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Abstract
Sample selection bias is a well-known problem
in machine learning, where the source and tar-
get data distributions differ, leading to biased pre-
dictions and difficulties in generalization. This
bias presents significant challenges for modern ma-
chine learning algorithms. To tackle this prob-
lem, researchers have focused on developing do-
main adaptation techniques that aim to create ro-
bust methods against sample selection bias. One
approach is the use of minimax estimation tech-
niques, which belong to the category of inference-
based techniques. Despite the extensive research in
developing these domain adaptation methods, there
remains a critical need to evaluate their perfor-
mance. This thesis explores the performance dif-
ferences of various minimax estimation techniques
in the presence of sample selection bias, provid-
ing insights into their effectiveness in mitigating the
challenges posed by biased data. By understanding
and evaluating the performance of these techniques,
this research contributes to the advancement of do-
main adaptation methods and their application in
real-world machine learning scenarios.

1 Introduction
The field of machine learning has witnessed tremendous ad-
vancements in recent years, with applications ranging from
image recognition to natural language processing. However,
one persistent challenge that hampers the performance and
generalization of machine learning algorithms is sample se-
lection bias. This phenomenon occurs when the training and
test data come from different distributions, leading to biased
predictions and limitations in the algorithm’s ability to adapt
to new domains. Addressing sample selection bias is crucial
for ensuring the robustness and reliability of machine learn-
ing models in real-world scenarios.

Sample selection bias poses unique challenges in machine
learning. The biased data distribution can result in models
that are trained on incomplete or distorted information, lead-
ing to suboptimal performance when deployed in different
contexts. This issue is particularly relevant in domains where
collecting comprehensive and unbiased training data is chal-
lenging or expensive. Therefore, it is imperative to develop
techniques that can effectively mitigate the impact of sample
selection bias on machine learning models.

Numerous research efforts have been devoted to under-
standing and mitigating the effects of sample selection bias
in machine learning. Existing literature has explored vari-
ous approaches, including domain adaptation techniques that
aim to create models robust to biased data [3][4][6][7][8].
These techniques focus on adapting models to perform well
on target domains that differ from the source domain. No-
tably, minimax estimation techniques, such as the Robust
Bias Aware classifier (RBA)[8] and the Target Contrastive
Pessimistic Risk Classifier (TCPR)[6], have shown promise
in addressing sample selection bias.

While considerable progress has been made in developing
domain adaptive models and minimax estimation techniques,
several unanswered questions remain. It is essential to crit-
ically evaluate the effectiveness of these techniques in the
presence of sample selection bias. Previous studies have pri-
marily focused on theoretical aspects and algorithmic design,
but the practical evaluation of these models in real-world sce-
narios is limited. Therefore, there is a pressing need to bridge
this gap by empirically testing the performance of minimax
estimation techniques and assessing their suitability for miti-
gating sample selection bias.

The main research question of this thesis is: ”How effec-
tive are minimax estimation techniques in mitigating sam-
ple selection bias?” To answer this question, we will inves-
tigate several subquestions, including the comparison of min-
imax estimation techniques with traditional supervised learn-
ing methods in the presence of sample selection bias, the anal-
ysis of how different types of sample selection bias impact
the performance of minimax estimation techniques, and the
examination of how hyperparameters influence the effective-
ness of these techniques in mitigating sample selection bias.

The primary contribution of this research is a comprehen-
sive understanding of the effectiveness of minimax estima-
tion techniques, particularly RBA and TCPR, in mitigating
sample selection bias and the factors that impact their perfor-
mance in domain adaptation. By empirically evaluating these
techniques and addressing the unanswered questions, we aim
to provide insights that can enhance the practical applicability
of minimax estimation methods in real-world machine learn-
ing scenarios.

The remainder of this paper is structured as follows: In
Section 2, we provide a detailed description of the research
methodology, including data generation, model selection, and
evaluation framework. Section 3 presents the experimen-
tal setup and provides pseudocode explanations. Next, we
present our findings and discuss their implications in Section
4. Section 5 focuses on Responsible Research practices. Fi-
nally, we conclude by summarizing our contributions, dis-
cussing the results, and providing recommendations for fu-
ture research in Section 6.

2 Research Methodology
In this section, we present the research methodology em-
ployed in our study, which encompasses various aspects such
as data generation, model selection, and the evaluation frame-
work. A robust and well-designed methodology is crucial
for conducting reliable and informative experiments, ensur-
ing the validity and integrity of our findings.

2.1 Data generation
Two different datasets were utilized for experimentation: the
make moons dataset from the sklearn.datasets library and the
breast cancer dataset from the UCI machine learning reposi-
tory

2.1.1 Make moons dataset
The make moons dataset served as the primary dataset for
most of our experiments. It is a two-dimensional dataset that



Figure 1: Visualisation of the make moons dataset with
n samples=1000, noise=0.1

enables easy visualization of the created bias. The dataset has
two important parameters:

• Noise: This parameter controls the amount of random
noise added to the data points. It allows us to introduce
variability into the dataset, making it more realistic and
challenging.

• n samples: This parameter determines the total number
of samples generated in the dataset. It provides flexibil-
ity in controlling the dataset size.

The make moons dataset offers several benefits for our exper-
imentation:

• Two-dimensional nature: The dataset’s simplicity al-
lows us to clearly observe and analyze the biases intro-
duced.

• Control over noise and sample size: By adjusting the
noise and n samples parameters, we can create various
scenarios to study the impact of bias on classification
performance.

Figure 1 illustrates the ”make moons” data-set.

2.1.2 UCI breast cancer dataset
The breast cancer dataset consists of 30 features that de-
scribe various characteristics of breast cancer tumors. It is
a high-dimensional dataset widely used in machine learning
research.

2.1.3 Data Partitioning
To conduct our experiments, we partitioned the data into three
sets:

• Unlabeled set: This set represents the global domain,
which comprises 50% of the overall data.

• Train set: This set represents the source domain, com-
prising 30% of the overall data. The experiments con-
ducted introduced a bias on this dataset. The biased
dataset was then used to train the selected models.

• Test set: This set represents the target domain, consist-
ing of 20% of the initial data. We utilized this set to
evaluate the performance of the classifiers trained on the
biased source domain data. The train and test sets have

Figure 2: Splitting data into test, training, and unlabeled set. The
data is split into unlabeled (50%), train (30%), and test (30%) sets
by making use of the train test split function from sklearn library

different distributions since a bias was induced in the
train set.

Figure 2 illustrates the data split, providing a visual represen-
tation of the partitioning process.

2.2 Model Selection
In the context of model selection, we will work on two do-
main adaptation models for addressing sample selection bias:
the Robust Bias Aware classifier (RBA) [8] and the Target
Contrastive Pessimistic Risk estimator (TCPR) [6]. In the fol-
lowing subsections we will discuss these classifiers in detail
along with their parameters.

2.2.1 Robust Bias Aware Classifier
The Robust Bias-Aware (RBA) classifier is a minimax esti-
mator designed to address sample selection bias in domain
adaptation. It operates within a minimax estimation frame-
work, aiming to minimize the risk for one classifier while an
adversary maximizes the risk using another classifier. How-
ever, to ensure convergence and avoid divergent behavior, the
adversary is constrained to select posteriors that align with
the moments of the source domain’s feature statistics. This
constraint encourages the optimization process to capture the
underlying distribution of the source domain.

The RBA classifier is controlled by several hyperparam-
eters that influence its behavior. These hyperparameters in-
clude:

• L2 Regularization (l2): Controls regularization
strength for preventing overfitting.

• Order of Feature Statistics (order): Determines the
feature moment order used by the classifier.

• Decaying Learning Rate (gamma): Adjusts the step size
during optimization for refined adjustments.

• Convergence Threshold (tau): Defines the minimum
gradient change required for convergence.

• Maximum Iterations (max iter): Sets the maximum
number of optimization iterations.

• Weight Clipping (clip): Limits the range of impor-
tance weights to stabilize training.



These hyperparameters enable customization and fine-
tuning of the RBA classifier according to the specific domain
adaptation task and dataset. By appropriately adjusting these
parameters, practitioners can control the regularization, opti-
mization process, and convergence behavior of the RBA clas-
sifier, leading to improved performance and adaptability.

2.2.2 Target Contrastive Pessimistic Risk (TCPR)
The Target Contrastive Pessimistic Risk (TCPR) estimator is
a minimax estimator specifically designed for domain adapta-
tion tasks. Its primary focus is on improving the performance
of the target classifier compared to the source classifier by
contrasting their empirical target risks. By considering the
difference in risks between the source and target classifiers,
the TCPR estimator effectively excludes parameter settings
that are known to produce worse risks than those of the source
classifier. Formally, the TCPR estimator is defined as follows:

ĥT = arg min
h∈H

max
q

1

m

m∑
j=1

(
ℓ(h(zj), qj)− ℓ(ĥS(zj), qj)

)
(1)

The performance and effectiveness of the TCR estimator
can be influenced by the selection of its parameters. In the
context of TCR, some of the important parameters to consider
are:

• Loss Function (str ’loss’): Determines how the
classifier’s performance is measured and optimized.

• L2-Regularization Parameter (float ’l2’): : Con-
trols the model’s complexity and generalization capabil-
ity.

• Maximum Number of Iterations (int ’max iter’):
Influences convergence and computational time.

• Convergence Tolerance (float ’tolerance’): Sets
the criterion for stopping the optimization process.

• Learning Rate (float
’learning rate’):Determines the step size of
parameter updates during optimization.

• Learning Rate Decay (str ’rate decay’): Defines
the adjustment of the learning rate over time.

2.3 Evaluation
To answer the research question ”How effective are mini-
max estimation techniques in the presence of sample selec-
tion bias?”, we designed a comprehensive evaluation frame-
work consisting of three subquestions. In this section, we dis-
cuss our approach to answering these subquestions and eval-
uating the performance of machine learning classifiers under
sample selection bias.

2.3.1 Comparison with traditional ML models
To answer the first subquestion, we compared the perfor-
mance of our chosen minimax estimation techniques, Ro-
bust Bias Aware classifier (RBA) and Target Contrastive Pes-
simistic Risk Classifier (TCPR), with traditional supervised
learning methods. Specifically, we selected logistic regres-
sion as a linear classifier and support vector machine (SVM)
with the radial basis function (RBF) kernel as a non-linear

classifier. Initially, all classifiers were trained on unbiased
data and tested using a test set which had the same distri-
bution as the train set. Subsequently, we introduced sample
selection bias into the training data and retrained the classi-
fiers. By comparing their performances on the test set, which
this time had a different distribution to that of the train set due
to the biasing step on the train data, we assessed the impact
of sample selection bias on these models.

2.3.2 Evaluation under Different Types of Bias
To answer the second subquestion, we conducted experiments
to assess the performance of RBA and TCPR under different
types of biases. We considered four types of biases:

1. Survivorship bias: Survivorship bias arises when the
dataset only includes certain instances that meet specific
criteria, leading to biased representation. We incorpo-
rated survivorship bias into the data and analyzed its im-
pact on the classifiers.

2. Covariate shift: Covariate shift refers to a change in the
input feature distribution between the source and target
domains. We simulated covariate shift by modifying the
distribution of input features, introducing a discrepancy
between the training and test data. We assessed the mod-
els’ performance under this type of bias.

3. Class imbalance: Class imbalance bias occurs when
the data points are sampled in a way that creates an un-
equal distribution of classes, with one class having sig-
nificantly fewer instances compared to the other. We in-
troduced class imbalance into the data and examined its
effect on the classifiers’ performance.

By systematically evaluating the classifiers under these dif-
ferent types of biases, we gained insights into the robust-
ness and effectiveness of RBA and TCPR in handling various
real-world scenarios. The analysis allowed us to understand
the impact of different biases on the classifiers’ performance
and identify any specific challenges associated with each bias
type.

2.3.3 Evaluation Metrics
To ensure a comprehensive assessment of the classifiers’ per-
formance, we employed three evaluation metrics: F1-score,
log loss, and Area Under ROC curve (AUC).

The F1-score provides a balanced measure of precision and
recall, capturing the classifier’s accuracy on both positive and
negative instances.

Log loss assesses the probability estimates generated by
the classifier, penalizing inaccurate predictions.

AUC measures the classifier’s ability to distinguish be-
tween positive and negative instances across different thresh-
old settings. By using multiple evaluation metrics, we ob-
tained a holistic view of the classifiers’ performance under
sample selection bias.

In Section 3, we provide detailed descriptions of the exper-
imental methodology, including the data generation process,
model training procedures, and the specific evaluation frame-
work employed to address the research questions outlined in
this section.



(a) (b)

Figure 3: Visualization of the source domain before (a) and after (b) inducing covariate shift. The source and target domains are the same in
(a), while (b) represents the source domain with introduced covariate shift.

(a) (b) (c)

Figure 4: Box Plots illustrating the impact of training on unbiased and covariate-shifted source domain on the prediction performance of
RBA, LR, and SVM classifiers. Evaluation metrics include Log-loss (a), AUC-ROC score (b), and F1-score (c).

3 Experimental Setup and Results
In this section, we discuss the setup of the experiments con-
ducted to test the performance of RBA and TCPR compared
to Logistic Regression and SVM. We provide the pseudocode
for different parts of the experiments and visualize the effect
of inducing different biases on the data. Finally, we compare
the results of different classifiers.

The data used in all experiments was partitioned follow-
ing the procedure described in section 2.1.3. The data was
split into unlabeled, train, and test sets, where the unlabeled
set represents the global domain, the train set represents the
source domain, and the test set represents the target domain.
Bias was induced only on the train set, creating different dis-
tributions between the source and target domains.

3.1 Covarite Shift
The first experiment focuses on inducing a covariate shift in
the data using the make moons dataset with n samples = 1000
and noise = 0.1.

In the experiment, we followed a specific procedure to in-
vestigate the impact of covariate shift on the performance
of different classifiers. Initially, the dataset was split into
unlabeled, train, and test sets using the predefined splitting
scheme. The classifiers were then trained on the unbiased

source data, where no bias was induced, and their perfor-
mance was evaluated on the target data. Since the source
and target domains had the same distribution at this stage,
the evaluation provided a baseline measure of classifier per-
formance.

To induce bias, we introduced a shift in the source domain
by altering the values of the first feature for all data points.
By applying a fixed shift value, we created a discrepancy be-
tween the source and target domains, resulting in different
distributions. Next, the classifiers were retrained using the
shifted source domain, and their performance was once again
evaluated on the target data. This allowed us to assess how
the introduced covariate shift affected the classifiers’ ability
to generalize to the target domain.

To account for the variability in results, the entire process
was repeated 100 times with random splits of the data. The
performance metrics for each classifier on biased and unbi-
ased data were stored separately in lists. Finally, we visu-
alized the results using box plots, enabling a comprehensive
comparison of the classifier performance on biased and unbi-
ased data.

Algorithm 1 provides a clear outline of the steps taken to
induce covariate shift by shifting the source data. This algo-
rithm serves as a reference to understand the specific proce-



dure employed for introducing bias in the source domain.
Figure 3 visually illustrates the effect of covariate shift on

the source data. As depicted in the figure, the shift causes the
source data to shift towards the right, thereby creating a no-
ticeable difference in the distribution compared to the original
data.

By referring to Algorithm 1 and examining Figure 3, one
can gain a comprehensive understanding of the method used
to induce covariate shift and observe its impact on the source
data.

Experiments were conducted using three different evalua-
tion metrics and the performance of RBA, LR, and SVM on
both biased and unbiased data was analyzed.

Initially, when trained on the source domain with the same
distribution as the target domain, RBA exhibited the worst
performance compared to Logistic Regression and SVM.
However, when we introduced covariate shift in the source
data and retrained the classifiers, the results were striking.
RBA demonstrated remarkable adaptability to the domain
shift, outperforming both LR and SVM. In fact, it trans-
formed from the worst performing classifier on unbiased data
to the best performing classifier when trained on source data
with a different distribution than the target data.

These findings highlight the robustness and effectiveness
of RBA in handling covariate shift scenarios. The detailed
results are presented in Figure 4, which showcases box plots
illustrating the performance of the classifiers across different
evaluation metrics.

Algorithm 1 Covariate Shift

Require: Xtrain

shift value← 2.0
Xtrain biased[:, 0]← Xtrain[:, 0] + shift value
return Xtrain biased

It is worthy to note that one of the minimax classifiers un-
der investigation, TCPR, is omitted from the results. This is
becasue the implementation of TCPR we used for our exper-
iments continue to throw an Assertion error during the train-
ing.

3.2 Survivorship bias
This section provides a detailed overview of the experimental
setup and procedure used to evaluate the performance of min-
imax methods in the presence of survivorship bias. The aim
of this study was to investigate the impact of sample size and
bias on the classification performance, employing the make
moons dataset with a noise level of 0.1.

To investigate the relationship between sample size and
classification performance, the sample size parameter of the
make moons dataset was systematically varied from 100 to
3000, with a step size of 100. The noise level was set to 0.1
to introduce some variability in the data.

For each sample size, the following steps were performed
10 times to ensure the reliability of the results:

1. The make moons dataset was split into unlabeled, train,
and test sets as described in figure 2. This procedure

ensured that the distribution of the data remained con-
sistent throughout the experiments.

2. Four types of classifiers were employed in this study:
minimax classifiers (TCPR and RBA) and traditional
classifiers (Logistic Regression and SVM). Initially,
these classifiers were trained on the unbiased source data
and evaluated on the target data, which shared the same
distribution as the source data since no bias was intro-
duced. The resulting scores were recorded in separate
lists for each classifier.

3. To introduce survivorship bias, the classifiers were sub-
sequently trained on biased source data. Samples from
the train set were only chosen if the value for feature 0
was less than -0.5 or greater than 1.5 in order to obtain a
biased train set. The biasing procedure is detailed further
as pseudocode in Algorithm2. After training, the classi-
fiers were tested on the target data, which now exhibited
a different distribution due to the introduced bias. The
resulting scores were once again stored in separate lists
for each classifier.

The collected scores from each experiment were utilized to
calculate the mean and standard deviation for each classifier
at each sample size, considering both the biased and unbiased
scenarios. These statistical measures provided insights into
the average performance and the variability of the classifiers
under different conditions.

The mean scores and standard deviations were plotted, as
depicted in Figure 6, allowing for a visual examination of
how the classifiers’ performance was affected by sample size
and survivorship bias. The results provided insights into the
behavior and effectiveness of the minimax methods and tradi-
tional classifiers in the presence of survivorship bias and shed
light on the influence of varying sample sizes.

Based on the analysis of Figure 6, the performance of the
RBA, SVM, and LR classifiers in the experiment described
above is examined with respect to the change in performance
as sample size increases, both when trained on biased and
unbiased source data.

Algorithm 2 Survivorship bias

Require: Xtrain, Ytrain

indices← emptylist
n← size(Xtrain)
for i = 0 to n− 1 do

if Xtrain[i, 0] < −0.5 OR Xtrain[i, 0] > 1.5 then
append i to the end of indices

end if
end for
Xtrain biased ← Xtrain[indices]
Ytrain biased ← Ytrain[indices]
return Xtrain biased, Ytrain biased

The results show a common trend among all three classi-
fiers: as the sample size increases, the variance (standard de-
viation) of their performances decreases. This is evident from
the decreasing size of the vertical bars in the graph. Initially,
when the sample size is relatively small, the vertical bars are
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Figure 5: Visualization of the source domain before (a) and after (b) inducing survivorship bias.

(a) (b) (c)

Figure 6: Impact of increasing sample size and survivorship bias on the performance of classifiers (F1-score). (a) presents the performance
of RBA, (b) displays the performance of LR, and (c) illustrates the performance of SVM.

larger, indicating higher variability in the classifier’s perfor-
mance. However, as the sample size increases, the vertical
bars become smaller, indicating reduced variability.

This decrease in variance with increasing sample size is
expected since larger sample sizes reduce the sensitivity to
individual samples and lower the chances of overfitting. It
suggests that the classifiers become more robust and stable as
more data becomes available for training.

One noteworthy observation is the performance of the RBA
classifier. On average, as the sample size increases, its per-
formance remains relatively consistent. This suggests that
the RBA classifier can achieve comparable performance even
with smaller training data. However, when trained on biased
data, the RBA classifier shows a drop in its prediction score.
Notably, the magnitude of this decrease is the smallest among
the three classifiers.

Comparatively, the SVM classifier exhibits a significant
drop in its prediction ability when trained on biased data,
while the LR classifier also shows a considerable decrease
in prediction F1 score.

From this information, we can conclude that the RBA clas-
sifier demonstrates a relatively consistent performance as the
sample size increases, indicating its robustness to limited
training data. Additionally, when faced with survivorship
bias, the RBA classifier shows the smallest decrease in pre-
diction score compared to the SVM and LR classifiers. This

suggests that the RBA classifier is more resilient to the intro-
duced bias and could be a preferred choice when dealing with
survivorship bias in classification tasks.

Due to its unpredictable behavior and consistent Assertion
errors during random data splits, the TCPR classifier was ex-
cluded from the analysis and results presented in Figure 6.

3.3 Class imbalance
In this section, we aim to evaluate the effectiveness of min-
imax estimation techniques in the presence of class imbal-
ance and explore the impact of increasing dimensions on the
classifiers’ performance. For our experiments, we utilize the
well-known breast cancer dataset from the UCI library.

The breast cancer dataset consists of 30 features, and to
examine the classifiers’ behavior in lower dimensions, we
employed a dimensionality reduction technique called Princi-
pal Component Analysis (PCA). PCA is a method that trans-
forms high-dimensional data into a lower-dimensional rep-
resentation while preserving the most important information
and capturing the underlying structure of the data [5].

To assess the influence of class imbalance and the number
of dimensions on the classifiers, we follow these steps:

1. We split the data into unlabeled, source, and target sets
using the splitting technique depicted in Figure 2. By
performing the data split before the dimensionality re-
duction step, we ensure that no information leaks from
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Figure 7: Effect of increasing number of dimensions and class imbalance on the performance of classifiers. (a) RBA, (b) Logistic Regression,
and (c) SVM.

the target set during the reduction process.

2. After the data is split, we apply PCA to reduce the di-
mensions of all three sets: unlabeled, source, and target.

3. Subsequently, we train the classifiers on both the biased
source data, characterized by class imbalance, and the
unbiased dataset with balanced classes. The class im-
balance is induced by sampling the benign class (label
0) nine times more frequently than malignant class data
points. This setup enables us to examine how the classi-
fiers cope with imbalanced class distributions.

4. To ensure robustness of our findings, we repeat the train-
ing process 10 times for each dimension, maintaining the
same class biasing probabilities. We then average the re-
sults of the classifiers’ performance.

The performance plots in Figure 7 illustrate the impact of
class imbalance and increasing dimensions on the classifiers.

SVM performs well when the classes are balanced, ex-
hibiting consistent scores as the number of dimensions in-
creases. However, its performance significantly deteriorates
when faced with imbalanced classes. The classifier struggles
to maintain consistent performance, as shown by the fluctuat-
ing average score with increasing dimensions.

LR demonstrates good performance in both the balanced
and unbalanced cases, with only a slight drop in f1-score ob-
served in the presence of class imbalance. Furthermore, LR
exhibits consistent scores as the number of dimensions in-
creases, indicating its ability to handle high-dimensional data
effectively.

RBA stands out by delivering remarkable performance in
both the unbalanced and balanced cases. It showcases min-
imal performance drop even when trained on imbalanced
source data. Notably, RBA maintains consistent performance
as the number of dimensions increases. This robust behavior
of the RBA classifier underscores its effectiveness in handling
class imbalance and increasing dimensions.

3.4 Parameter Analysis of minimax estimators
In this section, we will outline the experimental design used
to test the effect of parameters in RBA in the presence of sam-

ple selection bias. Specifically, we focused on two parame-
ters: the max iter parameter and the learning rate.

3.4.1 Dataset and Biasing Procedure
For this experiment, we utilized the breast cancer dataset. To
introduce sample selection bias, we biased the values of the
third feature in the data by adding a constant value of 30. This
biasing procedure was applied to each data point.

3.4.2 Parameter Exploration
We conducted experiments to investigate the impact of differ-
ent values of the learning rate parameter on the classifier’s
performance. We tested four learning rate values: 0.0001,
0.001, 0.005, and 1.0. Each learning rate value was evaluated
separately, and the resulting scores were plotted on the same
graph for comparison.

For the max iter parameter, we tested the classifier’s per-
formance using values ranging from 20 iterations to 1000 it-
erations with a step size of 20 iterations. The experiment was
repeated 10 times for each max iter value.

3.4.3 Experimental Procedure
For each max iter value, the following steps were repeated 10
times:

1. Random Data Split: The dataset was randomly split us-
ing the procedure described in Figure 2. This ensured
the variability of the data samples in each iteration.

2. Classifier Training: We trained the RBA classifier on the
biased data using the biasing procedure mentioned ear-
lier, with the corresponding parameter combination (one
of the four learning rate values and the current max iter
value).

3. Performance Evaluation: The trained classifier was then
evaluated on target data, which belonged to a different
domain. This evaluation assessed the classifier’s ability
to generalize and classify unseen samples accurately.

The scores obtained from the 10 repetitions were averaged
to provide a representative performance measure for each pa-
rameter combination.

The average scores obtained were plotted against
themax iter values, with four distinct plot lines representing
the four different learning rate values (Figure 8).



Figure 8: Impact of increasing max iter parameter and different
learning rates (0.0001, 0.001, 0.005, 1.0) on the performance (F1
score) of RBA when trained on source data with covariate shift.

3.4.4 Results
The RBA classifier demonstrated rapid adaptation across all
four learning rate values, as evidenced by a sharp increase
in accuracy from max iter = 20 to max iter = 40 for each
learning rate.

After reaching a certain point, increasing the max iter
value did not yield significant improvements in classification
performance. The classifier’s accuracy appeared to plateau,
suggesting diminishing returns beyond a certain number of
iterations.

The learning rate parameter did not exhibit a substantial
impact on the classifier’s performance. The classification ac-
curacy remained relatively consistent across the four learn-
ing rate values, indicating that the learning rate parameter
did not significantly affect the classifier’s ability to adapt and
generalize.

Based on these observations, we can conclude that the
RBA classifier demonstrates efficient adaptation to the pres-
ence of sample selection bias. However, the performance im-
provement plateaus beyond a certain number of iterations,
and the choice of learning rate does not have a substantial
impact on the classifier’s performance in this experimental
setup.

4 Responsible Research
This study has been committed to upholding the principles of
responsible research and ethical conduct throughout its dura-
tion. This section aims to provide an overview of the ethical
considerations and measures taken to ensure the reproducibil-
ity of the methods employed.

4.1 Ethical Considerations
During the course of this research, ethical considerations have
been paramount in guiding the design, implementation, and
reporting of the study. The principles outlined in the [1]
have served as a fundamental framework for upholding ethi-
cal standards in this research project. Adhering to the princi-

ples of honesty, reliability, and respect for research subjects
and participants has been of utmost importance.

Moreover, the case of Diederik Stapel [2] serves as a
stark reminder of the consequences of research misconduct.
Stapel’s fraudulent practices, where he fabricated data for
multiple publications, emphasize the need for vigilance in
maintaining scientific integrity and ethical conduct. By learn-
ing from such cases, we are reminded of the significance of
adhering to rigorous research practices and the responsibility
we bear as researchers to maintain the highest ethical stan-
dards.

4.2 Reproducibility of Methods
Ensuring the reproducibility of research methods is a fun-
damental aspect of scientific inquiry. Reproducibility al-
lows for the validation and verification of findings, promotes
transparency, and facilitates the advancement of knowledge
through cumulative research efforts. As emphasized by the
Yale Law School Roundtable on Data and Code Sharing [9],
the ability to reproduce computational results is crucial in the
face of technological advancements and evolving scientific
landscapes.

4.3 Open Science and Data Sharing
In line with the principles of open science, I believe in the
importance of making research findings accessible to the
scientific community and the public. Whenever possible and
appropriate, I have shared my datasets, code, and analysis
scripts to facilitate reproducibility and promote further
exploration and collaboration. By sharing these resources, I
aim to contribute to the collective knowledge and encourage
the robustness of scientific inquiry.

Conducting responsible research involves a commitment to
ethical principles, meticulous data management, methodolog-
ical rigor, and the promotion of reproducibility. By adher-
ing to these principles and practices, I have strived to ensure
the integrity, transparency, and reliability of the research pre-
sented in this thesis.

5 Discussion
The results obtained from these experiments highlight the
strengths and limitations of RBA as a minimax classifier.
RBA exhibited robustness and adaptability in the presence
of covariate shift, survivorship bias, and class imbalance.
Its ability to effectively handle domain shifts and adapt to
changes in the underlying data distribution makes it a promis-
ing choice for real-world applications where data distribu-
tions may vary over time or across different domains.

Furthermore, RBA demonstrated resilience to survivorship
bias, which is a common issue in many classification tasks
where certain samples are missing due to various factors. The
classifier’s performance remained relatively stable even when
trained on biased data, suggesting its capability to general-
ize well and make accurate predictions on unseen instances.
This characteristic is particularly valuable in domains such as
healthcare, finance, and social sciences, where data collection
processes often introduce biases and missing information.



In terms of class imbalance, RBA showed promising re-
sults by achieving high performance in both balanced and im-
balanced scenarios. Class imbalance is a common challenge
in classification problems where the number of instances in
one class significantly outweighs the other(s). RBA’s abil-
ity to maintain consistent performance in the presence of im-
balanced classes highlights its effectiveness in handling such
scenarios and its potential to provide reliable predictions even
when the data is heavily skewed.

Additionally, the parameter analysis revealed the impact
of max iter and learning rate on RBA’s performance. How-
ever, further exploration and fine-tuning of these parameters
are necessary to fully understand their effects and identify
optimal values for different datasets and biasing procedures.
Additionally, other hyperparameters of RBA, such as regular-
ization strength and learning rate decay, could be investigated
to further enhance its performance and generalizability.

Although RBA has demonstrated superior performance in
various experimental settings, it is important to note some
limitations and areas for improvement. The analysis excluded
TCPR, a minimax classifier, due to instability and assertion
errors during training. Further attempts to evaluate TCPR
were made using multiple datasets, but the classifier imple-
mentation showed unpredictable behavior.

One experiment successfully tested TCPR’s ability to adapt
when trained on biased data with covariate shift using the
breast cancer dataset(results shown in 9. However, it should
be noted that the TCPR implementation threw exceptions
when other features were biased, indicating its unpredictabil-
ity. Therefore, the results of this experiment should be inter-
preted with caution.

Figure 9: Comparison of TCPR, LR, SVM, and RBA classifiers on
unbiased and biased source data with covariate shift.

These limitations highlight the need for addressing the in-
stability and assertion errors in the TCPR implementation and
improving its overall predictability. By overcoming these is-
sues, a comprehensive evaluation of TCPR’s performance and
potential benefits can be achieved, providing a more accu-
rate assessment of its effectiveness in real-world classification
tasks.

In conclusion, the experiments conducted in this study
demonstrate the effectiveness of RBA as a minimax classifier
in challenging scenarios, including covariate shift, survivor-
ship bias, and class imbalance. RBA exhibited adaptability,
resilience, and consistent performance, making it a promis-
ing choice for real-world classification tasks. Further research
and refinement of RBA, along with exploration of other mini-
max classifiers, could provide valuable insights and advance-
ments in the field of robust and bias-resistant classification
algorithms.

6 Conclusion
In this thesis, we investigated the performance of minimax es-
timation techniques, specifically the Robust Bias Aware Clas-
sifier under sample selection bias. Our findings indicate that
RBA outperformed traditional supervised learning algorithms
LR and SVM, demonstrating robustness in handling these
challenges.

Specifically, RBA showed superior performance when
trained on source data with covariate shift. However, further
exploration of the TCPR classifier is recommended to address
its instability and assertion errors during training. Addition-
ally, future work should involve testing the effectiveness of
minimax estimation techniques with increasing distance be-
tween the source and target domains.

We also examined the impact of max iter parameter and
learning rates on RBA’s performance, revealing that increas-
ing max iter beyond a threshold did not significantly improve
results, while a learning rate of 0.001 yielded the best perfor-
mance.

Class imbalance negatively affected all classifiers, high-
lighting the need for techniques to address this issue and im-
prove overall performance.

For future research, it is recommended to explore the other
classifiers, investigate effective techniques to handle covari-
ate shift, study feature selection and dimensionality reduction
methods, consider additional evaluation metrics, and conduct
experiments on larger datasets. These efforts will contribute
to a more comprehensive evaluation of classifier performance
and provide insights into enhancing their capabilities.

In conclusion, this thesis provides valuable insights into the
performance of RBA, highlighting RBA’s effectiveness and
suggesting directions for further research. By testing TCPR
more extensively and exploring minimax estimation tech-
niques, researchers can expand the understanding of classifier
behavior and improve their adaptability to varying source and
target domains.
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