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Summary

In this thesis, a new method to approximate the cost function of LowThrust, Multiple
GravityAssist interplanetary trajectories using a Machine Learning surrogate is pro
posed. This method speeds up the optimization process without fine tuning of the
surrogate parameters for every individual case. The computational cost of obtain
ing training data was identified as the main limitation when using Machine Learning
methods for this purpose. Therefore, the surrogate was built with an Online Sequential
Extreme Learning Machine MultiAgent System (OSELMMAS) due to its theoretical
good performance when the training data is limited.

A highfidelity global optimization problem was implemented, and a method to in
clude the surrogate during the optimization process was designed. This method does
not require specialized optimization algorithms. The parameters that control the in
teraction between the surrogate and the optimization process were identified and a
procedure to obtain the best values was designed and applied. The final results show
that the use of the surrogate improves the optimization results when evaluations of
the cost function are computationally expensive. However, the values of the parame
ters that control the interaction between the surrogate and the optimization algorithm
had to be carefully selected. The search for a general procedure to obtain these pa
rameters without repeated tests is proposed for future research. Several applications
to new optimization problems of the method developed in the thesis are also proposed
for future research.
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1
Introduction

Missions to other planets or asteroids are very interesting from a scientific point of
view. However, the achievements of such missions are hindered due to the large
amounts of propellant required to reach a body beyond the orbit of Earth. Therefore,
orbit optimization is a key part within the design phase of these missions. Moreover,
two recent techniques resulted in an important increase of the objectives that can be
achieved with the same amount of propellant: the Gravity Assist (GA) technique and
the systems for LowThrust Propulsion (LTP). However, these advances also made the
optimization of interplanetary trajectories a much more challenging problem. As a
result, global optimization of interplanetary trajectories has become a very active field
of research.

During a GA maneuver, a spacecraft makes a close approach to a planet, which
causes a change in the heliocentric velocity of the spacecraft [4]. This maneuver
allows the saving of the propellant for the change of velocity, but the trajectory opti
mization increases in complexity. In this thesis, only unpowered GAs are considered.
Each GA is defined by the date of the encounter with the planet, the velocity vector
of the spacecraft at the encounter, and two parameters that define the direction of
the maneuver, and these parameters need to be optimized for each mission. This
increases the size and complexity of the optimization problem proportionally with the
number of GAs. For instance, the optimization of MultipleGravityAssist Trajectories
(MGAT) missions like BepiColombo [6], which has 7 GAs planned, is a very challenging
task.

LTP systems are more fuel efficient than the traditional chemical engines, but at the
cost of a greatly reduced thrust. The applications of LTP in interplanetary trajectories
have been more limited due to the challenges that they present: The LTP system
usually needs to be active for several months, which requires a very high reliability and
presents a challenging optimization problem. The thrust direction can be freely chosen
when the engine is active, so a wide range of trajectories are possible. Optimizing
these trajectories is time consuming. However, LTP has been used successfully in
missions to small bodies such as Deep Space 1 [7], Hayabusa [8], and Dawn [9].
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The combination of GAs and LTP results in a very complex optimization problem.
The computation time required to reach a global optimal solution is usually very high
[10, 11]. In this thesis, the use of a Machine Learning (ML) method as a surrogate
to replace the most expensive computations of the optimization process was studied.
Previous works proved that it was possible to use ML methods to approximate the cost
function of LTP trajectories [12]. References [13, 14] test different ML methods to
approximate the cost of transfers between asteroids. Artificial Neural Networks (ANNs)
have been studied as a method to predict the optimal control of a spacecraft from its
state in References [15–17]. The cost function of interplanetary LTP trajectories was
predicted using ANNs in References [18, 19] and using Gaussian Process Regression
(GPR) in Reference [20]. In addition, the cost of trajectories in MGAT missions that
use chemical propulsion was predicted using ANNs in Reference [21], and using GPR
in Reference [22].

However, most of the methods presented do not consider the circumstances that
are expected to be found in typical MGAT optimization problems. In particular, most
of the ML methods used require large amounts of training data in order to make
accurate predictions. The computation time required to generate this data may be
longer than the time that would be saved by using the surrogate. Previous studies
only focus on the surrogate accuracy without considering the complete optimization
process [13, 14, 20, 22]. The ones that do consider the optimization process base their
results on generating large amounts of data before the optimization [19, 21]. Instead,
the objective of this thesis was to implement a ML surrogate that could be used as an
offtheshelf method for LTP MGAT optimization problems to produce mediumtohigh
fidelity solutions. This required the implementation of two complementary modules: a
surrogate built with Online Sequential Extreme Learning Machine MultiAgent System
(OSELMMAS), a specialized ML method, and an accurate trajectory computation
procedure.

The Extreme Learning Machine (ELM) method [23] was selected as the best option
to create the surrogate after analyzing the characteristics of the problem. This method
has three main advantages: a good performance when the number of training points
is low, it can be used online, and the Universal Approximation Theorem (UAT) indicates
that it is capable of learning the underlying function [24, 25]. Online learning consists
of learning from training points as they arrive sequentially instead of learning from a
batch of training points available before training. In this thesis, online training was
used to automatically adjust the number of training points generated to the minimum
necessary for each case [26]. The online version of the ELM is the Online Sequential
Extreme Learning Machine (OSELM) [27]. The low computational cost of training
and evaluating the surrogate allowed the use of the combination of several OSELM
models to reduce the overall error, known as an ensemble model. In this thesis, the
combination was done based on the Extreme Learning Machine MultiAgent System
(ELMMAS) [28]. The use of the ensemble model in an online fashion led to an
innovative model named OSELMMAS.

The computation of accurate trajectories did not require the use of new techniques.
However, the joint implementation of the methods proposed for this study has never



1.1. Objective and Research Question 3

been done before. In the literature, the optimization of LTP MGAT was done by per
forming a global search using lowfidelity methods to define the trajectories [29–32],
and performing a local optimization with a mediumtohigh fidelity method from that
solution in some cases [33–39]. However, the global minima of the higher fidelity
methods might not be in the vicinity of the low fidelity method result. In this the
sis, the global optimum of trajectories was computed directly with medium or high
fidelity methods. This would require a large computation time if used as a standalone
method, but the use of the surrogate allowed the speedup of the process. The imple
mentation of the global optimization for the more accurate method was challenging,
and a result of this thesis was the implementation of this global optimization method,
in addition to the one of the ML surrogate.

1.1. Objective and Research Question
The objective of this thesis was stated as:

To reduce the time required to compute the cost function associatedwith
LTP interplanetary transfers in MGAT optimization by implementing a ML
surrogate to approximate it.

To reach this objective, the following research question was answered:

“Is a ML method faster for computing the cost function in MGAT optimization than
the present optimization methods for a given benchmark?”

In order to answer this question, three subquestions and auxiliary subquestions
should be answered:

1. In which part of the MGAT optimization process is the ML surrogate used?

(a) What advantages can be obtained by using it in that part?
(b) How can the use of a ML surrogate be implemented in that part?
(c) What is the accuracy that can be expected from the ML method?

2. Which are the inputs and outputs of the function to approximate?

(a) Which ML method is used?
(b) How is the training data generated?
(c) What is the computational cost of each step?
(d) Which optimization method is used for training?

3. What is the required accuracy for the ML method?

(a) How is the accuracy evaluated?
(b) Which methods are used as a reference?
(c) What is the expected performance during the optimization when using the

ML surrogate?
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1.2. Report Structure
The structure of this report is the following one. A paper manuscript with the main
findings of the thesis is presented in chapter 2. The MGAT optimization problem and
its implementation, verification, and validation are presented in chapter 3. The im
plementation of the shapebased method used, and its verification and validation are
presented in chapter 4. The implementation of the direct transcription method used,
and its verification and validation are presented in chapter 5. The implementation
of ML method used, the accuracy estimation, and the verification and validation of
the surrogate are presented in chapter 6. Finally, the conclusions of the thesis and
recommendations for future work are presented in chapter 7. The conclusions and
recommendations presented in that chapter also include considerations about the im
plementation of the different methods that are not present in the paper.



2
Paper

In this chapter, a paper containing the main results of the thesis is presented. This
paper was written adhering to the formatting and style requirements for papers to be
submitted to the AAS/AIAA Astrodynamics Specialist Conference1.

1http://www.univelt.com/FAQ.html#SUBMISSION (accessed May 13, 2020).
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GLOBAL OPTIMIZATION OF LOW-THRUST INTERPLANETARY
TRAJECTORIES USING A MACHINE LEARNING SURROGATE

Pablo Gómez Pérez*, Kevin Cowan†, and Yuxin Liu‡

In this work, we propose a new method to approximate the cost function of Low-Thrust,
Multiple-Gravity-Assist interplanetary trajectories using a Machine Learning surrogate. This
method speeds up the optimization process without fine tuning of the surrogate parameters
for every individual case. We identified the computation time required to obtaining training
data as the main limitation when using Machine Learning methods for this purpose. There-
fore, we built the surrogate with an Online Sequential Extreme Learning Machine Multi-
Agent System (OS-ELM-MAS) due to its theoretical good performance when the training
data is limited. We defined a method to include the surrogate during the optimization process
without needing specialized optimization algorithms, and identified the parameters that con-
trol the interaction between the surrogate and the optimization process. Finally, we showed
that the use of the surrogate is beneficial when evaluations of the cost function have a high
computational cost, as long as the parameters that control the interaction are carefully se-
lected. We also showed that the optimal value of these parameters can be narrowed down
based on the characteristics of the transfers, and a search over a broad range of values is not
necessary.

INTRODUCTION

Interplanetary missions are very attractive from a scientific point of view. However, the payload capacity
of these missions is severely limited by the large amounts of fuel required to reach bodies beyond the orbit of
Earth. Therefore, orbit optimization is a critical part of their design process. This is a very complex task, and
the difficulty is increased when incorporating propellant-saving advances such as the Gravity Assist (GA)
maneuvers and the Low-Thrust Propulsion (LTP). These advances allowed to reduce the fuel required for
interplanetary trajectories, but at the expense of an exponential increase of the difficulty of the optimization
problem.1, 2 This is an issue especially during the preliminary mission design phase, as a large number of
alternatives need to be considered to make an informed decision regarding the mission objective.3 How-
ever, the long time required to obtain a globally optimal solution means that suboptimal solutions are often
considered.1, 4 This is not an ideal situation as solutions that allow for higher payloads are missed.

The field of Machine Learning (ML) has gained attention in recent years due to increased capabilities of
ML methods to approximate that are unknown or very costly to evaluate. In particular, Artificial Neural
Networks (ANNs) are among the most versatile and successful ML methods. Both ANNs and other ML
methods were studied as an option to speed up the optimization of both Multiple-Gravity-Assist Trajectories
(MGATs) and trajectories with LTP. ANNs were used both to predict the optimal control at a given state5, 6

and to predict the fuel required to complete a whole transfer including an intermediate GA.7 Moreover, several
ML methods were tested to predict the fuel required to complete optimal transfers between asteroids8, 9 and
it was found that Gradient Boosting10 provided the best results. In addition, References 11 and 12 use ML

*M.Sc. Student, Faculty of Aerospace Engineering, Delft University of Technology, The Netherlands, pablogope@gmail.com
†Education fellow and Lecturer, Faculty of Aerospace Engineering, Delft University of Technology, The Netherlands,
k.j.cowan@tudelft.nl.

‡Ph.D. Candidate, Faculty of Aerospace Engineering, Delft University of Technology, The Netherlands, yuxin.liu@tudelft.nl.
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methods to estimate the fuel requirements of MGATs but for missions using traditional chemical propulsion.
The methods used in previous approaches require large amounts of data to train the ML surrogates. Moreover,
most previous work exclusively evaluates the overall accuracy of the approximation, but it does not evaluate
the interaction between the surrogate and the optimization algorithm. In those cases where such interaction
is studied, custom algorithms are proposed, specifically designed for the case studied.11 Therefore, the main
issue with previous approaches is that the computation time required for the generation of training data and
for the fine tuning is not considered when evaluating the speed-up achieved with the surrogate. In this work,
we selected a method to build a ML surrogate to predict the fuel cost of the trajectories that requires only a
small amount of training data and has a fast training process. We tested the effects of this surrogate in the
optimization using medium fidelity LTP models,2 but we expect results to be extrapolatable to higher fidelity
models.

The method we selected is a simplified version of the ANNs known as Extreme Learning Machine (ELM).13

This method has a lower number of hyperparameters and a very fast training process. The simplicity of the
method permits the combination of models to reduce the total error while still allowing for fast training and
prediction. Therefore, we proposed the use of an Extreme Learning Machine Multi-Agent System (ELM-
MAS)14 method to combine several ELM surrogates. Moreover, we propose to train the surrogate online, so
the model is updated during optimization. This allows the generation of training data only when the error of
the surrogate predictions is expected to be high. This is the case at the beginning of the optimization, when
few data is available, and when the optimization algorithm explores a new area of the input space. The online
version of the ELM model is the Online Sequential Extreme Learning Machine (OS-ELM).15 We presented
a combined used of the OS-ELM and ELM-MAS into the innovative Online Sequential Extreme Learning
Machine Multi-Agent System (OS-ELM-MAS) model.

To test the speed-up achieved with the surrogate, we focused on the effects of the surrogate when used
in conjunction with an optimization algorithm. We identified a number of parameters that influence the
interaction between the online surrogate and the optimization process, and we propose a method to select
the most adequate values for these parameters. Finally, we used a Differential Evolution (DE)16 global
optimization algorithm in several MGATs cases and compared the results achieved with and without the
surrogate replacing the cost function. The final objective was to achieve an implementation of the surrogate
that does not require either fine tuning or previous training data and that can be used as an off-the-shelf tool
for preliminary trajectory design.

This paper is structured as follows. The first section describes the optimization problem considered. The
second section describes the numerical methods used to compute the fuel cost of the transfers. The third
section describes the ML method used to build the surrogate. The fourth section describes the methodology
used to evaluate the performance of the surrogate. The fifth section presents the results of the evaluation in
three different MGATs. Finally, the last section contains a summary of the conclusions reached in this work.

MULTIPLE-GRAVITY-ASSIST OPTIMIZATION PROBLEM

The optimization of MGATs is especially challenging as every leg between planetary encounters needs
to be optimized. This means that several optimization runs are required to compute a single trajectory.
Moreover, the optimal combination of planetary encounter dates and GA parameters needs to be determined.
A global search over these dates and parameters requires a large number of trajectory computations. Due
to the high computational cost of each trajectory optimization, the use of the surrogate can be especially
beneficial in these cases. This section defines in detail the optimization problem addressed in this work.

Spacecraft Dynamics

We follow the most common approach in the literature and use a simplified dynamic model for the com-
putation of every individual transfer. In particular, we use the method of linked conics, which is used almost
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universally in the literature. We consider that the only forces acting on the spacecraft during the interplane-
tary flight are the spherical gravity of the Sun and the thrust provided by the LTP system. The planetary GAs
are modeled as instantaneous changes in the velocity of the spacecraft at the position of the planet. We define
the state of the spacecraft with the vector s = [rT ,vT ,m]T . The equations of motion are

ṙ = v, v̇ = − µ

|r|3 r +
T

m
, ṁ = − |T |

Ispg0
, (1)

where r is the position vector of the spacecraft, v its velocity vector, m its the mass, T the thrust vector, Isp
the specific impulse of the spacecraft, and g0 = 9.806 65 m s−2 and µ = 1.327 124 400 18× 1020 m s−2 are
the standard gravity and gravitational parameter of the Sun respectively.

Gravity Assist Computation

As mentioned before, the effects of the GAs are approximated as instantaneous changes in the velocity of
the spacecraft. Given an incoming velocity vector vb, the change on velocity ∆vGA depends on the velocity
of the planet V , the radius of closest approach at the planet ρ, the orbit plane angle η with a reference plane,
and the gravitational parameter of the planet µp. We use the method presented in Reference 4 to determine
the state after a GA. The velocity after the GA, va, is given by

va = vb + ∆vGA (vb,V , η, ρ, µp) . (2)

Optimization Problem Formulation

In this work, we considered the single-objective global optimization problem of finding the most fuel-
efficient transfer between initial body p0 and final body pl for a given spacecraft. During the transfer, the
spacecraft encounters l − 1 intermediate bodies p1, . . . , pl−1. A GA is performed if the encounter is with a
planet, and the state remains unchanged if the encounter is with bodies of negligible gravitational attraction
such as asteroids. We considered that the sequence of bodies to visit during the transfer remained constant
for the whole optimization procedure. The characteristics of the spacecraft (i.e. initial mass m0, maximum
thrust Tmax and specific impulse Isp) were also considered fixed values for on optimization. A simple
Nuclear Electric Propulsion (NEP) propulsion model was implemented, but our conclusions are expected to
be extrapolatable to similar propulsion methods.

We consider a leg to be a segment of the trajectory between two consecutive body encounters, so the
optimization problem includes l legs. Leg i is defined by the initial state s(i)0 = [r

(i)T
0 ,v

(i)T
0 ,m

(i)
0 ]T , the

final state s(i)f = [r
(i)T
f ,v

(i)T
f ,m

(i)
f ]T , and the time of flight TOF (i). The trajectory of the leg is the optimal

trajectory between the initial and final state. The value ofm(i)
f is computed as the initial mass plus the change

of mass during the leg:

m
(i)
f = m

(i)
0 +

∫ TOF (i)

0

ṁdt . (3)

Note that ṁ ≤ 0. We define the cost function of the leg as the propellant mass fraction used during the leg:

J
(i)
L = JL

(
s
(i)
0 , s

(i)
f ,TOF (i)

)
=
m

(i)
0 −m

(i)
f

m
(i)
0

=

∫ TOF (i)

0

− ṁ

m
(i)
0

dt =

∫ TOF (i)

0

|T (t)|
m

(i)
0 g0Isp

dt . (4)

To find the optimal control policy T ∗(i)(t) that minimizes the cost function, we start by defining a general
value function of the form

g(t, s) = min
u

(∫ t′

0

j (s(t),u(t)) dt+ h(s(t))

)
, and dynamics ṡ(t) = F (s(t),u(t)),
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where u(t) is the control law. The optimal control is the solution of the Hamilton-Jacobi-Bellman equation:

ġ(s, t) = −min
u

(∇g(s, t) · F (s,u) + l(s,u)) , subject to g(s, t′) = h(s). (5)

If F , j, and h are continuous and bounded, and s(t′) can be reached from s(0), there is an optimal value u∗

which is a solution for Equation (5) and it is unique.17 In our case, the relevant functions are

j =
|T |

m
(i)
0 g0Isp

, h = 0, t′ = TOF (i), u = T ,

and F is given by Equation (1). the relevant functions are continuous and bounded, so there is an unique
optimal control policy T ∗(i) which provides the optimal cost J∗(i)L .

However, there is no known general solution for Equation (5). Instead, a numerical optimization is used to
search for the function T ∗(i) in every leg. A transcription method was used to define a problem in which a
local optimization algorithm could be applied. This process is explained in detail in the Section Leg Compu-
tation. In a general case, the results obtained are not the true T ∗(i) as the numerical optimization is subject
to a series of additional constraints that make the problem tractable. Instead, an estimation of the optimal
control policy T̂ ∗(i) is provided by the local optimization procedure. This provides the value of the cost
function associated with the leg used in practice:

Ĵ
∗(i)
L = JL(T̂ ∗(i)) = J

∗(i)
L + ε(i), (6)

where ε(i) is the difference between the actual optimal value of the cost function and the estimated one.

The value Ĵ∗(i)L depends on s(i)0 and s(i)f . However, the value of m(i)
f is not independent as it is given

by Equation (3). Moreover, taking into account that m(i)
0 = m

(i−1)
f and Equations (3) and (4), we get

m
(i)
0 = m

(i−1)
0 (1 − J (i−1)

L ). Finally, the value of m(1)
0 is constant for a problem. We define the vector of

independent state variables that define an individual leg as

l(i) = [r
(i)T
0 ,v

(i)T
0 ,m

(i)
0 , r

(i)T
f ,v

(i)T
f ,TOF (i)].

This vector can take any values l(i)L ∈ L = R14×1. However, the solution T ∗ only exists for values in L′ ⊂ L.
In practice, we consider L̂′ ⊆ L′ where a solution T̂ ∗ can be obtained. Finally, the overall cost function of
the transfer, J : L̂′T → R is the total propellant mass required

J(lT ) =

l∑

i=1

Ĵ
∗(i)
L m

(i)
0 , where lT = [l(0), l(1), . . . , l(l)],

and lT ∈ L̂′T = (L̂′)l. The outer optimization loop is the numerical procedure to obtain

l∗T = arg min
lT∈L̂′T

J(lT ). (7)

The landscape of MGATs optimization problems usually contains a large number of local minima.2 There-
fore, a local optimizer is unlikely to converge to the global optimum. Instead, we use a global optimizer to
search for the optimal solution.

Global Optimization Algorithm

The global optimization algorithm is used to look for the solution to Equation (7). We selected a DE16

algorithm as global optimizer. In particular, we used the Pygmo version of the self-adaptive Differential
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Evolution (pDE)*. This algorithm includes adaptation of all evolution parameters. In this work, we propose
to replace the fitness function computation by the surrogate approximation during the optimization. The
adaptation of the mutation parameters is expected to help the algorithm adapt to this change in the cost
function. In addition, the only parameter that needs to be selected when using this algorithm is the number
of individuals per generation NI .

The pDE algorithm chosen can only handle box-bounding constraints on the optimization variables. How-
ever, the values of elements of lT are not independent of each other, and they are subject to non-linear con-
straints: the position of the spacecraft at planet encounters has to match the position of the body it encounters
at that time and the velocities before and after a GA are related through Equation (2). Notwithstanding, an
analysis of the constraints allowed the definition of an alternative set of optimization variables that fulfill the
constraints and are box bounded.

First, the position of the bodies can be obtained as a function of time from the planetary ephemerides. We
define Ri(t) as the function that defines the position of body pi at time t. Given a departure date t0 for the
transfer, we can compute the position at each encounter as

r
(i)
f = r

(i+1)
0 = Ri


t0 +

i∑

j=1

TOF (j)


 , and r

(1)
0 = R0(t0). (8)

Equation (8) shows that the positions at the encounters are fully defined by t0 and the TOF (i) values, which
can be chosen freely. Therefore, we selected these values as optimization variables. The lower and upper
bounds for each of them are defined based on expert knowledge for each individual case. This is explained in
detail in the Section Test Setup.

Second, the initial velocity of a leg depends on the final velocity of the previous one through Equation
(2). The computation of the new velocity also requires the value of the velocity of the planet and the GA
parameters η and ρ. The velocity of planet pi can be computed again from an ephemeris as Vi(t), while the
GA parameters at every encounter ηi and ρi can be freely chosen. The initial velocity at each leg is given by

v
(i+1)
0 = v

(i)
f + ∆vGA


v(i)f ,Vi


t0 +

i∑

j=1

TOF (j)


 , η(i), ρ(i)


 .

We used the values η(i) and ρ(i) as the design variables. For the GA orbit plane angle, the valid range
is η(i) ∈ [0, 2π], while the range of GA radii allowed was set on every individual case depending on the
characteristics of the planet encountered.

Finally, the values of v(1)0 and v(i)f are not constrained by the dynamics of the problem. However, problems
of scientific interest usually introduce constraints on the magnitude of the difference between the velocity of
the body and the spacecraft at some of the encounters, such as a rendezvous with zero velocity at the end of
the transfer, or a maximum departure velocity achievable with the available launchers. Therefore, we chose
to represent the velocity magnitudes as the relative velocity with respect to the planet ṽ = v−V . We defined
the relative velocity in spherical coordinates as

ṽ = v sin θ cosϕe1 + v sin θ sinϕe2 + v cos θe3 ,

where v, θ and φ are respectively the magnitude, polar angle and azimuth angle of the velocity. The orthonor-
mal base of vectors ek is defined so the first vector is parallel to the velocity of the planet, the second one is
parallel to the component of the position of the planet perpendicular to the velocity, and the third one as the
cross product of the previous two. The equations that define these vectors are

e1 =
V

|V | , e2 =
R− (R · e1) e1
|R− (R · e1) e1|

, e3 = e1 × e2.

*https://esa.github.io/pygmo2/algorithms.html#pygmo.de1220 (accessed on May 13, 2020).
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We used this base to eliminate the interdependence between the GA dates and other GA parameters, as the
change in orbital energy is very similar for GAs with the same relative velocity and GA parameters at different
dates. The values of v(i)f are defined by the parameters v(i), θ(i) and ϕ(i), and v(1)0 is defined by v(0), θ(0)

and ϕ(0). The polar angle was limited to θ(i) ∈ [π/2, 3π/2] as values outside that range would require orbits
with large inclinations that we assumed to be of no interest for the cases considered. The azimuth angle ϕ(i)

is allowed to take any value in [0, 2π]. Finally, the bounds of v(i) were defined based on the characteristic of
each individual problem.

The final decision vector of the optimization problem is

x = [t(0), v(0), θ(0), ϕ(0),TOF (1), v(1), θ(1), ϕ(1), η(1), ρ(1), . . . ,TOF (m), v(m), θ(m), ϕ(m)],

which is defined in a box-bounded subsetX ⊂ R6l+2. The procedure detailed in the previous lines allows the
definition the function f : X → LT and the bounds of X . The final cost function used for the optimization
is J ◦ f : X → R. However, LT 6⊂ L̂′T , so not all x values resulted in valid input values. We can only know
whether f(x) ∈ L̂′T after the function J(f(x)) was evaluated. This is a non-linear constraint that cannot
be eliminated. We handled this by assigning a weighted penalty to the cost of the individuals for which a
solution could not be found.

Use of Machine Learning Surrogate

The objective of the surrogate is to approximate a cost function so the cost function does not need to be
evaluated for every individual. In the optimization problem presented, there are three cost functions that
can be approximated: J(f(x)), J(lT ) or Ĵ∗L(l). We decided to use the surrogate to approximate Ĵ∗L(l) for
three reasons: the function shape was expected to be more simple, the dimension of the input vector was
lower, and it was evaluated m times for every evaluation of the other two candidate functions, increasing the
number of training points available. In addition, we decided to represent the state of l in modified equinoctial
elements.18

To minimize the number of training points required, the surrogate is trained online. This means that the
surrogate is trained on the training data as it is generated and at the same time predictions are made with it.
However, predictions are only made when the expected error is below a threshold τ . The error is estimated
from the training points with a method explained in Section . An advantage of using an online method with
respect to previous approaches11 is the possibility to adapt the model if new points to be predicted are very
different from the training points used. The surrogate may not be able to estimate the new points as accurately
as expected when the optimization algorithm explores new areas of the input space. If this happens, the error
increases and the surrogate predictions are not used until the error is below τ again. The decision to use the
surrogate based on the estimated error is taken every time Ĵ∗L(l) is evaluated. That meant that the cost of
some legs may be estimated with the surrogate and the cost of other legs may be computed with the original
optimization method for a single transfer.

The error estimation can only be updated when a point is computed with the numerical optimization
method. With the method described, this will never happen if the error is below the threshold, as all points
are predicted with the surrogate. To solve this problem, additional computations of the original cost function
are performed even when the error is below the threshold. The frequency of this computations is controlled
by the the parameter Cn. The error is estimated every Cn individuals and in consecutive legs. If the error is
computed once on the leg i of the individual j, the next computation of the error will happen in the leg i+ 1
of the individual j + Cn.

LEG COMPUTATION

The optimization process described requires a method to compute the cost of each leg, Ĵ∗L(l). This section
describes the numerical method used. The numerical method is a key part of this work as the training data
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for the surrogate model is generated using this method. In addition, we evaluated the performance of the op-
timization with the surrogate by comparing the results with the optimization using exclusively the numerical
to compute the legs.

Several options are available to compute the cost of the legs when LTP is used. They differ in the fidelity of
the trajectories obtained and the computation speed.2 A surrogate is more advantageous in cases in which the
computational cost is higher. Therefore, we used a method with high accuracy within the constraints of the
dynamics described in Equation (1). In addition, the method used to compute Ĵ∗L(l) determines the minimum
expected approximation error achievable with the surrogate. The ability of the ML surrogate to approximate
an arbitrary function is based on the Universal Approximation Theorem (UAT) for ELM.19 However, this
theorem only holds when the values of the function to approximate are unique for each input value. This is
true for J∗L(l) as it is a solution of the Hamilton-Jacobi-Bellman equation. However, this is not true for a
general Ĵ∗L(l) as the solution can be affected by factors not considered in l such as the effect of integration
tolerances and the random initial state. To analyze the effect of this in the error, we defined the expected
prediction error as

EPE = E
[
L
(
Ĵ∗′L (l), Ĵ∗L(l)

)]
,

where Ĵ∗′L (l) is the surrogate prediction at a point l and L(Ĵ∗′L (l), Ĵ∗L(l)) is a loss function that defines the
value of the error of a prediction at a point. We assume that the numerical procedure introduces a Gaussian
noise δs with standard deviation σs corresponding to the effect of the factors not considered in l. Considering
the squared error loss L(Ĵ∗′L (l), Ĵ∗L(l)) = (Ĵ∗′L (l)− Ĵ∗L(l))2 the prediction error is bounded by10

EPE ≥ σ2
s . (9)

Estimating the actual value of σs is very difficult, as it requires to sample the value of L(Ĵ∗′L (l), Ĵ∗L(l)) in a
large number of points. However, Equation (9) indicates that σs value has to be as small as possible in order
to minimize the prediction error. This means that the numerical method to compute the cost of the legs should
be selected so the influence of factors not included in l is as low as possible. We achieve this by choosing
a method whose solution is independent of the initial guess. Moreover, we can also eliminate the effect of
the random seed by choosing a deterministic method. Therefore, we decided to use a direct method for the
leg computation as they make possible to use a deterministic local optimization. Nonetheless, these methods
typically require a search trough several initial guesses when used as a standalone method.3, 20 This makes
the result dependent on the initial guess, but we solved this problem by obtaining an initial guess with a lower
fidelity method whose solutions are independent of the initial guess. Shape-based methods are commonly
used for this purpose.1, 21 Therefore, the overall leg computation process is completely deterministic and not
dependent on the initial guess as long as the shape-based method has an unique solution and a deterministic
optimization algorithm is used for refining the initial guess.

Shape-Based Method

Shape-based methods assume an analytical shape for the trajectory of the leg. The thrust required to
follow the shape is then computed and the cost function evaluated. These methods are usually faster than the
alternatives when LTP is used.2 However, the trajectories obtained are not optimal as they are restricted to
the shape selected. In addition, thrust constraints are difficult to implement as they can only be checked once
the trajectory has been computed.

We identified the Spherical22 shape-based method as the best option to obtain the initial guess for the
trajectory. This was based on the following set of requirements for the shape-based method: (1) it shall
produce three-dimensional trajectories, (2) it shall be able to fully match the initial and final state, (3) it shall
not require a numerical optimization. Shape-based methods provide different solutions depending one the
number of revolutions, nrev , selected for the trajectory. Therefore, the solution is not unique unless a nrev
value is selected. In this work, we selected the nrev corresponding to the Spherical shape-based solution with
the lowest fuel cost of all the possible solutions with nrev in a predetermined range.
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Direct Method

A direct method allows the transformation of the orbit optimization problem into a non-linear program-
ming problem. These methods are usually considered to be medium fidelity.2 We use a Sims-Flanagan (SF)23

method as it is shown to be the most stable method,2 although at the expense of higher computation times.
We considered the higher convergence rate more important than computation speed when a surrogate is used.
Moreover, we decided an increase in the accuracy of the solution was preferable to shorter computation times.
Therefore, we used an alternative implementation of the SF method described in Reference 24. This imple-
mentation uses the Sundman transformation, continuous thrust along the segments instead of impulses at their
middle points, and Taylor integration. The Sundman transformation is considered beneficial, specially for tra-
jectories with a large difference of radii between initial and final state. Continuous thrust has the advantage
of providing trajectories that are physically feasible, which is not granted with the impulse approximation of
the original implementation. However, trajectories can no longer be considered Keplerian between impulses,
although the increase in computation time is compensated in part by using Taylor integration.

The results from the shape-based method is the initial guess for the SF method. The values required for
the transformation are the mean thrust values at each of the nseg segments used, the final mass, and the total
change in the variable s of the Sundman transformation, defined as ∆s =

∫ TOF

0
dt/|r|. A SF segment k has

start time tk,0 and end time tk,f , such that
∫ tk,f

tk,0
dt/|r| = ∆s/nseg , tk,f = tk+1,0, and t0,0 = 0. The initial

guess for the thrust during segment k is given by the vector

Tk = T̄ ′k
T̄ ′k
|T̄ ′k|

, where T̄ ′k =

∫ tk,f

tk,0
|T ′|dt

tk,f − tk,0
, T̄ ′k =

∫ tk,f

tk,0
T ′dt

tk,f − tk,0
,

and T ′ is the thrust obtained with the shape-based method.

Once the initial guess is obtained, the thrust values at each segment are optimized using a local optimiza-
tion algorithm. We selected the Sequential Least SQuares Programming (SLSQP) algorithm from the nlopt
package*. The optimization is subject to the constraints on the mazimum thrust magnitude

Tkα < max
∀t,α

(T ′α(t)) |i ∈ {1, . . . , nseg}, α ∈ {x, y, z}, |T ′k| < Tmax|k ∈ {1, . . . , nseg},

where Tkα are the Cartesian components of Tk and T ′α are the Cartesian components of T ′. The optimization
is also subject to the mismatch constraint for the SF transcription23

|s+h − s−h | < εSF ,

where s−h is the state at the midpoint of the SF trajectory when integrated forward from the starting point, s+h
is the state at the midpoint of the SF trajectory when integrated backwards from the ending point, and εSF is
the tolerance allowed. In some cases, the algorithm is unable to find a solution that fulfills all the constraints.
If that is the case, lL 6∈ L̂′ and the leg transfer is considered unfeasible and the transfer is discarded. However,
the model used for the surrogate has no way to identify unfeasible legs without performing the complete
numerical optimization. Therefore, the surrogate provides numerical results when evaluated at legs where
the numerical evaluation fails to converge. One of the main obstacles for the use of the surrogate is that these
unfeasible legs are still used by the global optimization algorithm, and the final transfer selected may not
be a feasible one. Therefore, the convergence rate of the SF computations influence the optimization results
obtained when using the surrogate.

MACHINE LEARNING SURROGATE

As mentioned previously, we identified the ELM as a the most adequate ML method for the tool proposed
in this work. This sections presents the details of this method.

*https://nlopt.readthedocs.io/en/latest/NLopt_Algorithms/#slsqp (accessed May 13, 2020).
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Review of Extreme Learning Machines

ELMs13 are based on ANNs with a single hidden layer. The peculiarity of this model is that the weights
between the input later and the hidden layer are initialized randomly when the model is created, and remain
frozen for the remaining of the training process. This allows the computation of the weights between the
hidden and the output layer by least squares regression. Therefore, the result is always optimal for the
training points in terms of Mean Squared Error (MSE). Moreover, the UAT is valid also for the ELMs.19

Both additive nodes and radial basis function nodes are considered in the literature for the hidden units of
the ELM, but the performance of both options is very similar.13 Therefore, we considered only ELM with
additive nodes as it is the most common option in ANNs.

The definition of an ELM requires an activation function AF : R → R, which should be infinitely dif-
ferentiable in any interval,13 and a number of hidden units NHU . The training data contains N pairs of
observations (li,yi) ∈ RnI×1 × RnO×1, where li is the input vector at point i, yi is the output vector at
point i, and nI and nO are the lengths of the input and target vectors respectively. The training process is
the following one.13 First, the vectors ai ∈ R1×nI∀i ∈ {1, . . . ,NHU } and b ∈ R1×NHU are randomly
initialized. In this work, each element is drawn from a random uniform distribution in the range [−1, 1].
Then, the hidden layer output matrix is computed as

H =



AF (a1 · l1 + b1) · · · AF (aNHU · l1 + bNHU )

...
. . .

...
AF (a1 · lN + b1) · · · AF (aNHU · lN + bNHU )


 ,

where b1, . . . , bNHU are the elements of b. Finally, the optimal set of output weights can be computed as

β̂ = H†Y , where H† =
(
HTH

)−1
HT , and Y =



y1
...
yN


 . (10)

The prediction for a new input value l′ is computed as

ŷ′ =
[
AF (a1 · l′ + b1) · · · AF (aNHU · l′ + bNHU )

]
β̂.

The Online Sequential ELM

The online version of the ELM is the OS-ELM.15 The process of computing the weights can be adapted
to the arrival of new training points so the weights always correspond to the least-squares optimal solution
for the full set of points trained. This is done by updating β̂ with a recursive least-squares formula.15 We
consider only the case in which new training points arrive one by one. The total number of training samples
is arbitrary, and the first N training samples are selected for initial training. First, the initial weights β̂(0) are
computed with these N initial training samples as shown in Equation (10). The subsequent pairs of training
points are

(
l(k),y(k)

)
, where k indicates the position in which they arrive after the last point used for initial

training. The weights are updated as

β̂(k+1) = β̂(k) + Pk+1H
T
k+1

(
y(k+1) −Hk+1β̂

(k)
)
,

where

Hk+1 =
[
AF

(
a1 · l(k+1) + b1

)
· · · AF

(
aNHU · l(k+1) + bNHU

)]
,

Pk+1 = Pk − PkHT
k+1

(
I +Hk+1PkH

T
k+1

)−1
Hk+1Pk, and P0 =

(
HTH

)−1
.

The initial training shown in Equation 10 requires the rank of H to be NHU . In order to do achieve this,
it is required that N ≥ NHU . However, our tests showed that the pDE algorithm tended to generate the
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training points in groups of very similar input values. This caused the matrix inverse in Equation (10) to be
ill-conditioned. This is known as collinearity of the samples and it is a known issue when using the least
squares method.25 The use of this matrix caused very high numerical errors in some random cases. However,
we found that using N = 2NHU eliminated this problem in the test cases considered as the chances of
having at least NHU independent samples inH was very high. Lower N values resulted in very high errors
in some tests.

This requirement of a minimum number of training points is one of the main limitations of the OS-ELM
method. In general, higher number of hidden units mean better accuracy. However, this requires a larger
number of points for initial training. This is relevant in this work, as generating additional training points
has a high computation cost. As no prediction can be made before initial training is complete, the surrogate
cannot be used online while these points are being generated.

OS-ELM Multi-Agent System

The training process of the OS-ELM is extremely fast compared to the time required to generate every
training point. In our tests, the update of an average OS-ELM took ∼0.003 s per data point, while the com-
putation of each point took ∼120 s. This can be exploited by combining the predictions of several surrogates
built with the same OS-ELM model but with different random initializations. The method used for the com-
bination is know as the ensemble method. We designed an ensemble method based on the ELM-MAS.14 This
method uses a series of child ELMs and a parent ELM. The children work as standard ELMs. However, the
predictions of all of them are used as inputs for the parent, whose output is a corrected prediction for the
output value. Therefore, the input size for the parent ELM is NM ·nO, where NM is the number of children.
When training, the children are first trained as usual and then the predictions on the training points are used
as inputs for the training of the parent.

The method in Reference 14 does not consider the possibility of online training. However, we included
that option by replacing the ELMs with OS-ELMs. The initial training of the model is done as described for
ELM-MAS. The online training is done by updating the children as usual for a OS-ELM with each training
point and then using the updated prediction of the children at the point as input for the training of the parent
OS-ELM. We named this implementation of the model OS-ELM-MAS. To the best of our knowledge, this is
the first time the ELM-MAS has been used online. The use of OS-ELM-MAS proved to be beneficial in the
cases tested as it consistently achieved lower errors than the standard OS-ELM.

Error Estimation

We selected the Mean Absolute Error (MAE) as the error measure to decide if the surrogate is accurate
enough to be used during the optimization. In order to use the surrogate online as described, the error of the
algorithm needs to be estimated in real time during the computation. In Reference 26, the prequential error of
a model is argued to be an adequate option to estimate the performance of a model when it is trained online.
This error estimation is computed from each point used for training before training on it. As the model has
not trained on the sample, the sample works as a validation one. This way, the prequential error works as an
estimation of the validation error. We selected the implementation of the prequential error with fading factor,
Mk, which is computed as

Mk =
Sk
Dk

, where Sk = εk + αSk−1, Dk = 1 + αDk−1,

α is the fading factor, and εk the prediction error on sample k. We selected α = 0.999 in this work. Our
tests indicated that this value produces results close to the validation error as long as more than 20 samples
are used to estimate the error.
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TEST SETUP

The objective of this work was to design a method that can be used for the preliminary design of any
MGATs with LTP. We described the method we designed in the previous sections. In this section, we present
the procedure we followed to evaluate the performance of our method. In particular, we focused on the
difference in performance with and without the ML surrogate.

Test Cases

We selected three different cases that represent a variety of past and proposed missions to evaluate the
performance of our method. These missions were selected based on three criteria: (1) the expected improve-
ment when using a ML surrogate, (2) the availability of results using similar methods in the literature, (3) the
variety of number of legs, propulsion parameters and destinations. The cases matching these criteria were the
two first legs of the Dawn mission (Dawn), an Earth-Earth-Jupiter (EEJ) transfer, and an Earth-Venus-Venus-
Mercury-Mercury-Mercury (EVVMMM) transfer.

The parameters of each case sere selected based on the results in References 3 and 20. These references
were considered to use the most similar procedure to the one used in this work to optimize the trajectories
considered. In all cases, we used the same the range of departure dates, the spacecraft parameters, and the ve-
locity constraints at the initial and final point of the trajectory that were used for the optimization in the refer-
ence. The number of revolutions used to obtain the initial shape-based solution was set to nrev ∈ {0, 1, 2, 3}.
The references do not specify the value used but none of the example trajectories shown completes more than
3 revolutions during a single leg. The TOF range allowed for the intermediate legs was not specified in the
references. Instead, we selected the ranges in which the shape-based method could always find a solution
during preliminary tests. Solutions outside these ranges had a very high cost when a solution could be found,
so they were not considered of interest. The numerical values of the parameters described are shown in Table
1. Finally, all cases were computed with nseg = 10 for the SF legs, as this value was used in Reference 20.

Table 1. Parameters of the cases tested.

Short name Dawn3 EEJ20 EVVMMM20

Sequence Earth-Mars-Vesta Earth×2-Jupiter Earth-Venus×2-Mercury×3

Tmax (N) 0.368 2.26 0.34
Isp (s) 2620 6000 3200
m(0) (kg) 2481 20 000 1300

t(0) (MJD2000) 7305 to 8401 7305 to 10 958 7305 to 10 762
TOF (1) (d) 100 to 2000 100 to 1000 100 to 1500
TOF (2) (d) 100 to 2000 1000 to 3000 100 to 1500
TOF (3) (d) − − 100 to 1500
TOF (4) (d) − − 100 to 1500
TOF (5) (d) − − 100 to 1500

v(0) (km s−1) 0 to 3.5 0 to 2 0 to 1.925
v(1) (km s−1) 0 to 9 0 to 15 0 to 9
v(2) (km s−1) 0 0 0 to 9
v(3) (km s−1) − − 0 to 9
v(4) (km s−1) − − 0 to 9
v(5) (km s−1) − − 0 to 0.5017
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Dawn The parameters of this transfer are shown in the first column of Table 1. The ranges of the optimiza-
tion variables were based on the values presented in Reference 3. The value of the maximum allowed relative
velocity with respect to the Mars at the intermediate encounter was not reported in the reference, so we used
twice the value of the optimal solution reported. In addition, the original spacecraft had a Solar Electric
Propulsion (SEP) system, but we assumed a NEP system instead. This case was selected as an example of
transfers to objects whose orbit has a semi-major axis similar to that of the Earth.

EEJ The parameters of this transfer are shown in the second column of Table 1. The ranges of the opti-
mization variables were based on the values presented in Reference 20. The value of the maximum allowed
relative velocity with respect to the Earth at the intermediate encounter was not reported in the reference,
so we used twice the value of the optimal solution reported. We selected this case because the low-thrust
transcription method used in the reference is also SF, although thrust is approximated as an impulse at the
midpoint of the segments and Sundman transformation is not used. Therefore, an indication of the expected
performance was available in the reference but results could not be directly compared. This case is an exam-
ple of a transfer to an outer planet, and the final semi-major axis of the orbit is several times larger than the
initial.

EVVMMM The parameters of this transfer are shown in the third column of Table 1. The reference values
were obtained again from Reference 20. In this case, neither the maximum allowed velocity at the intermedi-
ate encounters or its optimal value were indicated in the reference. Instead, we used twice the largest velocity
magnitude at any encounter in the similar transfer presented in Reference 3 as the maximum allowed relative
velocity at any intermediate encounter. This case is an example of a transfer to an inner planet. In addition,
it has a higher number of legs, which served as a way to evaluate the variations in the performance of the
method proposed with the number of legs.

Benchmark

For the evaluation of the improvement achieved when using the surrogate, we defined a baseline optimiza-
tion as one that used exclusively the numerical optimization to compute the fuel cost. The central hypothesis
of this work was that the use of the surrogate allows for a faster optimization than with the baseline. We
defined a benchmark to evaluate this hypothesis. Both the optimization with the surrogate and with the base-
line were run for a fixed computation time, and the final results were compared. If the surrogate result was
better, we hypothesize it was due to the additional function evaluations that could be performed in the same
time. If the baseline result was better, the conclusion is that the errors introduced by the imperfect estimation
by the surrogate were too large for a successful optimization. For these tests, comparing optimizations for
a fixed computation time was considered a better measure than for a fixed number of function evaluations.
The reasons are that the overhead corresponding to surrogate training and predictions was also considered
this way and there was a great variation on the computation time of the cost function depending on the leg
parameters.

The performance measure was the fuel cost value of the best individual computed during the optimization.
When using the surrogate, the optimization algorithm did not report the true cost values, reporting instead
the values estimated by the surrogate. To make a fair comparison, the true cost values of the individuals
corresponding to the last population of the optimization with the surrogate were computed again with the
numerical optimization procedure. To account for that, extra time was reserved at the end of the optimization
with the surrogate. We set the run time to 3 d = 72 h, but there were small individual variations as the pDE al-
gorithm can only stop between generations. These variations were not considered to have an important effect
on the final results as the cost of the best individual only improved in a small proportion of the generations
computed. Therefore, the chances of one extra generation changing the result were low.
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Parameters Test

Two parameters were expected to affect the results obtained with the optimization procedure when the
OS-ELM-MAS is used: the error threshold τ , and the number of transfers between updates of the error
estimation Cn. Moreover, the pDE algorithm required the definition of a number of individuals NI . The
high computation cost of each optimization run is expected to limit the number of test runs that can be
performed when applying this method to the optimization of new missions. To solve this problem, we devised
a procedure to search for the adequate values of the parameters in a small number of trials. The procedure is
described in the following lines and was applied to each of the three test cases.

1. We run the optimization for severalNI values and a fixed random initial state for the pDE, and the most
adequate NI value was selected. Simultaneously, we run the optimization using the surrogate with the
same random initial state and NI values. The initial values Cn = 4 and τ = 0.06 were selected by
estimating the order of magnitude of the expected errors. The results of these optimizations helped
define the Cn and τ ranges to be tested in the next step.

2. We tested several combinations of parameters to determine the best Cn and τ values. These combina-
tions were selected based on the previous results. In general, a large difference between the predicted
final value by the surrogate and the final value computed when reevaluating the final population with
the numerical optimization means Cn was too large. However, small Cn values resulted in more SF
computations, decreasing the speed of the optimization. When it comes to τ , the objective was to se-
lect a value that included most of the points so the surrogate was used during most of the time, but that
excluded error peaks. As mentioned before, we hypothesize that these peaks correspond to points in
which the optimization algorithm moves into a new area of the input space. The values of Cn and τ
that resulted in a better surrogate performance were used in the next step.

3. We repeated the optimization with the finalCn and τ combination and 6 different random initializations
for the pDE. All random initializations were used to obtain results both with the baseline and using the
surrogate. Then, we tested the hypothesis that the means of the result with the surrogate and the baseline
were different with a paired t-test. This test is described in the following section. The results from the
6 random initializations were the samples used for the paired t-test.

Paired T-Test

The final result of an optimization J∗ was defined as the best J value of any individual computed during the
optimization. As mentioned before, the final population obtained when using the surrogate was reevaluated
using the SF method. The values of the reevaluated population were the ones considered as the final results. In
addition, we also considered the cost values of the last individuals before the initial training of the surrogate
was completed. Therefore, the final value for the optimization with the surrogate was the best individual
among the recomputed final population and the last population before the initial training is completed.

As the optimization results are stochastic, we considered J∗ to be a random variable with an unknown
distribution. We evaluated the statistical significance of the results with the final parameter combination
by performing a statistical hypothesis test. The samples were pairs of results obtained using the surrogate
and with the baseline and using the same random initialization in both cases. These can be regarded as
two dependent observations. The paired t-test27 could determine whether the mean of the results with the
surrogate was significantly different to the mean of the results with the baseline. The null hypothesis was that
both means were equal. This test assumed the difference between the pairs of observations were normally
distributed. The confidence value reported in the results corresponds to the confidence to reject the null
hypothesis. If the null hypothesis was not rejected, the conclusion was that the surrogate had no effect on the
optimization procedure. In case it was rejected, the conclusion was that the surrogate was beneficial if the
mean of the results with the surrogate was lower, and that the surrogate was detrimental otherwise.

18



Probability of Obtaining the Best Result with the Surrogate

The mean of the result distributions was not the only relevant information that could be obtained by an-
alyzing the distribution of the results. When designing a mission, it is common to repeat the optimization
several times to mitigate the effects of the random initialization of the optimization algorithm.3 When this is
done, the only relevant result is usually the best one as that is the trajectory followed in the end. Assuming the
Cumulative Distribution Function (CDF) of J∗, FJ∗(J), and its Probability Density Function (PDF), fJ∗(J),
are known, the CDF and PDF of the best value after n tests are28

FJ∗
(1)

(J) = 1− (1− FJ∗(J))
n
, and fJ∗

(1)
=
dFJ∗

(1)

dJ
= nfJ∗ (1− FJ∗)n−1

respectively. Therefore, the probability of obtaining a better overall value when using the surrogate is

P
(
J∗S(1) > J∗B(1)

)
= FJ∗S

(1)
−J∗B

(1)
(0) =

∫ 0

−∞

(∫ ∞

−∞
fJ∗S

(1)
(J)fJ∗B

(1)
(− (z − J)) dJ

)
dz, (11)

where superscript S refers to results with the surrogate and B to results with the baseline. We computed this
probability by assuming J∗S and J∗B followed normal distributions with the same mean µJ∗ and standard
deviation σJ∗ as the samples used for the paired t-test. The integrals in Equation (11) were computed numer-
ically. The results gave an estimation of the probability of obtaining a better result with the surrogate when
the optimization is repeated n times.

OS-ELM-MAS Architecture Parameters

The OS-ELM-MAS model has some parameters that have to be defined before surrogate is created. These
are know as architecture parameters, and are the following ones: the number of child OS-ELM-MAS, the
number of hidden units of the OS-ELM-MAS, the number of hidden units of the parent OS-ELM-MAS,
and the activation function in the hidden layer. Typically, the input and output data is normalized before
passing it to the OS-ELM.15 We considered the normalization procedure used as an architecture parameter.
The architecture parameters selection aimed to achieve an adequate trade-off between prediction accuracy
and lowest predicted value. The lowest predicted value was considered a relevant measure because very low
predictions were more likely to be selected by the optimization algorithm.

We selected the parameters by testing both accuracy and lowest predicted value when training in the data
from the legs computed during the optimization of the Dawn case with 20 individuals and no surrogate. This
training data was not representative of all the test cases. However, we purposely limited the test to this data
as we considered this accurately represented a realistic situation in which data for architecture selection was
limited. The best combination was found to be 16 child OS-ELM-MASs with 128 hidden units each, 64
hidden units in the parent OS-ELM-MAS, and the hyperbolic tangent as activation in the hidden layer. In
addition, both input and output data were scaled so their mean was 0 and standard deviation was 1 for each
variable. The scaling factors were determined with the initial training data.

Computational Implementation

We implemented the method described in Python. We used the Pykep package29 for the SF computations
and astrodynamics related operations such as ephemerides lookup, the Pygmo package30 for the optimization
tools, and the TensorFlow-OS-ELM package* for the OS-ELM implementation. Finally, we implemented the
spherical shape-based method using the Scipy tools† and following the description in the literature.22 The
full code of the implementation is available in GitHub‡

*https://github.com/otenim/TensorFlow-OS-ELM (accessed May 13, 2020).
†https://www.scipy.org/ (accessed May 13, 2020).
‡https://github.com/PabloGoPe/MScThesis (accessed May 13, 2020).
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RESULTS

This section presents the results the results obtained for each of the three cases and an analysis of the
probability of obtaining a better result with the surrogate than with the baseline.

Dawn

The first step in the process to determine the best parameters of the optimization and the surrogate was
to determine the adequate number of individuals for the pDE. In the Dawn, we run the optimization with
NI ∈ {20, 50, 100}. The evolution of the results during the optimization can be seen in the plot a) of Figure
1. From the results in the plot, it was clear that the case NI = 20 outperformed the other two when the
surrogate was not used. Therefore, this value was used for the remaining tests.
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Figure 1. Results of initial test of Dawn case: a) best value obtained as a function of
computation time and b) surrogate error estimation with NI = 20.

The second step was to determine the bestCn and τ . The results presented in the plot a) of Figure 1 indicate
that the difference between the expected and the actual value provided by the surrogate was within a 10%
of the total cost. This value was considered adequate, so the value Cn = 4 was also considered adequate.
In total, the values Cn ∈ {3, 4, 6} were also tested to analyze the effect of Cn in the final result. When it
comes to τ , the value selected was higher than the estimated error during most of the optimization process,
as shown in plot b) of Figure 1. This indicated that the threshold was not useful to discriminate most error
outliers. However, it left out the highest peaks, so the initial guess was not considered completely wrong.
Therefore, the values selected to be tried were τ ∈ {0.060, 0.055}, which were the same value and a slightly
lower one. All the combinations of the Cn and τ values were tested. In addition, a test with τ = 0.050
was also performed to evaluate even lower threshold values. However, this was not expected to provide good
results so it was tested only with Cn = 4. The final values of the optimization using the surrogate with the
parameter combinations previously selected are shown in Table 2. The test case with τ = 0.055 and Cn = 4
reached a lower cost value than the baseline without surrogate. We concluded that the results agree with our
expectations: the value Cn = 4 seemed to provided the optimal error update frequency, and τ = 0.055 was
adequate to leave out only the error outliers.

The third step was to determine the statistical significance of the results. The results of the tests for 6
random initializations of the pDE can be seen in Table 3. From the paired t-test results, we can conclude that
the mean value of the optimization with the surrogate was higher than without. In addition, the best result we
found had a very similar cost to the best result in Reference 3.
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Table 2. Best J , final estimated MAE, number of cost function evaluations, number of leg computations
with SF, and SF convergence rate for a range parameters in the Dawn case. The selected combination
is shown in bold.

Cn 3 4 6 Baseline

τ 0.06 0.055 0.06 0.055 0.05 0.06 0.055

J∗ (kg) 676 609 656 579 713 674 687 609
Final MAE 0.0336 0.0318 0.0470 0.0300 0.0309 0.0435 0.0299 −
J evaluations 3560 3880 4360 4340 3660 5660 6200 920
SF evaluations 1337 1419 1302 1361 1365 1203 1337 1731
SF conv. rate 0.840 0.867 0.850 0.896 0.861 0.855 0.898 0.898

Table 3. Statistics of the results for the Dawn case. The confidence level is to reject the null hypothesis
of the t-test (both means are equal). A negative confidence value indicates that the mean of the baseline
cases is lower (i.e. better) than the mean using the surrogate.

Reference 3 Baseline Surrogate Confidence

J∗(1) (kg) µJ∗ (kg) σJ∗ (kg) J∗(1) (kg) µJ∗ (kg) σJ∗ (kg) J∗(1) (kg)

534 656 27 609 686 63 579 −86 %

Earth-Earth-Jupiter

As in the Dawn case, we started the tests for the EEJ case by running the optimization with NI ∈
{20, 50, 100}. The evolution of the results during the optimization can be seen in plot a) of Figure 2. The
results showed that NI = 20 outperformed the other two cases when the surrogate was not used. Therefore,
the value used in the remaining tests was NI = 20.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Computation time (d)

−1000

0

1000

2000

3000

4000

5000

6000

J T
(k

g)

Baseline
Surrogate reported value
Actual final value with surrogate

20 individuals
50 individuals
100 individuals

0 100 200 300 400 500
Training point

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

M
A

E

τ = 0.060, Cn = 4

MAE 0.06

MAE 0.05

MAE 0.04

MAE 0.03

a) b)

Figure 2. Results of initial test of EEJ case: a) best value obtained as a function of
computation time and b)surrogate error estimation with NI = 20.

The second step was again to determine the best Cn and τ . This case had the particularity of having a
low convergence rate when computing the legs with the SF method. This had two important consequences
when using the surrogate: the number of training points available was much lower as only converged points
could be used, and the chances of the surrogate selecting a valid transfer at the end of the optimization were
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low. First, the evolution of the predicted best value in plot a) of Figure 2 showed that the surrogate prediction
were unrealistically optimistic. In some cases, the surrogate predicted negative fuel use. This was obviously
wrong but those results could not be immediately disregarded as the true cost was higher but it might still
be the best solution. The extreme values predicted could be mitigated by using lower Cn values. The values
tested were Cn ∈ {1, 2, 3, 4}. When it comes to the τ value, the estimated MAE values were in general lower
than in the Dawn case so the threshold values considered were τ ∈ {0.06, 0.05, 0.04, 0.03}. The final values
of the optimization using the surrogate with the parameter combinations previously selected are shown in
Table 4. Notice that the same values were obtained for different parameters. The reason for this was that the
MAE estimation reached values below all the thresholds very fast, so it did no make any difference for the
optimization. The test case with τ = 0.03 and Cn = 3 reached a lower cost value than the baseline without
surrogate. We used these parameters for the remaining tests.

Table 4. Best J , final estimated MAE, number of cost function evaluations, number of leg computations
with SF, and SF convergence rate for a range parameters in the EEJ case. The selected combination is
shown in bold.

Cn 1 2 3 4 Baseline

τ 0.06a,b 0.03 0.06a,b 0.03 0.06a 0.04 0.03 0.06a,b 0.03

J∗ (kg) 4884 4681 5215 4681 5288 5359 4674 5359 4807 4667
Final MAE 0.0306 0.0299 0.0206 0.0287 0.0311 0.0363 0.0297 0.0345 0.0305 −
J evaluations 1880 1040 2560 1000 3540 2920 1100 3540 1100 960
SF evaluations 1664 1863 1529 1856 1537 1475 1708 1351 1771 1824
SF conv. rate 0.424 0.513 0.607 0.531 0.362 0.382 0.506 0.420 0.506 0.528

a Results identical for τ = 0.05. b Results identical for τ = 0.04.

Finally, we evaluated the statistical significance of the results. The results of the test can be seen in Table
5. The results when the surrogate was used were almost identical to the ones of the baseline. The main cause
for this was probably the low convergence of the SF results. The surrogate had a low number of training
points and the τ value needed to be very restrictive to avoid excessively optimistic predictions on invalid
points. As a consequence, the surrogate made predictions in very few cases, and had almost no effect on the
results. The best result obtained had a higher cost value than the best result in Reference 20. We hypothesize
that the reason was the different transcription method used in this work and in the reference. Our solution is
guaranteed to be feasible, while the one in the reference might not be feasible.24

Table 5. Statistics of the results for the EEJ case. The confidence level is to reject the null hypothesis
of the t-test (both means are equal). A negative confidence value indicates that the mean of the baseline
cases is lower (i.e. better) than the mean using the surrogate.

Reference 20 Baseline Surrogate Confidence

J∗(1) (kg) µJ∗ (kg) σJ∗ (kg) J∗(1) (kg) µJ∗ (kg) σJ∗ (kg) J∗(1) (kg)

2898 4669 129 4534 4675 135 4496 −10 %

Earth-Venus-Venus-Mercury-Mercury-Mercury

This case was different from the previous ones, as the number of legs of each transfer was 5 instead of 2.
This meant that we expected longer computation times per individual than in the previous case. Therefore, the
valuesNI ∈ {8, 20, 50} were used to roughly have the same number of leg computations per generation as in
the Dawn and EEJ cases. The evolution of the results during the optimization can be seen in plot a) of Figure
3. In this case, the best result was obtained with NI = 20. However, both the NI = 20 and NI = 50 cases
required much longer computation times until the initial training of the surrogate was completed. This was a
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combination of two factors: a lower convergence rate and longer time for the computation of each individual
point. This meant that only one population was computed with the surrogate before the computation time
limit was reached when NI = 20 and NI = 50. Therefore, the value selected for the remaining tests was
NI = 8 as we considered that this value was more interesting as we could evaluate the effects of the surrogate
on the optimization.
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Figure 3. Results of initial test of EVVMMM case: a) best value obtained as a function
of computation time, and b) surrogate error estimation with NI = 8.

The next step was to determine the bestCn and τ values. When the surrogate was used, the error estimation
never reached values below τ = 0.06. Therefore, the information relative to the selection of surrogate
parameters obtained from this test was limited. The obvious conclusion was that a larger value of τ was
required. We decided on τ ∈ {0.100, 0.140} for the following tests. The value of Cn was more difficult to
determine as the effect of the surrogate predictions could not be evaluated. However, the convergence rate
was high as in the Dawn case, and every leg required a longer computation time when computed with the SF
method. In the Dawn case, Cn = 4 resulted in the best performance, and higher Cn values mean fewer SF
computations per generation. Therefore, the values selected for the remaining tests were Cn ∈ {4, 6, 8}. The
final values of the optimization using the surrogate with the parameter combinations previously selected are
shown in Table 6. The test case with τ = 0.100 and Cn = 4 reached a lower cost value than the baseline.
These results agreed with our expectations: as in the Dawn case, the value Cn = 4 seemed to be adequate to
estimate the error in real time, and τ = 0.100 was low enough to leave out the higher error cases but still use
the surrogate frequently enough to speed up the optimization.

Table 6. Best J , final estimated MAE, number of cost function evaluations, number of leg computa-
tions with SF, and SF convergence rate for a range parameters in the EVVMMM case. The selected
combination is shown in bold.

Cn 4 6 8 Baseline

τ 0.10 0.14 0.10 0.14 0.10 0.14

J∗ (kg) 963 1066 1063 1066 1066 1066 1044
Final MAE 0.0881 0.0838 0.0937 0.0876 0.0898 0.0995 −
J evaluations 1820 3100 840 4120 3920 3980 580
SF evaluations 698 662 744 670 685 644 1053
SF conv. rate 0.838 0.796 0.817 0.797 0.788 0.828 0.901

We evaluated again the statistical significance of the results. The results of the test can be seen in Table
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7. We concluded that the mean value of the optimization with the surrogate was lower than the optimization
without the surrogate. In this case, the conditions were the most adequate for the use of the surrogate: each
trajectory had a higher number of legs, which meant more computation time per individual, each leg had a
higher computation time than in the previous cases, and the convergence rate of the SF method was very high,
so chances of selecting an invalid trajectory when the surrogate was used were low. The best result obtained
had a higher cost value than the best result in Reference 20. We hypothesize that the reason was the different
transcription method used in this work and in the reference. Our solution is guaranteed to be feasible, while
the one in the reference might not be feasible.24

Table 7. Statistics of the results for the EVVMMM case. The confidence level is to reject the null
hypothesis of the t-test (both means are equal). A negative confidence value indicates that the mean of
the baseline cases is lower (i.e. better) than the mean using the surrogate.

Reference 20 Baseline Surrogate Confidence

J∗(1) (kg) µJ∗ (kg) σJ∗ (kg) J∗(1) (kg) µJ∗ (kg) σJ∗ (kg) J∗(1) (kg)

236 1088 68 998 1037 142 880 62 %

Best Result Statistics

We used Equation (11) to estimate P (J∗S(1) > J∗B(1) )(n) assuming that both J∗S and J∗B follow a normal
distribution with the mean µJ∗ and the standard deviation σJ∗ presented in Tables 3, 5, and 7. The result is
shown in Figure 4. In the Dawn and EVVMMM cases, the use of the surrogate was the best option if several
random initializations were going to be used. However, the probability remains at around 50% independently
of the number of tests performed for the EEJ case. This is a logical result as the distributions of J∗S and J∗B

are almost identical in this case. These conclusions agree with our experimental results, in which n = 6 and
the best results were obtained with the surrogate in all three cases.
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Figure 4. Probability of obtaining a better result when using the surrogate than with
the baseline as a function of the number of cases tested.

CONCLUSIONS

The use of the surrogate during the optimization is always expected to be beneficial in the EVVMMM
case. This case was the most promising for the use of the surrogate due to the longer computation time
required for each trajectory computation. The Dawn case was not expected to be as adequate for the use
of the surrogate because the cost function evaluations were faster, but the surrogate is also expected to be
beneficial if more than 4 optimization with different initializations are performed simultaneously. Finally, the
EEJ case had a very low convergence rate for the SF method so the optimal strategy for the surrogate was to
be very conservative with the predictions, resulting in almost identical results to the baseline.
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These results were obtained without adapting the OS-ELM-MAS architecture parameters to each case. In
fact, the architecture was selected based on data from the Dawn case and it showed a better performance in
the other two cases. This proved that the OS-ELM-MAS method can be applied to different problems without
having to adapt the parameters. This may potentially save an important amount of computation time, as the
data to test the parameters does not need to be generated and repeated training with different parameters
combinations can be avoided. However, the tuning of the surrogate Cn and τ parameters was required to
achieve better results with the surrogate than with the baseline. Therefore, the objective of having a method
that could be applied without any tuning was not achieved. Nonetheless, there seems to be a relationship
between the optimal parameters and the structure of the data for a problem. The proof of this is that we
managed to find a combination of parameters for which the surrogate had a better performance than the
baseline by testing a small number of carefully selected parameter combinations. We are confident that a
general approach to estimate the optimal surrogate parameters from a very small data sample can be obtained
in the future.
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3
Multi Gravity Assist Trajectories

The optimization of MGATs is a challenging problem. The parameters need to be opti
mized, in addition to the already challenging optimization of LTP trajectories. However,
they usually lead to significant fuel savings that made possible most of the missions to
very distant bodies. In this chapter, the details about the MGAT optimization problem
considered are presented.

3.1. Problem definition
The definition of the problem considered is detailed in section MultipleGravityAssist
Optimization Problem of the thesis paper manuscript, page 7. The linked conics model
used is the most common in the literature. In addition, Reference [3] showed that
the inclusion of the planet gravity makes a small difference in the final results when
studying a similar problem to the one considered here. The assumption that the
Sphere Of Influence (SOI) of has negligible size was considered the main source of
error during the computations.

3.1.1. Propulsion Model Selection

With respect to the orbit optimization procedure, the relevant parameters of the
propulsion system are the maximum thrust available 𝑇𝑚𝑎𝑥 and the specific impulse
𝐼𝑠𝑝. In a general case, 𝑇𝑚𝑎𝑥 and 𝐼𝑠𝑝 depend on the power available on board the
spacecraft, and 𝐼𝑠𝑝 depends also on the thrust level [3, 38, 40]. Moreover, more
complex dependencies are possible, such as a spacecraft fitted with several identical
engines that can be turned on or off independently [41, 42].

In this thesis, a simple Nuclear Electric Propulsion (NEP) model was considered.
The spacecraft was considered to have an internal constant power source for the
propulsion system. The specific impulse 𝐼𝑠𝑝 was assumed to be constant during the
whole transfer. This assumption is common in the literature [1, 2, 29, 30, 33–36,
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28 3. Multi Gravity Assist Trajectories

39, 43–45]. 𝑇𝑚𝑎𝑥 was also considered constant during the transfer, and any thrust
magnitude 𝑇 ∈ [0, 𝑇𝑚𝑎𝑥] was considered possible. This is again a common assumption
in the literature [2, 33–35, 39, 43, 44].

A common alternative to the NEP is the Solar Electric Propulsion (SEP), in which
𝑇𝑚𝑎𝑥 depends on the solar power available. However, the described NEP model was
selected over SEP or more complex alternatives due to its simplicity of implementation.
Moreover, the results regarding the effects of the surrogate obtained with this model
are expected to be extrapolatable to other propulsion models. First, the conclusions
obtained in section Optimization Problem Formulation of the thesis paper manuscript,
page 8 when using the HamiltonJacobiBellman equation are valid for any propulsion
model as long as the thrust magnitude is bounded. Second, there is no reason to
think that the shape of the cost function with a different model is going to be more
difficult to approximate by the surrogate. However, this hypothesis was not tested in
this work. The testing would have required the implementation and validation of the
additional propulsion models and it was considered unfeasible in the restricted time
available to complete the thesis.

3.2. Gravity assist
As mentioned in section Spacecraft Dynamics of the thesis paper manuscript, page
7, GA maneuvers are approximated as instantaneous changes of 𝒗 at the position 𝑹
of the planet. In this thesis, only unpowered GA were considered, i.e. no propulsion
was used when the spacecraft was inside the SOI of the planet.

3.2.1. Implementation

As mentioned in section Gravity Assist Computation of the thesis paper manuscript,
page 8, it is necessary to define a function Δ𝒗GA such that

𝒗𝑎 = 𝒗𝑏 + Δ𝒗GA (𝒗𝑏, 𝑽, 𝜂, 𝜌, 𝜇)
to include the GA computation into the general optimization problem. This function
is defined by following the procedure described in Reference [10]. The procedure is
outlined in the following lines for easy reference.

First, the relative velocities with respect to the planet are defined as

�̃�𝑏 = 𝒗𝑏 − 𝑽 and �̃�𝑎 = 𝒗𝑎 − 𝑽, (3.1)

the angle 𝛾 is defined as

𝛾 = 𝜋
2 − arccos( 1

�̃�2𝑏𝜌
𝜇 + 1

) ,

and the reference vector 𝒏𝑏 is a vector perpendicular to �̃�𝑏 and contained in a pre
determined plane. In this case, the 𝑥𝑧 plane was selected, so the reference vector
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is

𝒏𝑏 =
𝒖𝑏 × [0, 1, 0]𝑇
|𝒖𝑏 × [0, 1, 0]𝑇|

,

where 𝒖𝑏 = �̃�𝑏/|�̃�𝑏|.

The rotation angle 𝜂 defines a rotation with respect to the reference plane repre
sented with the quaternion

𝒒𝜂 = [𝒖𝑇𝑏 sin 𝜂, cos 𝜂]𝑇 .

The vector normal to the orbital plane during the GA is computed as

𝒏𝜂 = 𝑸𝜂𝑛𝑏,

where 𝑸𝜂 is the rotation matrix defined by 𝒒𝜂. The rotation of the velocity is defined
by quaternion

𝒒𝛾 = [𝒏𝑇𝜂 sin 𝛾, cos 𝛾]𝑇 .
Finally, the outgoing relative velocity is computed as

�̃�𝑎 = 𝑸𝛾�̃�𝑏,

where 𝑸𝛾 is the rotation matrix defined by 𝒒𝛾. The final heliocentric velocity can be
computed with Equation (3.1).

3.2.2. Verification
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Figure 3.1: Components of the outgoing relative velocity after a GA as a function of the GA radius when
�̃�𝑏 = [0, 0, 1 kms−1]𝑇 and 𝜂 = 0.

The verification of the gravity assist implementation is done by testing whether
the behavior is the one expected in a simple case. The components of the outgoing
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Table 3.1: Results of the GA around Venus with the parameters from Reference [4] used for validation.

Approach 𝜌 (km) 𝜂 (rad) �̃�𝑏 (m s−1) �̃�𝑎 (m s−1)

Reference [46] Computed

Dark side 6352 0 [2490, 2782, 0]𝑇 [−3289, 1766, 0]𝑇 [−3289, 1767, 0]𝑇
Sunlit side 6352 𝜋/2 [2490, 2782, 0]𝑇 [2118,−3074, 0]𝑇 [2119,−3074, 0]𝑇

velocity are computed as a function of the periapsis radius for an incoming relative
velocity along the 𝑧axis �̃�𝑏 = [0, 0, 1 kms−1]𝑇 and a GA on the 𝑦𝑧 plane, i.e. 𝜂 = 0.
The components of �̃�𝑎 are shown in Figure 3.1. The behavior is the one expected.
For large radius values, only a small change in velocity is produced. However, the
deflection increases as the radius decreases, reaching the point in which �̃�𝑎 is per
pendicular to �̃�𝑏. Past that point, the component in the opposite direction to the
incoming velocity starts to grow again. In all cases, |�̃�𝑏| = |�̃�𝑎| as expected.

3.2.3. Validation
The validation of the GA implementation is done with two tests. First, Reference [4]
provides an example of a GA at Venus and provides the numerical values of the ve
locities after the GA. A fixed GA radius value (300 km over the surface of Venus) is
considered and the GA occurs in the horizontal plane. The components of the velocity
vector are given in a reference frame which has one axis oriented along the planetary
velocity and the other one along the position. However, only the �̃�𝑏 components are
given, so the orientation of the reference frame is irrelevant as long as it is kept con
sistent during the computations. Therefore, the velocity components were considered
to be oriented along the 𝑥 and 𝑦 axes. Result are shown in Table 3.1. The values
obtained closely match the ones in the reference so the validation was considered
successful.

The second part of the validation was done by comparing with the GA compu
tation function included in the Pykep package1. This function was not used in this
work because its existence was only discovered after a newly implemented function
had already been used for the computation of the results. This is an example of how
the incomplete documentation of the Pykep and Pygmo packages was sometimes
a problem during this thesis. Moreover, no mention was found in the documenta
tion to the reference plane used to determine the rotation of the GA. Results could
not be directly compared as the angle 𝜃 represents a different rotation in this the
sis and in the function in the Pykep package. However, the locus of all velocities
obtained should be the same once the complete range of possible values for 𝜂 is
tested. Therefore, the testing procedure was the following one: an arbitrary velocity
(�̃�𝑏 = [1 kms−1, 2 kms−1, 3 kms−1]𝑇), planet (Mars), and radius (𝜌 = 6000 km) were
selected and �̃�𝑎 was computed for all the possible 𝜂 values with both the function

1https://esa.github.io/pykep/documentation/core.html#pykep.fb_prop (accessed
May 13, 2020).

https://esa.github.io/pykep/documentation/core.html#pykep.fb_prop
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Figure 3.2: Locus of all possible �̃�𝑎 for a test case computed with the function used in this thesis and
with the function from Pykep: a) 𝑣𝑦 as a function of 𝑣𝑥, b) 𝑣𝑦 as a function of 𝑣𝑧, c) 𝑣𝑧 as a function
of 𝑣𝑥, d) 3D plot of the three components.

created in this work and the one from Pykep. When the locus of all �̃�𝑎 values ob
tained was represented in the velocity component space, the curve for both functions
should overlap perfectly. The results are shown in Figure 3.2. The results with both
functions matched closely so the validation was considered successful.
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3.3. Global Optimizer
This section outlines the global optimization algorithms that were considered for the
global optimization described in section Optimization Problem Formulation of the thesis
paper manuscript, page 8. It also describes the verification and validation process of
the selected algorithm.

3.3.1. Algorithm Selection

The focus of this work was to speedup the optimization algorithm so only state
oftheart algorithms previously used for interplanetary trajectory optimization were
considered: Monotonic Basin Hopping (MBH) [47], Simulated Annealing (SA) [48],
Particle Swarm Optimization (PSO) [49] and Differential Evolution (DE) [50].

Both MBH and SA include a local optimization step that requires knowledge about
the gradient of the cost function. This was a problem for the optimization problem
considered here. No analytical expression for the gradients of the cost function was
available so they would need to be computed with a numerical method. However, this
would require a high number of cost function evaluations. If these computations were
replaced by the surrogate, small errors in the predictions provided by the surrogate
would introduce large errors in the gradient estimation. Therefore, these algorithms
were discarded.

PSO algorithm was used in some orbit optimization problems before [45, 51]. How
ever, the problems considered were different that the one in this thesis. Meanwhile,
DE was applied successfully to the optimization of orbital maneuvers [52], MGAT [53–
55], and lowthrust trajectories [56]. Therefore, DE was the algorithm selected for
this work as there is a body of literature available. This was a key point both for
selecting the most adequate implementation, and for the validation of the results.

Several versions of the DE evolution are available. As mentioned in section Global
Optimization Algorithm of the thesis paper manuscript, page 9, the one used in this
work is the Pygmo version of the selfadaptive Differential Evolution (pDE)2. This
implementation of the algorithm includes methods considered in other algorithms to
adapt the evolution parameters CR [57] and F [58]. In addition, it includes a method
to adapt the mutation strategy among several options [59]. Therefore, there are
no parameters to be set for the training of the algorithm apart from the number of
individuals. Moreover, the adaptation of all the evolution parameters was considered
beneficial when using the algorithm in conjunction with an online surrogate of the
function. As explained in section 3.5, the cost function was replaced by a surrogate
estimation during the optimization procedure. The surrogate estimation of the cost
would have a slightly different shape than the original function due to the limits on
the accuracy achievable, and the pDE algorithm was expected to be able to adapt to
this new shape.

2https://esa.github.io/pagmo2/docs/python/algorithms/py_algorithms.html#
pygmo.de1220 (accessed December 3, 2019).

https://esa.github.io/pagmo2/docs/python/algorithms/py_algorithms.html#pygmo.de1220
https://esa.github.io/pagmo2/docs/python/algorithms/py_algorithms.html#pygmo.de1220
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3.3.2. Verification
The pDE algorithm was already available in the Pygmo package and its implementation
was expected to be correct. Therefore, the verification was focused on the correct
interfacing between the cost function and the optimization algorithm. However, the
algorithm is stochastic so the results depended on the random initialization used.
This made the verification difficult as there was no direct way to tell if the results
provided were the ones expected. Notwithstanding, the first part of the verification
process were a set of sanity checks. First, some random individuals were selected,
and it was tested whether the cost function values matched the ones reported by the
optimization algorithm. This check was successful. Second, the best value of the cost
function obtained was expected to decrease its value as optimization progresses. That
was observed in the results in section Results of the thesis paper manuscript, page
20.

Nonetheless, the fact that the best value improved was not a guarantee that the
algorithm was better than a random search. However, the rate of converged SF com
putations would remain constant for a random search, as the algorithm would keep
trying points in the regions where 𝒍 ∉ �̂�′ with the same frequency. If the optimization
algorithm is working as expected, the convergence rate should increase as the opti
mization progresses, because the points that do not converge are heavily penalized.
The convergence rate as a function of the total SF computations is shown in Fig
ure 3.3 for the optimization tests used to determine the best number of individuals for
the pDE in the Dawn, EEJ, and EVVMMM cases. It is clear that the convergence rate
increased as the optimization progressed in all cases. This was a clear indication that
the optimization algorithm generates new points in regions of the input space with a
lower overall cost. Moreover, the configurations that achieved a higher convergence
rate also achieved lower cost values during optimization.

3.3.3. Validation
The external validation of the optimization tool was difficult as there are no instances
of the optimization using the same cost function in the literature. The only similar
problem was found in Reference [60], but a different SF implementation and differ
ent global optimization algorithms were used. The results might not be comparable
because the convergence of the SF used in this work is more restrictive, as described
in section 5.2. The best result found in the reference might not be a viable one with
this method. Finally, the tool presented here is merely a prototype and its implemen
tation was not optimized. The most obvious improvement that could be made is to
implement the tool in a compiled language such as C++. The computations could be
up to 10 times faster based on a comparison of the values for the shapebase method
computation presented in subsection 4.3.2 and the ones in Reference [5]. However,
the integration of all the independent tools required to obtain the results in a language
such as C++ would have required much more time than it was available for this thesis.

The validation procedure considered more interesting for this work was internal
validation. The main question to answer regarding the method presented in this
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Figure 3.3: Convergence rate of all the points computed with SimsFlanagan (SF) as a function of the
total number of points computed during the optimization for: a) EVVMMM case, b) EEJ case, and c)
Dawn case.

work is not whether it can produce better results than other tools available. Instead,
the objective was to determine whether the inclusion of the surrogate improves the
results with respect to the baseline optimization without surrogate. This approach was
already discussed in detail in section Results of the thesis paper manuscript, page 20.

3.3.4. Example Trajectories

The best transfers found in the tests described in section Results of the thesis paper
manuscript, page 20 are included here as an example of a complete optimization.
The result for the Dawn case is shown in Figure 3.4, the result for the EEJ case is
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Figure 3.4: Overall best transfer found for the Dawn case: a) trajectory, b) thrust as a function of time.
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Figure 3.5: Overall best transfer found for the EEJ case: a) trajectory, b) thrust as a function of time.

shown in Figure 3.5, and the result for the EVVMMM case is shown in Figure 3.6. Two
characteristics are common to the transfers obtained in the three cases: the change
in velocity due to the gravity assists can be clearly appreciated in the trajectory plots
and the control is very close to bangbang control. These were the results expected
for the optimal trajectories, so the pDE algorithm seemed to work as expected.
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Figure 3.6: Overall best transfer found for the EVVMMM case: a) trajectory, b) thrust as a function of
time.

3.4. Local Optimization
A certain transcription method was necessary to define the leg optimization problem
in a way that could be implemented computationally. There are two main options
in the literature [61]: indirect transcription, and direct transcription. In this work, a
direct transcription method with a shapebased initial guess was identified as the best
option, as explained in section Leg Computation of the thesis paper manuscript, page
11. Chapter 4 presents a detailed description of the shapebased method used to
obtain the initial guess and chapter 5 of the direct method selected. In this section,
the reasons for not considering the indirect methods are explained.

First, indirect methods make use of the Pontryagin’s Maximum Principle (PMP) [62]
to determine the necessary conditions for local minima. However, these conditions are
not sufficient for a global minimum, so the solution is not necessary unique for a set
of contour conditions [63, 64]. In general, the final solution achieved depends on the
initial guess [44, 62]. Usually, several initial guesses need to be tried as the one that
works for a particular leg might not be valid for a different one [65]. This introduces
discontinuities in the final solution function that presumably increase the value of 𝜎𝑠,
as described in section Leg Computation of the thesis paper manuscript, page 11. The
accuracy of the surrogate was expected to be too low to be used effectively if this was
the case.

Second, indirect methods are typically difficult to automate [61] as the running
time of a single optimization is usually very long. The method was implemented for
this work, but a test in an example EarthMars leg required ∼45min to obtain a
single valid result. This was an issue as enough data to train the surrogate could not



3.5. Use of Machine Learning Surrogate 37

be generated in a reasonable amount of time. Moreover, the time required to perform
the experiments presented in this thesis would be in the order of several months for
every test case.

At the beginning of the thesis, it was proposed to obtain a SF solution and an
indirect method solution for some test transfers. Solutions obtained with an indirect
method were expected to have lower cost than the ones obtained with the SF method.
The difference between the pairs of solutions could be used as an estimate for the
acceptable 𝜏 values. However, the time required to obtain values for a representative
number of transfers would be too long due to the high computation time and the
human intervention required by the indirect method.

3.5. Use of Machine Learning Surrogate
The problem described in section Optimization Problem Formulation of the thesis paper
manuscript, page 8 has three different cost functions that can be substituted by the
surrogate: 𝐽∗(𝑓(𝒙)), 𝐽∗(𝒍𝑇), or ̂𝐽∗(𝒍). The function selected to substitute was ̂𝐽∗(𝒍) for
three reasons: the dimensionality of the input space is lower, the function shape is
expected to be simpler, and the number of training points generated is higher during
the same computation time.

First, the input dimensionality is determined by the number of elements in either
𝒙, 𝒍𝑇 or 𝒍, depending on the cost function used. When 𝒍 is the input, the total input
dimensionality is always 𝑝 = 14. When 𝒍𝑇 is the input, the dimensionality is 𝑝 =
14𝑚, which means 𝑝 ≥ 28 assuming at least one GA is always performed. Most
ML methods decrease their performance and require more training data when the
input dimensionality is increased [66], due to a phenomenon known as the curse of
dimensionality [67]. A possible alternative is to chose 𝒙 as the input vector. In this
case, the dimensionality is 𝑝 = 6𝑙 + 2 ≥ 14. The input dimensionality is the same if
only one GA is performed, and larger if more GAs are performed.

Second, 𝐽∗(𝒍𝑇) is a combination of all ̂𝐽∗𝐿(𝒍(𝑖)) of the transfer, so the surrogate needs
to predict simultaneously all of them. It is assumed this prediction is more complex
than prediction individual ̂𝐽∗(𝒍) values. Moreover, if 𝐽𝑇(𝑓(𝒙)) is approximated instead,
the surrogate needs to learn the additional transformation 𝒍𝑇 = 𝑓(𝒙) in addition to
𝐽∗(𝒍𝑇). This is also expected to decrease the accuracy that can be achieved with the
surrogate.

Third, the use of ̂𝐽∗(𝒍) as target means that 𝑙 training points are obtained after
each transfer evaluation. However, only one is obtained per transfer evaluation if any
of the two options is used. The training data available is one of the main limits to
the accuracy achievable by the surrogate. Therefore, the increase in training data is
a key advantage of using ̂𝐽∗(𝒍) as target function to approximate.





4
ShapeBased Method

Shapebased methods have some advantages that make them useful in certain cir
cumstances. Their main advantage is the fast computation when compared with other
methods available for LTP trajectories. In this thesis, the shapebased method had two
purposes: the computation of initial guesses for SF computation and the generation
of a sample dataset for verification of the OSELMMAS model as described in sub
section 6.2.4. In this chapter, the details of the implementation of the shapebased
method are provided.

4.1. Selection
Different shapebased methods, which use different shapes to represent the trajec
tories, are available in the literature [1, 29, 36, 68–71]. The shape of the trajectory
is defined by a function of a set of parameters, which varies depending on the shape
selected. The contour conditions of the leg introduce constraints on the parameter
values. If the number of parameters is equal to the number of constraints, the con
straints determine all the parameter values. If the number of parameters is smaller
than the number of constraints, the not all constraints can be fulfilled. The standard
alternative is to match the position constraints and ignore the velocity constraints [29].
Finally, several combinations of parameters can fit the constraints of the number is
larger than that of constraints. In that case, the parameters can be optimized to
minimize a cost function.

A common approach in the literature is to choose a shape that allows the analytical
computation of the parameters that fulfill the contour conditions. However, the Time
Of Flight (TOF) cannot be computed analytically in most cases. In those cases, the
procedure is to compute the minimum number of parameters to match all the contour
conditions but the TOF, and try different values for the remaining parameters until
the TOF condition is met. When the number of parameters is larger than the number
of constraints, a numerical optimization is performed with the TOF as an equality
constraint.

39
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Extensions of the base shapebased methods have been proposed to obtain more
optimal solutions: a combination of thrust and coast arcs [30, 70], considering two
main bodies in the trajectories [72], using transfers to intermediate orbits [73], and
implementing approximate thrust level constraints [74]. These implementations in
troduce additional parameters, such as the switch points between thrust and coast
arcs or the intermediate orbital parameters, which require numerical optimization.

As explained in section ShapeBased Method of the thesis paper manuscript, page
12, three requirements were defined for the shapebased method to be used in this
work: (1) it shall produce threedimensional trajectories, (2) it shall be able to fully
match the contour conditions, (3) it shall not require a numerical optimization. Three
methods in the literature match these requirements: Inverse Polynomial [68], Spheri
cal [1], and Pseudoequinoctial [1]. In addition, three other methods allow for an arbi
trary number of parameters in the shaping function and match the requirements when
the number of parameters selected is equal to the number of constraints: Hodographic
[71], Pseudoespectral [69], and Finite Fourier Series [75]. The Spherical shapebased
method was selected as it reportedly produces the most optimal trajectories in terms
of Δ𝑉 [75].

4.2. Spherical ShapeBased Theory
The spherical shapebased method was selected for this thesis. The method was
developed for a PhD thesis [76], which resulted in a peerreviewed publication [1].
However, some typos are present on the equations on those references. These typos
are corrected in a posterior MSc thesis [5], which also provides a more detailed de
scription of the implementation. In the following lines, the description of the method
done in Reference [5] is reproduced. However, most of the intermediate results are
not included as they were not considered of interest for this thesis.

The trajectories are described in spherical coordinates and defined as a function
of the azimuthal angle 𝜗. The shape for the radius and the elevation angle are re
spectively

𝑅(𝜗) = 1
𝑎0 + 𝑎1𝜗 + 𝑎2𝜗2 + (𝑎3 + 𝑎4𝜗) cos𝜗 + (𝑎5 + 𝑎6𝜗) sin𝜗

,

𝜑(𝜗) = (𝑏0 + 𝑏1𝜗) cos𝜗 + (𝑏2 + 𝑏3𝜗) sin𝜗,
(4.1)

where 𝑎0, … , 𝑎6 and 𝑏0, … , 𝑏3 are the parameters that describe the trajectory. The time
is shaped trough its derivative as

𝑇′(𝜗) = √𝐷(𝜗)𝑅(𝜗)𝜇 , (4.2)

where 𝜇 is the gravitational parameter of the central body and 𝐷(𝜗) is the curvature
of the trajectory, which can be computed as

𝐷 = −𝑅″ + 2𝑅
′2

𝑅 + 𝑅′𝜑′𝜑
″ − sin𝜑 cos𝜑
𝜑′2 + cos2 𝜑 + 𝑅 (𝜑′2 + cos2 𝜑) .
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The �′ notation refers to the derivative with respect to 𝜗.

The state of the spacecraft is represented in Cartesian coordinates for the compu
tations in this thesis. The transformation from Cartesian coordinates to the spherical
ones used in the shaping is

𝑟(𝑡) = √𝑥2 + 𝑦2 + 𝑧2, 𝜗(𝑡) = arctan2 (𝑦, 𝑥) , 𝜑(𝑡) = arcsin (𝑧𝑟) , (4.3)

where 𝑥, 𝑦 and 𝑧 are the components of the position in Cartesian coordinates, 𝑡 is the
time and

arctan2(𝑦, 𝑥) =

⎧
⎪
⎪

⎨
⎪
⎪
⎩

arctan(𝑦/𝑥) if 𝑥 > 0,
arctan(𝑦/𝑥) + 𝜋 if 𝑥 < 0 and 𝑦 ≥ 0,
arctan(𝑦/𝑥) − 𝜋 if 𝑥 < 0 and 𝑦 < 0,
𝜋/2 if 𝑥 = 0 and 𝑦 > 0,
−𝜋/2 if 𝑥 = 0 and 𝑦 < 0,
undefined if 𝑥 = 0 and 𝑦 = 0.

The velocity vector in spherical coordinates is defined as

𝒗 = �̇� = [
𝑣𝑟
𝑣𝜗
𝑣𝜑
] = [

�̇�
𝑟�̇� cos𝜑
𝑟�̇�

]

where the time derivatives of the spherical components can be computed from Equa
tion (4.3) given �̇�, �̇� and �̇�. The derivative of the position vector with respect to 𝜗 is
relevant for the computations and its expression is

𝒓′ = 𝑑𝑡
𝑑𝜗�̇� =

𝒗
�̇� .

The function vector is defined for the radius as

𝑹(𝜗) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
𝜗
𝜗2

cos𝜗
𝜗 cos𝜗
sin𝜗
𝜗 sin𝜗

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

and for the elevation angle as

𝝋(𝜗) =
⎡
⎢
⎢
⎣

cos𝜗
𝜗 cos𝜗
sin𝜗
𝜗 sin𝜗

⎤
⎥
⎥
⎦
.
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The notation 𝑅𝑖(𝜗) and 𝜑𝑖(𝜗) is used to refer to the 𝑖th element of 𝑹 and 𝝋 respec
tively. Two auxiliary functions are defined to simplify the notation:

𝛼(𝑡) = − 𝑟′𝜑′
𝜑′2 + cos2 𝜑, 𝐶(𝑡) = −

𝜇𝑡′
𝑟2 + 2

𝑟′2
𝑟 + 𝑟 (𝜑′2 + cos2 𝜑) − 𝑟′𝜑′ sin𝜑 cos𝜑𝜑′2 + cos2 𝜑,

where

𝑟′ = �̇�
�̇� , 𝜑′ = �̇�

�̇� , 𝑡′ = 1
�̇� .

This formulation has 11 free parameters, which allows the matching of initial and
final positions and velocities, as well as the TOF. However, the computation of the
TOF can only be done by integrating Equation (4.2), but it does not have an analytical
expression. The procedure to compute the parameters is to select a fixed 𝑎2 and
compute analytically the parameters that match all the contour conditions but the
TOF. Then, the TOF is computed by integrating 𝑇′. If it does not match the desired
value, a new 𝑎2 selected and the process repeated. The computation of all the other
parameters for a 𝑎2 fixed is done by solving the following linear system:

𝑨 [𝑎0 𝑎1 𝑎3 𝑎4 𝑎5 𝑎6 𝑏0 𝑏1 𝑏2 𝑏4]
𝑇 = 𝒃 − 𝒂𝑎2 , (4.4)

where

𝑨 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑅0(𝜗𝑖) 𝑅1(𝜗𝑖) 𝑅3(𝜗𝑖) ⋯ 𝑅6(𝜗𝑖) 0 ⋯ 0
𝑅0(𝜗𝑓) 𝑅1(𝜗𝑓) 𝑅3(𝜗𝑓) ⋯ 𝑅6(𝜗𝑓) 0 ⋯ 0
𝑅′0(𝜗𝑖) 𝑅′1(𝜗𝑖) 𝑅′3(𝜗𝑖) ⋯ 𝑅′6(𝜗𝑖) 0 ⋯ 0
𝑅′0(𝜗𝑓) 𝑅′1(𝜗𝑓) 𝑅′3(𝜗𝑓) ⋯ 𝑅′6(𝜗𝑓) 0 ⋯ 0

−𝑟2𝑖 𝑅″0(𝜗𝑖) −𝑟2𝑖 𝑅″1(𝜗𝑖) −𝑟2𝑖 𝑅″3(𝜗𝑖) ⋯ −𝑟2𝑖 𝑅″6(𝜗𝑖) 𝛼𝑖𝜑″0(𝜗𝑖) ⋯ 𝛼𝑖𝜑″3(𝜗𝑖)
−𝑟2𝑓 𝑅″0(𝜗𝑓) −𝑟2𝑓 𝑅″1(𝜗𝑓) −𝑟2𝑓 𝑅″3(𝜗𝑓) ⋯ −𝑟2𝑓 𝑅″6(𝜗𝑓) 𝛼𝑓𝜑″0(𝜗𝑓) ⋯ 𝛼𝑓𝜑″3(𝜗𝑓)

0 0 0 ⋯ 0 𝜑0(𝜗𝑖) ⋯ 𝜑3(𝜗𝑖)
0 0 0 ⋯ 0 𝜑0(𝜗𝑓) ⋯ 𝜑3(𝜗𝑓)
0 0 0 ⋯ 0 𝜑′0(𝜗𝑖) ⋯ 𝜑′3(𝜗𝑖)
0 0 0 ⋯ 0 𝜑′0(𝜗𝑓) ⋯ 𝜑′3(𝜗𝑓)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

𝒃 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1/𝑟𝑖
1/𝑟𝑓

−𝑟𝑟𝑖/𝑟′2𝑖
−𝑟𝑟𝑓/𝑟′2𝑓
𝐶𝑖 − 2𝑟′2𝑟𝑖 /𝑟𝑖
𝐶𝑓 − 2𝑟′2𝑟𝑓 /𝑟𝑓

𝜑𝑖
𝜑𝑓
𝑟′𝜑𝑖/𝑟𝑖
𝑟′𝜑𝑓/𝑟𝑓

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, 𝒂𝑎2 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑎2𝑅2(𝜗𝑖)
𝑎2𝑅2(𝜗𝑓)
𝑎2𝑅′2(𝜗𝑖)
𝑎2𝑅′2(𝜗𝑓)
−𝑎2𝑟𝑖𝑅″2(𝜗𝑖)
−𝑎2𝑟𝑓𝑅″2(𝜗𝑓)

0
0
0
0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.
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The subindices 𝑖 and 𝑓 represent the values at the initial and final positions respec
tively. The final 𝜗 value is defined as

𝜗𝑓 = {
arctan2(𝑦𝑓, 𝑥𝑓) + 2𝜋𝑛𝑟𝑒𝑣 if arctan2(𝑦𝑓, 𝑥𝑓) > arctan2(𝑦𝑖 , 𝑥𝑖),
arctan2(𝑦𝑓, 𝑥𝑓) + 2𝜋(𝑛𝑟𝑒𝑣 + 1) if arctan2(𝑦𝑓, 𝑥𝑓) ≤ arctan2(𝑦𝑖 , 𝑥𝑖),

where 𝑛𝑟𝑒𝑣 is the number of revolutions of the leg.

Once the parameters are computed by solving Equation (4.4), the total time to
complete the leg is computed as

𝑡𝑇 = ∫
𝜗𝑓

𝜗𝑖
𝑇′𝑑𝜗. (4.5)

For fixed number of revolutions and initial and final conditions, this value depends
only on 𝑎2. The correct value of 𝑎2 is obtained by solving

𝑡𝑇 (𝑎2) − TOF = 0, (4.6)

where TOF is the time of flight of the leg. The method used to solved this equation
is detailed in subsection 4.3.2.

Finally, the shaped trajectory is represented again in Cartesian coordinates. The
position is transformed as

𝒓 = [
cos𝜗 cos𝜑
sin𝜗 cos𝜑

sin𝜑
] ,

the velocity as

𝒗 = 𝑑𝒓
𝑑𝑡 =

𝑑𝒓
𝑑𝜗
𝑑𝜗
𝑑𝑡 =

1
𝑇′𝒓

′,

and the acceleration as

𝒂 = 𝑑𝒗
𝑑𝑡 =

𝑑𝒗
𝑑𝜗
𝑑𝜗
𝑑𝑡 = (

𝑑2𝒓
𝑑𝜗2

𝑑𝜗
𝑑𝑡 +) =

1
𝑇′2𝒓

″ − 𝑇″
𝑇′3𝒓

′.

However, the most important result are the thrust and mass as a function of time
as they is used to transform the shapebased trajectory into a SF one. The accelera
tion that needs to by provided by the propulsion system can be computed using the
dynamics presented in section Spacecraft Dynamics of the thesis paper manuscript,
page 7 as

𝒖 = 𝑻′
𝑚 = 𝒂 + 𝜇

𝑟3𝒓,

where 𝑻′ is the thrust required to follow the trajectory (in this case, �′ does not to
refer to the derivative with respect to 𝜗). The Δ𝑉 of the trajectory as a function of
time is computed as

Δ𝑉(𝑡) = ∫
𝑡

𝑡𝑖
|𝒖|𝑑𝑡 = ∫

𝜗(𝑡)

𝜗𝑖
|𝒖|𝑇′𝑑𝜗. (4.7)



44 4. ShapeBased Method

The change of mass as a function of time can be computed as

𝑚(𝑡) = 𝑚𝑖𝑒
− Δ𝑉(𝑡)
𝐼𝑠𝑝𝑔0 .

Finally, the thrust required to follow the trajectory is

𝑻′(𝑡) = 𝑚𝒖.

4.3. Implementation
In the literature, the spherical shapebased method was implemented both in Matlab
[1, 76] and in C++ [5]. In this thesis, Python was selected as the most convenient
language as it allowed to easily merge the several tools required into a complete
working algorithm. However, this meant that the implementation of the spherical
method had to be done from scratch.

From the theory, it can be concluded that two key decisions needed to be made
when implementing this method. The first one was the integration method used in
Equations (4.5) and (4.7), which is discussed in subsection 4.3.1. The second one
was the solver used to solve Equation (4.6), which is discussed in subsection 4.3.2.

4.3.1. Integrator Selection

Only integration methods implemented in the SciPy library1 were considered. This
library is widely used for scientific computation in Python and is regularly maintained,
so it is well documented and reliable. There are two groups of integration methods
that can be used in this problem. The first one is comprised by the methods that
sample the function and use some expression to compute the area in the integration
interval. The second one are the Ordinary Differential Equation (ODE) solvers. The
ODE solvers are chosen as the implementation allows the creation of an interpolating
function at the same time that the integration is performed. This interpolating function
is very useful for computing the values of the solution at points different from the final
one. That was required for the transformation of the shapebased solution into the
initial guess for SimsFlanagan as described in subsection 5.2.1.

Within this last group, several integration methods were available. However, there
was a practical issue that limits the options that could be used. The issue was caused
by the fact that all integration methods available are variable step size methods, which
adapt the step size to match some predefined tolerances. However, Equation (4.1)
shows that it is possible to obtain a value such that the denominator of the 𝑟 function
becomes zero, so 𝑅 → ∞ for certain combinations of parameters and 𝜗. When this
value is introduced in Equation (4.2), the result is 𝑇′ → ∞. If this situation was reached
when integrating Equation (4.5), changes in the value of 𝑡𝑇 would be very large for
small changes in 𝜗. Therefore, variable step size algorithms would need to select very
small step sizes in order to keep the value of 𝑡𝑇 within tolerances.
1https://docs.scipy.org/doc/ (accessed May 13, 2020).

https://docs.scipy.org/doc/
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The legs in which 𝑇′ → ∞ are obviously not valid as the TOF required is infinite.
However, there is no strategy described in the literature neither found during the
thesis that allows the prediction of this situation other than computing the leg. When
attempted to compute with most of the ODE solvers available, extremely small step
sizes are selected which makes the integration process very long. Moreover, these
solvers have no way to automatically stop if the integration time is over a certain
threshold or the step size is below a minimum, and they might take days to complete
a single integration. This is an issue with the implementation of the solvers in Scipy
and no workarounds could be found during the thesis.

The exception is the Livermore Solver for ODEs Automatic (LSODA) [77], which al
lows the definition of a minimum step size. With this solver, step size never decreased
below the threshold even when tolerances were not met. This introduces certain er
ror in the computation when 𝑇′ takes very large values, but these trajectories are of
no interest as the time of flight and radius were much larger than in any physically
possible trajectory.

Table 4.1: Transfers used for the selection of parameters, verification, and validation of the spherical
shapebased method. Initial body is Earth on all cases.

Case Source Final body Starting
date

(MJD2000)

Final date
(MJD2000)

𝑛𝑟𝑒𝑣

EM Figure 12 in [1] Mars 7304 7804* 1*
EML Figure 14 in [1] 1989ML 7529 8529* 2*
E9P Figure 16 in [1] 9P/Tempel 465 1565* 0*
EN Figure 18 in [1] Neptune 7409 20409* 0*

BM Table 11.3 in [5] Mars 8174 8754 1
BML Table 11.11 in [5] 1989ML 7799 8399 1
B9P Table 11.21 in [5] 9P/Tempel 4124 5584 0
BN1† Table 11.17 in [5] Neptune 7754 21254 0
BN2 Table 11.18 in [5] Neptune 10049 50549 10

* Approximate value obtained from source figure.
† Initial velocity with respect to Earth of 3 km s−1 tangential to its orbit.

The method selected required the definition of a relative tolerance 𝛿𝑟𝑒𝑙, an absolute
tolerance 𝛿𝑎𝑏𝑠, and a minimum step size Δ𝜗𝑚𝑖𝑛. To reduce the number of parameters
to consider, Δ𝜗𝑚𝑖𝑛 = 𝛿𝑎𝑏𝑠 was selected for all computations. The effect of these
tolerances was tested in the test cases EM, EML, E9P and EN defined in Table 4.1.

The solution for each combination of tolerances was obtained following the pro
cedure described in subsection 4.3.2 to obtain the 𝑎2 for the correct TOF. The value
of different parameters along the trajectory was compared with a reference trajec
tory, which is computed with 𝛿𝑟𝑒𝑙 = Δ𝜗𝑚𝑖𝑛 = 𝛿𝑎𝑏𝑠 = 10−12. The differences were
computed at all the 𝜗 values corresponding to the integration points of the reference
trajectory. The following magnitudes were selected as representatives of the error for
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Figure 4.1: Error with respect to the reference trajectory when using different tolerances in the EM
case: a) in time as a function of 𝜗, b) in relative position as a function of 𝜗, c) in relative thrust as a
function of 𝜗, and d) in average relative thrust as a function of computation time.

each combination of tolerances:

Δ𝑡 = |𝑡 − 𝑡ref|, 𝜖𝑟 =
|𝒓 − 𝒓ref|
|𝒓ref|

, 𝜖𝑇 =
|𝑻′ − 𝑻′ref|
|𝑻′ref|

, 𝜖𝑇 =
∫𝜗𝑓𝜗𝑖 𝜖𝑇𝑑𝜗
𝜗𝑓 − 𝜗𝑖

,

where the subindex ref indicates the reference case and the integral was computed
using the trapezoid rule from the sampled points. The results are presented in Figures
4.1, 4.2, 4.3, and 4.4.

The value of 𝜖𝑇 was considered the most important result as 𝑻′ is the main result
necessary to transform the shapebased trajectory into a SimsFlanagan trajectory
using the method described in subsection 5.2.1. The results show that there was a
tradeoff between accuracy and computation speed. Two general conclusions could
be extracted from the results. The first one is that using values 𝛿𝑎𝑏𝑠 < 10−6 increased
the computation time without decreasing the error, so 𝛿𝑎𝑏𝑠 = 10−6 was the most
adequate value. The second one was that using values of 𝛿𝑟𝑒𝑙 > 10−7 increased
significantly the error but the gains on computation speed were very small, and the
only significant increase in computation speed was achieved when 𝜖𝑇 ≈ 10−1, which
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Figure 4.2: Error with respect to the reference trajectory when using different tolerances in the EML
case: a) in time as a function of 𝜗, b) in relative position as a function of 𝜗, c) in relative thrust as a
function of 𝜗, and d) in average relative thrust as a function of computation time.

was considered too large. Therefore, the final tolerances selected were 𝛿𝑎𝑏𝑠 = 10−6
and 𝛿𝑟𝑒𝑙 = 10−7. The error was within bounds considered safe and the computation
time was small compared with the time required to compute a SF transfer, as described
in subsection 5.2.3.

4.3.2. Solver
The decision regarding the method used to solve Equation (4.6) was not trivial. Fig
ure 4.5 illustrates the reason. The results in the figure were computed for an Earth
Mars transfer with departure at epoch 7305MJD2000, different arrival dates and 𝑛 = 0
i.e direct transfers. The TOF corresponding to a range of 𝑎2 values was computed.
It was found that the TOF seemed to converge asymptotically to a minimum TOF
value as 𝑎2 → −∞. As 𝑎2 increased, there was a sudden increase of the TOF value
until the point in which the trajectory reached 𝑅 → ∞, and no more solutions were
available after that point. The oscillating solutions shown past that point correspond
to numerical instabilities due to the integration of trajectories in which 𝑅 → ∞ at least
in one point.
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Figure 4.3: Error with respect to the reference trajectory when using different tolerances in the E9P
case: a) in time as a function of 𝜗, b) in relative position as a function of 𝜗, c) in relative thrust as a
function of 𝜗, and d) in average relative thrust as a function of computation time.

Most of the solutions lay in the relatively narrow range in which the TOF started to
diverge from the asymptotic value and the discontinuity 𝑅 → ∞ was reached. More
over, no way was found to predict the divergence point without performing a search
like the one in the plot, neither during this thesis or in the literature. Moreover, the
point at which the discontinuity happened varies in several orders of magnitude. For
example, the line corresponding to an arrival on 7805MJD2000 seems to be com
pletely flat. However, it finally starts to increase and finally reaches the discontinuity
for 𝑎2 ≈ 7 ⋅ 105. Finally, starting at large negative values of 𝑎2 and slowly increasing
its value was also tried, but in some cases the function reproduced a mirrored version
of shape presented, with the point of divergence in negative 𝑎2 values.

To obtain a solution, several solvers were tested. The first one tried was the New
ton method used in the literature [1, 5]. However, it was found that initial guess
needed to be very close to the solution or a step would lie on the interval with dis
continuities. Solutions were only achieved by manually setting the initial guess very
close to the initial value. This situation was confirmed independently by a fellow
student working on the implementation of the same spherical shapebased method
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Figure 4.4: Error with respect to the reference trajectory when using different tolerances in the EN
case: a) in time as a function of 𝜗, b) in relative position as a function of 𝜗, c) in relative thrust as a
function of 𝜗, and d) in average relative thrust as a function of computation time.

in C++2. Instead, two set of methods were tested: gradientbased local optimizers
from Pygmo3 and bisectionbased root finders from SciPy4. The summary of all solvers
considered is presented in Table 4.2.

The algorithms were first tested on the test cases presented on Table 4.1. Algo
rithms that failed to reach a solution in at least one of those cases were discarded.
The rest of algorithms were tested on the fast version of the grid searches described
on Table 4.3. These grid searches are done using the parameters of the tests that
resulted in the contour plots in Reference [1], but larger step sizes were used so com
putations could be completed in reasonable time. However, it was observed that a
wrong solution was reached for individual combinations of departure dates and TOFs.
The reason for this was that the solver selected a point in the range where 𝑅 reaches
zero, i.e. the fast oscillations on Figure 4.5. All solvers suffered these problem, but the

2M. Fayolle, personal communication.
3https://esa.github.io/pygmo2/overview.html#listofalgorithms (accessed May
13, 2020).

4https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.root_
scalar.html#scipy.optimize.root_scalar (accessed May 13, 2020).

https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.root_scalar.html#scipy.optimize.root_scalar
https://esa.github.io/pygmo2/overview.html#list-of-algorithms
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.root_scalar.html#scipy.optimize.root_scalar
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Figure 4.5: TOF as a function of 𝑎2 values for spherical trajectories between Earth and Mars with
departure at 7305MJD2000, 𝑛 = 0 and final state corresponding to Mars at different dates.

combinations at which it happened were different for each solver. In particular, SciPy
solvers and Pygmo solvers failed at completely different points. Moreover, changing
the initial guess for the optimizers also changed the occurrence of these failures to
find the correct solution.

These problem of the solver selecting the wrong solution were solved with two
complementary strategies. First, the initial guess was changed if the solution was not
valid. Second, two solvers were combined to maximize the chances of at least one of
them finding the correct solution. This total procedure might seem cumbersome and
time consuming, but would only represent a small part of the total computation time
of each leg. As explained in section Leg Computation of the thesis paper manuscript,
page 11, a consistent initial guess for the directed method is a key part of the method
presented in this work, so this robust method for looking for the correct solution was
considered necessary.

The implementation of the changes in initial guess depends on the solver used.
Pygmo solvers tended to get stuck when trying to explore the area where solutions
were not valid as the fast oscillations in TOF reported by the solver prevented the
correct computation of numerical gradients, which were required for all the solvers
considered. However, having a wider search range increased the chances of finding
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Table 4.2: Different solvers considered for solving Equation (4.6).

SciPy Bisection Pygmo Unconstrained Pygmo Constrained

bisect
brentq
brenth
ridder
toms748

bobyqa
newuoa*
newuoa_bound*
neldermead
sbplx
lbfgs
tnewton_precond_restart
tnewton_precond
tnewton_restart
tnewton
var2
var1

mma*
ccsaq*
slsqp*

* Discarded due to no convergence in preliminary tests

a solution. The implementation of these solvers also required to set maximum and
minimum bounds of the search space. The procedure followed with these solvers
was to start with large bounds 𝑏𝑎2 = ±106, and halve the bounds if no solution was
found until |𝑏𝑎2| < 10−12. Two initial guesses were used for each bound configuration,
which were 𝑎2 = ±

3
4 |𝑏𝑎2|. This procedure proved to be the fastest in the individual

test cases so it was the first one tried when looking for a solution.

In the case of the SciPy solvers, the procedure was the inverse. In this case, the
solver was able to find values in the region where solutions are not reliable as the
solvers did not rely on the gradient, so they were not affected by the fast oscillations.
As a result, the search was started with the lowest bounds 𝑏𝑎2 = ±10−12 and then
increased. In this case, the solver requires that the value of the function at each bound
has an opposite sign. Therefore, bounds were increased alternative in each trial to
prevent the situation in which the sign of the solution at both extremes changed sign
simultaneously. Moreover, it was found that increasing the bounds too fast caused
the solver to skip two consecutive roots of the cost function, which cause the sign of
the function to not change. However, increasing too slow made the solving process
extremely slow. Therefore, the optimal solution was found to be to do a broad search
increasing the bounds fast and then reducing the increase rate between trials if no
solution was found. These solvers reported a solution even in most of the cases in
which not a valid one could be found. Therefore, the condition Δ𝑉 < 105 was set for
the solution to be consider valid. If none of the solutions fulfilled this condition, the
one with the lowest Δ𝑉 was considered the correct one.

The full description of the solution procedure can be seen in Algorithm 1. The
solver used was observed to not have influence on the success rate but only on the
computation speed. The bounds tested and increase rates were selected so all the
test cases had a 100% success rate while keeping an optimal computation speed. In
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Algorithm 1 Procedure to search for a valid solution of the spherical shapebased
method.
1: for all 𝑛𝑟𝑒𝑣 in 𝑅𝑛𝑟𝑒𝑣 do
2: Set 𝑛𝑟𝑒𝑣 and contour conditions in leg
3: 𝑏𝑎2 ← 106
4: 𝒮 ← {}
5: while 𝑏𝑎2 > 10−12 do
6: 𝑎2 ←Pygmo solver(−𝑏𝑎2, 𝑏𝑎2)
7: if 𝑡𝑇 (𝑎2) − 𝑇𝑂𝐹 < 10−6 then
8: Add solution to 𝒮
9: Exit loop

10: else
11: 𝑏𝑎2 ← 𝑏𝑎2/2
12: end if
13: end while
14: if solution not found then
15: 𝑓𝑏 ← 8
16: Δ𝑉𝑠𝑜𝑙 ← ∞
17: while Δ𝑉𝑠𝑜𝑙 > 105ms−1 and 𝑓𝑏 > 0.2 do
18: 𝑏−𝑎2 ← −10−12
19: 𝑏+𝑎2 ← 10−12
20: 𝑖 ← 0
21: while 𝑏−𝑎2 > −1010 and 𝑏+𝑎2 < 1010 do
22: 𝑎2 ←SciPy solver(𝑏−𝑎2, 𝑏+𝑎2)
23: if 𝑡𝑇 (𝑎2) − 𝑇𝑂𝐹 < 10−6 then
24: Add solution to 𝒮
25: Exit loop
26: else
27: 𝑏−𝑎2 ← 𝑏−𝑎2 ⋅ (1 + 𝑓𝑏 ⋅ (𝑖 mod 2))
28: 𝑏+𝑎2 ← 𝑏+𝑎2 ⋅ (1 + 𝑓𝑏 ⋅ ((𝑖 + 1)mod 2))
29: 𝑖 ← 𝑖 + 1
30: end if
31: end while
32: Update Δ𝑉𝑠𝑜𝑙 with solution Δ𝑉
33: 𝑓𝑏 ← 𝑓𝑏/2
34: end while
35: end if
36: end for
37: return solution in 𝒮 with lowest Δ𝑉
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Table 4.3: Grid search parameters used for the selection of parameters, and validation of the spherical
shapebased method. Initial body is Earth on all cases.

Code Final body Starting
date

(MJD2000)

Dates
step (d)

TOF (d) TOF step (d) 𝑛𝑟𝑒𝑣

CM Mars 7305 to
10 227

15* or
900†

500 to
2000

20* or 1200† 1 to 5

CML 1989ML 7305 to
10 227

15* or
900†

100 to
1000

20* or 1200† 0 to 2

C9P 9P/Tempel 0 to 5846 900† 400 to
1500

1200† 1

CN‡ Neptune 7305 to
9496

900† 11 000 to
30 000

10000† 0

* For full tests.
† For fast tests.
‡ Initial velocity with respect to Earth of 3 km s−1 tangential to its orbit.

most of the cases, a solution could be found with only the Pygmo solver and the SciPy
solver was not used. However, the use of the SciPy solver was key for the cases in
which the Pygmo solver failed.

Table 4.4: Normalized time required to complete the grid search cases for each solvers combination.
The selected combination is in bold.

bisect brentq brenth ridder toms748

bobyqa 1.9105 1.8989 1.8784 1.8779 1.9195
neldermead 1.8511 1.8593 1.8587 1.7372 1.6378
sbplx 2.4472 2.3297 2.4090 2.4152 2.4572
lbfgs 3.8847 4.1515 4.5684 4.0776 3.9182
tnewton_precond_restart 4.4475 4.4257 4.3920 4.5105 4.5728
tnewton_restart 3.7311 3.7381 3.7280 3.7792 3.8043
tnewton_precond 4.5405 4.4571 4.4374 4.4275 4.4803
tnewton 3.6682 3.6589 3.6287 3.6398 3.7162
var2 3.8039 3.8649 3.8789 3.8822 3.9313
var1 3.8880 3.8983 3.8984 3.9260 3.9164
cobyla 8.8846 9.8699 9.8910 9.6734 9.9207

The only variables left to choose were the solvers. All the possible combinations
of SciPy and Pygmo solvers were tested on the fast version of the cases in Table 4.3
and the computation time measured. To avoid excessive effect of cases that were
longer in general, the time each combination takes to solve a particular case was
normalized with the average of all the combinations. Then, all these normalized times
were added and that was the final time score considered. The results are shown in
Table 4.4. The combination selection was neldermead Pygmo solver and ridder SciPy
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Table 4.5: Time required to complete each test case for the selected combination of solvers.

Solver 1 Solver 2 CM* CML* C9P* CN*

neldermead ridder 179.6 s 389.0 s 334.3 s 294.0 s
* Fast test version.

solver. The actual time that the selected combination took to complete each test is
shown in Table 4.5. This combination of solvers is the one to be used in the remaining
of this work.

4.4. Verification and Validation
The implementation of the spherical shapebased method in the thesis was completely
new, so a detailed verification and validation procedure was required. This procedure
is described in this section.

4.4.1. Verification
The first part of the verification procedure was a series of unit tests. The procedure
was to compute the values of the parameters in the EMars case from Table 4.1 and
a value 𝑎2 = −0.03 with the infinite precision software Mathematica5. The values
obtained were compared with the ones provided during the computation of the same
case with the implementation on this work.

The second part of the verification procedure were sanity checks. This were done
during the parameter selection procedure described in Sections 4.3.1 and 4.3.2. The
results of the computations are the ones expected and no unexplained phenomena
arose so the implementation was considered correct.

4.4.2. Validation
The first validation procedure was to reproduce the results of several trajectories used
as examples in the literature where the spherical shapebased method was presented.
In Reference [1], there is one example transfer to each body, but parameters such as
the final date, number of revolutions, or the thrust required to follow the trajectory
are not provided and therefore they have to be estimated from the plots. These are
the cases with codes E{target initial} in Table 4.1. The thrust profile obtained and
the one shown in the reference is shown in Figures 4.6, 4.7, 4.8, and 4.9. The thrust
profile matches closely the reference in the EM and EML cases. However, the thrust
seems to be slightly different than in the reference in the E9P and EN cases. The
reason for this was probably that the final date is not exactly the same as they have
been obtained from the plot, which is not a very accurate procedure. Moreover, it is
indicated in the reference that the results sometimes did not converge and a similar
5https://www.wolfram.com/mathematica/ (accessed May 13, 2020).

https://www.wolfram.com/mathematica/
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Figure 4.6: Thrust profiles in the EM case: a) in this work, b) in Reference [1]
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Figure 4.7: Thrust profiles in the EML case: a) in this work, b) in Reference [1]
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Figure 4.8: Thrust profiles in the E9P case: a) in this work, b) in Reference [1]



56 4. ShapeBased Method

8000 10000 12000 14000 16000 18000 20000
Date [MJD2000]

0.00

0.25

0.50

0.75

1.00

1.25

1.50

Th
ru

st
 m

ag
ni

tu
de

 [N
]

Thrust spherical-shaped trajectory

a)

7400 7500 7600 7700 7800

0.2

0.4

0.6

0.8

1

1.2

1.4

Date [MJD2000]

T
hr

us
t m

ag
ni

tu
de

 [
N

]

Shaped
LQ improved
L2 optimized
final mass optimal

0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

Date [MJD2000]

T
hr

us
t m

ag
ni

tu
de

 [
N

]

Shaped
LQ improved
L2 optimized
final mass optimal

b) c)

Figure 4.9: Thrust profiles in the EN case: a) in this work, b) in Reference [1] before 8000MJD2000,
c) in Reference [1] after 8000MJD2000

solution is used by modifying the time variable so the TOF matches the new value.
That could be the case in these examples, but there is no way to know as no indication
is given in the reference of how often this option was used.

A second set of individual transfers was available for comparison in Reference [5]. In
the reference, the departure and arrival date and the final Δ𝑉 required to complete
the best trajectory for each grid search are available. These trajectories are the ones
with codes B{target initial} in Table 4.1. These trajectories were reproduced in this
work and the results obtained compared. The summary of the results can be seen in
Table 4.6. It can be observed that the results obtained match quite closely the values
in the reference, so the implementation seemed to be correct.

The final validation procedure was the reproduction of the Δ𝑉 contour plots pre
sented in Reference [1]. These contour plots are done by selecting the best Δ𝑉 for
any 𝑛𝑟𝑒𝑣 for each grid point. This contour plots are the result of the grid search with
the parameters described in Table 4.3. In this case, the full version of the search was
done. This required a long computation time so only the CM and CML cases were
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Table 4.6: Comparison of Δ𝑉 and 𝑎𝑚𝑎𝑥 obtained with spherical shapebased method in Reference [5]
and in this work for a selection of cases.

Code Δ𝑉 (km s−1) 𝑎𝑚𝑎𝑥 (km s−2)

Reference [5] This work Reference [5] This work

BM 5.70 5.698 2.4 × 10−4 2.3815 × 10−4

BML* 4.53 4.530 1.8 × 10−4 1.7715 × 10−4

B9P 11.51 11.588 −† 1.3922 × 10−3

BN1 15.48 15.329 −† 1.1501 × 10−3

BN2 24.16 24.161 −† 3.615 × 10−5

* Apparent error in reference. Final state seems to be target body but at departure time. Results
presented were obtained with that configuration.
† Value not provided in reference.
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Figure 4.10: Contour plots of best Δ𝑉: a) case CM in this work, b) case CM in Reference [1], c) case
CML in this work, d) case CML in Reference [1]
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tested. The comparison of the contour plots can be seen in Figure 4.10. However,
there seems to be an error in the description of CML in Reference [1]. It is indicated
that the number of revolutions tested is 1 or 2, but it was not possible to reproduce
the contour plot without including 0 revolutions. This was thought to be a typo in
the reference, which was supported by the fact that some other typos are present in
equations as pointed out in Reference [5]. Apart from that, the contour plots seemed
to match quite closely the expected results. The small differences might be caused by
the use of the alternative solution method in the reference. However, there is again
not information of how often that alternative is used in the reference so it was not
possible to know if this is a reasonable assumption.

All the tests performed as part of the validation procedure produced the results
expected from the references or have differences that can be traced to different de
cisions taken during the implementation. Therefore, the validation was considered
successful.



5
Direct Transcription Method

As explained in section 3.4, direct methods were considered the best option for the
computation of the interplanetary legs. A direct method allows the transformation of
the orbit optimization problem into a NonLinear Programming (NLP) problem. These
methods are usually considered to be medium fidelity [61].

5.1. Method Selection
Several direct transcription methods are available in the literature. In References
[78, 79], a method based on assigning values of thrust at fixed integration points is
proposed. This method uses a mesh refinement strategy to increase the number of
integration points and therefore the number of design variables in reasonable com
putation time. However, the computation is usually slower than with other methods.
This method was used for situations in which the acceleration due to perturbations is
larger than the thrust acceleration. In Reference [41], the SF method is presented.
This method assumes the thrust to be continuous along fixedtime intervals, and the
design variables are the thrust values at each interval. The representation of thrust
values with series of polynomial [37, 38] and Chebyshev [80] functions was also stud
ied. In these cases, the design variables are the coefficients of the series. Finally, a
summary of possible collocation methods was done in Reference [81]. In this case,
the design variables are the state variable values at some points in time, and an
interpolating polynomial is built using those points.

The method selected for this thesis is the SF method. There are three reasons
for this decision. First, it appears to have a more consistent performance in terms
of optimality and computation time for general interplanetary optimization problems,
although some other algorithms perform better in specific cases [61]. Second, it is
used profusely in the literature [2, 3, 33–35, 42, 43, 60, 82, 83], which provides
information about proven implementations and test cases for validation. Third, the
package Pykep[84] provides a publicly available implementation of the method. This
was particularly important in the context of this thesis, as several tools need to be

59
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used together and a new implementation of each individual tool would be too time
consuming.

As explained in section Direct Method of the thesis paper manuscript, page 13,
the implementation of SF used is the ”high fidelity” version presented in Reference
[2]. This implementation differs from the original one [41] in two details. First, the
thrust is considered a continuous force along a segment instead of an instantaneous
impulse at the middle point. Second, the Sundman transformation is used to define
the segments as a function of a variable 𝑠 given by the equation ds = dt/|𝒓|.

These changes seek two objectives. First, the continuous thrust approximation
has the advantage of providing feasible transfers as there are no discontinuities in
the state (position, velocity, and mass) of the spacecraft. This is not the case with
the traditional SF implementation. An example of this can be seen in Reference [2],
where an optimization with the traditional SF method and with the high fidelity one
are done compared. The result of the high fidelity method appears to be less optimal,
but the traditional solution would most likely not be feasible. The increase in fidelity
with respect to the previous case is achieved at he expense of higher computation
times. However, the use of a ML surrogate is more useful when the cost of computing
every leg is higher, so it is more interesting to test it in the highfidelity case. Second,
the use of the Sundman transformation allows for a better performance in cases in
which the initial and final radius are very different. The transformation has the effect
of causing segments to be shorter in time near the central body, which is where the
spacecraft is expected to be moving faster.

5.2. Implementation
The Pykep package contains an implementation of the SF method selected. This was
the implementation selected for this thesis. Using a finished implementation from a
wellmaintained package reduced the time required for implementation, verification
and validation of the method.

5.2.1. Initial Guess
As explained in section Leg Computation of the thesis paper manuscript, page 11, the
process to obtain a SF solution has to be deterministic. The chances of the SF method
reaching a valid solution from an arbitrary initial guess are usually low. Instead, two
methods are proposed in the literature to find a valid solution. The first one is to do a
random search of the input space combined with local optimization in methods such
as MBH [42], SA [85] or both [60]. However, these methods were discarded for this
work due to the stochastic component of the search. The second method is to use
the solution from a simpler method as initial guess. Lambert method is used in [35],
and a shapebased method is used in [33, 34].

On this thesis, it was decided to use a shapebased method. It was found that
the convergence of the SF method had a strong influence on the performance when
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the ML surrogate was used. The convergence increased with an initial guess close to
a feasible solution, which the spherical shapebased method presented in chapter 4
provides.

Algorithm 2 Procedure to transform the solution obtained with the spherical shape
based method into valid SF inputs.

1: 𝑠(𝜃′) ← ∫𝜃
′

𝜃0
𝑡′
𝑟 𝑑𝜃

2: Δ𝑠 ← 𝑠(𝜃𝑓)
3: 𝛿𝑠 ← Δ𝑠/𝑛𝑠𝑒𝑔
4: 𝑭𝑇(𝜃) ← ∫

𝜃
𝜃0 𝑻

′𝑡′𝑑𝜃
5: 𝐹𝑇(𝜃) ← ∫

𝜃
𝜃0 |𝑻

′|𝑡′𝑑𝜃
6: 𝑠0 ← 0
7: 𝜃𝑖 ← 𝜃0
8: 𝒯 ← {}
9: for all 𝑖 ∈ {1, … , 𝑛𝑠𝑒𝑔} do

10: 𝑠𝑖+1 ← 𝑠𝑖 + 𝛿𝑠
11: 𝜃𝑖+1 ← argmin𝜃 (𝑠(𝜃) − 𝑠𝑖+1)

2

12: 𝛿𝑡 ← 𝑡(𝜃𝑖+1) − 𝑡(𝜃𝑖)
13: 𝑻𝑖 ← (𝑭𝑇(𝜃𝑖+1) − 𝑭𝑇(𝜃𝑖)) /𝛿𝑡 � The alternative implementation uses this 𝑻𝑖

value.
14: 𝒖𝑖 ← 𝑻𝑖/|𝑻𝑖|
15: 𝑇𝑖 ← (𝐹𝑇(𝜃𝑖+1) − 𝐹𝑇(𝜃𝑖)) /𝛿𝑡
16: 𝑻𝑖 ← 𝑇𝑖𝒖𝑖
17: 𝑻𝑖 is added to 𝒯
18: end for
19: return 𝒯, Δ𝑠

The initial guess needed to be transformed into an input that can be used for
the SF method. This was done as described in section Direct Method of the thesis
paper manuscript, page 13. A more detailed description of the process can be seen in
Algorithm 2. All the integrals were computed with the same integrator and tolerances
used for the computation of the spherical shapebased method, which are described
in subsection 4.3.1. The optimizer used to find the solution for 𝜃𝑖+1 is LBFGSB1 from
SciPy package. This solution was fast to obtain, so this optimizer was chosen due to
its easy implementation. The inputs for the SF method are the set of thrust vectors
𝒯, the total change in the 𝑠 variable Δ𝑠, and the final mass of the trajectory obtained
with the spherical shapebased method.

An alternative option was to transform the thrust as the average of its components.
However, this caused the the final thrust to cancel out when the segments covered
a significant part of a revolution around the Sun. The comparison between the two
results for some of the cases described in Table 5.1 was is shown in Figures 5.1, 5.2,
and 5.3. The transformation using the alternative method was not capable of properly
1https://docs.scipy.org/doc/scipy/reference/optimize.minimizelbfgsb.html
(accessed May 13, 2020).

https://docs.scipy.org/doc/scipy/reference/optimize.minimize-lbfgsb.html
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Table 5.1: Transfers used for the selection of parameters, verification, and validation of the SF imple
mentation. Initial body is Earth on all cases.

Case Source Final
body

𝑡0
(MJD2000)

𝑡𝑓
(MJD2000)

𝑛𝑟𝑒𝑣 𝑛𝑠𝑒𝑔 𝑇𝑚𝑎𝑥/𝑚0
(mms−2)

𝐼𝑠𝑝 (s)

EM Figure
12 in
[1]

Mars 7304 7804* 1* 10† 0.264‡ 3000

EML Figure
14 in
[1]

1989ML 7529 8529* 2* 10† 0.149‡ 3000

E9P Figure
16 in
[1]

9P/Tempel 465 1565* 0* 10† 1.953‡ 3000

EN Figure
18 in
[1]

Neptune 7409 20409* 0* 10† 1.654‡ 3000

BM Table
11.3 in
[5]

Mars 8174 8754 1 10† 0.225‡ 3000

BML Table
11.11
in [5]

1989ML 7799 8399 1 10† 0.172‡ 3000

B9P Table
11.21
in [5]

9P/Tempel4124 5584 0 10† 1.333‡ 3000

BN1§ Table
11.17
in [5]

Neptune 7754 21254 0 10† 1.022‡ 3000

BN2 Table
11.18
in [5]

Neptune 10049 50549 10 50† 0.035‡ 3000

SMe¶ Figure
6 in [2]

Mercury 2655 4982 10* 30 0.140 3337

SVX Figure
2 in [3]

2002VX91 7509 8587 3* 100 0.085 3000

SJ Table 9
in [34]

Jupiter 8869 10888 0 to 2* 30* 0.113 6000

SS Table 9
in [34]

Saturn 8317 10948 0 to 2* 30* 0.113 6000

* Approximate value obtained from figure in source.
† Arbitrary value selected for tests.
‡ 𝑇𝑚𝑎𝑥 value corresponds to maximum |𝑻| value of shapebased trajectory.
§ Initial velocity with respect to Earth of 3 km s−1 tangential to its orbit.
¶ Initial velocity with respect to Earth of −2 kms−1 tangential to its orbit.
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Figure 5.1: SF solution for the EML case: a) actual thrust as a function of time, b) alternative thrust
as a function of time, c) actual mass as a function of time, d) alternative mass as a function of time.

represent the thrust in the first part of the transfer, in which the change is fast. This
led to a failed SF solution, while the method used in the thesis reached a converged
solution.

5.2.2. Integrator
The implementation selected is designed to use the Taylor integration method. With
this method, the state is only computed at the end points of the SF segments. This
integration method is expected to have a lower computational cost than other meth
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Figure 5.2: SF solution for the BN2 case: a) actual thrust as a function of time, b) alternative thrust
as a function of time, c) actual mass as a function of time, d) alternative mass as a function of time.

ods [2], so part of the increase in computation cost from the more complex SF is
expected to be compensated. The Pykep implementation only allows requires one
tolerance value for the integration, 𝛿SF. To evaluate the effects of this tolerance, the
change in final predicted mass and computation time were considered the most rel
evant results. However, tests showed that there was no significant change of this
values when modifying the tolerance several orders of magnitude with respect to the
default value 𝛿SF = 10−8. Therefore, the default value was used in the computations.
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Figure 5.3: SF solution for the SMe case: a) actual thrust as a function of time, b) alternative thrust
as a function of time, c) actual mass as a function of time, d) alternative mass as a function of time.

5.2.3. Optimizer

The initial guess obtained as described in Section 5.2.1 could be used to obtain an
optimal trajectory via NLP. The optimization variables were the Cartesian components
of the thrust vector at each segment 𝑻𝑖, the final mass 𝑚𝑓 and the total change
in the Sundman transformation variable Δ𝑠′. These variables were box bounded by
the values indicated in Table 5.2. The value Δ𝑠 corresponded to the change in the 𝑠
variable in the shapebased trajectory, and 𝑚0 to the initial mass of the leg.

The optimization problem included both inequality and equality constraints [2, 41].
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Table 5.2: Bounds for vector variables of the SF method selected.

Bound 𝑇𝛼𝑖 𝑚𝑓 Δ𝑠′

Lower −𝑇𝑚𝑎𝑥 10−8 Δ𝑠/2
Upper 𝑇𝑚𝑎𝑥 𝑚0 2Δ𝑠

Table 5.3: Values used for nondimesionalization of the mismatch constrain during the SF optimization.

Units Position Velocity Mass Time

Reference value 1 au 1 au yr−1 1 kg 1 yr
Value in SI units 149 597 870 691m 4740.4705ms−1 1 kg 31 557 600 s

The inequality constraints was |𝑻𝑖| < 𝑇𝑚𝑎𝑥 at each segment. The equality constraints
correspond to the mismatch between the state at the end of the forward integration of
the first half oh the leg and at the and of the backward integration of the second half of
the leg. The mismatch was nondimensionalized so the magnitudes were comparable.
The values used for nondimensionalization are shown in Table 5.3. The tolerance
allowed for each component of the normalized mismatch values was 10−6. This might
seem high in the case of the position, as it corresponds to ∼150 km. However, it is
considered reasonable taking into account that much larger errors were introduced
by ignoring the SOI of planets during the GA.

The algorithms considered for this optimization task were the local optimization al
gorithms available in Pygmo2. Three of them could handle both equality and inequality
constraints: compass_search, cobyla, and SLSQP. These algorithms were compared
by testing on the cases presented in Table 5.1. The main criteria for algorithm selec
tion was the number of successfully computed transfers. This was a more important
objective that low computation times for this thesis, as explained in section 5.1. The
computation time was considered for breaking ties, but it was not necessary to use it.
Out of 13 cases, compass_search did not succeed in any of them, cobyla succeeded in
4 of them, and SLSQP succeeded in 8 of them. Therefore, SLSQP algorithm was used
for all the subsequent computations. The Pygmo version of this algorithm is actually
a wrapper for the implementation of the NLopt package3.

This algorithm requires the cost function gradient. The expression of this gradient
is not available, so a function available in Pygmo was used to estimate them with
via finite differences. Two points are used for the estimation in each dimension, and
the points are at a distance 10−8 of the units corresponding to each variable. Two
stopping conditions were used in the algorithm: the minimum relative change in the
input vector 𝛿𝑥𝑟𝑒𝑙, and the minimum relative change in the objective 𝛿𝑓𝑟𝑒𝑙. These
values were set to 𝛿𝑥𝑟𝑒𝑙 = 𝛿𝑓𝑟𝑒𝑙 = 10−4 as these were considered a reasonable values,
as input values except the thrust and output value were not nondimensionalized. The

2https://esa.github.io/pygmo2/overview.html#localoptimization (accessed May
13, 2020).

3https://nlopt.readthedocs.io/en/latest/NLopt_Algorithms/#slsqp (accessed on
May 13, 2020).

https://nlopt.readthedocs.io/en/latest/NLopt_Algorithms/#slsqp
https://esa.github.io/pygmo2/overview.html#local-optimization
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input thrust was nondimensionalized with 𝑇𝑚𝑎𝑥 on each case and the tolerance on this
variable was considered also reasonable. In addition, a limit of 20min was enforced
for the computation of the SF legs. This was included to avoid unusual cases of very
long computations.

5.3. Verification
The implementation of the integration method and optimizer was considered reliable
as it was obtained from well maintained packages. Instead, the verification of the SF
method was focused on the correct transformation between the spherical shapebased
method and the SF initial guess, and on the optimality of the solutions obtained with
SF. The SF method was tested on the cases E{target initials} and B{target initials}
described in Table 5.1, which are extensions to SF of the homonyms cases in Table 4.1.
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Figure 5.4: SF solution for the EM case: a) thrust as a function of time, b) mass as a function of time.

Two results are expected from a proper implementation: the initial guess follows
closely the spherical shapebased trajectory and the final result requires less propellant
mass. Results are shown in Figures 5.1, 5.2, 5.4, 5.5, and 5.6. The results are the
ones expected. First, the thrust profiles indicate that the initial guesses had thrust
values corresponding to the averages of the shapebased thrust at each segment.
In addition, the optimized SF thrust showed a bangbang behavior in most cases as
it was expected for the optimal control. Second, the mass evolution indicate that
the initial guesses followed very closely the shapebased solution, and the optimized
solution required less total mass in all cases.

Finally, Figure 5.2 shows the limitations of this method. The SF optimization was
not capable of finding a viable solution as the segments were to long to reproduce
the fast changes in thrust in the shapebased method. This was the case even when
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Figure 5.5: SF solution for the E9P case: a) thrust as a function of time, b) mass as a function of time.
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Figure 5.6: SF solution for the BML case: a) thrust as a function of time, b) mass as a function of
time.

using a very large number of segments.

5.4. Validation
The validation procedure was to compare the results with examples in the literature.
However, there was no result in the literature that could be directly compared. Some
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Figure 5.7: Comparison of SF trajectories in the SMe case: a) obtained in the thesis, b) in Reference
[2].
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Figure 5.8: Comparison of SF thrust along the trajectory in the SVX case: a) obtained in the thesis,
b) in Reference [3].

references use the same implementation of the SF method but do not provide the
detailed of the trajectories produced, so results can only be compared graphically.
This was the case with cases SMe and SVX. The comparisons of the results are
shown in Figures 5.7 and 5.8 for the SMe and SVX cases respectively. The results
obtained are very similar to the one in the references. The small differences are
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likely caused by the different initial guesses. The references for cases SJ and SS do
provide numerical details about the best result. However, the optimization failed to
converge with the SF method used in this thesis. In the reference, the simpler version
of the SF method [41] was used. That implementation does not necessarily result in
feasible trajectories, so the results in the reference might correspond to an unfeasible
solution. Moreover, these cases are direct trajectories to outer planets that are not
expected to be computed when optimizing a MGAT.



6
Machine Learning Surrogate

The objective of this thesis was to study the use of a ML surrogate to substitute the
cost function computations while performing a global optimization of a MGAT. This
chapter describes the implementation of the ML method selected and the rationale
behind its selection.

6.1. Method selection
Previous research on the use of surrogates for estimation of the fuel cost of LTP tra
jectories found that the most accurate ML method to build the surrogate was Gradient
Boosting (GB) [13, 14]. However, the situation considered in the reference is very
different to the one in this thesis. First, the set of trajectories considered in the ref
erence only includes transfers between Near Earth Object (NEO). All these transfers
have very similar characteristics, as opposed to transfers between any pair of bodies
in the solar system as considered in this thesis. Second, the number of points used
for training is between 50 000 and 100 000. This number is much higher than the
number of points expected to be available for training in this thesis, which is <2000.

Therefore, an alternative which could work with a much lower of training points was
sought. As mentioned in section Use of Machine Learning Surrogate of the thesis paper
manuscript, page 11, it was decided to train the ML online so the number of training
points used was the minimum necessary. Several alternatives were considered: online
version of GB, ANNs, GPR, nonparametric models, and OSELM.

6.1.1. Gradient Boosting
The GB and other treebased algorithms [66] cannot be used online and require to
train again for every new point. This requires a relative large computation time of
∼20 s [13]. Moreover, the newmodel created every time would be completely different
than the previous, so error estimation would not be reliable. Finally, the accuracy is

71
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expected to be much lower when only a small amount of training points are available.
Therefore, these models were not used in this thesis.

6.1.2. Artificial Neural Networks
They were used as a surrogate in Reference [14], and to learn optimal statecontrol
pairs in similar LTP problems [15–17]. However, they show a worse performance than
the alternative method OSELM in small datasets when using a single layer [23, 27].
Increasing the number of layers does not help as the performance is only expected
to decrease if not enough training data is available [86]. Moreover, a large number
of hyperparameters need to be adjusted for an adequate training [87]. These can be
adjusted by performing crossvalidation to determine which combination of hyperpa
rameters performs better [88, 89]. However, this process is time consuming, and was
an important obstacle in previous master thesis on similar topics [19, 90]. In addition,
there is high chance of overfitting to the case from which the data was generated.
This means that the model will have a bad performance when used in a different case.
An alternative approach is to test on data from several cases, but that requires a long
computation time to cover all relevant options. Therefore, ANNs were not used in this
thesis.

6.1.3. Nonparametric Methods

This label encompasses a great variety of methods. They are all based on estimating
the objective function based exclusively on the values of previously computed points
without making any assumption about the underlying distribution [91]. An example
are kernel methods, that assign a new point the value of nearby points weighted
with a function of the distance known as kernel [66]. These methods have some
advantages for the application proposed here. The simpler versions do not require
training and are inherently online as no parameters need to be determined and the
values at new points are computed using the list of training points. This might be an
issue for a large amount of training points, as the distance to every point needs to
be evaluate every time a new point is predicted. However, that was not the case in
this work. Nonetheless, these methods also have some issues if used in this thesis.
The main one is that they have a limited generalization capability. Solutions are very
unreliable when computed in areas where a low density of training points is available
[91]. The optimization method is expected to produce points clustered around minima
of the function, so the surrogate would have a very low error in small areas and very
high error when evaluated at point outside those areas. Therefore, nonparametric
methods were not used in this thesis.

6.1.4. Gaussian Process Regression

This method can be considered an advanced nonparametric method. It has been
used successfully for the creation of surrogates for several applications, including the
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estimation of the cost of transfers to asteroids, using both conventional propulsion
[22] and lowthrust [20]. This method shows a better generalization performance than
the nonparametric methods, but still suffers when data is not uniformly distributed.
Moreover, the selection of hyperparameters values is a necessary step to achieve
reasonable accuracy. The process to obtain them is usually a gradient descent, so the
time and data required to define this parameters is approximately the same that for
the training of other models. This negates the advantages of using the model online
as it needs to be trained beforehand. Therefore, GPR were not used in this thesis.

6.1.5. Extreme Learning Machine

The method described in section Machine Learning Surrogate of the thesis paper
manuscript, page 13 was considered the most adequate for the application intended
in this thesis. There are two main reasons for this. The first one is that the lack of
optimization of the first set of weights acts as a normalization controlling the accuracy
of the model. This is detrimental when a large amount of points are used as only a part
of the model is optimized. In that case, an ANNs with the same number of hidden
units but with both sets of weights optimized will probably have a better accuracy
than the ELM. However, the situation is different when the number of training points
is small. In this case, the ANNs would typically overfit to the samples [92], while we
expect the ELM to produce a more general solution [23]. The second reason is the
possibility of performing online training while providing the optimal solution to all the
training points used.

6.2. OSELMMAS Implementation
The description of the OSELMMAS method used to create the surrogate is given in
section Machine Learning Surrogate of the thesis paper manuscript, page 13. The
implementation was done using the TensorFlowOSELM package1. This package is
publicly available but it seems to be a personal project from the creator. Therefore,
the implementation is considered to require extensive validation and verification. The
selection of the error measure, error implementation and architecture parameters
were considered part of the implementation process. These procedures, and the
related validation and verification are described in this section.

The package selected for the implementation uses the Tensorflow package2 for
matrix operations. This package usually allows for faster matrix operations than other
Python implementations. However, it was found that Tensorflow and Pygmo had com
patibility issues after all the modules of the thesis were implemented and integrated.
A workaround was found to make the combination of two packages work, but it in
volved saving the Tensorflow models to the hard disk every time it was modified and
loading them from disk every time a prediction was made. This introduced a large
computational overhead when using the OSELMMAS that reduced the efficacy of

1https://github.com/otenim/TensorFlowOSELM (accessed May 13, 2020).
2https://www.tensorflow.org/ (accessed May 13, 2020).

https://github.com/otenim/TensorFlow-OS-ELM
https://www.tensorflow.org/
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Table 6.1: Final estimated error measures for the optimization with the surrogate and the final config
uration of parameters for each of the three cases tested.

Error measure Dawn EEJ EVVMMM

MAE 0.029 12 0.029 70 0.088 10
MAPE 13.41% 36.08% 33.26%

the method. The final results were positive even including the excessive overhead, so
even better results are expected if the implementation is refined.

6.2.1. Error measure

Some of the most common error measures in the literature [93] were considered for
evaluating the accuracy of the surrogate. These were the Root Mean Squared Error
(RMSE), the Mean Absolute Error (MAE), and the Mean Absolute Percentage Error
(MAPE):

RMSE = √
∑𝑁𝑖=1 (�̂�𝑖 − 𝑦𝑖)

2

𝑁 , MAE =
∑𝑁𝑖=1 |�̂�𝑖 − 𝑦𝑖|

𝑁 , MAPE =
𝑁

∑
𝑖=1
| �̂�𝑖 − 𝑦𝑖𝑦𝑖

| 100𝑁 ,

where 𝑁 is the number of points for which the error is computed, and �̂�𝑖 and 𝑦𝑖 are
respectively the predicted value and the true value for point 𝑖. It is important to notice
that RMSE = MAE when 𝑁 = 1. This a very important conclusion for the error esti
mation method presented in section Error Estimation of the thesis paper manuscript,
page 15. The error estimation would be identical for the RMSE and the MAE when the
error is estimated from points that are received online one by one. Therefore, there
is no difference between RMSE and MAE for the application considered in this work.
Therefore, RMSE is not considered in the following discussion.
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Figure 6.1: Final predicted values as a function of true values for the optimization with the surrogate
and the final configuration of parameters for each of the three cases tested: a) Dawn, b) EEJ, and c)
EVVMMM.
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Among the main differences between the two remaining error measures is the
importance of each point has in the final error value as a function of |𝑦𝑖|. For a fixed
|�̂�𝑖 − 𝑦𝑖|, MAE weights identically points independently of the 𝑦𝑖 value, while MAPE
weights more points with smaller |𝑦𝑖|. The optimization algorithm is more likely to
select points with a lower |𝑦𝑖| as 𝑦𝑖 corresponds to the cost of the leg in this case.
Therefore, the MAPE measure could seem to be a better option as more weight is
given to points that have more chances to be selected by the optimization problem.
However, the tests shown that MAPE error had very high values for the test cases
in which some transfers had very low |𝑦𝑖| values. To illustrate this, different final
estimated error measures were computed for optimizations using the surrogate in the
three test cases. The results corresponds to the final configurations of surrogate
control parameters 𝜏 and 𝐶𝑛. The final estimated error values for different error
measures are shown in Table 6.1, and the corresponding predictions on the points
are shown in Figure 6.1. The accuracy of the predictions seems to be very similar for
the Dawn and EEJ cases. However, the MAPE assigns a much larger error to the EEJ
case. The reason is that the objective values are much lower in the EEJ case. This
was not considered to be a adequate measure of the error, and the MAPE was not
used for the computations in the thesis.

6.2.2. Error estimation

The only detailed summary of methods for online estimation of the error was found
in Reference [26]. In the reference, four different types of estimated errors are pro
posed: the holdout error, the prequential error, the prequential error on sliding win
dows, and the prequential error with a fading factor.

For the holdout error, a test set is kept separate from the training data and the
error is evaluated on this test set. The main drawback of this method is that a test set
needs to be obtained and cannot be used for training. This is a problem in this thesis,
as generating new data had a very high computational cost. Creating a representative
test set would probably require more computation time that the time saved by using
the surrogate. Therefore, this estimation of the error was not considered.

The prequential errors are calculated by computing the error for each new training
point before the model is trained on that point. This way, the same training points can
be used for validation and no extra data needs to be generated. The simpler version
of the prequential error is to compute it as the average of the error on all the training
points up to that moment. However, this estimation has a flaw. The error computed
for every point cannot be updated after they are used for training. Therefore, the
error on the older points corresponds to an older version of the model as it trained
on new points since that error was computed. It is assumed that the accuracy of the
model always increases when trained on new point. Therefore, these old errors are
a pessimistic estimation of the true error as they were computed in a less accurate
model. The older the error computations, the more pessimistic they are with respect
to the current state of the model.

Two alternative types of prequential error are proposed in the reference to provide



76 6. Machine Learning Surrogate

a more accurate estimate of the error. The first one is the prequential error over
a moving average. This error is computed with a fixed number of the most recent
error computations on the training points. The second one is the prequential error
with a fading factor, which is described in section Error Estimation of the thesis paper
manuscript, page 15. Reference [26] recommends the use of the prequential error
with fading factor for applications similar to the one in this thesis, so that was the
estimation used.

6.2.3. Architecture Selection
There were several architecture parameters that needed to be defined for the surro
gate model used. The parameters to determine were the Number of Models (NM),
Number of Hidden Units Parent (NHUP), and the Activation Function (AF) in the
hidden units. The most common AF used in ANNs [94, 95] were considered. How
ever, the rectifier linear unit (relu) activation was discarded as the performance was
abysmally worse than the hyperbolic tangent function (tanh) and logistical sigmoid
function (sigmoid) in preliminary tests. This did not agree with the literature, where it
usually outperforms other AF [95]. However, it was hypothesized that the reason for
this was the collinearity of the rows in matrix 𝑯 for initial training. The input space had
dimension 14, so that was the maximum range achievable of matrix 𝑯 if no activation
is used. The range �̃� required is achieved thanks to the nonlinearity introduced by
the activation function. However, the relu activation is linear in most of its domain,
so most of the samples would still be linear combinations after applying the activation
function. Therefore, the initial training would provide erroneous values that would
spoil the model. relus were not considered for the architecture parameters tests.

In addition to the previous parameters, the SI and SO also needed to be deter
mined. Two options were considered: the Standard scaler (S)3 transforms the data
so the mean is 0 and the standard deviation is 1, and the MinMax scaler (MM)4 trans
forms it so the lowest value has a transformed value of −1 and the highest value a
transformed value of +1. The scaling factors were determined with the data used for
initial training in all cases.

The Number of Hidden Units (NHU) was fixed to 128 and no variations were
tested. The error was observed to decrease monotonically with NHU, but a larger
NHU requires more points for initial training. In the tests, the computation of each
point required ∼120 s and the convergence rate of the SF computation was 0.7. Only
converged solutions are used for training, and 20 extra points were required to make
sure the error estimation is reliable. Therefore, the approximate minimum time re
quired before the OSELMMAS with NHU 128 could be used was ∼ 120128⋅2+200.7 =
∼47 300 s = ∼790min = ∼13.1 h. This was considered a reasonable upper bound as
the surrogate could still be used during most of the 72 h test period.

3https://scikitlearn.org/stable/modules/generated/sklearn.preprocessing.
StandardScaler.html (accessed May 13, 2020).

4https://scikitlearn.org/stable/modules/generated/sklearn.preprocessing.
MinMaxScaler.html (accessed May 13, 2020).

https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html
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Table 6.2: Summary of parameters combinations tested.

Parameter First iteration Second iteration Third iteration

NM 8 8 and 16 16
NHUP 32 16, 32, 64 and 128 16, 32, 64 and 128
NHU 128 128 128
AF tanh and sigmoid sigmoid tanh
SI S and MM S S
SO S and MM S S

The Number of Models (NM) was limited to 16 during the tests. The reason for this
limitation was related to the limits of the implementation of OSELMMAS models in
this thesis. As mentioned previously, issues with package compatibility forced to save
every individual OSELM model to the disk, load it for predictions, and overwrite it for
updates during training. This was a very inefficient implementation and caused the
computation time required to train an OSELMMAS to grow fast with NM. The limit
on NM was intended to prevent the training of the OSELMMAS model to require a
significant amount of the total optimization time when used as a surrogate. However,
the computation cost of the models is expected to decrease several orders of mag
nitude with a more refined implementation. This will allow to use larger NM without
additional computation cost. The surrogates with larger NM are expected to have a
better performance. Therefore, the results obtained in this thesis can be considered
a conservative estimate of what can be achieved with an improved implementation of
this method.

Performing a grid search over all the possible parameter values would have re
quired a long computation time. Instead, the parameters were tested in groups. The
values tested at each iteration are are shown in Table 6.2. The high computation
cost for every optimization makes impossible to test which is the architecture that
works better during a complete optimization run. Instead, the information about the
legs computed during an optimization without surrogate was saved and then used as
training data. It was simulated that the datapoints arrived one by one to the model
as it happens when it is used as a surrogate for optimization. As mentioned in section
Results of the thesis paper manuscript, page 20, the data used corresponded to the
Dawn baseline with 𝑁𝐼 = 20. Of the three cases tested, Dawn was the one with a
lower variety of transfers, as all the bodies visited have similar orbits. Therefore, this
case might not be considered representative of all the possible cases. This allowed
to study the robustness of the architecture when applied to very different transfers.
The conclusions were very positive as the surrogate improved its performance in the
other two cases.

Each parameter combination was evaluated with respect to two criteria. The first
one was the ability to accurately approximate the correct value of the objective func
tion. This was measured with the final estimated MAE when the model was trained in
all the data. This value was estimated as explained in section Parameters Test of the
thesis paper manuscript, page 18. The value of the estimated MAE was found to have
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a constant offset between different combinations during the training process. There
fore, the final value was representative of the performance along the whole training
procedure.

The second criterion was define by considering that the surrogate should not assign
very low values to the points that did not have a valid SF solution. As mentioned in
section Direct Method of the thesis paper manuscript, page 13, the surrogate cannot
tell these points apart from the valid points, so predictions were returned when they
were evaluated. If this prediction was to low, this points were selected over the valid
points. To evaluate the capability of the surrogate to avoid this situation, a metric was
defined as

𝐹𝑠𝑐𝑜𝑟𝑒 =
𝐹𝑝𝑟𝑒𝑑,𝑚𝑖𝑛 − 𝑉0.5
𝑉𝑚𝑖𝑛 − 𝑉0.5

,

were 𝐹𝑝𝑟𝑒𝑑,𝑚𝑖𝑛 was the lowest prediction made on any failed point at any point during
training, 𝑉0.5 was the median of the true values of the valid points and 𝑉𝑚𝑖𝑛 was the
lowest true value of the valid points. The predictions on the failed points were made
after each online training point, and 𝐹𝑝𝑟𝑒𝑑,𝑚𝑖𝑛 was the lowest prediction made at any
point.
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Figure 6.2: Values of estimated MAE and 𝐹𝑠𝑐𝑜𝑟𝑒 for the architecture parameters tested.

The results for several parameter combinations with respect to these criteria are
shown in Figure 6.2. The final value selected was the one with 𝐹𝑠𝑐𝑜𝑟𝑒 < 0.8 and the
lowest MAE. In addition, the results were also obtained with a simpler OSELM model
using the same parameter combinations for NHU, AF, SI, and SO. The comparison
between the two pareto fronts is shown in Figure 6.3. The results indicate that OS
ELMMAS had clear advantages over OSELM.
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Figure 6.3: Comparison of optimal MAE and 𝐹𝑠𝑐𝑜𝑟𝑒 values obtained when testing different architecture
parameters for OSELM and OSELMMAS.

6.2.4. Verification
There was no straightforward way to predict the results when training the OSELM
MAS. The verification of the model was based on testing on certain datasets and
evaluating whether the results corresponded with what was expected. This process
was done before data from transfers computed with SF was available. Instead, the
verification was done with the data obtained during the grid search used to create
the contour plots in subsection 4.4.2. This provided a large amount of data with
similar characteristics to the SF transfers. The data from the CM and CML cases was
combined to create a single dataset. This provided a total of 23 595 training points.
This number was much larger than the number expected to be available when using
the surrogate. As the lack of data was not a problem, half the points were randomly
split to be used for validation.

The estimated MAE and the MAE obtained in the dataset were computed when
using both the OSELM and OSELMMAS models. Results are shown in Figure 6.4.
Three conclusions were obtained from the results. First, the error estimation method
provided a good estimation of the test error, although it presented random variations
around the validation error. Second, error decreased fast in the early points and
stabilized after ∼ 2500 training points. Third, OSELMMAS reached lower error values
than OSELM. This was the behavior expected from the model, so the OSELMMAS
model was considered verified. In addition, the initial error threshold 𝜏 = 0.06 for the
tests described in section Parameters Test of the thesis paper manuscript, page 18
was selected based on the results of this test.
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Figure 6.4: Estimated MAE and test set MAE when using: a) OSELM model, b) OSELMMAS model.

Table 6.3: Average error of final OSELM model evaluated on the train and test points for some public
datasets.

Source AutoMPG Abalone California housing

Train Test Train Test Train Test

Thesis 0.0681 0.0867 0.0762 0.0774 0.1471 0.1697
Reference [27] 0.0680 0.0745 0.0754 0.0777 0.1303 0.1332

6.2.5. Validation
The validation process consisted on comparing the results on public datasets obtained
with the model implemented in this work and the results in the literature. No results on
public datasets for regression tasks are available in the reference where the ELMMAS
was presented [28]. Therefore, there is no reference results to compare the OSELM
MAS model. However, there are results available for OSELM [27], so these were
the results compared. Three datasets are used: AutoMPG5, Abalone6, and California
housing7. The architecture parameters and split between train and test point is the
same as in the reference. Tests are done with 50 different initialization and the error
results presented correspond to the scaled datasets. The RMSE evaluated on the
whole test or training dataset was used as a measure of the performance as it is the
value present in the reference. Results are shown in Table 6.3. All values matched
closely the values in the reference, so the validation was considered successful.

5https://archive.ics.uci.edu/ml/datasets/auto+mpg (accessed May 13, 2020).
6https://archive.ics.uci.edu/ml/datasets/Abalone (accessed May 13, 2020).
7https://scikitlearn.org/stable/modules/generated/sklearn.datasets.fetch_
california_housing.html (accessed May 13, 2020).

https://scikit-learn.org/stable/modules/generated/sklearn.datasets.fetch_california_housing.html
https://archive.ics.uci.edu/ml/datasets/auto+mpg
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.fetch_california_housing.html
https://archive.ics.uci.edu/ml/datasets/Abalone


7
Conclusions and Future Work

The results presented in the previous chapters allow to answer the research questions
introduced in section 1.1. Moreover, some possible extensions of this thesis were
found when analyzing the results. These are presented in this chapter.

7.1. Objective and Research Question
The auxiliary questions formulated and the answers found are:

1. In which part of the MGAT optimization process is the ML surrogate
used?

It was considered to use the surrogate to substitute the cost function computa
tion as it is the most time consuming part of the optimization. Two cost functions
are computed during the optimization process: the global cost function for the
whole transfer and the cost function for each leg. It was decided that approxi
mating the cost function of the legs was the best option.

(a) What advantages can be obtained by using it in that part?
The cost function of the individual legs was expected to be easier to ap
proximate with the surrogate than the global cost function. The shape was
thought to be simpler and the dimensionality of the inputs was lower. In
addition, more training points can be obtained in the same computation
time. Finally, the computation of the leg cost is by far the most time con
suming part of the global cost function computation, so the time saved by
substituting it with the surrogate is virtually the same as by substituting
the global cost function.

(b) How can the use of a ML surrogate be implemented in that part?
Online training was used for the ML surrogate. This allowed to train in the
points obtained from the optimization as they were generated, but required

81
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to introduce a method to decide when the predictions of the surrogate were
accurate enough to be trusted.

(c) What is the accuracy that can be expected from the ML method?
Before the actual test cases were implemented, the accuracy of the sur
rogate was tested on data generated with the shapebased method. This
indicated that the accuracy was reasonable to use the surrogate in opti
mization. However, the final accuracy results during the optimization with
the surrogate varied significantly depending on the test case considered.
This indicates that the accuracy is dependent on the particular transfers
considered and the range of values in the objective function.

2. Which are the inputs and outputs of the function to approximate?

The inputs to the cost function to be substituted were the TOF of the leg and
the initial and final states of the leg except the final mass. The output was the
optimal propellant mass fraction of the leg.

(a) Which ML method is used?
The OSELMMAS was selected as the most adequate method for this prob
lem. The good performance for small number of training points, the small
number of hyperparameters, and the fast training process are its key ad
vantages. It was a novel method implemented by combining the OSELM
and ELMMAS method.

(b) How is the training data generated?
The training data was generated by using a SF direct transcription method.
This method requires an initial guess for the solution that was obtained
with a spherical shapebased method. This is the highest fidelity determin
istic method available for the problem considered. A deterministic method
was very important as any random effects on the values of the training
data would have a detrimental effect on the accuracy achievable by the ML
surrogate.

(c) What is the computational cost of each step?
The most costly part of the optimization process is the computation of the
cost function for individual legs. The cost of training and predicting with the
surrogate was expected to be very low. However, it was higher than initially
thought due to a suboptimal implementation due to compatibility issues
between the different packages used. Nonetheless, the computational cost
of using the surrogate was still much lower than using the original cost
function.

(d) Which optimization method is used for training?
The OSELMMAS method selected allows the computation of the optimal
weights with a least squares regression. In addition, these weights can be
updated with new training points with an iterative least squares procedure.
This way, the weights are always the optimal for all the training points
considered.
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3. What is the required accuracy for the ML method?

Every case tested presented the best performance when using the surrogate for
a different error threshold. This optimal threshold could only be determined by
testing different threshold values. No general rule could be obtained to deter
mine its value, but it seems to have a relation with the characteristics of the
training data.

(a) How is the accuracy evaluated?
The accuracy was evaluated in real time during the optimization using the
the prequential MAE with a fading factor. This error was considered to
represent better the performance of the surrogate that the other options
analyzed.

(b) Which methods are used as a reference?
The original idea was to use an indirect method to obtain high fidelity solu
tions so the difference between the SF result and the true optimal could be
estimated. However, obtaining solutions with the indirect method required
a very long computation time. Therefore, it was considered that a signifi
cant number of results could not be obtained in a reasonable computation
time. Instead, the optimal error threshold was determined by evaluating
the results of the optimization with surrogate and different threshold val
ues.

(c) What is the expected performance during the optimization when
using the ML surrogate?
The performance when using the surrogate was evaluated by comparing
with the optimization without the surrogate. The initial plan was to compare
the time that both the optimization with the surrogate and with the baseline
take to reach an equivalent solution in terms of final cost. However, this
was found to be very difficult to compare, as the solution reached depended
on the initial random state of the optimization algorithm. Instead, it was
decided to determine the expected value of the cost function after a fixed
optimization time. The use of the surrogate was found to be more beneficial
in the cases where the cost function had a higher computational cost and
when the convergence rate of the SF method was high. These were the
results expected.

After answering the auxiliary questions, the main research question can be an
swered:

“Is a ML method faster for computing the cost function in MGAT opti
mization than the present optimization methods for a given benchmark?”

It was not possible to compared the time required to reach cost threshold during
the optimization with the surrogate and with the baseline. The comparison of the
results for a fixed computation time was used as an alternative benchmark. For this
benchmark, it was shown that the optimization with the surrogate was expected to
obtain better results than the baseline without them in some cases. However, this
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required the selection of precise error threshold and frequency of update parameters.
The best combination of these parameters could only be determined by testing the
optimization with different parameters. Therefore, the total computation time is prob
ably longer as this parameter determination step is time consuming. Nonetheless, the
results seem to indicate that a general method to obtain these parameters may be
obtained in the future.

Finally, the fulfillment of the objective of the thesis was evaluated:

To reduce the time required to compute the cost function associatedwith
LTP interplanetary transfers in MGAT optimization by implementing a ML
surrogate to approximate it.

The objective cannot be considered completely fulfilled as the use of the surrogate
still requires a parameter selection process. However, it was proven that the use of a
ML surrogate has the potential to reduce the computation time and it seems possible
to eliminate the remaining obstacles in the future.

7.2. Future Work
Several recommendations for future work can be obtained from the results presented:

• To use the method presented without any prior parameter determination, it is
necessary to find a general law to define the surrogate error threshold, 𝜏, and
number of individuals between error updates, 𝐶𝑛. The results seem to indicate
that the optimal values are related to the characteristics of the training data:
larger spread of objective values require a larger 𝜏 value, and lower SF conver
gence rates require a lower 𝐶𝑛. If more cases are tested, the exact dependency
on these factors may be determined. If that is achieved, the parameters can be
set automatically during the optimization from the characteristics of the initial
training data.

• Among the main limitations of the surrogate is that it cannot tell apart the legs
that have a feasible solution from the ones that do not have one. This causes
the optimization algorithm to select combinations of parameters that are not
feasible when using the surrogate. This has an important effect in cases in
which the convergence rate is low such as the EEJ case. A possible alternative
to this is to use an additional ML method to classify the legs as converged or
not converged before computing them with the surrogate. In addition, this can
be useful even if no surrogate is used as it will prevent the computation of SF
legs that are predicted to not converge. Moreover, classification ML methods are
widely available and they achieve very high performances. It was attempted to
implement a classification version of the OSELM in this thesis but it could not
be completed due to time constraints.

• The implementation of the methods presented was a prototype created as a
proof of concept. Python was chosen as the programming language due to the
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easy implementation and the number of tools already available. However, the
performance can probably be improved by implementing the method in a more
efficient language such as C++. This is necessary to use the method for large
scale optimization with a reasonable computation cost, and will allow to make
additional tests to better understand the performance.

• The use of the surrogate presented is independent of the global optimization
algorithm. A DE algorithm was chosen as it is a common choice in similar prob
lems. However, there is no reason to think that the surrogate will have a worse
performance with different gradientfree algorithms. However, this hypothesis
needs to be tested.

• The tests cases considered assumed a NEP propulsion system for the spacecraft.
The surrogate is expected to be able to approximate cost functions obtained
with more complex propulsion systems and dynamics models with the same
accuracy, as their overall shape is expected to be similar. This was not tested in
this thesis due to the longer computation times that it would require. However,
the use of the surrogate is more advantageous in this computationally expensive
functions. Therefore, it is interesting to test whether the surrogate can actually
approximate those functions with the same accuracy.

• The tests cases selected represent a wide variety of transfers between planets.
However, transfers between several asteroids were not considered due to the
limited number of cases that could be tested in the available time. However, the
method presented can also be used for those missions. This is an interesting
topic for future research.
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