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A B S T R A C T   

Domino effects are high-impact low-probability events that can have catastrophic consequences. To prevent and 
to reduce risks related to such events, safety barriers (SBs) are crucial. However, the initiation, propagation, and 
stopping processes of domino effects are characterized with complexity and uncertainties and hence they are 
unpredictable. This makes it challenging to allocate SBs based on predicted probabilities. In this study, a multi- 
objective optimization model which integrates graph theory with Non-dominated Sorting Genetic Algorithm II 
(NSGA-II) was proposed to allocate add-on SBs effectively. Graph metrics were used to quantify the escalation 
risks related to storage tanks and to optimize the allocation of add-on SBs, thereby minimizing the consequences 
of a domino effect under a budget constraint. The results of the case study demonstrate great efficiency in finding 
globally optimal strategies with a largest reduction of 94.3% in the out-closeness score due to the implementation 
of add-on SBs, allowing decision-makers to choose the most preferable investment strategy in face of domino 
effect risk. Our study therefore provides a novel approach to achieve an optimal allocation of add-on SBs globally 
and can be useful in preventing domino effects in large-scale chemical clusters equipped with a large number of 
storage tanks.   

1. Introduction 

As the demand for energy grows larger, chemical industrial clusters 
are showing a trend of expansion and centralization, along which the 
level of co-existed hazard rises. Being high-impact low-probability 
(HILP) events that can have catastrophic consequences (Khakzad, 
2015), domino effects were defined by Reniers and Cozzani (2013) as a 
phenomenon that a primary unwanted scenario propagates to nearby 
installations, triggering a chain of accidents, resulting in overall conse
quences more severe than those of the primary event. Chen et al. (2012) 
analyzed 318 domino effects and discovered that 41.8% of which 
initiated in the chemical storage area. Fire accounts for 52.4% of the 
escalation events in process and storage plants, making it the most 
common primary domino scenario (Darbra et al., 2010). Therefore, 
fire-induced domino effects in chemical storage areas are chosen as the 

accident scenario to be analyzed in the current study. For the prevention 
of domino effects, safety barriers (SBs) play a crucial role in mitigating 
and preventing such catastrophic events, the probability of fire escala
tion can be reduced by several orders of magnitude with SBs in place 
(Khakzad et al., 2017a). How to cost-effectively allocate various types of 
add-on SBs within a budget range to achieve a trade-off between econ
omy (cost) and safety (expected benefit) has become a real-life problem. 

To tackle the risk assessment and evolution modeling of domino ef
fects, methodologies based on event tree analysis (ETA) (Alileche et al., 
2017), Bayesian networks (BNs) (Khakzad et al., 2013; Khakzad, 2015), 
Petri-net models (Zhou and Reniers, 2017; Zhou et al., 2023), Monte 
Carlo simulations (Abdolhamidzadeh et al., 2010), graph metrics 
(Khakzad and Reniers, 2015) have been well developed in the last two 
decades. Compared to the earlier studies of domino effect modeling of 
which the models were mostly static and over-simplified, more em
phases have been laid on the dynamic evolution (Khakzad, 2015; Chen 
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et al., 2022), synergistic effect (Ding et al., 2020b; Hou et al., 2022) and 
risk management (Khakzad et al., 2014, 2017b; Chen et al., 2020a) of 
domino effects in recent years. It should be noted that current studies 
with relate to the risk assessment of domino effects are mainly based on 
predicted probabilities, which suffer a drawback that estimation may be 
unreliable as they are based on insufficient knowledge and inappro
priate assumptions (Johansson et al., 2013). In fact, the initiation, 
propagation, and stopping processes of domino effects are characterized 
with complexity and uncertainties and hence they are unpredictable. 

Vulnerability analysis, on the other hand, can better explain the 
composition and critical elements of risk from the hazard sources 
(Huang et al., 2022). Khakzad and Reniers (2015) defined vulnerability 
as the capability of a unit or process plant to foster either the onset or the 
escalation of potential cascading effects. The focus of the vulnerability 
analysis is to explore the system weaknesses by identifying the critical 
units in a systematic way (Johansson et al., 2013), meaning that the 
relative importance is given more emphasis than the precise values of 
failure probability during the analysis of domino effects. Specifically, 
the methodology based on graph theory has been proven to be effective 
in the vulnerability analysis by identifying the critical units through 
certain graph metrics (Khakzad et al., 2017b, 2016; Khakzad and 
Reniers, 2015), especially for domino effect analysis of large-scale 
chemical clusters, therefore it is adopted in this study to conduct 
further analysis. 

As for the management of domino effects, among the five research 
domains that Chen et al. (2020b) pointed out, the optimization of bar
riers in the area of safety barrier management is the main study object of 
this work. It was until around a decade ago that the performance of SBs 
was explicitly analyzed for domino effect assessment. Landucci et al. 
(2016), (2015) quantitatively analyzed the performance of SBs in 
reducing the domino risk through methodologies based on Layer of 
Protection Analysis (LOPA) and ETA, the developed procedure as well as 
the obtained results have been widely used by relative studies. In 
addition, methodologies based on dynamic Bayesian networks (DBNs) 

(Khakzad et al., 2017a), bow-tie diagrams (Ding et al., 2020a) and 
simulation approaches (Yuan et al., 2023) were also proposed for the 
performance assessment of SBs. With the performance (i.e., availability 
and effectiveness) of SBs being quantified, more recent studies have 
been working on the optimization of SBs as summarized in Table 1. 

Each of the listed studies can be considered consisting of two major 
parts, i.e., risk assessment and optimization of SBs. It can be seen that 
BNs have been applied by many of these studies as a tool to effectively 
model the domino-related risks. Meanwhile, the shortcoming of which is 
obvious, it lies in the fact that the computation complexity grows 
exponentially with the network growing larger, also the changes of 
propagation path due to various combinations of add-on safety barrier 
allocation make it even harder to model the decision-making process. In 
terms of the optimization of SBs, among the researches listed in Table 1, 
the budget constraints of safety investment were usually randomly 
selected in the related studies, without considering the most profitable 
budget range where a trade-off can be achieved between safety invest
ment and domino risk. Thus, there is a need to develop an effective 
model to investigate the budget range where safety investment is the 
most reasonable, and the way to optimally allocate add-on SBs under 
this budget for the prevention of domino effects in large-scale chemical 
clusters. 

Generally, risk assessment and the optimization are two essential 
elements of the decision-making process of safety investment, usually 
accompanied by various conflict of interests where different decision 
objectives should be balanced meticulously to achieve a desirable 
outcome. In the realm of multi-objective optimization, genetic algo
rithms (GA) have been very popular in solving such problems, yet they 
have never been used to solve allocation problems related to domino 
effect vulnerability assessment based on graph theory, known for its 
effectiveness in identifying the most dangerous units in chemical areas. 
Therefore, it is necessary to develop a model which take advantage of 
both graph theory and the GA to achieve the optimization objectives. 

In the present study, a multi-objective optimization model was 
developed for the optimal allocation of add-on SBs in chemical clusters. 
This work aims to illustrate the efficiency of the proposed methodology 
in selecting the optimal solution as well as reducing the risk of fire- 
induced domino effects especially in large-scale chemical clusters. 
Graph theory was innovatively integrated with NSGA-II to achieve a 
global optimum, rather than choosing the “optimal” solution from pre- 
defined strategies (Khakzad et al., 2016). Moreover, the selection pro
cesses of the appropriate safety investment budget and the optimal 
allocation strategy under this very budget were demonstrated through 
an industrial case study. The remainder of this paper is organized as 
follows. Section 2 presents the theoretical basis of this study. The 
methodology developed for the optimal allocation of SBs is presented in 
Section 3. Then, the proposed approach is demonstrated through an 
illustrative case in Section 4. Section 5 provides the results and discus
sion of the current study. Finally, conclusions are presented in Section 6. 

2. Theoretical basis 

The framework of the methodology is shown in Fig. 1. The proposed 
approach is composed of four steps. Starting with the domino vulnera
bility analysis, where graph theory is applied to model storage tanks and 
the intensity of heat radiation as vertices and edges, respectively, to 
obtain the centrality scores for the vulnerability analysis of the tank area 
before the implementation of add-on SBs. Step 2 aims to quantify the 
performance of SBs under different allocation strategies, an intensity 
reduction model is proposed based on previous studies. The structuring 
of the safety investment optimization model is presented in Step 3, two 
cases are developed and solved with NSGA-II, one is for the evaluation 
and selection of a preferable safety investment, the other is for the 
allocation problem under the selected budget constraint. Finally, the 
obtained results are further analyzed in Step 4. 

Nomenclature 

T Set of storage tanks. 
U Set of different types of SBs. 
K Set of the allocation strategy of SBs. 
B Safety investment budget, in €. 
Pu The PFD value of safety barrier u 
Qth Threshold value of heat radiation, in kW/m2. 
φu Intensity reduction factor of safety barrier u. 
Hk,u Binary value, equals to one if safety barrier u is included 

in the allocation strategy k, zero otherwise 
R Expected benefit under different allocation strategies of 

SBs. 
Hk,u Binary value, equals to one if safety barrier u is included 

in the allocation strategy k, zero otherwise. 
Ci,k The cost of the allocation strategy k for tank i, in € 
ci,u The cost of safety barrier u for tank i, in € 
Couti Mitigated out-closeness score of tank i 
Ei Economic loss of tank i due to domino effect, in € 
qi,j Heat radiation emitted from tank i to tank j, in kW/m2 

di,j Weighted heat radiation emitted from tank i to tank j 
Si,k Binary value, equals to one if allocation strategy k is 

appliable to tank i, zero otherwise 
θk Reduction ratio of the heat radiation under allocation 

strategy k. 
Xi,k Binary decision variable, equals to one if plan k for tank 

i is selected, zero otherwise  
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2.1. Graph theory 

In mathematics, a graph is an ordered pair G = (V, E) comprising a 
set of vertices V = {v1, v2,…, vn} and a set of edges E = {e1, e2,…, em}. 
Weighted directed graphs are directed graphs (digraphs) with weights 
assigned to their arrows. In a directed graph, a walk from the vertex vi to 
vj is a sequence of vertices and edges starting from vi and ending in vj 

when each intermediate vertex can be traversed several times. A path, 
however, is a walk from vi to vj where each intermediate vertex is tra
versed only once. As for the weights of elements in a graph, a set of 
numerical values can be assigned to either the vertices or edges of the 
graph which can be denoted as wV and wE, respectively (Khakzad and 
Reniers, 2015). The geodesic distance between vi and vj, denoted by dij =

d(vi,vj), is equal to the sum weights of the edges in the shortest path from 
vi to vj. If there is no path between vi and vj, then dij = ∞. We refer to 
only edge weights in the current study, thus a graph G can be defined as 
G = (V, E, W), a triplet formed by a finite set of n vertices, a set of 

directed edges and a set of positive weights. 
In graph theory, centrality concepts were first developed in social 

network analysis to measure the importance of nodes (vertices) in a 
network, many metrics and indices related to centrality have been 
proposed to specifying the components as well as their interrelationships 
over the years. Among which “degree”, “closeness”, and “betweenness” 
measures (Freeman, 1978) have been very popular. According to 
Freeman, in order to account for their contributions in identifying most 
critical vertices or to rank different structures at a graph level, they are 
further divided into two categories: vertex-level metrics (point central
ity) and graph-level metrics (graph centrality).  

● Vertex-level metrics 

The degree of a vertex vi, CD(vi), is the number of edges that are 
incident to the vertex in unweighted graphs, whereas in weighted graphs 
it is equal to the total weights of related edges. The degree of a vertex can 

Table 1 
Previous researches related to the optimal allocation of SBs.  

Publications Methodologies Scenarios Optimization objectives 

Risk assessment Allocation of safety investment 

(Khakzad et al. 
(2017b) 

graph theory multicriteria decision analysis techniques 
such as reference point 

fire-induced domino effects total cost of passive fire protection and 
the graph level out-closeness score 

Mancuso et al. 
(2017) 

Bayesian Belief Networks implicit enumeration algorithm coded in 
C++ language 

system failure in nuclear systems minimize the expected disutility 

Khakzad et al. 
(2018) 

Bayesian networks limited memory influence diagram (LIMID) fire-induced domino effects expected utilities of fireproofing plans 

Janssens et al. 
(2015) 

predefined hazard scenarios metaheuristic approach coded in C++

language 
domino event maximize the time-to-failure (ttf) of a 

chemical installation 
Eslami Baladeh 

et al. (2019) 
HAZOP NSGA-II and a lexicographic model a gas wellhead in the oil and gas 

industry 
minimizing the maximum risks; 
maximizing the total risk reduction 

Mancuso et al. 
(2019) 

dynamic Bayesian networks implicit enumeration algorithm coded in 
C++ language and linked to GeNIe Modeler 

time-dependent accident scenarios minimizing the expected disutility 

Chen et al. 
(2020a) 

dynamic graph "PROTOPT" optimization algorithm based on 
"maximin" strategy 

intentional domino effects maximizing the minimum NPVB 

Du et al. (2020) conventional approach heuristic algorithm using MATLAB fire-induced domino effects total number of fatalities and the 
losses caused by domino effects 

Guo et al. (2022) event tree analysis and 
probit models 

R_minmax uncertain decision criterion and 
cost-effective risk reduction optimization 
model 

worst-case domino scenario risk and economic cost 

Yuan et al. (2023) Simulink-based dynamic 
barrier modeling 

cost-effectiveness analysis combined with 
genetic algorithms 

barrier maintenance optimization 
for safety and security scenarios 

maximizing the effectiveness of 
barrier; 
minimizing the cost 

Khakzad (2023) approach based on thermal 
dose 

Dijkstra’s algorithm and mathematical 
programming 

evacuation considering major tank 
fires 

minimize the risk of 
casualties 

Di Maio et al. 
(2023) 

dynamic phenomenological 
model 

four different multi-objective optimization 
algorithms 

NaTech accidents the mitigative power of the system and 
the cost of the improvements  

Fig. 1. Framework of the proposed approach.  
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be further unfolded into in-degree and out-degree depending on the 
head ends or tail ends of the arrow adjacent to the vertex. 

CD(v) = deg(v) (1) 

The closeness CC(vi) of a vertex vi calculated as the reciprocal of the 
sum of the length of the shortest paths between the vertex and all other 
vertices in the graph. Similarly, the out-closeness CC− out(vi) is defined to 
be the inverse of the total distance from vi to every other vertex, while 
the in-closeness CC− in(vi) otherwise. 

CC− out(vi) =
1

∑
jdij

(2)  

CC− in(vi) =
1

∑
idji

(3) 

Betweenness centrality CB(vi) of vi is based upon the frequency with 
which a vertex falls between pairs of other vertices on the shortest or 
geodesic paths connecting them, it is defined as the ratio of the distances 
between all pairs of other nodes (i.e., between vj and vk, j ∕= i ∕= k) that 
traverse vi, denoted as djk(vi), to the total distance within the graph 
regardless of whether or not they traverse vi: 

CB(vi) =
∑

j,k

djk(vi)

djk
(4) 

While in case of comparing the above centrality of points from 
different graphs, there is a need for a measure that is independent of 
network size. Therefore, for a graph with n vertices, these centrality 
measures need to be standardized as follows: 

C′
D =

CD

n − 1
(5)  

C′
C = CC × (n − 1) (6)  

C′
B =

2 × CB

(n − 1) × (n − 2)
(7)  

• Graph-level metrics 

From the perspective of a whole network, graph-level metrics are 
introduced to measure the compactness of a graph as an extension of the 
point centrality. Based on the three above-mentioned distinct properties, 
the corresponding graph-level metrics can be generated. According to 
Khakzad and Reniers (2015), let CX(vi) be one of the vertex-level metrics 
defined above, CX(v∗) be the largest value of CX(vi) for any vertex in the 
network, the graph-level centrality measure CX can be calculated as: 

CX =
∑n

i=1
[CX(v∗) − CX(vi) ] (8)  

2.2. Optimization based on NSGA-II 

For multi-objective optimization problems with generally conflicting 
objectives, evolutionary algorithms such as GA are proved to be well- 
suited for this class of problems by using specialized fitness functions 
and introducing methods to promote solution diversity (Konak et al., 
2006). It is a well-known metaheuristic algorithm capable of solving 
multi-variable, nonlinear, and combinatorial optimization problems 
through a process of selection, crossover and mutation. A simplified 
scheme of GA is shown in Fig. 2. 

Being one of the most popular variations of GA, NSGA-II is an 
improved version of NSGA, which is also a well-known evolutionary 
algorithm to find Pareto-optimal solutions in multi-objective problems. 
Comparing to other constraint-handling strategies, the application of 
NSGA-II has shown great advantages in solving more complex and real- 
world multi-objective optimization problems (Deb et al., 2002). 

However, in spite of the high efficiency of NSGA-II, it should be 
clarified that a strict optimality cannot be necessarily guaranteed 
considering the uncertainties and objectives with conflictions, our goal 
in this work is to adopt NSGA-II as a tool to find the “best possible” 
solution(s) to the developed multi-objective mathematical model, and 
the final choice can be made by the decision-makers. 

3. Methodology 

3.1. Vulnerability analysis of domino effect 

In order to analyze the vulnerability of a storage plant in case of a 
potential domino effect with pool fire as its primary accident scenario 
and heat radiation intensity as its escalation vector, the application of 
the graph theory is demonstrated through a simplified hypothetical 
example modified from the work of Khakzad et al. (2017b) to which a 
pressurized vessel is added to account for different types of SBs. Fig. 3 
shows the layout of the hypothetical chemical storage plant comprising 
of four atmospheric vessels (T1-T4) and a pressurized vessel (P1). 

For illustrative purposes, the accident scenario and escalation vector 
have been considered to be only pool fire and heat radiation (kW/m2), 
respectively. The heat radiation intensities emitted from Ti to Tj 
(denoted as qij) can be calculated using Areal Locations and Hazardous 
Atmospheres (ALOHA) (U.S. Environmental Protection Agency, 2016), 
which is a freely accessible software adopting commonly-used mathe
matical models to present the consequences of an accident scenario 
(Khakzad, 2015). 

The chemical cluster in Fig. 3 can be modeled as a weighted directed 
graph where T = {1,2,…,5} refers to the storage tanks as vertices. In 

Fig. 2. Scheme of genetic algorithm.  

Fig. 3. Schematic of a hypothetical chemical storage plant.  
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particular, the pressurized vessel P1 is denoted as T5 to unify the 
narrative of the storage tanks in this case. Due to the deterministic na
ture of the present study, we include the failure probabilities in the form 
of the expected weights of the directed edges to represent the potential 
domino effects, denoted as dij, which is assigned as the ratio of the 
threshold value and the calculated heat radiation associated with the 
edge as shown in Eq. (9), where qij denotes the heat radiation intensities 
emitted from Ti to Tj, the threshold values Qth for atmospheric and 
pressurized vessels are 15 kW/m2 and 40 kW/m2 (Cozzani et al., 2006), 
respectively. Thus, a larger value of dij means a longer distance between 
Ti and Tj, resulting in a weaker impact. 

dij =
Qth

qij
(9) 

Plot the tank area as a weighted digraph, the related centrality 
metrics, i.e., out-closeness scores, betweenness scores and out-degree of 
each tank, can be calculated using the “centrality” function in MATLAB. 
To measure the vulnerability of the entire chemical cluster, the stan
dardized graph-level out-degree can also be calculated according to Eq. 
(8). 

It should be noted that different from unweighted graphs, whose 
degree centralities are measured by the number of edges, the degree 
value of a vertex is positively correlated with its importance, while in 
weighted graphs the degree value of a vertex is calculated based on the 
weights assigned to the edges, therefore, a smaller value means a more 
compact structure around the vertex, thus making it more crucial 
comparing to other vertices. Follow the above-mentioned procedures, 
the initial centrality metrics of the tanks in the illustrative chemical 
cluster can be acquired. In terms of vertex-level metrics, T1 and P1 are 
considered to be the most dangerous units in the tank area. T1 is also 
identified as the most crucial unit in facilitating the propagation of 
domino effect since the betweenness score for which is the highest. The 
results achieved in the vulnerability assessment of a potential domino 
effect can be adopted as the basis of the optimization model, they can be 
further compared with the final results under the optimal allocation 
strategies to demonstrate the efficiency of the proposed approach. 

3.2. Modeling of add-on safety barriers 

According to AIChE (Grossel, 2002), SBs were classified into three 
categories, i.e., passive barriers, active barriers, and procedural and 
emergency measures. However, we only consider the first two since the 
current study is focused on add-on SBs. The availability, effectiveness 
and heat radiation intensity reduction factor of different SBs were 
scrutinized and quantified based on previous studies for the allocation 
problem, and the results were used to model the performance of SBs in 
terms of different accident scenarios. The definitions of the three prop
erties (Landucci et al., 2015) are listed as follows:  

• Availability (P), defined as the probability of failure on demand 
(PFD) of the safety barriers;  

• Effectiveness (η), defined as the probability that the safety barrier, 
once successfully activated, will be able to prevent the escalation; 

• Intensity reduction factor (RF, denoted as φ), represents the reduc
tion in the heat load due to the presence of add-on SBs, i.e., Qm = φ×

Q, where Qm is the mitigated heat radiation and Q is the original heat 
radiation without SBs. 

A generic active protection device is a system or a barrier which 
requires either power or external activation to trigger the protection 
action where a sequence of detection-diagnosis-action is needed (Lees, 
1996). This type of protection systems aims to deliver a firefighting 
agent either to extinguish the flame or to cool the equipment walls 
(Ovidi et al., 2021). Three types of active add-on SBs are included and 
analyzed in this study:  

(i) Automatic fire sprinkler systems (SPS) are designed to activate if 
a fire develops in their area of protection and limit or suppress the 
further development of the fire (Frank et al., 2013). Water is the 
only fire-fighting agent considered under the term of SPS, this 
type of protection is typically installed on atmospheric tanks to 
provide effective control of primary fire and prevention of fire 
spread in nearby units.  

(ii) Foam-water sprinkler systems (FWS) use additional water-based 
foam as the fire-fighting agent to suppress the primary fire. 
They are considered to be more effective than conventional SPS 
and are usually at a higher price.  

(iii) Water deluge systems (WDS) provide a spray curtain on exposed 
surfaces to absorb heat radiation, this type of safety barrier is 
typically installed on pressurized vessels to shield the target 
vessel from a primary fire. 

A generic passive protection device is a system or a barrier which 
does not require either energy or external activation to provide the 
protection action (Grossel, 2002), it can mitigate the physical effects 
imposed by external fire exposure on the target. Among which fireproof 
coating (FPC) is selected as the only passive add-on SB in this paper. 

This type of SB prolongs the time to failure (ttf) of the target vessel 
through high performance fireproofing materials applied on the external 
surface of the equipment. It should be noted that instead of quantita
tively analyzing the time dependence of FPC in detail by means of ttf , 
this paper is dedicated to solving the allocation problem of safety in
vestment. Thus, for illustrative purposes, in this study we assign a 
reduction factor φ = 0.1 to demonstrate the protective effect of FPC. To 
account for the availability and effectiveness of FPC, a conservative PFD 
value P = 1 × 10− 3 (Grossel, 2002) and an effectiveness value η = 0.999 
(Landucci et al., 2016) are used for the consideration of degradation 
phenomena of FPC. 

The aim of the current study is to search for the safety investment 
strategy with the optimum combination of SBs, different from previous 
works which is mainly based on pre-defined plans, we intend to use 
exhaustive search to achieve a global optimum. However, the accident 
scenarios may grow exponentially with the growing number of SBs as 
well as the combination of them (e.g., the plan may involve a single SB 
or the combination of both active and passive barriers). Table 2 shows 
the input parameters of protection plans considered in this work, most of 
the values are derived from previous studies. To account for the inter
action of SBs when two of them combined together, a pessimistic 
strategy derived from Eslami Baladeh et al. (2019) is adopted, in which 
the minimum PFD and RF values of the selected SBs are considered 
conservatively instead of those resulted from the implementation of all 
SBs. 

Therefore, in order to measure the vulnerability of the tank area in 
case of a fire-induced domino effect and the effect of a protection plan, 
the change of heat radiation intensity for each tank before and after the 
implementation of the plan should be estimated. Let K = {1,2,…, r} be a 
set of allocation strategies of SBs. Considering the indicators of different 
SBs, θk, the reduction ratio of the heat radiation intensity under safety 
barrier allocation plan k (∀k ∈ K) can be calculated as follows: 

θk =
∑

v∈{1,2…V}

∏

u∈O

{
Pu,Yu,v = 1

(1 − Pu)φuηu, Yu,v = 0 (10)  

V = 2A (11)  

A =
∑

u∈U
Hk,u (12)  

Where Pu is the PFD of SB u; φu and ηu are reduction factor and effec
tiveness of SB u, respectively; V is the number of combinations of the 
scenarios whether the allocated SBs fail or not; a set O = {u|Hk,u = 1, u ∈

U} consists of the SBs which are selected for the allocation strategy; A is 
the number of the allocated SBs; Yu,v denotes for whether SB u fails or not 
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under the accident scenario v, equals to 1 if it fails, zero otherwise, 
v ∈ {1, 2…V}, u ∈ O. 

In the present study, a simple composite probability, i.e., gate type 
“a” in the work of Landucci et al. (2015), is applied in the performance 
assessment of both active and passive protection systems, in which 
availability is expressed as PFD, multiplied by a single probability value 
expressing the probability of barrier success in the prevention of the 
escalation. Note that due to the deterministic nature of the proposed 
methodology, failure probability is not considered in the calculation of 
centrality metrics, instead, those metrics are calculated based on ex
pected heat radiation (i.e., expected weight) (Khakzad et al., 2017b), 
which is the product of the unmitigated heat radiation intensity and θk to 
stand for the mitigated heat radiation intensity after implementing 
safety barrier k. Finally, the centrality metrics of the tanks can be 
updated based on the mitigated heat radiation intensities to account for 
the effectiveness of different sets of SB allocation strategies in the 
following optimization model. 

3.3. Building the mathematical model 

When it comes to the allocation of safety investment, the main issue 
should be focused on how to balance the cost and return in a most 
effective way due to the marginal diminishing effect of safety invest
ment. Moreover, the amount of the limited budget is also a key factor in 
reducing the domino risk due to the implementation of different SBs. 

To facilitate a more nuanced understanding of the challenges out
lined previously, the mathematical problem that requires modeling and 
subsequent optimization is delineated as follows. Within expansive 
chemical storage areas, the effective allocation of safety resources to 
mitigate the risks and consequences associated with domino effects 
emerges as a significant real-world challenge. These domino effects are 
identified as the primary optimization objectives of this research. They 
may be defined as either singular or multiple targets, represented by 
diverse hazard indices, which are selected based on the preferences of 
the decision-makers. The principal constraint of this optimization 
problem, analogous to a knapsack problem, is the budget allocated for 
the acquisition of additional safety barriers (SBs). Leveraging the find
ings from vulnerability analysis and incorporating data pertaining to 
supplementary SBs as input variables, this study endeavors to identify an 
optimal solution within a predefined budgetary framework. Specifically, 
it aims to allocate safety resources in the most cost-effective manner to 
avert domino effects. The elaboration of this mathematical model is 
comprehensively presented in the subsequent sections of this document. 

This paper relates domino effect risk to economic cost through a “risk 
reduction” value R (referred to expected benefit in this work, a 

representation of the relative risk reduction), denoted as the sum 
product of the reduction in the out-closeness score ΔCout and the 
property loss E of each tank (Eq. (13)), where ΔCout is the difference 
between the initial out-closeness score of tank i (Cout0

i ) and the reduced 
score after implementing SBs (Couti). Note that in the present study, only 
the consequence caused by property damage is considered, which refers 
to the cost of replacement of the storage tank and the chemicals stored in 
the tank. 

R =
∑

i∈T
Ei
(
Cout0

i − Couti
)

(13) 

Despite maximizing the expected benefit from a macroscopic angle, 
decision-makers may give more attention to the most dangerous unit, 
that is, the storage tank with the highest out-closeness score in this 
study. Therefore, minmax criterion (Aissi et al., 2009) is introduced in 
order to search for the optimal allocation of SBs which minimizes the 
out-closeness score of the most dangerous unit. A budget B is designated 
as a constraint in the developed model. 

To mathematically state the problem, let T = {1,2,…,m} be a set of 
storage tanks, set U = {1,2,…, n} denotes different types of SBs, based 
on the vulnerability analysis of the storage plant as well as the input 
parameters achieved from above, the mathematical model with two 
objective functions can be developed as follows: 

lexicographicf(x) = (f1(x), f2(x))

f1(x) = maxR  

f2(x) = minmaxCouti , i ∈ T# (14)  

s.t. Xi,k = {0, 1}, ∀i ∈ T, ∀k ∈ K (15)  

∑

k∈K
Xi,k = 1, ∀i ∈ T (16)  

Xi,k ≤ Si,k, ∀i ∈ T,∀k ∈ K (17)  

∑

i∈T

∑

k∈K
Ci,kXi,k ≤ B (18)  

Ci,k =
∑

u∈U
ci,uHk,u,∀k ∈ K (19)  

qi,j = q0
i,j

∑

k∈K
θkXi,k,∀i ∈ T, ∀j ∈ T (20) 

The objective function f(x) in Eq. (14) is divided into two objectives 
f1(x) and f2(x), in a lexicographic order, these objectives can be ranked 
by the decision maker in order of preference or importance. The first 
objective function f1(x) aims to search for the combination of SBs which 
maximizes the total risk reduction, while the second one f2(x) minimizes 

Table 2 
Input parameters of protection plans (Landucci et al., 2015) implemented in the proposed model for the case study in Section 4.  

k Protection plan PFD (Pi) Effectiveness 
(ηi) 

Intensity reduction factor (φi) Cost (ci) Other descriptions  

1 No SBs 
implemented 

1 N.A. N.A. N.A.   

2 SPS (bladder tank) 3.76×10− 3 0.954 0.35 (Janssens et al., 2015) 250 K€ (Janssens et al., 
2015) 

Only considered for atmospheric 
storage tanks  

3 FWS (in-line 
educator) 

5.43×10− 3 0.954 0.25 (Janssens et al., 2015) 350 K€ (Janssens et al., 
2015) 

Only considered for atmospheric 
storage tanks  

4 WDS 4.33×10− 2 1 0.5 200 K€ Only considered for pressurized 
vessels  

5 FPC 1×10− 3 0.999 0.1a 410 €/m2 (Paltrinieri 
et al., 2012)   

6 SPS+FPC Composite 
probability 

0.999a Depend on the working condition of 
each safety barrier 

c2 + c5 Only considered for atmospheric 
storage tanks 

7 FWS+FPC 0.999a c3 + c5 Only considered for atmospheric 
storage tanks 

8 WDS+FPC 0.999a c4 + c5 Only considered for pressurized 
vessels  

a Assumed values for illustrative purposes. 
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the out-closeness score of the most crucial unit, these scores can be 
calculated through the method in Section 2.1. 

More specifically, the constraints are described as follows. Constraint 
(15) represents the decision variable whether strategy k is selected for 
tank i or not. Constraint (16) guarantees that only one strategy can be 
selected for tank i to reduce the heat radiation intensity in the decision 
process. Because of the properties of certain SBs, for example, WDS is not 
applicable for atmospheric tanks, constraint (17) is used to make sure 
the selected strategies are suitable for each unit. The total cost of each 
strategy is calculated and limited to a predefined budget B in Constraint 
(18). Constraint (19) is used to compute the cost of each allocation 
strategy (Ci,k) for tank i under strategy k, different from ci,u, the values of 
Ci,k vary between tanks with different surface areas due to the cost of 
FPC. Constraint (20) is used to calculate the heat radiation intensity 
considering the effect of SBs, in which θk can be computed through Eqs. 
(10) – (12). 

3.4. Optimization technique based on NSGA-II 

It can be calculated that for a chemical cluster consisting of m storage 
tanks and a number of r allocation strategies of SBs (m ∈ T, r ∈ K), a 
maximum number of mr can be generated to consider all the combina
tions of allocation strategies, making it extremely difficult to conduct an 
exhaustive search, therefore the application of evolutionary algorithms 
becomes necessary. To achieve a global optimum, the developed 
mathematical model was further coded with program language in 
MATLAB, a tailored optimization algorithm, NSGA-II, was applied in 
order to solve the multi-objective optimization problem. Fig. 4 shows 
the flowchart of the NSGA-II developed in this study. 

The solving process of the developed NSGA-II model is basically 
made up of three parts as shown in Fig. 4, that is, the input phase, the 
real number encoding and decoding phase, and the evolution phase. 
Firstly, it starts with the setup of objective function and constrains, 
Cost(i, inds) denotes the amount of money already used for tank i under 
the scheme number inds. Input the calculated parameters along with the 

initial values i = 1 and U = 0, representing the tank ID and the initial 
cost, respectively. In the second phase, the data of the storage tank is 
encoded in binary where the code length is n and the range of value for 
each gene is set to [0,1]. Search for the applicable sets of plans S for tank 
i, the number of these sets is denoted as K, read the randomly created 
gene for tank i, Gene(i), and the scheme number of the selected plans can 
be calculated. Update U and repeat the procedure until all tanks are 
considered, the initial population can be generated, and the problem is 
thus abstracted into a binary string that can be operated with cross 
mutation. Finally, to better elaborate the evolution phase, the simplified 
flow chart in Fig. 4 is further described as follows: 1) sort the initial 
population Pt (size N) based on the nondomination, offspring population 
Qt (size N) can be generated after selection, crossover and mutation, a 
population Rt (size 2N) is created by combining Pt and Qt; 2) perform a 
non-dominated sorting on Rt, meanwhile calculate the crowding dis
tance of the element in each non-dominated front, select the most 
suitable elements to form a new parent population Pt+1 (size N) based on 
the nondomination and crowding distance; 3) generate the new 
offspring population Qt+1 (size N) through selection, crossover and 
mutation, combine Pt+1 and Qt+1 to obtain a new population Rt+1 (size 
2N). Repeat the procedure until the stopping criteria is satisfied, i.e., the 
maximum number of generations in this study. However, note that it is 
not the scope of this study to elaborate the GA theory, it is adopted as an 
effective tool to solve the aforementioned problem. More detailed il
lustrations of NSGA-II and GA can be found in previous studies (Deb 
et al., 2002; Konak et al., 2006; Caputo et al., 2011; Di Maio et al., 2023). 

4. Case study 

In order to demonstrate the novel optimization model developed in 
this paper, a large-scale chemical cluster is considered. The layout is 
shown in Fig. 5, this facility consists of 20 storage tanks with different 
configurations and substances, among which T1-T14 are atmospheric 
vertical cylindrical tanks and P1-P6 are pressurized spherical tanks. The 
main features of the storage tanks are presented in Table 3. 

Fig. 4. Flowchart of the NSGA-II developed for the allocation of SBs.  
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Assuming a prevailing atmospheric condition with a weather tem
perature of 25 ℃, a relative humidity of 25%, a partly cloudy sky and the 
stability class D, the wind speed is set to be 5 m/s measured at 5 m above 
the ground and gusting from the South East, the leak point is a circular 
opening with a diameter of 20 cm at 2 m above the bottom of the tank. 

The calculation of initial heat radiation intensity for each tank is 
performed through ALOHA, and the results are reported in Appendix A, 
Table A.1. The storage area was modeled as a weighted directed graph in  
Fig. 6, the values of the calculated heat radiation intensity are 

represented by the width and color of the edges, while the size and color 
of the vertices stand for the out-closeness scores of each tank. The initial 
centrality scores without SBs can be calculated and listed in Table 4, the 
most dangerous tanks in terms of the three indexes are identified in bold 
numbers, it can be indicated that P1 is the most dangerous unit with the 
highest out-closeness and the lowest out-degree values, and T5 appears 
to contribute the most to the propagation of domino effect for its largest 
betweenness score. In terms of the mitigating effect of add-on SBs, eight 
allocation strategies involving four types of SBs are considered as listed 

Fig. 5. Layout of a chemical storage area.  

Table 3 
Main features of the storage tanks in Fig. 5.   

Tank ID Substance Design Pressure 
(MPa) 

Diameter 
(m) 

Height / Length 
(m) 

Surface area 
(m2) 

Capacity 
(m3) 

Inventory 
(ton) 

Value 
(M€) 

Area A T1, T2, T5 Sec-Butyl 
acetate  

0.1  15  17 977 3000 2000  1.8 

T3-T4 Sec-Butyl 
acetate  

0.1  15  17 977 3000 2500  2.2 

Area B T6 Toluene  0.1  22  15 1416 5700 4800  3.8 
Area C T7-T9 Sec-Butyl 

acetate  
0.1  16  17 1055 3418 2500  2.3 

T10-T12 Sec-Butyl 
acetate  

0.1  16  17 1055 3418 2000  1.9 

T13-T14 Sec-Butyl 
acetate  

0.1  16  17 1055 3418 3200  2.8 

Area D P1, P5-P6 Propane  2  12  12 452 1000 450  0.8 
P2-P4 Propane  2  12  12 452 1000 300  0.6  

Fig. 6. Storage area of Fig. 5 as a weighted directed graph.  
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in Table 2, Section 3.2. 
The numerical parameters of the NSGA-II can affect the quality of the 

solutions, therefore they should be carefully selected. For example, a 
rather small population size is not able to guarantee a sufficient solution 
space for the algorithms, too high of the population size can bring about 
divergence and a decrease in its robustness. Literature guidelines sug
gest a population size in the range of 20–100, a crossover rate between 
0.6 and 0.95, and a mutation rate of 0.005–0.01 (Caputo et al., 2011). 
However, the selection of optimal parameters did not result in any 
uniform policy from earlier efforts, as it relies on the input data and 
genetic coding to some extent (Reddy et al., 2004). Therefore, these 
parameters should be set referring to empirical guidelines and then 
tuned according to the actual conditions. 

With the purpose of promoting computational efficiency while 
maintain the robustness, trials with different parameters have been 
conducted to find the ones more suited for this study. In particular, the 
NSGA-II was run with a population size of 100, a maximum number of 
generations of 150, a crossover rate of 0.6 and a mutation rate of 0.01, 
within the ranges suggested in the literature. After defining the input 
parameters of the proposed model, two cases were further analyzed in 
order to achieve the trade-off. The first case aims to select the most cost- 
effective budget B∗ to allocate the SBs by setting a floating range of 
budget, while the second case attempts to find the optimal strategy 
based on this very budget. 

Case 1. Floating budget. 

It can be computed from Table 2 that the minimum and maximum 
possible values of the actual cost are 0 and 13,255,730 €, respectively. 
Therefore, a budget range of 0–14 M€ was designated and the model was 
run every 0.1 M€ (140 times totally) with the run time of 
1402.384 seconds (with experiment platform of Microsoft Windows 10, 
Intel 3.60 GHz, MATLAB R2021b). In summary, each set of the output 
parameters contains: (1) budget; (2) actual cost; (3) expected benefit; (4) 
minmax out-closeness score with its (5) corresponding tank ID; (6) 
allocation strategy. These results are presented and discussed in Section 
5. 

Case 2. Fixed budget. 

Set a fixed budget B∗ based on the value achieved from Case 1, run 
the optimization model for 500 times to choose the optimal set of SB 
allocation strategy with better outcomes for the prevention of domino 
effect. The average runtime for Case 2 is 9.52 seconds, and the obtained 
results are also discussed in Section 5. 

5. Results and discussion 

Due to the nature of multi-objective optimization problems, multiple 
equally good solutions to the same problem can be produced by NSGA-II. 
After running the optimization model in MATLAB, a total of 420 sets of 
solutions were generated for Case 1 with a budget range from 0 to 
14 M€, the main indexes are shown in (Fig. 7). 

The values of expected benefit (f1) shows a rapid growth from 0 to 

2.7 M€ in Fig. 7. The reason is that, at the beginning of the process, more 
resources are given to either the tank with the higher value or the one 
with a higher out-closeness score due to an insufficient budget, i.e., T6 
with a value of 3.8 M€ (Table 3) and P1 with an initial out-closeness 
score of 1.584 (Table 4), the mitigation effect due to the implementa
tion of SBs is relatively evident. The minmaxCouti (f2) in this period, on 
the other hand, basically remains at the same value (1.55), which is the 
value of the pressurized vessel P4, more attention has been drawn to the 
atmospheric tanks with a higher value of property since the first priority 
of the proposed model is to reduce the consequence of a potential 
domino effect. A significant fluctuation can be witnessed between the 
budget range of 2.7 and 3.8 M€ for both objective functions. After 
examining and analyzing the relevant data, we drew a possible 
conclusion that the two objective functions might conflict greatly within 
this budget range, so that wide differences exist between the neigh
boring outputs. A steady yet slower increase follows afterwards, indi
cating that the expected benefit has become less cost-effective as the 
investment grows, which is in accordance with the marginal diminishing 
effect. And eventually a maximum value of 15,226,671 is achieved with 
an actual cost of 13,255,730 €. Therefore, the fixed budget value B∗ is set 
to be 3.8 M€ for further analysis in Case 2. 

In general, 919 sets of solutions were generated in Case 2 after 
running the model for 500 times, the frequency of SB strategy k for each 
tank in all solutions can be found in Table 5, Fig. 8 shows their corre
sponding relative frequency in a more intuitive way. It is obvious that 
due to the insufficient budget, the choice of SB strategies is compara
tively limited. In particular, strategy 5 is more preferable for pressurized 
vessels P2-P6, while for P1, strategy 8 predominates in all the options 
because of its relatively higher risk. As for the atmospheric tanks, those 
with lower out-closeness scores (i.e., T1-T3, T7-T8, T11-T12) are largely 

Table 4 
Initial vertex-level centrality scores without SBs.  

Tank ID Out-closeness Betweenness Out-degree Tank ID Out-closeness Betweenness Out-degree 

T1  0.198  0  33.121 T11  0.227  0  27.017 
T2  0.233  0.094  23.869 T12  0.265  0.038  18.921 
T3  0.269  0.152  16.868 T13  0.295  0.023  12.250 
T4  0.269  0.175  11.807 T14  0.315  0.026  8.293 
T5  0.312  0.491  8.740 P1  1.584  0.152  0.631 
T6  0.603  0.456  6.172 P2  1.393  0.164  0.718 
T7  0.236  0.041  26.288 P3  1.119  0  0.894 
T8  0.282  0.211  18.363 P4  1.551  0  0.645 
T9  0.306  0.146  12.127 P5  1.408  0  0.710 
T10  0.339  0.363  7.740 P6  1.129  0  0.886  

Fig. 7. Variation trends of two objective functions in Case 1.  
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allocated under strategy 1, meaning that no SBs are implemented. While 
the rest of the tanks with intermediate out-closeness values tend to have 
more choices, among which strategy 2, 5 and 3 show a higher 
percentage. 

Fig. 9 is the Spearman correlation coefficient (Myers and Sirois, 
2006) analysis diagram of the 919 sets of strategies generated from the 
model. The correlation strength of the allocation plan for each tank is 
quantitatively presented by a value between − 1 and 1, denoted by 
different colors. It can be witnessed that there are certain positive cor
relations between the selection of SB strategies within a single set of 
solution, especially for the tanks which are geographically close to each 
other. For example, the Spearman correlation coefficient between P2 
and P5 is 0.63 with a p-value less than 0.01, it can be assumed that there 
is a significant positive correlation between P2 and P5, in another word, 
the decisions of the SB allocation plan for P2 and P5 are closely con
nected. Moreover, those tanks within the same area (Fig. 5) are tend to 
have tighter correlations than those crossing different areas, which is in 
accordance with real-life situation. 

Further, the occurrence number of each set of strategies is counted 
for the selection of the optimal allocation strategy under the budget B∗. 
In order to select the optimal solution from the equally good solutions 
produced by NSGA-II, three sets of strategies with the most frequent 
occurrence times are chosen for further analysis, they are marked as “a”, 
“b” and “c” and the details of the three solutions are shown in Table 6. 

More specifically, to better describe the allocation strategy, we take 
solution a with a set of SBs [1 1 2 2 5 5 1 1 2 2 1 1 2 2 8 5 5 5 5 5] as an 
example. A combination of FWS and FPC is chosen for the most 
dangerous unit P1 considering its high performance in reducing heat 
radiation intensity; T5-T6 and P2-P6 are equipped with FPC for their 
relatively higher out-closeness scores; SPS is selected for T3-T4, T9-T10 
and T13-T14; and finally, the rest of the storage tanks are not equipped 

Table 5 
Frequency of SB allocation strategies for each tank considering all solutions in Case 2, k refers to the SB strategies listed in Table 2.  

k T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 P1 P2 P3 P4 P5 P6  

1  876  806  527  84  16  5  801  650  158  2  892  829  303  55  4  65  79  69  69  84  
2  12  47  261  651  312  35  42  137  550  606  4  48  534  565  0  0  0  0  0  0  
3  8  12  12  58  192  243  16  37  83  152  4  22  26  125  0  0  0  0  0  0  
4  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  15  22  14  10  20  
5  23  54  119  126  399  485  60  95  125  159  19  20  53  169  407  746  818  545  734  803  
6  0  0  0  0  0  138  0  0  3  0  0  0  3  5  0  0  0  0  0  0  
7  0  0  0  0  0  13  0  0  0  0  0  0  0  0  0  0  0  0  0  0  
8  0  0  0  0  0  0  0  0  0  0  0  0  0  0  508  93  0  291  106  12  

Fig. 8. Relative frequency of each strategy in all solutions.  

Fig. 9. Correlation analysis diagram of SB allocation strategies for Case 2.  
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with any SBs. 
Among the three sets of outcomes in Table 6, solution c is considered 

to be the worst due to its unsatisfying performance related to out-degree 
and out-closeness score, which are 693.73 and 0.164, respectively. As 
stated in Section 3.1, the smaller a graph-level degree value is, the more 
compactness the structure presents, thus making it more crucial 
(dangerous), and the discrepancy in the last row of Table 6 is evident. 
Solution a shows the most frequent occurrence (18/919 times) with a 
largest expected benefit value of 12,856,565. While solution b out- 
performed a in terms of out-closeness score and the actual cost, the 
out-degree values of the two solutions are around the same. Thus, be
tween the equally good solutions a and b, the optimal allocation strategy 
can be selected based on the preference of decision-makers. 

For the better demonstration of the optimal SB allocation strategies 
in reducing the domino risks, comparisons of centrality metrics have 
been made between the initial ones (see Table 4) and the three sets of 
allocation strategies listed above. In Fig. 10, three vertex-level centrality 

Table 6 
Details of the three sets of solutions chosen for comparison.  

Solution ID → a b c 

Allocation strategyb [1 1 2 2 5 5 1 1 2 
2 1 1 2 2 8 5 5 5 5 
5] 

[1 1 1 2 5 5 1 1 2 
2 1 1 2 2 8 5 5 8 5 
5] 

[1 1 2 2 3 5 1 2 2 
2 1 1 2 2 5 5 5 5 5 
5] 

Times of occurrence 18 13 8 
Actual cost 3793,050 3743,050 3792,480 
Expected benefit 12,856,565 12,685,889 12,786,540 
Minmax-ed Cout and 

corresponding 
tank ID 

0.163 (P4) 0.152 (P5) 0.164 (P6) 

Graph-level out- 
degree 

1182.95 1210.36 693.73  

b Different allocation plans of the three solutions are identified with bold 
numbers. 

Fig. 10. Comparison between the initial and three sets of allocation strategies in terms of (a) out-closeness score, (b) betweenness score and (c) out-degree under the 
budget of 3.8 M€. 
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metrics, i.e., (a) out-closeness score, (b) betweenness score and (c) out- 
degree are compared. It can be seen that the protection strategy not only 
alters the metrics of the tanks notably, also the rank order shows a 
completely different pattern after the implementation of SBs. 

Comparing the results of out-closeness scores in Fig. 10 (a), the 
reduction effect of six pressurized tanks is much more notable, with a 
largest reduction of 94.3% (out-closeness score of P1 drops from 1.584 
to 0.091). Great discrepancies can be noticed from the initial out- 
closeness scores where P1 was considered to be the most dangerous 
unit, while with the optimal allocation of SBs, the differences of which 
have become insignificant, indicating an over-all risk reduction. 
Generally, solution a shows a higher efficiency in reducing the out- 
closeness score, six pressurized tanks yield the largest values both 
before and after the implementation of SBs, indicating their risks in 
initiating the potential domino effect in the chemical cluster. 

The betweenness scores in Fig. 10 (b) show a greater diversity, which 
is due to the nature of betweenness centrality being a ratio of the dis
tances between all pairs of other nodes that traverse the vertex to the 
total distance within the graph, which is a relative value. Thus, com
parisons should be made within each set of solutions. In the initial phase, 
the largest betweenness scores are presented by T5, T6 and T10, in a 
descending order, indicating their relative importance in accident 
propagation. However, the rank orders vary between the three solutions 
under different allocation strategies, the values of T10 show an overall 
higher level considering all sets of results, it should be given more 
attention accordingly. Nevertheless, the betweenness scores of pressur
ized tanks are lower than that of atmospheric ones, making them less 
important in propagating domino effects. 

By contrast, a uniformity in all of the four cases can be observed for 
the out-degree values in Fig. 10 (c). The values increase with the 
implementation of SBs, P1-P6 are identified to be the most dangerous 
tanks due to their lower out-degrees, which is in accordance with the 
results from Fig. 10 (a). 

In this section, the results of the two cases described in Section 4 
were presented and discussed in depth. A reasonable budget B∗ = 3.8M€ 
is selected through the results obtained from Case 1 with a budget range 
from 0 to 14 M€, and two equally optimal sets of SB allocation strategies 
were produced by the multi-objective optimization model given the 
budget constraint B∗. The results demonstrate a considerable reduction 
of the potential domino effect risk, the most dangerous units as well as 
the ones facilitate the propagation of the accident are also identified 
through the proposed model. 

6. Conclusions 

In this paper, an innovative multi-objective optimization approach 
has been presented. The aim of this study is to search for the optimal 
allocation strategy of add-on SBs in case of potential fire-induced 

domino effects. In this approach, graph theory was innovatively inte
grated with NSGA-II to find the globally optimal solutions. Two objec
tive functions were defined in the mathematical model for different 
purposes of domino risk reduction, the model was further demonstrated 
through an industrial case study, in which the selection process of an 
appropriate safety investment budget and the optimal allocation strat
egy under this very budget was introduced in detail. The main conclu
sions are drawn as follows:  

(1) The developed model shows great efficiency in finding the 
globally optimal solutions from all sets of allocation strategies. 
The most cost-effective safety budget and globally optimal solu
tions can be quickly obtained through the developed model, of
fering decision-makers choices to select the best strategy based on 
their preferences for risk. In addition, the most dangerous units 
and those dedicate the most to the accident propagation can also 
be identified.  

(2) This approach is effective in dealing with the uncertainties of 
domino effects by adopting relative risk in the vulnerability 
analysis rather than predicted probabilities, avoiding the influ
ence of the presence of numerous installations or complex vari
ations of escalation paths.  

(3) The model developed in the present work can be managed easily 
and is more suitable for chemical clusters with numerous in
stallations. In addition to heat radiation intensity, other escala
tion vectors such as overpressure can also be taken into account, 
it can further be applied to even larger chemical clusters storing 
multiple hazardous substances.  

(4) To advance this work, future research will concentrate on the 
strategic allocation of safety resources. This will involve exam
ining the interplay among different escalation vectors throughout 
the dynamic progression of domino effects. For clarity, certain 
input data in the case study have been simplified. However, a 
more thorough investigation is warranted to accurately assess the 
performance of various safety barriers (SBs), drawing upon both 
experimental results and historical data. 
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Appendix A. - Heat radiation intensity obtained for the case study  

Table A.1 
Heat radiation intensity obtained for the case study, in kW/m2.  

Source 
↓ 

Target 

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 P1 P2 P3 P4 P5 P6 

T1  0.0  14.5  6.6  2.8  1.5  0.6  9.5  8.5  4.4  2.1  3.4  3.3  2.3  1.4  0.7  0.5  0.3  0.6  0.4  0.3 
T2  26.7  0.0  14.5  6.6  2.8  0.8  10.0  9.5  8.5  4.4  3.5  3.4  3.3  2.3  1.1  0.7  0.5  0.9  0.6  0.4 
T3  11.9  26.7  0.0  14.5  6.6  1.2  7.7  10.0  9.5  8.5  3.2  3.5  3.4  3.1  1.8  1.0  0.6  1.3  0.8  0.6 
T4  5.9  11.9  26.7  0.0  14.5  2.1  4.1  7.7  10.0  9.5  2.3  3.2  3.5  3.4  3.5  1.7  1.0  2.0  1.2  0.8 
T5  2.6  5.9  11.9  26.7  0.0  4.4  2.2  4.1  7.7  10.0  1.6  2.3  3.2  3.5  8.4  3.1  1.5  3.1  1.9  1.1 
T6  1.2  1.8  2.9  5.4  12.3  0.0  1.2  1.8  2.8  5.0  1.1  1.5  2.2  3.3  35.3  35.3  23.1  6.8  6.7  6.0 
T7  21.0  20.4  10.2  4.5  2.4  0.7  0.0  14.7  10.1  3.7  14.7  7.5  6.0  2.9  0.8  0.6  0.4  0.4  0.6  0.8 
T8  19.7  19.8  16.3  7.2  4.7  0.9  26.5  0.0  14.7  10.1  11.2  14.7  7.5  6.0  1.3  0.8  0.5  1.3  0.8  0.5 
T9  10.6  19.7  19.8  16.3  7.2  1.4  11.6  26.5  0.0  14.7  7.0  11.2  14.7  7.5  2.3  1.2  0.8  2.3  1.2  0.8 
T10  5.0  10.6  19.7  19.8  16.3  2.7  4.3  11.6  26.5  0.0  3.4  7.0  11.2  14.7  5.1  2.2  1.2  4.9  2.2  1.2 
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Table A.1 (continued ) 

Source 
↓ 

Target 

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 P1 P2 P3 P4 P5 P6 

T11  6.2  6.0  4.3  2.6  1.6  0.7  26.5  11.2  5.9  2.7  0.0  14.7  6.6  2.8  0.8  0.5  0.4  0.8  0.6  0.4 
T12  6.2  6.2  6.0  4.3  2.6  0.8  17.6  26.5  11.2  5.9  26.5  0.0  14.7  10.1  1.3  0.8  0.5  1.3  0.8  0.5 
T13  4.6  6.2  6.2  6.0  4.3  1.2  9.5  17.6  26.5  11.2  11.6  26.5  0.0  14.7  2.2  1.3  0.8  2.5  1.3  0.8 
T14  2.8  4.6  6.2  6.2  6.0  1.9  5.2  9.5  17.6  26.5  4.3  11.6  26.5  0.0  4.5  2.1  1.2  5.1  2.2  1.2 
P1  18.5  23.8  30.6  39.4  52.0  63.0  18.7  24.2  31.6  41.2  18.7  24.3  31.6  41.3  0.0  58.2  37.1  50.3  45.0  33.6 
P2  14.0  17.8  22.8  29.4  37.9  65.4  14.1  18.1  23.6  30.7  13.6  17.3  22.2  28.4  72.0  0.0  58.1  49.4  50.2  44.9 
P3  10.8  13.5  17.2  22.0  28.4  61.0  10.9  13.8  17.7  23.0  10.6  13.3  16.9  21.6  44.6  72.0  0.0  39.6  49.4  50.2 
P4  16.9  21.3  26.5  32.3  37.2  36.9  18.6  24.3  31.7  41.5  18.6  24.2  31.5  41.2  60.3  52.3  36.5  0.0  58.1  37.0 
P5  13.4  16.7  21.1  26.5  32.6  38.9  14.2  18.3  23.8  31.0  14.2  18.2  23.7  30.8  57.6  60.5  52.5  72.1  0.0  58.2 
P6  10.4  12.9  16.2  20.4  25.6  38.9  11.0  13.9  17.9  23.2  11.0  13.9  17.8  23.1  43.5  57.6  60.5  44.7  72.1  0.0  
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