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ABSTRACT

Objects in geostationary transfer orbit (GTO) can collide with operative satellites in low Earth orbit (LEO)
and geostationary orbit (GEO). Various organisations have laid down debris-mitigation guidelines that will
be enforced by law for future launchers. One of the guidelines entails proving that the generated debris will
re-enter in less than 25 years with a 90% probability. Natural perturbations can be exploited to meet this
requirement without the use of extra propellant or complex de-orbiting systems, which is especially attractive
from an economic point of view.

Objects in GTO can undergo a resonance triggered by an interplay between perturbations caused by the
Suns gravity and the irregularities in Earths gravity field, leading to a sudden re-entry or making the object
stay in orbit for decades. This effect is very sensitive to initial conditions because it depends on the relative
positions of the perigee and the Sun when the semi-major axis is close to 15 000 km. By simulating the orbital
evolution of a representative GTO object –ballistic coefficient of 0.011 m2/kg, initial orbital inclination of 10
degrees and initial perigee altitude of 200 km– for several initial epochs, it was found that favourable launch
conditions take place twice per day during most part of the year, while for epochs close to the equinoxes of
March and September they only happen once per day or not at all.

Given the high sensitivity to initial conditions, the problem was studied from a statistical perspective,
taking into account the uncertainties in the values of the relevant parameters. Semi-analytical techniques
were used to propagate the mean equinoctial elements instead of the osculating Cartesian elements, which
reduced computation times by a factor of 45 while still keeping proper levels of accuracy. It was found that
the launch time leading to the highest probability of compliance with debris-mitigation guidelines for GEO
launches from the European spaceport in Kourou is approximately 9 AM/PM local time, regardless of the day
of the year. However, the value of the optimal lifetime does vary slightly throughout the year. Current practice
for GTO launches from Kourou is to launch at around 6-7 PM, so a change in procedures would be required
in order to reach a higher degree of compliance with debris-mitigation guidelines, which was below 10% for
GTO launches carried out with Ariane 5 from in the period 2004-2012.
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1
INTRODUCTION

Low Earth orbit and geostationary orbit are two regions of near-Earth space that are very popular for space
missions. As a consequence, they also show a high probability of collisions between man-made objects and
debris generation due to their high density of Earth-orbiting bodies [6]. Objects such as depleted rocket
stages used to bring spacecraft to GEO altitude usually follow a type of highly elliptical orbit (HEO) known as
geostationary transfer orbit, which crosses the LEO and GEO regions. The perigee altitude of GTOs is normally
between 170 and 650 km, whilst their apogee is near geostationary altitude, i.e. 35 786 km [7]. GTO objects
can take years to decay naturally and re-enter Earth’s atmosphere [8], which increases the risk of space-debris
generation, near the GEO region initially, and within the LEO region almost during their entire lifetime.

Previous studies have shown that orbital perturbations such as those due to Earth’s irregular gravity field,
luni-solar attraction, atmospheric drag and solar radiation pressure can significantly reduce the natural de-
cay time of GTO objects if wisely exploited, meaning that slightly different launch conditions can lead to
significantly different lifetimes [8–10]. However, the accurate long-term propagation of GTOs poses some
challenges, mainly due to the existence of resonances caused by the interplay between different perturba-
tions at different parts of the orbit, which can lead to a high sensitivity of the lifetime to initial conditions
and environment-related parameters [8, 9, 11, 12]. This problem has led some authors to propose alterna-
tive formulations in which the problem is analysed from a statistical point of view and approached using
semi-analytical techniques [11, 13, 14].

In this Master thesis, the focus will be put on determining whether the high sensitivity of the orbital evo-
lution of objects in GTO to initial conditions and body characteristics can be exploited in order to achieve
faster re-entry for debris generated during actual GEO launches, without the use of additional propellant. By
developing new and improving existing software tools capable of propagating the orbital state of GTO de-
bris quickly and accurately, it will be possible to determine whether these lifetime predictions can be used
to show compliance with debris-mitigation guidelines for future GEO launches, and what the optimal condi-
tions leading to maximum probability of compliance with those guidelines are.

1.1. RESEARCH QUESTIONS AND OBJECTIVE
The main research question to be answered during the development of this Master thesis can be stated as
follows:

How can orbital perturbations be used to comply with debris-mitigation guidelines for future geo-
stationary transfer orbit objects?

This main question can be divided into two subquestions, each of which containing further subquestions,
which will be answered during the development of this Master thesis:

1. How can the orbital evolution and lifetime of GTO objects be reliably predicted?

(a) What is the best way to model orbital perturbations to enable fast, yet accurate, long-term propa-
gations?

(b) What is the accuracy of the lifetime predictions for GTO objects?

1



2 1. INTRODUCTION

2. How do orbital perturbations affect the evolution of GTO objects?

(a) Which are the most relevant perturbations and which can be neglected?

(b) How can these perturbations affect the lifetime of GTO objects?

(c) What is the influence of initial launch conditions, body characteristics and environment-related
parameters on the orbital evolution of objects in GTO?

(d) What are the main sources of uncertainty in the lifetime predictions?

(e) What are the launch conditions that lead to the shortest lifetimes?

By answering these research questions, it will be possible to reach the research objective, which is formu-
lated as follows:

To minimise the lifetime of debris in geostationary transfer orbits by exploiting the effects of orbital
perturbations.

1.2. STRUCTURE
This report is structured in several chapters. First, the context in which the need for minimising the lifetime of
GTOs is framed will be given in Chapter 2. The risks of GTO objects for active satellites will be identified, and
the main disposal options will be introduced. Proposed debris-mitigation guidelines and the compliance of
current GEO launchers will be discussed. Finally, a review of the orbital and body characteristics of debris in
GTO will be provided.

Then, in Chapter 3, the principal coordinate systems and reference frames that will be used for modelling
the propagation of GTOs will be described. An analysis of the main perturbations affecting GTOs will follow.
These perturbations include the geopotential, third-body attraction, atmospheric drag and solar radiation
pressure. After that, the interplay between these perturbations in GTOs, which can lead to solar resonances,
will be explained.

Once the main concepts and orbital perturbations have been introduced, the numerical approach fol-
lowed during the first part of the thesis will be discussed in Chapter 4. This approach is based on the propa-
gation of the osculating Cartesian elements with small integrator step-sizes. Preliminary results will be pro-
vided, and a feasibility study will be carried out to determine whether the research objective can be reached
with this method.

Then, in Chapter 5, a different approach based on semi-analytical satellite theory will be introduced, and
the main aspects regarding its implementation into existing software tools and subsequent verification and
validation will be covered. This approach is based on the propagation of the mean equinoctial elements with
large integrator step-sizes, which enables faster orbital propagations than the numerical approach.

After having assessed the accuracy and performance of the propagator based on the semi-analytical satel-
lite theory, the main results obtained to answer the research questions and reach the research objective will
be given in Chapter 6. The application of these results to real cases will follow in Chapter 7, where a case study
regarding the launch of a GEO satellite from the Euroepan spaceport in Kourou will be provided.

Finally, the main conclusions of this Master thesis will be summarised in Chapter 8, and recommenda-
tions for future research on this topic will be given. The bibliography and appendices including astrodynamics-
related equations (Appendix A) and additional plots (Appendix B) will be provided at the end of this docu-
ment.



2
CONTEXT

The optimisation of the lifetime of objects in GTO can be framed within the context of passive space debris
mitigation techniques. In this chapter, the current state of the space debris population will be presented
briefly in Section 2.1. The identification of regions with high spatial densities of debris that are crossed by
GTO objects and the relatively large number of rocket-related debris that are currently in orbit justify the need
to minimise the lifetime of GTO objects. Then, in Section 2.2, a short review of the characteristics of GTOs
will provide insight on the disposal options that exist for this type of orbits, the current status of compliance
with debris-mitigation guidelines and the orbital and body characteristics of debris in GTO generated during
the last years.

2.1. SPACE DEBRIS
Space debris, or orbital debris, represent a hazard for current and future manned and unmanned space mis-
sions. Because of the high relative velocities that Earth-orbiting objects can achieve, even small pieces of 1
mm size could render a satellite’s subsystem inoperative or perforate an astronaut’s spacesuit [15]. Although
collisions between large objects are very infrequent (only one accidental collision between two satellites has
occurred thus far [16]), the likelihood of a collision between small yet hazardous objects is significantly higher.
For instance, in 1999 the International Academy of Astronautics predicted that a collision between trackable
objects (i.e. larger than 10 cm [15]) in the altitude region ranging from 800 to 1 000 km would happen in the
following 10 to 15 years with a likelihood greater than 50% [17], and the International Space Station (ISS) has
to perform orbital manoeuvres about once a year to prevent collisions with trackable debris [18].

The problem of space debris gained public relevance after D. J. Kessler predicted in 1978 that the pop-
ulation of orbital debris would rise exponentially as a result of a run-away effect in which fragments from
orbital collisions would increase the likelihood of further collisions and thus the generation of additional
fragments, even if no additional satellites were launched in the future [19]. This effect is now known as the
Kessler syndrome, and is usually used as justification for the need of active debris removal, also known as de-
bris remediation, i.e. the launch of satellites whose mission would be to remove large inoperative spacecraft
either by forcing them to re-enter (and burn up) in Earth’s atmosphere (de-orbiting) or by moving them to a
graveyard orbit in which the risks of collisions are lower (re-orbiting). However, as of 2016, no active debris re-
moval spacecraft has been launched because capturing a non-cooperative satellite without risk of generating
more debris represents a technological challenge that still needs to be overcome [20].

Because of the difficulties associated with the concept of debris remediation, most effort is currently being
put into passive debris removal, also known as debris mitigation. The main disadvantage of this approach
is that it cannot be applied to satellites that have already been launched. However, it has the potential to
reduce the pace at which the orbital debris are generated and prevent the debris population from becoming
unmanageably large while technological advances are made in the context of debris remediation. In this case,
the disposal options of de-orbiting and re-orbiting exist as well. For satellites in the LEO region (i.e. with
apogee altitude lower than 2 000 km), the atmospheric re-entry option is customary, whilst for higher orbits
a graveyard orbit is usually chosen due to economic reasons [17]. Some organisations, such as the European
Space Agency (ESA) [21], the United States (US) Government [22] and the United Nations [23], have proposed
guidelines for passive debris removal in the last decade. Although these guidelines are not enforced by law,
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it is widely accepted that spacecraft should not remain in near-Earth regions more than 25 years after their
end of life [21, 22]. As proposed in [21, 24], the sensitive orbital regions that have to be protected are the LEO
region and the zone in the vicinity of the GEO ring.

The need for protecting only the LEO and GEO regions from orbital debris can be justified by the uneven
distribution of orbiting objects in near-Earth space. Due to the unique features that LEOs and GEOs can
offer, these are the two regions of near-Earth space with the highest density of orbiting bodies (cf. Figure 2.1).
Consequently, they are also the regions with highest density of space debris and highest risk of collisions [25].

Figure 2.1: Spatial density of objects as a function of orbiting altitude [21]. Note the peaks near LEO (altitudes lower than 2 000 km) and
GEO (altitude of 35 786 km) regions.

As of June 2017, the total on-orbit catalogued debris population amounts to almost 17 000 objects [26].
This only includes objects larger than 10 cm, while millions of smaller objects may exist [17]. The debris
population can be classified into several categories. Depending on their function, they can be either payloads
or rocket bodies used to insert payloads into orbit. For each of these categories, a distinction can be made
between objects that remain structurally intact but have reached their end of life, mission-related objects that
have separated from the main body, and debris in the strict sense, generated during on-orbit explosions or
collisions. In Figure 2.2, it can be seen that, historically, about half of the debris population is or originates
from rocket bodies, the other half being or originating from payloads. However, due to China’s anti-satellite
test in 2007 and the Iridium-Kosmos collision in 2009 [16], a high increase of the payload-related debris has
been experienced in the last decade, almost doubling the overall debris population.

Figure 2.2: Composition of debris object classes in space as of October 2012 [27].

From Figure 2.2 it can be deduced that implementing passive removal strategies is equally important for
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rocket bodies and payloads, given the historical 50-50% distribution. It is true that at this moment the number
of payload-related debris is higher, but this is due to two recent events involving payloads, in which rocket
bodies could have been involved as well. Moreover, some studies that have simulated the long-term evolution
of the orbital debris population also point out that de-orbiting upper stages is key to maintain a stable space
debris environment. A prediction for the year 2200 revealed that the number of total orbital debris larger
than 1 mm, 1 cm and 10 cm could be reduced by about 62, 57 and 43%, respectively, just by implementing de-
orbiting strategies for all upper stages launched after 2010 with perigee altitude below 2 000 km [28]. Thus, the
development of strategies for efficiently removing upper stages and mission-related objects from protected
regions is deemed to be sufficiently justified from a practical point of view, and will be the core of this Master
thesis.

2.2. GEOSTATIONARY TRANSFER ORBITS
There is no agreement on how to define a highly elliptical orbit quantitatively. Some sources define it in terms
of perigee (usually below 1 000 km altitude) and apogee (usually at or above GEO altitude) [29], while others
prefer to define it in terms of a minimum value of the eccentricity, typically 0.5 [30]. Some sources refuse
to make a distinction between elliptical and highly elliptical orbits [31], thus including in this category any
Earth-orbiting object in which the difference between apogee and perigee altitudes is purposely chosen for
its advantages from an operational point of view.

Independently of the chosen definition, there are certain types of orbits that are universally considered to
be highly elliptical. Some examples are Molnya, Tundra, Loopus and Archimedes orbits [32]. Molnya orbits
have perigee altitudes between 450 and 600 km and apogee altitudes around 40 000 km, with an orbital period
of half a sidereal day. Tundra orbits have perigee and apogee distances of 17 951 and 53 622 km, respectively,
completing one orbital revolution every sidereal day (i.e. 23 h 56 min 4 s). Both orbits have an inclination of
63.4 degrees (also known as critical inclination) to avoid the precession of the line of apsides [33]. Keeping
the line of apsides fixed is fundamental for both Molnya and Tundra orbits, as they have been historically
used by Russia for communication purposes and thus it is required that their apogee, where the satellite’s
velocity is smallest, be located above high-latitude regions in order to provide continuous coverage with a
low number of satellites. Satellites in Loopus and Archimedes orbits complete three orbital revolutions every
sidereal day, and are conceptually similar to Molnya and Tundra orbits, although their apogee and perigee
distances differ. Other highly elliptical orbits that do not form a subcategory on their own have been used by
scientific missions [30].

In addition to the aforementioned types of HEOs, which are mainly used by satellites during their nominal
mission segment, there exist other HEOs that are typically used during transfer of satellites from parking
orbits to nominal mission orbits, or to reach the final orbits in a direct ascent from Earth’s surface, and that are
populated with depleted upper stages from rocket bodies and other mission-related objects. One of the most
critical subcategories is the GTO, because bodies following these orbits cross the LEO and GEO protected
regions (cf. Figure 2.3). GTOs have a perigee altitude typically below 2 000 km and an apogee near GEO [34].
Their eccentricity is thus about 0.7.

3.3 Orbits and Protected Regions   

3.3.1 Equatorial radius of the Earth - the equatorial radius of the Earth is taken as 6,378 km and this radius is 
used as the reference for the Earth’s surface from which the orbit regions are defined. 

3.3.2 Protected regions - any activity that takes place in outer space should be performed while recognising the 
unique nature of the following regions, A and B, of outer space (see Figure 1), to ensure their future safe and 
sustainable use. These regions should be protected regions with regard to the generation of space debris. 

(1) Region A, Low Earth Orbit (or LEO) Region – spherical region that extends from the  Earth’s surface up to an 
altitude (Z) of 2,000 km     

(2)  Region B, the Geosynchronous Region - a segment of the spherical shell defined by the following: 

lower altitude = geostationary altitude minus 200 km   

upper altitude = geostationary altitude plus 200 km 

-15 degrees ≤ latitude ≤ +15 degrees 

geostationary altitude (Z GEO) = 35,786 km (the altitude of the geostationary Earth orbit) 

ZGEO - 200km

Z = 2000km (LEO)

ZGEO + 200km

Equator

Earth

Region A

Region B

Region B

Z = ZGEO

15°

15°

 

Figure 1 - Protected regions 

 

3.3.3  Geostationary Earth Orbit (GEO) ⎯ Earth orbit having zero inclination and zero eccentricity, whose orbital 
period is equal to the Earth's sidereal period. The altitude of this unique circular orbit is close to 35,786 km. 

3.3.4 Geostationary Transfer Orbit (GTO) ⎯ an Earth orbit which is or can be used to transfer spacecraft or 
orbital stages from lower orbits to the geosynchronous region.  Such orbits typically have perigees within LEO 
region and apogees near or above GEO. 

3.4  Mitigation Measures and Related Terms 

3.4.1  Passivation ⎯ the elimination of all stored energy on a spacecraft or orbital stages to reduce the chance of 
break-up.  Typical passivation measures include venting or burning excess propellant, discharging batteries and 
relieving pressure vessels. 

IADC Space Debris Mitigation Guidelines 6
 

Figure 2.3: Definition of near-Earth space protected regions proposed by IADC [24].
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The number of satellites that use elliptical orbits for their nominal mission segment is quite limited. As
of December 2015, there were only 37 operative satellites in elliptical orbits, which represents less than 2.7%
of the operative satellite population [31]. In contrast, on average about 33 new upper stages and mission-
related objects are being left every year in GTOs around Earth [34]. Only about 31% of these objects are
currently compliant with debris-mitigation guidelines, i.e. have left or are expected to leave the protected
regions in less than 25 years after their end of life, which for GTO objects is usually reached when the payload
is separated from the upper stage (i.e. relatively soon after launch). This means that, on average, every two
years the population of GTO objects that are not compliant with debris-mitigation guidelines is increased by
a number larger than the overall population of operative HEO satellites. These computations only account
for objects that are purposely put into orbit according to the planned mission, and not for those that may
originate from explosions or collisions.

2.2.1. DISPOSAL OPTIONS
Three mitigatory orbits for GTOs that would comply with the debris-mitigation guidelines defined in [24] by
the Inter-Agency Space Debris Coordination Committee (IADC) are identified in [34]. These are: (1) a low-
perigee orbit (less than 200 km altitude), which would likely decay in less than 25 years; (2) an orbit between
LEO and GEO, with perigee altitude above 2 000 km and apogee altitude below 35 351 km or inclination of
more than 15 degrees; and (3) a super-synchronous orbit with perigee and apogee altitudes above 36 221 km.
The last option is rarely chosen because it would require large amounts of propellant. According to the same
source, only 2 of the 294 GTO objects generated in the period 2004-2012 chose this option. In contrast, 47
objects have chosen mitigatory orbit 1, while 41 objects have chosen mitigatory orbit 2. More than 90% of the
objects that were put in low perigee orbits had already re-entered by 2014. The remaining 204 GTO objects,
i.e. almost 70%, were left in orbits that are not compliant with IADC guidelines.

From the data of past missions, it could be deduced that the disposal strategies of atmospheric re-entry
and disposal in medium Earth graveyard orbits have similar implementation shares. However, a more de-
tailed analysis can lead to a different conclusion. For instance, the fact that some of the GTO objects that were
placed in mitigatory orbit 2 had initial perigee altitudes as high as 14 676 km [34] may suggest that option 2 is
not that common amongst regular GTOs, i.e. with perigee altitudes lower than 2 000 km. On the other hand,
some of the objects that re-entered Earth atmosphere did not even complete one orbital revolution after their
end of life, as their initial perigee altitudes were as low as 110 km [34].

In any case, independently of what has been customary in the last decade, some authors claim that a low
perigee altitude leading to a re-entry in less than 25 years is preferable in most scenarios [30, 35], although
it may not be always feasible depending on the chosen initial perigee altitude. Some of the advantages of a
de-orbiting disposal are:

• Natural decay. As the evolution of the orbit is driven by orbital perturbations, there is no need for
carrying additional propellant on-board that would be needed if re-orbiting was chosen. Moreover, the
disposal into a graveyard orbit can potentially fail, while choosing an initial perigee altitude below 200
km would remove this risk as the decay would happen naturally.

• Definitive measure. Re-orbiting objects to graveyard orbits is a palliative measure that can be accept-
able at this time for the current definition of protected regions. However, in the future it is possible that
additional protected regions between LEO and GEO will be proposed (the protection of Global Navi-
gation Satellite Systems regions is currently being studied [36]) and thus it is not guaranteed that these
objects in graveyard orbits will never interfere with any other missions. Consequently, de-orbiting is
always preferable in the long-term.

For these reasons, the focus is put on the natural decay of geostationary transfer orbits in this document.
However, although de-orbiting is always preferable from the point of view of guaranteeing the viability of
future spaceflight, it also poses some risks and challenges. The uncontrolled re-entry of large objects, such
as depleted rocket stages, may eventually result in catastrophic damage for humans on Earth if the objects
do not fully disintegrate in the atmosphere and fall on inhabited areas. Thus, regulations require the total
casualty risk to be no larger than 10−4 in case of uncontrolled re-entry [37]. This constrains the size and
materials of GTO objects that can be de-orbited, as their re-entry is typically uncontrolled, especially when
the orbit takes several months or years to decay.

Another challenge in the context of passive de-orbiting of GTO objects is related to the difficulties found
during orbit propagation and estimation of the re-entry time. GTOs interface with regions in which the main
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perturbations are drag and Earth’s irregular gravity field, and regions where third-body perturbations are pre-
dominant. This can produce an effect known as Sun-synchronous resonance, which can lead to very different
orbital evolutions for slightly different initial conditions [8, 9, 11, 34]. This effect and the main characteristics
of the dynamic evolution of GTOs are covered in Section 3.3.

2.2.2. COMPLIANCE WITH DEBRIS-MITIGATION GUIDELINES
An exhaustive study of the GTOs that were used for the launch of 185 GEO satellites in the period 2004–
2012 is provided in [34]. The most relevant findings of this study, regarding the chosen disposal options and
compliance with debris-mitigation guidelines, are summarised in this section.

Three types of orbits that would comply with debris-mitigation guidelines are defined:

• Compliant orbit 1: low-perigee orbit. The perigee altitude is sufficiently low so as to guarantee a re-
entry in less than 25 years.

• Compliant orbit 2: medium-Earth orbit. The orbit stays between LEO and GEO, outside the protected
regions.

• Compliant orbit 3: super-synchronous orbit. The LEO and GEO protected regions are avoided by
choosing and altitude higher than that of GEO.

On the other hand, the non-compliant orbits can be subdivided in three categories: LEO-crossing only,
GEO-crossing only, and LEO- and GEO-crossing.

In Figure 2.4, the percentage of the orbits that corresponds to each of these categories can be visualised
broken down by launcher. As can be seen, most launchers are not complying with debris-mitigation guide-
lines.

Figure 2.4: Orbits of upper stages and mission related debris from GEO launches in the period 2004-2012 [34].

However, to get an idea on what the contribution of each of these launchers is to the non-compliant debris
population it is necessary to analyse the absolute number of launches. The major contributor is Ariane 5, as
this launcher was used in 23% of the studied cases and almost none of them adopted a compliant orbit for the
upper stages and mission-related debris, leaving them in GTO. Ariane 5 is mainly used by European countries
and is launched from Kourou, close to the equator, which allows for launches with low inclinations, which is
attractive for GEO missions.
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Another big contributor is Proton-M, representing about 29% of the GEO launches, although in this case
none of the generated debris was both LEO- and GEO-crossing. This launcher is mainly used by Russia. In
this case, two impulsive shots are performed to reach GTO, resulting in an intermediate transfer orbit with an
apogee at about 15 000 km, leading to debris that will not interfere with the GEO protected region.

Finally, the United States of America used the Atlas and Delta families of launchers for GEO payloads.
However, those only account for about 5% of the GEO launches in the studied period, so their contribution to
the debris population is quite limited. Additionally, most of the resulting debris ended up in compliant orbits
or have already re-entered.

In conclusion, the major generator of debris crossing protected regions has been Ariane 5 in the last years.
Thus, later in this Master thesis the focus will be put especially on studying the applicability of the developed
theory and the obtained results to the case in which the launch is performed from the Euroepan spaceport in
Kourou, in order to determine whether the initial launch conditions can be chosen such that the orbits of the
resulting debris have a lifetime shorter than 25 years.

2.2.3. CHARACTERISATION OF OBJECTS IN GTO
In order to generate relevant results, it will be necessary to propagate the orbits of several objects in different
GTOs. Some of the parameters will have to be fixed during the propagation, and thus it is convenient to know
what the usual values of these parameters are for objects in GTO. This was achieved by studying the two-line
elements (TLE) of GTO objects tracked by the US Strategic Command [38] (cf. Section 5.2.2 for a description
of the TLE format specification). The last TLEs of all the objects tracked since the 1st of January of 2010 until
the 28th of April of 2017, with perigee altitude up to 1 000 km and apogee altitude between 34 800 and 36 800
km, were requested. The characteristics of a total of 673 unique objects were obtained.

The distribution of the values of the Keplerian elements for these 673 orbits are provided in the following
paragraphs. The definition of the Keplerian orbital elements is provided in Section 3.1.2.

From Figures 2.5 and 2.6 it can be seen that the values of the perigee and apogee altitudes of the studied
objects are considerably spread across the specified ranges of 0–1 000 km and 34 800–36 800 km, respectively.
In the case of the apogee, the largest frequencies are obtained around the altitude of 35 700 km (GEO altitude
is 35 786 km). In the case of the perigee, many of the tracked objects have values of about 600 km. However,
objects in these orbits would take very long to re-enter (several decades under most circumstances), so a
smaller initial perigee altitude (around 200 km) will be chosen later in order to obtain results that can be used
to comply with guidelines, which set a lifetime of 25 years as a reasonable limit.

Figure 2.5: Distribution of the perigee altitudes of GTO objects
tracked since January 2010.

Figure 2.6: Distribution of the apogee altitudes of GTO objects
tracked since January 2010.

Regarding the orbital inclination, two peaks at about 7 and 22 degrees are observed in Figure 2.7. Very
likely the first peak corresponds to launches from Kourou, which cannot launch directly at inclinations lower
than 5 degrees, while the second peak may correspond to launches from Cape Canaveral with inclinations
close to 30 degrees for objects that have undergone correcting manoeuvres leading to slightly smaller incli-
nations. Thus, a value of 10 degrees for the inclination seems reasonable for studying the evolution of objects
in GTO, while other inclinations (closer to 20-30 degrees) should also be studied in order to get the whole
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picture.

Figure 2.7: Distribution of the inclinations of GTO objects tracked
since January 2010.

Figure 2.8: Distribution of the right ascensions of the ascending
node of GTO objects tracked since January 2010.

The values of the right ascension of the ascending node are distributed relatively evenly throughout the
range 0–360 degrees, as seen in Figure 2.8. This suggests that this parameter may have to be chosen as one of
the optimisation variables. A similar distribution is observed for the argument of perigee in Figure 2.9. How-
ever, as will be discussed later in this report, the initial argument of perigee will have to be set at either 0 or 180
degrees in order to be within the GEO ring when GEO altitude is reached. Thus, the widespread distribution
observed in Figure 2.9 can be explained by the fact that these values do not correspond to initial arguments
of perigee but to the value after an arbitrary period of time. Taking into account that some perturbations can
introduce secular variations in the value of the argument of perigee, it is reasonable to expect this kind of
distribution.

Figure 2.9: Distribution of the arguments of perigee of GTO ob-
jects tracked since January 2010.

Figure 2.10: Distribution of the mean anomalies of GTO objects
tracked since January 2010.

The mean anomaly has a peak around the value of 0 degrees, as can be seen in Figure 2.10. The mean
anomaly is a fast variable that changes throughout each orbital revolution from 0 to 360 degrees, so any value
in that range could be expected. However, the fact that most of the TLEs correspond to mean anomalies close
to 0 degrees can have two possible explanations. Since the obtained data correspond to the last available
TLEs of the considered objects, it is possible that some of these TLEs would correspond to the final epoch just
before re-entry. Since re-entry happens at (or close to) perigee, a larger number of mean anomalies close to 0
can be expected. Another possible explanation is that, given the high eccentricity of GTOs, it is easier to track
the objects when they are close to Earth (at perigee and thus with mean anomalies close to 0 degrees) than
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when they are further away at GEO altitude.
Finally, the ballistic coefficient (cf. Eq. (4.7)) of the tracked objects was studied. As seen in Figure 2.11,

most of the objects had values below 0.01 m2/kg. A few objects had ballistic coefficients as large as 8 m2/kg,
but these have been left out of the plot so that the region where the most objects are located can be better
seen. Previous studies on the evolution of GTOs have recommended to use a mass of about 2 900 kg and a
cross-sectional area of about 14.5 m2 as characteristic values for debris in GTO [34]. For a drag coefficient
of 2.2 (cf. Section 3.2.3), these values lead to a ballistic coefficient of 0.011 m2/kg, which coincides with the
median ballistic coefficient obtained from the 673 studied GTO objects.

Figure 2.11: Distribution of the ballistic coefficients of GTO objects tracked since January 2010.



3
THEORETICAL BASIS

In this chapter, the main physical concepts and mathematical tools necessary to understand and model the
temporal evolution of objects in GTO will be presented. First, a few widely used coordinate systems, namely
Cartesian, Keplerian and equinoctial elements, will be described in Section 3.1. Then, the main orbital per-
turbations that affect the evolution of objects in GTO will be introduced in Section 3.2. These perturbations
are caused by Earth’s irregular gravity field, luni-solar attraction, atmospheric drag and solar radiation pres-
sure. Finally, the complex orbital dynamics of GTOs will be described in Section 3.3, with especial emphasis
on the solar resonance effect.

3.1. REFERENCE FRAMES AND COORDINATE SYSTEMS
A necessary step before beginning a mathematically consistent analysis and modelling of orbital perturba-
tions is to define the frame(s) of reference and coordinate system(s) that will be used. In the field of astro-
dynamics, it is customary to use either geocentric (i.e. centred at Earth’s centre of mass) or heliocentric (i.e.
centred at the solar system’s barycentre) reference frames, the former being mostly used for describing the
motion of Earth satellites and the latter for interplanetary spaceflight [39]. In the case of GTOs, the motion
takes place always within the sphere of influence of Earth, and thus it is preferable to use a geocentric refer-
ence frame and consider the Sun, the Moon and other planets as third bodies. Indeed, a geocentric reference
frame has been widely used in previous analyses of the dynamics of GTO objects [8, 9, 11, 12, 30, 34]. For this
reason, heliocentric reference frames will not be considered in this report.

On the other hand, there is no consensus amongst the scientific community on the coordinate system
that is most suitable for modelling the dynamics of GTOs. Keplerian elements provide direct insight on the
characteristics and the evolution of the orbit, so it may be suitable for simple analytical studies. On the other
hand, Cartesian components are more suitable for integration and mathematical manipulation as they do not
present singularities. Equinoctial elements can provide the best of these two options, as they are non-singular
for GTOs. Given their relevance, all these options are explained in more detail in the following subsections.

3.1.1. CARTESIAN COMPONENTS

In a Cartesian coordinate system, a point is specified by its signed distances from fixed perpendicular axes
[40]. In Figure 3.1a, a sketch of a three-dimensional coordinate system is given, in which the coordinates of a
point are called x, y and z, and the reference frame has origin O and axes X , Y and Z .

In the field of astrodynamics, several geocentric Cartesian coordinate systems have been used historically.
Probably, the most common ones are Earth-centred rotational (ECR) and Earth-centred inertial (ECI) [39]. In
the former, the X -axis is aligned with the International Reference Meridian, also known as prime meridian or
Greenwich meridian. The Z -axis is aligned with the International North Pole, which does not coincide exactly
with the axis of rotation of Earth. The Y -axis is perpendicular to both X and Z . This reference frame is not
inertial, as it rotates with Earth (once every sidereal day), meaning that any point on the surface of Earth has
fixed components. For this reason, this system is suitable for describing the location of objects on Earth, but
in order to describe the motion of Earth-orbiting bodies, a (pseudo-)inertial reference frame such as ECI is
typically preferable, as the equations of motion become simpler.
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Figure 3.1: (a) Three dimensional Cartesian coordinate system [40]. (b) Definition of some of the Keplerian elements [41].

The Earth-centred inertial reference frame also has its origin at the centre of mass of Earth, but the ori-
entation of its axes is fixed with respect to inertial space. It is common to define the X -axis pointing towards
the location of the vernal equinox [39], also known as the first point of Aries. This direction is defined by
the relative position of the Sun with respect to Earth at the vernal equinox, i.e. around March 20/21, when
the Sun crosses the equatorial plane, leading to day and night being equally long everywhere on Earth. The
Z -axis, on the other hand, is aligned with Earth’s rotational axis, and the Y -axis is perpendicular to both X
and Z . The first point of Aries and Earth’s rotational axis are not actually fixed with respect to distant stars,
but undergo slow oscillations known as luni-solar precession and nutation. For this reason, ECI is actually
pseudo-inertial, and it has to be defined with respect to a certain epoch in order to be able to accurately de-
scribe the location of orbiting objects. The most common system definition is called J2000, with Earth’s mean
equator and equinox at 12:00 TT on 1 January 2000 [39].

It has been mentioned previously (and it will be discussed later in more detail) that, in the context of
modelling of GTOs, some authors use Keplerian components to describe the temporal evolution of the orbit.
However, in [9, 11], a Cartesian geocentric reference frame with the X -axis pointing in the direction of the
GTO perigee is chosen for describing the position of third bodies (mainly the Sun). In this reference frame,
the Z -axis has the same direction as the orbital angular momentum, and the Y -axis is perpendicular to X
and Z . It is noteworthy to say that this frame of reference cannot be considered inertial, as the line of apsides
(and thus the perigee) can precess relatively fast. In fact, for semi-major axes of about 15 000 km, the perigee
location drifts at a rate similar to Earth’s mean motion (close to 1 degree per day), giving rise to the Sun-
synchronous resonance that will be discussed in Section 3.3.1. Very insightful expressions relating the rate
of change of orbital parameters to the disturbing body’s xd , yd and zd components defined in this reference
frame are given in [9, 11]. This reference frame will appear again later in this report, referred to as the Earth-
centred perifocal (ECP) reference frame.

3.1.2. KEPLERIAN ELEMENTS
Keplerian elements, also known as orbital elements, are a set of parameters that can be used to uniquely
identify an orbit [41]. The parameters that define the orbital plane with respect to a plane of reference are
the inclination i and the longitude or right ascension of the ascending node (RAAN) Ω, depicted in Figure
3.1b. With these two parameters, and a plane of reference (for Earth-orbiting objects, typically the equatorial
plane) and a reference direction (typically the first point of Aries), the orbital plane is fully defined. However,
within one orbital plane, there exist infinitely many orbits, and thus additional parameters are required to
uniquely identify a particular orbit. Two of these parameters define the size and shape of the orbit, namely
the semi-major axis a and the eccentricity e. Both of them are related to the minimum (i.e. periapsis, rp ) and
maximum (i.e. apoapsis, ra) distances from the centre of mass of the central body to the orbiting body:

a = ra + rp

2
; e = ra − rp

ra + rp
(3.1)

The only remaining parameter required to fully define an orbit is the argument of perigee ω. This angle is
measured in the orbital plane, from the ascending node to the periapsis (cf. Figure 3.1b). For circular orbits
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(e = 0), this parameter is undefined, or in other words, the orbit can be fully determined without specifying
a value for ω. Similarly, when the orbital plane coincides with the reference plane (i = 0), there is no need to
provide a value for Ω.

In addition to these five parameters (a, e, i , Ω and ω), which are known as orbital elements, it is possible to
describe the state (i.e. location and velocity) of an orbiting body by providing one additional parameter. This
parameter is typically related to the time elapsed or the angle travelled by the body since a specific epoch.
It is common to find sources in which all the sixth parameters are referred to as orbital elements, although
some authors have noted that this is not correct as one of them depends on the motion of the body, and thus
should be considered as a parameter but not as an orbital element [39]. However, in this document, the terms
orbital elements and orbital parameters will be used interchangeably.

Several definitions for the sixth orbital parameter exist. One of them is the time of last periapsis passage
τ. Another common parameter that also varies linearly but is defined as an angle is the mean anomaly M ,
which is simply the mean motion (n = 2π/T ) times (t−τ), with t the current time. Since a body in an elliptical
orbit moves faster at periapsis than at apoapsis, the mean anomaly does not coincide with the actual angle
swept by the body (except for circular orbits), which is called the true anomaly f (cf. Figure 3.1b). This angle,
as well as the eccentric anomaly E , are also widely used in astrodynamics. In some cases, the mean motion
or the true anomaly at a certain epoch (M0 or f0) are used as the sixth parameter.

3.1.3. EQUINOCTIAL ELEMENTS

The set of parameters (a, e, i , Ω, ω and M) is used by several authors for describing orbital perturbations
generically [39, 42] and also for analysing the dynamics of GTOs in particular [9, 11]. However, in [11, 14] these
parameters are not directly used as a set of orbital elements, but instead a dedicated set of orbital elements is
proposed, which is obtained by combining the basic six parameters. This set of parameters is suitable for or-
bits with high eccentricities and inclinations other than 180 degrees (GTOs typically have low inclinations as
the final orbit of the payload needs to have zero inclination). The set, called equinoctial elements, is defined
as follows [14]:

E=



a
h
k
p
q
λ

=



a
e sin(ω+Ω)
e cos(ω+Ω)
tan i /2 sinΩ

tan i /2 cosΩ
M +ω+Ω

 (3.2)

although some authors replace the terms tan i /2 by sin i /2 [11].
Actually, there are two possible definitions of equinoctial elements: direct and retrograde. The equations

given in [14] for long-term semi-analytical propagations are generic, meaning that they can be used with
any of the two sets. The authors use the parameter I in their equations, which has to be substituted by 1
when direct equinoctial elements are being used or by −1 for retrograde equinoctial elements. Since direct
equinoctial elements work better for prograde orbits, as they are singular for inclinations of 180 degrees while
retrograde elements are singular for inclinations of 0 degrees, and given that most GTOs are near-equatorial
and prograde, in this report only the direct set will be used.

The axes of the direct equinoctial reference frame, f , g and w , depicted in Figure 3.2, are defined as
follows:

1. f and g lie both in the orbital plane.

2. w is parallel to the angular momentum vector of the satellite.

3. The angle between f and and the ascending node is equal to the value of the right ascension of the
ascending node.

As can be seen in Eq. (3.2), equinoctial elements contain five slow parameters: a, the semi-major axis;
h and k, the g and f components of the eccentricity vector; and p and q , the g and f components of the
ascending node vector. Additionally, they contain one fast parameter: λ, the mean longitude. The eccentric-
ity vector has a magnitude equal to the value of the eccentricity and points towards the perigee, whilst the
ascending node vector has a magnitude of tan i /2 and points towards the ascending node [14].
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Figure 3.2: Direct equinoctial reference frame [14].

At this point, the Cartesian components and Keplerian elements coordinate systems have been described.
As mentioned earlier, it is possible that both of them will have to be used in different phases of the Master the-
sis, as each provides advantages and disadvantages. For instance, integration of the equations of motion may
be simpler and more reliable using Cartesian components, but once integrated the orbital elements of the or-
bit may be of interest for interpreting these integration results. Thus, transformations between the discussed
systems are required. In Section A.1.2, the equations and steps required to perform such transformations are
reported. Frame transformations involving equinoctial elements can be found in Sections A.1.3 and A.1.4.

3.1.4. LOCAL TIME OF LAUNCH

Many authors have identified the influence that the epoch of launch has on the evolution of GTOs [8, 9, 11].
Some of them have provided graphs in which the expected lifetime is plotted as a function of launch time (cf.
Figure 3.3), while others have provided the evolution of the perigee altitude (or the lifetime) as a function of
day of year and local time of the ascending node (or local time of perigee) at the beginning of the propagation
(cf. Figure 3.4).

Figure 3.3: Evolution of the orbital lifetime of a GTO object as a function of the time of launch [8].

If the period of time since launch until injection into GTO is neglected, the initial epoch is just the launch
epoch (which is universal and does not depend on the launch site). Most of the components of the initial
Keplerian state can also be directly inferred or are chosen during mission design: the perigee and apogee alti-
tudes (and thus the semi-major axis and eccentricity) can be chosen depending on the ascent profile and/or
the performed impulsive shots; the inclination can be chosen with some restrictions (depending on the lati-
tude of the launch site); the argument of perigee has to be chosen equal to 0 or 180 in order to guarantee that
the satellite will reach the GEO altitude when it is in the equatorial plane (and not when it is e.g. over one of
Earth’s poles); and the true anomaly varies as the body orbits about Earth, so it can be set to 0 to initialise the
propagation at perigee. However, the initial RAAN cannot be chosen freely, and is given by the launch time
and launch location. Given the relevance of the initial local time of launch, it is convenient to introduce a
procedure to determine the initial RAAN from the local time of launch (and launch site).
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(a) (b)

Figure 3.4: (a) Mean altitude of perigee over 4 years (initial perigee altitude is 250 km) as a function of initial day of year and mean local
time of the ascending node for a GTO with 7 degree inclination and considering only perturbations due to J2 and luni-solar attraction
[9]. (b) Lifetime variations with respect to initial date and local time of perigee for a GTO with 23 degree inclination [11].

The RAAN is the angle measured from the first point of Aries or vernal equinox to the ascending node on
the equatorial plane. Assuming a spherical Earth, this is equivalent to measuring the difference in longitude
between the projections of the ascending node and the vernal equinox on Earth’s surface (both points will lie
on the equator).

The longitude of the vernal equinox can be obtained from the Greenwich Sidereal Time (GST), which is
the angle from the vernal equinox to the Greenwich meridian expressed in hours. Its value in degrees can be
obtained from the following equation [33]:

GST = 99.690983°+36000.768925°T +0.000387°T 2 + 360°

24
U T (3.3)

where T is the number of Julian centuries of 365.25 days which have elapsed since noon on January 0 1900:

T = JD J2000 + t
86400 − JD J1900

36525
(3.4)

where the Julian days of J2000 and J1900 are, respectively, 2 451 545 and 2 415 020, and t is the epoch of interest
in seconds since J2000.

The universal time U T in hours is given by:

U T =
[

12+ t

3600

]
mod24 (3.5)

From the definition of GST, it is clear that the longitude of the vernal equinox will be:

ΛV E = 360°−GST (3.6)

Then, the RAAN can be expressed as:

Ω=ΛAN −ΛV E = [ΛAN +GST ]mod360 (3.7)

The longitude of the ascending node ΛAN can be determined from a spherical trigonometric construction
using the geocentric latitudeϕ and geographic longitudeΛ of the launch site and the initial orbital inclination
i . Assuming a launch in an eastward direction (i.e. i < 90 deg), it can be shown that [33]:

ΛAN =Λ−arcsin
tanϕ

tan i
(3.8)

Note that Eq. (3.8) is only valid for i ≥ϕ. Indeed, launches from a latitude of e.g. 5 degrees to an orbit with
an inclination smaller than 5 degrees are not possible unless an inclination-correction manoeuvre is con-
ducted. These corrections are typically performed at high altitudes (at GEO altitude or even higher), where
they are less expensive in terms of delta-V (and thus in terms of propellant expenditure) [39].

Using Eq. (3.7), the initial RAAN can be determined given the launch site, launch epoch and initial or-
bital inclination. However, the launch epoch cannot be directly determined from the RAAN due to the non-
invertibility of the "modulo day" (a certain epoch corresponds to a unique RAAN, but a certain RAAN corre-
sponds to infinite epochs). However, if the range of possible epochs is limited to one day, then it is possible
to obtain the launch epoch from the RAAN using an iterative procedure.
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3.2. ORBITAL PERTURBATIONS
The motion of a satellite in a non-rotating reference frame is described by [39]:

d2r

dt 2 + µ

r 3 r =−∇∇∇R̃ + f (3.9)

where r is the position vector of the satellite with respect to the system barycentre, µ is the standard gravita-
tional parameter of the central body, R̃ is the disturbing potential and f is the disturbing acceleration. Under
the only influence of a point-like gravitational attraction, the right-hand side becomes 0 and the motion of
a body is described by a so-called Keplerian orbit [39]. The main characteristic of its motion is that the first
five orbital elements remain constant, while the time derivative of the mean anomaly equals the mean mo-
tion. Thus, it is possible to know the state of the orbiting body at any time in the future (and in the past)
immediately, with the same computational effort regardless of the epoch of interest.

However, this situation is rarely encountered in practice. Planet-orbiting bodies are influenced by the
attraction of the planet’s primary(ies) and moons, and by other close planets. Moon-orbiting bodies also
experience strong third-body perturbations. When these bodies have an atmosphere, drag can also influence
their orbits significantly. Stellar flux also perturbs the orbits of these bodies, so even a satellite orbiting an
isolated star would not follow a Keplerian orbit. Moreover, celestial bodies typically do not have perfectly
spherical mass distributions, leading to different gravitational attraction throughout the orbit. Finally, other
perturbations, such as tides and relativistic effects, can also cause significant effects over long periods of time
[39].

In order to accurately predict the state of an Earth-orbiting body, some of these perturbations cannot
be neglected. For certain types of HEOs, such as GTOs, the minimum dynamical model that yields reliable
results includes the expansion and usage of Earth’s spherical harmonic gravity field model up to degree and
order 7, solar and lunar gravity, atmospheric drag and solar radiation pressure (including Earth’s shadow)
[11, 13]. The modelling of these perturbations is discussed in the following subsections. As will be shown in
Section 3.2.5, other perturbations can be neglected, so they will not be discussed in detail in this report.

When the relevant perturbations are included in the acceleration model, the disturbing potential in Eq.
(3.9) will be given by R̃ = R̃SH+R̃3B , i.e. the sum of the disturbing potentials due to the geopotential (expressed
as a spherical harmonics expansion) and to gravitational attraction by third bodies, which will be provided
later in Eqs. (3.11) and (3.13), respectively. On the other hand, the disturbing acceleration will be given by
f = aD + aSRP , i.e. the sum of the disturbing accelerations due to atmospheric drag and solar radiation
pressure, which will be provided later in Eqs. (3.15) and (3.19), respectively.

When these perturbations are considered, the analytical integration of the equations of motion is not
possible anymore [39]. This means that the propagation of the orbit must rely on numerical methods, in
which the orbit for a certain epoch can only be accurately known if it is known at a prior close-in-time epoch,
i.e. if a sufficiently small integration step-size is used, which increases computational times. However, some
authors have derived analytical expressions up to a certain order describing the temporal evolution of Kep-
lerian elements [43] and some others have used a semi-analytical approach [44], which enables a faster orbit
propagation (using large step-sizes in the order of one day) through the removal of short-period terms. This
technique, which has been applied successfully to the long-term propagation of GTOs, reducing computation
times by several orders of magnitude, will be discussed in more detail in Chapter 5.

3.2.1. GEOPOTENTIAL
The gravitational potential of a point mass and that of a spherical body with a radially-symmetric mass den-
sity distribution can be shown to be equivalent and equal to [39]:

U =−µ

r
(3.10)

with µ=GM the gravitational parameter of the body and r the distance to the centre of mass of the body. For
a spherical body, this equation is only valid for r ≥ R, with R the radius of the body.

Earth is not a perfect sphere with a radially symmetric mass distribution, and thus Eq. (3.10) cannot be
used when high accuracy is desired. To account for this fact, Earth’s gravitational potential, or geopotential,
can be written as [39]:

U =−µE

r
+ R̃SH =−µE

r

[
1−

∞∑
n=2

Jn

(
RE

r

)n

Pn(sinϕ)+
∞∑

n=2

n∑
m=1

Jn,m

(
RE

r

)n

Pn,m(sinϕ)cosm(Λ−Λn,m)

]
(3.11)
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where R̃SH is the disturbing potential, ϕ the geocentric latitude, Λ the geographic longitude, and Jn,m and
Λn,m dimensionless parameters and angles, respectively, of degree n and order m that are found empirically.
Pn(sinϕ) are Legendre polynomials and Pn,m(sinϕ) are associated Legendre functions of the first kind that
can be obtained from recurrence relations given in [39].

Eq. (3.11) can be written is several ways. Another possibility is to use the coefficients Cn,m and Sn,m . When
these values are provided, Jn,m and Λn,m can be found using the following relations:

Jn,m =
√

C 2
n,m +S2

n,m ; Λn,m = 1

m
arctan

Sn,m

Cn,m
(3.12)

The coefficients Jn,m , also known as J-terms, are currently known at least up to degree and order 2 150,
thanks to the analysis of orbital data and missions such as the Gravity Recovery and Climate Experiment
(GRACE), which has been used to define the so-called GGM02C geopotential model, which is a combination
of the GGM01 model developed prior to GRACE and the GGM02S model obtained exclusively from GRACE
orbital data [45]. Additionally, weekly updates of the values of Cn,m and Sn,m coefficients up to degree and
order 5, as they become more accurate with the acquisition of new data, are provided in [46].

Depending on the values of the degree n and order m, the different harmonic terms represent deviations
of the geopotential in a certain direction and receive different names. When n ̸= 0 and m = 0, the terms
are referred to as zonal harmonics and they represent deviations of the shape and mass distribution in the
north-south direction. If n = m ̸= 0, the terms are called sectorial harmonics and account for deviations in
the east-west direction. The terms in which n ̸= m ̸= 0 are called tesseral harmonics, although sometimes
all the terms with m ̸= 0 are referred to as tesseral harmonics. A sketch of the different types of harmonics is
provided in Figure 3.5.

Figure 3.5: Examples of zonal (left), sectorial (centre) and tesseral (right) harmonics [47].

By convention, Jn ≡ Jn,0 =−Cn,0 [39], in order to make the J2-term positive, which is the largest one. While
the zonal J-terms can be positive or negative, all the tesseral (and sectorial) harmonics terms are positive by
definition. In order to have a complete geopotential model, it can be seen from Eq. (3.11) that values for
Earth’s gravitational parameter µE and reference radius RE have to be provided. For instance, in the GGM02C
model, the values of these constants are µE = 398600.4415 km3/s2 and RE = 6378.1363 km [45].

The effects that some of the most relevant J-terms have on orbits have been studied by several authors,
leading to analytical expressions that relate the temporal variations of orbital elements to the values of the
J-terms and other orbital parameters. For instance, expressions for the secular (i.e. non-periodic) and long-
period variations due to J2, J3 and J4 derived in [48] are summarised in [43], while secular, long-period and
short-period effects are studied in [39] for the J2- and J2,2-terms. Long-period variations are those that are
related (typically by a sinusoidal function) to a slowly-changing angular orbital element, such as i , ω or Ω,
whilst short-period variations depend on (sinusoidal functions of) fast-changing parameters, such as f , M
or the argument of latitude u =ω+ f .

The terms J2, J3, J2,2 and J4 are four of the five J-terms with the largest magnitude, and thus the study
of their effects alone can provide insight on the general effect that the geopotential has on orbital evolution.
Expressions for the effects of these J-terms on some of the orbital parameters can be found in Section A.2.1.
However, as previously mentioned, for the propagation of an object in GTO, given the high sensitivity to
initial conditions and the appearance of solar resonances, more terms may be necessary to get an accurate
description.

A summary of the effects of J2, J3, J4 and J2,2 on the evolution of orbital elements is provided in Table
3.1. The results presented there regarding the semi-major axis can be generalised to conclude that Earth’s
gravitational model does not cause long-period or secular effects on this parameter [39].
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Table 3.1: Effects of some J-terms on the orbital elements. Short-period variations have not been considered. Only the presence of
long-period (LP) and/or secular (S) variations is reported. [39, 43, 48]

J -term a e i Ω ω

J2 – – – LP + S LP + S
J3 – LP LP LP LP
J4 – LP – LP + S LP + S
J2,2 – – LP LP LP

More terms will have to be included in the propagation model, up to degree and order 7 according to
[11, 13]. The individual study of each of these terms is beyond the scope of this thesis. Some authors have
obtained expressions for the mean rates of change of orbital elements due to these terms [14], although the
expressions are given in terms of equinoctial elements and are used in the context of semi-analytical propa-
gation. This topic is covered in Section 5.1.

3.2.2. THIRD-BODY ATTRACTION
An Earth-orbiting body is affected by the gravitational attraction of celestial bodies other than Earth. The
perturbing potential due to the gravitational attraction of a third body is given by [9]:

R̃3B =µd

(
1

|r − rd |
− r · rd

r 3
d

)
(3.13)

where µd is the gravitational parameter of the disturbing body and r and rd are, respectively, the position
vectors of the satellite and the disturbing body with respect to Earth’s centre of mass.

For objects inside the sphere of influence of Earth, the two disturbing bodies with the largest contribution
are the Sun (because of its mass) and the Moon (because of its proximity). This can be readily deduced from
the following relation [39]: (

fd

fE

)
max

≈ 2
Md

ME

(
r

rd

)3

(3.14)

where fd and fE are the magnitudes of the accelerations experienced by the satellite due to the gravitational
attraction of the perturbing body and Earth, respectively. For a geostationary satellite, this ratio is equal to
3.9×10−5 in the case of the Moon and 1.5×10−5 for the Sun. For all other celestial bodies, it is smaller than
2×10−10 [39], and thus can be neglected in the analysis of GTOs [11].

The magnitude of the disturbing potential is not constant: it depends on the geometry as can be deduced
from the vectorial operations in Eq. (3.13). This means that, even for a circular orbit with constant magnitudes
of r and rd , the value of R̃3B changes with time.

Several authors have obtained analytical expressions for the rate of change of orbital elements due to
third-body perturbations in terms of orbital elements (cf. Section A.2.2). Other authors have used the ex-
pressions for the rate of change of the orbital elements in terms of Earth-centred perifocal components (cf.
Section 3.1.1), as they can provide more insight on the solar resonance that can affect the dynamics of GTOs
[9, 11, 43] (cf. Section 3.3.1).

3.2.3. ATMOSPHERIC DRAG
Drag is the only orbital perturbation that introduces significant secular variations in the semi-major axis [43].
This means that, without drag, a satellite could only be de-orbited (naturally) if the eccentricity of its orbit
became large enough so that the value of its perigee distance fell below the value of Earth’s radius, resulting in
an Earth-intersecting trajectory and potentially in a hazardous crash. Drag is mainly caused by the presence
of gases in the Earth’s atmosphere, which at the same time is responsible for the burn-up of satellites during
re-entry, significantly reducing the likelihood of large objects eventually hitting Earth’s surface.

Below approximately 120 km altitude, a satellite can be considered to be re-entering, as it will decay very
rapidly and burn up partially or totally in the atmosphere [33]. On the other hand, for orbits with perigee
altitudes above 600 km, the effect of atmospheric drag is limited and can result in orbit lifetimes of decades
or even longer. In the case of GTOs, two regimes in which the effects of drag on the orbital parameters differ
can be identified. Initially, when the perigee is at LEO altitude and the apogee is at GEO altitude, atmo-
spheric drag circularises the orbit, making the apogee altitude decrease while the perigee altitude remains
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roughly constant. Then, when the eccentricity of the orbit approaches zero, atmospheric drag at apogee is
not negligible anymore, and thus the orbit spirals in until re-entry, with both the perigee and apogee altitudes
decreasing at similar rates. In both cases, the effect of atmospheric drag on the semi-major axis is always a
secular decrease. However, depending on the effects of other orbital perturbations, re-entry can happen for
very low eccentricities (close to 0) or for still relatively large values (around 0.5).

Atmospheric drag is one of the most important perturbations for the evolution of GTOs in the context
of passive de-orbiting. However, it is also the main source of uncertainty for the determination of the re-
entry time or orbit lifetime. This is not due to lack of advanced models describing this perturbation, but to
the dependence of these models on changing parameters whose values are difficult to predict [42]. Even for
LEOs, which are not affected by the Sun-synchronous resonance discussed in Section 3.3.1, the changing solar
activity levels can lead to lifetime durations differing two orders of magnitude [39]. However solar flux levels
are not the only source of uncertainty, as the cross-sectional area of the orbiting object is typically difficult to
know when it is tumbling, which is typically the case for upper stages of rocket bodies.

The acceleration undergone by the satellite due to atmospheric drag is given by [42]:

aD =−1

2
ρ

CD A

m
V 2

r
Vr

Vr
(3.15)

where ρ is the atmospheric density, CD , A and m are respectively the drag coefficient, cross-sectional area
and mass of the orbiting body and Vr is its relative velocity with respect to the rotating atmosphere. The
term B = CD A/m is known as the ballistic coefficient. Analytical expressions for the evolution of the mean
elements due to atmospheric drag can be found in Section A.2.3.

Looking at Eq. (3.15), three sources of uncertainty can be identified: the atmospheric density, the external
shape and attitude of the body (which affect the value of the ballistic coefficient) and the relative velocity.
These factors are discussed in more detail hereafter.

RELATIVE VELOCITY

The intertial velocity of the satellite can be known accurately in most cases, but the velocity of the atmosphere
with respect to Earth’s surface is typically not. The wind velocities are difficult to determine at high altitudes,
and are even more difficult –if not impossible– to predict in the long term. Thus, it is customary to assume
that the atmosphere is co-rotating with Earth, so that [43]:

Vr = ṙ −ωE × r (3.16)

with ωE Earth’s rotational velocity, which can be assumed to be constant and equal to [0,0,ωE ]T , with ωE =
7.292115×10−5 ±1.5×10−12 rad/s [43].

BALLISTIC COEFFICIENT

The ballistic coefficient of the body is an important source of uncertainty in the determination of the effects
of atmospheric drag on the evolution of orbital elements. Although the mass m is known accurately in most
cases, the drag coefficient CD and the cross-sectional area A are more difficult to determine.

The drag coefficient is obtained from combinations of different interactions between gas particles and the
satellite, namely specular reflection (modelled through C (S)

D ), diffuse reflection (C (D)
D ) and absorption (C (A)

D )
[33]:

CD =αC (S)
D +βC (D)

D +γC (A)
D (3.17)

These three coefficients can typically be computed if the shape and attitude of the body are known, but
their relative weights α, β and γ can only be determined empirically [33]. However, some authors have devel-
oped semi-empirical relations for the drag coefficient [49], which is given as a function of wall temperature,
atmospheric temperature and mean molecular mass, local time, solar activity and satellite’s velocity. The
value of CD is not very sensitive to many of these parameters, so in some cases resorting to Figure 3.6 is ac-
curate enough for orbit propagation. Although this model was developed for the propagation of LEOs, some
authors are using the results presented in [49] regarding the determination of CD for the propagation of GTOs
as well [9, 11]. Some software tools allow the user to provide a configuration file with values for the drag coef-
ficient as a function of altitude, which is accessed during the propagation [13]. They also allow to specify an
equivalent constant CD ; when no information is available, a value of 2.2 is recommended.

The other parameter that affects the value of the ballistic coefficient is the cross-sectional area. Spacecraft
and rocket bodies that have reached the end of their useful life are typically uncontrolled in attitude and
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Figure 3.6: Mean drag coefficient of a sphere or tumbling plate as a function of altitude [49]. Below 120 km, the satellite is assumed to
have re-entered. Above 1 320 km, the mean drag coefficient remains constant.

thus their cross-sectional area changes with time and is difficult to predict. In the case of satellites with
large deployable solar panels, the value of the cross-sectional area can change up to one order of magnitude
depending on the angle formed by the normal vector of the panels and the velocity vector [33]. The shape
of a rocket body also differs significantly from that of a perfect sphere (which has a constant cross-sectional
area independent of its attitude). Thus, it seems obvious that the cross-sectional area is a parameter that will
remain a source of uncertainty in the propagation of orbits.

The approach proposed by CNES (for the propagation of both LEOs and GTOs) is to use an equivalent
constant value for the cross-sectional area obtained as an average of the cross-sectional areas observed from
any direction [11, 13, 49]. This only applies when it is not possible to show that the object will remain at a fixed
attitude and thus it is assumed to be tumbling. If some passive de-tumbling technique such as aerodynamic
equilibrium or gravity gradient stabilisation is used, then a more accurate value of the cross-sectional area
may be available.

ATMOSPHERIC DENSITY

The density of Earth’s atmosphere depends on many factors, but the one with the highest influence is altitude.
Thus, a very rough estimate of the atmospheric density can be obtained using the following exponential law
[42]:

ρ = ρ0e
− h−h0

H0 (3.18)

where ρ0 is the atmospheric density at the reference altitude h0, and H0 is the density scale height, which at
sea level is 7.9 km [42] but at satellite altitudes ranges typically from 50 to 100 km [33].

The atmosphere density is neither spatially homogeneous nor independent of time at one and the same
location. More complex models have been developed in order to allow for more accurate orbit propagations.
Some authors have used the NRLMSISE-00 atmosphere model for the propagation of GTOs [9, 11, 13]. This
model can provide the temperature, mass density and even partial densities of different gases for any date in
the past since 1960, and for any location over Earth’s surface up to altitudes of 1 000 km [50]. However, the
Community Coordinated Modeling Center recommends to use now the IRI-2007 model, an enhanced version
which allows a wider altitude range, between 60 and 2 000 km [51].

Although there are models describing the characteristics of the atmosphere in the past very accurately,
the prediction of the atmospheric density for propagation of orbits in the future is highly uncertain. The
main reason is that solar activity levels, which are difficult to predict, can change the atmospheric density for
a given altitude by up to two orders of magnitude [33]. Even for orbits lacking complex third-body resonance
effects, such as LEOs, this can result in orbital lifetimes differing one order of magnitude, as shown in Figure
3.7. It can be seen that orbits decay faster when solar activity is higher. This is due to an expansion of the
atmosphere when heated by solar flux. Although this may seem counterintuitive, as an expansion of a gas
typically leads to lower densities, what is actually happening is that the atmosphere rises as it expands, push-
ing denser layers up towards higher altitudes [33]. The result is that, for a given altitude, the density (and thus
the drag) is higher during solar maxima. However, solar activity levels are difficult to predict. Despite the fact
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Figure 3.7: Maximal satellite lifetime as a function of altitude for different ballistic coefficients at solar minima (upper curve for each of
the ballistic coefficients) and solar maxima (lower curves) [33].

that it is well-known that solar maxima are undergone roughly every 11 years, the flux levels at these maxima
vary from cycle to cycle, as seen in Figure 3.8. Two parameters that can be measured on Earth and that are
correlated to the solar activity levels are [39]:

• Solar 10.7-cm radiation flux, F10.7. This parameter represents a measure of the UV and X-ray radiation
entering Earth’s atmosphere, and is specified in units of 10−22 W m−2 Hz−1, also known as solar flux
units (sfu). Typical values are between 75 sfu for solar minima and 250 sfu for solar maxima, although
it can get significantly higher at specific dates (cf. Figure 3.8a). The current cycle is being especially low
(cf. Figure 3.8b).

• Three-hour geomagnetic index, Ap . This parameter provides a measure of the corpuscular radiation
entering Earth’s atmosphere, and is given in units of nanotesla (i.e. 10−9 N A−1 m−1). Its value is typically
below 20 nT, but it can get higher than 200 nT at specific dates.

These two parameters can be measured on Earth, but nowadays there exist more complex models that
include other parameters that have to be measured by satellites outside the atmosphere [39]. However, these
additional parameters are not discussed here, since they are not typically included in the existing methods
developed for the propagation of GTOs [9, 13, 49].

Figure 3.8: (a) Observed daily mean solar radio flux at 10.7 cm between 1954 and 2008 [49]. (b) Observed solar radio flux at 10.7 cm
between 1995 and 2016, together with the predicted maximum, average and minimum levels until 2020 [52].
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3.2.4. SOLAR RADIATION PRESSURE
An Earth-orbiting body experiences several forces caused by radiation coming from the Sun, sunlight re-
flected by Earth (albedo) and Earth infrared radiation. The most relevant of these forces is the one due to the
direct solar flux [39], known as solar radiation pressure (SRP), and thus is the only radiation force considered
in this report and in the majority of models for propagation of GTOs [9, 13].

The acceleration undergone by an Earth-orbiting body due to solar radiation is given by [39]:

aSRP =−CR
WS A

mc
eS (3.19)

where WS is the energy flux of the Sun at 1 AU, CR is the radiation pressure coefficient, c is the speed of light,
and A and m are, as before, the cross-sectional area and mass of the orbiting body. The eS unit vector points
from the satellite to the Sun. Thus, the acceleration due to solar radiation acts always in the Sun-satellite
direction. This expression only holds when the satellite is not in eclipse; otherwise, aSRP = 0.

The main sources of uncertainty in Eq. (3.19) are the radiation pressure coefficient CR , the energy flux
WS and the cross-sectional area A. The latter can be computed in the same way as has been discussed for
atmospheric drag, i.e. using a mean surface area if the attitude of the body is unknown [13].

The radiation pressure coefficient can be found from [42]:

CR ≈ ρ+1 (3.20)

where ρ is the reflectivity, a property of the material. It is clear that the effective reflectivity will depend on
the attitude of the orbiting body. Typically the value of CR can only be determined empirically, i.e. obtained
from Eq. (3.19) when all the other parameters are known [42].

Finally, for the energy flux of the Sun at 1 AU, the value of 1 366 W/m2 has been historically used [42].
However, recent observations have shown that a yearly mean value of 1 361 W/m2 is more realistic [39]. This
value is not constant and changes mainly due to the fact that Earth’s orbit about the Sun is not perfectly
circular. A more accurate value can be obtained from [39]:

WS = 1361

1+0.0334cos
2πDap

365

(3.21)

where WS is given in W/m2 and Dap is the time since Earth was last at aphelion, measured in days.
In order to model occultations of the solar flux by Earth’s shadow, also known as eclipses, it is customary

to assume a cylindrical Earth shadow for the propagation of GTOs [13]. Expressions for a first-order approx-
imation of the rate of change of the orbital elements due to solar radiation pressure can be found in Section
A.2.4.

Of all the disturbing forces discussed so far, SRP is the one with the smallest effect on the evolution of
objects in GTO [11]. In Figure 3.9, the effects of the solar radiation pressure can be observed. Since they are
small, the radiation force has been artificially multiplied by a factor of 10 in the right-hand side plot. Having
to use a multiplier factor in order to be able to visualise the effects of SRP shows that this is not the main
perturbing force affecting GTOs, but if accurate predictions are wanted it cannot be neglected.

Figure 3.9: Lifetime variations with respect to initial date and local time of perigee for an orbit with a 2 degree inclination. In the plot on
the right, the solar radiation pressure has been artificially multiplied by a factor of 10 [11].
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3.2.5. COMPARISON
Once that the main perturbations that will affect the evolution of objects in GTO have been described, it is
convenient to quantify their relative effects as a function of altitude (or distance to Earth’s centre of mass) in
order to have an idea of the orbital perturbations that are most relevant at different parts of the orbit. In the
case of GTOs, the most relevant perturbation near perigee (altitudes of less than 2 000 km) is Earth’s irregular
gravity field, with the J2-term having the largest effect, as can be seen in Figure 3.10a. However, when the
altitude becomes lower than about 120 km, drag becomes the main perturbation. Above 500 km, drag has the
smallest effect, whilst below 500 km SRP is the least relevant perturbation (of the four perturbations that have
been discussed in previous subsections).

The apogee altitude of GTOs changes significantly as drag tends to circularise the orbit. Initially, when
it is close to GEO altitude, third-body perturbations caused by the Moon and the Sun and the effect of the
J2-term are of the same order of magnitude, as seen in Figure 3.10b. As the apogee altitude decreases, the
effects of the J-terms increase and third-body attraction and SRP become less relevant. During the Sun-
synchronous condition (apogee distances of about 24 000 km), J2 has become predominant at apogee, but
luni-solar attraction still plays a significant role.

Figure 3.10: Order of magnitude of several perturbations relative to Keplerian attraction (primary gravity) near LEO altitudes (a) [53] and
for distances to Earth’s centre ranging from RE to about 150 000 km (b) [44]. An area-to-mass ratio of 0.005 m2/kg has been assumed
in (a), while in (b) a value of 0.01 m2/kg has been used. Vertical lines in (b) denote semi-major axes for which the sidereal day over the
orbital period is the ratio of two small integers. The vertical line labelled 1:1 corresponds to GEO distance.

The perturbations that have been left out are those caused by third bodies other than the Sun or the
Moon, ocean tides caused by third bodies, and relativistic effects. Before concluding this section on orbital
perturbations, it is necessary to corroborate that these perturbations can be neglected.

Regarding the gravitational attraction of third bodies, it was already mentioned in Section 3.2.2 that the
maximum acceleration caused by the Moon and the Sun (relative to the central acceleration caused by Earth)
is in the order of 10−5 for GEO satellites. For other planets in the Solar System, this relative acceleration is
at least four orders of magnitude smaller, while for the closest star it is 18 orders of magnitude smaller [39].
Thus, it can be said that the perturbation caused by third bodies other than the Sun or the Moon can be safely
neglected.

The Moon causes significant tides on Earth oceans, leading to a redistribution of Earth’s mass that causes
an acceleration on orbiting satellites. However, this acceleration is relatively small. Studies concerning the
effects of tidal deformation of Earth on the motion of close artificial satellites have found that the effects can
be expressed as a deviation in the value of J2. This deviation is not constant, but its amplitude is generally not
larger than 8×10−7 J2 [54]. The magnitude of the J8 term is about 1.8×10−4 that of J2, so if that term can be
neglected, as will be shown in Section 4.1.2, then the effects of tides on artificial satellites can too.

Relativistic effects can introduce a precession in the argument of perigee of the orbit. For an Earth satellite
with perigee and apogee altitudes of 800 and 1 000 km, this precession is about 0.34 degrees per century [39].
Thus, this perturbation can also be neglected without introducing significant errors in propagations lasting
generally less than 25 years.

3.3. DYNAMICS OF GEOSTATIONARY TRANSFER ORBITS
The lifetime of objects in GTOs is very sensitive to several factors that cannot be known with sufficient accu-
racy. Some of these factors are the solar activity levels, the area-to-mass ratio and some initial orbital condi-
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tions, especially the date and local time of perigee [11]. Several researchers have found that a small deviation
in the values of these parameters, which would have negligible effects for the propagation of LEOs and GEOs,
can change the lifetime of GTOs by an order of magnitude in some cases [8, 11] (cf. Figure 3.11). This is due to
an interplay between several orbital perturbations affecting GTOs. Due to their high eccentricity, GTO objects
are mainly influenced by atmospheric drag and Earth’s irregular gravity field when they are close to perigee,
while third-body perturbations, mainly the Sun’s and the Moon’s, are dominant close to apogee.

Figure 3.11: Simulation of the evolution of the perigee and apogee altitudes of two objects in the same GTO orbit launched with a time
difference of one minute [8].

In the context of orbital propagation of objects in GTO, it has been proposed that the minimum accel-
eration model that can provide acceptable results needs to take into account Earth’s irregular gravity field
(zonal harmonics and some dedicated tesseral harmonics), luni-solar attraction, atmospheric drag and solar
radiation pressure (including Earth’s shadow) [11], all of which have been described in Section 3.2. The solar
resonance identified in previous studies is covered in detail in the following subsections.

3.3.1. SOLAR RESONANCE
The coupling between orbital perturbations, sometimes referred to as Sun-synchronous resonance [34], or
simply solar resonance, makes it difficult to comply with space debris-mitigation guidelines, as re-entry in
less than 25 years cannot be guaranteed for all possible conditions slightly deviating from the nominal case.
For instance, for orbital inclinations of 0 and 30 degrees, resonance typically occurs for apogee altitudes of
16 000 and 12 000 km, respectively [8]. Under those conditions, the Sun azimuth angle, i.e. the angle between
the line of apsides and the Sun vector measured in the orbital plane (cf. Figure 3.12a), remains roughly con-
stant for a very long time. This can result in an increase in perigee altitude, reducing the atmospheric drag
and thus increasing lifetime. However, depending on the geometry, the resonance can also have a positive
effect and lower the perigee to an altitude where the atmosphere is denser, making the decay much faster.
In Figure 3.12b it can be seen that when the Sun is in the first or third quadrants, an increase of the perigee
altitude is undergone, while the perigee altitude decreases when the Sun is in the second or fourth quadrants.
The magnitude of the effect is largest when the orbital plane coincides with the ecliptic (i.e. when λ= 0).

The changes in eccentricity, and thus in perigee altitude, are deemed to be of high relevance, since atmo-
spheric drag changes exponentially with altitude, having a big impact on the lifetime of the GTO object. The
averaged effect of a third-body’s gravity on the eccentricity is given by [11]:

de

dt
=−15

2

µE

r 3
d

e
√

1−e2xd yd (3.22)

where xd and yd denote the position of the disturbing body in the Earth-centred perifocal reference frame
defined in Figure 3.12b.

From Eqs. (A.39) and (3.22) it is clear that the sign of the rate of change of the perigee altitude will coincide
with that of the product xd yd . This means that, when the third body is in the first or third quadrants, where xd

and yd have same sign, the perigee altitude of the spacecraft will increase with each orbital revolution, whilst
the opposite effect will be experienced when the perturbing body lies on the second or fourth quadrants.
Moreover, if the projection of the third body is on the X - or Y -axis (i.e. yd = 0 or xd = 0), the eccentricity, and
thus the perigee altitude, will not experience secular variations [9].

Even though the changes in perigee altitude can have a large impact on the orbital lifetime, the Sun-
synchronous resonance governing the complex dynamics of GTOs is triggered by changes in other orbital
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Figure 3.12: (a) Definition of the relevant angles for the modelling of Sun-synchronous resonances. Λ is the Sun azimuth angle and λ

is the Sun declination angle [8]. (b) Definition of the X and Y axes in the Earth-centred perifocal reference frame. Arrows pointing up
denote quadrants in which the perigee altitude increases due to the effect of Sun attraction, whilst those pointing down correspond to
quadrants where the perigee altitude decreases [9].

elements, namely Ω and ω. From the geometry depicted in Figure 3.12b, it is clear that, each year, the Sun
will spend roughly half of the year in quadrants 1 and 3 and the other half in quadrants 2 and 4, if it is assumed
that the perifocal reference frame XYZ does not rotate. This would lead to alternating periods in which the
value of the perigee altitude oscillates throughout the year (cf. Figure 3.11). However, the location of the
perigee with respect to Earth is not fixed, but changes with time due to the long-period and secular variations
in Ω and ω (cf. Table 3.1 and Eqs. (A.37-4) and (A.37-5)). Due to the drift of the perigee, the orientation of
the perifocal reference frame in inertial space also changes. The Sun-synchronous resonance appears when
the rate of rotation of the perifocal reference frame (also known as mean drift of perigee) coincides with (or is
close to) that of Earth about the Sun [9], i.e. 0.986 deg/day. The mean drift of perigee (MDP) is equal to Ω̇+ ω̇

[9], where Ω̇ and ω̇ are determined by the orbital perturbations that are included in the model.

Figure 3.13: Mean drift of perigee with respect to Sun’s rate of rotation about Earth (in degrees per day), for a GTO with 7 degree inclina-
tion and considering only perturbations due to the J2-term [9].

In Figure 3.13, the MDP with respect to the Sun’s rate of rotation about Earth, i.e. MDP −ωS , is plotted
for a GTO orbit in which only the perturbations by the J2-term are considered. Taking into account that
for a GTO with initial perigee altitude of 800 km, the semi-major axis will change from about 24 660 km at
the beginning to slightly over RE at re-entry, it is clear that at some point of its lifetime it will encounter the
condition MDP −ωS ≈ 0, as this typically happens for values of the semi-major axis around 15 000 km. This
condition leads to the so-called Sun-synchronous resonance, in which the Sun remains for long periods of
time in the same quadrant, i.e. Λ̇≈ 0 (cf. Figure 3.12a for the proper definition of Λ). This means that, for very
long periods of time, the effect of the Sun’s gravitational attraction on the evolution of the eccentricity and
thus on the perigee altitude has the same sign, with variations building up over time (cf. Figure 3.11), since
xd and yd (and thus xd yd ) do not change sign.

The consequences of this Sun-synchronous resonance are obvious: if it happens when the Sun is at the
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first or third quadrants, the perigee rises, drag decreases significantly and consequently the lifetime increases.
Since the only perturbation that has significant secular effects on the evolution of the semi-major axis is at-
mospheric drag [43], when the perigee rises to an altitude in which drag is significantly lower, the lifetime
can increase by one order of magnitude, or even more, with respect to the value that would have been ob-
tained if the Sun-synchronous resonance would not have been experienced [11]. On the other hand, if the
Sun-synchronous resonance happens when the Sun is at the second or fourth quadrants, the opposite effect
can be potentially exploited in the context of passive de-orbiting.

From Eqs. (3.22) and (A.39) it is possible to obtain an expression for the mean rate of change of the perigee
altitude due to the Sun’s gravity perturbation in terms of the Sun azimuth and declination angles:
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where it has been used that xd /rd = cosλcosΛ and yd /rd = cosλsinΛ. Indeed, as mentioned previously, this
expression becomes zero when the Sun declination angle is ±90 deg and/or when the Sun azimuth angle is
a multiple of 90 deg. This expression has been validated by propagating a GTO following the experimental
set-up described in Section 4.1, and corroborating that there is a 100% correlation between the derivative of
the perigee altitude and the quantity cos2λsin2Λ when only the perturbation caused by the Sun’s gravity is
included in the acceleration model (thus neglecting all other perturbations). The results of this validation can
be found in Figure B.1.

When all the relevant perturbations are included in the acceleration model (J-terms up to degree and
order 7, Sun’s and Moon’s gravity, atmospheric drag and SRP), there are other perturbations other than the
Sun’s gravity affecting the evolution of the perigee altitude, so the correlation is not perfect. However, it is
still very strong, as can be seen in Figure 3.14 for a representative GTO in which no significant resonances
are experienced (i.e. the Sun azimuth angle does not remain constant for long periods of time). This big
correlation, even when all perturbations are considered, suggests that the evolution of the perigee altitude
for GTO orbits is mainly driven by the Sun’s gravity, at least for this altitude regime (perigee altitude of about
300 km).

An orbit with slightly different initial conditions was propagated, leading to the evolution depicted in
Figure 3.15. In this case, the orbit begins to precess at a rate close to 1 deg/day close to year 2001 (mainly
due to the effects of zonal terms of the geopotential). The Sun azimuth angle stays relatively stable at 60 to
90 degrees from 2001 to 2005, and in the range 90 to 120 degrees for the next 7 years. This leads to the effect
of the Sun’s gravity building up over time and thus to a long period of increasing perigee altitude first (when
Λ< 90 degrees) followed by a long period of decreasing perigee altitude (when Λ> 90 degrees). Note that this
is in agreement both with Figure 3.12b and Eq. (3.23).

3.3.2. COUNTERINTUITIVE EFFECTS
As mentioned in Section 3.2.3, atmospheric drag is the only perturbation causing a secular variation of the
semi-major axis, and thus it is responsible for the eventual re-entry of the orbiting body. From Figure 3.14 it
can be seen that when the perigee altitude remains at a relatively stable value (e.g. between 250 and 350 km),
the apogee altitude decreases at a more or less constant rate. However, when the perigee changes significantly
(e.g. in the range 150 to 500 km), so does the rate at which the apogee altitude decreases, as can be seen in
Figure 3.15. This means that the existence of solar resonance can have a big impact on the orbital lifetime.

However, the interplay between orbital perturbations causing solar resonances does not only lead to very
different lifetimes for slightly changing conditions, but is also the cause of some counterintuitive effects that
can potentially take place during orbital evolution. For instance, an example in which an increase of drag
(either by considering larger atmospheric densities or area-to-mass ratios) leads to longer lifetimes is given in
[8]. This is due to the fact that an increase in drag causes the semi-major axis to decay initially at a faster rate,
and thus the Sun-synchronous resonance is reached at a different epoch. From Figure 3.12b it is clear that the
moment (and thus the geometry) at which the resonance is experienced influences the perigee evolution and
can have drastic consequences for the lifetime. Thus, it is not valid to claim that a GTO object will re-enter
for sure in less than e.g. 25 years, based on simulations showing that for the most unfavourable conditions of
low drag it would decay in 25 years.

Using the experimental set-up described in Section 4.1, it was possible to identify two cases with very dif-
ferent evolutions, despite the fact that the orbit and initial conditions are the same, while the only parameter
that has been changed is the drag coefficient. It is clear that a change in the value of the drag coefficient will
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Figure 3.14: Temporal evolution of the perigee and apogee altitudes and Sun azimuth and declination angles for a representative GTO in
which no significant solar resonance are undergone.

lead to a different orbital evolution; however, one may not expect the lifetime to get significantly longer when
the drag coefficient is increased. Because of the solar resonance, this effect can be undergone for certain
GTOs, as depicted in Figure 3.16.

3.3.3. STATISTICAL APPROACH

The effects of the Sun-synchronous resonance (its magnitude and whether it will be perigee-raising or perigee-
lowering) are very sensitive to initial conditions, because these initial conditions will determine the geometry
when the solar-resonance conditions are reached. The key parameter is the position of the Sun in the Earth-
centred perifocal reference frame when MDP −ωS ≈ 0, a condition that most GTO objects will encounter at
some point in their lifespan before re-entry. The signs of xd and yd (or equivalently, the angle Λ) at that mo-
ment will determine the magnitude and sign of the Sun-synchronous effect. However, knowing the geometry
at that point in time requires both an accurate modelling of perturbations and an accurate knowledge of the
initial conditions (typically the mean local time of perigee of the GTO when the payload is injected into GEO
[55]). This is difficult to know in early stages of design, and in some cases even when the rocket has already
been launched. Other aspects, such as the GTO object’s mass, area and drag coefficient, and solar activity lev-
els, are also sources of uncertainty that complicate the prediction of the orientation of the orbit with respect
to the Sun at Sun-synchronous conditions. Thus, a statistical approach, in which the different parameters
that are considered sources of uncertainty are varied and several propagations are performed, is necessary in
order to obtain reliable predictions about the lifetime of GTOs [11].

Given the complexity of accurate orbital propagation of GTOs and its extreme sensitivity to several pa-
rameters that in most cases cannot be known with sufficient accuracy, some organisations have proposed
a dedicated debris mitigation guideline for GTOs slightly different from the one defined for LEOs [11]. The
proposal consists in redefining the requirement of re-entry in less than 25 years to re-entry in less than 25
years with a probability of 90%. This means that, for a given GTO object, its orbit will not be propagated only
once, but several times for different combinations of slightly changing conditions, and at least 90% of these
propagations should lead to a re-entry in less than 25 years. It is clear that statistics will play an important



28 3. THEORETICAL BASIS

Figure 3.15: Temporal evolution of the perigee and apogee altitudes and Sun azimuth and declination angles for a representative GTO in
which a solar resonance is undergone.

Figure 3.16: Temporal evolution of two objects in a GTO with identical initial conditions, except for the use of a different drag coefficient.
Note that, counterintuitively, increasing the drag coefficient can lead to a longer lifetime.

role in the study of long-term evolution of GTOs.

Several definitions and procedures that may be useful during the development of the thesis are intro-
duced in [11] and summarised here. The first concept is called T (90%)

L , which is defined as the period of time
(or lifetime) after which a given GTO object has a 90% probability of having re-entered. The disposal perigee
altitude is defined as the perigee altitude that guarantees a re-entry in less than 25 years with a 90% prob-
ability. Another concept is the date and local time of perigee (DLTP), which corresponds to the moment at
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which the object reaches the end of its operational life and thus the natural, uncontrolled orbital propaga-
tion begins. Given that this parameter is difficult to know in early stages of design, the concept of domain
is introduced, defined as the range of possible dates of perigee and local times of perigee. For instance, two
possible domains could be: (1) variable day (from 1 to 365) and local time fixed at 16 h; and (2) fixed day at
summer solstice and variable local time from 21 to 24 h. Then, the reference provides two approaches that
can be used to show fulfilment of the requirement T (90%)

L < 25 years for a given domain:

• Local approach. All the possible combinations of date and local time within the domain (in practice a
limited number due to the use of a finite step-size) have a 90% probability of decaying in less than 25
years. The value of DLTP is fixed for each propagation, i.e. it is assumed to be known with no uncer-
tainties.

• Global approach. There may be certain combinations of date and local time with a lower than 90%
probability of decaying in 25 years, but on average the requirement is satisfied for the whole domain
because of the counterbalance effect of the combinations that decay more rapidly. The value of DLTP
is not fixed for each propagation, but included in the statistical analysis as a source of uncertainty.

The local approach has the advantage of guaranteeing the fulfilment of re-entry in less than 25 years with
at least 90% probability under any foreseeable scenario. However, it can be computationally more demand-
ing, since a statistical analysis including uncertainties in drag, area-to-mass ratio, etc., and consequently a
large number of orbital propagations, are required for each combination of date and local time. Additionally,
it requires lower disposal perigee altitudes in order to guarantee re-entry (about 35 km lower [11]) than the
global approach.

The reference does not recommend one approach over the other, as both have advantages and drawbacks.
However, it is deemed convenient for researchers to be aware of both of them, since eventually what currently
are only guidelines may become regulations enforced by law, and, from that moment on, following one of the
approaches presented here (or an approach defined in a similar way) may become mandatory as well. In this
Master thesis, the local approach will be followed, i.e. the DLTP has been chosen as an optimisation variable
rather than setting it as an uncertain parameter.





4
NUMERICAL APPROACH

A necessary step towards being able to generate the results of interest for this Master thesis consists in iden-
tifying and/or developing a tool capable of propagating the orbits of objects in GTO for long periods of time
(in the order of years or decades) with proper accuracy and in feasible computation times. Given the com-
plexity of the problem at hand, a numerical approach has to be followed in order to integrate the equations
of motion, as no analytical solution exists when the relevant perturbations are included in the acceleration
model.

This chapter covers the description of the fully numerical approach, in which the contribution of each
orbital perturbation to the total acceleration has to be assessed several times every orbital revolution. In Sec-
tion 4.1, the experimental set-up to obtain the relevant results is discussed, including the choice of software
and determination of the best propagator and integrator settings for the case of GTOs. A study of the sensi-
tivity to changes in the values of some of the parameters, such as initial state and body properties, will follow
in Section 4.2. Then, the optimisation problem will be properly defined in Section 4.3. Finally, some of the
results obtained with the experimental set-up described in this chapter will be provided in Section 4.4, as well
as a feasibility study on whether the research objective of the Master thesis can be reached by following the
fully numerical approach.

4.1. EXPERIMENTAL SET-UP AND TUNING
In order to know the lifetime of an orbiting body, it is necessary to establish a condition in terms of re-entry
altitude. During re-entry, non-linear effects will dominate and the problem may not be described as a simple
perturbed orbital motion, requiring the use of more advanced models to obtain an accurate description. This
period, from the beginning of re-entry until an eventual burn-up or crash onto Earth’s surface, has not been
studied in this thesis, as it is typically in the order of hours [33]. Compared to a lifetime of e.g. 25 years, as
some guidelines suggest (cf. Section 2.2.1), it is obviously negligible. Thus, determining the lifetime consists
in finding the epoch at which the orbiting body will reach an altitude of 100 km.

As mentioned in Section 3.2, the equations of motion cannot be solved analytically when all the relevant
perturbations are included in the acceleration model. Thus, the epoch leading to an altitude of 100 km can-
not be computed directly, and the motion of the body has to be propagated using numerical integration.
The choice of the software to perform this propagation and the development of further functionality will be
discussed in Section 4.1.1. The obtained tool will be used in the first place to determine the minimum accel-
eration model leading to reliable results for the problem of propagation of GTOs in Section 4.1.2. Then, the
tuning of the propagator and integrator will be discussed in Sections 4.1.3 and 4.1.4, respectively.

4.1.1. TUDAT EARTH SATELLITE PROPAGATOR
The TU Delft Astrodynamics Toolbox (Tudat) is a C++ library that provides support for simulating various
astrodynamics problems [56]. Most of the features needed for performing numerical orbital propagations
were already included in the latest version at the beginning of the thesis.

In addition to Tudat’s core library, a few example applications are provided by the project administrators.
One relevant example is the single perturbed satellite propagator application, which can be used to propagate
a single satellite while including several perturbations in the acceleration model. The initial conditions and
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characteristics of the body, as well as which perturbations to include, can be chosen, but this can only be
done by modifying the code and re-compiling before running the app again with the new conditions. Given
that many propagations will have to be performed in order to find the conditions leading to shortest orbital
lifetimes, this approach, in which the code has to be manually modified and the app re-compiled for every
case, seemed unfeasible and unpractical.

Thus, a new application based on the single perturbed satellite propagator example application was cre-
ated. This application reads the input settings from a text file, translates them to C++ objects, and then those
settings are used to set up the propagation accordingly. Then, when the propagation is done, the information
of interest (specified in the input file) is exported to an output text file. In this way, the application only needs
to be compiled once and then it can be run with many different input files leading to different results.

This application has been called Tudat Earth Satellite Propagator (TESP), since currently, given the set-
tings that can be changed through the input file, it enables the propagation of the orbit of any satellite about
Earth including the most relevant orbital perturbations, namely geopotential, Sun’s and Moon’s third-body
attraction, atmospheric drag and SRP. Although Tudat is not optimised for parallel processing (i.e. using sev-
eral cores at the same time), mainly because the propagation of the orbit of a body is a sequential procedure,
in which step i cannot be started until step i −1 has been completed, TESP can take advantage of the avail-
ability of multiple cores, as it has been designed so that each propagation is independent of each other, by
using different input and output files to prevent problems that may occur if one would try to modify the same
file from different cores at the same time. This means that many instances of TESP can be run concurrently
with different settings, potentially reducing computation times significantly on systems with multiple CPUs.

In fact, most of the propagations were run on the Eudoxos server of the Aerospace Engineering Faculty,
which has 56 CPUs. A maximum of 14 TESP processes were run concurrently to leave sufficient computa-
tional power available for other users. Once the propagations had been completed, the output files were
downloaded to a local computer and analysed with other tools, mainly MATLAB [57].

When many input files had to be generated, rather than generating them one by one manually, MATLAB
was used to generate them automatically by reading an optimisation-setup file in which it would be specified,
for instance, that the inclination should range from 0 to 45 degrees, with steps of 5 degrees, and the mass from
2 000 to 3 000 kg, with steps of 50 kg, leading to a total of 210 different files in this case. This is done locally, as
this is not computationally expensive, but then, these files are uploaded to the sever, where the propagations
are performed. This whole process is summarised in the work-flow diagram in Figure 4.1.

For running several propagations in parallel on the sever, the GNU Parallel software [58] was used. This
software allows the user to specify a set of input arguments for a program (e.g. all the input files in a given
directory) and it runs each case in parallel up to a specified limit of concurrent jobs (14 for the Eudoxos
server). Then, as soon as one of the processes finishes, the next case (i.e. with the path to a different input file
as input argument) is automatically started, and this process is repeated until all the cases have been run.

Although Tudat is a validated tool, it was necessary to check that Tudat apps developed for this Master
thesis were providing valid results. This was done by propagating several orbits with different perturbations
turned on and off, and observing the appearance of the expected effects on the orbital elements. Additionally,
the software to compute the sub-satellite point using the equations described in Section 3.1.4 was validated
by checking that, for a GEO satellite, if all perturbations are turned off: (1) the longitude of the SSP remains
constant; (2) the longitude of the SSP oscillates around a constant value if the inclination is not exactly 0;
(3) the longitude of the SSP experiences an increasing secular variation if the altitude is set 100 km below
GEO (i.e. the SSP moves eastwards). This is in accordance with expected behaviour. When the relevant
perturbations are turned off, there is a secular variation of the longitude of the SSP (for a pure GEO satellite)
of about 0.57 degrees per month, which is in accordance with observations indicating that this precession
has a period of 53 years (or 0.566 deg/month) [59]. This serves also as validation of Tudat and TESP, as the
function to compute the longitude of the SSP has been applied to data obtained from orbital propagations
set up through TESP and run by Tudat. The results of this validation can be found in Figure B.2.

4.1.2. ACCELERATION MODEL
Before finding out which are the most suitable propagator and integrator (in terms of accuracy and com-
putation times) for GTOs, it is necessary to determine which are the relevant perturbations that cannot be
neglected, as the choice of the propagator and the integrator will very likely depend on the perturbations that
are included in the acceleration model.

In this phase, thus, accuracy will rule over efficiency. A very accurate integrator (a Runge-Kutta 4 integra-
tor with a step-size of just one second) will be used to perform the propagations, and a propagator based on
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Figure 4.1: Main work-flow diagram for the generation of results.

the Cowell method will be used. For more information on this integrator and propagator, see Sections 4.1.4
and 4.1.3, respectively.

According to previous studies on the propagation of objects in GTO, the perturbations that have to be
included in order to yield reliable results are the geopotential (a spherical harmonics expansion up to degree
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and order 7), the Sun’s and Moon’s central gravity, atmospheric drag and SRP [11]. By propagating the same
object in the same orbit with each of these perturbations turned on and off, it has been determined that, in
fact, they cannot be neglected, and additionally the minimum degree and order of the geopotential expansion
have been obtained.

The characteristics of the object and the initial orbit that has been propagated with different perturbations
neglected or included in the acceleration model are:

• Initial epoch: J2000.

• Initial perigee altitude: 175, 200 or 250 km (can be inferred in each case from the perigee altitude plots
provided in the following subsections).

• Initial apogee altitude: 35 780 km.

• Initial inclination: 10 deg.

• Initial argument of perigee, RAAN and true anomaly: 0 deg.

• Constant body mass: 3 000 kg.

• Constant body cross-sectional area: 15 m2.

• Constant drag coefficient: 2.2.

• Constant radiation pressure coefficient: 1.5.

GEOPOTENTIAL

From Figure 4.2 it is clear that the geopotential can play an important role on the evolution of the orbit. The
line labelled 1 (i.e. degree and order 1) corresponds to the case in which only Earth’s central gravity is con-
sidered, and all the J-terms are neglected. This approximation is clearly not accurate enough. It is also clear
that an expansion up to degree and order 2 is not enough. The rest of the curves are closer, although when
zooming in significant gaps are found between the curves labelled 3, 5 and 7/10. Finally, it was decided that
using degree and order 7 was accurate enough, as including a higher expansion (which is computationally
more expensive) does not provide significantly different results.

Figure 4.2: Evolution of the apogee and perigee altitudes of a GTO as a function of the degree and order of the spherical harmonics
expansion of the geopotential (left) and zoom-in around the final epochs (right).

In the zoom-in plot in Figure 4.2 (right) it can be seen that the lifetime can change by several days if a
degree lower than 7 is used. For instance, choosing a degree and order of 2, compared to a degree and order
of 7, yields a lifetime 7 days longer, or 12.7% in relative terms, which is deemed to be too inaccurate.

However, although the degree has been fixed to 7, this does not necessarily mean that all the terms of
the 7x7 expansion need to be included. In fact, the inclusion of the zonal terms alone is sufficient, as can be
seen in Figure 4.3, which means that the order of the geopotential expansion can be set to 0. The evolution
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Figure 4.3: Evolution of the apogee and perigee altitudes of a GTO as a function of the order of a 7th-degree spherical harmonics expan-
sion of the geopotential (left) and zoom-in around the final epochs (right).

of the orbit is virtually the same regardless of the chosen order, as long as the zonal terms up to degree 7 are
included.

In the zoom-in plot in Figure 4.3 (right) it can be seen that the lifetime only changes by a few hours when
changing the order of the geopotential expansion. For instance, choosing an order of 0 (i.e. neglecting all
tesseral terms), compared to an order of 7, yields a lifetime about 7 hours longer, or 0.5% in relative terms,
which is deemed to be acceptable.

Thus, from now on all the results will correspond to propagations in which the geopotential is expanded
up to degree 7 and order 0, unless otherwise specified.

SUN’S GRAVITY

From Figure 4.4 it is clear that the Sun’s gravity cannot be neglected. This result was already expected, as
the Sun-synchronous resonance, which can affect the lifetime of objects in GTO drastically, is triggered by an
interplay between several orbital perturbations, including the Sun’s gravity, as explained in Section 3.3.1.

Figure 4.4: Evolution of the apogee and perigee altitudes of a GTO depending on whether the Sun’s gravitational attraction is included in
the acceleration model.

MOON’S GRAVITY

From Figure 4.5 (left) one could think that the effect of the Moon is not very important for the evolution of
the orbit. However, it would be imprudent to conclude that this is always the case just by propagating a
single orbit. Thus, another sample orbit was propagated, with a slightly higher initial perigee altitude (200
km instead of 175 km). In this case, as seen in Figure 4.5 (right), the no-inclusion of the Moon’s gravity in
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the acceleration model does have an important effect on the evolution of the orbit. Thus, it can be concluded
that the Moon’s gravity cannot be neglected during the propagation of objects in GTO, as doing so could cause
errors of about 13%, as in Figure 4.5 (right) for example, or perhaps even more in some cases.

Figure 4.5: Evolution of the apogee and perigee altitudes of a GTO depending on whether the Moon’s gravitational attraction is included
in the acceleration model and with initial perigee altitude at 175 km (left) and 200 km (right).

ATMOSPHERIC DRAG

Since atmospheric drag is the only perturbation that causes secular effects on the semi-major axis [44] it is
clear that it cannot be neglected, otherwise the object could only have been assumed to have re-entered when
its perigee altitude had become negative. This is confirmed by Figure 4.6, in which it can be seen that when
drag is considered, the object re-enters in about half year, but if it is neglected, it would never re-enter as the
amplitude of the other perturbations is not sufficiently large so as to bring the perigee altitude to a value of
0 (if there is no atmosphere, it does not make sense to set a re-entry altitude). Indeed, the apogee altitude
remains almost constant during the propagation if drag is neglected.

Figure 4.6: Evolution of the apogee and perigee altitudes of a GTO depending on whether atmospheric drag is included in the acceleration
model.

The model being used for the propagations is the NRLMSISE-00 atmosphere model. This model provides
estimates for the density of the atmosphere as a function of location (longitude, latitude and altitude) and
time, based on historical data. Originally, Tudat did not support using this model when performing prop-
agations in the future, as this model requires data about the solar activity levels, which are read from a file
generated from past measurements. For that reason, Tudat’s functionality has been extended in order to be
able to provide the values for the predicted solar activity levels (which have significant levels of uncertainty,
especially if the predictions are for distant times in the future). Although it is now possible to generate space
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weather files for future epochs from predictions, this functionality has not been used in the generation of
results, in which all the perturbations have been performed starting at an epoch sufficiently back in time so
that the propagation does not extend beyond 2017.

However, even for propagations in the past, when the model uses data coming from actual measurements,
there is a significant level of uncertainty in the estimated value for the atmospheric density, which is related
to the availability of measurements, both spatially and temporarily. For mean activity conditions, the esti-
mated uncertainty of the densities provided by the NRLMSISE-00 atmospheric model is 15% [60]. This value
decreases to about 5% for lower altitudes (below 90 km, although the body can be assumed to be re-entering
at this point).

Since the NRLMSISE-00 model has a significant uncertainty, it was considered convenient to test another
model: the exponential atmospheric density model, which is the simplest model (and thus also expected to be
the one with highest uncertainty). If propagating with this model introduces an error that is within the range
of uncertainty introduced by NRLMSISE-00, then the use of NRLMSISE-00 may be overkill, as it is expected
to be computationally more expensive. Although using the exponential model reduces computation times
to about 50%, the introduced error is too high, as can be seen in Figure 4.7. Even for a regular orbit with no
Sun-synchronous resonances, using this atmospheric model leads to a lifetime that is almost 30% shorter.
This model is clearly insufficient for the propagation of GTOs.

Figure 4.7: Evolution of the apogee and perigee altitudes of a GTO for two different atmospheric models.

The 30% error in the lifetime introduced by the exponential model is significantly larger than the error that
would be introduced due to the uncertainties of the NRLMSISE-00 model, as in this case the 15% uncertainty
in the atmospheric density scales down to a smaller error in the value of the lifetime. Although the density
cannot be modified manually in Tudat, which would be ideal if one would want to determine the introduced
error in the value of the lifetime when the density is changed by 15% with respect to the nominal value, there is
a way around this limitation: since the atmospheric density and CD only appear in one equation and appear
multiplying each other (cf. Eq. (3.15)), a change by 15% in the value of CD should lead to identical results as
the same change in the value of the density. For instance, in Figure 4.11, two cases with CD = 2.0 and CD = 2.2
(10% increase) are compared. In this case, the 10% change in the value of CD is scaled down to 1.8% when
it comes to lifetime, i.e. about 5.5 times smaller. When CD is increased from 1.0 to 2.0 (100% increase), the
lifetime decreases by 17%, giving again the same 5–6 error scaling factor. Thus, it can be expected that the
errors of about 15% in the value of the density introduced by the atmospher model will lead to errors in the
value of the lifetime of about 2.5–3%.

SOLAR RADIATION PRESSURE

From Figure 4.8 it is clear that the effect of SRP cannot be neglected if reliable results are desired. Additionally,
it was studied wether occultations of the rocket body (i.e. when Earth is located between the rocket and the
Sun, blocking the radiative flux) have a big influence on the orbital evolution. If they can be neglected, the
propagation would be a bit faster, as the geometric condition for occultation would not have to be tested at
every integration step.



38 4. NUMERICAL APPROACH

Figure 4.8: Evolution of the apogee and perigee altitudes of a GTO depending on whether SRP is included in the acceleration model.

Initially, a generic orbit, which does not undergo Sun-synchronous resonances, was tested. In this case,
as seen in Figure 4.9, eclipses can be neglected, since the introduced error in the value of the lifetime is just a
few hours (less than 0.2%), as can be seen in Figure 4.9 (right). In this case, the estimated lifetime is slightly
shorter when eclipses are neglected, although this does not always hold; SRP can either slow down or speed
up the body, depending on the position of the Sun relative to the spacecraft.

Figure 4.9: Evolution of the apogee and perigee altitudes of a GTO depending on whether eclipses are considered in the acceleration
model (left) and zoom-in around the final epochs (right).

Another orbit, one in which a Sun-synchronous resonance takes place, was propagated with eclipses
turned on and off, leading to the results provided in Figure 4.10. In this case, the introduced error in the value
of the lifetime, which is more than 7%, is not negligible. For this specific case, neglecting eclipses makes the
orbit decay slightly faster prior to Sun-synchronous conditions (not noticeable in the plot) and significantly
slower afterwards.

In conclusion, eclipses cannot be neglected when the propagated body is (near conditions leading to)
experiencing Sun-synchronous resonance, and thus will have to be considered when an accurate description
of its evolution under those conditions is desired.

4.1.3. PROPAGATOR

Tudat includes two numerical propagators implementing, respectively, the Cowell and Encke methods. Be-
fore choosing one propagator over the other for the propagation of GTOs, a brief review of the characteristics
of these two propagators is provided.
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Figure 4.10: Evolution of the apogee and perigee altitudes of a GTO experiencing Sun-synchronous resonance depending on whether
eclipses are considered in the acceleration model.

METHOD OF COWELL

This is the simplest method for the propagation of perturbed orbits. The following equation is solved numer-
ically [39]:

d2r

dt 2 = ft (4.1)

where the total acceleration is given by ft =− µ

r 3 r −∇∇∇R̃ + f . As can be seen, this is a direct numerical integra-
tion of Eq. (3.9). Small integrations steps are thus needed, leading to long computation times and integration
errors building up over time.

METHOD OF ENCKE

This method uses the concept of a reference orbit, commonly a Keplerian orbit. The first step is to solve the
following equation analytically [39]:

d2ρ

dt 2 + µ

ρ3 ρ = 0 (4.2)

whereρ is the position vector that the satellite would have if it followed an unperturbed reference orbit. Then,
only the deviations in position and velocity with respect to this reference orbit are computed numerically,
using the following expression:

d2∆r

dt 2 = µ

ρ3

[
(ρ+∆r )F(q)−∆r

]−∇∇∇R̃ + f (4.3)

where F(q) = 2q
1+2q

[
1+ 1

1+2q+p1+2q

]
, and q = ∆r ·(ρ+ 1

2 ∆r
)

ρ2 . Finally, the perturbed position is obtained from

r =ρ+∆r , while the perturbed velocity can be obtained from dr
dt = dρ

dt + d∆r
dt .

The parameter q provides a measure of how much the perturbed orbit is differing from the reference one.
As more integration steps are completed, the perturbed orbit usually starts to differ significantly from the
reference orbit and thus the reference orbit has to be rectified, i.e. computed again from Eq. (4.2). This should
be done whenever the value of q rises above 0.01. This method typically yields better performance than
Cowell’s method for small but strongly varying perturbing forces, since the integration step can be chosen
larger [39].

When propagating the same orbit using different propagators, it was observed that the accuracy remains
fixed, as it is determined by the integrator (step-size and/or error tolerance) rather than by the choice of
the propagator. However, the two propagators did perform differently, as the Encke propagator took slightly
longer than the Cowell propagator for a few representative orbits on which both were tested. On average, the
computation time was about 10% larger when the Encke propagator was used, both when using a fixed-step-
size and a variable step-size integrator. Thus, all the future propagations were performed using the Cowell
propagator, unless otherwise specified.
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4.1.4. INTEGRATOR
Tudat includes several numerical integrators. Before choosing one integrator over the rest for the propagation
of GTOs, a brief review of the Runge-Kutta methods is provided.

STANDARD RUNGE-KUTTA METHOD

The use of the standard fourth-order Runge-Kutta integrator (RK4) is proposed in [14] for the integration
of the averaged equations of motion, and is also the most widely used integrator for solving engineering
problems [61]. According to this method, Eq. (3.9) can be solved recursively using [14]:

xi+1 = xi + κ

6
(k1 +2k2 +2k3 +k4)

k1 = f (xi , ti )

k2 = f (xi + κ

2
k1, ti + κ

2
)

k3 = f (xi + κ

2
k2, ti + κ

2
)

k4 = f (xi +κk3, ti +κ)

(4.4)

with κ the integration step-size and ti = t0 + iκ.
This method is computationally more expensive than the Euler method, as four function evaluations per

integration step are required. However, it is also more accurate and thus larger integration steps can be used,
generally leading to better efficiency for most astrodynamics problems.

This method is called a fourth-order method because its global error is of order O(κ4) [14]. In contrast, the
global error of Euler’s method is of order O(κ) [62]. There exist Runge-Kutta methods of higher order, some of
which have been used for the long-term propagation of HEOs. Some of these methods are discussed below.

HIGHER-ORDER RUNGE-KUTTA METHODS

In addition to the standard Runge-Kutta (RK) method described above, there exist many other Runge-Kutta
methods that can provide better performance for certain applications. Any Runge-Kutta method can be ex-
pressed in a general way through [63]:

yn+1 = yn +κ
s∑

i=1
bi ki

ki = f

(
yn +κ

i−1∑
j=1

ai j k j , tn + ciκ

) (4.5)

Then a Runge-Kutta method is completely defined by providing the values of ci , bi and ai j , which can be
done using a so-called Butcher tableau:

c1 a11 a12 . . . a1s

c2 a21 a22 . . . a2s
...

...
...

. . .
...

cs as1 as2 . . . ass

b1 b2 . . . bs

(4.6)

The semi-analytical propagation tool developed by CNES uses a sixth-order Runge-Kutta method [13],
although in the documentation it is not specified which specific algorithm is being used, as many sixth-order
RK methods exist. For instance, an RK6 method is derived in [64], but in this case only five function evalu-
ations per step are needed in comparison to conventional RK6 methods which require the computation of
k1,k2, . . . ,k6. This is achieved by considering evaluation of higher-order derivatives.

Some studies suggest that the use of a high-order RK-Nyström (RKN12) method is the best option for
numerical integration of super-geostationary disposal orbits when non-singular (e.g. equinoctial) orbital
elements are used [65]. Butcher tableaus for RK-Nyström methods of order 8 and 12 can be found in [66],
although the algorithms derived there are more suitable for (systems of) second-order differential equations.
The problem of orbital propagation can be formulated in this way in Cartesian components, but when orbital
elements are used, it becomes a system of first-order differential equations, so the methods presented there
may not be suitable when integrating the orbital elements.
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There are many integrators available in Tudat, from the simple yet powerful RK4 integrator to more ad-
vanced variable step-size integrators. Since GTOs have large eccentricities (about 0.7), their dynamics are
much faster close to perigee that when at apogee, so a variable step-size integrator should be suitable for this
kind of orbit, as small steps would have to be taken at perigee but larger steps could be taken near apogee.
It was found that the most efficient integrator was the one based on the Runge-Kutta-Fehlberg’s 7(8) method
(RK78), which computes the suitable integration step-size based on a specified error tolerance. The default
error tolerance for this integrator is 10−12. With this tolerance, the integrator was compared to a very accu-
rate (but slow) RK4 with step-size of one second. Both integrators provided virtually the same results (relative
error of less than 0.01%), although the RK78 was hundreds of times faster.

It was also checked whether this accuracy was maintained when propagating orbits in which a Sun-
synchronous resonance arises. When comparing an RK4 with step-size of 10 seconds to an RK78 with toler-
ance of 10−12, it was found that, despite the Sun-synchronous resonance and the larger propagation period,
the results of the two propagations were virtually identical, although the RK78 integrator was again several
times faster. For this case, the step-size for the RK4 integrator was increased to 10 seconds because the propa-
gation period was significantly longer (leading to very long computation times if 1 s was used), after checking
that the RK4 integrator provides virtually the same results for step-sizes of 1 and 10 seconds.

After deciding that the RK78 integrator would be used for further propagations, an analysis to determine
a reasonable error tolerance was carried out. The orbit undergoing solar resonance was propagated with
the RK78 integrator using four different error tolerances, namely 10−8, 10−9, 10−10 and 10−12. Although all
of them provided reasonably similar results, it was found that the integrator with a tolerance of 10−8 could
lead to significant errors in the perigee altitude (more than 10 km). Since the re-entry condition is defined
in terms of perigee altitude, it is necessary to know this parameter with sufficient accuracy in order to get
reliable estimates of the lifetime. Thus, it can be concluded that an error tolerance of 10−9 is sufficient, which
is about twice as fast as the same integrator with a tolerance of 10−12.

From now on, all the presented results will correspond to propagations using an RK78 variable step-size
integrator with an error tolerance of 10−9.

4.2. SENSITIVITY ANALYSIS
After having decided upon the perturbations to include in the acceleration model (zonal terms up to degree
7, Sun’s and Moon’s gravity, atmospheric drag and SRP with eclipses), the propagator (based on the Cowell
method) and the integrator (RK78 with variable step-size and error tolerance of 10−9), it is possible to use
TESP with those settings to propagate different orbits in order to study the characteristics of GTOs in more
detail. Since the evolution of GTOs can be very sensitive to many parameters, the problem of optimising
(minimising) the lifetime of a GTO could become unfeasible if the number of optimisation variables is too
large. Thus, it is key to identify which are the parameters GTOs are most sensitive to, and which can be
assumed to be fixed, at least in a first iteration of the optimisation process.

In this section, several sensitivity analyses will be provided for changing values of the body properties
(drag and radiation pressure coefficients) in Section 4.2.1 and to the change of the initial conditions (epoch
and state) in Section 4.2.2.

4.2.1. BODY PROPERTIES
There are four relevant properties of the propagated body, namely its mass, cross-sectional area, drag coeffi-
cient and radiation pressure coefficient. The values of these four parameters can be changed independently,
although in practice they could be combined into two variables. For the computation of drag, the ballistic
coefficient appears in the equations of motion:

B = CD A

m
(4.7)

On the other hand, for the computation of SRP, the following parameter, which will be called the sailing
coefficient in this document, appears:

S = CR A

m
(4.8)

Thus, in order to perform a sensitivity analysis about the body properties, it is not necessary to study the
response to changes in the value of the four parameters; varying CD and CR (which is equivalent to varying
B and S, respectively) will suffice. For instance, in Figure 4.11, the effect of varying the value of the drag
coefficient is shown.
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Figure 4.11: Evolution of the apogee and perigee altitudes of a
GTO for different values of the body’s drag coefficient.

Figure 4.12: Evolution of the apogee and perigee altitudes of a
GTO for different values of the body’s drag coefficient, in which
the case CD = 2 leads to a Sun-synchronous resonance.

Although apparently the lifetime changes linearly with the drag coefficient, resulting in shorter lifetimes
for larger drag coefficients, this does not always hold. For instance, in Figure 4.12 the initial perigee altitude
is slightly higher, leading to a different evolution and to a Sun-synchronous resonance for the case CD = 2.
This means that the relation between lifetime and drag coefficient (or, equivalently, ballistic coefficient) can
be strongly non-linear. Knowing the lifetime for CD = 1.5 and CD = 2.5 does not allow one to say anything
about the lifetime for CD = 2.0.

A similar sensitivity study was conducted for the radiation pressure coefficient. The results of propagat-
ing three objects with different CR can be found in Figure 4.13. The value of CR was varied from 1 (body
that absorbs all solar radiation) to 2 (body that reflects all solar radiation). From there it can be seen that
the sensitivity to CR is small. However, after propagating more cases and identifying a few that undergo Sun-
synchronous resonances (cf. Figure 4.14), it was observed that the lifetime can also be significantly sensitive
to the value of the radiation pressure coefficient. This confirms again that the effects of SRP have to be in-
cluded in the acceleration model.

Figure 4.13: Evolution of the apogee and perigee altitudes of a
GTO for different values of the body’s radiation pressure coeffi-
cient.

Figure 4.14: Evolution of the apogee and perigee altitudes of an
object in a higher GTO for different values of the body’s radiation
pressure coefficient, in which the case CR = 1.5 leads to a Sun-
synchronous resonance.

4.2.2. INITIAL CONDITIONS

INITIAL EPOCH

The initial epoch can play a significant role on the evolution of the orbit. Depending on the moment at which
the propagation begins, the Sun and the Moon will be positioned differently, and the solar activity levels will
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be different, which will affect atmospheric density.
As can be seen in Figure 4.15, the orbital evolution differs less when the propagation is postponed one year

than when it is postponed a few months. This is due to the fact that the Sun will be located approximately at
the same relative position after one year, so the only differences would be caused by the Moon (which has a
less relevant effect) and solar activity levels (which change with a period of about 11 years).

Figure 4.15: Evolution of the apogee and perigee altitudes of a GTO as a function of the initial epoch.

Previous research has shown that the effect of the Sun on the evolution of the perigee (and consequently
on the lifetime, as the perigee is typically at altitudes where atmospheric drag is significant) depends on the
position of the Sun in an Earth-centred perifocal reference frame. The key parameter is the Sun azimuth
angle Λ, i.e. the angle between the Earth-pericenter line and the Earth-Sun line measured in the spacecraft
orbital plane. When this angle is a multiple of 90 degrees, the Sun has no effect on the perigee altitude. On the
other hand, when this angle is 45+90k degrees, with k an integer, its effect is maximum (causing the fastest
increase or decrease of the perigee altitude, depending on the quadrant), as explained in Section 3.3.1. This
means that, in two orbits for which the Sun azimuth angle is e.g. 45 and 135 degrees, the effect of the Sun
on the lifetime will be the opposite. This can be seen in Figure 4.15, in which the two orbits whose evolution
differs the most are those whose initial epoch differs by a value close to 0.25 years (or equivalently ∆Λ = 90
degrees), i.e. those starting on January and March 2000.

INITIAL STATE

The initial perigee and apogee altitudes play an important role on the orbital evolution and lifetime. Chang-
ing the perigee altitude in the altitude range in which atmospheric drag is significant has a drastic effect on
the lifetime, as can be seen in Figure 4.16. On the other hand, the effect of changing the apogee altitude is less
noticeable, as seen in Figure 4.17. For instance, changing the apogee altitude by 2 000 km is less relevant than
changing the perigee altitude by 75 km. Moreover, for this orbit a counter-intuitive effect is observed, since
starting with higher apogee altitudes (while keeping the initial perigee altitude constant) leads to shorter life-
times.

The initial inclination and RAAN determine the orientation of the orbit, and thus the relative position of
the perigee with respect to the Sun. Thus, changing their values has a big impact on the lifetime of the orbit,
as can be seen in Figures 4.18 and 4.19. Moreover, the relation is not linear: see for instance the curve for
i = 40 degrees from Figure 4.18. One may expect it to lie between the curves for 23.4 and 60 degrees, but it
does not. On the other hand, regarding the RAAN, looking at Figure 4.19 it seems that the orbital evolution is
similar for those orbits whose initial RAAN differs by (a multiple of) 180 degrees.

The initial argument of perigee is also relevant for determining the initial geometry (i.e. the position
of the Sun in the Earth-centred perifocal reference system). Thus, varying it leads to very different orbital
evolutions, as seen in Figure 4.20. Since for GTOs the initial argument of perigee has to be either 0 or 180
degrees, only those two cases have been plotted.

Finally, the orbital evolution and lifetime is less sensitive to the initial true anomaly, as seen in Figure
4.21. Changing its value only affects the position of the propagated body within the orbital plane, but does not
affect the Earth-Sun-pericenter geometry significantly. In the case of a GTO, with a period of about 10.5 hours,
changing the initial true anomaly may be considered equivalent to changing the initial start epoch by less
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Figure 4.16: Evolution of the apogee and perigee altitudes of a
GTO as a function of the initial perigee altitude.

Figure 4.17: Evolution of the apogee and perigee altitudes of a
GTO as a function of the initial apogee altitude.

Figure 4.18: Evolution of the apogee and perigee altitudes of a
GTO as a function of the initial inclination.

Figure 4.19: Evolution of the apogee and perigee altitudes of a
GTO as a function of the initial right ascension of the ascending
node.

Figure 4.20: Evolution of the apogee and perigee altitudes of a
GTO as a function of the initial argument of perigee.

Figure 4.21: Evolution of the apogee and perigee altitudes of a
GTO as a function of the initial true anomaly.
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than 10.5 hours. Although this has no significant consequences during the initial part of the propagation, over
long periods of time the various orbital evolutions begin to diverge slightly, eventually leading to variations
in the value of the lifetime that may not be negligible (depending on the desired accuracy).

4.3. PROBLEM DEFINITION
The main research objective of this Master thesis consists in determining whether it is possible to use the
effects of orbital perturbations reliably in order to make debris in GTO decay as fast as possible (or in a period
shorter than a given maximum), and, if so, to find out the initial conditions leading to those optima. Previous
studies have used a simple grid search to solve this problem, although they have only provided a few plots,
whose resolution may not be sufficient given the Sun-synchronous resonance affecting GTOs, and limited to
very specific cases, which may not be applicable to launches from places such as Kourou or Cape Canaveral.

Still, it has been decided that a grid search is the best way to approach the problem at hand. More ad-
vanced optimisation techniques exist, but usually those yield the optimum without providing much infor-
mation about the surroundings and/or other (local) optima. A launch company wanting to comply with
debris-mitigation guidelines will be interested to find as many launch opportunities as possible, and not only
the best one, but also all other cases satisfying the guidelines.

It is necessary to study this problem in more detail if solid conclusions are to be drawn. The choice of the
optimisation variables will be covered in Section 4.3.1, followed by the determination of a reasonable range
of values and resolution in Section 4.3.2 leading to reliable and usable results.

4.3.1. CHOICE OF OPTIMISATION VARIABLES
From the sensitivity analyses described in Section 4.2 it is clear that the lifetime of objects in GTO is very
sensitive to many parameters. Changes in the body’s ballistic coefficient, the initial epoch, and all the el-
ements of the initial state (perigee and apogee altitudes, inclination, RAAN, argument of perigee and even
true anomaly) can lead to significantly different lifetimes. In many cases, a non-linear behaviour has been
observed due to the existence of Sun-synchronous resonance. Thus, it is necessary to limit the number of
variables so that the optimisation process can be completed in feasible times.

Limiting the number of variables entails fixing the values of some of the aforementioned parameters. Ide-
ally, the parameters whose value should fixed are those for which the lifetime is less sensitive to and/or those
that are less prone to undergoing significant changes during the phase of the mission design of a satellite
launch.

BODY PROPERTIES

The ballistic coefficient of the body depends on its cross-sectional area, mass and drag coefficient. It is clear
that there may be some uncertainty in its value mainly due to the fact that the body may be tumbling, leading
to different cross-sectional areas that are difficult to predict. Moreover, carrying out an optimisation process
in which the ballistic coefficient is chosen so as to minimise the lifetime does not seem realistic, as in general
the rocket is designed attending to other aspects (such as aerodynamic efficiency, maximum payload mass,
etc.) and is typically a given. Thus, it will be assumed that the ballistic coefficient is fixed and will not be con-
sidered as an optimisation variable. Since the effect of changing the radiation pressure coefficient is smaller
(compare Figures 4.11 and 4.13), this parameter will also be kept constant.

INITIAL EPOCH

The lifetime of objects in GTO is very sensitive to the initial epoch, as was shown in Figure 4.15. This is mainly
due to the fact that, for a given orbit, the location of the Sun will change depending on the day of the year and
local time. This is the reason why the initial day of year (DoY) has been used by many authors as one of the
optimisation variables [9–11].

The existence of Sun-synchronous resonances can make the orbital evolution even more sensitive. For
instance, from Figure 4.22, it can be seen that, a given object in a given GTO that re-enters in less than four
years, will still be in orbit (with an apogee altitude over 15 000 km) after more than 5 years if the propagation
is started only one day earlier. Thus, it seems clear that the initial epoch cannot be fixed and should be taken
as an optimisation variable.

It is important to recall that the initial epoch is the epoch at which the satellite is injected into GTO, which
does not coincide with the launch epoch (there will be an offset of around 20 minutes between these two
events for a direct ascent, cf. Section 7.1.1). In this document, the initial epoch will also be referred to as
epoch of injection into GTO in some plots.
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Figure 4.22: Evolution of the apogee and perigee altitudes of a GTO undergoing a solar resonance for two different initial epochs.

INITIAL STATE

The values of some of the elements of the initial state of the body can also be fixed. The most evident one
is the true anomaly, which was shown to be the element that the lifetime is less sensitive to. The lifetime is
not very sensitive to the apogee altitude either, and moreover the apogee altitude of GTOs is generally very
close to GEO altitude (35 780 km), and thus it can also be assumed to be fixed during the last stages of mission
design.

However, the lifetime was seen to be very sensitive to the initial values of other elements, namely the
perigee altitude, inclination, RAAN and argument of perigee. However, given the general characteristics of
missions to bring satellites into GEO, some of these can also be fixed. For instance, the inclination will be
generally close to zero, as this is the inclination of GEO. It is possible that the GTO will be slightly inclined,
and then the payload will be put into GEO by performing a manoeuvre at GEO altitude that circularises its
orbit and turns it into equatorial (i = 0). However, this inclination that the GTO may have is generally small
(less than 40 degrees) based on historical data from previous launches [34] (basically because the change of
the orbital inclination is expensive in terms of propellant mass), so it can be assumed to be fixed at late stages
of the mission design.

In order to determine whether the initial perigee altitude should be considered as an optimisation vari-
able, it is necessary to look at the different phases of the mission, and the different ways in which a satellite
may be brought to GEO. Most of the launchers generating debris in GTO are following a direct ascent to GEO,
as discussed in Sections 2.2.2 and 7.1.1. In this case, the perigee altitude cannot be chosen freely (compared
to the case in which a low parking orbit is used), but depends on the ascent profile, the used rocket vehicle
and the mass of the payload and propellant to be used. This leads to the use of GTOs with perigee altitudes
of around 200 km for the injection of objects in GEO when following a direct ascent (cf. Section 7.1.1). When
another approach is followed, such as an ascent in which several burns are performed, even after injection
into GTO, debris are generated in several orbits, generally having higher perigee altitudes. When these al-
titudes are above 400–500 km, it will take very long for natural re-entry to take place, so compliance with
debris mitigation-guidelines is not possible [24]. This means that the range of interest of the perigee altitude
is rather limited (150-400 km) and thus it can also be assumed to be fixed during the last stages of the mission
design, so it will not be taken as optimisation variable.

As discussed previously, the argument of perigee at injection into GTO (and thus the value of the initial
argument perigee to be used for the propagation) has to be either 0 or 180 degrees so that the satellite will
reach GEO altitude when the orbit crosses the equatorial plane. Thus, the argument of perigee cannot be
taken as an optimisation variable and will be set to 0 for all future propagations, unless otherwise specified.
On the other hand, the RAAN does play a relevant role (cf. Figure 4.19), and is determined by the launch
time and location, as discussed in Section 3.1.4. Thus, this will be the second optimisation parameter, since
having propagated a set of orbits with different RAANs can potentially provide valuable information on what
the optimum (local) times of launch are at different launch locations.

The other elements of the initial state to be analysed are the inclination and the true anomaly. The true
anomaly is the one having the smallest influence on the evolution of the orbit (cf. Figure 4.21), and thus will be
set to 0 in future propagations. On the other hand, the inclination does have a big influence on the evolution
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of the orbit, as seen in Figure 4.18. However, this parameter is usually fixed during mission planning and is
chosen as small as possible in order to avoid having to perform expensive correction manoeuvres. Depending
on the launch site, the minimum value will be close to e.g. 5 degrees (Kourou) or 28 degrees (Cape Canaveral),
leading to different results. Thus, at some point, it will be necessary to generate different colour-map plots for
different inclinations. However, this will not be chosen as optimisation variable, as having three optimisation
variables (epoch of injection into GTO, RAAN and inclination) will render the problem unfeasible to solve,
and additionally, it is very unlikely that any launcher would accept to use a larger inclination (and thus more
propellant) in order to make the debris decay faster, if other alternatives that do not require the use of extra
propellant exist. Thus, initially this variable will be set to 10 degrees, so the resulting optimisation will be
applicable to launches from Koruou but not from Cape Canaveral. Later, it will be necessary to repeat the
optimisation procedure for different inclinations, or at least 28 degrees if the obtained results are to be applied
to launches from Cape Canaveral.

4.3.2. VARIABLES’ RANGE AND RESOLUTION
In Section 4.3.1, it was concluded that the two optimisation variables would be the epoch of injection into
GTO or day of year (DoY) and the initial RAAN. However, the range of interest and the required resolution, i.e.
the minimum distance between consecutive steps that provides reliable results, have yet to be determined.

The DoY cannot be chosen in a completely arbitrary manner, i.e. the launcher company cannot ask the
client to wait for e.g. 5 years because at that moment solar activity levels will be higher and that will lead to
more favourable conditions from a debris-mitigation perspective. However, a flexibility of e.g. a few months
or weeks may be acceptable for the satellite’s operator. Given that the orbital evolutions are very similar when
the start dates differ by a multiple of one year (as the position of the Sun is the same and only the Moon and
the solar activity levels can play a role), most researches have limited the range of the initial DoY to one year
[9–11]. The lower limit for the DoY has been generally set in the past, e.g. J2000, 1998, etc. as propagating in
the future requires using predictions of the solar activity levels, which are inaccurate. However, if the results
from this research are to be used in practice, the lower limit of the DoY will have to be placed eventually
somewhere in the future and predictions of the solar activity levels will have to be made and used.

Although in the past most authors have used a range of one year for the initial DoY, it has been found that
orbits with a DoY differing by 6 months have similar lifetimes, since the long-period effects of the Sun have a
period of 6 months (cf. Section A.2.2). Thus, at least in this initial optimisation problem, the DoY range will
be limited to just 0.5 years.

Regarding the launch epoch, it is reasonable to use at least a range of 12 hours (i.e. a range of 180 degrees
for Ω0), as this will include the most favourable and unfavourable locations of the Sun in the Earth-centred
reference frame for the evolution of the perigee altitude, as well as two neutral locations for which it does not
have any effect. However, there are more perturbations that play a role on the orbital evolution aside from the
Sun’s gravity. For instance, atmospheric density is maximum at around 2 PM local solar time [39]. This means
that an object in GTO that reaches perigee at night will experience less drag than one that reaches perigee
during the day. The slightly different position of the Moon and the Sun (they move slightly in 12 hours) can
also have a small but noticeable effect over long periods of time. Thus, in principle, the range for the RAAN
will be set to 360 deg. If the obtained plots contain two halves that are very similar, then the range will be
limited to just 180 deg. Most authors have used a range of 24 hours (or 360 degrees) [8–11].

In the past, previous researchers have divided both the DoY and RAAN in about 50 steps each, leading to
a resolution of 1 week for the DoY and 30 minutes for the launch time [11]. However, this seems insufficient
when Sun-synchronous resonances take place. For instance, from Figures 4.22, it was seen that changing the
epoch of injection into GTO just by one day can lead to a completely different orbital evolution. Similarly,
from Figure 4.23, it can be seen that changing the initial RAAN just by 1 degree (i.e. a change of 4 minutes in
the launch time) can make the object enter a Sun-synchronous resonance and increase the lifetime signifi-
cantly (by a factor of almost 6 in this case). Choosing a large step-size is dangerous because certain cases af-
fected by a Sun-synchronous resonance may be overlooked due to the use of an insufficient resolution. Thus,
the step-size for the RAAN will have to be chosen small enough so that no Sun-synchronous resonance cases
are overlooked. In this way, the zones close to negative Sun-synchronous resonance cases will be avoided.

Given the observations made in Figures 4.22 and 4.23, a lower limit for the resolution to use for the DoY
and the RAAN can be proposed. Any optimisation carried out with a worse resolution may lead to contiguous
cases whose lifetime differs drastically. Choosing resolutions of about 2 days for the DoY and 2 degrees (8
minutes) for the RAAN (launch time) or larger is insufficient. However, the actual minimum values that lead
to reliable results (i.e. not overlooking any case undergoing a Sun-synchronous resonance) were not known,
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Figure 4.23: Evolution of the apogee and perigee altitudes of a GTO undergoing a solar resonance for two different initial RAANs.

so many propagations were performed using increasing resolutions until the values were found. This iterative
process is shown in Figure 4.24. It can be seen that for the resolution of Figure 4.24b there are some isolated
pixels with long lifetimes, and high-resonance ridges are overlooked. With the resolution from Figure 4.24c
this is not the case, since the shape and location of the diagonal high-lifetime ridge can be inferred.

Based on this study, the recommended step-sizes for the DoY and RAAN are respectively 0.001 years
(about 0.36 days) for the epoch of injection into GTO and 0.36 degrees for the RAAN (or about 1.5 minutes for
the launch epoch). This leads to a plot in which no high-lifetime ridges (such as the one that can be inferred
from Figure 4.24c and that is clearly visible in Figure 4.24d) are overlooked, and thus can provide useful in-
formation to the launch firm on which are the dangerous conditions that may lead the rocket to undergo a
negative Sun-synchronous resonance.

Since the recommended range for the DoY is 0.5 years and the step-size is 0.001 years, this leads to 500
steps in the first optimisation variable. In the case of the initial RAAN, the recommended range is 360 degrees
and the step 0.36 degrees, leading to 1 000 steps. Thus, the total number of cases to be tested per optimisation
task amounts to 500 000.

4.3.3. FEASIBILITY STUDY

The propagation rate is defined as the propagation period (i.e. the difference between the final and initial
integration epochs) per unit of computation time. In this report, it will be provided in units of propagated
days per computation second (or simply days/s). Its value depends on many parameters, such as the (avail-
able) power of the processor on which it is being run, the used integrator and propagator, desired accuracy
or perturbations included in the acceleration model.

The propagation rate on one of the cores of a dual-core 2.7 GHz Intel Core i5 was on average about 17
days/s. However, this value depends on the lifetime as well. For orbits that take short time to re-enter, most
of the time is spent at low altitudes, where perturbations are larger and more variable, which renders the
propagation slower, while for orbits that are propagated for several years this final part only represents a
small percentage of the whole propagation, leading typically to a larger overall propagation rate.

The propagation rate on one of the cores of the Eudoxos server is slightly slower. On average, it was found
to be around 13 days/s for different test cases.

Through the use of the GNU Parallel software described in Section 4.1.1, it is possible to run many prop-
agations in parallel on computers with multiple cores. For instance, on a MacBook Pro equipped with the
dual-core 2.7 GHz Intel Core i5 it is possible to run up to four propagations in parallel, as it supports hyper-
threading, which consists on simulating two logical processors in a single physical core. However, it is less
powerful than having four physical cores (without hyper-threading), as none of the tasks can use all the pro-
cessing power of one core. It has been seen that, when four propagations are running in parallel, each of them
uses about 80% of the CPU. The consequence is that the individual propagation rate decreases from about
17 days/s when only one task is being run to about 9 days/s when four tasks are being run in parallel. This
means that, in practice, the aggregate propagation rate is 36 days/s. In summary, the processing power can
be increased by a factor of 2.4 when using all the processing power of the MacBook Pro simultaneously.
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Figure 4.24: Lifetime of a GTO as a function of initial epoch and RAAN. Resolutions of a) 0.1 years and 36 degrees, b) 0.01 years and 3.6
degrees, c) 0.001 years and 0.36 degrees, d) 0.0001 years and 0.036 degrees.

Although the individual propagation rates are lower on the Eudoxos server, it is equipped with 56 cores, so
the aggregate propagation rate will be larger. As previously mentioned, the total number of concurrent tasks
is limited to 14. Thus, the aggregate propagation rate amounts to 180 days/s. This is almost five times faster
than the MacBook Pro at full capacity.

Since the server is significantly faster and can be always on, it was decided that the optimisation tasks
would be run on Eudoxos. With an aggregate propagation rate of 180 days/s, and knowing that the total
number of orbits to be propagated per optimisation task is about half a million, the only thing missing in
order to be able to provide an estimate of the overall computation time per optimisation task is the average
propagation period of the considered orbits.

At this point, it was decided that the orbits would be propagated until the perigee altitude reached 100
km (re-entry) or the propagation period reached 10 years, whatever happened first. It was assumed that the
average orbital lifetime using a low resolution would be representative of the actual mean lifetime for the
domain of interest, so the average was taken from the results of the optimisation task shown in Figure 4.24a.
The mean was 3.4 years. This means that each propagation covers on average a period of 1 240 days.

The overall number of days to be propagated per optimisation task, when the used resolution is small
enough to provide reliable results, is thus about 620 million days. At the propagation rate of 180 days/s, this
leads to an overall computation time of 40 days per optimisation task when the task is run on the server. On
the MacBook Pro, the same task would take about 200 days.

These computation times are deemed to be unfeasible. Although a launcher company with access to
computers with high processing power may have the optimisation task completed in a few weeks (which
could be acceptable), quick tests could not be performed at early stages of the mission design in which many
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of the parameters have not been fixed yet. This kind of study may only be feasible at the end of the mission
design phase, when everything except the time of launch has been fixed.

However, even though performing a single optimisation task may be feasible if enough processing power
is available, the research objectives of this Master thesis cannot be reached using the available processing
power and propagation techniques. Since access to more processing power is not an option, it will be neces-
sary to use other propagation techniques, such as semi-analytical propagation, in order to increase propaga-
tion rates. Otherwise, it will not be possible to identify patterns and study how changes on other parameters
(such as drag, inclination, etc.) affect the lifetime, as this will require carrying out many optimisation tasks,
each of which taking weeks.

Indeed, in order to avoid having to wait for 40 days before getting the first preliminary results, the resolu-
tion was decreased for this first optimisation problem, hoping that it will still be possible to infer the location
of high-lifetime ridges as in Figure 4.24c. The resolution of both the DoY and the RAAN was halved, leading
to 125 000 cases to be propagated instead of 500 000, so the total estimated computation time (on the sever)
was reduced to 10 days.

4.4. PRELIMINARY RESULTS
Even though reaching the research objective by following a fully-numerical approach had been deemed to be
unfeasible, it was possible to obtain some preliminary results by completing one optimisation task. Using a
step-size of 0.002 years for the DoY and 0.72 degrees for the initial RAAN, a colour-map plot was obtained.
In this case, the RAAN was varied between 0 and 360, which would help determine whether studying the full
range is necessary or it can be limited to just 180 degrees. The range for the initial epoch was just 0.5 years,
as recommended after the discussion presented in Section 4.3.2, although it may be extended to one year or
longer in future optimisation tasks if the process becomes more efficient.

The results of this optimisation task, which took 13 days to complete, are provided in Figure 4.25.

Figure 4.25: Lifetime of a satellite as a function of epoch of injection into GTO and initial RAAN.

The characteristics of the propagated body and initial orbit were exactly the same as those mentioned at
the beginning of Section 4.1.2, with the exception of the initial epoch and RAAN, which were variable.

A few remarks can be made about Figure 4.25:

• There are many narrow high-lifetime ridges.

• No narrow low-lifetime valleys were found.
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• The lifetime does not change smoothly from low-lifetime regions to high-lifetime regions, but presents
increases in finite amounts, leading to several plateaus with relatively homogeneous lifetimes within
them that are generally separated by high-lifetime ridges.

• Although the patterns found in the region Ω < 180 degrees are similar to those found for Ω > 180 de-
grees, the differences are significant (e.g. for the month of April), so the range of the initial RAAN (or
launch time) cannot be reduced to just 180 degrees (12 hours).

• Two significant high-lifetime peaks are seen in the region Ω> 180 degrees.

• Many low-lifetime basins are observed in the low-lifetime regions.

Note that the texture of Figure 4.25 is clearly sharper than that of other similar plots obtained in previous
studies, such as the ones leading to the plots provided in Figures 3.4 or 3.9. In this case, a larger resolution
has been used, leading to the appearance of large gradients near zones of solar resonance that cannot be
easily observed in Figure 3.9, where the resolutions for the epoch of injection into GTO and launch time were,
respectively, 5 and 10 times coarser, and interpolation was used to obtain a smooth plot. In the case of Figures
3.4a, atmospheric drag was not included in the acceleration model, and a lower resolution was used and the
results interpolated, leading to a smoother plot.

In this case, the individual results have not been interpolated, as the high-lifetime ridges are not yet prop-
erly interpolated at this resolution. However, it has to be recalled that some authors have approached this
problem from a statistical perspective, propagating many cases with slightly different conditions for each
combination of DoY–RAAN. High-lifetime cases associated to solar resonance are very sensitive to initial con-
ditions, so it is possible that the results for cases near resonance ridges are not always representative of the
most likely orbital evolution. To address this issue, the statistical approach described in Section 3.3.3 has to
be followed. However, this would require carrying out a much larger number of propagations (depending on
the number of cases to be considered for each combination of DoY and RAAN). For instance, if this number
were set to 100, the optimisation task would not taken 12 days, but 3 years, which is deemed to be com-
pletely unfeasible. Thus, this problem cannot be approached in a statistical way when using fully numerical
propagation, as already suggested in previous studies [34].

The largest gradients in the horizontal direction for Figure 4.25 are close to 12 years per day, i.e. the
lifetime changes by 12 years if the epoch of injection into GTO is varied by one day. These high gradients
are found near the high-lifetime ridges, as seen in Figure 4.26 (left). Regarding the vertical gradients, the
maximum values are close to 2 years/min, i.e. a change of the lifetime by 2 years when the launch time is
varied by one minute, as shown in Figure 4.26 (right). Note that the gradients could not be computed for all
cases, as the lifetime for the dark-red regions of Figure 4.25 are unknown (they are only known to be more than
10 years). For the narrow high-lifetime ridges, a lower limit for the value of the lifetime gradient was obtained
when there was no more than one adjacent unknown-lifetime pixel. When two adjacent pixels have unknown
lifetimes, nothing can be said about the (minimum) gradient between them. This means that the maximum
lifetimes will be even larger than the aforementioned values, as the lifetimes of the resonance ridges extend
beyond the limit of 10 years.

It is obvious that, if a launch company chooses a point close to a resonance ridge, the actual lifetime may
be anywhere from a few months to several decades, as there are some sources of uncertainty, mainly related
to the computation of atmospheric drag, which will introduce significant errors, especially near resonance-
affected cases. Thus, launch firms should focus on the regions of low gradients, mainly the dark-blue regions
of Figure 4.25.

To sum up, from this preliminary optimisation task it has been concluded that launch companies should
avoid launching near resonance-affected regions because of the extreme sensitivity to initial conditions and
uncertain parameters and, instead, should focus on finding safe areas in which both the lifetime and the
lifetime gradient are small. However, the obtained plot is only valid for a certain body (with fixed mass, cross-
sectional area, CD and CR ) and for a specific initial orbit with perigee altitude of 200 km and inclination of
10 degrees. If other cases want to be studied, the optimisation task would have to be performed again after
changing those parameters. Additionally, a statistical approach will have to be followed to determine whether
the high-lifetime ridges corresponding to cases affected by resonances that can be observed in Figure 4.25
have to be definitely avoided by launch companies or whether they can be accounted into the 10% group of
cases that would not fulfil the requirement of re-entry in less than 25 years with a 90% probability. Taking into
account that generating these plots can take weeks (or years when following the statistical approach), even
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Figure 4.26: Lifetime gradient in the horizontal (left) and vertical (right) directions given per unit of change of the day of injection into
GTO (left) and launch epoch (right). White colour represents unknown gradients.

when using 14 cores non-stop, it seems obvious that other techniques should be used in order to obtain prac-
tical results in feasible times. In the next chapter, a semi-analytical approach that can reduce computation
times significantly is introduced.



5
SEMI-ANALYTICAL APPROACH

Given the large number of propagations that will have to be carried out, it was found that the research ob-
jective cannot be reached using a fully numerical approach in which the state of the orbiting body has to be
calculated several times for every orbital revolution, as this would lead to unfeasible computation times, as
discussed in Sections 4.3.3 and 4.4.

One of the potential solutions to this issue, identified in previous studies [34], is the use of semi-analytical
techniques, in which the mean elements are propagated in place of the osculating elements. Since these
parameters vary much more slowly than e.g. the Cartesian position and velocity vectors, it is possible to use
much larger step-sizes, in the order of one day for GTOs [14], leading to feasible computation times, while
still keeping proper levels of accuracy. In this chapter, the theoretical basis of semi-analytical satellite theory
will be introduced in Section 5.1. Then, in Section 5.2, the use of this theory in the implementation of a new
propagator in Tudat will be discussed, followed by a verification and validation process using data from the
Cowell numerical propagator and satellite-tracking data as reference. Finally, in Section 5.3, the procedure to
reach the research objective will be redefined and an updated feasibility study will be provided based on the
performance of the new semi-analytical propagator. Results will be presented in Chapter 6.

5.1. SEMI-ANALYTICAL SATELLITE THEORY
The use of Keplerian elements instead of Cartesian components when solving the equations of motion (Eq.
(3.9)) has several advantages. Firstly, it provides more insight about the temporal evolution of the orbit.
Secondly, it enables the identification of perturbations with different periods and amplitudes, which can be
treated independently using different techniques in order to optimise the integration process. However, this
comes at a price, since generally the disturbing potentials and accelerations in Eq. (3.9) are given in Carte-
sian components (or in terms of longitude and latitude in the case of the geopotential), meaning that these
functions have to be reformulated in terms of the orbital elements that are being used. Keplerian elements
present singularities for near-circular and near-equatorial orbits, and thus it is typical to use other sets of
parameters during integration, such as the equinoctial elements defined in Eq. (3.2).

Despite their higher complexity, semi-analytical techniques can reduce the computation times of orbital
propagations over several decades by several orders of magnitude [14]. In this section, the Semi-analytical
Satellite Theory (SST) reviewed in [14] will be presented after a short introduction to the basics of averaging
techniques.

5.1.1. FUNDAMENTALS OF AVERAGING
In Figure 5.1, the temporal evolution of a generic orbital element that experiences three types of variations
can be seen. Variations that steadily develop from the initial value are called secular variations. Long-period
variations are superimposed on the secular variation and are oscillatory, with a period in the order of the
period with which other slow-varying orbital elements (such as ω, Ω, or i ) change. Finally, short-period vari-
ations are superimposed on top of long-period variations and have lower amplitude and shorter period, in
the order of the period with which the fast-varying orbital parameter (such as M , f or u) changes, i.e. in the
order of one orbital period [39]. By obtaining analytical expressions for the disturbing potentials and acceler-
ations as a function of the orbital elements, the different terms causing these three different variations can be
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Figure 5.1: Secular, long-period and short-period variations of a generic orbital element [39].

identified and isolated. This is the basis of semi-analytical techniques, in which short-period variations are
removed, enabling the use of a larger step-size and thus a much faster integration. This process is known as
averaging.

To illustrate the basis of the averaging process, the disturbing potential due to the J2-term of the geopo-
tential can be used [39]:

R̃ = 3

2
J2
µR2

a3

( a

r

)3
[

1

3
− 1

2
sin2 i + 1

2
sin2 i cos2(ω+ f )

]
(5.1)

Since Eq. (5.1) has been expressed in terms of Keplerian elements, it is possible to readily identify different
terms causing different types of variations. The J2-term only produces secular variations in ω and Ω (cf. Table
3.1), and thus, when only this perturbation is considered, the only term of the part between square brackets
on the right-hand side of Eq. (5.1) that is not constant is the last one. The two first terms in the bracket
are constant and thus associated with secular variations. The third term depends on the true anomaly, and
thus corresponds to short-period variations. There is no term depending on ω but not on f , which would
correspond to long-period variations.

When only the secular variations and long-period variations of the orbital elements are of interest, short-
period variations are averaged out by taking the mean value of R̃ with respect to M , after using Eqs. (A.6) and
(A.7) to replace f by M . The mean value of a function f (x , y) with respect to y is defined as [67]:

⟨
f
⟩

(x) = 1

2π

π∫
−π

f (x , y)dy (5.2)

where f (x , y) is periodic in y of period 2π, x represents the slow variables and y is a fast variable.
A review of the basics of averaging techniques is presented in [67]. There these techniques are used, in

combination with satellite-tracking data, in order to extract geodynamic parameters from the long-term and
secular variations of mean elements, but it is also mentioned that they can be used for long-term trajectory
propagations. However, this application is not treated in detail in the article. The theory presented there is
given in generic terms, using generic x (slow) and y (fast) variables and generic functions. As a result, the
application of this theory is not limited exclusively to the study of orbital perturbations. By using Eq. (5.2),
the initial value problem

ẋ = ε f (x, y)

ẏ = h(x)+εg (x, y)

x(t0) = x0, y(t0) = y0

(5.3)

where ε has a small value, can be transformed into

ẋ = ε
⟨

f
⟩

(x)

ẏ = h(x)+ε
⟨

g
⟩

(x)
(5.4)

where the dependency on the fast variable y has been removed from the right-hand side of the differential
equations, and where the over-line on x and y denotes that the solution obtained from this system will corre-
spond to the mean (or averaged) values of the variables. Thus, in astrodynamics, the averaged potential can
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be used to find the so-called averaged or mean orbital elements. If the disturbing potential is averaged again,
but with respect to a slow variable, such as ω, then the resulting potential can be used to derive the so-called
doubly-averaged or mean-mean orbital elements, in which only secular variations remain.

The perturbations due to the irregular Earth gravity field, third-body attraction, atmospheric drag and
solar radiation pressure, which are the ones that have to be considered for the propagation of objects in GTO,
can be single-averaged [14]. Then, analytical expressions (typically truncated series) for the short-period
terms can be obtained, while the long-period and secular terms are integrated numerically, using a step-
size several orders of magnitude larger than when no averaging is applied. In this reference, the equinoctial
elements defined in Eq. (3.2) are used. The authors provide an exhaustive analysis in which not only the
results that may be relevant for the implementation of semi-analytical techniques in a propagator are given,
but also the intermediate derivations are included in most cases, for verification purposes. In the following
subsections, the fundamentals of this theory are reported.

5.1.2. EQUATIONS OF AVERAGING
Eq. (3.9) can be written as a set of six first-order differential equations using the equinoctial orbital elements
(a1, . . . , a6) = (a,h,k, p, q,λ), which leads to the so-called variation of parameters (VOP) equations of motion
[14]:

ȧi = nδi 6 + ∂ai

∂ṙ
·q −

6∑
j=1

(ai , a j )
∂R̃

∂a j
(5.5)

where n =
√
µ/a3 is the Keplerian mean motion, q is the sum of the disturbing accelerations, R̃ is the sum of

the disturbing potentials expressed in equinoctial elements, and δi 6 is the Kronecker delta, which is equal to
0 for 1 ≤ i ≤ 5 and 1 for i = 6. The partial derivatives of the equinoctial elements with respect to the velocity
vector and the Poisson brackets (ai , a j ) are given, respectively, in Sections 2.1.7 and 2.1.8 of [14].

From Eq. (5.5) it can be seen that the rate of change of any orbital element has three contributions: the first
term on the right-hand side is the two-body part, which is different from zero only for the mean longitude;
the second term is the Gaussian or non-conservative part; and the last term is the Lagrangian or conservative
part.

These VOP equations of motion can be rewritten in such a way that short-period variations can be treated
independently from long-period and secular variations. The first step is to assume that the osculating (i.e.
non-averaged) elements contain two contributions, using the notation [14]:

âi = ai +ηi (a,h,k, p, q,λ, t ) (5.6)

where the hat denotes osculating elements, ai are the mean elements and ηi are small 2π-period variations.
The short-periodic variations ηi can be written as [14]:

ηi =
∞∑

j=1

[
C j

i cos jλ+S j
i sin jλ

]
(5.7)

which can also be written in terms of the eccentric longitude, F = E +ω+Ω, in order to avoid the infinite
series. Expansions for ηi in terms of F , in terms of the true longitude, L = f +ω+Ω, and in terms of λ and θ,
with θ the perturbing-body phase angle, can be found in [14]. Depending on the type of perturbation, it will

be easier to express the potential or disturbing acceleration in terms of certain parameters. The terms C j
i and

S j
i also depend on the fast parameter that is being used, and can be found in [14] as well.

When the mean elements are being propagated, Eq. (5.5) becomes:

ȧi = nδi 6 + Ai (a1, ..., a5, t ) (5.8)

where Ai are the mean element rates. Note that the right-hand side of the equations does not depend on the
fast variable a6 =λ. This is achieved by averaging the osculating contributions over one orbital revolution:

Ai =
⟨
∂ai

∂ṙ
·q −

6∑
j=1

(ai , a j )
∂R̃

∂a j

⟩
= 1

2π

π∫
−π

(
∂ai

∂ṙ
·q −

6∑
j=1

(ai , a j )
∂R̃

∂a j

)
da6 (5.9)

Note that the osculating elements can be obtained from Eq. (5.6) if the mean elements and the short-
period terms are known. The mean elements can be obtained by integrating Eq. (5.8) using large step-sizes
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if Ai is known, while the short-period terms (up to order j ) can be computed directly from Eq. (5.7) if C j
i

and S j
i are known. Expressions for Ai , C j

i and S j
i for the main perturbations affecting objects in GTO (zonal

terms, some dedicated tesseral terms, third-body attraction, atmospheric drag and radiation pressure with or
without eclipses) are provided in [14]. The equations corresponding to short-period terms are not included
here, as some of them are several pages long and provide little insight on the physical description of the
problem. However, a short review of the mean element rates for each of the relevant perturbations is provided
in the following subsections.

ZONAL TERMS OF THE GEOPOTENTIAL

The mean element rates caused by zonal terms of the geopotential are given by [14]:
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(5.10)

The mean orbital equinoctial elements are used to obtain the values of [14]:

A =p
µa

B =
√

1−h2 −k2

C = 1+p2 +q2

(5.11)

Additionally, the cross-derivative operator is defined as [14]:

U,αβ =α
∂U

∂β
−β

∂U

∂α
(5.12)

The disturbing potential U due to zonal terms is more easily expressed in terms of the direction cosines
α, β and γ rather than using the orbital elements p and q . The direction cosines are obtained from [14]:

α= zB · f

β= zB ·g

γ= zB ·w

(5.13)

where zB is the unit vector from the satellite to the disturbing body for perturbations caused by third bodies,
or the unit vector from the centre of mass to the geographic pole of the disturbing body for perturbations
caused by the central body, such as that due to zonal terms. The vector basis of the equinoctial reference
frame ( f , g , w ) has been introduced in Section 3.1.3 and is given in terms of p and q in Eq. (A.18).
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The derivatives of the disturbing potential caused by zonal terms are given by [14]:
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where N is the maximum degree of the geopotential expansion to be considered, Jn = −Cn0 are the geopo-
tential coefficients and R is the reference radius of the geopotential model being used. The parameter χ is
defined as the reciprocal of B . All the coefficients dependent on n and/or s are given in [14], usually as recur-
sive formulae.

THIRD-BODY ATTRACTION

The mean element rates caused by the gravitational attraction of third bodies are obtained using the same
equations as for zonal terms, i.e. Eq. (5.10).

However, here the direction cosines are computed in a different way, with zB being the unit vector from
the propagated body to the disturbing body, and the disturbing potential U has a different expression, leading
to slightly different equations for its partial derivatives [14]:
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where µ3 and R3 are, respectively, the gravitational parameter and distance to the third body. The value of N3

has to be chosen for each third body depending on the size of the orbit and proximity to the disturbing body.
Later it will be shown that for the Sun and the Moon a value of two can provide sufficiently accurate results
(cf. Section 5.2.3).

ATMOSPHERIC DRAG

Atmospheric drag cannot be expressed as a disturbing potential, and thus the disturbing acceleration q is
used. The expression for this perturbing acceleration was given in Eq. (3.15) in terms of the ballistic coeffi-
cient, atmospheric density and relative velocity.

The contribution of atmospheric drag to the mean element rates is then obtained from [14]:
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which is known as the averaging integral of (atmospheric) drag, although Eq. (5.16) represents actually six
integrals, one for each orbital element. These integrals cannot be solved analytically due to the dependence
of q on the atmospheric density, which is given by an atmospheric model such as NRLMSISE-00. The partial
derivatives of the mean elements ai with respect to the velocity vector ṙ are given in [14].

The limits for the true anomaly in between which drag is relevant are determined by choosing an altitude
limit h above which the effects of drag can be assumed to be negligible. Using this limit, it is possible to
determine the critical true anomaly above which atmospheric drag can be neglected [14]:

f = arccos

 a(1−e2)
RE+h

−1

e

 (5.17)

and, from there, the limits for the averaging integral of drag in terms of true longitude:

L1 =− f +ω+Ω and L2 = f +ω+Ω (5.18)

The values of these integrals can be estimated by using a Gaussian quadrature or through other tech-
niques discussed in Section 5.1.3.

SOLAR RADIATION PRESSURE

The contribution of SRP to the mean element rates can be obtained using Eq. (5.16), using the value for the
disturbing acceleration given by Eq. (3.19) and different limits for the integral, with L1 and L2 indicating the
shadow exit and entry longitudes.

When eclipses are neglected (or when no eclipses are undergone during the current orbital revolution),
the averaging integral of SRP can be solved analytically. In that case, the contribution of SRP to the mean
element rates is obtained using the same expressions as for zonal terms and third-body attraction, i.e. Eq.
(5.10). The partial derivatives of the disturbing function are identical to those for third-body attraction given
by Eq. (5.15), except for the fact that the second summation starts from max(1, s) instead of max(2, s) and the
factor µ3 is replaced by −T , where [14]:

T =CR
WS A

2mc
AU2 (5.19)

with AU the value of 1 AU in metres.

5.1.3. PRACTICAL ASPECTS
Each of the four perturbations that are relevant for the propagation of GTOs are treated independently in
[14], where complex expressions for the mean rates Ai and the short-periodic terms ηi are derived. Only
expressions for a few zonal and tesseral harmonics are given in [14], but expressions up to order and degree
50 can be found in [68]. The mean element rates can then be used to integrate the VOP equations of motion
numerically and obtain the mean elements. Then, the short-periodic terms can be evaluated directly since
they are given in closed analytical form (typically as a truncated series). Adding the short-period terms to the
mean elements as in Eq. (5.6), the osculating elements can be obtained at the integration steps.

When the osculating elements are needed at some epoch for which the mean elements are not available
(because the time of interest is not a multiple of the integration step-size), one has to resort to interpolation
techniques. However, the goal of this project is not to predict accurately what the state of an orbiting body
at a given epoch in the future will be, but to determine how long it will take for that object to reach re-entry
altitude. Thus, when the integration is finished because the object has just begun to re-enter, it is pointless
to use interpolation techniques or to evaluate the short-periodic terms ηi , since the expressions given in [14]
are not valid for re-entry conditions. Nevertheless, if interpolation techniques are needed in future research
following this thesis, a few techniques can be found in [14].

Another relevant aspect when using the theory presented in [14] for propagation of GTOs is the choice of
the integration step-size to be used when solving Eq. (5.5). This parameter cannot be chosen freely: there is
an upper limit imposed by the desired integration accuracy and a lower limit for ensuring convergence of the
averaging equations. Calling T̃ the minimum period of the perturbations included in the averaged equations
of motion, the recommended rough range for the integrator step-size κ is [14]:

T̃

100
≤ κ≤ T̃

8
(5.20)
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Since the mean element rates depend on slowly varying quantities, step-sizes of a day or more can usually
be used [14], even when the orbital period of a GTO object is about 10.5 hours.

In addition to single-averaging techniques, the possibility of doubly-averaging the equation of motion to
obtain mean-mean elements, in which only the secular terms remain, is also discussed in [14]. Although this
can reduce computation times even further, it would also have an impact on the accuracy of the propaga-
tion and, moreover, not all the perturbations that are relevant for the propagation of GTOs can be doubly-
averaged. A perturbation is said to be averagable if the application of the averaging operator (cf. Eq. (5.2))
leads to its decomposition in slowly-varying averaged rates and small short-period variations. Although the
averaging operator can be applied as many times as desired, in some cases the resulting terms will have to
be integrated with a very similar integration step-size, and then the perturbation is said to be non-averagable
(or non-doubly-averagable if it has already been averaged once). Only central-body gravitational sectoral and
tesseral harmonics and third-body perturbations caused by bodies orbiting the central body can be doubly-
averaged. Thus, this is not considered further in this thesis.

Finally, although the perturbations that are relevant in GTOs can be generally averaged, under certain
conditions not even the single-averaging is possible due to large second-order effects. For instance, third-
body attraction becomes non-averagable when the satellite comes too close to the third body or when it
leaves the sphere of influence of the central body, whilst atmospheric drag cannot be averaged during the
terminal stage of reentry. GTOs will not encounter these conditions (propagation will be terminated at the
beginning of re-entry), and thus the theory presented in [14] can be used for the semi-analytical propagation
of GTOs under all foreseeable circumstances.

5.2. SST PROPAGATOR
A new propagator based on the theory described in Section 5.1 and making use of the equations provided in
[14] was developed during this thesis. The implementation of this propagator in Tudat will be described in
Section 5.2.1, not going into the details of C++ code or the interfacing with the rest of the Tudat’s libraries, but
focusing on the aspects that were implemented in a different way than proposed in [14]. Then, the perfor-
mance of the obtained propagator will be tested against the results provided by the verified Cowell propagator
in Section 5.2.2, in order to assess both its accuracy and performance.

5.2.1. IMPLEMENTATION IN TUDAT
Eqs. (5.10) and (5.16) giving the mean element rates for each of the relevant perturbations, namely zonal
terms, third-body attraction, atmospheric drag and SRP, were implemented into Tudat. Those for tesseral
terms were not included, as it has been found that the propagations of GTOs can be performed accurately
including just zonal terms up to degree 7 (cf. Section 4.1.2). In the case of SRP, two implementations were
added: one in which occultations of the satellite by Earth’s shadow are considered, in which the averaging
integral has to be solved numerically; and one in which occultations are neglected, which leads to a closed
analytical solution for the averaging integral. Depending on whether the user chooses to include occultations
in the acceleration model or not, one of the two implementations will be used.

AVERAGING INTEGRAL

Since the averaging integral of atmospheric drag and SRP when occultations are considered cannot be solved
analytically, a numerical quadrature technique was implemented into Tudat in order to be able to get an
estimate of the value of this integral. The chosen method was the Gaussian Quadrature, following the recom-
mendations of [14].

A quadrature method approximates an integral by a weighed sum of the values of the integrand evaluated
at different points of the integration interval, called nodes:∫ 1

−1
f (ξ)dξ≈

n∑
i=1

wi f (ξi ), −1 ≤ ξ1 ≤ ξ2 ≤ ...ξn ≤ 1 (5.21)

where wi are the weight factors and ξi the nodes or abscissae. As the number of nodes n increases, the error
made in Eq. (5.21) tends to become smaller.

Note that the integral in Eq. (5.21) must have integration limits −1 and 1, but this is not the case for the
averaging integrals, which usually have limits −π and π. However, an integral with arbitrary integration limits
[a,b] can be transformed into ∫ b

a
f (x)d x = b −a

2

∫ 1

−1
f (ξ)dξ (5.22)
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by introducing a change of variable

ξ= 2x − (a +b)

b −a
(5.23)

It was found that the accuracy of the quadrature for solving the averaging integral of drag is higher for odd
values of n. When n is odd, the node ξ= 0 is included, which means that drag is evaluated at perigee, where
it is largest and thus most relevant. When n is chosen even, atmospheric drag is not assessed at perigee,
introducing a significant error in the estimated value, as can be seen in Figure 5.2 (left). Thus, only odd values
will be used for n in the future in the case of atmospheric drag. In the case of SRP, any value (odd or even) can
be used, getting more accurate results as more nodes are considered.

One of the tasks taking most of the computation time during propagation is indeed the evaluation of
the integral of drag, which represents about 60-70% of the total computation time per integration step when
occultations are neglected and a value of 7 or 9 is used for n. This means that finding a way to estimate
the value of the averaging integral faster while maintaining accuracy could potentially reduce the overall
computation times significantly. To that end, an estimation procedure which only evaluates drag at one node
(perigee) was developed. This procedure is explained in the following subsection.

EVALUATION OF ATMOSPHERIC DRAG AT PERIGEE ONLY

The first step in the attempt to generate a procedure capable of estimating the average effect of atmospheric
drag on the mean elements over one orbital revolution by evaluating it just at one node (perigee) consists
in determining a reference (accurate) description for a representative GTO to which the new method can be
compared. This has been achieved by solving the averaging integral of drag using a Gaussian quadrature with
an increasing (odd) number of nodes, until convergence.

As seen in Figure 5.2 (right), convergence has not been reached yet for a number of nodes equal to 7 or
9. However, for 11, 13, 15 and 17 nodes the orbital evolution is very similar. In fact, the value for the lifetime
when using 17 nodes lies between those obtained when using 13 nodes and 15 nodes. Thus, it was decided
that the target orbital evolution to be replicated by the single-node technique will be that of 17 nodes.

Figure 5.2: Evolution of the apogee and perigee altitudes of a GTO as a function of the number of nodes for solving the averaging integral
of drag, considering both odd and even numbers (left) and only odd numbers (right). The results of the numerical approach have been
included as a reference.

The next step was to determine the relationship, for every integration step, between the contribution of
atmospheric drag to the mean element rates computed using 17 nodes for the Gaussian quadrature, and the
value that would have been obtained if it had been assumed that atmospheric drag is constant and equal to
the value at perigee during the part of the orbit in which drag cannot be neglected. In both cases, drag was
assumed to be zero for altitudes above h = 600 km. Using Eqs. (5.17) and (5.18), the limits for the averaging
integral of drag can be obtained at each integration step throughout the propagation.

The following ratio is introduced:

r17/1 = |Ai |n=17

|Ai |n=1
(5.24)

where |Ai |n=17 is the norm of the mean element rates vector obtained by using 17 nodes for the Gaussian
quadrature and and |Ai |n=1 is the corresponding norm when only one node (perigee) has been used. Note
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that, when calculating the norm of the 6-element vectors, the first element is first divided by the semi-major
axis.

As expected, the value of r17/1 is smaller than one, since for n = 1 drag has been assumed to have equal
strength from L1 to L2 (maximum strength equal to that of perigee) while for n = 17 that value changes
through L1 to L2. For a representative GTO propagated for 10 years, this ratio can be seen in Figure 5.3. If
this signal can be easily recreated (i.e. with low computational effort), then the mean element rates given by
the averaging integral of drag can be estimated to be:

Ai ≈ r17/1 × [Ai ]n=1 (5.25)

where [Ai ]n=1 can be computed relatively quickly (about 17 times faster than when using 17 nodes for the
Gaussian quadrature).

Figure 5.3: Evolution over a period of 10 years, for a representative GTO, of the ratio between the normalised mean element rates caused
by atmospheric drag when using a Gaussian quadrature with 17 nodes and a single evaluation at perigee to estimate the value of the
averaging integral of drag.

The problem consists thus in finding a way to recreate the signal r17/1 without large computational effort.
Looking at Figure 5.3, one can identify two signals: one with a shorter period of about 10.5 months (note the
relative maxima approximately every 10–11 months) and a signal with a longer period of about a decade. It
was seen that there is a significant correlation between the value of the instantaneous perigee altitude and
the signal in Figure 5.3, as can be seen in Figure 5.4 (left). The location of the relative minima and maxima
seems to match to some extent. Using a polynomial fit, the following relationship was obtained:

r17/1 ≈ 3.73×10−7hp +0.207 (5.26)

with the perigee altitude hp in metres. For this orbit, this fit has an R2 of 0.30. Although it is better than
a constant fit (using just the mean value of r 17/1 = 0.302 would lead to R2 = 0), it is still far from being an
accurate fit, with values of R2 close to e.g. 0.9.

The next step was to include also the value of the solar activity index F10.7 in the fit, as this variable has
a period of about 11 years, similar to the period of the long signal identified in r17/1. The following fit was
tested:

r17/1 ≈
[(

3.73×10−7hp +0.207
)

(F10.7 − c)d
]

A+B (5.27)

The values A and B of the fit were computed for several combinations of the values of c and d , and the
R2 value was computed for each case, then the best one selected. It was found that the best combination was
(c,d) = (45.3,0.07), which leads, after simplifying, to the following expression:

r17/1 ≈
[(

2.74×10−7hp +0.152
)

(F10.7 −45.3)0.07]+0.011 (5.28)

which, for this orbit, leads to an R2 value of 0.56, significantly better as can be seen in Figure 5.4 (right).
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Figure 5.4: Fit of the r17/1 signal using the instantaneous values of the perigee altitude exclusively (left) and in combination with the
solar activity index F10.7 (right).

At this point, it is still not known whether this fit is good enough. Thus, in Section 5.2.2, the new SST
propagator will be tested with different settings, one of them being the use of a large number of nodes for the
Gaussian quadrature or a single node together with this fit to estimate the average integral of drag. The two
cases will be compared, taking into account aspects such as accuracy and computation time.

SHORT-PERIOD TERMS

It was decided that the short-period terms would not be implemented in Tudat at this point. First, the new
propagator without the inclusion of short-period terms will be compared to the results of the numerical ap-
proach and, if it is deemed to already provide sufficient accuracy, the short-period terms will be left out.

However, the short-period terms are not only necessary in order to convert the mean elements obtained
from the integration to osculating elements. They are also needed before starting the integration in order to
transform the initial state provided by the user (typically in osculating elements) to mean elements, which are
the elements that are propagated when following semi-analytical techniques. If this step is not performed,
and the initial mean elements are assumed to coincide with the initial osculating elements, this relatively
small initial error in the state may get bigger over time as it builds up after every integration step and lead to
significant errors.

Thus, it was decided that the short-period effects caused by the zonal term J2 would be implemented, as it
is the largest contributor to the short-period terms [39]. In the current implementation of the SST propagator,
those terms are only used to convert the initial elements from osculating to mean, but are not used to convert
the mean elements obtained from the integration to osculating elements. Thus, the results provided by the
SST propagator correspond to mean elements.

It has been confirmed that, indeed, the zonal term J2 is the one causing the largest short-period effects.
An orbit has been propagated using the SST propagator and compared to the Cowell results, both for the
case in which the conversion from initial osculating to mean elements is skipped and the case in which it is
performed just by using the contribution of J2. As seen in Figure 5.5, if this conversion is not performed, the
initial elements coincide for the two cases (Cowell and SST) but the orbital evolutions start to diverge, even
only after one month. When the initial conversion from osculating to mean elements is performed, the mean
orbital evolution follows the results of the Cowell method more accurately.

ECLIPSES

Before starting to use the SST propagator to generate results, it was necessary to study in more detail whether
occultations of the satellite by Earth’s shadow could be neglected during the assessment of SRP. If so, the SST
propagator would be much faster, since the averaging integral to compute the mean element rates due to SRP
would have an analytical solution.

In Section 4.1.2 it was found that eclipses can be neglected unless the orbit of interest is at (or near to)
conditions leading to solar resonance. However, later in Section 4.4 it was concluded that the lifetime near
solar resonance conditions could not be predicted accurately due to the extremely large sensitivity around
those regions. Thus, it was decided that the focus would be put on the regions that are free of resonances.
It is still convenient to know where the resonance ridges are approximately, but whether the lifetime will
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Figure 5.5: Temporal evolution of the mean apogee and perigee altitudes of a GTO propagated using the SST propagator without the use
of short-period terms (dash-dotted line) and using the short-period terms due to J2 to convert the initial elements from osculating to
mean (dashed line), compared to the osculating apogee and perigee altitudes given by the Cowell propagator (solid line).

be 5 or 50 years at those regions is impossible to know due to uncertainties introduced mainly by the body
cross-sectional area and the atmospheric model. Thus, further investigations were carried out in order to
determine whether eclipses can be completely neglected in the acceleration model. If the location of the
resonance regions does not change, then it is safe to neglect eclipses even though it will introduce some
uncertainty in the value of the lifetime near resonance regions. But since these regions are to be avoided, if
the model can predict their location correctly, then it would be sufficient.

Still using the Cowell propagator and the fully numerical approach, a region of the domain in Figure 4.25
was propagated again but ignoring eclipses in this case. The lifetimes for these two cases (considering and
neglecting eclipses) can be found in Figure B.3. Neglecting eclipses does not change the shape of the plot or
the location of the resonance ridges. Since the differences between the two plots are difficult to see with the
naked eye, the relative errors introduced in the lifetime when neglecting eclipses is provided in Figure 5.6.
As anticipated in Figure 4.10, the error introduced in the value of the lifetime by neglecteing eclipses near
resonance regions can be close to 7%. However, in most of the plot (including all resonance-free regions)
the introduced error is virtually 0%. Note that in the regions in which the lifetime was 10 years because the
propagation was stopped before re-entry, the actual lifetime is not known and thus the relative errors cannot
be computed. Those cases are represented with white (transparent) colour.

From the results provided here, it can be concluded that eclipses can be neglected and, consequently,
all the results generated with the SST propagator (including those for verification and validation) will be
obtained with the propagator configured to exclude eclipses from the acceleration model, which makes it
significantly faster in terms of computation times.

5.2.2. VERIFICATION AND VALIDATION
The new SST propagator has been verified by comparing the results that it generates to the ones obtained by
using the Cowell propagator following the fully numerical approach described in Chapter 4. Additionally, it
has been validated using external sources to ensure the validity of the generated results, by comparing the
results of simulations carried out with this propagator to actual satellite-tracking data of a few representative
objects resulting from GEO launches.

VERIFICATION

Initially, the errors introduced in the value of the lifetime have been studied in the whole domain (a range of 1
year for the epoch of injection into GTO and a range of 360 degrees for the initial RAAN), although previously
it has been said that the focus will be put exclusively on the resonance-free regions. However, it was deemed
interesting to know how accurately the SST can describe the lifetime near resonance regions, even though
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Figure 5.6: Relative errors in the lifetime of a satellite as a function of epoch of injection into GTO and initial RAAN introduced when
neglecting eclipses. White colour represents unknown errors.

the important thing is whether it is able to predict the location of those regions rather than the lifetimes
within them. The lifetimes for a representative GTO propagated using the Cowell and SST propagators can be
found in Figure B.4. Again, since the shape of the plot does not change significantly and the resonance ridges
remain in the same regions, the differences are difficult to spot with the naked eye. Thus, the relative errors
are provided in Figure 5.7.

Figure 5.7: Relative errors in the lifetime of a satellite as a function of epoch of injection into GTO and initial RAAN introduced when
using the SST propagator. The results of the Cowell propagator have been taken as reference. White colour represents unknown errors.

In this case, the introduced errors are much more significant, due to the fact that the mean elements,
rather than the osculating elements, are being propagated, leading to slightly different orbital evolutions,
which can have a big influence on the value of the lifetime for orbits undergoing solar resonance, which are
very sensitive to initial conditions and to the mathematical description of the perturbation model. In some
cases (represented with dark green in Figure 5.7), the lifetime predicted by the SST propagator can be more
than twice the value of that predicted by the Cowell propagator, leading thus to a conservative prediction
in which the actual lifetime will be probably shorter than the value given by the SST propagator. In other
cases (represented with red), SST provides underestimations, so the predicted lifetime can be less than half
the actual value. However, these big errors are found mostly near the resonance ridges; in the regions corre-
sponding to the dark blue areas of Figure 4.25, i.e. the resonance-free regions, the errors are much smaller.
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It is clear that the SST propagator (without the inclusion of the short-period terms) is not accurate enough
to predict the lifetime of GTOs near resonance regions. However, this was also the case with the Cowell prop-
agator, due to the high sensitivity and the existence of other sources of uncertainty, such as the body cross-
sectional area and the value of the atmospheric density or the errors in the predictions for solar activity levels.
Thus, from now on, the focus will be put on the resonance-free regions in order to determine whether the SST
propagator can provide sufficient accuracy to predict the lifetimes therein.

The relative errors in the resonance-free regions (defined in the same way throughout this section, namely
those combinations of epoch of injection into GTO and initial RAAN leading to a lifetime of less than one year
and to a lifetime gradient of less than 0.25 years per pixel in all directions) can be seen in Figure 5.8. Note
that, in those regions, the SST propagator provides mostly underestimations for the lifetime (as much as
12% shorter than Cowell), while as one gets closer to the resonance ridges, the propagator tends to provide
overestimations (of up to 30% with respect to the Cowell results). The root mean square (RMS) error in the
resonance-free regions is 6.6%. This is deemed to be acceptable, since 15% uncertainty in the atmospheric
density alone can lead to uncertainties in the lifetime of about 3% in resonance-free regions, as discussed
in Section 4.1.2. This holds for propagations in the past using solar activity indices obtained from measure-
ments. When performing propagations in the future, this error will be larger as the predictions for solar ac-
tivity levels can be significantly off given the variability of the solar activity maxima during the last cycles (cf.
Figure 3.8). If one adds other sources of uncertainty, such as the satellite attitude (leading to different body
cross-sectional areas) or initial conditions, the error of 6.6% introduced by the SST will probably be lower
than the uncertainty obtained when using a very accurate propagator, such as Cowell with short integration
step-sizes.

Figure 5.8: Relative errors of the SST propagator in the lifetime of a satellite for combinations of the epoch of injection into GTO and
initial RAAN leading to resonance-free orbits. The results of the Cowell propagator have been taken as reference.

Another important aspect in the verification of the SST propagator is to study how accurately it can predict
the optimum launch time (or equivalently initial RAAN) leading to the shortest lifetime for a given day. To do
so, the local minima have been found for every day of the year (of for every two days, depending on the
resolution used for the epoch of injection into GTO), and this has been done for every resonance-free region.
Thus, for some days, there will be two local minima (i.e. two optimum launch epochs), while for others there
will be just one or none. These optimum initial RAANs are provided in Figure 5.9 for the Cowell and SST
propagators.

As can be seen from Figure 5.9, the optimum RAANs do not match exactly for the Cowell and SST propa-
gators. However, their location is relatively similar and, from Figure 5.8, one can expect the errors in the value
of the lifetime at the optima to be no larger than 12%. Given that, within the resonance-free regions, the life-
time changes smoothly and by small amounts, the error introduced by SST when predicting the conditions
leading to minimum lifetime is deemed to be acceptable.

The RMS error when only the optima are considered (instead of the whole resonance-free regions) is
about 7.0% for the studied orbits. The RMS error in the predicted initial RAANs leading to minimum lifetime
is about 2.6 deg or, equivalently, 10.5 minutes in terms of launch time. This means that the SST propagator can
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Figure 5.9: Combinations of epoch of injection into GTO and initial RAAN leading to minimum lifetime in the resonance-free regions
using the Cowell propagator (left) and the SST propagator (right), indicated with white dots.

predict the optimum launch time for a given day with an accuracy of 10.5 minutes (compared to the Cowell
propagator), which is deemed to be sufficient taking into account that there are other sources of uncertainty
that may introduces larger errors.

Since the shape of the two plots in Figure 5.9 is not exactly the same, there are some non-matching optima.
For instance, for injection into GTO on September 22nd, the Cowell propagator leads to an optimum at about
245 degrees, while the SST propagator yields no optimum for this day as all the cases fall outside resonance-
free regions. This only happens for a few cases near the boundaries of resonance-free regions. The percentage
of matching optima can be defined quantitatively as:

% matching optima = 2×number of matching optima

number of optima Cowell+number of optima SST
×100% (5.29)

For the cases studied in this subsection, the percentage of matching optima is 99.2%. For computing
the RMS errors provided previously referring to optimum conditions, only the matching optima have been
taken into account, since when one of the two (either the reference Cowell optimum or the SST optimum) is
missing, it is not possible to compute the error.

VALIDATION

As was discussed in Chapter 2, most GTO objects are depleted rocket bodies and thus they do not carry GPS
antennae for determining their location nor communication antennae for transmitting such data back to
Earth. Thus, it will be necessary to resort to satellite-tracking data in order to validate the propagator used to
generate the relevant results for this Master thesis.

One possibility is the use of two-line elements (TLE) data. Two-line elements is a widely used orbital data
encoding format [69]. The set of orbital parameters used in this standard is (i ,Ω,e,ω, M ,n). This information
is provided in the second line of the data. In the first line, other information, such as identifier, international
designator or the epoch for which the information holds, is given, as can be seen in Figure 5.10. In some
cases, an additional line is included to specify the name of the satellite the following two lines refer to.

1 22659U 93032  C 93134.59913641  .00020012 +18499-4 +41245-3 0 00023
2 22659 034.9228 025.6030 6058311 194.2890 135.1654 04.03715006000086
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Figure 5.10: Description of the data fields of a two-line element set [70].
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The US Strategic Command is the only organisation that maintains a publicly available catalog of near-
Earth objects [71]. They provide an application programming interface (API) that can be freely accessed by
identified users to request satellite-tracking data. Queries can be built using a graphic interface provided on
their website [38], in which it is possible to specify a set of filters, sorting settings, etc. to narrow down the
search results. This generates a URL that can be accessed from programming platforms such as MATLAB to
download plain text data.

Using this tool, tracking data of GTO objects resulting from recent GEO launches were retrieved for vali-
dation of the SST propagator. The TLEs of the tracked objects described in Table 5.1 were obtained.

Table 5.1: Characteristics of three GTO objects resulting from GEO launches using a Falcon 9 v1.1 used for validation of the SST propa-
gator.

Satellite Launch date Last TLE
Tracked

object ID

Initial
perigee
altitude

Initial
apogee
altitude

Reference

Thaicom 6 6 Jan 2014
29 May 2014
(re-entered)

39501 296 km 89 636 km [72]

AsiaSat 8 5 Aug 2014
1 Jun 2017

(still on orbit)
40108 165 km 35 723 km [73]

TurkmenSat 1 27 Apr 2015
1 Jun 2017

(still on orbit)
40618 180 km 36 600 km [74]

The TLEs of the objects in Table 5.1 were retrieved and used to plot the temporal evolution of the Keplerian
components, as seen in Figure 5.11, where the tracking data from the object with ID 40108 is shown as a solid
line. Then, an object with the same characteristics and initial state was propagated from the date of the
first available TLE using the SST propagator, leading to the evolution shown as a dashed line in Figure 5.11.
However, not all the data needed for the propagation could be inferred from the TLEs. Although the ballistic
coefficient can be computed from the BSTAR term, the values of the mass, cross-sectional area and drag
coefficient cannot be determined individually. For a propagation in which SRP is neglected, it is not necessary
to know the values of each of these parameters separately. However, in the SST propagator SRP is being
considered, so a cross-sectional area (of 15 m2), drag coefficient (of 2.2) and radiation pressure coefficient
(of 1.5) had to be assumed. Then, the mass of the satellite could be computed from the value of BSTAR. In
the propagation using the SST propagator, the cross-sectional area is assumed to be constant, but this is not
the case for a tumbling object, leading to different values of BSTAR for each TLE. Thus, a mean value was
computed from the different TLEs in order to be able to determine a constant mass for the body which is
compatible with the assumption that the cross-sectional area stays constant.

As can be seen, the Keplerian components obtained from the SST-based propagator follow closely those
from tracking data. There are, however, some noticeable deviations, especially for the inclination, although
in this case it can be seen that there is some noise in the signal retrieved from TLEs, probably due to uncer-
tainties in the estimation process. Thus, one cannot expect the two signals to match precisely (recall that
there are some sources of uncertainty in the simulation such as the satellite attitude and atmosphere model
that can introduce significant errors).

The same process was repeated for the two other objects in Table 5.1. The results can be found in Figures
B.5 and B.6. In the later one, an outlier TLE can be clearly identified right after the launch date, highlighting
the fact that satellite-tracking data should be taken as a 100% reliable data source, although it does allow to
conclude that the SST propagator is able to describe the evolution of objects in GTO with proper accuracy.

5.2.3. TUNING AND BENCHMARKING

The SST propagator can be tuned by changing the value of a few parameters, namely:

• The number of terms in the series expansion for the mean element rates caused by the Sun’s gravity, by
changing the value of NSun .

• The number of terms in the series expansion for the mean element rates caused by the Moon’s gravity,
by changing the value of NMoon .
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Figure 5.11: Evolution of the Keplerian components of the upper stage of the Falcon 9 rocket (CATID 40108) used to launch AsiaSat 8
obtained from tracking data [38] (solid line) and simulated using the SST propagator (dashed line).

• The number of terms in the series expansion for the mean element rates caused by SRP when eclipses
are neglected, by changing the value of NSRP .

• The number of nodes in the Gaussian quadrature for solving the averaging integral of drag, Ndr ag .

• Whether to use a fit based on perigee altitude exclusively or in combination with the solar activity index
when the averaging integral of drag is estimated by evaluating just the perigee node (cf. Section 5.2.1).

• The altitude above which atmospheric drag is assumed to be negligible, h.

• Whether short-period terms due to J2 are used for converting the initial osculating elements to mean
elements.

• The step-size of the integrator, κ.

A few sensitivity analyses were carried out in order to fix the values of some of these parameters. Namely, it
was found that NSun , NMoon and NSRP can be set to 2. Using a value of 1 would reduce computation times but
leaves out some relevant terms that cannot be neglected. Using a value larger than 2 increases computation
times but the results do not change significantly.

Additionally, it was observed that h could be set anywhere above 300 km, leading to very similar results.
Choosing a large value (e.g. 900 km) leads to more inaccurate results if the number of nodes in the Gaussian
quadrature is not increased accordingly (i.e. neglecting drag above 900 km and using 7 nodes leads to worse
results than neglecting drag above 300 km and using also 7 nodes). Basically, the ratio between the percentage
of the orbit in which drag is not neglected and the number of nodes for the integral of drag has to remain
roughly constant if one wants accuracy to be maintained. This means that choosing a large h requires a large
number of nodes Ndr ag and thus more computation time. If was found that some combinations of (h, Ndr ag )
leading to virtually identical results are (500 km,11), (600 km,13), (700 km,15) or (800 km,17).

When trying to estimate the averaging integral of drag by evaluating only the central node (i.e. the con-
ditions at perigee), a fit has to be performed before this can be achieved using the perigee altitude (and solar
activity index). In this fit, the reference signal to be reproduced is obtained once (i.e. this operation does
not have to be repeated for future propagations once the parameters of the fit have been obtained) by fixing
the values for h and Ndr ag . The fits discussed in Section 5.2.1 were performed using propagation data ob-

tained with h = 600 km and Ndr ag = 17. This is not optimum in terms of computation times (13 nodes would
have sufficed for that altitude limit) but yields accurate results that can be used to obtain the values of the
parameters of the fit.
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Since several configurations of the SST propagator were going to be tested, it was deemed reasonable to
fix the value of the altitude limit at 600 km for all the configurations, since this is the value for which Eqs.
(5.26) and (5.28) hold. In this way, the comparison between the different propagator settings is performed
with consistent values of h.

The other parameters were varied to generate different propagator configuration settings. The procedure
described in Section 5.2.2 was repeated for each of these configurations, leading to different values for the
RMS error for the lifetime at the resonance-free regions and for the lifetime and the RAAN at the local minima.
Moreover, each of the propagator settings led to different computation times, which is a key parameter to take
into account, especially for configurations leading to similar accuracies.

Regarding the integrator step-size, a value of one day was used in most cases, as recommended by previ-
ous studies [14, 34, 44]. In principle, the value must be smaller than one eighth of the period of the perturba-
tion with the shortest period on the mean element rates (cf. Eq. (5.20)). In the case of GTOs, the perturbation
with shortest period on the mean elements is the Moon, with a period of about 14 days. This leads to a maxi-
mum value for the integrator step-size of 1.75 days. Using larger values would lead to significant errors.

The possibility of using a variable step-size integrator (e.g. RK78) was also studied. However, the im-
provement seen when using an RK78 over an RK4 with the Cowell propagation is not seen in this case. In
the numerical propagation, the state derivative is evaluated several times per orbital revolution. Given the
large eccentricity, the dynamics are much faster at perigee than at apogee, so the use of a variable step-size is
advantageous in that case. However, in the semi-analytical propagation, the mean element rates (instead of
the osculating rates) are propagated. These rates change slowly and at a slowly-varying rate, so a simple RK4
with constant step-size can provide the same accuracy and be faster than an RK78. Thus, the results of all the
propagations carried out with the SST propagator presented in this report correspond to an RK4 integrator.

After this discussion on the different parameters that can be modified to tune the SST propagator, a
benchmarking of eight different configurations is provided. The results of one of these configurations (the
one used to generate the results for verification and validation purposes) were already introduced in Section
5.2.2. The settings used there were: NSun = NMoon = NSRP = 2, Ndr ag = 7, h = 600 km, short-period terms
due to J2 not used (i.e. the initial osculating elements were assumed to be mean elements) and integrator
step-size κ = 1 day. In the other seven configurations, the same values for NSun , NMoon , NSRP and h were
used. Additionally, eclipses were neglected in all cases. The other parameters were changed according to the
configurations described in Table 5.2, leading to the results provided in Table 5.3 and visualised in Figure 5.12.

Table 5.2: Settings for the different tested configurations of the SST propagator.

Configuration Ndrag Use of short-period terms due to J2 Integrator step-size [days]

#1 7 No 1.0
#2 7 Yes 1.0
#3 7 Yes 1.5
#4 7 Yes 2.0
#5 7 Yes 2.5
#6 7 Yes 3.0
#7 1* Yes 1.0
#8 1** Yes 1.0

* The effect of drag has been estimated by evaluating it at perigee and using Eq. (5.26).
** The effect of drag has been estimated by evaluating it at perigee and using Eq. (5.28).

As can be seen in Table 5.3, computation times are much shorter when using the SST propagator than
when using the Cowell propagator, as could be expected from the fact that the integrator step-size is signif-
icantly larger. For instance, the SST propagator was able to generate the results shown in Figure 5.9 (right)
in about 4 hours, while the Cowell propagator took almost 4 days to solve the same problem, leading to the
results shown in Figure 5.9 (left). Thus, the SST propagator is about 24 times faster when ignoring all short-
period effects and using 7 nodes for the averaging integral of drag and a fixed step-size of 1 day for the RK4
integrator. According to the obtained results, the propagator becomes slightly faster when the J2 terms are
used to convert the initial elements from osculating to mean, although this should not be the case as one
additional operation is being performed at the beginning of each propagation. In this case, configuration
#2 should be slightly (almost unnoticeably) slower than #1. However, it is difficult to measure computation
times accurately, as they depend on some uncontrolled factors, such as the availability of resources on the
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Table 5.3: Results of the benchmarking on the different configurations for the SST propagator. The best-performing configuration for
each column is highlighted in boldface.

Config.
RMS error of

lifetime at resonance-
free regions [days]

Percentage
of matching

optima

RMS error of
lifetime at

optima [days]

RMS error of
launch time at

optima [minutes]

Computation
time

[SST/Cowell]

#1 10.0 (6.6%) 99.2% 9.5 (7.0%) 10.5 1/24
#2 10.7 (6.4%) 99.4% 8.9 (5.9%) 11.7 1/25
#3 14.3 (9.5%) 99.6% 15.0 (10.7%) 14.5 1/33
#4 21.6 (13.7%) 98.6% 22.0 (14.7%) 19.0 1/42
#5 27.6 (17.0%) 98.6% 29.2 (18.7%) 22.0 1/48
#6 32.6 (19.5%) 98.6% 31.6 (20.4%) 25.7 1/53
#7 8.7 (5.9%) 99.0% 8.4 (6.6%) 12.3 1/45
#8 8.6 (5.8%) 98.6% 8.4 (6.6%) 12.3 1/44

Figure 5.12: Computation times and RMS errors of the tested SST propagator configurations compared to the Cowell propagator.

computer in which the propagations are being run. Although in all cases the number of concurrent processes
was limited to 14 and the server can handle up to 56 simultaneous processes at full CPU usage, it is possible
that other background processes or other user’s tasks would have slowed down some of the propagations car-
ried out during configuration #1. In any case, the difference between 1/24 and 1/25 is so small that it can be
considered to be non-significant.

However, the difference in computation times does become significant when the integrator’s step-size is
increased. When using step-sizes of 2.5 or 3 days, the propagator speed can double with respect to the case
in which a value of 1 day is used. However, as the step-size increases, so does the uncertainty in the results.
For instance, for step-sizes between 1.5 and 3.5 days, the RMS error of the lifetime at optima lies between
10 and 20%, while it was 6-7% for a step-size of 1 day. Thus, following the recommendations of previous
studies and after observing these results, it has been decided to fix the integrator step-size at 1 day for all
future propagations using the SST propagator, as it can provide proper accuracy and still be several times
faster than the Cowell propagator.

Regarding the percentage of matching optima (cf. Eq. (5.29)), which can be seen as a measurement of how
accurately the shape of the plot obtained by the SST propagator matches that of the Cowell propagator, all
the configurations provide very similar results (between 98.5 and 99.5%), so the choice of the best propagator
configuration should not be made based on this parameter.

It can be seen that configurations #7 and #8 are very similar, since the improvement in terms of RMS error
is very small and the computation times are practically identical. Thus, if one of the two is to be chosen as the
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best configuration, which would be #8, as it is slightly more accurate when predicting the lifetime of objects
in orbits at resonance-free regions.

Configuration #8 is much faster than #1 or #2. By estimating the effects of atmospheric drag using only
the value at perigee and a fit based on the current perigee altitude and solar activity levels, it was possible to
reduce computation times almost by 50% with respect to the case in which the averaging integral of drag is
solved using a Gaussian quadrature with 7 nodes. This leads to a configuration of the SST propagator that is
about 45 times faster than the Cowell propagator. However, this comes at a small decrease in accuracy. For
instance, configuration #1 predicted the optima launch times with an error of 10.5 minutes, and configuration
#2 predicted the lifetime of those optimum cases with a relative error of 5.9%. For configuration #8, these
errors are 12.3 minutes and 6.6%, respectively. However, the absolute RMS error of the lifetime at optima is
smallest for #8. The fact that a smaller absolute error can lead to a larger relative error is explained by the
fact that #8 has more or less the same relative errors for all the cases (6.6%) while #2 describes short-lifetime
orbits more accurately (leading to small relative errors) and long-lifetime orbits less accurately (leading to
large absolute errors but still small relative errors, as the difference is compared to a long-lifetime value).

The final aspect to take into account is how accurately the different configurations can describe the life-
time at resonance-free regions. Configuration #8 is the best in this aspect; that, together with the fact that it
can provide the lowest absolute error for the optimum lifetime and given that is is much faster than #1 or #2,
makes it reasonable to recommend the use of this configuration in future propagations for the generation of
additional results. All the plots provided in Chapters 6 and 7 have been obtained using the results generated
by the SST propagator with configuration #8.

5.3. PROBLEM REDEFINITION
Now that the new SST propagator has been validated and tuned, and with a tool that is capable of generating
results about 45 times faster than the Cowell propagator while still providing proper accuracy for the regions
of interest, it is possible to re-define the tasks that have to be carried out in order to reach the research objec-
tive.

The answer to the question on whether orbital perturbations can be exploited to make debris in GTO
re-enter faster has been partially obtained at this point. From Figure 4.25 obtained following the numeri-
cal approach, it was concluded that, indeed, there exist combinations of epoch of injection into GTO and
RAAN (or equivalently launch time) that lead to favourable conditions. However, solar resonances cannot be
exploited to optimise the lifetime of objects in GTO due to the extremely high sensitivity of the lifetime to
the environment and initial conditions when a resonance is undergone, which makes predictions unreliable
taking into account the various sources of uncertainty. Instead, it is convenient to identify the combinations
of epoch of injection into GTO and RAAN leading to resonances in order to avoid them rather than trying to
exploit them. Thus, the question that has to be answered at this point is whether the resonance-free regions
observed in Figure 4.25 are also obtained for other GTOs and body properties. That plot is valid for a GTO
with initial inclination of 10 degrees and initial perigee altitude of 200 km and a satellite with a ballistic coef-
ficient of 0.011 kg/m2, but nothing is known about the shape of the plot when the values of these parameters
are changed.

Using the faster SST propagator, additional colour-map plots will be obtained for different values of the
initial perigee altitude, inclination and ballistic coefficient, as these are deemed to be the most relevant pa-
rameters as found in Section 4.2. The orbital evolution is much less sensitive to changes in the true anomaly
or the value of CR . Additionally, other parameters,such as the initial apogee altitude and argument of perigee
will be fixed because of mission-design-related constraints. These results will be provided in Section 6.2.

One of the research questions was how each of the orbital perturbations affects the evolution of objects in
GTO. Although this was partially answered in Section 4.1.2 by propagating a GTO with different perturbations
included and excluded from the acceleration model, those results hold for a single orbit, which may not
always be representative of the whole picture when a large range of epochs of injection into GTO and initials
RAANs are considered. Thus, making use of the powerful SST propagator, several colour-map plots will be
obtained in which only certain perturbations are considered. In this way, it will be possible to know which
perturbations are actually driving the evolution of objects in GTO and it should be possible to corroborate
that solar resonances appear only when the effects of both zonal terms and the Sun’s gravity are included in
the acceleration model. These colour-map plots will be provided in Section 6.1.

Additionally, it would be interesting to study the orbital evolution of GTO for a longer period of time. Until
now, all the propagations have been limited to 10 years, so the actual lifetime in the dark red regions of plots
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such as that in Figure 4.25 is not known. With the more powerful SST propagator, this limit can be increased
to e.g. 25 years while still being able to obtain results in feasible computation times. Thus, some of the plots
provided in Chapter 6 will have higher limits for the maximum propagation period.

Finally, it is necessary to study the problem of estimating the lifetime of objects in GTO by following a
statistical approach, as discussed in Section 3.3.3. Space debris mitigation guidelines are often formulated
in terms of probabilities, i.e. showing that the generated debris from a GEO launch will re-enter in less than
25 years with a 90% probability. This is especially convenient for orbits such as GTOs, which can undergo
resonances leading to very different evolutions, even for slight divergences from the nominal conditions. In
order to treat the problem from a statistical perspective, it is necessary to propagate a number of cases (e.g.
100 or 200 for each combination of epoch of injection into GTO and initial RAAN) with some of the parameters
slightly deviating from the nominal values, and then studying the percentage of cases re-entering in less than
a given lifetime limit. This is definitely unfeasible using the Cowell propagator, as the propagation of all the
cases would take 100–200 times longer than generating the plot in Figure 4.25, i.e. 3 to 6 years. Even with the
faster SST propagator this could take one to two months. Thus, it will be necessary to decrease the resolution
when approaching the problem from a statistical perspective in order to be able to solve it within feasible
computation times. The results corresponding to the statistical approach will be provided in Section 6.3.



6
RESULTS

In this chapter, the main results obtained following the semi-analytical approach discussed in Chapter 5 are
provided. The results are discussed and analysed critically with the aim to answer the research questions and
reach the research objective defined in Chapter 1.

First, the effects of each individual perturbation on the lifetime of objects in GTO will be studied sepa-
rately in Section 6.1. Then, the effects of changing certain parameters, namely the body’s ballistic coefficient,
the initial inclination and perigee altitude of the orbit, will be discussed in Section 6.2. Finally, in Section 6.3,
the results obtained by treating the problem from a statistical perspective will be provided.

All the results presented in this chapter correspond to GTOs with the following parameters, unless other-
wise specified:

• Initial perigee altitude of 200 km.

• Initial apogee altitude of 35 780 km.

• Initial inclination of 10 degrees.

• Initial argument of perigee of 0 degrees.

• Initial true anomaly of 0 degrees.

• Body mass of 3 000 kg.

• Body cross-sectional area of 15 m2.

• Body drag coefficient of 2.2.

• Body radiation pressure coefficient of 1.5.

As usual, the initial epoch (i.e. the epoch of injection into GTO) and the RAAN are taken as optimisation
variables.

6.1. INDIVIDUAL EFFECTS OF ORBITAL PERTURBATIONS
Colour-map plots such as the one in Figure 4.25 will be provided in this section with some of the relevant
perturbations excluded from the acceleration model. First, only one perturbation will be included, and then
additional perturbations will be considered until all five (drag, Sun’s gravity, zonal terms, Moon’s gravity and
SRP) have been included in the acceleration model.

Performing the study including no perturbations is pointless, as this would correspond to a Keplerian or-
bit in which all the orbital elements (except for the fast element) remain constant, and thus the lifetime could
not be computed, as the perigee altitude would remain at its initial value, never reaching the re-entry altitude
fixed at 100 km. Thus, the first plot to be obtained should include at least one perturbation. This perturba-
tion has been chosen to be atmospheric drag, as this is the only perturbation causing secular variations on
the value of the semi-major axis and, consequently, on the perigee altitude. If drag is not considered, is does
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not make sense to define a re-entry altitude or talk about lifetimes. Thus, all the plots provided in this section
will include the effects of atmospheric drag.

When atmospheric drag is the only perturbation included in the acceleration model, no orbit reaches re-
entry altitude (100 km) before 25 years (the limit for the propagation period set for all the plots provided in
this section). Thus, the lifetime is not known for any of the propagated cases. However, the value of the final
perigee altitude is available. As can be seen in Figure 6.1, the influence of drag on the orbital evolution of
GTOs is rather limited, as the final perigee altitude of all the considered cases lies within a range of just 10
km (between 183 and 193 km), down from an initial perigee altitude of 200 km. In this case, the range for the
initial epoch has been chosen to be 20 years rather than just one year, since atmospheric density is affected
by solar radiation levels, which vary with a period of about 11 years, so it was deemed convenient to study, at
least, a period of 11 years.

Figure 6.1: Final perigee altitude after a period of 25 years for several GTOs with initial perigee altitude of 200 km. Only perturbations
caused by atmospheric drag were included in the acceleration model.

Despite the small differences, it can be seen that the orbits decay faster when the initial epoch is approxi-
mately in the year 1978. Those orbits are propagated from 1978 until 2003. From Figure 3.8 it can be observed
that within those 25 years three relatively high solar maxima were reached. Orbits starting after 1985 (and
propagated thus at least until 2010) include the solar maximum from year 2001 (and in some cases from 2014
as well), which were remarkably lower compared to the maxima of the previous century. This could explain
the fact that those orbits decay more slowly.

The next step was to include the effects of the perturbation caused by the Sun’s third-body gravity. This is
considered to be one of the main perturbations driving the evolution of GTOs. Indeed, when this perturbation
is included in the acceleration model, many of the studied GTOs decay in less than the maximum propagation
period of 25 years, as can be seen in Figure 6.2. The shortest lifetime was 1.8 years.

From the orbits that did not re-enter in less than 25 years (those mostly in the range of RAANs from 60
to 180 degrees and from 280 to 360 degrees), many of them had final perigee altitudes much higher than the
initial value of 200 km, as can be seen in Figure B.7. In fact, the orbit with the highest perigee altitude after 25
years has a perigee altitude of 1 307 km. This shows that, although the Sun’s gravity cannot introduce secular
effects on the value of the semi-major, it does affect the shape of the orbit, changing the eccentricity and
consequently the values of the perigee and apogee altitudes significantly. It is worth highlighting the fact that
the orbital evolution can change drastically depending on the initial value of the RAAN, but remains more or
less constant (or at least changes much more smoothly) throughout the year.

Then, the effects of zonal terms (up to degree 7) were included in the acceleration model. Zonal terms can
introduce large effects on the evolution of the RAAN, leading to the precession of the orbit that triggers the
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Figure 6.2: Lifetime of several GTOs as a function of initial epoch and RAAN. Only perturbations caused by atmospheric drag and the
Sun’s gravity were included in the acceleration model.

solar resonance described in Section 3.3.1 when the rate of precession Ω̇+ω̇ coincides with the rate of rotation
of Earth about the Sun, i.e. about 1 deg/day. Thus, at this point, one should expect to see the appearance of
cases affected by solar resonance in the colour-map plot. Indeed, when drag, the Sun’s gravity and zonal
terms are included in the acceleration model, resonance ridges appear for the first time, as can be seen in
Figure 6.3.

Figure 6.3: Lifetime of several GTOs as a function of initial epoch and RAAN. Only perturbations caused by atmospheric drag, the Sun’s
gravity and zonal terms of the geopotential were included in the acceleration model.

Note that the colour-map plots obtained in this section are starting to resemble that of Figure 4.25 ob-



76 6. RESULTS

tained with all the relevant perturbations included in the acceleration model. This means that the effects
of the perturbations that have not been included yet, namely the Moon’s gravity and SRP, are rather limited.
However, the size of the dark-blue regions (the regions of interest that are free of resonances) are still notice-
ably narrower in Figure 6.3 than in Figure 4.25.

The next step was to add the effects of the Moon’s gravitational perturbation. As can be seen in Figure
6.4, the Moon makes the dark-blue regions wider, leading to a larger number of favourable, resonance-free
conditions. At the same time, the second plateau with a slightly higher lifetime after the first resonance ridges
that can be observed in Figure 6.3 has disappeared almost completely in Figure 6.4, becoming much narrower.
Additionally, since the Moon introduces effects with a relatively short period, the appearance of small wiggles
is observed in Figure 6.4, transforming the shape of the resonance ridges (and thus the shape of the dark-blue
regions too) from almost perfect ovals to ovals with twisting boundaries.

Figure 6.4: Lifetime of several GTOs as a function of initial epoch and RAAN. Only perturbations caused by atmospheric drag, the Sun’s
gravity, zonal terms of the geopotential and the Moon’s gravity were included in the acceleration model.

Finally, when the effects of SRP (without considering occultations of the Sun by Earth’s shadow) are con-
sidered, the acceleration model can be considered to be complete and the colour-map plot changes slightly
from that of Figure 6.4 to the one already discussed in Chapter 5.2.2 and provided in Figure B.4 (right). Al-
though the differences cannot be seen clearly with the naked eye (suggesting that the effects of SRP on the
evolution of GTOs is limited), the shape of the resonance-free regions does change slightly, becoming wider
or narrower. This can be seen in Figure B.8 (left), in which the error near the boundaries of the resonance-free
regions introduced by neglecting SRP can range from −95% to +2068%. When only the regions of interest are
considered, the RMS error is only 5.5% and the individual errors range from −40% to +21%, as seen in Figure
B.8 (right). Thus, SRP has a small effect on the evolution of GTOs in resonance-free regions but cannot be
neglected if an accurate description is desired. The main risk of neglecting SRP is not related to the small er-
rors introduced in the value of the lifetime prediction at the central parts of resonance-free regions, but to the
slight widening or narrowing of those regions, which can lead to recommending a combination of epoch of
injection into GTO-initial RAAN as a favourable case, whilst it may actually correspond to a resonance ridge.

6.2. EFFECTS OF CHANGING PARAMETERS

6.2.1. INITIAL INCLINATION

The GTO defined at the beginning of this section was propagated for several values of the initial inclination.
The inclination was expected to be a relevant parameter for the evolution of GTOs, as indicated by previous
studies, in which it was found that the percentage of orbits re-entering in less than a specified period of time
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was maximum when the initial inclination of the GTO was close to 45 degrees [34]. In Figure 6.5, it can be
seen that, in fact, the size of the dark-blue, resonance-free regions increases with increasing value of the
inclination. Additionally, as the inclination gets closer to 45 deg, the shape of the colour-map plots begin to
ressemble that of Figure 6.2, in which only the perturbations of atmospheric drag and the Sun’s gravity were
included in the acceleration model. Thus, as the inclination gets closer to 45 degrees, the effect of zonal terms
on the evolution of GTOs becomes less relevant.

Figure 6.5: Lifetime of a satellite as a function of epoch of injection into GTO and initial RAAN for different initial inclinations: a) 0
degrees, b) 15 degrees, c) 30 degrees and d) 45 degrees.

This behaviour can be explained by studying the effects of the most relevant zonal term J2 alone, which is
also the main contributor to the mean drift of perigee, Ω̇+ω̇. From Eqs. (A.30) and (A.32), the contribution of
J2 to the mean drift of perigee can be obtained:

Ω̇+ ω̇= J̃2n

[
−cos i + 1

2

(
5cos2 i −1

)]
(6.1)

As can be seen in Figure B.9, the contribution of J2 to the mean drift of perigee becomes zero for i = 46.4
deg, while it is maximum (equal to J̃2n) when the inclination is 0 deg (considering only prograde orbits). As
discussed in Section 3.3.1, the mean drift of perigee is a relevant parameter to explain the existence of solar
resonances: when it becomes close to 1 deg/day, solar resonances can be triggered. However, for orbital
inclinations close to 46.4 degrees, it remains close to zero, so the solar resonance is never triggered, leading
to orbital evolutions such as the ones shown in Figure 6.5d, which are relatively similar to the ones in Figure
6.2 in which the effects of zonal terms had not been included in the acceleration model.

Although choosing a larger inclination can lead to a larger number of favourable launch conditions from
a debris-mitigation perspective, this is obviously not convenient from a mission-design point of view. GTOs
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are used to bring payloads to GEO, which is equatorial and thus has an inclination of 0 degrees. If the payload
reaches GEO altitude with an inclination of 45 degrees, a correction manoeuvre will have to be carried out
to bring its inclination to 0 degrees, which is very expensive in terms of delta-V and propellant usage. For
that reason, GEO launches are usually carried out from low latitudes (such as Kourou in French Guiana),
which makes it possible for the inclination of the GTOs to be around 5 to 10 degrees. When GEO payloads are
launched from higher latitudes (such as Cape Canaveral), the inclination has to be larger, at least 28 degrees,
so a GTO is not always used. In some cases, the payload is brought to a super-synchronous altitude (e.g.
80 000 km) and the inclination-correction manoeuvre is carried out there, where it is less expensive in terms
of delta-V [75]. Consequently, the generated debris do not stay in a GTO but in a super-synchronous orbit
without crossing the LEO or GEO protected regions. This means that, although in theory a larger orbital
inclination can be beneficial for debris mitigation, the actual values for inclinations of GTOs due to mission
design constraints will not be chosen to be larger than 30 degrees, and in most cases will be less than 10
degrees, as shown in the inclination histogram for existing GTOs provided in Figure 2.7.

6.2.2. INITIAL PERIGEE ALTITUDE

The initial perigee altitude can also have significant effects on the evolution of GTOs. Since atmospheric drag
changes exponentially with altitude, relatively small changes in the value of the perigee altitude can lead to
very different lifetimes, as seen in Figure 6.6. As one could expect, choosing a higher initial perigee altitude
leads the lifetimes to larger values. When the perigee altitude is chosen sufficiently small, the dark-blue,
resonance-free regions widen to intersect with each other, as shown in Figure 6.6a. This means that, for an
initial perigee altitude of 170 km, there exists at least two favourable launch times for every day of the year.
However, if the initial perigee altitude is increased to e.g. 185 km, as seen in Figure 6.6b, the resonance-free
regions are not continuous anymore, which means that, for some days of the year (mostly around April-May
and October-November), there is only one launch time that will guarantee an orbital evolution free of solar
resonances.

If the initial perigee altitude is increased further to 215 km, the resonance-free regions become even nar-
rower, leading to some days of the year for which no launch time can lead to an orbit guaranteed to be free of
solar resonances, as seen in Figure 6.6c. Increasing the initial perigee altitude further, to e.g. 250 km, causes
the resonance-free regions to shrink to a point in which no combination of epoch of injection into GTO and
initial RAAN would lead to an orbital evolution guaranteed to be free of solar resonances, as seen in Figure
6.6d.

6.2.3. BALLISTIC COEFFICIENT

The effects of changing the ballistic coefficient on the lifetime of GTOs is similar to that of changing the
initial perigee altitude, as can be seen in Figure 6.7. A larger ballistic coefficient (i.e. a body with larger area
and/or smaller mass) experiences more drag than a body with a small ballistic coefficient, and thus reaches
re-entry conditions faster. In Figure 6.7a it can be seen that a ballistic coefficient of 0.032 m2/kg leads to
wide resonance-free regions, although there are still certain days of the year for which only one favourable
launch time exists. Decreasing the ballistic coefficient by a factor of two narrows the resonance-free regions,
leading to some days of the year in which no launch time can guarantee a resonance-free orbital evolution.
Decreasing the value of the ballistic coefficient further can limit the number of favourable launch conditions
and the size of the launch windows considerably as seen in Figures 6.7c or 6.7d. Recall that, in the study of
existing objects in GTO presented in Section 2.2.3, it was found that the median of the ballistic coefficient of
those objects is about 0.011 m2/kg, with 25% of the objects having ballistic coefficients smaller than 0.0048
m2/kg and another 25% having ballistic coefficients larger than 0.034 m2/kg, so it can be said that the values
of the ballistic coefficients for the four cases considered in Figure 6.7 are within reasonable limits that are
indeed found in practice.

6.3. STATISTICAL APPROACH
As discussed in Section 3.3.3, some authors have recommended to study the problem of propagation of GTOs
following a statistical approach, in which rather than determining the lifetime to be a fixed amount of time,
the probability of the lifetime being smaller than a specified amount is found. This would allow launch com-
panies to comply with guidelines of the type "re-entry in less than 25 years with a 90% probability" or "re-
entry probability of at least 90% after 25 years".

In order to be able to generate these kind of results, it is necessary to propagate many orbits for each
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Figure 6.6: Lifetime of a satellite as a function of epoch of injection into GTO and initial RAAN for different initial perigee altitudes: a)
175 km, b) 180 km, c) 215 km and d) 250 km.

combination of epoch of injection into GTO and initial RAAN, with slightly varying values for some of the
parameters affected by uncertainties. Based on the statistical study of the characteristics of existing objects
in GTO presented in Section 2.2.3, the parameters in Table 6.1 have been set to vary following the normal
distribution with the mean and standard deviation values specified therein. The remainder of the parameters
were kept constant at the values specified at the beginning of this chapter, except for the initial epoch and
RAAN, which are the optimisation variables.

Table 6.1: Mean and standard deviation of the parameters whose value is changed when approaching the propagation of GTOs from a
statistical perspective.

Parameter Mean Standard deviation

Initial perigee altitude 200 km 2 km
Initial apogee altitude 35 650 km 1 000 km
Initial inclination 8.3 deg 0.5 deg
Body mass 3 000 kg 100 kg
Body cross-sectional area 15 m2 5 m2

The colour-map plots presented so far have been recreated, but instead of propagating a single orbit for
each combination of epoch of injection into GTO and initial RAAN, 200 cases have been propagated, in which
the values for the parameters indicated in Table 6.1 have been obtained, for each case, by generating pseudo-
random numbers following a normal distribution based on the specified mean and standard deviation values
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Figure 6.7: Lifetime of a satellite as a function of epoch of injection into GTO and initial RAAN for different body ballistic coefficients: a)
0.032 m2/kg, b) 0.016 m2/kg, c) 0.008 m2/kg and d) 0.004 m2/kg.

(i.e. a Monte Carlo simulation). Since it would take about 200 times longer to generate the results (compared
to the deterministic approach), the resolution had to be decreased in order to be able to obtain the results of
interest within feasible computation times. Namely, a step-size of 4 days was used for the epoch of injection
into GTO and a step-size of 4 degrees was used for the initial RAAN. After performing the propagations, the
colour-map plot provided in Figure 6.8 was obtained by computing the mean lifetime of the 200 cases propa-
gated for each combination of epoch of injection into GTO and initial RAAN (excluding the cases with initial
invalid parameters, such as a negative cross-sectional area or an inclination smaller than Kourou’s latitude).
Note that the propagations were stopped after 25 years if re-entry had not been achieved yet at that point, so
the mean values in Figure 6.8 are actually a lower limit, since the value of 25 years has been used for orbits
that, in reality, take longer to re-enter.

When comparing with Figure 6.4, the most noteworthy finding from Figure 6.8 is the disappearance of the
high-lifetime ridges caused by solar resonances. This is not due to the use of a lower resolution. The colour-
map plot in Figure 4.24b was obtained using a resolution (3.65 days for the epoch of injection into GTO and
3.6 degrees for the initial RAAN) similar to the one used in Figure 6.8. When a deterministic approach is
followed, some cases affected by solar resonance can be spotted, in the form of isolated high-lifetime points,
as seen in Figure 4.24b. On the other hand, when the statistical approach is followed, these cases affected by
resonances are averaged out, since only a few of them (e.g. 5–10 out of the 200 cases) undergo resonances.
The result is a much smoother plot in which the lifetime gradients are much smaller than the ones presented
in Figure 4.26. The claim that the choice of a lower resolution is not causing overlooking of resonance ridges
was corroborated by focusing on a small region of Figure 6.8 and propagating it with a higher resolution,
obtaining still smooth variations for the value of the lifetime, as can be seen in Figure B.10.
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Figure 6.8: Mean lifetime for objects injected into GTO at different epochs and with different RAANs.

However, it is not recommended to use the results provided in Figure 6.8 to predict the lifetime of a given
GTO. Although the mean lifetime could be e.g. 15 years for a certain combination of epoch of injection into
GTO and initial RAAN, some of the orbits corresponding to that case might have much longer lifetimes of
even more than 25 years. This can be observed in the histogram in Figure 6.9 (right) corresponding to an
initial RAAN of 180 deg and an injection into GTO on the 24th of February. In this case, the data cannot be
said to be normally distributed, so the average lifetime (14.5 years) should not be used as a representative
value for this date of injection into GTO and initial RAAN. In other cases, however, the data can be said to
be normally distributed, as can be seen in Figure 6.9 (left), corresponding to an initial RAAN of 180 deg and
an injection into GTO on the 13th of February. In this case, the average value of 8.6 years is, to some extent,
representative of the lifetime values to be expected for this combination of date of injection into GTO and
initial RAAN. However, it is worth highlighting that the distribution is widely spread (the peak of the PDF is
below 10%).

Figure 6.9: Probability distribution of the lifetime for GTOs with initial RAAN of 180 degrees and injection into GTO on the 13th of
February (left) and on the 24th of February (right).

Given the fact that the lifetime is not always normally distributed, it is convenient to use the obtained
results to generate plots showing the probability of re-entering in less than a specified amount of time, such
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as the ones in Figure 6.10. In those plots, the re-entry probability has been obtained by dividing the number
of orbits re-entering in less than the specified amount of time (10 or 25 years) by the total number of studied
cases (200) for each combination of epoch of injection into GTO and initial RAAN. For instance, Figure 6.10
(right) can be used to determine the launch conditions that will lead to re-entry in less than 25 years with a
90% probability for the object and initial orbit described at the beginning of this section. In Figure 6.10 (left),
the range of satisfactory options is more limited, because the requirement of re-entry with a 90% probability
has been set to 10 years instead of 25 years, leading to a smaller number of cases fulfilling the criterion.

Figure 6.10: Probability of re-entry in less than 10 years (left) and in less than 25 years (right) for objects injected into GTO at different
epochs and with different RAANs.



7
PRACTICAL APPLICATION

In the previous chapters, the results obtained by studying the temporal evolution of objects in GTO have
been provided in terms of the initial epoch for the propagation and the initial RAAN of the orbit. However,
these results cannot be applied directly to reach the research objective: although it has been shown that by
changing the launch conditions the lifetime of the objects in GTO can change significantly due to the interplay
between several orbital perturbations, the launch conditions leading to those optimal cases (or leading to
compliance with debris-mitigation guidelines) have yet to be determined from the obtained results. This will
be discussed in Section 7.1, where the conversion from RAAN to local time of launch will be done. Also in that
section, some of the aspects related to mission design that need to be taken into account during the launch of
satellites to GEO will be covered, and a few simplifications will be introduced in order to be able to apply the
results provided in Chapter 6 to real launches. Finally, in Section 7.2, the obtained results will be applied in
the analysis of a case study involving the launch of a satellite to GEO from the Euroepan spaceport in Kourou.

7.1. MISSION DESIGN
Injecting a satellite into GEO requires the use of launch vehicles capable of bringing the satellite to an altitude
close to that of GEO with a relatively low orbital inclination. Then, a final manoeuvre has to be performed
to inject the payload into its assigned GEO slot at precisely GEO altitude and with an orbital inclination of 0
degrees. In the past, many procedures have been followed to achieve this, including the use of several pro-
pellant burns leading to the generation of debris in several types of orbits below GEO altitude (such as LEO,
MEO, GTO or close to GEO), or even in orbits above GEO where the changes of inclination can be performed
using less amounts of propellant [75]. However, in most cases, at least during the last decades, GEO launches
have been performed from locations close to the equator in order to achieve a low-inclined GTO, and typi-
cally debris such as upper stages and other mission-related objects (such as payload adaptors or motors used
during the last phase of injection) have been left in GTOs with characteristics that are similar to those of the
GTOs studied in previous chapters [34]. Leaving debris in GTO poses a risk for existing and future missions,
as they cross the LEO and GEO protected regions and can take several decades to re-enter.

In the analysis of GEO missions performed in [34], it was found that the perigee altitudes of the debris gen-
erated by launches using the Ariane 5 launch vehicle, which was the major contributor to the debris popula-
tion in GTO in the period 2004-2012, were in the range of 222–658 km, with the nominal perigee altitude being
250 km. Other launchers used GTOs with generally lower perigees: between 105 and 215 km for the Chinese
Long March rocket family; 172–192 km for the Indian Geosynchronous Satellite Launch Vehicle; 180–263 km
for launches by the Japanese H-IIA; and 110–236 km for most of the launches by the United States using the
Atlas, Delta and Titan launch vehicle families. Sea Launch launched satellites using the Zenit family leading
to low-perigee GTOs in some cases (132, 134 km), but it also generated debris in GTOs with perigee altitudes
as large as 11 250 km. The Proton launch vehicle used by Russia generated debris in very different GTOs, with
perigee altitudes ranging from 310 to 5 157 km.

From these figures, it is clear that different procedures for injecting payload into GEO are being used,
and studying all of them individually is beyond the scope of this thesis. Thus, the focus will be put on the
procedures followed by two launch companies that account for 87 of the 89 LEO- and GEO-crossing debris
generated in the period 2004-2012: Ariane 5 (which generated 75 objects) and Zenit-3SL (which generated
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12) [34], operated by Arianespace and Sea Launch, respectively.

7.1.1. ASCENT PROFILE
The ascent profile of GEO missions depends mainly on whether several burns are performed during ascent
to GEO altitude, leading to debris in several GTOs with different perigee altitudes, or only one continuous
burn is performed initially until the payload (and upper stages) have been injected into the final GTO. Two
example ascent profiles, one for each of these approaches, are provided in Figures 7.1 and 7.2.

Figure 7.1: Ascent profile of Intelsat 19 launched in June 2012 using a Zenit 3SL operated by Sea Launch. [76]

Figure 7.2: Ascent profile of Intelsat 27 launched in February 2013 using a Zenit 3SL operated by Sea Launch. [76]

Both ascent profiles include an initial flight powered by the first and second stages, up to an altitude
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of about 180 km. Then, in the ascent profile of Intelsat 19, provided in Figure 7.1, it can be seen that the
upper stage Block DM-SL was ignited twice, with a period of unpowered flight of 30 minutes between the
two ignitions. This led to a spacecraft separation at an altitude of 1 043 km, generating debris in a GTO with
perigee altitude of 866 km. On the other hand, the Block DM-SL was ignited only once during the launch of
Intelsat 27, as can be seen in Figure 7.2, right after separation of the second stage. This led to an injection into
the final GTO at a much lower altitude (316 km), and the resulting GTO in which the debris were left had a
perigee altitude of 196 km.

In both cases, the launch was performed from the Odyssey Platform in the Pacific Ocean, at 0°N 154°W.
The use of different ascent profiles led to reaching GEO altitude after different periods of time: in the case of
Intelsat 19, with two burns and a phase of unpowered flight, the ascent was slower, taking 6 h 6 min, while for
Intelsat 27, which can be considered to be a direct ascent, GEO altitude was reached 5 h 27 min after liftoff.
In any case, it is clear that this time will be at least half the orbital period of the resulting GTO. The period of
a GTO with perigee altitude of 200 km and apogee altitude of 35 786 km is 10.5 hours, so the minimum time
period since liftoff until arrival to GEO can be expected to be 5 h 15 min.

The ascent profile of missions in which the upper stage is ignited several times is less interesting from
the point of view of studying the applicability of the results obtained in previous chapters, as the resulting
debris are generated in GTOs with high perigee altitude (more than 300 km), which will not be able to comply
with debris-mitigation guidelines, as can be inferred from the sensitivity analysis provided in Section 6.2.2 in
which the lifetime of GTOs was studied as a function of initial perigee altitude. Little can be done to comply
with debris-mitigation guidelines if the generated debris are in an orbit with a perigee altitude of e.g. 500 km.
However, when the approach corresponding to Figure 7.2 is followed, the debris are generated in orbits with
perigee altitudes close to 200 km (or the nominal 250 km for launches using Ariane 5), and in that case, orbital
perturbations can indeed be exploited in order to comply with debris-mitigation guidelines without the use
of additional propellant.

7.1.2. REACHABILITY OF GEO SLOTS
The use of different ascent profiles for injection of payloads into GEO is usually driven by the need to inject
the satellite into a specific slot in the GEO ring. The mean motion of satellites in GEO coincides with the
rotational speed of Earth, which means that, once injected into GEO, the satellite will be stationary in the sky
with respect to an observer on Earth (small manoeuvres will have to be performed periodically to correct for
the effects of orbital perturbations). Thus, if a company wants to launch a GEO satellite to provide coverage to
certain regions of Earth, they will choose a fixed longitude and a certain slot in the GEO ring will be assigned
to them. Consequently, there will be a constraint on the value of the longitude of the sub-satellite point (SSP)
when the payload is injected into GEO.

When a direct ascent is performed, the longitude at which GEO will be reached cannot be chosen freely.
In fact, the longitude that will be reached upon arrival at GEO is given by:

ΛGEO =ΛGT O +180°− 360°

1 sidereal day

TGT O

2
≈ΛGT O +101° (7.1)

where ΛGT O is the longitude of the SSP at the GTO’s perigee and TGT O is the orbital period of the GTO in
sidereal days. The second term, equal to 180°, is the angle swept by the GTO object during the transfer from
perigee to apogee. The third term corresponds to the angle swept by the GEO ring during this transfer, which
will last TGT O/2 if a Hohmann transfer is assumed (i.e. a single impulsive shot at perigee). For direct ascents,
injection into GTO will happen close to GTO’s perigee and relatively soon after liftoff, so the value of ΛGT O

cannot be chosen by staying in a phasing orbit, as the ascent is continuously powered until injection into
GTO. For instance, from Figure 7.4, it can be seen that the longitude of the sub-satellite point at injection into
GTO was about 63° east of the launch site for the launch of Intelsat 27 (the longitude of the launch site was
154°W and the longitude of the satellite at injection into GTO was about 91°W).

If a slot in the GEO ring with a different longitude is to be reached, a stepped ascent can be followed,
leading to an evolution of the SSP as the one shown in Figure 7.3, corresponding to the launch of Intelsat
19. The unpowered flight between the two burns of the Block DM-SL leads to reaching a different GEO slot
despite having launched from the same location. However, as already discussed, this is not ideal from a
debris-mitigation point of view, as debris are generated in a GTO with a high perigee, leading to very long
lifetimes (several decades or even centuries). Thus, a different approach will have to be followed in order to
be able to reach any slot in the GEO orbit while still following a direct ascent that will generate debris in GTOs
with low perigee altitudes.
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Figure 7.3: Evolution of the sub-satellite point of Intelsat 19 during its ascent to GEO. [76]

Figure 7.4: Evolution of the sub-satellite point of Intelsat 27 during its ascent to GEO. [76]

There are several approaches that can be followed in order to reach an arbitrary GEO slot when launching
from a fixed location on Earth. Usually these approaches entail the use of (temporary) phasing orbits with an
orbital period different from that of GEO. For instance, the payload and upper stage can wait in a LEO until
the right phasing angle is achieved. At that point, an impulsive shot injects the payload into GTO to reach
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GEO at the right slot about 5 h 15 min later. For a LEO of 200 km altitude, the maximum waiting period in
the worst case scenario (if the desired GEO slot is almost 360° ahead of the slot that would be reached when
no phasing orbit is used) would be about 94 minutes. However, this procedure can generate debris in the
LEO orbit, which has to be avoided given the high density of spacecraft in this region, and drag is large for an
circulat orbit at 200 km. For that reason, a direct ascent to an altitude slightly lower than that of GEO, followed
by a phasing orbit at that altitude, is preferable. This is also the approach followed by most launch companies
[34]. However, waiting periods in the phasing orbit are longer in this case, since an orbit with an altitude close
to that of GEO has also a similar mean motion. In Figure 7.5 it can be seen that the waiting period can range
from a few days to several months in the worst-case scenario, i.e. when the required phasing angle is 180°.
When the required phasing angle is larger than 180°, then a higher altitude would be chosen for the phasing
orbit.

Figure 7.5: Maximum waiting period in a circular orbit slightly below GEO necessary to reach any arbitrary slot in the GEO ring, as a
function of the altitude difference between GEO and the phasing orbit.

In order to determine the required delta-V for going from this phasing orbit slightly below GEO to the final
GEO, the following equation can be used if a Hohmann transfer is followed [77]:

∆v =
√
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2rGEO
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)
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(
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)
(7.2)

where rphasi ng and rGEO are the radii of the phasing orbit and GEO, respectively. This leads to a required
delta-V between 3.7 and 75.6 m/s for altitude differences between the GEO and phasing orbit ranging from
100 to 2 000 km. This is extremely small when compared to the delta-V budget for a launch from Earth’s
equator to GEO (more than 13 km/s) and in the same order of magnitude as the yearly delta-V required for
stationkeeping in GEO (about 50 m/s) [78].

7.1.3. LOCAL TIME OF LAUNCH
In the previous subsection it was shown that the choice of the time of launch does not necessarily determine
the GEO slot that will be reached. Instead, this is given by the longitude of the launch site and the followed
ascent profile (the duration of the period powered by the first and second stages, the use of phasing orbits,
etc.). However, this does not mean that the time of launch is completely irrelevant, as the results provided in
previous chapters showed that the choice of the initial RAAN (which translates to a given local time of launch)
can lead to orbital evolutions with very different lifetimes, which is attractive from a debris-mitigation point
of view. In this section, the implementation of the equations provided in Section 3.1.4 to convert between
initial RAAN and local time of launch, and the consequences that this conversion has for the lifetime colour-
map plots, will be discussed.

As discussed in Section 3.1.4, in order to convert the initial RAAN to local time of launch it is necessary
to follow an iterative procedure making use of Eq. (3.7), in which several local times are tested until the one
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leading to the target RAAN is found. By repeating this procedure for the different days of the year, the plots
provided in previous chapters can be expressed as a function of local time of launch for any given launch
site on Earth. For instance, the plot in Figure 6.10 (right) can be converted to Kourou local time, leading to
the plot in Figure 7.6. The used coordinates for the Euroepan spaceport in Kourou are 5.36°N 52.76°W, and
Kourou’s time zone is GMT-3.

Figure 7.6: Probability of re-entry in less than 25 years for objects launched from Kourou at different local times and injected into GTO
at different epochs of the year.

The first noteworthy aspect from Figure 7.6, when compared with Figure 6.10 (right), is the change of
the shape of the plot when converting from initial RAAN to local time of launch. If one looks at the re-entry
probabilities for a given day, such as the 1st of January of 1990, it can be seen that an offset is introduced.
However, this offset is not constant throughout the year, which leads from a plot in which the unfavourable
conditions follow a diagonal pattern when represented as a function of RAAN to a plot in which these patters
are more or less horizontal, meaning that the optimum launch conditions are not strongly dependent on the
day of launch. For instance, for launches from Kourou, launches are unfavourable (from a debris-mitigation
point of view) for local times approximately between 0 h and 6 h, and between 12 h and 18 h, regardless of the
day of the year.

This change in the shape of the lifetime plots, and the fact that the favourable launch time remains con-
stant throughout the year, can be explained by the change of the longitude of the vernal equinox throughout
the year, which causes the offset between the local time of launch and the RAAN to vary accordingly on a
yearly basis. When the same plot is obtained for a different launch location, the shape of the plot remains the
same as that in Figure 7.6, the only difference being a constant offset in the value of the local time of launch,
as seen in Figure B.11 (i.e., the contents of the plot move vertically).

However, the fact that the optimum launch times do not depend strongly on the epoch of year does not
hold for cases in which a higher inclination is used. For instance, if the initial inclination of the GTO is 30
degrees, the patterns are rather horizontal when represented as a function of RAAN, as was shown in Figure
6.5c, and become rather diagonal when represented as a function of the local time of launch, as seen in Figure
B.11.

7.1.4. LIFETIME PREDICTIONS
So far, all the propagations that have been carried out to generate the provided results have started in the
past and have run until as far as June 2017. This means that the value for the lifetimes provided in previous
sections are not predictions but estimations. However, if the work presented in this Master thesis is to be
applied to real missions in the future, it will be necessary to obtain the same kind of results by propagating
orbits in the future.
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The main difference between performing propagations in the past or in the future resides in the availabil-
ity of space weather data used for the estimation of the atmospheric density. The other perturbations can
be predicted with high accuracy, since Earth’s rotational state and the position of the Sun and the Moon are
available for future epochs. The main additional source of uncertainty when performing predictions instead
of estimations is related to solar activity levels, which affect atmospheric density as discussed in Section 3.2.3.
Historically, the value of the solar activity index F10.7 has oscillated with a period of roughly 11 years between
values of 50 and 250 sfu, with peak values close to 400 for specific dates. However, the value of F10.7 cannot be
predicted accurately, since the maximum values vary from cycle to cycle. For instance, in the last cycle, the
maximum was about 150 sfu, while during 1975-2000, the value of F10.7 went above 250 sfu several times.

Thus, it is convenient to have an estimate of the error introduced in the values of the lifetime predictions
when the F10.7 deviates from the nominal (predicted) conditions. In order to estimate how the actual lifetime
would differ from the predicted lifetime when the measured value of F10.7 is e.g. twice or half the predicted
value used for the simulations, some of the propagations performed to generate the results in previous chap-
ters have been repeated, but the value of F10.7 has been artificially modified to simulate the introduction of
uncertainty.

Historically predictions for the value of F10.7 have not been off by more than −50% or +100%, so the
propagations carried out to generate the colour-map plot in Figure 5.9 (right) were run again but with the
measured value of F10.7 artificially multiplied by 0.5 and 2, leading to slightly different lifetimes. The errors
introduced in the value of the lifetime when compared to the case in which the measured value of F10.7 is
used unmodified are provided in Figure 7.7. As can be seen, large errors in the value of the solar activity index
of −50% and +100% are scaled down, respectively, to RMS errors of only 3.7% and 7.0% in the value of the
lifetime for resonance-free orbits. This can be explained by the relatively small influence of atmospheric drag
in the evolution of GTOs. This was shown in Section 6.1, where the effects of each of the relevant perturbations
were analysed separately.

Figure 7.7: Relative errors introduced in the value of the lifetime of a satellite when artificially multiplying the value of F10.7 by 0.5 (left)
and by 2 (right), as a function of epoch of injection into GTO and initial RAAN, for orbits in resonance-free regions.

The uncertainties in the estimates of the lifetime are similar to (or even smaller than) the ones intro-
duced by the use of the SST propagator when compared to the more accurate Cowell propagator (cf. Sec-
tion 5.2.2). Additionally, the uncertainties in the NRLMSISE-00 atmosphere model, even when propagations
are performed in the past using data from actual measurements, introduces an error of a mere 2.5-3% for
resonance-free orbits, as discussed in Section 4.1.2. Thus, it can be concluded that the procedure presented
in this Master thesis, in which propagations in the past have been carried out, is also valid for propagations in
the future used to obtain lifetime predictions, with the introduction of an additional error that, in the worst-
case scenario, will be similar to the error introduced by the use of a propagator based on semi-analytical
techniques or by the use of an atmospheric model such as NRLMSISE-00.

7.2. CASE STUDY: LAUNCH FROM THE EUROPEAN SPACEPORT
Now that all the issues that could arise when applying to the obtained results to actual launches to GEO have
been addressed, it is possible to provide an example to illustrate how the generated results can be used to
recommend launch times complying both with debris-mitigation guidelines and mission-design constraints.
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In this section, a case study involving the launch of a satellite to GEO from the European spaceport in
Kourou is provided. For this case study, the following assumptions and constraints hold:

• The coordinates of the launch site are 5.36°N 52.76°W.

• The payload will be ready for launch on February 1st, 1990.

• The payload will have to be injected into GEO before the end of February 1990.

• A direct ascent to GEO will be followed.

• There will be a single period of powered flight starting at liftoff and lasting 20 minutes, leading to injec-
tion into GTO.

• The satellite is assumed to be at perigee at the moment of injection into GTO.

• The sub-satellite point is assumed to be 120 degrees east of the launch site at injection into GTO.

• The GTO will have an altitude of 200±2 km and an orbital inclination of 8.3±0.5 deg.

• The upper stage, with a mass of 3000± 100 kg and a cross-sectional area of 15± 5 m2, will remain in
GTO. The drag and radiation pressure coefficients are assumed to be constant and equal to 2.2 and 1.5,
respectively.

• The payload will be injected into a circular phasing orbit slightly below GEO altitude before final injec-
tion into GEO.

• The payload has to be injected in a slot in GEO corresponding to a longitude of 200°E.

• To comply with debris-mitigation guidelines, it will have to be shown that the debris left in GTO will
re-enter in less than 25 years with a 90% probability. The debris can be assumed to have re-entered
when the perigee altitude reaches a value of 100 km.

Then, the question to be answered is:

What are the launch conditions (day and local time of launch) and the altitude of the phasing
orbit leading to compliance with all the requirements?

The first step is to determine the longitude of the SSP when the satellite reaches apogee for the first time.
Using Eq. (7.1), it is found that:

ΛGEO ≈ΛK our ou +120°+101° ≈ 168°E (7.3)

The longitude of the assigned slot is 200°E, so the phasing angle is ∆Λ≈ [200−168]mod180 = 32 deg. From
here, it is possible to obtain the wait period in the phasing orbit near GEO altitude:

Tw ai t =
∆Λ

360°
1
T −1

(7.4)

where T is the orbital period of the chosen orbit in sidereal days, and the wait period is also given in sidereal
days.

Since the launch has to take place in February, and the slot in GEO has to be reached before the end of
February, the maximum wait period is 28 days (or 28.08 sidereal days), leading to a maximum orbital period
for the phasing orbit of T ≈ 0.9968 sidereal days, which corresponds to a maximum altitude of 35 697 km
for the phasing orbit, or about 89 km below GEO altitude. Choosing this phasing orbit limits the launch
opportunities to just February 1 0:00 AM. Thus, a slightly lower phasing orbit will have to be chosen to have
a wider range of launch possibilities. For instance, in order to increase this range to 6 days (which decreases
the maximum wait period to 21 days), the phasing orbit has to have an altitude of at least 112 km below GEO.
The same can be done for a different range of possible launch days, leading to the plot in Figure 7.8.

Using Figure 7.8, it is possible to fix the altitude of the phasing orbit (and thus the apogee altitude of the
GTO) by choosing a launch window. In case that something were to go wrong during the preparations, the
launch may have to be delayed. Moreover, the larger the launch window, the larger the probability of finding
launch conditions complying with debris-mitigation guidelines. Thus, it has been decided to set the launch
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Figure 7.8: Combinations of launch days and altitudes of the phasing orbit leading to reaching the assigned GEO slot before the end of
February 1990.

window to 6 days, i.e. the launch will take place between the 1st and the 6th of February (both included).
This means that, choosing an altitude for the phasing orbit 112 km below LEO will always lead to reaching
the right GEO slot before the end of February, as can be deduced from Figure 7.8. In conclusion, the apogee
altitude of the GTO will be 35 674 km and the launch opportunities to be studied will range from February 1st
to February 6th.

The next step consists in generating a plot similar to the one provided in Figure 7.6, but only for the
first six days of February. Many cases (e.g. 100–200) have to be propagated for each combination of day
of injection into GTO (assumed to coincide with the day of launch) and the local time of launch (or initial
RAAN), in order to account for deviations in the orbital parameters and body characteristics from the nominal
values. The characteristics of the orbit and debris have been chosen to coincide with those used to generate
Figure 7.6, so that the information therein can be used for this case study. The only differing parameter is the
apogee altitude, which in that case was nominally 35 650 km, and in this case it is 35 674 km. Given the small
difference and the fact that the effect of changing the value of the apogee altitude has little influence on the
evolution of GTOs (cf. Section 4.2.2), the results from those propagations can be used for this case study as
well.

The same results used to generate the plot in Figure 7.6 can be used to obtain a different plot, provided in
Figure 7.9, in which the parameter T (90%)

L introduced in Section 2.2.3 has been represented. This parameter is
defined as the period of time since injection into GTO necessary for debris to re-enter with a 90% probability.
For instance, a T (90%)

L of 10 years means that the debris launched under those nominal conditions will have
re-entered in 90% of the cases after 10 years, while there is a 10% probability of the debris still being in orbit
after that period of time.

Figure 7.9 can be used to immediately discard all combinations of epoch of injection into GTO and local
time of launch that would not comply with debris-mitigation guidelines, i.e. those with T (90%)

L longer than
25 years. Those cases are represented as dark-red pixels in Figure 7.9. All the other cases would comply with
debris-mitigation guidelines, although some are more favourable because their T (90%)

L is shorter.

Also from Figure 7.9 it is possible to provide a rough estimate of the recommended launch times in the
first days of February that would lead to compliance with debris-mitigation guidelines. It can be seen that
launches from approximately 23:30 to 6:00 and from 11:30 to 17:30 have to be avoided, as the resulting T (90%)

L

would be longer than 25 years. Launches at 9 AM/PM are ideal, as they have some of the lowest T (90%)
L and

correspond to regions in which the lifetime gradient is small, so deviations from the nominal conditions
would not lead to significant changes in the value of the lifetime (unless these deviations are very large).

The results from the propagations can be used to generate a plot for each possible launch day in which
the probability of re-entry in less than 25 years is provided, such as the one in Figure 7.10 (left) for the 2nd of
February.
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Figure 7.9: Period of time since injection into GTO leading to re-entry with a 90% probability for launches from Kourou at different
epochs of year 1990.

Figure 7.10: Probability of re-entering in less than 25 years as a function of Kourou’s local time of launch for objects injected into GTO on
2 February 1990 (left) and yearly mean of 1990 (right). Cases above the 90% dashed lines comply with debris-mitigation guidelines.

Since the lifetimes are not strongly dependent on the day of the year, it is possible to provide an esti-
mate of the probability of complying with debris-mitigation guidelines as a function of Kourou’s local time of
launch independent from the day of the year. Although for a specific mission a thorough study like the one
presented in this section should be carried out, the information provided in Figure 7.10 (right) illustrates that
the compliance with debris-mitigation guidelines is highly dependent on the time of launch, and that there
are certain moments in the day during which the launch is clearly more favourable.

As already mentioned, for launches from Kourou, the ideal launch time is around 9 AM/PM regardless of
the time of the year. For launches to GEO performed using Ariane 5 launcher vehicles in the period 2004-
2012 (recall that GEO launches with Ariane 5 were the major contributors to the LEO- and GEO-crossing
debris population in GTO generated in the period 2004-2012, accounting for 84% of the total [34]), in 90% of
the cases the launch took place after noon [79]. The mean launch time for the afternoon launches was 18:35
local time, with some 78% launches after 18 h. Although these launch times would lead to complying with
debris mitigation guidelines for a GTO object with the initial perigee altitude and ballistic coefficient used in
this section, the favourable launch window can become narrower for different values of these parameters, so
postponing the customary launch time from 18:35 to 21:00 can increase the probability of compliance with
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debris-mitigation guidelines, regardless of the orbital and body characteristics and the day of the year. If
the favourable launch window is wide (e.g. 6 hours), it would be preferable to schedule the launch for the
moment at which the window opens (e.g. 18:00), so that if anything were to go wrong, more time would be
available for implementing a fix before the window closes.





8
CONCLUSIONS AND RECOMMENDATIONS

In this chapter, the most relevant findings of the Master thesis and recommendations for future research
are provided. In Section 8.1, the main conclusions will be provided in the form of answers to the research
questions introduced in Section 1.1. Then, in Section 8.2, recommendations for future steps to be taken in
order to further research the problem will be given.

8.1. CONCLUSIONS
The research questions outlined in Section 1.1 have been answered during the development of this Master
thesis. Those questions are repeated here together with their respective answers.

1. How can the orbital evolution and lifetime of GTO objects be reliably predicted?

(a) What is the best way to model orbital perturbations to enable fast, yet accurate, long-term propa-
gations?
The propagation of GTOs following a numerical approach involves the integration of the equa-
tions of motion expressed in Cartesian components representing the osculating state of the satel-
lite. This requires the use of small integration step-sizes (in the order of seconds or minutes) that
lead to long computation times when many cases have to be propagated. Obtaining the results
discussed in this report following this approach would have taken several years of CPU time. Thus,
it is more convenient to approach this problem using semi-analytical techniques, in which equa-
tions depending on the mean (equinoctial) elements are integrated instead. In this way, larger
integrator step-sizes (generally 1 day for GTOs) can be used, leading to much faster propagations
(45 times faster than the numerical approach on average while maintaining proper accuracy). Ad-
ditionally, given the high sensitivity of the lifetime to initial conditions and body characteristics, a
statistical approach has to be followed in order to obtain reliable predictions.

(b) What is the accuracy of the lifetime predictions for GTO objects?
The accuracy of lifetimes predictions has been assessed for resonance-free orbits, as these are
the cases of interest for launcher companies that want to minimise the lifetime of their debris
in GTO. The largest uncertainties are related to the computation of atmospheric drag. The main
sources are thus the used atmospheric model, the cross-sectional area and the solar activity levels.
The NRLMSISE-00 atmosphere model introduces an error of 2.5–3% in the lifetime predictions of
resonance-free GTOs, while errors in the solar activity levels predictions are expected to introduce
errors no larger than 7%. The error introduced because of the uncertainty in the cross-sectional
area of the body will depend on the shape of the body. For a spherical body, the cross-sectional
area will be constant, so this parameter will be known precisely. For an elongated body, this pa-
rameter can introduce a large error, although using a mean area is accurate if the body is tumbling
relatively quickly. In general, it can be said that errors in the atmospheric density or the cross-
sectional area are scaled down by a factor of 5 to 6 for lifetime predictions, so in the worst-case
scenario, when the body is not tumbling and its cross-sectional area is off by 50% from the mean
value used in the propagation, the error introduced in the lifetime would not be larger than 10%.
These uncertainties exist both for the numerical and semi-analytical approach. For the latter there
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are additional sources of uncertainty, related to the use of mean elements without including the
short-period terms. It was found that these errors are around 6–7% for resonance-free GTOs.

2. How do orbital perturbations affect the evolution of GTO objects?

(a) Which are the most relevant perturbations and which can be neglected?
An accurate description of the temporal evolution of objects in GTO over long periods of time (in
the order of decades) can be obtained by including the perturbations caused by the zonal terms
of the geopotential up to degree 7, the Sun’s and the Moon’s point-mass gravitational attraction,
drag caused by Earth’s atmosphere and solar radiation pressure in the acceleration model. Other
perturbations, such as those caused by higher-degree or tesseral terms of the geopotential, third
bodies other than the Sun or the Moon, Earth’s tides or relativistic effects can be neglected without
introducing significant errors in the lifetime predictions.

(b) How can these perturbations affect the lifetime of GTO objects?
The interplay between the relevant orbital perturbations, mainly the Sun’s gravity, zonal terms
and atmospheric drag, can influence the evolution of objects in GTO drastically, causing changes
in the value of the lifetime of several orders of magnitude for the same object and orbit. This
is due to the existence of a solar resonance that can be triggered for orbits with a semi-major
axis of roughly 15 000 km. Since the semi-major axis of GTOs decreases from 25 000 km until re-
entry, GTO objects are susceptible to undergoing this resonance. Whether this resonance will be
triggered and how strong its effects will be depends on the relative positions of Earth, the Sun and
the orbit itself (inclination and location of the perigee) during the period in which the value of the
semi-major axis is close 15 000 km.

(c) What is the influence of initial launch conditions, body characteristics and environment-related
parameters on the orbital evolution of objects in GTO?
The evolution of objects in GTO is very sensitive to initial launch conditions, namely the launch
epoch and initial orbital state. For the same object and orbital parameters, the lifetime of an object
can change by several orders of magnitude by varying the initial epoch. This evolution is also very
sensitive to the initial perigee altitude, inclination, RAAN and argument of perigee of the GTO. On
the other hand, the sensitivity to changes in the values of the apogee altitude and true anomaly is
much more limited. The body characteristics and environment-related parameters have an influ-
ence on the effect that drag and SRP have on the orbital evolution. Since these perturbations have
a relatively small influence on the orbital evolution, sensitivity to changes in the values of the body
mass, cross-sectional area, CD , CR or solar radiation levels is relatively small (when compared to
other parameters such as initial epoch). However, these changes are generally not negligible.

(d) What are the main sources of uncertainty in the lifetime predictions?
Earth’s rotational state and the position of the Sun and the Moon are known very accurately for
future epochs, so the perturbations caused by zonal terms of the geopotential and third-body
attraction do not introduce significant uncertainties in lifetime predictions. The main source of
uncertainty is related to the estimation of the atmospheric density for the computation of drag
and to the cross-sectional area of the orbiting body, as this will depend on its attitude, which in
general is difficult (or impossible) to predict, having to rely on the use of a mean area. Even the
most accurate atmospheric models, such as NRLMSISE-00, provide values for the atmospheric
density with uncertainties of around 15%, when running propagations in the past using data from
actual measurements. When propagations have to be carried out in the future, in order to obtain
lifetime predictions, this uncertainty increases due mainly to the inaccuracy of the solar activity
index predictions, which affects the value of the atmospheric density.

(e) What are the launch conditions that lead to the shortest lifetimes?
As could be expected, bodies with larger ballistic coefficients (larger area and/or smaller mass),
larger CD , or in orbits with lower initial perigee altitude, have generally shorter lifetimes. However,
this only holds for orbits that do not undergo solar resonance. For orbits affected by solar reso-
nance, counter-intuitive effects are observed, so an object with e.g. a larger CD can take longer
to re-enter than an object with a smaller CD launched under the same conditions into the same
orbit. The sensitivity to initial conditions is so high that it is not possible to reliably predict the
lifetime of objects in GTO following a deterministic approach; instead, several cases with param-
eters slightly deviating from nominal conditions have to be propagated and then it is possible to
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find the lifetime leading to re-entry with e.g. a 90% probability. When this is done, the optimal
launch conditions from a debris-mitigation point of view depend on the launch site and launch
time (day of the year and local time). For launches from the Centre Spatial Guaynais’ launch site
in Kourou, the shortest lifetimes are achieved for launches around 9 AM/PM local time, with slight
variations undergone throughout the year and very strong variations undergone throughout the
day.

After having answered all the subquestions laid out in Section 1.1, it is possible to provide an answer to
the main research question:

How can orbital perturbations be used to comply with debris-mitigation guidelines for future
geostationary transfer orbit objects?

In this Master thesis, it has been found that the lifetimes of objects in GTO can only be predicted reli-
ably when they do not undergo solar resonance; otherwise, their lifetime is very sensitive to initial condi-
tions, body characteristic and environment-related parameters. Small deviations in these parameters from
the nominal values used in the propagation can be scaled up by several orders of magnitude for GTOs un-
dergoing solar resonance, leading in some cases to counter-intuitive effects, such as the fact that an actual
atmospheric drag larger than the one predicted in the propagations can lead to a slower decay.

Although a solar resonance can introduce a quasi-secular decrease of the perigee altitude, leading to a
fast re-entry, the extremely large sensitivity to initial conditions makes it impossible to exploit it reliably,
i.e. launching under conditions prone to leading to undergoing solar resonance will result in a lifetime that
can range from months to decades, and the actual lifetime cannot be predicted given the several sources
of uncertainty in the model. Consequently, cases experiencing solar resonance should be avoided and the
focus should be put on cases whose lifetime is less sensitive to initial conditions and body and environment
characteristics. Accordingly, when following a deterministic approach, the study was limited to resonance-
free cases in order to obtain reliable predictions about the lifetime of objects in GTO. For launches from
Kourou using a GTO with perigee altitude of 200 km, it was found that the launch has to take place around 9
AM/PM and the months of March, April, September and October should be avoided, for a representative GTO
object with a ballistic coefficient of 0.011 m2/kg. Under those conditions, the lifetimes are generally shorter
than one year and the lifetime gradients are small, so deviations from the nominal conditions do not lead to
lifetimes differing significantly from the predicted values.

Debris-mitigation guidelines specify a limit of 25 years for the lifetime with a 90% probability, i.e. the
launch company should be able to prove that the generated debris will re-enter Earth’s atmosphere in less
than 25 years in 90% of the propagated cases in which the values of the relevant parameters are modelled
to account for the existence of expectable uncertainties. Thus, restricting the launch options to orbits that
will never undergo resonance and that will have lifetimes shorter than one year may result in narrow launch
windows from which cases that would actually comply with debris-mitigation guidelines are excluded. For
that reason, the problem had to be studied following a statistical approach that can provide reliable infor-
mation even for cases affected by solar resonance. Using the results of thousands of orbital perturbations,
it was shown that for launches from Kourou using a GTO with a nominal perigee altitude of 200 km, it will
not be possible to comply with debris-mitigation guidelines for objects with a ballistic coefficient of 0.011
m2/kg when launching from 0 to 6 h or from 12 to 18 h local time. These are just approximate figures that
change slightly throughout the year; the exact numbers can be inferred from the colour-map plot provided
in Figure 7.9 for year 1990, and the same approach can be followed for future launches with different orbital
and body characteristics. It was found that the most favourable conditions are found approximately at the
middle of the intervals, i.e. around 9 AM/PM local time, and that changing the initial perigee altitude and/or
ballistic coefficient affects the width of the launch window complying with debris-mitigation guidelines but
has little influence on the optimal launch time. Thus, regardless of the orbital and body characteristics, it will
always be more advantageous to launch at around 9 AM/PM. However, from a logistical point of view, it will
be preferable to schedule the launch for the moment at which the window opens, so that if anything were to
go wrong, more time would be available in order to implement a fix before the window closes.

To sum up, the elements necessary to provide proof of compliance with debris-mitigation guidelines for
objects in GTO within feasible computation times are:

• A perturbation model including at least:

– Zonal terms of the geopotential up to degree 7.



98 8. CONCLUSIONS AND RECOMMENDATIONS

– The Sun’s and the Moon’s point-mass gravitational attraction.

– Earth’s atmospheric drag using the NRLMSISE-00 model.

– Solar radiation pressure (eclipses can be neglected).

• A propagator based on semi-analytical techniques in which the mean equinoctial elements are inte-
grated with large step-sizes, in the order of one day.

• A statistical approach in which many cases slightly deviating from the nominal conditions are propa-
gated in order to be able to obtain the probability of re-entry in less than a specified amount of time.

8.2. RECOMMENDATIONS AND FUTURE STEPS
One of the main tasks to be carried out in future research is the enhancement of the developed SST propagator
by introducing all the short-period terms. Then, the consequences of including short-period terms for the
accuracy of the lifetime predictions and computation times should be assessed. If, when compared to the
SST propagator without short-period terms, the introduced error (taking as a reference the results of the
numerical approach) can be significantly reduced while still maintaining competitive computation times,
future studies should be carried out with this improved propagator.

Another important aspect is to assess the accuracy of the SST propagator (compared to the Cowell propa-
gator) when following the statistical approach. In this Master thesis, this assessment has been performed only
for the deterministic approach, leading to the conclusion that the lifetime predictions are reliable only for
resonance-free orbits. However, it is not known if the SST propagator is reliable for the other cases when the
statistical approach is followed. The main limitation when carrying out this assessment is the time required
to obtain the reference data to which the SST propagator has to be compared to. Obtaining a colour-map plot
like the one in Figure 6.8 but with the Cowell propagator would have taken almost one year (when using 14
CPUs on the Eudoxos server continuously).

In this Master thesis, the results have been applied to launches from Kourou with Ariane rockets using a
direct ascent to GEO. However, there are many other possible ascent profiles and launch sites. In the future, it
may be interesting to study whether the results obtained in this thesis can be used to minimise the lifetime of
debris generated by other launchers that follow a different ascent strategy. Additionally, it will be necessary to
obtain and use predictions for the solar activity index if propagations have to be run for future epochs. During
this thesis, all the propagations were stopped before June 2017 because no information on solar activity index
predictions was available in Tudat.

There is another possible approach when performing propagations in the future, as discussed in [49].
This method is based on determining an equivalent F10.7 valid for a period of interest (e.g. the 25 years dur-
ing which the propagation will take place) computed using values from solar activity data predictions. Then,
this equivalent F10.7 can be used as a constant solar activity index for all the propagations performed in that
period. The equivalent F10.7 would be obtained following an iterative procedure in which several values are
tested until one of them leads to the same lifetime prediction than the use of the variable F10.7 for a represen-
tative GTO in the period of interest. In the future it will be interesting to study whether this approach can be
useful for performing propagations in future epochs more efficiently.

Furthermore, it may be interesting to study whether it is possible to reduce the lifetime of debris in GTO
(and thus widen the launch opportunities complying with debris-mitigation guidelines) by using e.g. a solar
sail or choosing lower perigee altitudes for the GTO used to bring the payload to GEO. It will be necessary to
assess the consequences that this would have from a mission-design point of view.

Finally, generating plots for launches in the next e.g. 5 years for different initial inclinations, initial perigee
altitudes and ballistic coefficients may be useful, as they could be readily used by launch companies at early
stages of mission design in order to discard combinations of parameters and launch epochs that would lead to
the generation of debris in non-compliant orbits. As this would be computationally expensive, the following
approach could be followed:

1. Study a single launch location, which will result in a fixed value for the initial inclination (e.g. for Kourou
an inclination of about 6-7 degrees could be used).

2. Generate (for each year of interest) a low-resolution plot in which the percentage of time for which
compliance with debris mitigation guidelines can be achieved, is mapped as a function of perigee alti-
tude and ballistic coefficient, to be used at early stages of mission design. For instance, the colour-map
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plot in Figure 7.9, valid for hp = 200 km and B = 0.011 m2/kg, would translate into a single value (52.5%,

i.e. the percentage of cases having an L(90%)
T shorter than 25 years). A lower resolution could be used at

this point, as only a yearly value, and not the lifetime for each case, would be used.

3. Generate higher-resolution plots, in which the range of studied initial perigee altitudes and ballistic
coefficients is reduced (and the grid-size increased) for the relevant month(s). These plots could be
used at later stages of design when the launch date (requested by the customer) has been narrowed
down to just a few weeks. These plots would be used to ensure that the selected values for hp and B will
not lead to a percentage of launch options complying with debris mitigation guidelines that is too low,
which would mean in practice very narrow launch windows (for instance, when the yearly or monthly
compliance is 50%, the favourable launch windows have a width of about 6 hours each).

4. Once all the parameters and day of launch have been fixed, it will be possible to determine the ideal
launch time and width of the launch window by performing a full analysis similar to the one presented
in Section 7.2. At this point, a finer resolution can be used for the initial RAAN (or local time of launch),
and also for the day of launch if there are still several candidate days for the launch.

Although steps 3 and 4 are mission-specific, the results generated in step 2 would be of high scientific
relevance, as they could be used in order to perform quick studies at early stages of mission design for future
GEO launches, without the need to perform computationally expensive tasks for each and every mission.
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A
ASTRODYNAMICS

A.1. FRAME TRANSFORMATIONS

A.1.1. ROTATION MATRICES

The rotation matrices that rotate a vector an angle α about the X , Y and Z axes are given by [80]:

RX (α) =

1 0 0

0 cosα −sinα

0 sinα cosα

 (A.1)

RY (α) =

 cosα 0 sinα

0 1 0

−sinα 0 cosα

 (A.2)

RZ (α) =

cosα −sinα 0

sinα cosα 0

0 0 1

 (A.3)

A.1.2. CARTESIAN COMPONENTS AND KEPLERIAN ELEMENTS

The procedures and equations presented in this section have been obtained from [33].

TRANSFORMATION FROM CARTESIAN COMPONENTS TO KEPLERIAN ELEMENTS

First, the following parameters have to be determined:

r = [x, y, z]T ; r = ∥r ∥
V = [vx , vy , vz ]T ; V = ∥V ∥
w = r ×V = [wx , wy , wz ]T ; w = ∥w∥
N = [0,0,1]T ×w = [Nx , Ny , Nz ]T ; Nx y =

√
N 2

x +N 2
y

(A.4)

with V the velocity vector of the orbiting body with respect to the central body and w the specific relative
angular momentum vector.
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Then, the Keplerian elements can be obtained from:

a = 1
2
r − V 2

µ

e = V ×w

µ
− r̂ ; e = ∥e∥

i = arccos
wz

w

Ω= atan2

(
Ny

Nx y
,

Nx

Nx y

)
ω= sign

(
(N̂ ×e) ·w

)
arccos

(
ê · N̂

)
f = sign((e × r ) ·w )arccos(r̂ · ê)

(A.5)

where the notation r̂ = r
r is used to denote normalised vectors.

Finally, if one is interested in the values of the eccentric anomaly or the mean anomaly, those can be
obtained from:

E = 2arctan

(√
1−e

1+e
tan

f

2

)
(A.6)

M = E −e sinE (A.7)

TRANSFORMATION FROM KEPLERIAN ELEMENTS TO CARTESIAN COMPONENTS

The first step is to compute the following parameters:

l1 = cosΩcosω− sinΩsinωcos i

l2 =−cosΩsinω− sinΩcosωcos i

m1 = sinΩcosω+cosΩsinωcos i

m2 =−sinΩsinω+cosΩcosωcos i

n1 = sinωsin i

n2 = cosωsin i

H =
√
µa(1−e2)

r = a(1−e2)

1+e cos f

(A.8)

where H is the magnitude of the specific relative angular momentum and r is the radial distance from the
centre of mass of the central body to the orbiting body.

Finally, the following matrix equations can be used in order to obtain the position (x, y, z)T and the veloc-
ity (vx , vy , vz )T :  x

y
z

=
 l1 l2

m1 m2

n1 n2

(
r cos f
r sin f

)
(A.9)

 vx

vy

vz

= µ

H

 l1 l2

m1 m2

n1 n2

( −sin f
e +cos f

)
(A.10)

A.1.3. CARTESIAN COMPONENTS AND EQUINOCTIAL ELEMENTS
The procedures and equations presented in this section have been obtained from [14].

TRANSFORMATION FROM CARTESIAN COMPONENTS TO EQUINOCTIAL ELEMENTS

The first step is to compute the angular momentum vector from Eq. (A.4-3) and using it to determine the
parameters p and q from:

p = wx

1+wz

q =− wy

1+wz

(A.11)
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which are then used to determine the reference frame basis vectors f and g from Eq. (A.18-1) and Eq. (A.18-
2).

Next, after obtaining the eccentricity vector from Eq. (A.5-2), the parameters h and k can be found:

h = e ·g

k = e · f
(A.12)

Then, the following two parameters are introduced:

X = r · f (A.13)

Y = r ·g (A.14)

The following step is to compute the eccentric longitude from:

sinF = h + (1−h2b)Y −hkbX

a
p

1−h2 −k2

cosF = k + (1−k2b)X −hkbY

a
p

1−h2 −k2

(A.15)

where

b = 1

1+
p

1−h2 −k2
(A.16)

Finally, a is obtained from Eq. (A.5-1) and the mean longitude from the equinoctial form of Kepler’s equa-
tion:

λ= F +h cosF −k sinF (A.17)

TRANSFORMATION FROM EQUINOCTIAL ELEMENTS TO CARTESIAN COMPONENTS

The first step is to compute the equinoctial reference frame basis vectors ( f , g , w ), whose components in (x,
y , z) are given by:

f = 1

1+p2 +q2

 1−p2 +q2

2pq
−2p


g = 1

1+p2 +q2

 2pq
1+p2 −q2

2q


w = 1

1+p2 +q2

 2p
−2q

1−p2 −q2


(A.18)

Next, the eccentric and true longitudes, F and L, have to be found. The eccentric longitude is obtained by
solving Eq. (A.17). Then, the true longitude is computed from:

sinL = (1−k2b)sinF +hkb cosF −h

1−h sinF −k cosF

cosL = (1−h2b)cosF +hkb sinF −k

1−h sinF −k cosF

(A.19)

where b is given by Eq. (A.16).
The radial distance is found from:

r = a(1−h sinF −k cosF ) (A.20)

and then used to determine the quantities:

X = r cosL

Y = r sinL

Ẋ =−na(h + sinL)p
1−h2 −k2

Ẏ = na(k +cosL)p
1−h2 −k2

(A.21)
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Finally, the position and velocity vectors can be found from:

r = X f +Y g

V = Ẋ f + Ẏ g
(A.22)

A.1.4. KEPLERIAN ELEMENTS AND EQUINOCTIAL ELEMENTS
The procedures and equations presented in this section have been obtained from [14].

TRANSFORMATION FROM KEPLERIAN TO EQUINOCTIAL ELEMENTS

The transformation is directly obtained from the definition of equinoctial elements:

a = a

h = e sin(ω+Ω)

k = e cos(ω+Ω)

p = tan i /2 sinΩ

q = tan i /2 cosΩ

λ= M +ω+Ω

(A.23)

The eccentric longitude, F , and the true longitude, L, are given by:

F = E +ω+Ω (A.24)

L = f +ω+Ω (A.25)

TRANSFORMATION FROM EQUINOCTIAL TO KEPLERIAN ELEMENTS

The first step is to compute the auxiliary angle ζ, defined by:

sinζ= hp
h2 +k2

cosζ= kp
h2 +k2

(A.26)

Then, the Keplerian elements can be found from:

a = a

e =
√

h2 +k2

i = 2arctan
√

p2 +q2

sinΩ= p√
p2 +q2

cosΩ= q√
p2 +q2

ω= ζ−Ω

M =λ−ζ

(A.27)

The eccentric anomaly and the true anomaly can be obtained from:

E = F −ζ (A.28)

f = L−ζ (A.29)

A.2. ORBITAL PERTURBATIONS

A.2.1. GEOPOTENTIAL

EFFECTS OF J2

The J2-term does not cause secular or long-period variations on a, e or i . However, Ω does experience a sec-
ular variation known as regression of the nodes [39]. The rate of change of the right ascension of the ascending
node is given by [48]:

Ω̇=− J̃2n cos i (A.30)



A.2. ORBITAL PERTURBATIONS 111

where the term

J̃2 = 3

2

J2R2

p2 (A.31)

is always positive, since J2 = 1.0826357×10−3 [45], leading to negative values of Ω̇ for prograde orbits (i < 90
degrees). Here R denotes Earth’s equatorial radius and p = a(1−e2) the semi-latus rectum. Also note that for
polar orbits (i = 90 degrees), Ω remains constant. This is a logical result, as the J2-term is a zonal harmonic
and thus one should not expect the orbital plane to rotate about the polar axis, since the deviations described
by zonal terms are independent of longitude (cf. Figure 3.5 left). The rate of change of Ω is maximum for
equatorial orbits (i = 0), but in this case this parameter is undefined.

The argument of perigee can also experience secular variations due to the J2-term and, in addition, long-
period variations too. Its temporal rate of change is given by [39]:

ω̇= J̃2

2
n(5cos2 i −1) (A.32)

which leads to the definition of a critical inclination for which J2 has no effect on ω. This value corresponds
to i = 63.435 degrees.

EFFECTS OF J3

The J3-term has no secular or long-period effects on the semi-major axis; however, the other orbital elements
can experience these effects. The corresponding expressions can be found in [43]. For polar orbits, the incli-
nation remains constant at 90 degrees. For equatorial orbits, the eccentricity does not experience long-term
or secular variations, and Ω̇ tends to infinity, although Ω is not defined if i = 0. When the argument of perigee
ω= 0, neither Ω nor ω change.

Changes in the eccentricity will have an influence on the perigee altitude, as the semi-major axis remains
constant. This will have an impact on the lifetime of the orbit due to the atmospheric density changing with
altitude. Thus, the rate of change of the eccentricity due to the J3-term is deemed to be of high relevance for
GTOs and is provided here [43]:

ė = J̃3

4
n(1−e2)(5cos2 i −1)sin i cosω (A.33)

with the coefficient

J̃3 = 3

2

J3R3

p3 (A.34)

always negative, since J3 =−2.5324737×10−6 [45] and R > 0, l > 0. The term 5cos2 i−1 is positive for i < 63.435
degrees, which holds for most GTOs. Thus, it can be said that, in general, the rate of change of the eccentricity
has opposite sign than cosω. Using Eq. (3.1) it can be shown that rp = a(1− e), from which it is possible to
deduce that the sign of the rate of change of the perigee altitude due to J3 coincides with that of cosω.

EFFECTS OF J4

The J4-term has no secular or long-period effects on the semi-major axis or the inclination; however, the
other orbital elements are affected. The corresponding expressions can be found in [43]. The eccentricity is
not affected when i = 0, i = 67.79 degrees or ω= 0. Moreover, for polar orbits, or when i = 49.11 degrees and
ω = 45 degrees, Ω remains constant. In this case, the rate of change of the eccentricity is also deemed to be
relevant and is reported here [43]:

ė = J̃4ne(1−e2)(1−7cos2 i )sin2 i sin2ω (A.35)

with the coefficient

J̃4 = 15

32

J4R4

p4 (A.36)

always negative, since since J4 = −1.6199743×10−6. This means that, for GTOs (with i < 67.79 degrees), the
sign of ė will coincide with that of sin2ω, or equivalently, the rate of change of the perigee altitude and sin2ω
will have opposite signs. It can be shown that the effects of the J3- and J4-terms on the eccentricity (and thus
on the perigee altitude) have opposite signs for ω< 180 degrees, while for ω> 180 the two effects add up.
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EFFECTS OF J2,2

The J2,2-term has no secular or long-period effects on the semi-major axis or the eccentricity; however, the
other orbital elements are affected. The corresponding expressions can be found in [39], where the terms of
order e2 have been neglected, which may not be valid for HEOs. For equatorial orbits, the inclination remains
constant at i = 0 degrees. For polar orbits, Ω remains constant in the long-term, and so does ω if i = 39.23
degrees.

A.2.2. THIRD-BODY ATTRACTION

The secular and long-period variations over one orbital revolution due to a third body’s gravity in terms of
orbital elements are [81]:

∆2πa = 0

∆2πe = 5

2
ηe

√
1−e2 sin2 i sin2ω

∆2πi =−5

4
η

e2

p
1−e2

sin2i sin2ω

∆2πΩ=−η cos ip
1−e2

(1−e2 +5e2 sin2ω)

∆2πω= η
1p

1−e2

[
5cos2 i sin2ω+ (1−e2)(2−5sin2ω)

]
(A.37)

where

η= 3

2
π
µd

µE

(
a

rd

)3

(A.38)

Moreover, since the semi-major axis remains constant, an expression for the change in perigee altitude
can be obtained [81]:

∆2πhp =−a∆2πe (A.39)

which leads to the conclusion that the perigee altitude will rise due to third-body perturbations when 90° <
ω< 180° or 270° <ω< 360°.

A.2.3. ATMOSPHERIC DRAG

The following expressions give the secular variation of the semi-major axis and the eccentricity due to atmo-
spheric drag over one orbital revolution [33]:

∆2πa =−2π
CD A

m
a2ρp e−c [I0 +2eI1]

∆2πe =−2π
CD A

m
aρp e−c

[
I1 +e

I0 + I2

2

] (A.40)

where ρp is the atmospheric density at perigee, c ≡ ae/H0 and I j are modified Bessel functions of order j and
argument c. The modified Bessel function is given by [82]:

I j (c) =
∞∑

m=0

1

m!Γ(m + j +1)

( c

2

)2m+ j
(A.41)

For circular orbits, Eq. (A.40) can be simplified significantly [33], but this is not the case for GTOs. How-
ever, even in their full form they can be used to deduce that the effect of atmospheric drag on the semi-major
axis and eccentricity is always a secular decrease, since the modified Bessel functions are always positive,
given that j ≥ 0, c ≥ 0 and Γ(x) > 0 for x > 0 [83].

Similar expressions are provided in [43], where the terms of order e2 and e3 are also included. Expres-
sions for the other orbital elements are also provided there. However, these expressions are rather complex,
and thus it is not possible to determine whether the rates of change are positive or negative just by visual
inspection, so they have been left out of this report.
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A.2.4. SOLAR RADIATION PRESSURE
The following expressions provide a first-order approximation of the rate of change of the orbital elements
due to solar radiation pressure [43]:
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(A.42)

where rS is the distance from Earth to the Sun, xS , yS and zS are the coordinates of the Sun in the Earth-
centred perifocal reference frame introduced in Section 3.3.1, and

fS = |aSRP | =CR
WS A

mc
(A.43)
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ADDITIONAL PLOTS

Figure B.1: Temporal evolution of the perigee and apogee altitudes and Sun azimuth and declination angles for a representative GTO,
neglecting all perturbations except Sun’s gravity.
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Figure B.2: Temporal evolution of the longitude of the sub-satellite point of a geostationary satellite; a satellite in a circular orbit at GEO
altitude with an inclination of 2 deg; and a satellite in a circular equatorial orbit 100 km below GEO altitude, when all orbital perturbations
are neglected (left) and when the effects of zonal terms up to degree 7, Sun’s and Moon’s gravity, drag and SRP are considered (right).

Figure B.3: Lifetime of a satellite as a function of epoch of injection into GTO and initial RAAN when eclipses are included in the acceler-
ation model (left) and neglected (right).

Figure B.4: Lifetime of a satellite as a function of epoch of injection into GTO and initial RAAN using the Cowell (left) and SST (right)
propagators.
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Figure B.5: Evolution of the Keplerian components of the upper stage of the Falcon 9 rocket (CATID 39501) used to launch Thaicom 6
obtained from tracking data [38] (solid line) and simulated using the SST propagator (dashed line).

Figure B.6: Evolution of the Keplerian components of the upper stage of the Falcon 9 rocket (CATID 40618) used to launch TurkmenSat 1
obtained from tracking data [38] (solid line) and simulated using the SST propagator (dashed line).
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Figure B.7: Final perigee altitude after a period of 25 years for several GTOs with initial perigee altitude of 200 km. Only perturbations
caused by atmospheric drag and the Sun’s gravity were included in the acceleration model.

Figure B.8: Relative errors introduced in the value of the lifetime of a satellite when neglecting the effects of SRP as a function of epoch of
injection into GTO and initial RAAN, for orbits with a lifetime with less than 25 years (left) and for orbits in resonance-free regions only
(right).
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Figure B.9: Contribution of the J2 term to the mean drift of perigee as a function of orbital inclination (cf. Eq. (6.1)).

Figure B.10: Zoom-in around a region of Figure 6.8 with a higher resolution for both the epoch of injection into GTO and the initial RAAN.
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Figure B.11: Lifetimes of objects in a GTO with an initial inclination of 30 degrees as a function of epoch of injection into GTO and local
time of launch from the Euroepan spaceport in Kourou (left) and from Kennedy Space Center’s launch site in Cape Canaveral (right).
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