
Scaling Program Synthesis:
Combining Programs Learned on Subsets of Examples

Tudor Andrei

Supervisor(s): Sebastijan Dumančić, Reuben Gardos Reid

EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
June 23, 2022

Name of the student: Tudor Andrei
Final project course: CSE3000 Research Project
Thesis comitee: Sebastijan Dumančić, Reuben Gardos Reid, Soham Chakraborty

An electronic version of this thesis is available at http://repository.tudelft.nl/.

Abstract

Program synthesis tackles the challenge of generating pro-
grams from user specifications, a task proven undecidable due
to the exponential search space growth. In program synthe-
sis the Divide and Conquer technique can be employed to
prune this search. By decomposing specifications into indi-
vidual examples, multiple programs are synthesized to solve
them separately. Later these small programs are combined
into a bigger program which should satisfy all input-output
pairs by itself. There have been previous successful attempts
at using Divide and Conquer, including combining programs
using decision trees. However, a gap persists in the program
synthesis community regarding comprehensive frameworks
for integrating diverse implementation strategies. This project
addresses this gap by incorporating a Divide and Conquer al-
gorithm into a program synthesis library, enabling users to ex-
plore different ways of generating the small programs while
abstracting the unification procedure. Moreover, we also dis-
cuss a “greedy” strategy to generate the programs that will
be combined. We found that a Divide and Conquer manages
to improve naive search, especially when given more than 10
examples.

1 Introduction
Program synthesis is the field of study of generating pro-
grams according to some user-provided specifications. To no
surprise, the problem of synthesizing programs is undecid-
able (Gulwani, Polozov, and Singh 2017) with the amount of
possible programs to search increasing exponentially with
the amount of lines. Despite this challenge, advancements
in computing power, machine learning and novel algorithms
have made program synthesis viable and applicable in dif-
ferent areas of computer science such as code completion
(Perelman et al. 2012), super-optimization (Massalin 1987)
or automating transformations (Gulwani 2011). The idea of
producing a program based on the user’s intent has even
been successfully incorporated into industry standard prod-
ucts such as the FlashFill function in Microsoft Excel (Mi-
crosoft 2013).

In this report we will only discuss Programming-by-
examples (PBE) synthesis, where the user provides input-
output examples and the synthesizer is responsible for find-
ing a program that satisfies all given examples. There are
many ways to approach PBE synthesis, but ultimately the
problem of a huge search space is still pressing for all meth-
ods. To improve the efficiency of searching it is necessary
to prune unlikely programs and to explore likely ones. This
paper will explore a way to prune the search space by lever-
aging the Divide and Conquer technique. More specifically,
the research question being posed is “How do we combine
individual programs learned on each example to form a
single program that works on many (all) examples?”.

In general, Divide and Conquer methods are concerned
with producing a program that works on small parts of the
specification, which are later combined or used as hints for
the final program. Recent work (Shrivastava, Larochelle,
and Tarlow 2021) in this paradigm achieved impressive re-
sults, improving the state-of-the-art models that considered
the specification as a whole (such as PCCoder (Zohar and

Wolf 2018)). In this paper, the authors assume a specifica-
tion made up of multiple input-output pairs. They first pro-
duce programs that solve individual examples from the spec-
ification and then use these programs alongside transformer
models to synthesize each line in the final program that sat-
isfies all input-output pairs. There are also disadvantages to
this kind of approach. Embeddings have to be learned for the
programs, therefore the grammar cannot be changed without
retraining the embedding model. Likewise, if the semantics
of the programming language change, then the transformer
model also has to be retrained. Before this work there have
been other successful attempts to learn from examples that
do not make use of highly specific machine learning mod-
els. In (Alur, Radhakrishna, and Udupa 2017), the authors
have managed to combine programs using decision trees. To
do so, the grammar must be split into two parts: a term gen-
erating grammar and a condition generating grammar. Ulti-
mately, their algorithm arrives at a decision tree where inner
nodes are conditions and the leaves are the terms. Each split
in the decision tree is equivalent to an if then else
statement in the final program. This approach has been able
to generalize to other grammars and has worked exception-
ally well for SLIA (Strings and Linear integer arithmetic).

While both the aforementioned strategies have innovated
the field at the time of their release, there are still questions
the authors have not expanded upon. A big gap arises from
the question of “How can we generate the starting programs
for the Divide and Conquer synthesis?”. These starting pro-
grams will have a great impact on the length of the final
program and on the time it takes for the algorithm to fin-
ish. The experiments in this paper will investigate how the
performance and accuracy of program synthesis are affected
when the starting points are programs learned on each exam-
ple. More background on PBE synthesis is given in Section
2. Section 3 covers the implementation of a divide and con-
quer method for PBE synthesis, while the experiments and
results are discussed in Section 4. Subsequently, Section 5
addresses the topic of responsible research within our study
and a conclusion is given in Section 6.

2 Background
This section introduces fundamental concepts required for
understanding program synthesis, especially for PBE tasks
and syntax guided synthesis. In an effort to standardize pro-
gram synthesis, there have been conventions established in
the field, such as the use of syntax-guided search, SyGuS
problems and grammars.

2.1 PBE and syntax-guided synthesis
SyGuS represents a competition for program synthesis.
To solve a SyGuS problem the synthesizer is expected to
produce a function f that respects the specification of that
problem. There are different specifications formats used in
SyGuS, however we will expand on PBE specifications as
defined by (Alur et al. 2016). For a given problem, a PBE
specification ϕ is made up of multiple input-output pairs (re-
ferred to as points), that tell the synthesizer how the function
f should map the inputs to outputs, like in Table 1. The in-
put can be made up of multiple arguments, but the output is

1

x f(x)
1 0
2 1
3 1
4 2

Table 1: Example specification for f(x) = log2(x)

Figure 1: LIA Grammar

usually given as a single value. A program is said to satisfy
a specification ϕ if ∀e ∈ ϕ the given program solves e. That
is, when the program is run on the inputs of e, the output is
the same as the output of e. In practice, solvers may try to
overfit if given the full specification. For a better evaluation
procedure, one example may be hidden in the specification
and saved only for evaluation. In SyGuS, programs can get a
partial score for a problem, depending on how many exam-
ples they manage to fulfill.

Grammars As the name suggests, the syntax guided syn-
thesis approaches rely on some given syntax, more formally
presented as grammars. These help the synthesizer by defin-
ing the search space (it can only produce programs com-
ing from that grammar) while offering a level of expres-
sivity. A trade-off appears between choosing a larger gram-
mar (more expressivity, but larger branching factor) versus
a more compact one (less expresivity, but smaller branching
factor). How to choose a good grammar for synthesis is a
hard problem and it depends mainly on the application in
which the synthesizer is used. SyGuS defines two grammars
useful for benchmarks: SLIA and Bit Vector grammars. In
Figure 1 a simplified version of the SLIA grammar is shown.
Additionally, grammars may contain predefined functions
and operators, which need to be interpreted according to
some background theory. In the case of SyGuS all opera-
tors and functions are explained in the standard (Padhi et al.
2023).

Enumerative Solver In the field of program synthesis, a
common procedure for solving PBE tasks is the enumera-
tive solver. It is widely considered as the baseline for other
novel approaches. The enumerative solver algorithm aims to
find an expression from a given grammar that satisfies all ex-
amples by enumerating all possible expressions in a certain
order. Each expression is preliminarily verified against the
points given in the specification; if it fails, it is discarded.
If it passes, it undergoes full verification. When the algo-
rithm uses breadth-first order (explores expressions accord-
ing to their size) then it is guaranteed to terminate and find
the smallest solution if one exists. It performs surprisingly
well for small to medium-sized problems, but struggles with
scalability due to the exponential growth in the number of
expressions to check. Algorithm 1 outlines the steps of the
enumerative solver on a PBE task.

Algorithm 1: Enumerative solver
Input: Grammar G, Specification ϕ
Output: e

1: for e ∈ Enumerate(G) do
2: expt← false
3: for pt ∈ ϕ do
4: if !solves(e, pt) then
5: expt← true
6: break
7: end if
8: end for
9: if expt = false then

10: return e
11: end if
12: end for
13: return solution

2.2 Divide and Conquer

In Programming by example synthesis, there have been at-
tempts at using Divide and Conquer to prune the search pro-
cess or aid it by using the answer to smaller problems. In
essence, all these methods start from the assumption that
it is easier to find a program that works on a single ex-
ample, compared to finding one that works on the whole
specification. If one can do that, then there exist multiple
ways to combine the resulting programs to obtain a more
general program. One such way is employed in EUSolver
(Alur, Radhakrishna, and Udupa 2017), which won the Sy-
GuS competition in 2016 in the PBE track (Alur et al. 2016).
A somewhat limiting requirement imposed by EUSolver is
that the grammar needs to be partitioned into 2 sub gram-
mars: a term grammar and a predicate grammar. Expres-
sions that have the boolean type are called predicates and
expressions that have the same type as the starting variable
in the original grammar are called terms. The authors do not
mention how to perform this split for any grammar, but they
claim that for the grammars used in SyGuS it was feasible
to do so. Furthermore, their method also assumes that an if
then else expression can be a top-level state-

ment in the grammar i.e. the start variable can be directly
expanded into an ‘if‘ statement. With these assumptions in
mind, a solver can then enumerate the term and predicate
grammars separately. This significantly reduces the maxi-
mum depth, that an enumerative solver would need to reach.
The outline of the algorithm is shown in figure 2 taken from
(Alur, Radhakrishna, and Udupa 2017). The while loop in
lines 4 to 5 creates the set of terms. The set of terms has the
property that for any 2 terms they do not cover (solve) the
same points. The actual combining of terms happens in the
while loop in lines 6-9. The algorithm enumerates predi-
cates until it is possible to construct a decision tree that clas-
sifies each example (point) to a term with perfect accuracy.
In the actual SyGuS competition, solvers have access to a
verifier which can provide counterexamples for their pro-
grams. If the algorithm receives a counterexample it adds it
to the set of points and starts the procedure again.

2

Figure 2: EUSolver algorithm

2.3 Herb.jl
It is worth mentioning the framework that has been central
to this project: Herb.jl. Written in the Julia programming
language, Herb aims to provide a uniform approach to pro-
gram synthesis. With Herb, a user is able to test their pro-
gram synthesis algorithms and ideas on different grammars
and benchmarks. To achieve this, it provides some useful
abstractions and concepts to work with: Grammars and
Iterators.

Grammars. In Herb all synthesizers are syntax-guided
and have support for 2 types of grammars: context-free
grammars and context-sensitive grammars. Meta program-
ming in Julia makes the process of creating a grammar easy
as it is close to how one would write it on paper (Listing
1). For context-sensitive grammars, a user has the option
of adding different constraints. Considering the grammar in
Listing 1, we could add a constraint which enforces that af-
ter expanding the multiplication rule, we must also expand
the last rule (Int = x). This would only produce programs
where if a multiplication is present, then there is also the x
symbol.

Listing 1: Example grammar in Herb
1 g = HerbGrammar.@cfgrammar begin
2 Int = |(0:9)
3 Int = Int + Int
4 Int = Int * Int
5 Int = x
6 end

Iterators. They abstract the process of producing pro-
grams from a grammar. Iterators can come in different forms
and operate in different ways, however they all must pro-
duce programs when requested. There are lots of useful iter-
ators already implemented in Herb. Going back to the enu-
merative solver, its counterparts in Herb are the DFS and
BFS iterators. Consider the BFS iterator: given a grammar
this iterator will subsequently produce expressions in the
order of their depth (number of rule expansions). For in-
stance, if the grammar in Listing 1 is given, then the itera-

tor will produce expressions: 0 ,1, 2, 3, 4, 5, 6,
7, 8, 9, x, 0+0...

3 Implementing EUSolver in Herb.jl
This section describes our implementation of the EUSolver
in Herb.jl, with a couple of modifications. Firstly, EU-
Solver was designed to work in the SyGuS competition
where an intermediate verification step is allowed: a pro-
gram can be prematurely outputted and the judge will ei-
ther approve it or provide a counterexample in the form of
a point. This was not implemented into Herb as there is no
judge involved in the solving of a problem. Secondly, we
expand on some points that were not fully discussed in the
original paper such as how to effectively split a grammar
and term generating strategies. Lastly, we offer some insight
into a small performance improvement that has been imple-
mented.

3.1 Partitioning the grammar in practice
A requirement of the algorithm is to have separate gram-
mars for terms and predicates. To implement this we used
a particularity of the SyGuS grammars from the PBE track.
In Listing 2 an actual grammar from the SyGuS competition

Listing 2: SyGuS grammars
1 Start = ntString

2 ntString = _arg_1 | "" | " " | "."

3 ntString = concat(ntString, ntString)

4 ntString = replace(ntString, ntString, ntString)

5 ntString = at(ntString, ntInt)

6 ntString = int_to_str(ntInt)

7 ntString = ntBool ? ntString : ntString

8 ntString = substr(ntString, ntInt, ntInt)

9 ntInt = 1 | 0 | -1

10 ntInt = ntInt + ntInt

11 ntInt = ntInt - ntInt

12 ntInt = len(ntString)

13 ntInt = str_to_int(ntString)

14 ntInt = ntBool ? ntInt : ntInt

15 ntInt = indexof(ntString, ntString, ntInt)

16 ntBool = true | false

17 ntBool = ntInt == ntInt

18 ntBool = prefixof(ntString, ntString)

19 ntBool = suffixof(ntString, ntString)

20 ntBool = contains(ntString, ntString)

is displayed. To implement the grammar splitting, we can
consider two iterators over the same grammar, with a small
modification: the iterators have different starting variables.
The term iterator will use the Start symbol as its first ex-
pansion, while the predicate iterator will use the ntBool
symbol. In the actual implementation the user is expected to
provide these two symbols. This allows for great flexibility
and it is also simpler to handle programatically as there is
no need to actually create 2 grammars. We found that all Sy-
GuS grammars can be ‘split‘ using this procedure, since they
support an expression like c ? a : b or if c then a
else b as a top level statement. The symbol that generates
expressions of c can be used as the starting symbol for the
predicate iterator.

3

3.2 Generating terms
A great deal of experimentation is possible in generating the
initial terms. In this paper, a much simpler yet more extensi-
ble approach is taken. The implementation does not require
the term iterator to work as an enumerator, that repeatedly
produces programs without any pruning or searching tech-
niques. Instead, it allows any search procedure in Herb to
be given as a term iterator. This offers a great amount of
flexibility as a user can choose between stochastic iterators,
genetic algorithms or a Breadth-First iterator in which case
it would work the same as the EUSolver.

Having as few terms as possible is desired as it would lead
to a shorter program, less likely to overfit on the examples.
To create such a set of terms two approaches are possible.
A greedy approach would consider new terms that solve at
least one different example compared to any other term pre-
viously added in the set. This leads to a set of many terms,
which will also need more predicates for unification. Alter-
natively, another approach could keep generating terms that
fulfill at least an example. For a term to be added to the set,
it is not necessary to solve a different example compared to
other added terms. After a fixed amount of enumerations, we
can find a minimal subset out of the terms collected so far
that solves all examples.

Example Take for instance the synthesis of the min(x,
y) function. A greedy procedure will produce the
terms: 0, -1, x. 0 and -1 are not desirable, but
greedy will stop looking for better terms because it
already has a set satisfying the whole specification.

x y min(x, y)

0 1 0
0 -1 -1
3 4 3

Table 2: Specification
for min function

On the other hand, the subset
method will generate a plethora
of terms until a certain thresh-
old of iterations is reached. Even
though it has to generate 0,
-1, x, y,... it will also
consider the terms x and y,
which are ideal since the best
program is: x < y ? x : y.
In this paper the first greedy ap-

proach is implemented. The clear advantage of this method
is that it requires less enumerations and it is clear when to
stop producing new terms. In turn however, the final pro-
grams it will produce will generally be larger compared to
the minimal subset method.

3.3 Generating predicates
Following the EUSolver paper, it can be concluded that once
the initial terms are generated the unification procedure can
work as a separate unit. Meaning, the initial programs can
be provided by all sorts of iterators/solvers (enumerative,
stochastic, genetic, etc.). The only requirement for this pro-
cedure is that the user provides the list of examples and a
way to generate distinct predicates. The latter can be easily
achieved with a simple Breadth-First enumerator over the
predicate grammar. This is exactly how unification was im-
plemented in Herb: a procedure that can be used by (almost)
any iterator as long as the 2 aforementioned requirements
are satisfied.

Predicate batching In the original paper the algorithm
states that after generating a predicate we should learn a
decision tree. This becomes cumbersome in practice, espe-
cially in a garbage collected language as Julia. A possible
optimization is to generate more predicates at once and then
run the unification procedure. In practice this has the effect
of allowing the predicate generator to produce better condi-
tionals, which will be selected as a split in the decision tree
because of their information gain. This small improvement
proves very beneficial in cases where the terms are very dif-
ferent from example to example. Therefore, more distinct
terms in the final program are needed and therefore more
conditions are used to split them.

4 Experimental Setup and Results
In the following section, we will present and discuss the re-
sults of the experiments we have performed. Firstly, the met-
rics and datasets will be explained, then information about
the setup will be presented. Finally, a discussion on the re-
sults will be made.

4.1 Setup
Along with an implementation of the divide and conquer
method, we also present its performance against the enumer-
ative solver on different datasets. It is important to measure
this as it reveals the advantages and the drawbacks of this
approach.

Datasets. The datasets used are “PBE SLIA Track 2019”
and “PBE BV Track 2018”, from HerbBenchmarks. They
consist of 100 and 468 problems respectively. The SLIA
track consists of medium to hard difficulty problems that
require the program to perform logic on 3 types: Integers,
Strings and Booleans. The BV1 track comprises of problems
in which the program is required to perform multiple bit-
wise operations on a single starting integer value to obtain
another integer value as the output. A particularity of the lat-
ter track was that some problems contained more than 500
examples. Given that it is not realistic for a user to provide
that many examples, these problems were filtered out from
the dataset reducing the number of problems to 317.

Enumerations. A typical measure of performance for a
program synthesizer are the number of enumerations it per-
forms to reach the correct program. For the divide and con-
quer method the number of enumerations is defined as the
sum of the enumerations performed by the term iterator and
the predicate iterator. In our divide and conquer method a
BFS iterator was used as a term and predicate iterator, so the
number of enumerations is directly comparable with a sim-
ple BFS iterator. We have tested both methods with different
number of iterations. This means that for each problem the
iterator is allowed to perform at most a 10k, 50k or 100k
enumerations.

4.2 Evaluation.
To evaluate one of the methods on a problem we cannot sim-
ply use the full specification. If we do, it will encourage the

1Short for Bit-Vector

4

https://github.com/Herb-AI/HerbBenchmarks.jl/tree/dev

10k 50k 100k

18

20

22

24

17

19 19

22

24 24

Iterations

So
lv

ed
pr

ob
le

m
s

BFS Divide and Conquer

(a) SLIA (100 problems)

10k 50k 100k
0

100

200

16 20 20

256 258 258

Iterations

So
lv

ed
pr

ob
le

m
s

BFS Divide and Conquer

(b) BV (317 problems)

Figure 3: Problems solved from SyGuS benchmarks according to our evaluations scheme. We set three thresholds for the number of iterations:
10k, 50k and 100k.

solvers to overfit on the given examples. Instead we pro-
pose an evaluation scheme similar to the field of machine
learning. Assuming a problem has n examples, we give the
solvers ⌊0.9 · n⌋ examples (randomly selected) to produce a
program. To evaluate their solution we run it on the full spec-
ification with n examples. The problem is considered solved
if it correctly solves the n examples. In all the experiments
conducted below this method of evaluation has been used.

4.3 Results
To evaluate our implementation of the divide and conquer
method we formulate two questions: “What is the solving
performance against enumerative solver?” and “How good
are the solutions produced by the divide and conquer ap-
proach?”.

Performance. To answer the former, in figures 3a and 3b,
bar charts of the performance on the 2 datasets are shown.
The value of the bars indicate the number of problems each
method has solved, while the bottom axis shows the amount
of enumerations it was allowed (per problem). The divide
and conquer performs slightly better on SLIA track, with
the difference being much clearer on Bit Vector track. Fur-
thermore, Figures 4 and 5 show the cumulative number of
enumerations both algorithms make. The divide and con-
quer method takes significantly less iterations over the whole
datasets (1M less for SLIA and 27M less for BV).

Quality. To measure the quality of solutions we are com-
paring the length2 of the produced programs (from the prob-
lems both methods managed to solve). The result is shown
in the scatterplots 6a and 6b, which correlate the length of
the 2 obtained sizes for a program. For both datasets, we
can observe that the divide and conquer method produces
larger programs compared to regular BFS, which is expected

2The length of a program in this context refers to the number of
expanded rules in the grammar including terminal symbols

20 40 60 80 100
104

105

106

Nr of problems

It
er

at
io

ns

BFS
Divide and conquer

Figure 4: Cummulative iterations on SLIA

100 200 300

103

104

105

106

107

Nr of problems

It
er

at
io

ns

BFS
Divide and conquer

Figure 5: Cumulative iterations on BV

5

2 4 6 8

5

10

15

20

BFS sol. size

D
iv

id
e

an
d

C
on

qu
er

so
l.

si
ze y = x

(a) SLIA

1 2 3 4 5 6

5

10

15

BFS sol. size

D
iv

id
e

an
d

C
on

qu
er

so
l.

si
ze y = x

(b) BV

Figure 6: Correlating the solution size of the programs both methods produce. x-axis: BFS, y-axis: divide and conquer. Each point represents
a problem both methods managed to solve.

since BFS is guaranteed to obtain the smallest solution. If
we closely analyze the scale of the difference in length we
can observe that in most cases it is a factor of 2 or 3. On
the Bit vector track we clearly see this factor when the size
of the smallest program is largest (i.e. length 5 and 6). This
can explain how the divide and conquer method manages to
outperform BFS on the BV track: divide and conquer is able
to construct smaller programs which are successfully com-
bined by 1 or 2 conditions.

4.4 Discussion
Even though the divide and conquer algorithm boasts better
results in the performance metrics compared to BFS, it is
interesting to look at the big difference over the two datasets.
A revealing factor may lie in the number of examples each
problem has 7.

(a) SLIA

(b) BV

Figure 7: Distribution of examples across the datasets

SLIA mostly has problems with less than 8 examples,

while for the BV dataset the number of examples is at least
10. This big discrepancy might explain the difference in per-
formance: The more examples a problem has the harder it
is for BFS to find a program that solves them all. The di-
vide and conquer method can generate the necessary terms
in much fewer iterations than BFS can find the optimal pro-
gram. This behaviour is clearly visible when the problems
have more examples. Another metric that points to this con-
clusion is the solution sizes 6a 6b. On the SLIA track, the
divide and conquer method has mostly produced programs
the same size as BFS. This means it was quicker to find a
program that solves all examples, compared to finding the
necessary terms and predicates. On the BV track we see
more instances where it was quicker to produce the terms
and predicates than finding the complete program. Keeping
in mind that the two scatterplots show only problems that
both methods managed to solve, we can conclude that a lot
of the problems not included were much easier for the divide
and conquer to solve compared to BFS.

5 Responsible Research
In our research on program synthesis, we emphasize the im-
portance of responsible research practices. Our experimental
methodologies are designed to ensure high reproducibility,
particularly when evaluated against the SyGuS benchmarks.
This reproducibility is achieved through extensive documen-
tation, publicly available code repositories, and an easy pro-
cedure of repeating the experiments. The experiments were
ran in the Julia programming language using the Herb.jl
framework. The Gitlab repository 3 contains all the neces-
sary dependencies, with the exact branch and version being
specified. Results were computed on a M2 Mac Studio ma-
chine. This should facilitate verification and extension by
the research community in program synthesis, such is the
aim of the framework Herb.jl. Nonetheless, it is impor-
tant to recognize the inherent limitations of our approach.
While our techniques demonstrate good performance on the

3The repository with the code can be found here.

6

https://gitlab.ewi.tudelft.nl/cse3000/2023-2024-q4/Dumancic_Reid/tudorandrei-Symphonic-Synthesis-Learning-programs-by-composin

SyGuS benchmarks, there exists a substantial likelihood that
these methods may not generalize effectively to arbitrary
grammars beyond the scope of these benchmarks, especially
those that produce stateful programs. This constraint high-
lights the necessity for ongoing evaluation and adaptation
across a diverse array of grammars to enhance the generaliz-
ability and practical applicability of the divide and conquer
method.

6 Conclusions and Future Work
This paper presented an adaptation of EUSolver in Herb.jl.
Starting from the idea that it is easier to find small programs
that solve parts of the specification and then combine them,
this method was able to scale the enumerative search con-
sidered as baseline. We have mentioned the advantages of
implementing algorithms into a unified framework for pro-
gram synthesis, such as being able to easily test the method
on different datasets or trying different sub-iterators in the
case of the divide and conquer method. From the evaluation
results we have concluded that as the number of examples
grows, the efficiency of the divide and conquer approach is
clearly visible. We found that decoupling the generation of
conditions and statements heavily reduces the search depth,
a figure which is definitive for the performance of exponen-
tial algorithms.

While implementing this algorithm we also found points
for further research. Firstly, an automated procedure that
determines whether a grammar can be split into a term
and predicate grammar (and if so perform the split) would
greatly improve the usability of this algorithm, which in
turn allows it to be integrated into consumer grade prod-
ucts. Secondly, a great area to be investigated is the genera-
tion of terms. A specialized solver that works really well on
problems with a single or very few examples has the poten-
tial to significantly improve the divide and conquer method.
Solvers employing machine learning techniques could prove
very useful for this scenario since there isn’t a strict require-
ment to synthesize a general program, but rather one that
solves a single example.

References
Alur, R.; Fisman, D.; Singh, R.; and Solar-Lezama, A. 2016.
SyGuS-Comp 2016: Results and Analysis. Electronic Pro-
ceedings in Theoretical Computer Science, 229: 178–202.
Alur, R.; Radhakrishna, A.; and Udupa, A. 2017. Scaling
Enumerative Program Synthesis via Divide and Conquer. In
Legay, A.; and Margaria, T., eds., Tools and Algorithms for
the Construction and Analysis of Systems, 319–336. Berlin,
Heidelberg: Springer Berlin Heidelberg. ISBN 978-3-662-
54577-5.
Gulwani, S. 2011. Automating string processing in spread-
sheets using input-output examples. In Proceedings of the
38th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL 2011, 317–330. Austin,
TX, USA.
Gulwani, S.; Polozov, O.; and Singh, R. 2017. Program Syn-
thesis. Foundations and Trends in Programming Languages,
4(1-2): 1–119.

Massalin, H. 1987. Superoptimizer - A look at the small-
est program. In Proceedings of the Second International
Conference on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS II), 122–126. Palo
Alto, California, USA.
Microsoft. 2013. Using Flash Fill in Ex-
cel. https://support.microsoft.com/en-us/office/
using-flash-fill-in-excel-3f9bcf1e-db93-4890-94a0-1578341f73f7.
Microsoft Support.
Padhi, S.; Polgreen, E.; Raghothaman, M.; Reynolds, A.;
and Udupa, A. 2023. The SyGuS Language Standard Ver-
sion 2.1. arXiv:2312.06001.
Perelman, D.; Gulwani, S.; Ball, T.; and Grossman, D.
2012. Type-Directed Completion of Partial Expressions. In
PLDI’12, June 11-16, 2012, Beijing, China.
Shrivastava, D.; Larochelle, H.; and Tarlow, D. 2021. Learn-
ing to Combine Per-Example Solutions for Neural Program
Synthesis. In Advances in Neural Information Processing
Systems, volume 34, 6102–6114.
Zohar, A.; and Wolf, L. 2018. Automatic Program Synthe-
sis of Long Programs with a Learned Garbage Collector. In
Bengio, S.; Wallach, H.; Larochelle, H.; Grauman, K.; Cesa-
Bianchi, N.; and Garnett, R., eds., Advances in Neural Infor-
mation Processing Systems, volume 31. Curran Associates,
Inc.

7

https://support.microsoft.com/en-us/office/using-flash-fill-in-excel-3f9bcf1e-db93-4890-94a0-1578341f73f7
https://support.microsoft.com/en-us/office/using-flash-fill-in-excel-3f9bcf1e-db93-4890-94a0-1578341f73f7

