion, Greece:
SciTePress, 2019), 177–188.

22. F. Ricciardi and L. T. D. Paolis, “A Comprehensive Review of Seri-
ous Games in Health Professions,” International Journal of Computer
Games Technology 2014 (2014): 9–9.

23. M. Ulicsak and M. Wright, Games in Education: Serious Games,
(Bristol, UK: Futurelab, 2010), https://​www.​nfer.​ac.​uk/​games​-​in-​educa​
tion-​serio​us-​games​.

24. T. Xie, N. Tillmann, and J. De Halleux, “Educational Software Engi-
neering: Where Software Engineering, Education, and Gaming Meet,”
in 2013 3rd International Workshop on Games and Software Engineer-
ing: Engineering Computer Games to Enable Positive, Progressive Change
(GAS) (San Francisco, CA, USA: IEEE, 2013), 36–39.

 20477481, 2025, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sm

r.2750 by T
u D

elft, W
iley O

nline L
ibrary on [10/02/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://figshare.com/s/567912dbc8e39e41350c
https://codereviewseriousgame.web.app/
https://bit.ly/3kvXiAb
https://www.qt.io/
https://www.zoom.us
https://figshare.com/s/567912dbc8e39e41350c
https://doi.org/10.1145/3360497
https://doi.org/10.1145/3403935
https://doi.org/10.1111/j.1467-8535.2007.00706.x
https://doi.org/10.1111/j.1467-8535.2007.00706.x
https://doi.org/10.1145/3368089.3417932
https://doi.org/10.1145/3368089.3417932
https://doi.org/10.1145/2597073.2597082
https://doi.org/10.1145/2597073.2597082
https://smartbear.com/resources/ebooks/the-state-of-code-review-2019/
https://smartbear.com/resources/ebooks/the-state-of-code-review-2019/
https://www.sciencedirect.com/science/article/pii/S0164121221000480
https://www.sciencedirect.com/science/article/pii/S0164121221000480
https://doi.org/10.1145/2597073.2597076
https://www.sciencedirect.com/science/article/pii/S0950584921001877
https://www.sciencedirect.com/science/article/pii/S0950584921001877
http://www.sciencedirect.com/science/article/pii/S0950584917303518
http://www.sciencedirect.com/science/article/pii/S0950584917303518
https://www.nfer.ac.uk/games-in-education-serious-games
https://www.nfer.ac.uk/games-in-education-serious-games

21 of 26

25. N. Tillmann, J. De Halleux, T. Xie, S. Gulwani, and J. Bishop,
“Teaching and Learning Programming and Software Engineering via
Interactive Gaming,” in Proceedings of the 2013 International Confer-
ence on Software Engineering (San Francisco, CA, USA: IEEE Press,
2013), 1117–1126.

26. R. Atal and A. Sureka, “Anukarna: A Software Engineering Sim-
ulation Game for Teaching Practical Decision Making in Peer Code
Review,” in 1st International Workshop on Case Method for Computing
Education (CMCE 2015) (New Delhi, India, 2015), 63–70.

27. L. Andrade, E. Grynberg, M. Schots, and V. M. B. Werneck, “In-
spectorX 2.0: Developing a Multi-Device Game for Software Inspection
Education,” in 2020 IEEE 32nd Conference on Software Engineering Ed-
ucation and Training (CSEE&T) (Munich, Germany: IEEE, 2020), 1–4.

28. J. P. R. Guimarães. (2016):, “Serious Game for Learning Code In-
spection Skills,” Master's Thesis, Universidade Do Porto.

29. B. Morschheuser, L. Hassan, K. Werder, and J. Hamari, “How to
Design Gamification? A Method for Engineering Gamified Software,”
Information and Software Technology 95 (2018): 219–237, https://​www.​
scien​cedir​ect.​com/​scien​ce/​artic​le/​pii/​S0950​58491​730349X.

30. M. Mäntylä and C. Lassenius, “What Types of Defects Are Really
Discovered in Code Reviews?,” IEEE Transactions on Software Engi-
neering 35, no. 3 (2009): 430–448.

31. G. Rong, J. Li, M. Xie, and T. Zheng, “The Effect of Checklist in
Code Review for Inexperienced Students: An Empirical Study,” in 2012
IEEE 25th Conference on Software Engineering Education and Training
(Nanjing, China: IEEE, 2012), 120–124.

32. inc. T., “Thoughtbot Guides,” (2019), https://​github.​com/​thoug​
htbot/​​guides/​tree/​master/​code-​review.

33. M. Staron, Action Research in Software Engineering (Cham: Springer,
2020).

34. P. Runeson and M. Höst, “Guidelines for Conducting and Reporting
Case Study Research in Software Engineering,” Empirical Software En-
gineering 14 (2009): 131–164.

35. Bilkent University Department of Computer Engineering, “Syllabus
to the Course Referred as CS319,” (2022), https://​stars.​bilke​nt.​edu.​tr/​
sylla​bus/​view/​CS/​319/​.

36. Bilkent University Department of Computer Engineering, “Syllabus
to the Course Referred as CS453,” (2021), https://​stars.​bilke​nt.​edu.​tr/​
sylla​bus/​view/​CS/​453/​.

37. C. Udeozor, R. Toyoda, F. Russo Abegão, and J. Glassey, “Digi-
tal Games in Engineering Education: Systematic Review and Future
Trends,” European Journal of Engineering Education 48 (2022): 321–339.

38. S. Shaphiro and M. B. J. B. Wilk, “An Analysis of Variance Test for
Normality,” Biometrika 52, no. 3 (1965): 591–611.

39. C. Bonferroni, “Teoria Statistica Delle Classi e Calcolo Delle Prob-
abilita,” Pubblicazioni del R Istituto Superiore di Scienze Economiche e
Commericiali di Firenze 8 (1936): 3–62.

40. A. Strauss and J. Corbin, Basics of Qualitative Research (Newbury
Park, CA: Sage Publications, 1990).

41. O. Kononenko, O. Baysal, L. Guerrouj, Y. Cao, and M. W. Godfrey,
“Investigating Code Review Quality: Do People and Participation
Matter?,” in Proceedings of the 2015 IEEE International Conference on
Software Maintenance and Evolution (ICSME) (USA: IEEE Computer
Society, 2015), 111–120, https://​doi.​org/​10.​1109/​ICSM.​2015.​7332457.

42. Zoom Video Communications Inc, “Video Conferencing, Web
Conferencing, Webinars, Screen Sharing,” (2020), https://​zoom.​us/​
meetings.

43. W. R. King and J. He, “External Validity in IS Survey Research,”
Communications of the Association for Information Systems 16 (2005):
45, http://​dblp.​uni-​trier.​de/​db/​journ​als/​cais/​cais16.​html#​KingH05a.

 20477481, 2025, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sm

r.2750 by T
u D

elft, W
iley O

nline L
ibrary on [10/02/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://www.sciencedirect.com/science/article/pii/S095058491730349X
https://www.sciencedirect.com/science/article/pii/S095058491730349X
https://github.com/thoughtbot/guides/tree/master/code-review
https://github.com/thoughtbot/guides/tree/master/code-review
https://stars.bilkent.edu.tr/syllabus/view/CS/319/
https://stars.bilkent.edu.tr/syllabus/view/CS/319/
https://stars.bilkent.edu.tr/syllabus/view/CS/453/
https://stars.bilkent.edu.tr/syllabus/view/CS/453/
https://doi.org/10.1109/ICSM.2015.7332457
https://zoom.us/meetings
https://zoom.us/meetings
http://dblp.uni-trier.de/db/journals/cais/cais16.html#KingH05a

22 of 26 Journal of Software: Evolution and Process, 2025

Appendix A

Surveys

TABLE A1    |    Presurvey questions.

Question Answer options

1. Name

2. Where are you currently in your studies? 1st year–2nd year–3rd year–4th year–graduate–master–PhD

3. How long is your current industry
experience including internships and part-
time jobs?

None–0–3 months–3–6 months–6–12 months–1–3 years–3+ years

4. What is your proficiency level related to
Java programming language?

Theoretical knowledge, but no working experience–beginner with some working
knowledge–intermediate with practical application–advanced with significant
experience–excellent with ability to mentor others

5. Which classes did you take or are you
taking? (Note: Select one or more choices)

Algorithms (CS473)–Object-Oriented Programming (CS319)–Application Lifecycle
Management (CS453)–Software Verification and Validation (CS458)–Software Project
Management (CS413)–Software Product Line Engineering (CS415)

6. What are your expectations from playing
this game?

Code review knowledge section

1. What is the extent of your previous
knowledge on code review?

None–I have basic familiarity with CR, but no experience applying it–I have knowledge
of CR and used it in small or artificial projects–I have applied CR in real-world setting–I
have applied CR extensively in a real-world setting

2. What is the definition of code review?
Please explain it briefly. If you answered the
above question with a “no,” skip this question.

3. If you participated in code review before,
which code review system/method did you
utilize?

4. How confident are you about your code
review knowledge/skills?

Not confident at all–slightly confident–somewhat confident–fairly confident–extremely
confident

5. How important do you think code review
process is?

Not important at all: I could not see any reason to make code review important–not very
important: there are some points that makes the code review important, but in general, it
is not–fairly important: although there are reasons for making the code review important,
I could not list them–very important: there are obvious reasons in order to call code
review important–fundamental: code review is one of the most important processes in
software development

6. How familiar are you with the following
code review concepts?

Review checklists, code review actors, reviewer comments, code review standards, coding
style guidelines, code review workflow

Familiarity levels Not familiar–slightly familiar–moderately familiar–familiar–very familiar

 20477481, 2025, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sm

r.2750 by T
u D

elft, W
iley O

nline L
ibrary on [10/02/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

23 of 26

TABLE A2    |    Postsurvey questions.

Question Answer options

1. Name

2. How much have you enjoyed the game
elements in the serious game?

Very enjoyable–enjoyable–neutral–boring–very boring

3. How do you feel about the impact of game
elements in the teaching of the code review
process?

Very satisfied–satisfied–neutral–unsatisfied–very unsatisfied

4. How satisfied are you with the fairness of
scoring in-game?

Very satisfied–satisfied–neutral–unsatisfied–very unsatisfied

5. Please provide explicit reasons for your
dissatisfaction, if they exist.

6. Please rate the game components according
to their usefulness.

Stella's log, in-game guide, checklist, game tutorial, practice level (Level 0), answer
explanations, hints, quiz–not useful at all–slightly useful–somewhat useful–fairly useful–
extremely useful

7. What are the three things you learned while
playing the game?

8. Do you have any positive or negative
feedback for the game?

Code review knowledge section (identical to presurvey)

1. What is the extent of your previous
knowledge on code review?

None–I have basic familiarity with CR, but no experience applying it–I have knowledge
of CR and used it in small or artificial projects–I have applied CR in real-world setting–I
have applied CR extensively in a real-world setting

2. What is the definition of code review?
Please explain it briefly. If you answered the
above question with a “no,” skip this question.

3. If you participated in code review before,
which code review system/method did you
utilize?

4. How confident are you about your code
review knowledge/skills?

Not confident at all–slightly confident–somewhat confident–fairly confident–extremely
confident

5. How important do you think the code
review process is?

Not important at all: I could not see any reason to make code review important–not very
important: there are some points that makes the code review important, but in general, it
is not–fairly important: although there are reasons for making the code review important,
I could not list them–very important: there are obvious reasons in order to call code
review important–fundamental: code review is one of the most important processes in
software development

6. How familiar are you with the following
code review concepts?

Review checklists, code review actors, reviewer comments, code review standards, coding
style guidelines, code review workflow

Familiarity levels Not familiar–slightly familiar–moderately familiar–familiar–very familiar

 20477481, 2025, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sm

r.2750 by T
u D

elft, W
iley O

nline L
ibrary on [10/02/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

24 of 26 Journal of Software: Evolution and Process, 2025

TABLE A3    |    Survey results (values are expressed as percentages).

Question As % 5 4 3 2 1

Pre 1 3 17 30 50

Post 0 6 55 33 6

What is the extent of your previous knowledge on CR? Diff −1 3 38 3 −44

Pre 0 4 17 32 46

Post 0 17 46 33 5

How confident are you about your CR knowledge/skills? Diff 0 13 29 1 −41

Pre 25 44 29 1 1

Post 25 54 13 3 1

How important do you think the CR process is? Diff 0 10 −16 2 0

How familiar are you with the following CR concepts?

Pre 1 9 9 24 56

Post 21 28 42 9 1

Review checklists Diff 20 19 33 −15 −55

Pre 2 9 12 18 59

Post 35 33 22 6 4

Code review actors Diff 33 24 10 −12 −55

Pre 4 18 13 21 44

Post 26 37 23 6 8

Reviewer comments Diff 22 19 10 −15 −36

Pre 1 7 12 18 62

Post 21 25 33 20 2

Code review standards Diff 20 18 21 2 −60

Pre 3 14 19 24 40

Post 22 43 21 12 2

Coding style guidelines Diff 19 29 2 −12 −38

Pre 2 10 9 19 60

Post 19 41 20 15 5

Code review workflow Diff 17 31 11 −4 −55

 20477481, 2025, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sm

r.2750 by T
u D

elft, W
iley O

nline L
ibrary on [10/02/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

25 of 26

Appendix B

Quiz Summary

TABLE B1    |    Quiz result summary Part 1.

Question Pre(correct) Post(correct) Diff

1. What is your full name?

2. Which of the following are the benefits
of code review?

Code improvement 269 271 2

Finding of defects 274 278 4

Transference of knowledge to managers 155 197 42

Exploration of alternative solutions 229 204 −25

Testing of code 116 144 28

Sharing of code's responsibility 165 167 2

3. Which of the following are the duties of
a code reviewer?

Help improve code quality 266 276 10

Find bugs 273 268 −5

Fix bugs 215 225 10

Implement alternative solutions 189 207 18

Make compilable code 183 175 −8

Help ensure design patterns 215 165 −50

Help improve code consistency 270 278 8

4. Which of the following statements are
true?

Reviewer should edit the code in order to fix it
after understanding the defect description.

198 211 13

There is a preferable time constraint for an
effective code review attempt.

232 224 −8

5. Which are fundamental for code
review process?

Checklists 268 272 4

Command terminal 183 225 42

Understanding the code's purpose 168 274 106

Development IDE 206 215 9

6. Assume that a function is working as expected but the reviewer thinks that the code needs changes to be easier to understand and maintain.
What changes might this reviewer be talking about?

Naming 269 274 5

Commenting 266 273 7

Duplication of helper functions 170 187 17

Completeness 161 158 −3

Correcting the code's function 248 222 −26

7. Which of the following are
organization-related structural defects?

Variable initialization 137 213 76

Long subroutine 93 175 82

Duplication 224 251 27

Dead code 173 238 65

Indentation 88 136 48

Consistency 180 233 53

Element type 160 192 32

(Continues)

 20477481, 2025, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sm

r.2750 by T
u D

elft, W
iley O

nline L
ibrary on [10/02/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

26 of 26 Journal of Software: Evolution and Process, 2025

TABLE B2    |    Quiz result summary Part 2.

Question Pre (correct) Post (correct) Diff

9. What are the two main actors of the
code review process?

Reviewer 276 278 2

Manager 260 272 12

Author 227 259 32

Investor 276 277 1

Tester 228 259 31

10. In the following code review definition which word should be changed or discarded? “An
automated inspection of source code by developers other than the author which can be done
both individually or as a group.”

208 217 9

11. In which state of the software development lifecycle is finding bugs the least
economically impactful on the project?

182 200 18

12. Which of the following might be considered potential side benefits of the code review
process?

9 13 4

13. Which of the following is not a good
strategy to set up an effective and efficient
code review session as the author?

Making sure commit messages and PR
descriptions are informative.

235 240 5

Studying your code to be able to defend and
avoid changing it.

195 190 −5

Using a static-code analysis tool to eliminate
errors detectable by machines before the

review.

198 208 10

Making an effort to find a person who is likely
to find errors in the code.

197 206 9

14. Coding Question 1.1 188 133 −55

15. Coding Question 1.2 227 221 −6

16. Coding Question 2.1 185 189 4

17. Coding Question 2.2 101 192 91

18. Coding Question 2.3 221 245 24

19. Coding Question 2.4 269 271 2

20. Which of the following is not a proper code review checklist item? 115 123 8

21. Coding Question 3.1 56 95 39

22. What would you change about this piece of code? (free-text question)

23. Coding Question 4.1 226 233 7

24. What is the problem that you have identified? (free-text question)

Question Pre(correct) Post(correct) Diff

8. Which of the following are logic-related
functional defects?

Semantic duplication 124 260 136

Bad variable initialization 114 174 60

Suboptimal algorithm/performance 224 260 36

Bad compare operations 253 273 20

Semantic dead code 137 243 106

Bad compute operations 254 270 16

TABLE B1    |    (Continued)

 20477481, 2025, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sm

r.2750 by T
u D

elft, W
iley O

nline L
ibrary on [10/02/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

	A Serious Game Approach to Introduce the Code Review Practice
	ABSTRACT
	1   |   Introduction
	2   |   Background
	2.1   |   Interactive Platforms for SE Concepts
	2.2   |   Serious Games for Code Review

	3   |   Game Design
	3.1   |   Learning Objectives
	3.2   |   Prototype, Preliminary Experiment, and Feedback
	3.3   |   Game Components and Flow
	3.3.1   |   Reviewer Mode
	3.3.1.1   |   Defect Taxonomy.
	3.3.1.2   |   Auxiliary Game Components.

	3.3.2   |   Author Mode
	3.3.3   |   UI Components
	3.3.4   |   Tutorial

	4   |   Research Design
	4.1   |   Case Study Setting
	4.1.1   |   Adjustment to Remote Delivery
	4.1.2   |   Case Studies and Course Integration
	4.1.3   |   Participation and Ethics
	4.1.4   |   Flow and Structure of a Case Study

	4.2   |   Data Collection
	4.3   |   Data Analysis
	4.3.1   |   Assessing the Effectiveness of CRSG (RQ1)
	4.3.2   |   Feasibility of CRSG (RQ2)

	5   |   Case Study Evaluation
	5.1   |   Survey Results
	5.2   |   Quiz Results
	5.3   |   Player Score Analysis
	5.4   |   Player Satisfaction and Feedback
	5.4.1   |   Component Analysis
	5.4.2   |   Free-Text Answers

	6   |   Discussion
	6.1   |   RQ1: How Effective is CRSG for Introducing Students to Code Review and Its Related Concepts?
	6.2   |   RQ2: How Feasible It Is to Use CRSG to Introduce Code Review Concepts Within a Course Curriculum?
	6.3   |   Defect Detection Skills
	6.4   |   Content Creation Challenges
	6.5   |   Comparing CRSG to Related Work

	7   |   Threats to Validity
	7.1   |   Internal Validity
	7.2   |   External Validity
	7.3   |   Construct Validity

	8   |   Conclusion and Future Directions
	Data Availability Statement
	Endnotes
	References
	 Appendix A
	 Appendix B

