
FPGA-based indicator mining at line speed
At line speed

THESIS

submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE

in

COMPUTER ENGINEERING

by

Michaël Molenkamp
born in Hoorn, The Netherlands

Computer Engineering
Department of Electrical Engineering
Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology

FPGA-based indicator mining at line speed

by Michaël Molenkamp

Abstract

M
any devices currently connect to the internet. Some are pretty well secured,

while others lack security due to bugs or other vulnerabilities. A scanner

searches for available services on the internet or computer host using

standard network protocols. An adversary uses a scanner to search for leaks in

security. However, scanners encode their network traffic with a specific XOR

pattern, also called a fingerprint of the scanner. However, finding those patterns is

very computation-intensive on classical hardware.

This thesis aims to use a special FPGA, namely a DFE, to find the fingerprints at

a higher speed of 10 GBits/s. Additionally, it aims to find the limits of this DFE in

terms of computation power and speed. We created a performance model to find

the design requirements and used this data to choose the most optimal algorithm

to find the fingerprints.

The performance model showed that we would not reach the intended 10 GBits/s

speed. Therefore, we chose the solution that would bring us as close as possible.

The potential bandwidth we could reach is 2.4 GBits/s, approximately 12.7 times

faster than an optimal high-end CPU implementation using a Ryzen Threadripper

3990x CPU.

KEYWORDS: FPGA design, DFE, Scanners, Fingerprint mining

Laboratory : Computer Engineering
Codenumber :

Committee Members :

Advisor: Georgi Gaydadjiev

Advisor: Christian Doerr

Member: Christian Doerr

Member: Georgi Gaydadjiev

Member: Stjepan Picek

Member: Joost Hoozemans

Contents

List of Figures v

List of Tables vii

1 Introduction 1
1.1 Scanners . 1
1.2 Scanner Detection . 2
1.3 Outline Thesis . 4

2 Background information 5
2.1 Network traffic . 5

2.1.1 Open Systems Interconnection model 5
2.1.2 The Physical and Link layer . 6
2.1.3 Network Layer . 7
2.1.4 Transport Layer . 10

2.2 Scanners explained . 12
2.2.1 Origin . 12
2.2.2 Scan types . 13
2.2.3 Scanning Strategies . 15
2.2.4 Scan detection . 16

2.3 Field Programmable Gate Arrays . 17
2.3.1 Speed vs Flexibility . 17
2.3.2 Resources . 20

2.4 Dataflow Engines . 24
2.4.1 Dataflow computing . 24
2.4.2 Development tools . 26
2.4.3 FPGA development Cycle . 27
2.4.4 Off-chip Resources . 28

3 Algorithm and Performance 33
3.1 Scan detection methods . 33

3.1.1 Connection based . 33
3.1.2 Honeypot . 34
3.1.3 XOR Patterns . 34

3.2 XOR detection methods . 36
3.2.1 Exclusive-OR operation . 36
3.2.2 Brute-force . 37
3.2.3 Related packets . 37

3.3 Performance model . 39
3.3.1 Limits . 39
3.3.2 Burst of memory . 41
3.3.3 Brute-force scaling . 44

i

3.3.4 Adjusting our target . 50
3.3.5 Storing fingerprints . 51

4 Setup configuration 54
4.1 Build server configuration. 54

4.1.1 Connect to server . 54
4.1.2 Interface Configuration . 54
4.1.3 Recovering the server . 55
4.1.4 Altera license . 56

4.2 Juniper QFX5100 . 56
4.2.1 Current Configuration . 56
4.2.2 Connect to the switch . 58
4.2.3 How to change the switch configuration 58

4.3 Maxeler Tools . 58
4.3.1 The DFE design bitstream . 59
4.3.2 The CPU implementation . 61
4.3.3 Juniper VM . 63
4.3.4 Maxeler Licenses . 63

5 Implementation 65
5.1 Overview . 65
5.2 Traffic Parser . 66

5.2.1 Network & Ethernet . 66
5.2.2 Field Cache . 66

5.3 Pattern finding . 69
5.3.1 XOR Function . 69
5.3.2 Fingerprint Kernel . 72

5.4 Memory Communication . 76
5.4.1 Address Generation . 76
5.4.2 Quad Data Rate Memory Communication 79
5.4.3 Bloom filter . 83
5.4.4 QDR receiver . 84

5.5 Resource cost summary . 86
5.6 Experiments . 86

5.6.1 Send all different XOR patterns . 87
5.6.2 Send all different XOR patterns 16 times. 88
5.6.3 Send actual network traffic . 89

5.7 Results . 90
5.7.1 Final Utilisation & Performance 90

6 Conclusion & Future work 93
6.1 Conclusion . 93
6.2 Future Work . 94

6.2.1 Reduce packet traffic . 94
6.2.2 Use onboard DDR3 memory . 94

ii

6.2.3 Using multiple FPGA’s . 94
6.2.4 Using more modules . 94
6.2.5 Doubling the frequency . 95
6.2.6 Using a different FPGA . 95
6.2.7 Compressing the packet data . 95

A Appendix 98
A.1 QDR logic . 98

A.1.1 Truth table . 98
A.1.2 Karnaugh Maps . 101

iii

List of Figures

1.1 A distributed scan. 2
1.2 Scanner behaviour. 3
2.1 The layers of the OSI model. 6
2.2 The 802.3 packet format[1]. 6
2.3 A representation of a datagram. 7
2.4 The IPv4 header defined in RFC791 [2]. 8
2.5 IP traffic example. 9
2.6 The TCP header defined in RFC793 [3]. 10
2.7 Establishing a TCP connection. 11
2.8 Open port vs Closed port. 13
2.9 The communication during a SYN scan. 14
2.10 Scanning Strategies [4]. 15
2.11 A distributed scanning strategy. 16
2.12 CPU representation. 18
2.13 Simplified GPU architecture [5]. 18
2.14 FPGA schematic. 19
2.15 Flexibility vs Speed of hardware. 19
2.16 A CLB representation. 20
2.17 How to go from a circuit to a LUT input. 21
2.18 Using multiple 2-input LUTs to create a 3-input function. 21
2.19 ALM Block Diagram [6]. 22
2.20 Computing in space. 24
2.21 Non pipelined vs Pipelined. 25
2.22 Control Flow vs Dataflow. 26
2.23 Dataflow engine. 26
2.24 System Diagram Maxeler Platform [7]. 27
2.25 Development Cycle of an FPGA implementation 27
2.26 Methods to accelerate programs. 28
2.27 Physical frame received by the physical layer 31
3.1 Scanner Behavior. 34
3.2 XOR and validate. 40
3.3 Naive Model. 45
3.4 Naive: Theoretical vs Actual. 46
3.5 Pipelined Model. 47
3.6 Pipelined: Theoretical vs Actual. 48
3.7 Reduced Model. 48
3.8 Combined: Theoretical vs Actual. 49
3.9 Comparing all synthesized results. 50
3.10 Design to calculate the latency of the QDR. 51
3.11 Inserting into a bloom filter. 52
3.12 Data in the bloom filter. 52
3.13 Data not in the bloom filter. 52

iv

3.14 A false positive. 52
4.1 Physical frame received by the physical layer 56
5.1 Design overview. 65
5.2 Kernel Design. 67
5.3 Field cache module. 68
5.4 Selection module. 68
5.5 The XOR kernel. 70
5.6 A XOR module. 70
5.7 Selector Logic. 70
5.8 Input Holder. 71
5.9 Busy Logic. 72
5.10 Fingerprint kernel logic. 73
5.11 Unpacking the vector. 74
5.12 Finding multiple matches. 74
5.13 Unpacking the vector optimization. 75
5.14 Address generator overview. 77
5.15 Fingerprint generator design. 77
5.16 Counter address generator design. 78
5.17 Structure of the Memory Communication. 80
5.18 Writing to QDR data cache. 80
5.19 Grabbing correct request from the read. 81
5.20 The stall logic. 81
5.21 Calculate stall mask. 82
5.22 Structure of the memory communication. 83
5.23 Determining flags. 83
5.24 Structure of the bloom filter. 84
5.25 One pattern accross thresholds. 87
5.26 Every pattern 16 times accross thresholds. 88
5.27 Patterns inside the pcap file. 91
A.1 To QDR. 101
A.2 To Kernel. 101
A.3 To Stall. 102

v

List of Tables

2.1 Minimum and maximum physical frame sizes. 7
2.2 Specifications of SRAM. 23
2.3 Fields inside a QDR command stream. 29
2.4 Specifications of QDR interface. 29
2.5 Specifications of physical QDR. 29
2.6 Specifications of DDR3 interfaces. 30
2.7 Specifications of Large memory (LMEM). 30
2.8 Theoretical max PCIe vs actual max of PCIe. 31
2.9 Characteristics of the 10 Gbit and 40 Gbit interface. 31
2.10 The minimum and maximum cycles between packets 31
2.11 Summary traffic network data. 32
2.12 Cycles between packets. 32
2.13 Cycles needed for TCP traffic. 32
3.1 Send and receiving scanner traffic. 35
3.2 XOR Truth table. 37
3.3 Special shift values. 38
3.4 Resources Naive. 45
3.5 Resources Pipelined. 47
3.6 Resources reduced implementation. 49
3.7 Resource comparison. 50
3.8 Latency of QDR memory at different frequencies. 51
4.1 Network card configuration . 55
4.2 Interlinked ports on Juniper Switch [8] . 57
4.3 Current state of the maxeler licenses. 64
5.1 Input values. 67
5.2 Output values. 67
5.3 Resource Utilization of the field cache. 68
5.4 Input of the XOR function. 69
5.5 The output of the XOR function. 69
5.6 Resource Utilization of the XOR function. 72
5.7 The input of the function. 73
5.8 The output of the function. 73
5.9 Find data in a vector. 75
5.10 Resource Utilization of the fingerprint kernel. 76
5.11 Address Generation input. 76
5.12 Address Generation output. 76
5.13 Resource Utilization of the Address generator. 79
5.14 QDR kernel inputs. 79
5.15 QDR kernel ouputs. 79
5.16 Resource Utilization of the QDR communication. 83
5.17 Bloom filter input. 83
5.18 Bloom sfilter output. 83

vi

5.19 Resource Utilization of the bloom filter. 85
5.20 The receiver input. 85
5.21 The receiver output. 85
5.22 Resource Utilization of the QDR receiver. 86
5.23 Resource utilization summary. 86
5.24 Patterns found inside the first pcap file. 88
5.25 Percentage of hits on specific shifts above threshold. 88
5.26 Percentage of hits on specific shift ranges. 89
5.27 Percentage of hits on specific shifts above threshold. 89
5.28 Recorded patterns during trials of dump-1555998151. 90
5.29 Design resource utilisation with 21 XOR modules. 92
A.1 QDR logic truth table. 100

vii

Introduction 1
As of 2018, more than 17 billion devices connect to the Internet [9]. This number
of devices keeps increasing every day. Due to network-connected devices are available
everywhere. An attacker or adversary can launch an attack from anywhere in the world.

Before an adversary attacks, it has to gather as much information about the victim
as possible. This is called reconnaissance, and it is the first phase of the Cyber Kill
Chain (CKC) developed by Hutchins. et al. [10]. The CKC is a set of phases that
the adversary goes through to compromise a system and acquire assets. Throughout
the reconnaissance phase, the adversary searches through publicly available information,
including social media and Internet-facing computers. We are interested in identifying
the tools an adversary uses for reconnaissance. Our suggested approach requires much
computational power to find distinct network traffic patterns, infeasible on classical
hardware. However, it will allow us to detect the adversary’s suspicious behaviour before
a victims’ system is compromised. The tool we want to identify is called a scanner.

1.1 Scanners

Scanners are programs that search for computers and open ports on the Internet, where
the act of searching for that information is called a scan. These scanners are often
port scanners, which both the adversary and the defending party use. An adversary
scans a targeted system searching for vulnerable services or other information. Once
the adversary finds the weakest link on the system, it performs operations to exploit
that weakness and gain access. On the other hand, the defence uses scanners to see
if all security policies are in place. That way, the defence is aware of the ports and
services visible to the outside and within the network. Scanners use the following different
strategies:

Vertical Scan: The vertical scan directs scanning probes to a large number of ports on
a single system.

Horizontal Scan: A horizontal scan targets one specific port. The adversary might
use this scan to look for a vulnerable service listening to that specific port.

Block Scan: A block scan combines vertical and horizontal scans. This strategy scans
multiple ports across multiple hosts.

Every strategy has its advantages and disadvantages. A vertical scan generally has
a larger footprint on a singular host, which is why it is easier to detect. Meanwhile,
a horizontal scan targets one host at a time, the footprint on one host is small, but it
would still be suspicious if it targets multiple hosts in the same network.

1

CHAPTER 1. INTRODUCTION 2

1.2 Scanner Detection

Network security specialists use intrusion detection systems (IDS) to detect malicious
traffic, such as scanners. These are either hardware devices or special software that
monitor the network for anomalies such as scans. An IDS has multiple methods to detect
scanners. Anomaly-based detection detects if the network behaves differently than what
happens in a steady state. Meanwhile, signature-based detection uses a database that
holds signatures or patterns of suspicious network traffic. As an example, a single host
scans all the ports of another system. Both the amount of traffic and different ports
would be detected as suspicious.

An adversary would try to avoid detection by scanning systems in a stealthy manner.
One such stealthy method is performing a very slow sparse scan. Slow scans send a small
amount of traffic over long intervals, and because of this, it has a low network footprint.
However, the drawback of a slow scan is that it requires a long time to scan one system.
For a scan speed up, an adversary could choose to distribute the scan across different
hosts, as shown in Figure 1.2. Each of these hosts would then independently scan a
different set of ports on multiple systems.

Internet

Victim IDS Firewall

Adversary
Port:0 to x

Adversary
Port: x to y

Adversary
Port: y to n

Figure 1.1: A distributed scan.

H.J.Griffioen et al. proposed a method to detect slow scans based on patterns that
scanners encode into their network traffic [11]. These patterns remove the need for
Scanners to keep track of the traffic they send to the target. Otherwise, they would
need to account for all probes1. This includes the probes that do not get a response
back. Instead, the scanner checks whether it can find its encoded pattern inside the
packets it receives. Figure 1.2 showcases this behaviour. When a scanner sends a probe

1A probe is a packet send by a scanner to gain information

CHAPTER 1. INTRODUCTION 3

to the target, the target sends a response with the same pattern, which means it probed
successfully. As the pattern is not inside regular network traffic, the traffic gets ignored
by the scanner.

Pattern

Scanner

Ramdom
Data

Internet

Pattern

Scanner

Pattern

Figure 1.2: Scanner behaviour.

Because the pattern has to return inside the network response, the scanner uses
network fields that remain consistent across network communication. A scanner uses
these fields to send a probe to a target. In other words, the ports and addresses of the
source and destination hosts. However, the sequence number contains the actual pattern.
The function of that number is to synchronise the communication state between the two
hosts. During network transfer, the client initiates the communication. The client can
choose any sequence number it wishes, which is what scanners use to insert their pattern.

The pattern encoding method we focus on uses the XOR operation on shifted ports
and addresses fields. The combination of these shifts is the pattern that the scanner
validates. The scanner uses the same shifts to look through arbitrary network traffic.
Equation (1.1) shows a generic pattern. In this equation, the Key in this equation is a
secret number only known to the adversary, which obfuscates the pattern.

Sequence Number = (Source Address� k0)⊕ (Destination Address� k1)

⊕ (Source Port� k2)⊕ (Destination Port� k3)

⊕Key

(1.1)

To find the pattern, we must search for the values ki that construct the pattern.
These shifts are in the range of [0, 32], which is 33 possible values. We do not know
which patterns a scanner would use. So the method for finding the pattern is to go
through every possible combination of ki. In total, that would be 334 = 1, 185, 921
possibilities. Moreover, we need to compute this for every packet because we do not
know what traffic belongs to a specific scanner.

It would take approximately 44 days to check 3 million packets on a general-purpose
computer performing 1 million operations per second. This time is impractical to detect
real-life scans. We propose to use a Field-Programmable Gate Array (FPGA) to speed
up the process. An FPGA is a hardware device where the implemented hardware
function is programmable, which would allow for higher productivity and efficiency in
performing more operations at each clock cycle. We hypothesise that an FPGA can

CHAPTER 1. INTRODUCTION 4

parallelise a massive amount of the operations directly on the chip’s surface, which
should significantly accelerate the pattern-finding process.

In the thesis, we answer the following research questions:

RQ1. Can FPGAs outperform conventional systems on XOR pattern detection at
line rate for 10Gbit/s connections?
RQ2. What are the major limitations and opportunities of FPGA accelerators when
implementing scanner detection?

1.3 Outline Thesis

This thesis describes the process of creating a design for an FPGA implementation.
In Chapter 2, we introduce the necessary background information about the network,
scanners, and FPGAs. Next, we talk about the speed of the FPGA platform itself.
Chapter 3 describes both physical limits, the algorithms and shows the performance
model of the algorithm we want to implement. It shows the viability of performing
the FPGA algorithm, considering the targeted platform, communication limits, and
hardware capacity. In this chapter, the design challenges come forward. Chapter 4
describes the setup configuration used in the thesis. The chapter explains how to use
the setup and where to find the necessary data. Chapter 5 shows the design decisions
for every part of the algorithm. It describes the details of the design’s functionality and
how every part of the system interconnects. Additionally, it summarises the design’s
resource usage and the number of computations performed in a second while comparing
it to a CPU implementation. This chapter includes our experiments to test whether it
functions as intended. Finally, Chapter 6 answers the research questions and describes
directions for future work.

Background information 2
In this chapter, we describe the different layers of the Internet. Afterwards, we discuss
scanners, where we describe their strategies and how to detect them. Then we follow
it up by giving a general introduction to the FPGA and its resources, starting with
explaining why we chose the FPGA for the thesis. Finally, we talk about Maxeler, the
company that provided the tools for the thesis. Additionally, we show the specifications
of those tools.

2.1 Network traffic

This section describes the network layer model and how the layers interact with each
other. Afterwards, we explain the main protocols used in this thesis and why we use
certain fields of those protocols.

2.1.1 Open Systems Interconnection model

The Open System Interconnection (OSI) model abstracts the Internet into seven layers
to standardize their functionality. Each layer communicates with its adjacent layers.
Figure 2.1 shows that data from the Internet flows bottom to top, while data to the
Internet does the opposite. This process converts the human-readable data into a stream
of bits understood by the network and vice versa. The layers have the following functions:

Application Layer: The Application Layer displays data to the user and processes
their requests and actions.

Presentation Layer: The Presentation Layer takes care of the differences caused by
the different operating systems between the two hosts.

Session Layer: The Session Layer manages the connection, also called session, between
two processes on different hosts.

Transport Layer: The Transport Layer creates a communication link between two
processes using the network layer’s data.

Network Layer: The Network Layer is responsible for routing data across the world-
wide network. This layer also segments the data into smaller pieces and reassembles
received data.

Data Link Layer: The Data Link Layer receives the bits from the physical layer and
routes it towards the local network’s correct destination.

5

CHAPTER 2. BACKGROUND INFORMATION 6

Application Layer

Presentation Layer

Session Layer

Transport Layer

Network Layer

Data Link Layer

Physical Layer

Data to the internet Data from the internet

Figure 2.1: The layers of the OSI model.

Physical Layer: The Physical Layer transforms the network’s data into a bitstream
that the Data Link layer can decode. The physical layer abstracts the hardware
for transceiving data.

2.1.2 The Physical and Link layer

The Physical Layer receives raw data from the hardware and transforms the raw data
into a bitstream interpreted by the Link Layer. Figure 2.2 shows the packet format
received by both of these layers according to the 802.3 standard [1]. The device used in
this thesis receives data from the hardware layer. So, it is helpful to know the minimum
and maximum bytes between packets.

Preamble Ethernet Frame Inter frame gap︸ ︷︷ ︸
8 B

︸ ︷︷ ︸
64 - 1,518 B

︸ ︷︷ ︸
12 B

(a) Physical Frame received by the physical layer.

Destination MAC Source MAC Type Payload CRC︸ ︷︷ ︸
12 B

︸ ︷︷ ︸
2 B

︸ ︷︷ ︸
46 - 1,500 B

︸ ︷︷ ︸
4 B

(b) The Ethernet Frame according to the 802.3 standard.

Figure 2.2: The 802.3 packet format[1].

Figure 2.2a shows the raw packet format. The meaning of these fields is as follows:

Preamble: The Preamble is used for synchronization when a packet arrives in the hard-
ware interface. This field has 7 bytes of hardware information and 1 byte of only
1’s. The latter denotes the Start of Frame, which tells the network interface where
the Ethernet Frame starts.

CHAPTER 2. BACKGROUND INFORMATION 7

Ethernet Frame: The Ethernet Frame is data that the Link Layer interprets. This
data contains routing and protocol information.

Inter-frame gap: The inter-frame gap is usually 96 bits that are at least between
every packet. This gap adds a minimal delay between two packets, which allows
the hardware interface to know when a frame ends.

Figure 2.2b shows the fields received by the Link Layer. These fields have the fol-
lowing meaning and function:

MACs The MAC fields are an identifier of the source and destination of a packet within
the local network.

Type: Denotes the type of data inside the payload interpreted by the Network Layer.

Payload: The payload contains protocol headers and data used by the next Network
Layer and those layers above it.

Cyclic Redundancy Check (CRC): The CRC is used to detect whether data arrived
correctly. When a fault occurs during transmission, it drops the Ethernet frame.

The information from Figure 2.2 allows us to calculate the minimum and maximum
transfer unit of a physical frame, which Table 2.1 represents. When smaller than allowed
frame sizes occur, the ethernet frames are padded with 0’s to fit the minimum size.
However, if a frame exceeds its maximum size, the ethernet frame is split into multiple
frames by the Network Layer.

Minimum Maximum

Bytes 84 1,538

Table 2.1: Minimum and maximum physical frame sizes.

2.1.3 Network Layer

The Network Layer is responsible for routing data between two hosts and creates a
logical path between them. These paths use machine addresses to communicate over the
Internet. The Link Layer payload is in essence the datagram that Figure 2.3 shows.

Header Data Checksum

Figure 2.3: A representation of a datagram.

The header contains the source and destination of the data between the hosts. The
data field contains the data required by the transport layer, explained in Section 2.1.4.
Finally, the layer uses a checksum field to determine if an error occurred during the data
transfer. Besides providing the path between hosts, the Network Layer takes care of
packets’ fragmentation. Fragmentation occurs when the data is too large to send in one

CHAPTER 2. BACKGROUND INFORMATION 8

go, dividing it into several smaller packet. The destination of those packets is responsible
for reassembling the data to its original.

The Network Layer consists of many different protocols. However, the protocol we
focus on is Internet Protocol version 4 (IPv4) due to being more widely used.

2.1.3.1 Internet Protocol version 4

The Internet Protocol (IP) primarily routes data between hosts. Figure 2.4 shows the
IPv4 header. To better understand how the protocol uses these fields, we clustered them
according to their functionality.

0 4 8 12 16 20 24 28 32

Version IHL Type of Service Total Length

Identification Flags Fragment Offset

Time to Live Protocol Header Checksum

Source Address

Destination Address

Options Padding

Figure 2.4: The IPv4 header defined in RFC791 [2].

2.1.3.2 Routing fields

IPv4 uses the following fields to route data across the network:

Source Address 32-bits: This is the address of the host that sends the data. During
communication, the returning packet uses this address as its destination.

Destination Address 32-bits: This is the host’s address that will receive packets.

The packets arrive at a router, which redirects the packets from one network to another.
Figure 2.5 shows a schematic of how IPv4 transfers data across the network. Routers
read the destination address inside a packet and determine the best route for the packet
to go. So, as shown in the figure, there are multiple routes that a packet can take to
arrive at its destination.

2.1.3.3 Control Fields

Controlling IPv4 uses the following fields:

Time to Live 8-bits: Indicates the maximum amount of redirects between hosts, also
called hops, this packet can take to remain in the network.

Type of Service 8-bits: This field contains information about precedence for the cur-
rent datagram; a router uses the value when switching from one network to another.

CHAPTER 2. BACKGROUND INFORMATION 9

IP: 201.145.1.22
201.145.x.x

IP: 233.123.1.42

Other 233.123.x.x
SRC: 201.145.1.22
DST: 233.123.1.42

SRC: 233.123.1.42
DST: 201.145.1.22

Figure 2.5: IP traffic example.

IHL 4-bits: This is the Internet header length in units of 32-bit words. The minimum
value is 5 to contain all the necessary information.

Total length 16-bits: This is the total length of the datagram in octets, used to specify
the payload’s size.

Header Checksum 16-bits: contains a checksum for the whole packet. This value
gets recomputed at every host to verify if the value is valid.

During the routing, the time to live decreases each time it arrives at a router. Once
the value becomes zero, the router drops the packet to remain inside the network forever.
The changing time to live also requires two computations for the header checksum, as
the time to live changes at every routing hop.

2.1.3.4 Reassembly Fields

Reassembling the fragments received from the Internet uses these fields:

Identification 16-bit : an identifying value that aids the recipient to group fragments
for reassembly.

Flags 3-bits: The three bits in this field determines if the data is fragmented and if it
is the first or last fragment.

reserved: should be 0.

DF: This is the do not fragment flag. It requests the computer not to fragment
the ethernet frame. However, operating systems ignore the value if the data
does not fit on the physical medium.

MF: More fragments, if set to one, the data is fragmented, and more fragments
are coming.

Fragment offset 13-bit : This number represents the starting position of this fragment
in 8-bits.

CHAPTER 2. BACKGROUND INFORMATION 10

The Internet Protocol collects all the fragments that belong together determined by
the identification number, and of course, the source and destination addresses. When a
fragment is received, the fragment offset determines the placement of that fragment.

2.1.3.5 Other Fields

Version 4-bit : The version of the Internet Protocol.

Protocol 8-bits: The next protocol inside the payload.

Option: This is a variable-sized field, which can contain zero to multiple options. These
options contain additional security or routing information.

Padding: This value is also variable-sized to guarantee that the header is a multiple of
32-bit words.

2.1.4 Transport Layer

While the network layer provides a path between hosts, the transport layer connects two
processes. While doing that, the layer keeps the connection state of the two hosts.

The two main protocols in this layer are the User Datagram Protocol (UDP) and the
Transmission Control Protocol (TCP). UDP allows for stateless communication between
two hosts. Meanwhile, TCP keeps track of a session and is the more reliable between
the two, and makes sure all data arrives at its destination. We are more interested in
the TCP protocol, which we will discuss below.

2.1.4.1 Transmission Control Protocol

The TCP protocol maintains a state of communication between two hosts and ensures
that both the client and the host are synchronized. The main point is to provide a
safe and reliable way to communicate data between two hosts. Although, it is more
accurate to say that the protocol creates a process-to-process connection between two
hosts. Figure 2.6 showcases the header information of the TCP protocol, where we
clustered the fields with similar functions together to explain them better.

0 4 8 12 16 20 24 28 32

Source Port Destination Port

Sequence Number

Acknowledgment Number

Offset Reserved Control Bits Window

Checksum Urgent Pointer

Options Padding

Figure 2.6: The TCP header defined in RFC793 [3].

CHAPTER 2. BACKGROUND INFORMATION 11

2.1.4.2 Initialization Fields

A TCP connection starts with a three-way handshake to initialize a connection. Fig-
ure 2.7 shows the handshake, which creates the initial communication state by synchro-
nizing the Sequence Numbers. The handshake creates a socket that the adjacent layers
use to communicate between the processes. Henceforth, the sequence number indicates
the current point of communication.

SYN, SEQ=x

SYN+ACK, SEQ=x
ACK=x+1

ACK, SEQ=x+1
ACK=x+1

Port: 44 Port: 80

Source Port 44
Destination Port 80

Source Port 44
Destination Port 80

Source Port 80
Destination Port 44

Figure 2.7: Establishing a TCP connection.

The TCP handshake requires the following fields:

Source Port 16-bits: The source port sends the information in the TCP protocol.

Destination Port 16-bits: The destination port is the location where the recipient
receives the data.

Sequence Number 32-bits: The sequence number is the synchronization point be-
tween two hosts. Every time there is a data transfer between two hosts, the se-
quence number increases, allowing synchronized data transfer.

Acknowledgement Number 32-bits: The acknowledgement number contains the
next sequence number for the communication, indicating that it received the packet
successfully. This number is usually the sequence number added to the length of
the packet.

After establishing the communication socket, the response to every piece of data is an
ACK packet. This packet tells the sending host that the data arrived safely. If no ACK is
received, the packet is re-transmitted. Due to every packed needing to be acknowledged,
TCP is a reliable protocol for transferring data.

2.1.4.3 Communication Fields

The control bits field is a 6-bit field that controls the next communication state. These
flags synchronize the state between two hosts:

CHAPTER 2. BACKGROUND INFORMATION 12

ACK Bit 2 : The ACK flag indicates a successful arrival of a packet.

SYN Bit 5 : The SYN flag indicates that the synchronization of sequence numbers
between two hosts.

The following flags determine the end of the communication:

RST Bit 4 : The RST flag indicates a reset of the communication between two hosts
due to invalid received data.

FIN Bit 6 : The FIN flag tells the recipient that there is no more data, and it should
close the connection.

The other flags give information about the contents of the payload.

URG Bit 1 : The URG flag indicates that the Urgent Pointer Field in the header has
a meaningful value and is used to increase the Sequence Number

PSH Bit 3 : The PSH flag indicates that the receiving end should immediately push
all of this communication line towards the application.

The URG flag tells the recipient that essential data is available at the location pointed
to by the urgent pointer and should be worked on fast.

2.1.4.4 Control Fields

These fields give additional information about the header.

Offset 3-bits This defines the length of the header in multiples of 32-bits.

Window 16-bits: A field determined by the recipient. It holds the maximum of octets
that the host can accept at once.

Checksum 16-bits: A checksum calculated over the header and data to determine if
it has not changed.

2.2 Scanners explained

This section describes what scans are and why they occur. Afterwards, we expand upon
how to perform and detect scans.

2.2.1 Origin

As shown in Section 2.1.4, the transport layer is responsible for creating and maintaining
a connection between the two hosts. However, before a host can establish a connection,
a service has to be listening on a port. In a TCP connection, the client performs the
handshake shown in Section 2.1.4.1. However, when a request arrives at a closed port,
it returns an RST packet, as shown in Figure 2.8. The traffic incidentally leaks host
information, where scanners extract that information from the protocol.

CHAPTER 2. BACKGROUND INFORMATION 13

SYN, SEQ=x

SYN+ACK, SEQ=x
ACK=x+1

SYN, SEQ=x

RST

Open Closed

ACK, SEQ=x+1
ACK=x+1

Figure 2.8: Open port vs Closed port.

Scanners are programs that use the TCP connections to find open ports on the
system, which could link to a vulnerable service. Listing 2.1 gives an example of the
information gathered during a scan, where the service column comes from a list of well-
known port numbers.

Listing 2.1: Result of using an NMAP SYN scan on a localhost

nmap =sS l o c a l h o s t

S ta r t i ng Nmap 7 .91 (https : //nmap . org) at 2020=10=14 07 :02 W. Europe
Dayl ight Time

Nmap scan repor t f o r l o c a l h o s t (1 2 7 . 0 . 0 . 1)
Host i s up (0 .0024 s l a t ency) .
Other addre s s e s f o r l o c a l h o s t (not scanned) : : : 1
rDNS record f o r 1 2 7 . 0 . 0 . 1 : kubernetes . docker . i n t e r n a l
Not shown : 994 c l o s e d por t s
PORT STATE SERVICE
135/ tcp open msrpc
445/ tcp open microso f t=ds
902/ tcp open i s s=r e a l s e c u r e
912/ tcp open apex=mesh
2869/ tcp open i c s l a p
5357/ tcp open wsdapi

Nmap done : 1 IP address (1 host up) scanned in 3 .61 seconds

2.2.2 Scan types

This section explains how scans use the TCP protocol and the goal of these scans. While
there is also an UDP scanning method, these probes are easily fitered by a firewall.

2.2.2.1 TCP Connection Scan

A TCP connection scan uses the three-way-handshake to look through the ports on the
target. It is a simple but inefficient scan that requires the operating system to manage
and end connections. With a completed connection, this scan would leave a trail on the

CHAPTER 2. BACKGROUND INFORMATION 14

receiver. For an adversary to remain stealthy, leaving trails on the target system would
be a significant enough not to complete a TCP handshake.

2.2.2.2 SYN Scan

A SYN scan limits itself by sending the initial SYN packet, which stops the host from
actually finishing the connection. Figure 2.9 shows the response of a SYN scan whether
the port is opened or closed. Because this scan uses part of the handshake, it is considered
standard behaviour and is more arduous to detect.

SYN, SEQ=x

SYN+ACK, SEQ=x
ACK=x+1

SYN, SEQ=x

RST

Open Closed

Figure 2.9: The communication during a SYN scan.

2.2.2.3 Uncommon Scans

These uncommon scans all receive an RST packet when a probe arrives at a closed port.
However, if the sender receives nothing, the port may be either open or filtered. The
following scans are these different ones:

The NULL scan has none of the control bits set.[12]

The FIN scan only sends a FIN packet to its target. It would interpret it as a non-
existing connection that wants to terminate the connection gracefully. However,
as the connection is unknown to the host, it returns an RST packet.[12]

The XMAS scan uses a combination of the FIN, PSH, and URG flags. This combina-
tion of flags is undefined behaviour, which makes it stand out from other packets.
The multiple flags inside the packet light it up, this is why it is aptly named XMAS
tree scans.[12]

The Maimon Scan specifically targets BSD-derived systems. In BSD there are imple-
mentation differences of the network stack. So, when a packet arrives with both
FIN and ACK bits set, BSD systems drop the packet when a port is open. While
usually an RST packet is returned.[12]

CHAPTER 2. BACKGROUND INFORMATION 15

2.2.2.4 ACK and Window Scan

The ACK scan determines if ports are reachable through a firewall. The scan sends
a packet with the ACK flag set. Unfiltered ports return an RST packet, to reset the
connection. However, if a firewall filters a specific port, there will is no response, or it
returns an ICMP packet.

The window scan has the same functionality as the ACK scan. The scan looks at the
windows field in the TCP traffic. Some operating systems return a positive value when
a port is open, and a zero value when it is closed.

2.2.3 Scanning Strategies

Both the adversary and the defence use scanners. The latter scans its network for any
anomalies, while an adversary uses it to gain information about the network. With the
different scan types previously discussed, there are a few different strategies to perform
the scans.

Figure 2.10 shows the main strategies. The vertical, horizontal, and block scans are
enumeration strategies, which means they are used to scan through the hosts’ ports.
Other characteristics of scans include speed. With speed, the focus on the delay between
probes.

Horizontal Scan

Vertical Scan

Block Scan

0

65535

Po
rts

x.y.0.0 x.y.255.255IP Addresses

Figure 2.10: Scanning Strategies [4].

A slow scan is a strategy that sends scanning probes very infrequently. Due to the slow
pace, this type is harder to detect. The long intervals between packets cause them to not
stand out among the regular network traffic. A patient adversary can thoroughly scan a
host by letting the host send scans at very infrequent intervals. However, Section 2.1.4.1
showed us that there are 16 bits available for port numbers, which would be a total of
216 − 1 different possibilities. In the case of 5 minutes between probes, it would take
more than half a year to scan one system. By distributing the scan across multiple hosts
will create a significant speedup. In that case, multiple hosts work together to scan one
singular victim. Figure 2.11 illustrates this process where multiple malicious hosts scan
their victim. However, having too many hosts attack a system looks suspicious, so it
is essential to balance speed and stealth. The detection method we implement in this
thesis can detect these scans and the other types of scans.

CHAPTER 2. BACKGROUND INFORMATION 16

Figure 2.11: A distributed scanning strategy.

2.2.4 Scan detection

Scanners probe a network to gain information. Depending on the combination of scan
type and strategy, scans are detected. A known detection method is with intrusion
detection systems (IDS). These systems passively detect malicious network traffic, where
the IDS notifies administrators when it detects malicious traffic. There are two general
methods in which an IDS detects malicious traffic. These are signature and anomaly-
based detection.

2.2.4.1 Signature-Based detection

A signature-based IDS A signature is a pattern inside malicious network traffic. These
patterns are either a combination of network fields or some specific piece of data. A
signature-based IDS uses a database containing known malicious signatures, where the
detection methods validate if a specific pattern is inside its database. This method is
similar to how an anti-virus functions.

There are multiple drawbacks to a signature-based detection mechanism. First, only
known signatures are validated, which means that the IDS is only as good as its database.
Furthermore, the adversary can avoid detection by changing a programs’ signature. Sec-
ondly, there can only be a finite set of signatures inside the database. How more signifi-
cant the set, how slower the IDS functions.

Let us take the NULL, FIN, and XMAS scans from Section 2.2.2 as an example. An
IDS would detect these easily as they are known abnormal traffic. Furthermore, an IDS
detects a fast vertical strategy due to the number of probes originating from one host.

2.2.4.2 Anomaly Based Detection

The anomaly-based IDS detects changes or anomalies in the network traffic. Initially,
the IDS would learn the normal state of the network as a baseline, and whereafter the
IDS compares the incoming traffic to the baseline. When traffic unknown to the IDS

CHAPTER 2. BACKGROUND INFORMATION 17

arrives, the system would see it as an anomaly, which would either be a positive or a
false positive. By teaching the system about what is and what is not malicious traffic,
the IDS evolves and removes those false positives.

This method allows the IDS to evolve itself and update its internal state. The
anomaly-based detection detects scan traffic in particular as they would diverge from
the baseline network state.

2.3 Field Programmable Gate Arrays

This section will first describe a general overview of the FPGA technology, and how
it compares against other computation hardware types. Afterwards, we give a general
overview of the components used by an FPGA that gives it its flexibility and computa-
tional ability.

2.3.1 Speed vs Flexibility

Currently, four main classes of computational hardware can be identified, all with their
advantages and disadvantages. This section gives a general overview of these hardware
units and illustrates some of their strengths and weaknesses. Afterwards, we clarify why
we choose an FPGA.

Central Processing Unit (CPU) The CPU is a hardware structure that performs a
generic set of instructions. The flexibility of a CPU is that it can execute its instructions
in any order. A programmer creates a list of CPU instructions and puts them inside
a program to perform the desired operation and puts them in a program. The CPU
executes these instructions sequentially until the program finishes. A programmer can
easily change the program written for a specific CPU. It can also port the program to a
different CPU architecture, so it functions there too. However, due to a CPU sequential
nature, it takes a lot longer to perform the function than with hardware implementation.

To illustrate how a CPU executes, Figure 2.12 shows the Von Neuman architecture.
These CPUs use memory to store the program data and calculations.

1. In the first stage, the fetch stage, the CPU fetches the instruction from memory
and sends it to the decode stage.

2. At the decoder stage, the control unit interprets the command while it fetches the
correct register to send to the computation stage.

3. The Arithmetic Logical Unit (ALU) receives the control unit’s operation and per-
forms it on the provided registers.

4. Finally, the computed result is stored back into memory.

CHAPTER 2. BACKGROUND INFORMATION 18

Control Logic

Registers

Instruction
Memory

Memory
management

Value

Value

Operation
to perform

ResultALU

Fetch Stage Decode Stage Computation stage Store stage

Memory

Figure 2.12: CPU representation.

Graphical Processing Unit (GPU) The GPU’s were designed to offload graphi-
cal computations from the CPU. The GPU architecture uses many streaming proces-
sors with more specialized ALUs for graphical operations. These streaming processors
connect with high-speed graphic memory that allows for fast computations in parallel.
Figure 2.13 shows a typical architecture of a GPU based on Nvidia GPUs.

Figure 2.13: Simplified GPU architecture [5].

GPUs are helpful for computation because they perform simple calculations on mul-
tiple sets of data in parallel. A CPU is not helpful for this due to its sequential nature.
However, using a GPU can induce more latency due to transferring data to and from
the GPU using the CPU. So it is always a trade-off between the speedup and latency.

Field Programmable Gate Array (FPGA) An FPGA is a programmable hard-
ware unit that functions at hardware speed. The programmability of the hardware gives
the FPGA its flexibility. An FPGA contains many configurable units, such as routing

CHAPTER 2. BACKGROUND INFORMATION 19

and logic blocks that are interconnected. It can perform any desired function as long as
there are enough resources availlable. A price an FPGA pays for its flexibility is a higher
power consumption compared to an ASIC. Additionally, as it still more general hardware
it considerably slower. However, it performs operations in parallel if specified. Because
the hardware itself is programmable, the development cycle is a lot shorter than creating
a chip from scratch. So when developing for the unit, it is faster to validate the function
by performing it on an actual device. Figure 2.14 shows a general schematic of an FPGA.

CLB CLB CLB

CLB CLB CLB

CLB CLB CLB

Switch
Box

Switch
Box

Switch
Box

Switch
Box

CB

I/O

CB

CB

CB

CB

CB

CB

CB

CB

CB

CB

CB

Figure 2.14: FPGA schematic.

CPU

Speed

Flexibility

ASIC

GPU

FPGA

Figure 2.15: Flexibility vs Speed of hard-
ware.

Application-specific integrated circuits (ASICs) These circuits specialize in do-
ing one specific function, allowing designers to optimize it in power consumption and
speed. An example of an ASIC are embedded systems, which control everyday appli-
ances, such as keyboards, network chips, televisions, and many more.

A downside of ASICs is that it has a long development cycle. Furthermore, it requires
costly tools to create ASICs. However, these chips can be sold and produced in high
volume due to their generally small size if the market is large enough to sell all those chips.
Once the chip exists, the physical product does not change. When someone discovers a
bug, the chip has to be revised. This revision requires additional development, testing,
and creation costs for that specific chip. It would come down to 10s of millions of dollars
for just that iteration.

Summary Figure 2.15 shows the differences between the systems in terms of operations
per second and flexibility. The flexibility originates from being programmable but has a
trade-off in the number of operations. In the case of a CPU, its instruction set is general
enough to perform any function. However, it performs each operation sequentially, which
costs time. The GPU is faster than the CPU due to executing operations in parallel.
The trade-off here is the limited functionality of each small GPU core. However, due
to its regular structure, it is relatively simple to program compared to an FPGA. The
FPGA is a configurable hardware unit that can perform any arbitrary function directly
on hardware. In the case of an FPGA, it is not the number of operations but how many
operations we can implement considering the resource limitations. An ASIC is, however,
still faster as it focuses on only one specific function. So, it is a trade-off between speed,

CHAPTER 2. BACKGROUND INFORMATION 20

flexibility and costs.
We chose an FPGA implementation because the economic costs are much lower than

an ASIC. Furthermore, they take significantly less time to develop. While still being able
to perform numerous operations in parallel. That parallelism increases the throughput
of the application.

2.3.2 Resources

This section will explain the primary resources of an FPGA and describe the Stratix
V FPGA resources. The structure is as follows, for each unit, we first define a general
overview. Afterwards, we explain the physical resources for the Stratix V FPGA. All of
these resources communicate through high-speed interconnect, which facilitate the data
transfer between units.

2.3.2.1 Configurable Logic Block

The Configurable Logic Blocks (CLB) are the building blocks of an FPGA. These units
hold the programmable function. The main parts of the CLB are registers and lookup
tables (LUTs), where registers hold intermediate results of computations.

The LUT is the programmable unit of the CLB, where each CLB may contain multiple
LUTs. Each LUT uses a small amount of Static Random Access Memory (SRAM) to
hold its output. Figure 2.16 shows a representation of a CLB that uses multiple LUTs
and registers. The routing inside a CLB interconnects the inputs and outputs with the
right resources.

SRAM

MUXInputs

Output

3-Input LUT

Logic Block

register

3-Input LUT

register

Figure 2.16: A CLB representation.

Figure 2.17 shows an example of how a simple circuit maps into a LUT, where each
step goes as follows:

1. We have a physical function we want to encode. This function’s direct implemen-
tation requires many different logic gates, which we do not have on an FPGA. We
can, however, emulate the entire function with LUTs.

2. The truth table describes the complete relationship between the inputs and the
given boolean function’s outputs.

CHAPTER 2. BACKGROUND INFORMATION 21

A B C O
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 1
1 1 1 1

Circuit Truth-table LUT

A
B

B
C

A

MUX
A
B
C

0 0 0 0 1 0 1 1

Figure 2.17: How to go from a circuit to a LUT input.

2-input LUTs

MUXA

Circuit

A
B

B
C

A

MUXC
B

0 0 0 0

MUXC
B

1 0 1 1

Figure 2.18: Using multiple 2-input LUTs to create a 3-input function.

3. The output of the truth table will determine the LUTs’ contents. The inputs of
the implemented function, together with the multiplexer, select the correct output.

With LUTs, the number of inputs determines the number of output bits. There is
a trade-off between the size of the LUT and how many physically fit on a device. The
bigger the size of a LUT, the larger the function it can hold. When the function is too
small for the LUT, it is a waste of resources. In comparison, when the LUT is small,
there would be more control of the functions. However, it creates more complex and
more massive interconnects between logic units. So by choosing the sweet spot between
the sizes, there is more room for resources. There is a method to perform more significant
logic functions using smaller LUTs by clustering them. As an example, Figure 2.18 shows
how to map the same 3-input function using LUTs with only 2 inputs.

An Adaptive Logic Module (ALM) is the primary resource of the Stratix V FPGA.

CHAPTER 2. BACKGROUND INFORMATION 22

The structure of an ALM is similar to that of the CLB as shown in Figure 2.19. There
are a total of 359, 200 ALMs inside our FPGA, where an ALM contain the following
units [6]:

Figure 2.19: ALM Block Diagram [6].

a) 8-input lookup table (LUT): The LUTs inside ALM divide into different modes
of operation. For example, 2×4-input LUTs or 2×6-input LUTs. The latter mode
occurs when both LUTs share the same inputs.

b) 2 hardware adders: These are hardwired 3-bit full adders that allow for additions
without any additional logic costs. Furthermore, ALM adders are interconnected.
So high-speed calculations are possible.

c) 4 registers: These allow for storing values between calculations.

d) 4 outputs: There are two different sets of outputs inside an ALM. These are
registered outputs or computations outputs. The former contains the calculation
from the previous cycle, while the latter is the immediate result of either the LUT
or adders.

2.3.2.2 Static Random Access Memory (SRAM)

SRAM is the memory on the FPGA chip itself. Other names include on-chip memory or
block memory (BRAM). It is a high-speed memory that retains its information as long
as it is powered. Being available on the chip allows for high-speed reading and writing
to and from memory.

On-chip memory is also configurable. It can be split into multiple parts to align it
efficiently for the desired function. Some of the use-cases of SRAM are as follows:

• Storing intermediate values. SRAM stores intermediate calculation results,
which other parts of a design can reuse.

CHAPTER 2. BACKGROUND INFORMATION 23

• As a Read-Only Memory (ROM). A ROM holds pre-computed results, which
are afterwards accessed to find the result of a function. An example would be
keeping the results of an x-bit logarithmic function. So the logarithm itself does
not have to be computed, which would save other resources.

• As a First-in First-Out (FIFO) queue. A FIFO stores a value until it is
required. The first stored item is also the first one that goes to the output. An
example of a FIFO would be for value transition between logic blocks that use
different frequencies.

On-chip memory on the Stratix V FPGA has two different types.

a) Block Random Access Memory is memory directly available on the FPGA,
and can be accessed quickly.

b) Memory Logic Array Blocks These are ALMs configured as static memory.

Table 2.2 shows the total amount of SRAM available on the FPGA.

M20K MLAB

Blocks 2,640 17,960

Kbits/block 20 0.640

Blocks×(Kbits/block) 52,800 11,225

Table 2.2: Specifications of SRAM.

Input Output Blocks (I/O) I/O blocks are at the edge of the FPGA. These are
individual configurable blocks that allow an FPGA to communicate with external com-
ponents. The combination of CLBs, Input Output blocks and routing it is possible to
create an interface to communicate with external resources. Double Data Rate as an
example.

2.3.2.3 Hardwired units

Hardwired units on the FPGA offload expensive operations, such as multiplications, so
they do not have to be implemented in CLBs. Additionally, these circuits are faster and
more energy-efficient, which is why it is the preferred mode of operation.

The on-chip hardware units The Stratix V FPGA are the adders on the ALU and the
digital signal processing (DSP) units. DSP units specialize in floating-point operations
and multiplications. There are 352 DSP blocks in total on the Stratix V FPGA. Which
have the following features:

Multiply: In this mode, the DSO unit multiplies two numbers. Where these two num-
bers are both 9, 16, 18, or 27 bits. Larger numbers can be multiplied too but are
limited to 36-bit and 18-bit operators.

CHAPTER 2. BACKGROUND INFORMATION 24

Multiply addition: This mode performs both multiplication and addition of numbers
simultaneously. However, this is only possible with the 18x18 bit selection.

A DSP unit calculates floating-point numbers by cascading multiple DSP units. That
method can create a larger precision when performing multiplications, allowing it to
reach 36x36 bit multiplications.

2.4 Dataflow Engines

There are FPGA based dataflow accelerators developed and used by Maxeler Technolo-
gies. DFEs were used to build state-of-the-art solutions in various sectors, such as finance,
government, science, health, security, and high-performance computing. Maxeler pro-
vided a Juniper switch with an integrated FPGA module and all necessary development
tools and licenses under their Academic program. The following section explains the
concept of dataflow platforms, the programming tools, and a short explanation of Max-
Compilers toolset. Afterwards, we go into depth about the resources of the intergrated
FPGA module.

2.4.1 Dataflow computing

Dataflow computing is different from classical computing done by a CPU. This section
will discuss the differences between classical computing and dataflow computing. More-
over, it will go into more detail about the dataflow architecture.

2.4.1.1 Control flow vs Dataflow

Classical computing follows the von Neumann control flow architecture. This is the CPU
architecture described in Section 2.3.1.

Operation 1

Operation 2

Operation 3

Operation 4

Operation 5.2

Operation 5.1

Operation 6

Input
Data

Output
Data

Figure 2.20: Computing in space.

In contrast, a dataflow architecture ex-
ecutes an algorithm differently. Dataflow
architecture is data-driven as it streams
data through the different operations it
has to perform. Figure 2.20 gives a visual
representation of the architecture.

Every dataflow architecture is distinct
from another to perform one unique al-
gorithm. The data that flows through the
algorithm decides which route it may take.
Let us take a conditional as an example.
A dataflow architecture calculates all the
different branches. Whereafter depending
on the data, it chooses which branch of data to use. The dataflow algorithm does not
know which of the two to execute. So it executes both and chooses the correct answer
afterwards based on the condition outcome.

CHAPTER 2. BACKGROUND INFORMATION 25

Pipelining is a concept that allows for more throughput in a program, which is a
property of hardware. If there is a set of operations that every task has to perform,
it might be the best idea to pipeline it. Figure 2.21 shows an example of pipelining.
Figure 2.21a shows tasks that are not pipelined. In the non-pipelined example, every
task performs sequentially. However, if pipelining is applied, a task executes if the
resource is available. Figure 2.21b shows how a pipeline would increase the throughput
of a program, and in turn, allows it to execute more efficiently and faster.

Task 1

Task 2

Task 3

(a) Tasks executed in a sequential manner.

Task 1

Task 2

Task 3

(b) The example of Figure 2.21a pipelined.

Figure 2.21: Non pipelined vs Pipelined.

With an FPGA, we can achieve pipelining by inserting registers between stages of
execution. These registers hold the intermediate values between computational stages.
Each executable part uses a separate register for both input or outputs. Adding registers
between operations allow the circuit to run at a higher frequency because as it shortens
the delay between operations as the hold times between functions becomes shorter.

The dataflow architecture also uses pipelining. Figure 2.22 shows the differences
between the two architectures using the following simple formula x2 + 42 × x + 3. A
CPU would require four instructions for every input element ′x′. If we assume a dataset
of 1, 000 elements, it would be 4, 000 instructions in total. In a dataflow architecture, all
elements stream through the operations in a pipelined fashion. Each operation functions
independently in a dataflow architecture, where it pipelines each operation. Because of
pipelining, the data streams through the functions, where the time between the first and
last operation would be 1, 003 units of time. Here we do assume that all actions take
the same time. Otherwise, the throughput gets limited to the longest stage inside the
pipeline under consideration.

2.4.1.2 Dataflow engine

A dataflow engine (DFE) is a hardware implementation that uses computing in space to
perform an algorithm. Computing in space is a method where data streams between the
different components of a system. Every component performs one specific function, such
as memory communication or additions. The software tools and on the DFE provided
by Maxeler, these components are called kernels. Figure 2.23 shows an example of how
a dataflow program would execute on a DFE.

CHAPTER 2. BACKGROUND INFORMATION 26

R1: x*x
R2: x*42
R1: R1+3

R1: R1+R2

CPU

Control Flow Architecture

*

*

x + +3

Data flow architecture

42

Figure 2.22: Control Flow vs Dataflow.

Kernel

Kernel

Kernel

Kernel

Kernel

Kernel

Kernel

DFE

Memory Memory Memory

Memory Memory Memory

CPU

Data Stream

Communication
Link

Figure 2.23: Dataflow engine.

2.4.2 Development tools

Maxeler Technologies provided us with the dataflow platform that contains a Stratix V
FPGA and a toolset to develop for that platform.

2.4.2.1 The Networking Dataflow platform

The dataflow platform that Maxeler provided is the QFX5100 series switch from Juniper
Technologies with an additional QFX-PFA-4Q module that contains an FPGA based
DFE. The platform itself allows for packet forwarding between the Juniper Switch’s
Switching fabric, directly to the FPGA device. Figure 2.24 shows the interconnection of
these two modules, where we explain their function from left to right below.

The network ports: These are numbers 0− 23 at the left side of the figure. These are
40Gbit ports that can split into 4× 10Gbit connections.

The packet forwarding engine (PFE): can route the traffic on the network ports to
a port understood by the FPGA.

The middle 10G/40G ports: are logical interfaces able to connect and send data to
the FPGA.

QFX-PFA-4Q: The module inside the QFX5100 switch contains the FPGA chip and
the additional resources.

CHAPTER 2. BACKGROUND INFORMATION 27

Figure 2.24: System Diagram Maxeler Platform [7].

The network ports on the right: Signify the ports connect directly to the FPGA
chip.

2.4.3 FPGA development Cycle

Developing an FPGA design uses a development cycle. Figure 2.25 shows the develop-
ment cycle that we use inside the thesis.

Analyse Architect Program Generate
Dataflow

Simulate and debugOK?Custom
HW

Yes

No

Figure 2.25: Development Cycle of an FPGA implementation

Analyse: In the first phase of the development cycle, we analyze the problem that
should be accelerated. The purpose of the analysis is to create a performance
model. So we can find any problems before creating designs that would not work
according to the platform specifications.

Architect: After creating the performance model, the next step is designing the system.

CHAPTER 2. BACKGROUND INFORMATION 28

This step aims to solve or avoid any of the problems that the performance model
indicated.

Program: Once the design is ready, both the CPU and DFE have to be programmed.
The CPU application controls the DFE and steers the transfer of data among the
CPU and DFE.

Generate Dataflow: After finishing the programming phase, the tools generate a
dataflow design for our hardware. This design holds the bitstream that the DFE
loads to perform the function.

Simulate and Debug: The generated solution will be simulated on its correctness and
debugged to search for unexpected behaviour. If any undefined behaviour takes
place, we go back to the programming step.

As a DFE is more beneficial for parallel applications, it does not mean that there
might not be something to gain by moving a sequential function onto the DFE. Fig-
ure 2.26 shows an example where migrating a sequential function might be is justified.

In the left figure, the CPU has to execute a lengthy function 1, where it takes 1000s
to perform the function. In the middle figure, option 1, we perform ‘function 1‘ on the
FPGA, which speeds up the whole algorithm by 1001/11 = 91 times. In the figure on the
right, option 2, we move function 2 to the FPGA, which increased the function’s time.
However, that is only at the kernel level. The overall system speeds up due to removing
the FPGA transfer latency to the CPU, giving the system a speedup of 11/8 = 1.38
times compared to option one.

Function1 - 1000s

Function2 - 1s

10G data
transfer

CPU

Function1 - 5s

Function2 - 1s

Transfer 5s

DFE
Function1 - 5s

Function2 - 2s

DFE

CPU

CPU

CPU time 1001s Option 1 time: 11s Option 2 time: 8s

Transfer 1s

Figure 2.26: Methods to accelerate programs.

2.4.4 Off-chip Resources

This section focuses on the additional available resources of the DFE platform. These
are interfaces that communicate with the Juniper system itself or its other resources,
such as the CPU, memory and the network ports. Additionally, we define how DFE
programmers address theser resources.

In Section 2.3.2.2 SRAM is introduced. This is a fast Static RAM located close to
the FPGA. DFE programmers address this memory as FMEM, where it stands for Fast
Memory.

CHAPTER 2. BACKGROUND INFORMATION 29

2.4.4.1 Quad Data Rate Memory

Quad Data Rate (QDR) memory is a special memory that uses two different clock
signals. During one clock cycle, both clocks transition from high to low and low to
high once. On each of these clock transitions, one word transfers to memory, which
results in a concurrent transfer of four words each cycle. There are two QDR memory
interfaces available on the DFE platform. The DFE sends streams of commands, shown
in Table 2.3, to communicate with the memory. QDR memory is exposed to the designer
as QMEM, which is shorthand for Quick Memory.

Field Bits Explanation

Write address 21 Indicates where to write the data to.

Read address 21 Indicates where to read to data from.

Read Enable 1 Enables reading the data from the memory.

Write Enable 1 Enables writing the data to the memory.

Write Byte Enable 8 Allows for writing just specific parts of the write data

Write Data 144 The data to write to the memory

Table 2.3: Fields inside a QDR command stream.

QDR memory is a Static Random Access Memory (SRAM) with separate ports for
concurrent reading and writing. Due to the above, reading and writing times are always
consistent. Table 2.4 shows the specifications of the QDR memory on the DFE platform.
Table 2.5 shows the physical implementation of the QDR memory, retrieved from the
generated VHDL code of the Maxeler toolset.

Total Memory MBytes 72

Interfaces 2

Frequency MHz 500 [13]

Bits 18

Words a cycle 4

Table 2.4: Specifications of QDR interface.

Total Memory MBytes 72

Interfaces 2

Frequency MHz 350

Bits 36

Words a cycle 4

Table 2.5: Specifications of physical QDR.

With the results of Table 2.5, we can estimate the bandwidth limits of the QDR
memory for one of the streams. Equation (2.1) shows the transfer rate for one of the
streams. The maximum amount of bits/s we can transfer in one second for one interface
is 50.4×2 = 100.8 Gbits/s. The maximum bandwidth of the entire QDR memory, which
uses two interfaces, is 100.8× 2 = 201.6 Gbits/s.

BandwidthQDR = Bits×Words a Cycle× Frequency

= 36× 4× 350 · 106

= 50.4 Gbit/s

(2.1)

CHAPTER 2. BACKGROUND INFORMATION 30

2.4.4.2 Double Data Rate Memory

Double Data Rate (DDR) memory is Dynamic Random Access Memory (DRAM) that
is readily available in high quantities. Data transfers occur on either the falling edge
or rising edge of the clock signal. However, compared to the QDR memory, only two
words of data are transferred every cycle. Furthermore, DRAM is also not predictable
compared to the QDR memory. Performing memory operations on these edges allows
for data transfers at memory frequency. The QFX-PFA-4Q module has the memory
specifications seen in Table 2.6.

Control bits 8

Data bits 64

Interfaces 6

Frequency MHz 933

Table 2.6: Specifications of DDR3 interfaces.

RAM blocks (DIMMs) 3

RAM block size GByte 8

Frequency MHz 800

Total DDR3 Mem GByte 24

Table 2.7: Specifications of Large memory (LMEM).

Each memory interface has a maximum transfer rate of 72-bits in one clock transition.
The maximum number of data bits transferred at once is (64×2)/8 = 16 bytes per cycle.
Table 2.7 shows the memory specifications of the system. As a limitation, each memory
transfer is in bursts of 64-bytes of data. As 16 bytes transfer in one clock cycle, one
burst would take four cycles in total.

BandwidthDDR = Bytes/cycle× Frequency

= 16× 800 · 106

= 12.8 GByte/s

(2.2)

Equation (2.2) shows that the total bandwidth of one memory module is 12.8
GByte/s. So as there are three memory blocks available, the total bandwidth at most is
38.4 GByte/s. DFE programmers can address this memory as LMEM, which stands for
Large Memory.

2.4.4.3 Peripheral Component Interconnect Express

The CPU connects to the DFE platform through the third generation Peripheral Com-
ponent Interconnect Express (PCIe) bus. The system uses this bus to read and write
streams of data on the DFE platform. Table 2.8 shows the maximum transfer limit of
PCIe IP blocks available for the FPGA. However, as the DFE platform uses a PCIe 2nd
generation bus to connect with the CPU, it cannot reach this maximum.

CHAPTER 2. BACKGROUND INFORMATION 31

Theoretical max Configuration Used

Gen 3 2

Lanes 8 4

Speed/Lane Gbit/s 8 5

Total Gbit/s 64 20

Table 2.8: Theoretical max PCIe vs actual max of PCIe.

2.4.4.4 Network interfaces

The DFE module has four QSFP-40G-SR4 Ethernet modules with a total transfer rate
of 40 Gbit/s. Each module uses 4x10 GBASE-R lanes, with a bit rate of 10.3125 Gbit/s
and a 64b/66b encoding. A lane, in this case, is a different wavelength in the same cable.
So a 40 Gbit SR4 connection would have four different 10 Gbit wavelengths across the
same cable. In 64b/66b encoding, the last 2 bits are control signals, with the remaining
64 bits being data. This type of encoding allows for ≈ 96.96% efficiency of the total
line rate, which results in 10 Gbit/s per lane. So in the case of the 40 Gbit connection,
four lanes are used. Table 2.9 shows a summary of the resulting data. The network
interface for a 10 Gbit connection can increase its frequency to twice the original speed.
Throughout this section, we will assume the original network frequency.

Lanes bits/c bytes/c Frequency in MHz Gbit/s

1 64 8 156.25 10

1 32 4 312.5 10

4 256 32 156.25 40

Table 2.9: Characteristics of the 10 Gbit and 40 Gbit interface.

Figure 2.27 shows the minimum and maximum size of a physical network frame. We
use those two different sizes to get an idea about the minimum amount of cycles between
two packets. Table 2.10 shows the result of the two packets.

Preamble Ethernet Frame Inter frame gap︸ ︷︷ ︸
8 B

︸ ︷︷ ︸
64 - 1,518 B

︸ ︷︷ ︸
12 B

Figure 2.27: Physical frame received by the physical layer

Min Max

Bytes 84 1,538

Cycles @ 10 Gbit 10.5 192.25

Cycles @ 40 Gbit 2.625 48.0625

Table 2.10: The minimum and maximum cycles between packets

However, not all network traffic is interesting to us. As defined in Section 2.1 we

CHAPTER 2. BACKGROUND INFORMATION 32

only look for patterns inside TCP packets. Using the previous data as a basis and
use stored network information, we can see the number of network packets that would
approximately go over a network connection. That would allow for more accurate cycles
between TCP packets.

TCP traffic This section will analyze network data received from the network tele-
scope. The network telescope is at the TU Delft, whose primary purpose is to monitor the
TU network. Table 2.11 shows the data received from several network dumps, including
the percentage of TCP traffic.

Measurement Packets
AVG

bytes/packet
TCP packets % TCP

Dump 1 2,060,491 65 1,963,017 95.27

Dump 2 1,774,052 80 1,544,477 87.06

Dump 3 2,146,477 61 2,012,088 93.74

Dump 4 1,939,514 71 1,764,164 90.96

Total 7,920,534 69 7,283,746 91.96

Table 2.11: Summary traffic network data.

The data in Table 2.11 includes the additional bits from the physical transfer over
the wire. These bits are the preamble and inter-frame gap mentioned in Section 2.1.2.
Monitor software does not include these bits, as they monitor from the Link Layer
onward. Adding the 20 bytes to Table 2.11 results in an average packet size of 89 bytes.
This change results in Table 2.12. Meanwhile, the average percentage of TCP traffic is
91%, using Table 2.11. With this information, we can estimate a worst-case number
of clock cycles between two TCP packets. Table 2.13 represents the number of cycles
together with the percentage of TCP traffic.

Average

Bytes 89

Cycles @ 10 Gbit 11.13

Cycles @ 40 Gbit 2.78

Table 2.12: Cycles between packets.

Average

10 Gbit 12.23

10 Gbit Rounded 12

40 Gbit 3.06

40 Gbit Rounded 3

Table 2.13: Cycles needed for TCP traffic.

Algorithm and Performance 3
This chapter explains the current scanner detection methods, and along with their main
differences. Next, we describe the different algorithms mentioned in Griffioen et al.’s
thesis to have a thorough understanding of how they function and find methods to
simplify it for an FPGA based solution. Finally, we show a performance model that best
fits the FPGA based on computation and memory limitations.

3.1 Scan detection methods

This section explains scanner detection methods. Afterwards, we go deeper into the
method that looks for fingerprints inside the network traffic.

3.1.1 Connection based

M. Dabbagh et al. proposed a method of detecting slow scans by keeping track of three
of the following distinct IP groups [14]:

Legitimate: This group stores the regular IP addresses that have not changed.

Suspicious: The group where IP addresses behaved suspiciously.

Scanner: Here are the confirmed scanner IP addresses.

This method stores K windows of T minutes long that contain three groups of IP
addresses. The metrics used to separate every IP address inside a window are as follows:

Nhc: These are the number of half connections created, by not sending back an ACK
packet after initializing the connection.

Nclosed: These are the number of connection attempts that target a closed port.

NFIN : These are the number of FIN packets received, without first establishing a con-
nection.

These metrics combine in the following manner to put those addresses into groups:

state(IP) =

legitimate,N IP

closed = 0 and N IP
hc = 0 and N IP

FIN = 0

suspicious,N IP
closed = 1 or N IP

hc = 1 or N IP
FIN = 1

scanner,N IP
closed > 1 or N IP

hc > 1 or N IP
FIN > 1

An IP only belongs to the legitimate group when there was no abnormal behaviour
in the previous windows. As there are K groups stored, there is a history of abnormal

33

CHAPTER 3. ALGORITHM AND PERFORMANCE 34

behaving IP addresses. When the method detects a new suspicious IP address, it com-
pares it with past information. This method can only hold K windows. When it records
a new window, it erases the oldest. The history will reduce the number of probes an
adversary can send from the same source. As an example, there are ten windows of 5
minutes each. These will limit an adversary to one packet every 50 minutes if he wants
to remain undetected, which would take a long time to scan all network ports.

3.1.2 Honeypot

The honeypot is a system that keeps itself vulnerable on purpose, to make itself look at-
tractive to an adversary. As an example, a honeypot-based IDS stores of every suspicious
IP it detects until it confirms it as regular traffic. This system stores these addresses for
several days and looks at the number of occurrences of that address. When the number
exceeds a certain threshold, the system detects it as scanner traffic. An example of this
would be ten suspicious requests in 3 days [15].

3.1.3 XOR Patterns

Griffioen et al.[11], after a hint from Dainotti et al. [16], found a method that detects
patterns that scanners encode in their network traffic. The main difference between this
and the previous methods is that it looks for patterns instead of waiting for suspicious
behaviour.

3.1.3.1 Reasons for patterns

Scanners search for open ports on multiple hosts on the Internet. The adversary has to
use its resources to keep track of every scan probe, while the probe might never yield
a response. Thus, scanners encode a pattern inside their traffic to distinguish a scan
response from regular network traffic. Figure 3.1 represents this behaviour, where a
scanner does not accept any traffic that does not contain a pattern.

Pattern

Scanner

Ramdom
Data

Internet

Pattern

Scanner

Pattern

Figure 3.1: Scanner Behavior.

A patterns main requirement is that it should return in a scan probes response.
This requirement is why a scanner uses network fields that are the same when send and

CHAPTER 3. ALGORITHM AND PERFORMANCE 35

received back, which limits a scanner to the fields in Table 3.1. The reason behind these
fields are as follows:

Source address and port: These fields define where the scanner traffic comes from
and where it should return. Because it has to return, a scanner cannot set an
arbitrary address, as he needs to retrieve the response.

Destination address and port: These two specify the fields that define the scanning
target and the service.

Sequence number: This is the number chosen by the client in regular TCP traffic and
comes back as the acknowledgement number inside the response.

The sequence number is the largest number a scanner can choose, making it the perfect
field to encode the pattern.

Send Receive

Source address Destination address

Source port Destination port

Destination address Source address

Destination port Source port

Sequence number Acknowledgement Number+1

Table 3.1: Send and receiving scanner traffic.

3.1.3.2 Different patterns

Griffioen et al. described different types of patterns that scanners use. This section
explains those types.

The first pattern chooses a random sequence number. With this method, scanners
would only need to check the acknowledgement number in their response. However,
there are some downsides.

1. To reduce the number of connections to keep track of, the sequence number
would remain the same for every probe. However, receiving probes from one
source that has all have the same sequence number is very suspicious.

2. Otherwise, the scanner has to keep track of all the used sequence numbers,
which still increases the adversary’s resources and would defeat the reason for
using patterns in the first place.

The second pattern shuffles specific parts of the fields. For example, we divide the
source address into chunks of 4 bits and shuffle them. The result would be a rela-
tively random-looking number, where the scanner only has to check if the returning
packet contains the same shuffled field.

CHAPTER 3. ALGORITHM AND PERFORMANCE 36

The third pattern uses a combination of the fields shown in Table 3.1. This pattern
is less visible and allows for a more stealthy approach. There are multiple meth-
ods to combine them, addition, multiplication, using shifted versions of the fields.
However, we are interested in a combination of shifts and XOR operations, which
create a random number. Equation (3.1) is an example of a strategy that only en-
codes the source and destination ports into the sequence number. Now the whole
32-bit field is filled with those two fields.

Equation (3.1) shows an example of a strategy that uses the source and destination ports
into the sequence number.

Sequence Nummber = (Portsrc << 16)⊕ (Portdest) (3.1)

Additionally, scanners can choose to use a secret value, also called a Key, to obfuscate
the pattern. The generic pattern that shows all possible combinations is Equation (3.2).
The fields of the patterns are shifted ki spaces to the left in the range of [0, 32]. After-
wards, they combine into one sequence number. That number would look random but
is, in essence, the pattern we aim to find.

Sequence Number = (Addrsrc � k0)⊕ (Addrdest � k1)

⊕ (Portsrc � k2)⊕ (Portdest � k3)⊕Key
(3.2)

3.2 XOR detection methods

This section goes into depth about the XOR-based detection methods for finding finger-
prints. First, we explain the XOR operation. Afterwards, we go into depth about the
different methods to find XOR-based fingerprints.

3.2.1 Exclusive-OR operation

An Exclusive-OR (XOR) operation is an operation that is equal to adding two bits
modulo 2. When the sum of the bits is odd, it results in a ’1’. Otherwise, the result is
’0’. A XOR operation is denoted with ⊕, Table 3.2 shows the truth table of a 2-bit XOR
operation.

This operation applies to every bit position of a number, so with 16-bit operators,
we get Equation (3.3).

{1001 1010 1110 0101}
⊕ {1111 1101 1001 1110}
{0110 0111 0111 1011}

(3.3)

The XOR operation has the following few properties:

X ⊕ 0 = X

CHAPTER 3. ALGORITHM AND PERFORMANCE 37

Inputs Output

X1 X2 Y

0 0 0

0 1 1

1 0 1

1 1 0

Table 3.2: XOR Truth table.

When XORing something with 0, every odd bit of X is still odd, so nothing changes.

X ⊕X = 0

When XORing the same numbers together, the result becomes zero due to having an
even number of bits at every bit position.

X ⊕ Y = N

X ⊕N = Y

Y ⊕N = X

(3.4)

When XORing two numbers, we can recalculate its inputs from the output if one of the
operators is known. In this case, X and Y are random numbers, which result in the
number N . Afterwards, X and Y can be retrieved from N , if either X or Y is known.
If there is no knowledge about the inputs of N , there is no method to retrieve them.
This property preserves randomness, meaning that XORing two random numbers result
in another random number.

3.2.2 Brute-force

The brute-force approach is the most straightforward approach to find fingerprints. This
performs every possible shift combination [k0, k1, k2, k3] for their respective fields, as
shown in Algorithm 1. The range for one shift is [0; 32], meaning there are a total of 33
different values, where Table 3.3 show the unique shift values.

There is a total of 1, 185, 921 operations that are both independent and thus paral-
lelizable. The drawback is that these operations have to be performed in a limited amount
of cycles, resulting in a bottleneck. For example, if we take the maximum cycles between
packets from Section 2.4.4.4, which is approximately 12; 1, 185, 921/12 = 98, 826.75 op-
erations have to be performed in one cycle. The other drawback of this method is that
it does not take the Key value into account. When a scanner uses a Key, it obscures
the pattern. However, in that case, multiple patterns might be detected. Either this is
a coincidence by random noise in the network or the Key value.

3.2.3 Related packets

Besides brute-forcing the fingerprint, there is also the option to use two packets with
fields in common. When XORing those together, it removes the same fields from the

CHAPTER 3. ALGORITHM AND PERFORMANCE 38

Input: Network Fields
Result: List of Fingerprint
Fingerprints = [];
foreach k0 in [0; 32] do

foreach k1 in [0; 32] do
foreach k2 in [0; 32] do

foreach k3 in [0; 32] do
XORAddrs = (Addrsrc � k0)⊕ (Addrdest � k1);
XORPorts = (Portsrc � k2)⊕ (Portdest � k3);
if (XORAddrs ⊕XORPorts) == Sequence Number then

Fingerprints.add(k0, k1, k2, k3);
end

end

end

end

end
Algorithm 1: Brute force pattern finding algorithm.

Shift Explanation

0 The field isn’t changed

32 The field has become 0

Other The field is a shifted version of its original

Table 3.3: Special shift values.

pattern. This operation reduces the complexity from 1, 185, 921 operations to a range of
[33, 35, 937]. As an example, XORing Equation (3.5) and Equation (3.6) together results
in Equation (3.7).

Sequence Numbera = (Addrsrc � k0)⊕ (Addrdesta � k2)

⊕ (Portsrca � k2)⊕ (Portdesta � k3)
(3.5)

Sequence Numberb = (Addrsrc � k0)⊕ (Addrdestb � k1)

⊕ (Portsrcb � k2)⊕ (Portdestb � k3)
(3.6)

CHAPTER 3. ALGORITHM AND PERFORMANCE 39

Sequence Numbera ⊕ Sequence Numberb

≡
(Addrsrc � k0)⊕ (Addrdesta � k1)⊕ (Portsrca � k2)⊕ (Portdesta � k3)⊕
(Addrsrc � k0)⊕ (Addrdestb � k1)⊕ (Portsrcb � k2)⊕ (Portdestb � k3)

≡
(Addrsrc ⊕Addrsrc)� k0 ⊕ (Addrdesta ⊕Addrdestb)� k1⊕

(Portsrca ⊕ Portsrcb)� k2 ⊕ (Portdesta ⊕ Portdestb)� k3

≡
(Addrdesta ⊕Addrdestb)� k1

⊕(Portsrca ⊕ Portsrcb)� k2

⊕(Portdesta ⊕ Portdestb)� k3

(3.7)

As XORing packets remove fields from the equation if the pattern contains a Key, it
would remove it. However, XORing two related packets give two problems. Storing the
packets in memory and comparing only the packet with the most substantial relation.

3.3 Performance model

This section focuses on the different methods to implement the XOR-based pattern-
finding algorithm. First, we describe the operation and memory limitations and make a
decision based on them. Afterwards, we discuss the chosen algorithm and give alternative
approaches to the problem.

3.3.1 Limits

First, we define the limits to see which of the algorithms described here would fit on
the DFE platform. These are the maximum amount of performable calculations and
memory-based limitations. With the pattern finding methods defined in the previous
section, we aim to answer the following questions:

1. What is the maximum amount of parallel operations?

2. How many packets fit in the DFEs large memory?

3. How long does it take before the memory overflows?

4. What is the required memory bandwidth?

5. How should the fingerprints be stored?

6. How many fingerprints can be stored in the QMEM?

After answering these questions, we decide on which algorithm to implement.

CHAPTER 3. ALGORITHM AND PERFORMANCE 40

Addrs 32-bit

Addrd 32-bit

Portd 16-bit

Ports 16-bit

XOR

Result 32-bit

Sequence Number 32-bit ==
64-bit

32-bit

64-bit

Figure 3.2: XOR and validate.

3.3.1.1 Maximum operations

Figure 3.2 shows the number of bits and the operations needed for XOR-based pattern
finding. As previously discussed in Section 2.3.2.1, an ALM uses 8-input adaptable
LUTS, which is the main computational resource.

The calculation of the possible computations requires us to know the ALMs of one
operation. From Figure 3.2 we see that the XOR operation needs 96-bits of input data
and an additional 64-bits for validation. By mapping those bits on ALMs, the XOR
operation costs approximately 96/(8 bits) = 12 ALMs. The validation operation adds
64/(8 bits) = 8 ALMs for comparing the two values.

There are a total of 359, 200 ALMs available on the FPGA. Taking the previously
calculated ALM cost of the XOR and validation operation, it costs 20 ALMs. With
those 20 ALMs, the maximum is 359, 200/20 = 17, 960 operations on each clock cycle.
That does not reach the target performance of 98, 826.75 operations a cycle. However,
there are optimizations possible to get more operations a cycle.

3.3.1.2 Maximum packets in memory

There are 24 GBytes of LMEM available to store the fields, where each set is 128-bits
or 16 bytes of memory. Equation (3.8) calculates the maximum number of fields that fit
inside the memory.

Total Packets = Total Memory/Bits to store

= (24× 233)/128

= 1, 610, 612, 736

(3.8)

If we use the source address as an identifier to the memory, there will be a problem
as there are 232 = 4, 294, 967, 296 possible source addresses available, where 37.5% fits
inside the memory. Using a hash value of the source address would keep closely related
packets together.

CHAPTER 3. ALGORITHM AND PERFORMANCE 41

3.3.2 Burst of memory

The LMEM transfers data in bursts. The size of these bursts depends on the number
of memory modules used. The burst size has a maximum burst size of 192 bytes, which
uses all 6 DIMMs. More information on the DIMMs can be found in Section 2.4.4.2. In
that case, all 24 Gbyte gets used. These transfers are called bursts. One burst can hold
12 packets at a maximum. Equation (3.9) shows the number of bursts that the memory
can hold.

Total memory bursts =
Packets in memory

Fields in burst

=
1, 610, 612, 736

12
= 134, 217, 728

= 227

(3.9)

An LMEM interface addresses memory in bursts. For example, when requesting
address 0 of the LMEM, it would return the first 192 bytes. Coincidentally requesting
address 1 returns the next 192 bytes. Because the burst length limits the LMEM, and
there are 232 possible IP addresses. Its number of bursts limits the number of unique
addresses of the memory.

3.3.2.1 Time to fill

When the memory is full, every new packet replaces one inside the memory. We need to
know how long it takes to fill the memory, and packets are lost. First, we use the cycles
between packets in the worst-case scenario. The assumption here is that one TCP packet
arrives once every 12 clock cycles with a 10 GBits/s network interface operating at a
156.25 MHz frequency, as shown in Section 2.4.4.4. By multiplying the total amount of
packets that fit inside the memory with those 12 cycles, we get the number of cycles it
takes to fill the memory. Afterwards, we divide cycles by the network interface frequency
to get to the seconds. Equation (3.10) shows to calculate it with a 10Gbit/s network
interface.

Time To Fill =
Total Packets× Cycles between packets

Frequency

=
Equation (3.8)× Cycles between packets

Frequency

=
1, 610, 612, 736× 12

156.25 · 106

=
19, 327, 352, 832

156.25 · 106

≈ 123.7 s

(3.10)

CHAPTER 3. ALGORITHM AND PERFORMANCE 42

3.3.2.2 DDR memory Bandwidth

We need to know how much bandwidth it uses before we know if a memory-based design
is possible. For writing, in the worst-case scenario, a packet arrives every 12 cycles,
which writes 16 bytes to memory. Equation (3.11) calculates the bandwidth for a 10
Gbit connection, where a 40 Gbit connection is four times faster.

Bandwidth = (Frequency/Cycles between packets)× bytes to store

= (156.25 MHz/12)× 16

≈ 208.33 MByte/s

(3.11)

However, in the worst-case scenario, the incoming packet has to be compared to all
the packets in memory. The maximum read speed, defined in Section 2.4.4.2 is 38.4
GByte/s. A maximum of 38.4 GByte/16 bytes= 2, 400, 000, 000 sets of fields can be read
in one second. Meanwhile, there is space for 1, 610, 612, 736 fields fit in memory. Memory
is read and written in bursts of 192 bytes, which contain 12 sets of fields. Equation (3.12)
shows the DDR bandwidth calculation.

Bandwidthr = Burst in memory× Bytes in burst

= 227 × 192

= 134, 217, 728× 192

≈ 25.77 GByte/s

(3.12)

3.3.2.3 Compare incoming packets to all packets in memory

When comparing packets, the worst-case scenario occurs when the matching fields are at
the end of the memory. However, while it is searching for a matching packet, additional
packets arrive. These also need to be validated for patterns. As previously mentioned,
LMEM uses bursts of 192 bytes to read and write to the LMEM. During this scenario,
there is only time to request 12 memory bursts before the next packet arrives. The
amount of bursts needed to read the memory entirely is 134, 217, 728. So, while waiting
to find that one set, 134, 217, 728/12 ≈ 1, 184, 810.66 packets arrive. That many packets
make it impossible to compare each incoming packet to one specific set.

3.3.2.4 Compare incoming packets using hashing

Using a hashing algorithm would allow us to retrieve data from LMEM without compar-
ing it to the whole memory. By hashing the source address, it keeps the related packets
closer together. However, there is a tradeoff. The number of unique hashes is the same as
the number of bursts, which allow for a total of 227 unique memory addresses. The ratio
of unique memory addresses compared to the 232 source addresses is 227/232 = 1/32.
Therefore, it is reasonable to assume that more than two source addresses will result in
the same hash value, called a collision. As an upper bound for the seconds, we use the
time it takes to fill the memory as shown in Equation (3.10). The number of packets
required to do this is coincidental 12/32 of the IP address space.

CHAPTER 3. ALGORITHM AND PERFORMANCE 43

There is a slight chance of 1/227 that the following packet has the same hash as the
previous one. Using the 31/32 chance of a different IP address triggering the collision,
we get a chance of (31/32)/(227) ≈ 7.21 · 10−8. With that number, we can be almost
sure to have a collision after 1/7.21 · 10−8 = 138547332.129 ≈ 227 packets. We require
12 of tose collisions, which requires 138547332.129 ∗ 12 = 1, 662, 567, 985.548 packets.
That number is higher than the maximum amount of packets inside the memory, but
it is close. With that information, we can conclude that hashing does not add time to
the 123.7 seconds. However, that only works with a uniform distribution of both the
hashing function and incoming IP addresses.

3.3.2.5 Using QDR memory

When the algorithm finds a fingerprint, it needs to be stored. We chose to use the Quad
Data Rate (QDR) memory, also called QMEM, for this purpose due to its fast read and
write speeds.

One fingerprint has four values in the range of [0; 32]. Using that pattern as a unique
combination to the memory, we get a 21-bit address, the same width as the QDR memory
address. It fits because log2(334) ≈ 20.18, where every fingerprint creates a unique index.

The total required memory for one module is 144× 334 = 170, 772, 624 bits, approxi-
mately 20.3 MByte. In total, there are 72 MBytes available, separated into two modules.
20 MByte utilizes a modules memory capacity of approximately 20.3/(72/2) ∗ 100 =
56.5%, which means that not all the QMEM gets utilized.

One option for the remaining memory is to use more bits for each fingerprint. For
example, instead of 144 bits for each fingerprint, 216 bits get used with one mod-
ule. Two modules would us 432 bits for each fingerprint, allowing for 432 × 334 =
512, 317, 872 bits ≈ 61.07 MByte of utilization. However, this would create a more com-
plex design. This case requires additional logic to keep track of which addresses in the
QMEM hold the fingerprint data.

Another option would be double buffering, a technique to read from one buffer while
writing to the other. At a certain point, the buffer that gets read gets swapped. That
would require 20.3 × 2 ≈ 40.7 Mbyte of space for one module, which is too large. The
fingerprint would need to be reduced from 144 to 127 bits for every module for it to work.
It adds additional resources required to account for the location of those fingerprints.
However, a double buffer does not give value to the system as a fingerprint could arrive
at every cycle.

Consider the following scenario. A fingerprint gets read while that same data is
getting processed. While the data still needs to be written to the memory, the QMEM
does not see this and returns the same processed data. This behaviour causes inconsistent
memory, as our processed data would get overwritten. Double buffering would not aid
in that issue as the same buffer needs to get continuously read and written.

As discussed in our situation, a match could arrive at every cycle. Equation (3.13)
shows the required bandwidth for one QMEM module. The total bandwidth is below
the limit of 144 Gbit/s for one module, utilizing 45/144 ∗ 100 ≈ 31.25% of the available
bandwidth.

CHAPTER 3. ALGORITHM AND PERFORMANCE 44

Bandwidth = 2× (QDR bits)× Frequency

= 2× 144× 156.25 MHz

= 45 Gbit/s

(3.13)

With two modules, there are 288 bits of memory to store information about the
matched pattern. We used the probabilistic bloom filter structure to use the 144 data
bits of each QMEM interface fully. With a bloom filter, the number of false positives
increases the more data it contains. However, it does not allow for false negatives. This
filter aims to store the source address of the pattern that gets recognized efficiently to
understand which pattern gets triggered the most and by whom.

3.3.2.6 Conclusion

In the section above, we discussed the limits of the system using its resources. Our use
case is to find a pattern inside the packet as the FPGA receives it.

In A memory-based solution, there would be much reading and writing of data to the
memory. Meanwhile, from our calculations, it would get filled in approximately 123.7
seconds in the worst-case scenario. Afterwards, there is data loss when new packets
arrive. The new packet might remove data with a specific pattern inside it, which is a
problem as in that specific case, a packet with that source address would arrive it gets
removed. If a very slow scan scans with one packet every 5 or 10 minutes, there would
be no gain to store it in memory as it would disappear before using it.

Meanwhile, the incoming packet has a one-to-many relationship to find an optimum
packet. Reading the memory linearly would take a lot of time and bandwidth, where
many packets arrive when searching for a matching packet. This problem gets mitigated
by using the hash value of the source address, which puts related packets closer together.
However, there is a mismatch between the number of possible source addresses and the
number of bits used for the LMEM memory space. The ratio between a hash value and
source address is 1:32. However, it would have no time impact if the hashing algorithm
and packets have a uniform distribution. That probably is not the case, so there would
be a time cut. Therefore, we chose to use the brute-force method and find optimizations
to increase operations per clock cycle.

3.3.3 Brute-force scaling

This section explains variations on the brute-force algorithm and looks at how the FPGA
resources scale compared to the number of operations. We synthesize these designs for
the FPGA to get a better representation of the resource costs. Afterwards, we compare
them and select the version that we implement on the actual FPGA.

3.3.3.1 Naive brute-force pattern-finding function

The naive function is the standard brute-force algorithm defined in Section 3.2.2 directly
implemented on hardware. Figure 3.3 is the used model, while Table 3.4 shows the

CHAPTER 3. ALGORITHM AND PERFORMANCE 45

approximated resource usage at every part. Equation (3.14) and Equation (3.15) shows
our approximation of the resources, where r represents the number of XOR operations.

==

Sequence NR Part 1

Part 2reg

Part 3

Result register Part 4

Addrsrc Addrdest Portsrc Portdest

Addrsrc ^ Addrdest ^ Portsrc ^ Portdest

Figure 3.3: Naive Model.

Parts ALMs
Register

- bits

1 0 128

2 12× r 32

3 8× r -

4 0 r

Table 3.4: Resources Naive.

ALMs = 20× r (3.14)

Register − bits = 5× 32 + r (3.15)

Utilization Scale In Figure 3.4, we compare the scaling of our estimation and the
actual costs, where the goal is to get a better understanding of how the resources scale.
The average ALM cost for each operation is ≈ 32 ALMs every operation, which is
12 ALMs higher than expected. We assume that memory configured ALMs are used as
registers. Furthermore, the tools insert additional register for intermediate values for the
XOR function and the sequence number. These registers add at least 64 register bits/8 =
8 ALMs every computation. From now on, we keep this behaviour in mind during
resource calculation.

3.3.3.2 Pipelined brute-force pattern-finding function

The second option implements the brute-force algorithm using a pipelined solution to
have more throughput. This approach requires to change the algorithm to allow for more
pipelining and reduce resource costs.

CHAPTER 3. ALGORITHM AND PERFORMANCE 46

0 200 400 600 800 1,000

0

2

4

6

·104

Computations

A
L

M
s

Equation (3.14) Naive

0 10 20 30 40 50 60 70

10

20

30

40

50

∆Computations

∆
A

L
M

s/
∆

C
om

p
u
ta

ti
on

s

Figure 3.4: Naive: Theoretical vs Actual.

Changing the algorithm The main idea behind the changed algorithm is to compare
using a shifted field instead of the sequence number. In this case, there is only one expen-
sive XOR operation, while there are many comparison operations. In Equation (3.16),
Addrsrc is compared k times to one XOR operation.

Sequence Number = (Addrsrc � k0)⊕ (Addrdest � k1)

⊕ (Portsrc � k2)⊕ (Portdest � k3)

(Addrsrc � k0) = Sequence Number ⊕ (Addrdest � k1)

⊕ (Portsrc � k2)⊕ (Portdest � k3)

(3.16)

To illustrate the method even further, Algorithm 2 shows how to derive k results
from one XOR operation. In the algorithm, we substitute the XOR operation for R, as
shown in Equation (3.17). Now R is compared to all the values of k0, which moves the
operation costs to compare two registers.

R = Sequence Number ⊕ (Addrdest � k1)⊕ (Portsrc � k2)⊕ (Portdest � k3) (3.17)

Input: Network Fields
Result: List of Fingerprint
Fingerprints = [];
R = Addrdest ⊕ Portsrc ⊕ Portdest ⊕ Sequence NR;
foreach k0 in [0; 32] do

if Addrsrc � k0 == R then
Fingerprints.add(k0, · · ·);

end

end
Algorithm 2: Pipelined algorithm.

CHAPTER 3. ALGORITHM AND PERFORMANCE 47

The architecture As stated in Section 2.4.1.1, pipelining allows for more throughput
through a function. Figure 3.5 shows the model of Algorithm 2. In the model, we only
perform the XOR operation once. Whereafter, we compare it in each of the k stages of
the pipeline with a shifted version of Addrsrc.

Sequence NR Addrs Portd Ports

SequenceNR ^ Addrs ^ Portd ^ Ports

==

Addrd

reg

<<1

<<1 ==

==

Part 1

Part 2

Part 3reg

reg

k -bits

regreg

k

k

k

Figure 3.5: Pipelined Model.

Each stage uses the previous values as its inputs and stores the outputs in registers.
These registers cost ALMs, where we calculate the cost of ALMs in Equation (3.18) and
Equation (3.19). In these formulas, r is the number of XOR operations.

Parts ALMs
Register

- bits

1 0 128

2 16× r + 8 0

3 20× k r ×
∑k

i=1 i

Table 3.5: Resources Pipelined.

ALMs = 16× r + 20× r × k + 8

= 4× r × (4 + 5× k) + 8
(3.18)

Register bits = 128 + r × (

k∑
i=1

i) (3.19)

Utilization Scale The average of our assumed usage is ≈ 21, as shown in Figure 3.6.
These designs keep the number of repetitions equal to k. So the pipelined and naive
function perform the same number of calculations. The results show a linear growth in

CHAPTER 3. ALGORITHM AND PERFORMANCE 48

resource usage. However, there is a spike of resources around the thousand operation
mark. We assume that the tools inserted additional resources to meet the timing con-
straints. The FPGA tools create a register-tree as compensation, which increases the
number of resources. The solution is to use smaller sets of computations to avoid that
peak, which keeps the ALM for each additional XOR operation to 27.

0 200 400 600 800 1,000

0

2

4

6

·104

Computations

A
L

M
s

Equation (3.18) Pipelined

0 10 20 30 40 50 60 70

0

50

100

150

200

∆Computations
∆

A
L

M
s/

∆
C

o
m

p
u
ta

ti
o
n
s

Figure 3.6: Pipelined: Theoretical vs Actual.

3.3.3.3 Reduced pattern-finding function

With the pipelined pattern-finding function, we changed the algorithm to reduce the
costs of each operation. More operations are possible by removing unnecessary registers.

Architecture Figure 3.7 optimizes the pipelined pattern-finding function. It does so
by performing k operations immediately, instead of in k stages.

== == ==

Addrd Part 1

Part 2
reg

reg

Part 3

k-bit register Part 4

Sequence NR Addrs Portd Ports

SequenceNR ^ Addrs ^ Portd ^ Ports

reg

<<k<<1

Figure 3.7: Reduced Model.

Table 3.6 the estimated resource costs for the model. Equation (3.20) and Equa-
tion (3.21), use the table to create a formula for how the operations approximately scale,
where r represents the number of XOR operations peformed.

CHAPTER 3. ALGORITHM AND PERFORMANCE 49

Parts ALMs
Register

- bits

1 0 128

2 16× r + 8 -

3 8× k × r -

4 0 k

Table 3.6: Resources reduced implementation.

ALM = 16× r + 8× r × k + 8

= 8× r × (2 + k) + 1
(3.20)

REG− bits = 128 + k (3.21)

Utilization Scale The average assumed ALM cost for each operation in our model
Figure 3.8 is 9 ALMs, where we take r = k. Interestingly enough, the ALM cost of the
synthesized design is lower than the initial estimation. However, similar to the pipelined
pattern-finding function, a significant resource increases around the thousand operation
mark. We use the same assumption that the increase occurs due to timing constraints.
Using the same smaller sets, as with the pipelined pattern-finding function, gives each
additional XOR operation a cost of 7 ALMs.

0 200 400 600 800 1,000

0

2

4

·104

Computations

A
L

M
s

Equation (3.20) Combined

0 10 20 30 40 50 60 70

0

100

200

300

400

∆Computations

∆
A

L
M

s/
∆

C
om

p
u
ta

ti
on

s

Figure 3.8: Combined: Theoretical vs Actual.

3.3.3.4 Conclusion

Figure 3.9 shows the differences between all the synthesized approaches, where Table 3.7
shows the differences between operation costs. The figure shows quite clearly that using
the reduced pattern-finding function results in more operations per cycle. The total

CHAPTER 3. ALGORITHM AND PERFORMANCE 50

ALMs that are available is 359, 200. With average operation costs of 7, it performs a total
of 359, 200/7 ≈ 51, 314.28 operations each clock cycle. This is less than the 98, 826.75
operations per cycle that are required. However, there are additional operations needed
on the FPGA to make a functional design. As an example, there need to be functions
to parse network traffic and store the fingerprints somewhere, which reduces the number
of operations.

Implementation Assumed Actual

Naive brute-force pattern-finding function 20× x 31× x

Pipelined brute-force pattern-finding function 21× x 27× x

Reduced brute-force pattern-finding function 8× x 7× x

Table 3.7: Resource comparison.

0 200 400 600 800 1,000

2

3

4

5

6

·104

Computations

A
L

M
s

Naive Pipelined Combination

0 10 20 30 40 50 60 70

0

100

200

300

400

∆Computations

∆
A

L
M

s/
∆

C
om

p
u
ta

ti
on

s

Figure 3.9: Comparing all synthesized results.

3.3.4 Adjusting our target

In Section 3.3.3.4 we found that even with the reduced brute-force pattern-finding func-
tion, it will not be possible to reach the targetted bandwidth of 10Gbit/s. We found
that the system could reach half of the targeted bandwidth at most. Our problem with
the used method is LUTs within the QFX-PFA-4Q system to perform all computations
in time using the brute-force method.

As our system does not have enough resources, we could consider a high-performance
FPGA system with a different chip, such as the Alveo U280 card, using the VU37P chip,
or the VU9P FPGA chip.

Both of these chips use Xilinx’ UltraScale+ technology inside their Lookup-tables
(LUTs) This technology uses a 6-input 1-output LUT with a shared input mode. Here
it is used as a 2x5-input 2-output LUT. [17] The Alveo U280 card contains 1, 304K of
these LUTs, while the VU9P chip contains 1, 182K. [18] Our system has 359, 2K 8-input

CHAPTER 3. ALGORITHM AND PERFORMANCE 51

LUTs and could perform at most half of the operations. Using the above mentioned
FPGA’s would effectively solve the resource issue.

The U280 card mentioned above uses High-bandwidth Memory (HBM). This type of
memory uses silicon stack technologies to keep the memory and FPGA in the same chip
package. It has a lot less latency due to being closer to the chip and allows for bandwidths
up to 460 GByte/s. [19] Compared to the DDR3 Memory bandwidth of 12.8 GByte/s,
it is 460/12.8 = 35.9 times faster. Using HBM possibly allows for a different solution
than our current one using the QDR memory. It might allow for a more hybrid solution,
storing more packet data or fingerprint information than the current solution.

As we will not reach the desired bandwidth with the current system, we will change
the target. Our new target is to optimize the reduced brute-force pattern-finding function
and perform as many operations as our targeted system allows.

3.3.5 Storing fingerprints

After detecting a fingerprint, there needs to be a method of storing it. To accommodate
this function, we decided to use the Quad Data Rate (QDR) memory, as it allows for
a consistent amount of cycles for reading and writing. First, we define the number of
cycles it takes between QDR requests. Afterwards, we explain the data structure we use,
namely the bloom filter.

3.3.5.1 QDR memory cycles

To test the QDR memory latency, we created the design shown in Figure 3.10. In the
design, when the kernel sends a command to the QDR memory, it stores a counter value
inside a queue. Once we receive a response from memory, we remove the first item from
the queue and calculate the clock cycles between them.

Table 3.8 shows the results at two different frequencies. Using these cycles, we know
how long it takes for data to return from and to memory.

Frequency MHz Latency Cycles

156.25 17

312.5 29

Table 3.8: Latency of QDR memory at dif-
ferent frequencies.

Send A
command From QDR

To QDR Output

Counter

Absolute
Value -

Counter
Queue

push pop

Figure 3.10: Design to calculate the
latency of the QDR.

CHAPTER 3. ALGORITHM AND PERFORMANCE 52

3.3.5.2 Bloom filter implementation

The bloom filter is a probabilistic memory structure, where the number of false positives
increases the more data it contains. However, it does not allow for false negatives. This
filter aims to store the patterns that get recognized efficiently and understand which get
triggered most.

The method of inserting and validating data into the filter uses hash functions as
indices. The number of hash functions determines the efficiency of the filter. The
more hash functions a bloom filter users, the faster a filter gets filled. However, when
a bloom filter does not use enough hash functions, the false positive rate increases.
Equation (3.22) calculates the optimal amount of hash functions k for a bloom filter,
where m and n are the sizes of the bit array and the number of elements inserted into
the array, respectively.

k = (m/n) ln(2) (3.22)

These hash functions use the data as input. In the case of inserting data, the indices
point to the bits that will turn to ’1’, shown in Figure 3.11. When validating data, the
indices select the bits inside the filter and validates if they are both ’1’, it indicates a
match Figure 3.12. Otherwise, the data is not in the filter Figure 3.13. A false positive
occurs when data matches inside the filter without it ever being inserted. Figure 3.14
shows how a false positive can occur, which is why it is called a probabilistic data
structure.

Data

Hash1(Data)

Hash2(Data)

1

1

Figure 3.11: Inserting into a bloom filter.

Data

Hash1(Data)

Hash2(Data)

1

1

==1 Data in
set

Figure 3.12: Data in the bloom filter.

Dataa

Hash1(Dataa)

Hash2(Dataa)

1

1

Data_a != Data

==1
Not In

Set

Figure 3.13: Data not in the bloom filter.

Datab

Hash1(Datab)

Hash2(Datab)

1

1

Datab != Data

==1 False
Positive

Figure 3.14: A false positive.

3.3.5.3 Counting bloom filter

The counting bloom filter uses more bits for each entry, which is called a bucket. Instead
of inserting a ‘1‘ into the buckets, the value inside increments. We are limited to the
data size for the QDR memory, which is 288 bits in total. With a multiple of two, we

CHAPTER 3. ALGORITHM AND PERFORMANCE 53

can divide the total bit length into evenly sized buckets. We chose that each entry is
4-bits, which allows for a maximum of 15 values for each bucket. This amount of bits
creates a total of 288/4 = 72 buckets with a maximum value of 15 for a bucket.

A problem arises when an overflow occurs in one bucket. In that case, we chose to
send that filter to the central processing unit (CPU) over the PCIe bus. In the worst-case
scenario, all the buckets overflow after each other. After that, the FPGA sends those
filters to the CPU. Now those buckets are empty, but after an additional 16 packets
arrive, another overflow occurs, meaning an overflow occurs every 12× 16 = 192 cycles.
Equation (3.23) shows this bandwidth calculation using these cycles, which fits the PCIe
bus.

Bandwidth = Bits× Entries +
Bits× (Frequency− Entries)

Max Value× Cycles for overflow

= 334 × 288 +
288× (156.25 · 106 − 334)

192
= 574, 141, 366.5

≈ 574 MBit/s

(3.23)

Setup configuration 4
In the thesis we used multiple tools that are used in tendem. First, we describe the build
system that contain all the tools used to build and synthesise designs. The description
includes how to connect to the server and how it conntects to the other systems. Secondly,
we describe the switch itself which includes how to configure it in the future with pointers
to tutorials to more documentation. Finally, we describe how to run the design on the
switch’s VM, including how to send data to the design and information about a few
maxeler utilities.

4.1 Build server configuration.

The build server contains the Altera and maxeler tools. It uses the Altera tools to
synthesize the DFE designs made with the maxeler tools and create a compiled program.
The host itself runs CentOS6.10. The reasoning behind this is that the Juniper server,
discussed in Section 4.2, accepts GLIBC 2.12, while programs compiled with a higher
version do not execute.

4.1.1 Connect to server

To connect to the server, we use SSH. Currently, the server uses the hostname ‘callisto’
on the ‘mars’ routing instance used by the TU Delft threat intelligence team. The callisto
host listens to IP address 10.0.0.23 on the ‘mars’ instance.

The server has two users to connect with, which are ’root’ and ’user’, where ’user’
has sudo rights. Listing 4.1 shows an example ssh configuration to connect to the build
server for both Linux and Windows. There is a ‘Keepass2’ encrypted password database
that holds the passwords for these systems. The TU Delft’s threat intelligence team
holds that database.

4.1.2 Interface Configuration

The build system has a specific network interface configuration. Table 4.1 shows the
default network card configuration. The configuration files for these interfaces are in the
‘/etc/sysconfig/network-scripts’ directory with an ‘ifcfg-’ prefix.

The em1 interface connects to the mars host using a network cable. The configuration
of the ‘DNS’ and ‘GATEWAY’ enables a network connection from the build server. It
uses this connection to validate the Altera license as an example.

The p55p1 and p55p2 interface belong to a dual-port QSFP+ adapter on the build
system. The adapter uses Mellanox Technologies MT27520 Family technologies. P55p1
connects to the VM on the Juniper switch through the switch’s management ports.

54

CHAPTER 4. SETUP CONFIGURATION 55

Listing 4.1: Connect to the build system

(a) Using linux

Host mars
HostName 131 . 180 . 119 . 22
User <mars user>

Host c a l l i s t o
HostName 1 0 . 0 . 0 . 2 3
User user
ProxyJump mars

(b) Using windows

Host mars
HostName 131 . 180 . 119 . 22
User <mars user>
MACs hmac=sha2=512

Host c a l l i s t o
HostName 1 0 . 0 . 0 . 2 3
User user
ProxyCommand ssh . exe =q =W %h

:%p mars
MACs hmac=sha2=512

Interface Configuration

em1 IPADDR=10.0.0.23
PREFIX=24
DNS1=8.8.8.8
DNS2=10.0.0.1
GATEWAY=10.0.0.1

p55p1 IPADDR=10.0.3.42
PREFIX=24
MACADDR=14:DA:E9:FA:02:93

p55p2

Table 4.1: Network card configuration

Meanwhile, p55p2 connects to Port 23 of the QFX5100 switch without any additional
configuration. With this network interface, we send packets to the DFE system.

4.1.3 Recovering the server

If the server stops functioning due to a hardware failure, a fully configured backup im-
age is available. The image itself contains the Altera and maxeler tools. Additionally,
all the network interfaces mentioned above are pre-configured. We used Clonezilla to
create the image, which can restore the image to a disk. During the restoration process,
Clonezilla fails to install the grub bootloader, which is a false positive. It fails because
Clonezilla is based on the Debian distribution and expects a separate bootloader parti-
tion. CentOS6.10 installs the bootloader differently, so after the error, it still functions
as intended.

CHAPTER 4. SETUP CONFIGURATION 56

4.1.4 Altera license

The Altera tools, primus, in this case, use the LM LICENSE FILE variable. Listing 4.2
shows the current definition of this variable. to point to the TU Delft’s FlexLM license
server.

Listing 4.2: Altera license environment variable

LM LICENSE FILE=27013 @f l exse rv4 . t u d e l f t . n l

In this configuration, the license file variable contains 27013@flexserv4.tudelft.nl.
This address points to one of the TU Delfts’ FlexLM license servers. If the Altera tools
cannot find the license server, the variable needs to change.

The website https://flexlm-info.tudelft.nl shows all the other license servers of the TU
Delft. Look there for the license server for a Linux version of the Altera Primus software.
Afterwards, change the variable in ‘/etc/profile.d/quartus.sh’ to make it persistent.

4.2 Juniper QFX5100

The Juniper switch contains the QFX-PFA-4Q module, which holds the DFE and other
off-chip resources. The switch uses a packet forwarding engine (PFE) to send data from
the external server ports towards the FPGA ports. Currently, the external ports 10 and
23 of the switch are in use. Port 10 contains a loopback device, while the build server is
connected to port 23 using a QSFP+ cable.

4.2.1 Current Configuration

The Juniper QFX5100 switch has some specific configuration to send data from any of
its ports to the QFX-PFA-4Q module. Figure 4.1 shows a representation of the switch
configuration.

QFX5100

23

Network ports

32

1 QFX-PFA-4Q

FPGA designPacket Forwarding
Engine

10 Gbit/s forwarding Ports
xe-0/0/..

CPU

...

24

...

Direct QSFP+ Ports

1

2

3

4

Switching
Fabric

Network Connection
PCIe Connection

Figure 4.1: Physical frame received by the physical layer

Port 23 connects to the packet switching fabric, where it routes data from one inter-
face to another. The same port connects to Virtual LAN (VLAN) ‘v0 0’ on the switch

CHAPTER 4. SETUP CONFIGURATION 57

for a logical connection between network interfaces. Additionally, we connect the same
VLAN to a network port understood by the QFX-PFA-4Q module.

Physical maxeler ports
Ports represented
in the Maxeler Tools

PFE interface

QSFP port #0 10G sub-channel 0
JDFE QSFP0 10G PORT0
JDFE XE32 10G

Xe-0/0/32

QSFP port #0 10G sub-channel 1
JDFE QSFP0 10G PORT1
JDFE XE33 10G

Xe-0/0/33

QSFP port #0 10G sub-channel 2
JDFE QSFP0 10G PORT2
JDFE XE34 10G

Xe-0/0/34

QSFP port #0 10G sub-channel 3
JDFE QSFP0 10G PORT3
JDFE XE35 10G

Xe-0/0/35

QSFP port #1 10G sub-channel 0
JDFE QSFP1 10G PORT0
JDFE XE24 10G

Xe-0/0/24

QSFP port #1 10G sub-channel 1
JDFE QSFP1 10G PORT1
JDFE XE25 10G

Xe-0/0/25

QSFP port #1 10G sub-channel 2
JDFE QSFP1 10G PORT2
JDFE XE26 10G

Xe-0/0/26

QSFP port #1 10G sub-channel 3
JDFE QSFP1 10G PORT3
JDFE XE27 10G

Xe-0/0/27

QSFP port #2 10G sub-channel 0
JDFE QSFP2 10G PORT0
JDFE XE28 10G

Xe-0/0/28

QSFP port #2 10G sub-channel 1
JDFE QSFP2 10G PORT1
JDFE XE29 10G

Xe-0/0/29

QSFP port #2 10G sub-channel 2
JDFE QSFP2 10G PORT2
JDFE XE30 10G

Xe-0/0/30

QSFP port #2 10G sub-channel 3
JDFE QSFP2 10G PORT3
JDFE XE31 10G

Xe-0/0/31

QSFP port #3 10G sub channel 0
JDFE QSFP3 10G PORT0
JDFE XE36 10G

Xe-0/0/36

QSFP port #3 10G sub channel 1
JDFE QSFP3 10G PORT1
JDFE XE37 10G

Xe-0/0/37

QSFP port #3 10G sub channel 2
JDFE QSFP3 10G PORT2
JDFE XE38 10G

Xe-0/0/38

QSFP port #3 10G sub channel 3
JDFE QSFP3 10G PORT3
JDFE XE39 10G

Xe-0/0/39

Table 4.2: Interlinked ports on Juniper Switch [8]

Table 4.2 we show how the interfaces of the QFX-PFA-4Q module and Juniper switch
interconnect. The Juniper switch represents the physical QSFP+ ports on the QFX-
PFA-4Q. Additionally, the switch can configure these to use the PFE. So, in the case of
Figure 4.1, we connect port 23 to Xe-0/0/32 using a VLAN. Any data send to port 23
arrives at JDFE QSFP0 10G PORT0, which is JDFE XE32 10G, that the DFE design

CHAPTER 4. SETUP CONFIGURATION 58

uses. Finally, the design will output data to the CPU using the PCIe connection.

4.2.2 Connect to the switch

There are two methods to make a connection to the switch for configuration. Both these
operations require a connection from the build system.

The first method is a serial connection using a cable directly connected to the switch.
Listing 4.3 shows how to connect with this connection. The serial connection is a failsafe
if other connections do not function as intended.

Listing 4.3: Juniper switch serial connection

s c r e en /dev/ ttyS0 9600

The second method is an SSH connection from the VM running on the Juniper
Switch. Listing 4.4 shows the steps to connect to the build system.

Listing 4.4: Juniper switch ssh connection

Connect to the Juniper VM
ssh maxeler@10 . 0 . 3 . 1 5 8
Connect to the Switch management panel
ssh root@192 . 1 7 8 . 1 . 2

4.2.3 How to change the switch configuration

Once connected to the switchs’ configuration console, we can reconfigure it. Listing 4.5
gives an example of how to configure an external switch port to the FPGA. In this
example, we configure the first 10Gbit channel of port 21 to one of the FPGA interfaces.
The specific interface links port 21 to the FPGA’s JDFE QSFP0 10G PORT1. Table 4.2
shows which interface port on the switch represents a specific port on the FPGA.

4.3 Maxeler Tools

The Maxeler tools that are available are maxide, which is the environment to write
code. The maxelersim environment is a virtual DFE environment where the design
can verify whether it functions according to the specifications. Additionally, we also
received the Juniper QFX5100 Switch with the QFX-PFA-4Q module from Maxeler.
For more information about the environment and how to code the DFE, look at the
tutorials. These are available in the ‘/opt/maxeler/maxcompiler/docs’ directory on the
build server.

CHAPTER 4. SETUP CONFIGURATION 59

Listing 4.5: QFX5100 configuration example

e nte r the command l i n e i n t e r f a c e f o r the network s w i t c h
c o n f i g u r a t i o n

> c l i
S t a r t c o n f i g u r i n g , which s t a r t s e d i t mode
> c o n f i g u r e
Configure por t 21 f o r 4x10 g b i t
> set c h a s s i s fpc 0 p i c 0 port 21 channel=speed 10g #

Conf igures por t 21 on 10 Gbit / s
Connect 10 Gbit i n t e r f a c e o f xe=0/0/0/21:0 to v lan v0 1
> set i n t e r f a c e s xe=0/0/21:0 un i t 0 fami ly ethernet=sw i t ch ing

vlan members v0 1
Connect FPGA i n t e r f a c e to v lan v0 1
Now t h o s e p o r t s are connected
> set i n t e r f a c e s xe=0/0/33 un i t 0 fami ly ethernet=sw i t ch ing

vlan members v0 1
Give v lan v0 1 a s p e c i f i c vlan=i d
> set v lans v0 1 vlan=id 11
Commit changes to the s w i t c h
> commit
e x i t e d i t mode
> exit
e x i t c l i mode
> exit

4.3.1 The DFE design bitstream

The DFE bitstream uses the ‘maxcompiler’ utility to transform Java code to lower level
VHDL code. This section describes how to create and build with these tools.

4.3.1.1 Create a DFE design

The Maxeler IDE (Interactive Development Environment) is available on the server on
the ‘/opt/maxeler/maxide’ folder. MaxIDE is an eclipse based IDE and can be accessed
using SSH with x-forwarding enabled. Once booted, it is possible to write java code to
create a DFE design and the CPU implementation. We recommended creating the DFE
design and CPU implementation projects with MaxIDE, as it puts most if not all of the
variables in place. However, it does not automatically use the Network libraries. Adding
those to the project requires adding ‘/opt/maxeler/maxcompilernet/libs/MaxCompiler-
Net.jar’ to the DFE projects’ classpath.

CHAPTER 4. SETUP CONFIGURATION 60

4.3.1.2 Build the DFE design

Building the design itself can be done using the MaxIDE or the Maxeler tools with the
command line.

Building the DFE using MaxIDE is the easiest method to build a design and link
it to a CPU implementation. However, there are some things to keep in mind while
building it. The build function in the MaxIDE uses ‘.dfeprojectproperties’, which holds
properties for both the simulation and synthesise builds. Listing 4.1 shows an example
of the properties found in this directory.

Listing 4.1: DFE makefile template

manager=<manager to bui ld>
jvmargs==Xmx2G
Set maxcompiler s p e c i f c v a r i a b l e s .
parameters=DFEModel=JDFE t a r g e t=DFE maxFileName=<name o f the des ign>

Building the DFE using the command-line gives some additional problems.
Namely, the Altera tools require a display server, also called X-server, to function. The
X-server does not function using the command-line to build a design, for example, during
an SSH connection. To solve that issue, we use a program on the server called Xcrv that
creates a virtual display server. The commands in Listing 4.2 show creating and setting
the display server on the server, which solves the issue.

Listing 4.2: DFE makefile template

Create a v i r t u a l x s e r v e r a c c e s s i b l e on por t : 1
> Xvnc :1&
Set DISPLAY to por t :1
> export DISPLAY=l o c a l h o s t : 1 . 0

Building a design uses a ‘build.sh’ script and a Makefile, where ‘build.sh‘ is a script
located in the build server’s ‘/opt/maxeler/scripts’ directory. The Makefile creates a
recipe that uses the ‘build.sh‘ script to build the design. Listing 4.3 is an example
Makefile, which shows how to create a custom build entry for a DFE design. Afterwards,
the command ‘make <NAME BUILD>’ will automatically build the design and create
the ’.max’ and ’.h’ files. The CPU implementation uses those files to communicate with
the design. The ‘.max’ contains the bitstream, and the ‘.h’ file describes its interface to
the programmer.

Listing 4.3: DFE makefile template

BUILD SCRIPT := . / bu i ld . sh
MANAGER LOC := # Package path where i t can f i n d the managers used by

the maxide t o o l s

.PHONY: <NAME DFE BUILD>
<NAME DFE BUILD>:

$ (BUILD SCRIPT) $@ $ (MANAGER LOC) <MANAGERNAME> DFE

CHAPTER 4. SETUP CONFIGURATION 61

.PHONY: <NAME SIM BUILD>
<NAME SIM BUILD>:

$ (BUILD SCRIPT) $@ $ (MANAGER LOC) <MANAGERNAME> DFE SIM

4.3.2 The CPU implementation

The CPU implementation, just as the DFE design, can be created in MAXIDE. There
are multiple methods to create a CPU implementation, such as using C++ or python.
In the thesis, we chose C++ for more control.

By creating the CPU implementation with maxide, most variables for the project
will be pre-configured. Additionally, the IDE creates a Makefile that the project uses.
However, it does not enable the network libraries by default. As such, the ‘/opt/max-
eler/maxcompilernet/include/slicnet’ needs to be added to the includepath. Either use
the IDE to change the include path or add it to the ‘.cproperties’ file in the CPU im-
plementation. The adjustments shown in Listing 4.4 need to be made to the Makefile to
simulate a network design.

Listing 4.4: DFE makefile template

Set the card to JDFE, which i s the QFX=PFA=4Q p la t form
CARD ?= JDFE

Set the por t t h a t the FPGA w i l l l i s t e n to in the s i m u l a t o r .
These p o r t s s t a r t count ing from ’1 ’ , meaning PORT0 in the FPGA

de s ign i s PORT1 in the s i m u l a t o r
PORT := QSFP0 10G PORT1
Set the IP address and netmask o f the s i m u l a t o r s TAP d e v i c e .
IP SW := 1 7 2 . 1 7 . 0 . 1
NETMASK := 2 5 5 . 2 5 5 . 2 5 5 . 0
Assign the tap d e v i c e
SIM TAP := $ (PORT) : $ (IP SW) : $ (NETMASK)

T e l l maxcompilersim to use the networking f u n c t i o n a l i t i e s on our
TAP d e v i c e .

s t a r t s i m : ; @’ $ (MAXCOMPILERDIR) / bin /maxcompilersim ’ =n $ (SIMNAME) =c
$ (CARD) =e $ (SIM TAP) r e s t a r t

The CPU build requires the generated .max file to reside in the correct directory. The
rule ‘MAXFILES := $(wildcard max/*.max)’ must be added to the Makefile when using
the command line. This rule finds all the .max files in the ’max/’ directory. Otherwise,
it looks for the .max files in a specific build directory of the DFE design, which the
command line build does not use.

4.3.2.1 Running the CPU implementation

Once we have both the DFE design and the CPU implementation, the DFE system can
run the design. We send the ‘.max’ and CPU binary to the Juniper switch VM to run
the maxeler toolset. There are some caveats with running the CPU implementation.

CHAPTER 4. SETUP CONFIGURATION 62

For example, using the ‘strings’ program on the CPU implementation will reveal all the
strings inside the program. One of these strings points to the expected location of the
‘.max’ file. The tools will not load the design when the ‘.max’ file is not in that directory.

4.3.2.2 Sending Network traffic to the DFE

As mentioned in Section 4.2, the build server connects to the juniper switch on port
23, which uses a VLAN to connect to port 32. The DFE design accepts any traffic
that goes through the VLAN. However, some network traffic utilities need some specific
preparations. We used two utilities, where both require root permissions on the build
system to send network traffic.

Definition 4.1
tcpreplay a utility that replays network traffic over a certain interface.
scapy a python library that allows creating network packets and sending them over the
internet.

Scapy requires a constructed network packet from the Ethernet to a TCP layer.
Otherwise, it does not function as intended and gets ignored by the DFE interface. For
safety, we used the MAC address of port 32. These addresses can be configured using
the Juniper switch or viewed using the ‘maxnet’ utility. Listing 4.5 shows an example
output of the utility for a single interface. The utility shows the MAC addresses and the
current state of the utility. However, it does not show anything when there is a DFE
design loaded on the chip.

Listing 4.5: DFE makefile template

Show the l i n k o f a s i n g l e i n t e r f a c e . S p e c i f y i n g no i n t e r f a c e shows
a l l i n t e r f a c e s .

> maxnet l i n k show JDFE XE32 10G

JDFE XE32 10G :
Module Present : fa l se

Link Up: true
MAC address : 88 : a2 : 5 e : 5 5 : 8 8 : a0

RX Enabled : true
RX Frames : 0 ok

0 e r r o r
0 CRC e r r o r
0 i n v a l i d / e r ro r ed
0 t o t a l

TX Enabled : true
TX Frames : 0 ok

0 e r r o r
0 CRC e r r o r
0 i n v a l i d / e r ro r ed
0 t o t a l

CHAPTER 4. SETUP CONFIGURATION 63

4.3.3 Juniper VM

The Juniper VM runs on the switch and interfaces with the DFE platform that runs the
designs and programs. However, some caveats need to be known before a program can
run.

After synthesising, we send the compiled design and max file to the Juniper VM,
where the appropriate tools are running. Section 4.2.2 explains how to connect to the
VM.

4.3.3.1 Maxtop

This program shows the current state of the DFE, including the currently loaded design.
In Listing 4.6 you can see an example of the output of this tool.

Listing 4.6: Useage maxtop

> maxtop =v =d 0

MaxTop Tool 2018 .3
Found 1 card (s) running MaxelerOS 2018 .3
Card 0 : QFX=PFA=4Q (P/N: 241124) S/N: 000000123 Mem: 24GB PCIe : 00 :0 b

. 0 Net : 2

Load average : 0 . 00 , 0 . 21 , 0 .21

DFE %BUSY TEMP MAXFILE PID USER TIME COMMAND
0 100.0% = f c7b8661e2 . . . = = = =

. . .
Bitstream : app id : =1 app rev :=1 checksum :

fc7b8661e2a4b51140994748dcec01962c6db5d66fc8bfdd687cfb614f09e69d
. . .

A good thing to note is that it shows the current loaded design as a hash value at
the ‘checksum’. The max file contains the same checksum as the one noted at the end
of the file. If the checksum inside the .max file matches the one of maxtop, it loaded the
correct design.

4.3.4 Maxeler Licenses

The maxeler tools, which are the build tools and the QFX-PFA-4Q module inside the
Juniper switch, use licenses to function. The location of the systems’ license files is in the
‘opt/maxeler/maxcompiler/licenses/’ directory. In Table 4.3 we see the current status of
these license files. Once the license expires, we can request a new one with the maxeler
university program. To generate the licenses, send an email to info@maxeler.com to ask
for the features shown in Table 4.3.

CHAPTER 4. SETUP CONFIGURATION 64

Build Server QFX-PFA-4Q

Expiration date 2021-08-07 2021-08-07

Features MaxCompiler core MaxJDFE Runtime
MaxCompiler core sim
MaxJDFE Runtime

Special note
License uses MAC address
14:DA:E9:FA:02:93

Table 4.3: Current state of the maxeler licenses.

Implementation 5
This chapter explains the design in four distinct parts. First, we give a global overview
of the design that tells the placement of the computation kernels. The second part
focusses on the functionality of the network parser. Afterwards, we talk about fingerprint
detection. Finally, it concludes memory communication, which shows how to store the
fingerprints and send them to the CPU.

5.1 Overview

The design itself consists of four different parts, as shown in Figure 5.1. Every stage of
the diagram does something different; these differences are:

The Traffic parser parses network traffic from the interface and sends the fields we
need to the next stage.

The Pattern-finding stage finds the fingerprints in the collected network traffic.

The Memory communication stage communicates with the memory according to
the fingerprint found at the pattern-finding stage.

The QDR cleaner is a different design that clears the QDR memory at startup to
remove random data.

Network

Pattern finding

Memory
communication QDR

CPU

Network
Interface

QDR clearer

CPU

Figure 5.1: Design overview.

65

CHAPTER 5. IMPLEMENTATION 66

5.2 Traffic Parser

The kernels discussed in this section are responsible for parsing network traffic from the
network interface and direct it to the pattern-finding algorithm.

5.2.1 Network & Ethernet

This section briefly explains how the design parses network traffic from the network
interface. Maxeler Technologies made the code that splits the headers. The ethernet
kernel itself waits for our network fields and sends the output to the remaining kernels.

5.2.1.1 Input & output

The input of the kernel is a 64-bit data stream that connects to a network interface. It
starts receiving data when the network interface detects the start-of-frame, discussed in
Section 2.1.2. Every cycle Afterwards, there are new bits of information.

The kernel outputs multiple streams that contain the header data of the different
protocols. The ethernet kernel grabs the fields from these headers and sends them to
the field cache kernel.

5.2.1.2 Kernel Function

The kernel parses the network datagram from the input. Each splitter in the kernel
waits for a specific point to start parsing. These splitters communicate with each other
to determine that point. For example, the IP parser only starts after it finishes parsing
the Ethernet header. It separates the input data into multiple streams that wait for the
header and payload for a specific protocol. This method keeps the variable data inside
the headers into account. When a specific header is larger than the default, it waits some
additional cycles before sending it to the next one.

Each parser uses a shift register that is large enough to hold the maximum header
length for the header so the register can hold it. Afterwards, every splitter waits for
cycles until the shift register holds all the required header data and parses the header.
In some cases, headers contain optional fields. In those cases, the kernel puts itself on
hold until those optional fields have passed.

5.2.2 Field Cache

This section discusses the field cache implementation, which sends data from the network
toward the XOR algorithm kernel.

5.2.2.1 Input & output

The kernel has two inputs and one output. The inputs hold the network fields shown
in tab Table 5.1. Network fields receive the parsed data from the network. Meanwhile,
the cache fields receive fields that should be cached. Caching occurs when the pattern-
finding algorithms detect multiple patterns in one packet. The output values, shown in

CHAPTER 5. IMPLEMENTATION 67

Table 5.2, is the same as the input values, but adds a one-bit flag. This flag tells the
pattern-finding algorithm that an incoming packet caused a cache hit in the memory.

Field Bits

Sequence Number 32

Source Address 32

Source Port 16

Destination Address 32

Destination Port 16

Table 5.1: Input values.

Field Bits

Sequence Number 32

Source Address 32

Source Port 16

Destination Address 32

Destination Port 16

Cache hit 1

Table 5.2: Output values.

5.2.2.2 Kernel Function

This kernel caches network fields, where the pattern-finding algorithm detected multiple
patterns. The reasoning behind this is to account for the possible Key value that the
scanner may use, as discussed in Section 3.2.2. Figure 5.2 shows the construction of the
kernel. The inputs stream through the field cache and the selector to the output.

Field Cache

Cache
Fields

Output

Selector

Source
Address

128-bit
128-bit

Network
Fields

128-bit

Figure 5.2: Kernel Design.

The field cache module, shown in Figure 5.3, caches data. It uses the source addresses
of the inputs as the cache’s memory addresses. Retrieving data from the cache uses the
source address from the network fields. Storing data inside the cache uses the source
address inside the cache field input. It reduces these addresses from a 32-bit number to
a 10-bit number, so it fits inside the cache’s 1,024 entries. In the end, the fields read
from the cache are passed towards the next module.

The selection module, shown in Figure 5.4, the output of the kernel. There are two
options: the input network fields; or an XORed version of the network fields. The latter
performs the XOR operation on the data from the cache and the input fields. This
operation aims to remove the possible Key value and reduce the number of operations.

CHAPTER 5. IMPLEMENTATION 68

MOD

1024

Mem Address Mem Data

Cache_fields.valid

 Cache

128-bit

Field Cache

Source
address

Cache Data

128-bit

MOD

1024

10-bit

10-bit

cache_fields.datasource address

Figure 5.3: Field cache module.

Finally, it determines if the incoming packet’s source address is equal to the one retrieved
from the cache. In the case they are, it selects the XORed fields. Otherwise, it selects
the network fields.

==

source
address

XOR

96-bit

MUX

128-bit

Field Cache Data

129-bit

Output

Selector

Network fields.data

96-bit

source
address

Figure 5.4: Selection module.

The XORed result excludes the source addresses, as the bloom filter kernel uses the
value as its input. However, the problem is that the output source address should be
zero when a cache hit occurs, as the source addresses are the same during a cache hit.
The solution is setting the cache-hit flag to 1, which informs the algorithm that it should
interpret the source address as 0.

5.2.2.3 Resource Utilization

Table 5.3 shows the synthesized resource utilization for this kernel.

Kernel ALMs BLOCK RAM

Field Cache 2,879 12

Table 5.3: Resource Utilization of the field cache.

CHAPTER 5. IMPLEMENTATION 69

5.3 Pattern finding

The kernels discussed in this section are responsible for finding fingerprints inside the
network packets. First, we discuss the XOR pattern-finding algorithm. Afterwards, we
end with the fingerprint kernel, which completes the fingerprint.

5.3.1 XOR Function

This section discusses the implementation of the XOR fingerprint finding algorithm
discussed in Section 3.3.3.3. This kernel receives the fields from the field cache (Sec-
tion 5.2.2), finds the XOR pattern and sends it to the fingerprint kernel (Section 5.3.2).

5.3.1.1 Input & output

The kernel input is the network fields and the cache-hit flag from the field cache kernel,
shown in Table 5.4. The output, shown in Table 5.5, contains the same network fields.
These are two of the fingerprints’ shift values, a selector and a 363-bit large data vector
that holds the fingerprint’s remaining part.

Field Bits

Sequence Number 32

Source Address 32

Source Port 16

Destination Address 32

Destination Port 16

Cache hit 1

Table 5.4: Input of the XOR function.

Name Bits

Source Address Shift 6

Destination Address Shift 6

Selector 3

Network Fields (Table 5.4) 129

Data vector 363

Table 5.5: The output of the XOR function.

5.3.1.2 Kernel Function

The kernel orchestrates multiple small XOR modules to perform as many operations
per cycle as possible on independent network fields. Every XOR module, shown in
Figure 5.6, performs 1, 089 comparisons for 1, 089 cycles, meaning one module performs
all the required 1, 185, 921 operations. The important part is to orchestrate these modules
to allow them to function independently. Figure 5.5 shows the construction of the kernel.
A queue holds the input, which waits until one of the modules is available for input.

The selection process uses the busy selector shown in Figure 5.7. When an XOR mod-
ule starts to process input, its state becomes busy. The selector logic uses these busy bits
and uses leading leading-one detection to find the first non-busy module, Equation (5.1)
shows the process.

First, the busy bits are inverted. This process puts a ’1’ at the positions that have
a free module. Afterwards, it uses leading-one detection to find the first free module.

CHAPTER 5. IMPLEMENTATION 70

Input

Queue

XOR
Module

Busy
Selector

Demux

Count

Mux

Output

Field H
older

k * 128 bits

XOR
Module

XOR
Module

Figure 5.5: The XOR kernel.

11 XOR operations 11 XOR operations 11 XOR operations

11 x 33
Comparisons

11 x 33
Comparisons

11 x 33
Comparisons

Fields

363-bit vector

378-bit

XOR Module

Mux

Holder

3-bit validPartial
Fingerprint>16

Valid

Busy
Logic

Selector Valid
Queue

Valid

Conditions

Figure 5.6: A XOR module.

Busy Busyk-bit register

Leading 1 detect

One-hot decode

Invertk-bit

k-bit
log2(k) bits

Delay

Future
Selector

Busy 0 ... k-1

Busy
Selector

Figure 5.7: Selector Logic.

Busyinput = 0b1100

Busyinverted = 0b0011

Busyleading-one = 0b0010

Future Selector = 2

(5.1)

Finally, it performs one-hot decoding on that value, which converts it to the kernel’s
positional value.

When a module is available, the queue sends the following fields to that module. At
that time, the selector points to the module until it changes to its busy state. Addition-
ally, it uses the same selector to store the fields from the queue into a temporary cache.
That cache holds the fields that a module is currently using for computation. At the
end of the computation, it retrieves these fields from the cache. Otherwise, each module
had to send its input along with the output. So, we chose this method to reduce the
modules’ size, and now it is a simple case of retrieving the fields from the cache.

The holder function, shown in Figure 5.8, holds the input fields temporarily until new
input arrives. Once the holder receives the input, the counters start counting to either

CHAPTER 5. IMPLEMENTATION 71

1, 089 or 33, depending on the cache-hit flag.
Every counter has a limit of 33 and is chained together. The counters continuously

keep counting until count-2 reaches its max value. We use these counters to indicate
that the module is busy. The module stops being busy once the counters are at their
max value. Additionally, these counters shift the source address and destination port so
that every computation set is unique. The values of these counters construct the partial
fingerprint of that computation.

Source address Source Port Destination
PortSequence Number

Hold until next validCount1

Count2

<< <<

Source Port Destination
AddressSource addressSequence Number

Cache
Hit

Destination
Address

&|Busy
Hold

Holder Source Shift Destination
Port Shift

Valid

From Queue

96 bits

Figure 5.8: Input Holder.

The busy logic keeps the module in a busy state until it performed all computations.
Figure 5.9, shows the model of the logic function. Combining the selector and the valid
queue flag determines if the input is for a specific module. Equation (5.2) shows the
validation process, where i is the XOR module number. It comparesi with the selector
and queue flag combination. When it matches, the module accepts that data and puts
the module in a busy state. Additionally, this is the valid flag for the holder function.
Once the XOR module performed its last operation, the busy flag is set back to its
original state.

The comparison phase uses the comparison functions discussed in Section 3.3.3.3. As
mentioned before, an XOR module performs 1, 089 computations every cycle. To avoid
the resource peak shown in Section 3.3.3.3, we choose to perform 1, 089 operations in
three sets. There are three phases to the calculation process.

• The XOR stage performs 3× 11 XOR operations on the input fields.

• The comparison stage performs 33 comparisons for each of the 11 results from the
XOR stage. With all modules, it results in 3 × 363-bit vectors. Furthermore, it
sets an additional flag if it found a match.

• In the selection stage, where it chooses the output of one of the three sets.

There are more intricate controls at the selection stage. Each comparison stage
contains a flag that indicates it finds a match. The module combines these flags into a

CHAPTER 5. IMPLEMENTATION 72

Busy
Holdi|

(i<<1+1)

Selector Queue
Valid

Hold

Busyi

Busy
Logic

Valid==

Figure 5.9: Busy Logic.

i = 2

= 0b10

(i� 1) + 1 = 0b101

Selector = 0b10

Queue valid = 0b1

{Selector,Queue valid} = 0b101

(5.2)

3-bit selector, which the multiplexer uses to choose the 363-bit output. However, each
set may contain a match, which means multiple matches were detected. To not lose that
information, the kernel sends the selector to the next kernel. Meanwhile, the counters
from the hold function form the partial fingerprint.

5.3.1.3 Optimizations

There is a small functionality update to the kernel.

Adding scalars To reduce the number of computations, we chose to add scalars to
the design. These scalars control the maximum value of the module counters. We place
these scalars at the counters to reduce the maximum operations on the fly. The later
shift values might continuously generate the same values.

5.3.1.4 Resource Utilization

Table 5.6 shows the synthesized resource utilization for this kernel.

Kernel ALMs BLOCK MEM

XOR Module 10,434 0

XOR Kernel 209 8

Table 5.6: Resource Utilization of the XOR function.

5.3.2 Fingerprint Kernel

This section describes the method to extract the remaining parts of the fingerprint from
the output of the XOR pattern-finding function.

CHAPTER 5. IMPLEMENTATION 73

Input

To address

Determine Multiple
matches

MUX

0 11 22

&

To Cache

Construct Fingerprint

11x33-bit vector 3-bit validPartial
FingerprintNetwork Fields

Unpack Vector

Source Address

Figure 5.10: Fingerprint kernel logic.

5.3.2.1 Input & output

The input to this kernel is the data received from Section 5.3.1, shown in Table 5.7.
The input contains a partial fingerprint together with a 363-bit vector that contains the
remaining fingerprint data. There are two outputs of the kernel, shown in Table 5.8.
The first one holds the fingerprint, while the other contains the network fields send back
to the field cache.

Name Bits

Source Address shift 6

Destination Address Shift 6

Selector 3

Network fields 129

Data vector 363

Table 5.7: The input of the function.

Name Bits

Source Address shift 6

Destination Address Shift 6

Source Port shift 6

Destination Port shift 6

Source Address 32

Network Fields 129

Table 5.8: The output of the function.

5.3.2.2 Kernel Functionality

The kernel finds the remaining parts of the fingerprint inside the bit-vector. The function
shown in Figure 5.10, finds matches by performing log2 operations on the vector. The
3-bit selector is used to see which set from the previous kernel was selected.

CHAPTER 5. IMPLEMENTATION 74

The find matches module, shown in Figure 5.12 uses both leading-1 and trailing-
1 detection, and one-hot decoding. With leading-1 and trailing-1 detection, it checks
the data bits from both sides. Meanwhile, one-hot decoding transforms the result of the
leading-1 into a positional number. That number is the selector of a multiplexor (MUX),
which chooses an offset for the data bits. Only when both the results of leading-1 and
trailing-1 are the same, one match occurred. Equation (5.3) gives an example of how
this functions with multiple 1’s in its input.

Data = 1100.0000.0000.0000

Trailing-1(Data) = 0100.0000.0000.0000

Leading-1(Data) = 1000.0000.0000.0000

One-Hot Decode(Leading-1) = 15

Equal{Leading-1,Trailing-1} = 0

(5.3)

The module adds the offset from the MUX to the source port shift value. The kernel
does not know the origin of the 11 × 33 bit-vectors. Thus, it adds the offset from the
mux to normalize the values.

The unpacking vector module, shown in Figure 5.11 performs two log2 operations
on the vector data. It interprets the 363-bit vector as a 11 × 33-bit vector or matrix.
First, it searches for the column that contains the match with a logarithmic function.
Afterwards, it uses another logarithmic function to find the correct row.

11x33-bit vector

MUX

!== 0

11 bits

Log2

Log2

==0

Unpack
Vector

Integer
Value

+

Source Port
Shift

Destination
address Shift

Figure 5.11: Unpacking the vector.

Determine
Matches

Data

Leading 1 detect Trailing 1 detect

One Hot Decode ==

Figure 5.12: Finding multiple matches.

CHAPTER 5. IMPLEMENTATION 75

A log2 function creates a fixed-point result in the form of ##.##. The integer part
of the result finds the column or row, while the fraction tells us whether there were
other matches in the data. Meanwhile, the fractional part determines if there were other
matches inside the data.

The module determines the column by looking at which of the 11 33-bit values is
larger than 0. Table 5.9 shows an example of that functionality. The 11-bit result is the
input to the first logarithmic function. The integer part of the output is source-port shift
value. It uses that value to select the correct 33-bit row, which goes through another
logarithmic function to find the destination port shift-value.

Data 4x5 0 0 0 0
1 0 0 0
0 0 0 0
0 0 0 0
1 0 0 0

>0 1 0 0 0

Table 5.9: Find data in a vector.

5.3.2.3 Optimizations

An optimization of the design, shown in Figure 5.13 , exchanges the logarithmic function
with the function shown in Figure 5.12. As explained previously, when the two values
approximated from both sides are equal. It found no other matches in that data. Equa-
tion (5.3) showed the case when there were multiple patterns found, and thus it sends
the fields to the field cache kernel.

11x33-bit vector

MUX

!== 0

11 bits

Determine
Multiple matches

Determine
Multiple matches

==0

Unpack
Vector

set offset

+

Source Port
Shift

Destination
address Shift

no match

Figure 5.13: Unpacking the vector optimization.

CHAPTER 5. IMPLEMENTATION 76

5.3.2.4 Resource Utilization

Table 5.10 shows the synthesized resource utilization for this kernel.

Kernel ALMs

Fingerprint 479

Table 5.10: Resource Utilization of the fingerprint kernel.

5.4 Memory Communication

The kernels in this section are responsible for communicating with the QDR memory
The address generator creates a memory address from the fingerprint. The QDR com-
munication kernel takes that address and requests the data located there from the QDR
memory. Finally, the data reaches the bloom filter, where it gets processed and send
back to memory.

5.4.1 Address Generation

In this section, we discuss the kernel that transforms a fingerprint into a QDR memory
address.

5.4.1.1 Input & output

The input of this kernel, shown in Table 5.11, is the fingerprint discoverd by the pattern
finding function function. The output of this kernel is the following QDR memory address
to read. This is a 21-bit address field, together with a few flags for control shown in
Table 5.12. The control flags inform the memory communication kernel of specific actions
it may perform, such as which kernel should send the output.

Name Bits

Source Address shift 6

Destination Address Shift 6

Source Port shift 6

Destination Port shift 6

Source Address 32

Table 5.11: Address Generation input.

Field Bits

Wait for write 1

From Kernel 1

Source Address 32

Address 21

Table 5.12: Address Generation output.

5.4.1.2 Kernel Function

This kernel generates a unique memory read address. In the overview of the kernel,
Figure 5.14, it performs two separate actions. Both of these actions result in read
addresses. The Fingerprint generator generates an address from the fingerprint, while
the counter generator uses a sequential counting mechanism.

CHAPTER 5. IMPLEMENTATION 77

Fingerprint Start
Reading

Fingerprint
generator

Address
Generator

Output

MUX read

addressaddress

Figure 5.14: Address generator overview.

The fingerprint address module, shown in Figure 5.15, uses the shifts found in the
input and combines them into one memory address. There are a total of 1, 185, 921
different shift combinations fingerprints available. Equation (5.4) shows the calculation
of the address from the shift values.

Address = Addrs + Addrd × 33 + Portd × 1, 089 + Ports × 35, 937 (5.4)

6-bit

+

<<5

12-bit

+

<<6<<10

+ *

35,937

+ +

+

17-bit

18-bit

11-bit 21-bit

21-bit

SrcAddrShift DstAddrShiftDstPortShift SrcPortShit Source Address

Address Source Address
Fingerprint
generator

Fingerprint

32-bit

Figure 5.15: Fingerprint generator design.

The equation, while simple, is not implemented on hardware directly. The reason
is that multiplication units are expensive, while other options are available. To lessen
the cost, we rewrite multiplications as a set of shifts and additions. Equation (5.5) and
Equation (5.6) rewrite the multiplications in small additions.

CHAPTER 5. IMPLEMENTATION 78

x× 33 = x× (32 + 1)

= x× (25 + 1)

= (x� 5) + x

(5.5)

x× 1, 089 = x× (1, 024 + 64 + 1)

= x× (210 + 26 + 1)

= (x� 10) + (x� 6) + x

(5.6)

Equation (5.7) shows the result of rewriting the largest value in terms of shifts and
additions. This function has too many additions, which would add more delay inside the
design. For that reason, we chose to use a multiplier instead.

x× 35, 937 = x× (32, 768 + 2, 048 + 1, 024 + 64 + 32 + 1)

= x× (215 + 211 + 210 + 26 + 25 + 1)

= (x� 15) + (x� 11) + (x� 10) + (x� 6) + (x� 5) + x

(5.7)

The counter address module, shown in Figure 5.16, waits for a command to arrive.
When it gets triggered, it starts to read all the memory addresses sequentially. This
functionality is to dump the memory towards the CPU. So, in the end, there is no data
loss. To keep the memory bandwidth low, one of the counters max value is reconfigurable.
That counter puts a delay between read requests while still dumping all the memory.

Address
Counter

Delay
Counter

1,185,921

Hold reading

&

&

start_reading.valid

counter == max

C

Address
Generator

Addressread

counter == max

Fingerprint.valid

Figure 5.16: Counter address generator design.

CHAPTER 5. IMPLEMENTATION 79

5.4.1.3 Resource Utilization

Table 5.13 shows the cost of this kernel.

Kernel ALMs MULTs

Address Generator 241 1

Table 5.13: Resource Utilization of the Address generator.

5.4.2 Quad Data Rate Memory Communication

This section discusses the communication between QDR memory and FPGA, which
focuses on memory consistency.

5.4.2.1 Input & output

There are three distinct inputs to the kernel, all shown in Table 5.14 A read command
arrives when we want to read a specific address from memory and send it to a specific
kernel. A write command arrives when there is an update to the data. The final input to
the kernel receives the data directly from the QDR memory, which arrives after sending
a read command.

Name Bits

Read command

Wait for write 1

From kernel 1

Source address 32

Address 21

Write command

Address 21

Data 288

From QDR ×2

Write address 21

Read address 21

Read enable 1

Write enable 1

Write byte enable 8

Write data 144

Table 5.14: QDR kernel inputs.

Name Bits

To kernel ×2

Address 21

Source address 32

Data 288

To QDR ×2

Write address 21

Read address 21

Read enable 1

Write enable 1

Write byte enable 8

Write data 144

Table 5.15: QDR kernel ouputs.

There are two separate outputs of the kernel, shown in Table 5.15. The aptly named
’to kernel’ sends the result from the QDR to its designated kernel. The final outputs
send QDR commends to the memory.

CHAPTER 5. IMPLEMENTATION 80

5.4.2.2 Kernel Function

The kernel’s goal is to handle all read and write requests to the memory and keep memory
consistency. It achieves this by keeping track of previous read addresses. Figure 5.17
shows the overview of this kernels’ functionality.

Input QDR
Write

Command

Control logic

Busy Queue

Address

To QDRTo Kernel

Cache
data

To QDR

Write Cache

Select Queue

Delay

Read
Command

Stall Logic

Stall Valid

Figure 5.17: Structure of the Memory Communication.

The writing to cache module, shown in Figure 5.18, shows what happens when
a write request arrives at the kernel. The kernel caches the write requests. With that
method, a read request to the same memory location does not need to read from memory
again. The read address is thus used as an index to the cache to retrieve the data. A
cache hit occurs when the cache’s data and the read command have the same address.

MOD

64

Mem Address Mem Data

Valid

 Cache

309-bit

Write Cache

Read
Address

Cache Data

309-bit

MOD

64

6

6-bit

write_data.valid

==
21-bit address

Cache Hit

write_data.dataWrite Address

Figure 5.18: Writing to QDR data cache.

The selecting queues module, shown in Figure 5.19, stores read-requests in the stall
and read queue. It inserts incoming read requests into the read queue immediately when
they arrive. Meanwhile, the stall queue only holds stalled read-requests, which arrive
when it detects the QDR memory is still waiting for that same address’s response.

The stall logic module, shown in Figure 5.20, controls whether to stall an incoming

CHAPTER 5. IMPLEMENTATION 81

Read Queue

MUX

Stall Queue

Stalled
Command

pop_stall

55-bit

Select
Queue

Selected
Read

command

read_command

Figure 5.19: Grabbing correct request from the read.

read request. The primary function is to keep tracks of the stalled requested addresses.
When a write request with the same address arrives, the module sends a request to pop
data from the stall queue. The requests in the stall queue have precedence over those in
the read queue. This behaviour occurs during a write request, meaning that the write
request just wrote its data to the cache. For those requests, the delay is minimum, as
there is no QDR interaction.

The stall module stores the stalled addresses inside a shift register. It compares the
write request address to the shift register, which results in a vector of matches. The
module compares both the vector and the mask. The mask tells the location of the
stalled requests inside the shift register. All the bit positions that do not match the
mask are removed and checked whether it found a match. It sends that match to the
stall queue and back into the calculate mast module.

Shift Register

== == == ==

Match

Read address

&

Read Stall

!==0

Write
Address

Stall Logic

Calculate
Mask

Figure 5.20: The stall logic.

CHAPTER 5. IMPLEMENTATION 82

The calculate mask module, shown in Figure 5.21, controls the mask calculation of
the stall function. The module calculates the mask based on a correction and the stall
value from a read request. It subtracts these two values because the correction value
reduces the counter, while the stall increases it. Afterwards, it adds the result of the
operation to the counter. The counter shifts the maximum mask value to the left, adding
0’s to its right. The counter’s default value is the mask’s size, resulting in an all-zero
mask at the start.

Mask

Counter

-

<<

MAX
MASK

Calculate
Mask

correction stall

+

Figure 5.21: Calculate stall mask.

The control logic module, shown in Figure 5.22, shows what happens during a read-
request. First, it stores the read address into a shift register, which holds previous
read commands’ addresses. In Section 3.3.2.5, we determined that, depending on the
frequency, it takes 17 to 30 cycles to read data from QDR memory. We use this number
to get a delay between sending the read-request and writing data back to memory. This
delay is approximately 40 cycles in total, where it stores the read address for all those
cycles. The logic in Figure 5.23 determines the following three flags:

to Kernel: The data from the cache or write-request is immediately sent to the correct
kernel in the case of a cache-hit or data received from QDR memory.

To QDR: This flag determines to send a read-command to the QDR memory. Further-
more, it inserts the same command into the busy queue. This queue contains all
current read-request that await data from the QDR memory. All requests return
sequentially, which is why a queue is optimal in this case.

To Stall: This flag determines that the kernel should stall the current read-command.
In this case, the address of the read-request previously been sent to the QDR.
However, there was no response as of yet.

Figure 5.23 shows the result of how we derived the flags using the truthtable from
Appendix A.1.1 and the Karnaugh maps in Appendix A.1.2.

CHAPTER 5. IMPLEMENTATION 83

Control
Logic

Shift Register

21 bit addressValid1,2

== == == ==

Being Handled

Wait for write Cache Hit

Determine flags

|

toStall

toQDrtoKernel

Figure 5.22: Structure of the memory com-
munication.

| | |

stallQ.valid readQ.valid handled waitForWrite

|

Cache Hit

& & &
readQ.valid

stallQ.valid
handled

toStalltoQdrtoKernel

Determine
Flags

Figure 5.23: Determining flags.

5.4.2.3 Resource Utilization

Table 5.16 shows the synthesized resource utilization for this kernel.

Kernel ALMs BLOCK MEM

QDR Communication 1,540 14

Table 5.16: Resource Utilization of the QDR communication.

5.4.3 Bloom filter

This section describes the bloom filter’s implementation discussed in Section 3.3.5.2,
which stores the matched XOR patterns.

5.4.3.1 Input & output

The bloom filter input is the QDR memory kernel data (Section 5.4.2). The input holds
the bloom filter that needs to be updated. Table 5.17 represents the input of the bloom
filter while Table 5.18 shows the different outputs of this kernel. One of the outputs is
towards the QDR memory, while the other one sends the bloom filter data to the CPU
when an overflow occurs.

Field Bits

Address 21

Source Address 32

Data 288

Table 5.17: Bloom filter input.

Field Bits

Address 21

Source Address 32

Data 288

Table 5.18: Bloom sfilter output.

CHAPTER 5. IMPLEMENTATION 84

5.4.3.2 Kernel Function

The kernel updates the bloom filter inside the QDR data. The kernel segments the 288
data bits into 72× 4-bit buckets. Figure 5.24 shows the structure of the kernel.

From QDR

Hash

% %

Read Data

Write Data

Grabs part of the
hash as indices

0

Mux

Overflowto QDR

Addition And
Overflow
detection

Addition And
Overflow
detection

Addition And
Overflow
detection

Addition And
Overflow
detection

1 i0

Source Address

288-bit

288-bit

Figure 5.24: Structure of the bloom filter.

The hashing module uses the Jenkins hash on the source address, resulting in a 32-bit
random number. This number is separated into two 16-bit chunks and are the indices
that select the buckets. Using the number in this way allows using one hash function
instead of two, reducing complexity while maintaining randomness.

Addition and overflow detection uses the logic in Algorithm 3 shows. As previously
mentioned, we first calculate the indices by taking two values, 16 − bit mod 72, from
the hash. Each bucket gets a distinct number. It compares the indices to that number
and adds that value to update the bucket. Meanwhile, a bucket overflows if the input
bucket was at its maximum value before its value increased.

The data written back to the memory contains the updated values from Algorithm 3.
During an overflow, the kernel sends a write-request containing zeros to the QDR memory
and sends the kernel’s input to the CPU to keep track of it.

5.4.3.3 Resource Utilization

Table 5.19 shows the synthesized resource utilization for this kernel.

5.4.4 QDR receiver

The QDR receiver kernel is fairly simple. After running the design for a while, we want
to see what remains inside the QDR memory. The function of this kernel is to send any

CHAPTER 5. IMPLEMENTATION 85

Input: Memory Address, Source Address, Data
Result: Changed data, current data
K = Hash(Source Address);
Indices=[];
Overflow[];
Update[];
foreach 16-bits in K do

Indices.add(ki mod 72);
end
foreach i in Buckets do

isIndice = (i in indices);
Update[i] = data[i]+isIndice;
Overflow[i] = isIndice & (data[i]==MAX);

end
Algorithm 3: Bloom filter functionality.

Kernel ALMs

Bloom filter 1,437

Table 5.19: Resource Utilization of the bloom filter.

remaining data to the CPU.

5.4.4.1 Input & output

The input to this kernel, shown in Table 5.20, is data received directly from the commu-
nication kernel (Section 5.4.2). The output of the kernel is similar. However, every field
corresponds to one that the CPU can understand. Table 5.21 shows the output, and it
adds padding so it fits the 128-bit words required for PCIe communication defined in
Section 2.4.4.3.

Field Bits

Address 21

Source Address 32

Data 288

Table 5.20: The receiver input.

Field Bits

Address 32

Source Address 32

Data 288

Padding 32

Table 5.21: The receiver output.

5.4.4.2 Kernel Function

The kernel checks whether the data from memory is not equal to zero. When the data
contains zero bits, it means that there was no data match for that specific pattern.
Otherwise, the kernel sends the data to the CPU for logging purposes.

CHAPTER 5. IMPLEMENTATION 86

5.4.4.3 Resource Utilization

Table 5.22 shows the synthesized resource utilization for this kernel.

Kernel ALMs

QDR Receiver 62

Table 5.22: Resource Utilization of the QDR receiver.

5.5 Resource cost summary

Table 5.23 shows the combined resource cost of the individual kernels. This table only
considers the individual kernel and not additional resources, such as memory FIFO
buffers required to transfer data between the kernels. Furthermore, it considers only a
single XOR computation module.

Kernel ALMs BLOCK RAM MULTs

Field cache 2,879 12 0

XOR module 10,434 0 0

XOR kernel 209 8 0

Fingerprint kernel 479 0 0

Address generator kernel 241 0 1

QDR communication 1,540 14 0

Bloom filter 1,437 0 0

QDR receiver 62 0 0

Total 17,281 34 1

Table 5.23: Resource utilization summary.

5.6 Experiments

We executed these experiments in the following fashion. We send the network packets
three times for each experiment to see if the data is consistent across iterations.

The sequence of the experiment was as follows:

• Start the design. This phase has two parts. First, it clears the QMEM by writing
zeros to it. Afterwards, it loads the network design onto the DFE.

• Reads out QMEM to see whether there was anything inside of it

• Send network data from the ‘build server’.

• Reads out QMEM to get the patterns still in memory.

• Note down the metrics. These are the patterns still inside the QMEM. We write
those to disk.

CHAPTER 5. IMPLEMENTATION 87

The design used in the experiments used 22 XOR modules instead of the 21 described
in the results. However, we do not believe there was any difference in the behaviour of
the design due to this.

When we performed the experiments, our replayed network traffic could not reach the
intended 10Gbit/s speed. The highest speed we could achieve was 238 Mbits/s which
is a small fraction of the speed. During the tests, the results of the output did vary.
However, they did not vary significantly to suspect that some patterns did not get a
turn. Therefore we did not test different network speeds.

5.6.1 Send all different XOR patterns

The first experiment was to determine what the DFE design does with multiple patterns
from different sources. In this case, we send packets with all the patterns to see which
fields get detected. From these results, we see which kind of pattern results in erroneous
data and contemplate why. Our first packet file (pcap) tests all 1, 185, 921 possible
patterns from a different source address.

(a) Below threshold. (b) Above threshold.

Figure 5.25: One pattern accross thresholds.

Figure 5.25 show the detected patterns below and above a specific threshold. We de-
termine the threshold by the number of send patterns. As we made clear in Section 5.4.3,
every match generates two points inside a bloom filter. The number of patterns we send
was 1 per packet, meaning the threshold value should be 2. Figure 5.25a shows the plot
for that scenario. Meanwhile, Figure 5.25b plots a graph where the matches exceeded
the threshold.

To make sense of that data, we use table 5.24. This table shows the number of
matches for all the number of times we experimented. From the table, we see that most
found patterns were above our threshold. However, we can also safely see that not all
patterns were detected. By only using the data below the threshold, our design detected
1, 581 patterns at most. As we send 1, 185, 921 patterns, with 1, 581 getting detected,
we have a successful pattern detection of 0.1%.

CHAPTER 5. IMPLEMENTATION 88

Trials # ranges 1 2 3

#Detected patterns 5,143 3,595.5 5,422.5

#Below threshold (2) 1,581 1,340 1,468

#Above threshold (2) 3,562 2,255.5 3,954.5

Table 5.24: Patterns found inside the first pcap file.

Additionally, there are many patterns detected above our threshold. To illustrate why
this happens, we use Table 5.25, which groups shift values of a similar range together.
From these ranges, we see that most patterns above our threshold have shift values in
higher ranges. These shift values generate more patterns as the higher the shift value,
the more likely an accidental match occurs due to more zero values being available.

Trials # ranges 1 2 3

Lower [0 - 11) 16.8% 25.8% 18.5%

Middle [11 - 22) 19.1% 9.3% 19.2%

Higher [22 - 33) 64.1% 64.9% 62.3%

Table 5.25: Percentage of hits on specific shifts above threshold.

5.6.2 Send all different XOR patterns 16 times.

The second experiment tests writing multiple patterns to disk. Furthermore, it also
functions as a backup test to see whether a higher percentage of patterns get detected.
From here, we can more easily deduce which type of pattern generates more data than
expected.

(a) Patterns below threshold 32. (b) Patterns above threshold 32.

Figure 5.26: Every pattern 16 times accross thresholds.

Figure 5.26 shows the scatterplot of data using the threshold value 32. For this
plot, we used the following assumptions. Every pattern creates two additions inside the

CHAPTER 5. IMPLEMENTATION 89

bloom filter. After the design writes a bloom filter to the disk, we should add two to the
detected patterns. This addition is to keep the overflow that causes a write to disk to
happen into account. Table 5.26 shows all found patterns divided by 2.

Trials 1 2 3

#Detected patterns 2,031,254.5 1,988,871.5 2,050,987.5

#In expected range 1,396,252.5 1,396,082 1,397,736

#Above expected range 635,002 592,789.5 653,251.5

Table 5.26: Percentage of hits on specific shift ranges.

Figure 5.26a shows everythin below the threshold. Comparing it to our previous
experiment, we see it is a lot more densely populated. Meanwhile, Figure 5.25b shows
the data points above our threshold. Using Table 5.26 we can interpret the data and
see that most patterns were actually below our established threshold, meaning more
patterns were accurately detected. We send 16 times more patterns than the previous
experiment, which is 16 × 334 = 18, 974, 736 packets in total. The maximum number
of packets below the threshold value is 1, 397, 736. Meaning, the number of detected
patterns in this scenario is 18,974,736

1,397,736 × 100% ≈ 7.37%, which is definitely higher than
before.

The patterns found outside of our threshold also show some interesting information.
Similar to Table 5.25, Table 5.27 shows an even higher number of high shift values.
This information confirms that the higher the shift values are, the more errors there are.
Furthermore, this also means that patterns with a higher shift value are less accurate.
Meaning, the number of computations could get reduced.

Trials 1 2 3

Lower [0 - 11) 11.8% 12.6% 11.6%

Middle [11 - 22) 12.8% 12.9% 12.6%

Higher [22 - 33) 75.4% 74.5% 75.8%

Table 5.27: Percentage of hits on specific shifts above threshold.

5.6.3 Send actual network traffic

In Section 2.1, we analysed network traffic picked up by the TU Delft data telescope.
This experiment sends this network traffic to the design to determine whether packets
are detected.

Table 5.28 shows the number of patterns during the trials and the source address
that caused the detection. After three runs of the experiment, there were three patterns
detected. However, the pattern in the last column is not always detected and has the
same source address as the first pattern. Therefore, we believe that it is due to an error.

The other patterns do not have this problem. However, the source addresses used for
those patterns occur more in the pcap file with many TCP retransmissions. Therefore,
we believe there might be an error in the design that limits our detection rate.

CHAPTER 5. IMPLEMENTATION 90

Shift Pattern 24, 16, 18, 20 18, 27, 23, 16 20, 16, 18, 24

Trial 1 64 62.5 17.5

Trial 2 65 63.5 0

Trial 3 64.5 40.5 0

Source address 131.180.170.231 131.180.170.37 131.180.170.231

Packets in pcap 575 475 575

Table 5.28: Recorded patterns during trials of dump-1555998151.

We tested all of the network data separately, as well as after each other. Figure 5.27
shows the patterns detected in the QMEM. In the figure we can clearly see that fig. 5.27d
and fig. 5.27e look very similar. Meanwhile, there is no unique pattern from the other
dumps inside Figure 5.27e. This discrepancy makes us believe there might be additional
errors in the design.

5.6.3.1 Errors found during experiments

During the experiments, we noticed that there were bugs in the program. First, clearing
the QMEM at the start of the experiments did not clear all memory addresses. Most
of the time, there was at least one address inside the QMEM before the experiment. In
rare cases, there were two addresses. These specific addresses were address 1 and 2.

Furthermore, when reading the QMEM, there were errors at times. One part of the
data gets cleared, while another part still contains garbage data. We assume that data
from the QMEM interfaces do not arrive in the same computing cycle in some cases. In
those cases, only part of the QMEM data gets returned.

Additionally, as we have seen in table 5.28, there are a lot more packets that remained
undetected with those specific source addresses, which means other errors inside the
design stop the code from detecting everything.

5.7 Results

This section shows the performance and utilisation of the final design.

5.7.1 Final Utilisation & Performance

The final design consists of 21 XOR modules. The performance of one module is 1, 089 op-
erations every clock-cycle at a 156.25 MHz frequency, which we found in Section 2.4.4.4.
Therefore, one module performs 170, 156.25 million (170.2 · 109)operations a second.
With 21 modules, we can perform a total of 21 × 170, 156.25 = 3, 573, 281.25 million
(3.6 · 1012) operations a second. Our initial target was 98, 826.75 operations a cycle,
which is 15, 441, 679.6875 million (15.4 ·1012) operations a second. So, our design reaches
23.14% of the target bandwidth.

To better understand the speed of the design, we compare this design to a high-end
CPU. However, it is compared purely on pattern-finding operations. As mentioned in
Section 2.3.1 a CPU performs a sequence of instructions at a higher frequency. Instead

CHAPTER 5. IMPLEMENTATION 91

(a) Patterns in dump-1528639398. (b) Patterns in dump-1537646287.

(c) Patterns in dump-1545328787. (d) Patterns in dump-1555998151.

(e) Patterns in all pcaps.

Figure 5.27: Patterns inside the pcap file.

CHAPTER 5. IMPLEMENTATION 92

of performing 1, 089 computations in one clock cycle like the FPGA, it performs multi-
ple instructions to get the same result. The algorithm requires approximately four shift
operations on a CPU, three XOR operations, and one comparison operation, totalling
eight instructions. For example, a high-end Ryzen Threadripper 3990x CPU can per-
form 541.66 operations on each clock cycle at 4.35 GHz. This performance results in
2, 356, 230 millions (2.4 · 1012) of instructions a second. Dividing those instructions by
eight for the best-case scenario results in 294, 528.75 million (0.29 · 1012) pattern-finding
operations a second. The performance increase based on only pattern-finding operations
is approximately 3, 573, 281.25/294, 528.75 ≈ 12.13 times as fast.

The best-case CPU scenario is not realistic, however. On a CPU-based system, there
is additional latency due to memory, PCIe speed, and the hosts’ network stack. The
network interface needs to store the packet in the main memory, whereafter the CPU
has to retrieve it from memory. Additionally, the operating system would add additional
cycles where it is not performing calculations. Furthermore, this is all assuming that all
instructions are executed perfectly on the parallel CPU cores.

Kernel ALMs BLOCK MEM Multipliers

Design 194,880 326 2

Percentage 54.25 12.35 0.28

Table 5.29: Design resource utilisation with 21 XOR modules.

Conclusion & Future work 6
6.1 Conclusion

In this thesis, we investigated two research questions. In this section, we provide the
answers to these questions and summarize all of our findings.

RQ1: Can FPGAs outperform conventional systems on XOR pattern detec-
tion at line rate for 10Gbit/s connections? Our original target was performing
the XOR pattern detection function at 10 Gbit/s. However, during the modelling phase
in Section 3.3, we found out that we can achieve only approximately 50% of the targetted
bandwidth using the intended brute-force method. This is because the 359, 200 LUTs on
the stratix V FPGA chip were insufficient to implement all of the necessary calculations
in the available hardware. We chose to adjust our target to get as close as possible to
the desired 10 Gbit/s.

In Section 5.7 we have shown how the FPGA can outperform a high-end CPU while
performing the computations. From Section 3.2.2 we found that performing all our
desired operations require 98, 826.75 operations a cycle. The maximum number of op-
erations we can reach with our design is 22, 869 operations a cycle, which is ≈ 23.14%
of the targetted 10 GBit/s bandwidth. However, our design with 21 modules is ≈ 12.13
times faster than a CPU implementation of the same algorithm. Furthermore, our de-
sign used only ≈ 52% of the available resources, so there is still potential to increase the
number of calculations, increasing the bandwidth we can handle.

RQ2: What are the major limitations and opportunities of FPGA accelera-
tors when implementing scanner detection? As mentioned above, we found out
that the brute-force method could not fit on the hardware fabric of the JDFE FPGA
chip. It could not because the Stratix V FPGA device does not have enough compu-
tation resources available on the chip. Our current design uses only 51% of the chip’s
resources and reaches ≈ 23.14% of the bandwidth. However, we did not test the design at
a frequency higher than 156.25 MHz. Increasing the frequency, for example, doubling it,
also doubles the number of operations. If we can meet the timing without any problems,
no additional resources are required. Otherwise, there is a cost for additional registers
and resources to meet the timing.

The resources we utilized most in our design were the LUTs. When using an FPGA
with more resources, such as the ones discussed in Section 3.3.4, it would be possible to
utilize the full 10Gbit/s bandwidth. The FPGAs in that section, the Alveo U280 and
VU9P chip, have more computational LUT resources with Xilinx UltraScale+ technology.
The Alveo U280 card contains 1, 304K, and the VU9P has 1, 182K LUTs, compared to
the 359.2K LUTs in our system. Furthermore, the U280 card uses High Bandwidth

93

CHAPTER 6. CONCLUSION & FUTURE WORK 94

Memory (HBM) technology, with approximately 36 times more bandwidth than our
DDR3 memory. With HBM, it is possible to store more fingerprint information, and
it is highly likely to give birth to hybrid solutions to finding those fingerprints, such as
discussed in Section 3.2.3.

6.2 Future Work

This section discusses future possibilities for the design and how to improve it.

6.2.1 Reduce packet traffic

The whole thesis assumes that the FPGA would receive many small packets at maximum
network speed. However, this is not realistic. We can assume that the TCP traffic
that arrives at the FPGA uses at least two-thirds of the TCP handshake mentioned in
Section 2.1. Filtering these additional packets would significantly reduce the number
of received packets. For example, the filtering keeps track of the packets based on the
network addresses and port numbers. When a packet with the same characteristics
arrives, it gets discarded. Assuming the worst-case scenario, namely, a fast SYN scan,
skipping those packets reduces the incoming TCP packets by at least half of the current
solution. Due to those packets getting skipped, there is a potential to be more operations
between different packets. So, in the best case situation, the packets’ arrival time can
be stretched to 24 clock cycles instead of 12.

6.2.2 Use onboard DDR3 memory

The current design does not utilize DDR3 memory (LMEM). One method uses a buffer
for those packets that cannot be stored on the FPGA anymore as every XOR module is
used. Storing the data in memory allows the design to validate the packets during less
busy times. Using a two-level buffer would be the best solution. Here, the first buffer
uses the fast QMEM to store a small amount of packet data. The second level uses the
LMEM, where all the data removed from the QMEM gets stored. These buffers allow for
reasonably fast fetching packet data from the first buffer, while older entries get fetched
from the second level.

6.2.3 Using multiple FPGA’s

The other method is using multiple FPGAs functioning in parallel. Additional FPGAs
increase the monetary cost but allow for the FPGA to function on 10 Gbit/s. For
example, we use two FPGA’s that each performs 592, 961 operations. That would come
down to 49, 413 operations a cycle, using the cycles between packets from Section 2.4.4.4.

6.2.4 Using more modules

In Section 5.7 we have seen our design’s resource utilization does not use all of the
resources for its 21 modules. Our design utilizes 54.25% the LUT resources, which are
194, 880 LUTs in total. In Section 5.5 we see the utilization of one XOR module is

CHAPTER 6. CONCLUSION & FUTURE WORK 95

approximately 10, 434 LUTs, which is the main source of the costs. However, we know
this does not represent the LUTs used for each module as 10, 434 · 21 > 194, 880 LUTs.
In the best-case scenario, we could use the remaining LUTs to increase the number of
these modules to two times as much. These 42 modules would then, in turn, double the
number of operations.

6.2.5 Doubling the frequency

We did not test our design on frequencies higher than 156.25MHz. However, if we double
the frequency, it could theoretically perform twice the number of operations in the same
amount of time. There are some caveats to this, however. A higher frequency means
lower retention and propagation times for data inside the design, leading to timing issues.
However, adding additional registers that result in pipeline stages in between relaxes the
timing constraints. As a tradeoff, however, it increases the designs resource utilization.

6.2.6 Using a different FPGA

As previously mentioned in our conclusion, our design was ultimately LUT dependent.
So using the Alveo U280 or VU9P chips would give us a lot more computational LUT
resources. The Alveo U280 card contains 1, 304K, and the VU9P has 1, 182K LUTs,
compared to the 359.2K LUTs in our system. Using one of these different chips would
already allow the design to perform more operations in a second. Additionally, the U280
card has High Bandwith Memory (HBM) technology, giving it up to 36 times more
bandwidth than our DDR3 memory. This type of memory would even allow for more
hybrid solutions to mining the fingerprint.

6.2.7 Compressing the packet data

Currently, the stored packet data is 128-bits in total without any compression. By
compressing the packet fields, it might be possible to store more packets in the available
memory. So, there is a possibility to store more packets in memory than initially thought.

Bibliography

[1] “Ieee standard for ethernet,” IEEE Std 802.3-2018 (Revision of IEEE Std 802.3-
2015), p. 119, Aug 2018.

[2] “Internet Protocol,” RFC 791, Sep. 1981. [Online]. Available: https://rfc-editor.
org/rfc/rfc791.txt

[3] “Transmission Control Protocol,” RFC 793, Sep. 1981. [Online]. Available:
https://rfc-editor.org/rfc/rfc793.txt

[4] C. Doerr, Network Security in Theory and Practice, 2018.

[5] S. Chikkagoudar, K. Wang, and M. Li, “Genie: A software package for gene-gene
interaction analysis in genetic association studies using multiple gpu or cpu cores,”
BMC research notes, vol. 4, p. 158, 05 2011.

[6] “High-performance alm and interconnect,” Apr 2019. [Online]. Avail-
able: https://www.intel.com/content/www/us/en/programmable/products/fpga/
features/stx-architecture.html

[7] “Jdfe.” [Online]. Available: https://www.maxeler.com/products/jdfe/

[8] “Packet flow accelerator diagnostics software,” Jan 2021. [Online]. Available:
https://www.juniper.net/documentation/us/en/software/junos/network-mgmt/
topics/topic-map/packet-flow-accelerator-diagnostics-software.html

[9] K. L. Lueth, “State of the iot 2018: Number of iot devices now at 7b –
market accelerating,” Aug 2018. [Online]. Available: https://iot-analytics.com/
state-of-the-iot-update-q1-q2-2018-number-of-iot-devices-now-7b/

[10] E. M. Hutchins, M. J. Cloppert, and R. M. Amin, “Intelligence-driven computer
network defense informed by analysis of adversary campaigns and intrusion kill
chains,” 2010.

[11] H.J.Griffioen, “Scanners, discovery of distributed slow scanners in telescope
data,” Master’s thesis, Technical University Delft, 2018. [Online]. Available:
http://resolver.tudelft.nl/uuid:dcb1669d-d81e-4aa3-bbd1-65049c3209c5

[12] G. Lyon, “Port scanning techniques: Nmap network scanning.” [Online]. Available:
https://nmap.org/book/man-port-scanning-techniques.html

[13] “Qfx5100 application acceleration switch,” Oct 2015. [Online]. Available:
https://www.juniper.net/assets/us/en/local/pdf/datasheets/1000532-en.pdf

[14] M. Dabbagh, A. J. Ghandour, K. Fawaz, W. E. Hajj, and H. Hajj, “Slow port scan-
ning detection,” in 2011 7th International Conference on Information Assurance
and Security (IAS), Dec 2011, pp. 228–233.

96

https://rfc-editor.org/rfc/rfc791.txt
https://rfc-editor.org/rfc/rfc791.txt
https://rfc-editor.org/rfc/rfc793.txt
https://www.intel.com/content/www/us/en/programmable/products/fpga/features/stx-architecture.html
https://www.intel.com/content/www/us/en/programmable/products/fpga/features/stx-architecture.html
https://www.maxeler.com/products/jdfe/
https://www.juniper.net/documentation/us/en/software/junos/network-mgmt/topics/topic-map/packet-flow-accelerator-diagnostics-software.html
https://www.juniper.net/documentation/us/en/software/junos/network-mgmt/topics/topic-map/packet-flow-accelerator-diagnostics-software.html
https://iot-analytics.com/state-of-the-iot-update-q1-q2-2018-number-of-iot-devices-now-7b/
https://iot-analytics.com/state-of-the-iot-update-q1-q2-2018-number-of-iot-devices-now-7b/
http://resolver.tudelft.nl/uuid:dcb1669d-d81e-4aa3-bbd1-65049c3209c5
https://nmap.org/book/man-port-scanning-techniques.html
https://www.juniper.net/assets/us/en/local/pdf/datasheets/1000532-en.pdf

BIBLIOGRAPHY 97

[15] Chunmei Yin, Mingchu Li, Jianbo Ma, and Jizhou Sun, “Honeypot and scan de-
tection in intrusion detection system,” in Canadian Conference on Electrical and
Computer Engineering 2004 (IEEE Cat. No.04CH37513), vol. 2, May 2004, pp.
1107–1110 Vol.2.

[16] A. Dainotti, A. King, K. Claffy, F. Papale, and A. Pescapé, “Analysis of a “/0”
stealth scan from a botnet,” IEEE/ACM Transactions on Networking, vol. 23, no. 2,
pp. 341–354, 2015.

[17] I. Xilinx, “Ultrascale architecture configurable logic block,” Feb 2017. [On-
line]. Available: https://www.xilinx.com/support/documentation/user guides/
ug574-ultrascale-clb.pdf

[18] ——, “Ultrascale+ fpga product tables and product selection guide.” [Online].
Available: https://www.xilinx.com/support/documentation/selection-guides/
ultrascale-plus-fpga-product-selection-guide.pdf

[19] Mike Wissolik, Darren Zacher, Anthony Torza, and Brandon Day, “Virtex
ultrascale+ hbm fpga: A revolutionary increase in memory performance,”
July 2019. [Online]. Available: https://www.xilinx.com/support/documentation/
white papers/wp485-hbm.pdf

https://www.xilinx.com/support/documentation/user_guides/ug574-ultrascale-clb.pdf
https://www.xilinx.com/support/documentation/user_guides/ug574-ultrascale-clb.pdf
https://www.xilinx.com/support/documentation/selection-guides/ultrascale-plus-fpga-product-selection-guide.pdf
https://www.xilinx.com/support/documentation/selection-guides/ultrascale-plus-fpga-product-selection-guide.pdf
https://www.xilinx.com/support/documentation/white_papers/wp485-hbm.pdf
https://www.xilinx.com/support/documentation/white_papers/wp485-hbm.pdf

Appendix A
A.1 QDR logic

A.1.1 Truth table

98

APPENDIX A. APPENDIX 99

re
a
d

Q
.v

a
li
d

st
a
ll
Q

.v
a
li
d

w
a
it

F
o
rW

ri
te

h
a
n

d
le

d
c
a
ch

e
-h

it
to

K
e
rn

e
l

to
S

ta
ll

to
Q

D
R

0
0

0
0

0
0

0
0

0
0

0
0

1
0

0
0

0
0

0
1

0
0

0
0

0
0

0
1

1
0

0
0

0
0

1
0

0
0

0
0

0
0

1
0

1
0

0
0

0
0

1
1

0
0

0
0

0
0

1
1

1
0

0
0

0
1

0
0

0
0

0
1

0
1

0
0

1
1

0
0

0
1

0
1

0
0

0
1

0
1

0
1

1
1

0
0

0
1

1
0

0
0

0
1

0
1

1
0

1
1

0
0

0
1

1
1

0
0

0
1

0
1

1
1

1
1

0
0

1
0

0
0

0
0

0
1

1
0

0
0

1
1

0
0

1
0

0
1

0
0

0
1

1
0

0
1

1
0

1
0

1
0

1
0

0
0

0
1

1
0

1
0

1
1

0
0

1
0

1
1

0
0

1
0

1
0

1
1

1
0

1
0

1
1

0
0

0
x

x
x

1
1

0
0

1
x

x
x

1
1

0
1

0
x

x
x

1
1

0
1

1
x

x
x

APPENDIX A. APPENDIX 100

1
1

1
0

0
x

x
x

1
1

1
0

1
x

x
x

1
1

1
1

0
x

x
x

1
1

1
1

1
x

x
x

T
ab

le
A

.1
:

Q
D

R
lo

gi
c

tr
u

th
ta

b
le

.

APPENDIX A. APPENDIX 101

A.1.2 Karnaugh Maps

To get the most optimal function, we used a truth table which can be found in Ap-
pendix A.1.1. In the karnaugh maps, we use the follwoing symbols for the flags:

X0 is handled

X1 is cache-hit

X2 is stallQ.valid

X3 is waitForWrite

X4 is readQ.valid

X0X1

X2X3

X0X1

X4= 0 X4= 1

00 01 11 10 00 01 11 10

00

01

11

10 1 1

1 1

1 1

1

- - --

- - --

0 0 00

0 0 00

0 0

0 0

0 0

0 00

Figure A.1: To QDR.

X0X1

X2X3

X0X1

X4= 0 X4= 1

00 01 11 10 00 01 11 10

00

01

11

10 1 1

1 1

1

1

- - --

- - --

0 0 00

0 0 00

0 0

0 0

0 00

0 00

Figure A.2: To Kernel.

APPENDIX A. APPENDIX 102

X0X1

X2X3

X0X1

X4= 0 X4= 1

00 01 11 10 00 01 11 10

00

01

11

10

1

11

- - --

- - --

0 0 00

0 0 00

0 0 00

0 0 00

0 0 0

0 0

Figure A.3: To Stall.

	List of Figures
	List of Tables
	Introduction
	Scanners
	Scanner Detection
	Outline Thesis

	Background information
	Network traffic
	Open Systems Interconnection model
	The Physical and Link layer
	Network Layer
	Transport Layer

	Scanners explained
	Origin
	Scan types
	Scanning Strategies
	Scan detection

	Field Programmable Gate Arrays
	Speed vs Flexibility
	Resources

	Dataflow Engines
	Dataflow computing
	Development tools
	FPGA development Cycle
	Off-chip Resources

	Algorithm and Performance
	Scan detection methods
	Connection based
	Honeypot
	XOR Patterns

	XOR detection methods
	Exclusive-OR operation
	Brute-force
	Related packets

	Performance model
	Limits
	Burst of memory
	Brute-force scaling
	Adjusting our target
	Storing fingerprints

	Setup configuration
	Build server configuration.
	Connect to server
	Interface Configuration
	Recovering the server
	Altera license

	Juniper QFX5100
	Current Configuration
	Connect to the switch
	How to change the switch configuration

	Maxeler Tools
	The DFE design bitstream
	The CPU implementation
	Juniper VM
	Maxeler Licenses

	Implementation
	Overview
	Traffic Parser
	Network & Ethernet
	Field Cache

	Pattern finding
	XOR Function
	Fingerprint Kernel

	Memory Communication
	Address Generation
	Quad Data Rate Memory Communication
	Bloom filter
	QDR receiver

	Resource cost summary
	Experiments
	Send all different XOR patterns
	Send all different XOR patterns 16 times.
	Send actual network traffic

	Results
	Final Utilisation & Performance

	Conclusion & Future work
	Conclusion
	Future Work
	Reduce packet traffic
	Use onboard DDR3 memory
	Using multiple FPGA's
	Using more modules
	Doubling the frequency
	Using a different FPGA
	Compressing the packet data

	Appendix
	QDR logic
	Truth table
	Karnaugh Maps

