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ABSTRACT

Machine learning has contributed to the advancement of maintenance in many industries, including aviation. In
recent years, many neural network models have been proposed to address the problems of failure identification
and estimating the remaining useful life (RUL). Nevertheless, the black-box nature of neural networks often
limits their transparency and interpretability. Interpretability (or explainability) in maintenance refers to the
ability of a predictive model to provide insights into its decision-making process for predicting failures or
estimating metrics like RUL. Counterfactual Explanations (CFEs) from Explainable AI (XAI) addresses this
problem by explaining model decisions through hypothetical scenarios leading to alternative outcomes. A kind
of neural network that could benefit from increased interpretability is Bayesian networks. In general, Bayesian
models improve interpretability by quantifying uncertainty. However, incorporating Bayesian uncertainty
into neural networks adds complexity because we often need a statistical distribution for each network
parameter. This study investigates the use of CFEs within a Bayesian framework to achieve two key objectives
simultaneously: (1) enhance the interpretability of RUL estimations and (2) improve model accuracy. We
generate two types of CFEs: (1) RUL CFEs that increase/decrease the RUL estimation and (2) uncertainty CFEs
with reduced estimation uncertainty, which we use to augment the dataset and increase model accuracy. We
apply this method to a classical case study, the C-MAPSS dataset, using a Bayesian Long Short-Term Memory
(B-LSTM) model. We demonstrate that CFEs can help identify critical features and fine-tune corrective actions
to achieve specific outcomes. For example, following a maintenance action that increased the temperature by
1° F, CFEs can reveal that this adjustment extended the equipment’s useful life by 30 cycles. This ability to
correlate specific actions with effects enhances both decision-making and maintenance efficiency. Additionally,
our data augmentation approach results in a 5% improvement in a« — A accuracy for a strict « of 20%. The
root mean square error (RMSE) of the B-LSTM model decreases from 9.56 to 8.47 cycles, demonstrating the
potential of Uncertainty CFEs to improve accuracy in aircraft maintenance. The code is publicly available at
Github.

1. Introduction

maintenance (PrcM) [3-5] takes maintenance one step further by ex-
plaining decision-making processes, vital to guarantee high standards

In a typical scenario of preventive maintenance (PrvM) without
artificial intelligence (AI), decisions are made based on scheduled
maintenance or reactive approaches when equipment fails. Aircraft
maintenance has been undergoing a transformative evolution, aligned
with advances seen in other fields [1]. This evolution is driven by the
integration of more in-depth information into maintenance systems.
The research area of predictive maintenance (PrdM) [2] is already
based on the idea of making maintenance decisions based on data-
driven models. With predictive maintenance, we rely on Al to analyze
the data and predict when maintenance should occur. Prescriptive
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of safety, efficiency and regulatory compliance. This is of particular
importance for the aviation sector. Much of this transformation is based
on the new technologies of explainable AI (XAI) [6]. XAl is a set of
techniques to explain the internal workings of AI models, including the
purpose of their components, logical reasoning, and decision-making
processes [7]. Fig. 1 illustrates the described evolution of maintenance.

Currently, predictive maintenance (PrdM) relies (mostly) on neural
networks [8]. Although these predictive models have been shown to be
satisfactorily accurate in their predictions, they pose challenging issues
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Fig. 1. Evolution of Maintenance. Preventive maintenance involves scheduled inspec-
tions and routine tasks. Predictive maintenance utilizes sensor data and AI to perform
maintenance just-in-time. Prescriptive maintenance goes beyond prediction, offering
actionable insights based on explainable artificial intelligence (XAI).

regarding their interpretability [9]. For example, neural networks suffer
from a “black box” nature, which limits the transparency of their
predictions. The field of XAI [1] attempts to address this problem
by developing methods to make machine learning more explainable
and interpretable. Here, we treat interpretability and explainability
interchangeably, following the work and review of Kumar et al. [10].
Both concepts aim to address the challenge of making machine learn-
ing models more understandable and trustworthy for the different
stakeholders.

Quantifying interpretability and explainability in the context of
machine learning and artificial intelligence can be challenging, as these
concepts are often subjective and context-dependent [11]. However,
interpretability in maintenance can be generally defined as the ease by
which the maintenance stakeholders can understand the system’s be-
havior, potential failure modes, and the impact of various maintenance
actions [6].

A method from XAI is Counterfactual Explanations (CFEs), which
aim to provide more information on a model and its predictions by
suggesting alternative scenarios that would have led to a different
outcome [12]. Apart from CFEs, there are other explanation method-
ologies in XAl, such as decision-theory-based explanations, contrastive
explanations, example-based explanations, or attributional explana-
tions [13]. CFEs are of special interest, as counterfactual analysis en-
ables researchers to make inferences by comparing observed outcomes
with hypothetical outcomes under different conditions [14].

In the context of maintenance, a CFE scenario will involve asking
“What changes in input would impact the prediction of remaining
useful life (RUL)?” These input changes can result from two main fac-
tors: maintenance actions or improvements in data quality. Corrective
maintenance actions, like adjusting operational parameters or replacing
components, can be impacted by CFE analysis. On the other hand, the
CFEs might signal the need for improving data quality to enhance the
accuracy of predictions. In our specific work, we are interested in two
subquestions (see Fig. 2):

» RUL CFEs: What changes in input (alternative scenarios) would
increase/decrease the Remaining Useful Life (RUL) prediction?

+ Uncertainty CFEs: What changes in input would yield a more
precise RUL prediction?

The first question is particularly important as it enables us to assess
the effects of maintenance interventions. For instance, if we reason
(based on CFEs) that by reducing a specific temperature we could
extend the life of the equipment, we could tailor the effectiveness of
our maintenance efforts to target those particular values. This type of
CFEs we designate as Increasing/Decreasing RUL CFEs.

We were also interested in Uncertainty CFEs (adapted from Ley
et al. [15]), which address a distinct question: “What alterations in the
input variables would lead to a more precise RUL prediction?” Here,
our focus lies in narrowing the uncertainty bounds surrounding the
current RUL prediction. This approach holds potential for data augmen-
tation. Our rationale is centered on ensuring that the augmented data
maintains quality standards with respect to RUL prediction.

In this paper, we study the viability of CFEs to attain two important
goals: (1) interpretability and (2) accuracy. In Al there is much discus-
sion about these dimensions. There is a well-known paradigm stating
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Fig. 2. Counterfactual Explanations (CFEs). In the context of maintenance, we dis-
tinguish between RUL CFEs and Uncertainty CFEs. The first designates a change in
the model inputs (sensor data) to produce a RUL change. The second decreases the
uncertainty of the RUL prediction.
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Fig. 3. Goals of this work.

that interpretability and accuracy (performance) are two perspectives
that are difficult to balance in machine learning. For example, Es-
pinosa et al. [16] advocate that the more accurate a model is, the less
explicable it becomes. A goal of this project is to show empirically
that interpretability and accuracy can be improved using an XAI
technique: the CFEs in this case.

As illustrated in Fig. 3, this work explores the utility of different
types of CFEs to enhance the (a) interpretability and (b) performance of
predictive models in aircraft maintenance. Our main research question
is as follows.

RQ: How can Counterfactual Explanations (CFEs) be used in predic-
tive maintenance to improve the interpretability and performance of
a Bayesian Long Short Term Memory (B-LSTM)?

We are going to analyze the interpretability of CFEs based on
various visual tools. Our contribution is to show that RUL CFEs can be
utilized to analyze the impact of maintenance events (maintainability)
and to understand the different degradation stages of an equipment.

In this study, we argue that CFEs (RUL and Uncertainty) con-
tain extra information that can enhance model performance when
fed back into the system. Achieving accurate RUL models typically
requires a substantial volume of data, which can be both expensive and
time-intensive to acquire. This is particularly true for critical aircraft
systems, where airlines and manufacturers have only a limited number
of failure signatures. Here, data augmentation is a possible strategy.
We combine these ideas by generating new training data based on CFEs
(on a holdout set).

We have opted for a Bayesian Long Short Term Memory (B-LSTM)
as our primary RUL model since Bayesian models naturally capture the
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uncertainty associated with RUL estimation [17]. Instead of providing
a single-point estimate for each prediction, Bayesian models offer a
distribution defining the range of possible RUL values. The LSTM
component captures the temporal dependencies within the time series
data. In general, we can summarize the contributions of our work in
two dimensions:

« Interpretability: Discussion and proposal of visual tools to an-
alyze the maintainability and reliability of engineering systems
with RUL CFEs

» Accuracy: Comparison of the performance of various RUL mod-
els augmented with different types of CFEs (RUL and Uncer-
tainty).

The remainder of this paper is structured as follows. Section 2 will
cover the theoretical background and previous literature on related
work. Section 3 describes the methodology used in this study followed
by a description of the C-MAPSS case study in Section 4. Finally, we
will discuss the results in Section 5. We conclude in Section 6.

2. Related work

This section reviews related work in the field of Predictive Mainte-
nance (PrdM) (Section 2.1), and in explainable AI (XAI) (Section 2.2).
We conclude with a revision of the latest advancements in counterfac-
tual analysis (Section 2.3).

2.1. Predictive maintenance

Preventive maintenance (PrvM), also known as calendar-
based maintenance, is the traditional approach to maintenance that
involves performing routine inspections, servicing, and repairs on
equipment or machinery according to a predetermined schedule [18].
Unlike Predictive Maintenance (PrdM), which uses advanced algo-
rithms to predict equipment failures based on real-time data, preventive
maintenance does not use Al This type of maintenance may be effective
for routine tasks and preventive care, but it may not be as efficient as
Al-driven predictive maintenance, since it can lead to overmaintenance,
where equipment is serviced more frequently than necessary [19,20].

Predictive maintenance is different from preventive maintenance in
that it utilizes historical and real-time data to perform failure prognos-
tics [21], which entails predicting a system’s future behavior and how
it will fail. This includes predicting a system’s Remaining Useful Life
(RUL) [22].

In general, there are three main approaches to estimating the RUL:
model-based, data-driven, and hybrid, as described by Chao et al. [23].
Model-based approaches (also known as physics-based approaches) are
a popular PHM approach due to their accuracy, precision, and real-time
performance. However, these methods require a deep understanding of
the physics of the system [24]. Data-driven methods offer an alternative
to model-based approaches [25]. Their optimal performance depends
on the availability of substantial historical and current data. The hybrid
approach aims to combine the strengths of both model-based and
data-driven approaches [26].

The selection of a data-driven approach in this study was motivated
by its practicality and effectiveness in handling extensive historical
data. These methods, particularly when built upon machine learning
pipelines, tend to be more challenging to interpret [27], which aligns
well with the analytical goals of our study. We aim at maximizing the
benefits of proposed interpretability techniques.

An overview of the data-driven methods applied in RUL estimation
is provided by Ansari et al. [28]. The authors classify the methods
into two main categories: statistical and machine learning. Statistical
methods use empirical knowledge and data to build statistical models
for the estimation of RUL. Statistical models used in previous work are,
for instance, the Auto-Regressive Integrated Moving Average (ARIMA)
technique [29-31], the Gray Model (GM) [32-34], the Wiener Process
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(WP) [35-38], and entropy analysis [39].

In previous work on RUL estimation, various machine learning
models have been applied, such as Naive Bayes [40-42], Support Vec-
tor Regression [43,44], Relevance Vector Machines [45,46], Gaussian
Process Regression [47-49] and Deep Neural Networks (DNNs) [49-
60].

In this research, we use a Bayesian Long Short-Term Memory (B-
LSTM). The LSTM is a specialized type of neural network, a recurrent
neural network (RNN) designed to learn long-term dependencies. Al-
though evaluation of different neural networks has shown varying
performance results, the LSTM appears to be a favored method for
estimating RUL [28]. It has been applied to RUL estimation in previous
work [49-52,56]. We selected this network because of its ability to
discern complex, nonlinear temporal relationships [61].

It is possible to apply the Bayes rule to different models to quantify
the uncertainty of the models. Examples of such models are Naive
Bayes [62], Bayesian linear regression [63], Bayesian Networks [64],
Gaussian Process Regression [65] and Relevance Vector Machines [66].
Our research focuses on the Bayesian LSTM. B-LSTMs have been applied
to RUL estimation in previous work. For example, Caceres et al. [67]
compared multiple Bayesian RNN networks (including LSTMs).

2.2. Explainable Artificial Intelligence (XAI)

Prescriptive maintenance (PrcM) [5,68,69] is an advanced mainte-
nance strategy that goes beyond predictive maintenance (PrdM) by not
only predicting equipment failures but also providing actionable recom-
mendations to optimize maintenance activities. Explainable Artificial
Intelligence (XAI) has emerged as a promising technology in this do-
main, providing the possibility to develop interactions between Al sys-
tems and various stakeholders while deciphering the decision-making
processes of complex “black box” models to enhance understandability.

Concerns about the lack of interpretability in data-driven methods
were raised early when neural networks were first introduced in pre-
dictive maintenance [70]. However, this problem has been aggravated
with the widespread adoption of deep learning models. Some reviews
and papers [5,68,69] notice this research gap. However, in the pre-
dictive maintenance community, the lack of interpretability is often
regarded as a consequence of data-driven methods rather than as an
issue that can be effectively addressed.

In prescriptive maintenance, we can distinguish between two ap-
proaches to XAl intrinsically interpretable models and post-hoc ex-
planations. Authors sometimes use other taxonomies with more di-
mensions to categorize models in XAI. For example, Speith [71] dis-
cusses four different approaches to constructing taxonomies, such as the
functioning-based approach, the result-based approach, the conceptual
approach, and the mixed approach. For simplicity we rely solely on the
distinction between interpretable models and post-hoc explanations.
This coincides with the conceptual approach of Speith [71].

In intrinsically interpretable approaches, models are designed to
provide transparency and understandability by their inherent structure,
making them readily interpretable without the need for additional
post-hoc explanations. In predictive maintenance, a variety of intrinsi-
cally interpretable models have been employed, ranging from methods
such as ontologies [72-74], decision trees [75,76] and filtering ap-
proaches [77] to stochastic models like the Wiener process [78] and
hidden Markov models [79]. While interpretable models for diagnosis
and detection often rely on knowledge, rules, and decision trees, intrin-
sically interpretable models for RUL estimation predominantly consist
of stochastic models.

The surge of models such as deep neural networks prompted a
shift away from intrinsically interpretable ML models. Consequently,
there has been further developments in post-hoc methods aimed at
explaining the decisions of complex black-box models. Post-hoc expla-
nations are generated after the model has made predictions and aim
to elucidate its decision-making process, often through techniques like
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feature importance. Following Arrieta et al. [80], post-hoc explanations
can be classified into visual, feature relevance-based explanations,
knowledge-extraction as well as example-based.

» Visual explanations utilize graphical plots and summaries, such
as heatmap overlays, decision boundary plots, and feature impor-
tances, to provide insights into model behavior.
Feature-relevance explanations quantify feature contributions,
often combined with visual explanations for clarity.
Knowledge-extraction explanations transfer hidden knowledge
within the model to more transparent representations, such as
symbolic rules or surrogate models approximating predictions.
Example-based explanations select specific data instances, like
prototypes or underrepresented examples, to elucidate model be-
havior, while counterfactual examples describe changes needed
to alter predictions.

Examples of works with visual explanations in predictive main-
tenance include the work of Kozielski [81]. The authors presented
SHAP-based explanations using local context heatmaps. The use of
correlation maps to express feature importance is also a common
methodology [82,83]. Another work using visual explanations to ex-
plore feature importance is by Alomari et al. [84]. These explanations
are often combined with feature-relevance explanations to improve
comprehensibility.

Knowledge-extraction explanations [85] may involve algorithms for
rule extraction [86-88] or the use of surrogate models such as SHAP
and LIME. One example of XAI applied to RUL estimation comes
from Hong et al. [89], who applied it to C-MAPSS using the SHAP ex-
planation model. Other previous work regarding XAI in maintenance is
for instance from Sundar et al. [90] using the LIME model, and Onchis
and Gillich [91] who used LIME and SHAP. Baptista et al. [6] showed
that SHAP explanations formed meaningful trajectories.

Work on example-based explanations covers counterfactuals and
causal inference [92]. Kozielski [81] studied contextual explanations
for decision support in maintenance. By contextual explanations, the
authors meant local (single prediction) explanations providing an un-
derstanding of what influenced a model decision for a particular data
instance. Counterfactual explanations (CFEs) is a method introduced
by Wachter et al. [93] that is extensively studied in other fields [94,95]
but not extensively in maintenance. Exceptions are the works of Pileggi
et al. [96],Jakubowski et al. [97] and Barraza et al. [98].

The field of prescriptive maintenance is currently characterized by a
significant lack of research and exploration. Despite the growing recog-
nition of the importance of prescriptive maintenance in optimizing
asset performance and minimizing downtime, there remains a notable
gap in the literature concerning the development and application of
advanced technologies.

2.3. Counterfactual explanations (CFEs)

Nor et al. [99] performed a comprehensive literature review of XAI
in maintenance. They concluded that XAI is mainly applied in the form
of inherently interpretable models, rule-based and knowledge-based
models and attention mechanisms. Counterfactual explanations (CFEs)
is a post-hoc XAI method introduced by Wachter et al. [93]. CFEs work
by asking the question What if? such as for instance:

What if the output was Y instead of X what would have been the
input?

In general, a counterfactual explanation can be defined as a pertur-
bation of the input x to generate a different output y. This perturbed
input can be seen as a counterfactual example c¢. In mathematical form
(see Eq. (1)), our objective is to minimize the yloss such that a different
prediction is generated, while also minimizing the distance between
the original input x and the counterfactual input c¢ (referred to as
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proximity).

¢ = arg min [yloss(f(c), )+ |x - cl] (@D)]

In this research, we are interested in questions such as:

+ RUL CFE: What change in input could result in a specific in-
crease/decrease in predicted RUL?

» Uncertainty CFE: What change in input could result in a more
precise (less uncertain) prediction?

There are many platforms and strategies to generate CFEs. We
review some important contributions. For example, Wiratunga et al.
[100] proposed DisCERN, a nearest unlike neighbor (NUN) approach
combined with model-agnostic feature relevance algorithms to gener-
ate counterfactuals with minimal feature change. Chen et al. [101]
proposed RELAX, a model-agnostic platform to generate CFEs. The plat-
form generates optimal CFEs via deep reinforcement learning (DRL).
Another work of note is SAC-FACT which also used DRL for coun-
terfactual generation [102]. Hamman et al. [103] focused on making
counterfactual generation robust to small changes or updates to the
model. Poyiadzi et al. [104] proposed FACE which is an algorithm that
enforces that the generated counterfactuals meet the underlying data
distribution and follow one of the “feasible paths” of change. AlJalaud
and Hosny [105] proposed a genetic approach to generate counterfactu-
als. Genetic approaches to counterfactuals are typically model-agnostic,
which makes them versatile across different model types. Other exam-
ples of evolutionary models for CFEs are in [106-108]. Other authors
have used techniques such as autoenconders to generate counterfactu-
als. For example, Guyomard et al. [109] combined a predictor and
a counterfactual generator, jointly trained, to produce counterfactuals.
Other authors such as Sarathi et al. [110] focused on monotonic
constraints while generating counterfactuals. Kuratomi et al. [111]
proposed a counterfactual generation algorithm that provides justifi-
cation based on features that rank high on plausibility, mutability,
and directionality. Ferndndez et al. [112] proposed to generate instead
of a single counterfactual a set of counterfactuals based on random
forests. Mothilal et al. [113] proposed DiCE (Diverse Counterfactual
Explanations), a counterfactual model-agnostic platform that focuses
on preserving the diversity of the explanations while approximating
local decision boundaries. Importantly, DiCE fulfills several critical
properties necessary for generating effective counterfactuals namely
the plausibility, proximity, diversity, and sparsity. [114]. In terms of
diversity, this platform has been shown to outperform other approaches
and is considered a reference.

3. Methodology

This section describes the methodology used in this research. We
describe the general architecture in Section 3.1. The constituents of
the architecture are explained in Section 3.2 (B-LSTM) and Section 3.3
(DiCE). We present the evaluation metrics in Section 3.4.

3.1. General architecture

The proposed architecture is a Bayesian long short-term memory
(B-LSTM), from which we obtain probabilistic remaining useful life
(RUL) predictions. These predictions are subject to an interpretability
analysis using counterfactuals (RUL CFEs) generated from the DiCE
platform [115]. We also use counterfactuals (RUL CFEs and Uncertainty
CFEs) to feed back information to the network. In sum, this architecture
involves the key components:

» Bayesian Long Short-Term Memory (B-LSTM) Network: The
B-LSTM (see Fig. 4) is central to the architecture, capable of
capturing temporal dependencies in the sensor data. The Bayesian
approach is integrated into the LSTM architecture to account
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Table 1

Hyperparameters for Bayesian LSTM (B-LSTM) model.
Hyperparameter Value Hyperparameter Value
LSTM Neurons 32 LR Decay [epochs] 60
Dense Layers 2 Final LR 70%
Dense Neurons 32, 16 Validation split 20%
Epochs 100 Minimum delta 0.25
Learning Rate (LR) 1le-3 Patience [epochs] 5

for uncertainty in the model’s predictions. This involves repre-
senting the network parameters (weights, bias) as probability
distributions rather than fixed values.

Counterfactual Generation: We generate counterfactuals from
the B-LSTM with DiCE (Diverse Counterfactual Explanations) (see
Fig. 5) by perturbing the input data to explore alternative scenar-
ios. We use different plots to interpret the model and highlight the
factors contributing to RUL estimation. These mechanisms help to
make the model’s behavior more transparent and understandable
to end-users. We also augment the dataset with different types of
counterfactuals (RUL CFEs and Uncertainty CFEs).

We focus on Bayesian Neural Networks (BNNs), which extend tra-
ditional neural network architectures by incorporating probabilistic
reasoning into their framework. Unlike conventional neural networks
that utilize fixed weights and biases, BNNs model these parameters
as probability distributions. This approach is to some extent more
complex than a traditional neural network. However, the quantification
of uncertainty in predictions makes BNNs particularly suitable for
applications where interpretability is important, such as this work.

It is important to explain that the outputs of a B-LSTM and a regular
LSTM differ, even when optimized with the same parameters [116].
In a B-LSTM, the predicted output is generated by averaging over
multiple probabilistic samples from the model’s posterior distribution.
Instead, a traditional LSTM provides deterministic predictions, without
accounting for uncertainty. As a result, the mean prediction of a B-
LSTM can vary from the corresponding output of a conventional LSTM.
This justifies our choice of the B-LSTM to generate counterfactuals.

In general, the proposed architecture integrates probabilistic model-
ing, interpretability mechanisms, and data augmentation strategies to
provide predictions and explanations while accounting for the uncer-
tainty in the RUL outcomes.

3.2. Bayesian LSTM (B-LSTM)

The architecture of the B-LSTM model was inspired by the work
of Caceres et al. [67]. Caceres et al. compared the performance of
different Bayesian recurrent neural network (RNN) models in the C-
MAPSS data set. The selected architecture, shown in Fig. 4, performed
the best in our dataset.

To find the optimal distributions when training the Bayesian mod-
els, we used variational inference (VI), which aims to find the best-
fitting distribution by minimizing the Kullback-Leibler (KL) divergence
between distributions. When inference is performed on the model, the
weights and biases need to be randomly sampled from their distri-
butions in each prediction. In order to generate the RUL statistical
distributions, we performed Monte Carlo simulations for each input.

Regarding hyperparameters, we relied on the optimization results
of Caceres et al. [67] that are shown in Table 1. During training, a
decaying learning rate (LR) was used to aid learning in later epochs. In
addition, an early stop method was applied to stop the training process
and prevent overfitting.
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3.3. DiCE

The framework used to generate the counterfactuals used in this
work is the DiCE model, developed by Mothilal et al. [113]. We
have selected this framework for its ease of implementation, extensive
documentation, compatibility with ML models, customizability, and
overall performance.

DiCE is based on the counterfactual concept as described in Eq. (1).
It adapts the concept as shown in Eq. (2). In this equation, the first
term encourages the counterfactual input to produce a different output
(f(c;) = y). The second term aims to keep the counterfactual input as
close to the original input as possible, the third term seeks diversity
among the k counterfactuals, and A, and A, are hyperparameters. DiCE
iterates over the loss function until it converges and meets the desired
condition (achieving a different output). It is important to note that all
¢; values are initialized randomly.

LoeenCh

k k
A
C(x) = atrg min % g{ yloss (f(c,-),y) + 71 g{ dist(c;, x)
(2)
—A,dpp_diversity(cy, ..., c)

The DiCE model was applied to this research as shown in Fig. 5.
Firstly, to accommodate DiCE’s limitation with temporal inputs, the (30
steps x 14 sensors) time series data was reshaped into a (1x420) vector.
DiCE then slightly altered this reshaped input and evaluated whether
the modified input yielded the desired output using the Bayesian Neural
Network (BNN) model. If the desired RUL outcome was achieved, the
altered input was accepted as a valid counterfactual (CF) and reshaped
back to its original (30x14) format. If not, DiCE continued iteratively
adjusting the input.

We also ensured that altering a feature value on a data point had
a subsequent impact on later data points. figure 6 depicts a process of
generating temporal counterfactual explanations for time-series data.
The diagram represents 3 trajectories (the x-axis represents time and
the y-axis represents temperature, a sensor feature). Generating tempo-
ral counterfactual trajectories (orange and green) involves tweaking the
temperature at a specific time step and propagating through the time
sequence from that time step onward.

DiCE is designed for models that produce fixed outputs, typically
suitable for deterministic frameworks. In our approach, we used the
mean value of a B-LSTM model instead of the deterministic output of a
traditional LSTM to generate CFEs for RUL predictions. This distinction
is important because B-LSTM outputs are derived from probabilistic
sampling, reflecting uncertainty, unlike single-point predictions of a
standard LSTM. These two networks, B-LSTM and LSTM, are different
and produce different results.

Using DiCE, we were able to generate two kind of CFEs. The first
CFEs in this research (RUL CFES) had the goal of finding explanations
for how to increase or decrease the predicted RUL. To generate this
type of counterfactuals, we calculated the mean of the prediction
distribution as the output to adjust. By generating counterfactual inputs
leading to a higher/lower RUL, we aimed to find explanations on how
the life of the engine could have been changed.

The second application of CFEs (Uncertainty CFEs) had the goal of
improving predictive performance. Generally, the more data you have
available for a model to train on, the better its performance. As acquir-
ing more data can be a long and costly effort, we propose a method to
synthetically create more training data based on counterfactual inputs.
In this case, we generate five different “augmented” models:

- Baseline (without CFEs): This is the baseline model that uses all
available training data

» RUL CFEs (Increased RUL): This model is trained also on coun-
terfactuals that increase the RUL
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Fig. 4. Bayesian LSTM (B-LSTM) architecture. The model architecture consists of 1 LSTM layer, followed by 2 dense layers of 32 and 16 neurons respectively. Each input window
of size (30 x 14) is fed into the LSTM layer sequentially. The architecture leads to a single output representing the RUL. Each weight and bias is represented by a distribution

rather than a deterministic value, giving the model its probabilistic features.

* RUL CFEs (Decreased RUL): This model is trained also on coun-
terfactuals that decrease the RUL

« RUL CFEs (Combined): This model is trained also on counterfac-
tuals that decrease and increase the RUL

+ Uncertainty CFEs: This model is trained also on CFEs generated
from a hold-out set

3.4. Evaluation

In order to analyze the performance of the B-LSTM with each of
these augmented datasets, we applied the Root Mean Squared Error
(RMSE), the « — 4 accuracy [117], and the asymmetric scoring function
introduced by Saxena et al. [118].The normalized diversity score (NDS)
was the metric used to evaluate the diversity of the generated counter-
factuals. It is calculated as the ratio of the average pairwise distance to
the maximum distance between all CFEs in the set.

@ Zi]il Z,]'\]:m V Z/Zl(xik - x/k)2
max; ; 4/ Z}ﬁ](xik - xjk)2

norm —

Where:

* Dporm: Normalized diversity score.
+ N: Total number of counterfactual vectors.

» M: Dimensionality of each vector.

* x;: The ith counterfactual vector.

* d(x;,x;): Euclidean distance between vectors.

. (]; ): Number of unique pairs of vectors.

* D,y Average pairwise distance between vectors.

* Dy Maximum pairwise distance between vectors.

4. Case study: C-MAPSS

For this research, we used the Commercial Modular Aero-Propulsion
System Simulation (C-MAPSS) dataset as a case study to apply our
proposed methods. C-MAPSS is a tool created by NASA [119] which
can simulate a large commercial turbofan engine. Using this tool, a data
set was created for the 2008 international conference on Prognostics
and Health Mangement (PHMO8) where attendees were challenged to
create their best RUL prediction methods. Currently, it is a widely used
data set in RUL estimation research [118].

The data set includes four separate sub data sets (FDOO1, FD002,
FDO003, FD004), which vary in number of engines, operating conditions
and failure modes. For the goal of this research, the FD0OO1 set was
selected. It has 100 train/test trajectories, one operating condition,
and one failure mode. Each engine within the dataset can be regarded
as a member of an identical fleet of engines. Each engine contains a
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able to handle 2D inputs such as our time series data. After this, DiCE alters the inputs slightly and checks if the desired output is achieved with this new input using the B-LSTM
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Fig. 6. Example of counterfactual explanations generation.

time-series set of data, where the amount of time steps represents an
operating cycle of the engine. We assume that every engine operates
at its standard capacity and begins to deteriorate at some point in the
time series. However, the initial wear state of each engine remains
unknown. Once a specific degradation threshold is reached, the engine
is considered non-operational and has effectively reached the end of life
(EOL). Furthermore, the dataset is affected by a certain level of noise.

For this research, we performed some preprocessing steps on the
dataset before applying it to our models. For each cycle per engine,
the data set contains the following [Engine number, cycle number,
operational setting 1-3, sensor measurement 1-21]. As FD0O1 only has
one operating condition, we removed the operational settings from
the data set. In addition, we removed the cycle number to prevent
subsequent overfitting. This leaves us with the raw sensor data found
in Fig. 7.

The next steps in the pre-processing process consist of firstly, remov-
ing the unnecessary sensors, where it is clear that sensors
1,5,6,10,16,18 and 19 do not provide useful input, leaving 14 useful
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Table 2

Sensor descriptions.
Sensor index Description Units
1 Total temperature at fan inlet °R
2 Total temperature at low-pressure compressor (LPC) outlet °R
3 Total temperature at high-pressure compressor (HPC) outlet °R
4 Total temperature at LPC outlet °R
5 Pressure at fan inlet psia
6 Total pressure in bypass duct psia
7 Total pressure at HPC outlet psia
8 Physical fan speed rpm
9 Physical core speed rpm
10 Engine pressure ratio -
11 Static pressure at HPC outlet psia
12 Ratio fuel flow to Ps30 Pps/ps
13 Corrected fan speed rpm
14 Corrected core speed rpm
15 Bypass ratio -
16 Burner fuel-air ratio -
17 Bleed enthalpy -
18 Demanded fan speed rpm
19 Demanded corrected fan speed rpm
20 High-pressure turbine (HPT) coolant bleed Ibm/s
21 Low-pressure turbine (LPT) coolant bleed Ibm/s

sensors. All sensor names can be found in Table 2. Secondly, de-noising
the sensor trajectories, where each sensor was subjected to a Savitzky-
Golay smoothing and differentiation filter [120] using a 3rd degree
polynomial. Third, all sensor inputs were normalized to a scale of
[-1,11, to ensure that each feature is interpreted the same by the
model.

The final step of the pre-processing process was inspired by Caceres
et al. [67], who also used the C-MAPSS data set for RUL prediction.
They propose a sliding window approach as shown in Fig. 8, where
the ground truth RUL is calculated by counting the amount of cycles
remaining until the end of the data set per engine. A window size of 30
cycles was used, ensuring each RUL prediction was based on not only
the current cycle, but the 30 cycles before. By using a sliding window,
we increased the amount of training data and ensured that all inputs
were of equal size. For the ground truth RUL, we also incorporated a
piece-wise linear correction used by Benker et al. [121]. This limits the
maximum ground truth RUL to 120 cycles, which attempts to prevent
the model from trying to find fault modes in the healthy regime of
the engine lifetime, but rather focused on finding degradation patterns
more towards the EOL region. In previous work, Libera [122] applied
a similar approach to these pre-processing steps which we followed.

Performing all steps for 100 engines with varying lifetimes results
in 17731 samples of size (30, 14), one of which can be seen in Fig. 9.

5. Results & discussion

We present and discuss the results in this section. We first an-
alyze the performance of the B-LSTM developed for RUL prediction
(Section 5.1). Secondly, in Section 5.2 we discuss the findings and
explanations obtained from the B-LSTM model with DiCE (RUL CFEs).
Finally, in Section 5.3, we analyze the results of our data augmentation
methods (described in Section 3.3).

5.1. Predictive performance of B-LSTM

In this subsection, we evaluate the performance of the B-LSTM
model compared to the standard LSTM across multiple dimensions
of accuracy. Specifically, we evaluate how well each model predicts
Remaining Useful Life (RUL) and examine several key performance
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Fig. 7. Raw sensor data of engine 1.

metrics, including RMSE, the a — A accuracy, and the scoring function.
We also evaluate the counterfactuals.

From our comparison between LSTM and B-LSTM, we observed that
the predictions were both accurate even though the B-LSTM had more
favorable results (see Fig. 10). In the figure, we can see the distinct
output of the two LSTM variants. The predicted RUL values closely
track the true RUL values, remaining largely within the « — A bounds,
as indicated by the blue and red lines and shaded gray area.
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Table 3

Performance of B-LSTM.

Metric Denoised Noisy
RMSE 10.95 13.67
STD 7.40 4.70
Total score 3662.34 6919.16
Predictions in a = 0.2 66% 63%

The overall performance of the B-LSTM with noisy and with de-
noised data can be seen in Table 3. In general, the model trained on
the denoised data performs better than the one trained on the noisy
data.

5.2. Interpretability analysis (RUL CFEs)

As described in Section 3.3, we run the DiCE model to create
the RUL CFEs. We were interested in what inputs could generate an
increased RUL, and also which inputs could generate a decreased RUL.
By increased/decreased RUL, we mean an increase or decrease of 10
flight cycles. Ten cycles represent approximately 10% of the total
lifecycle in C-MAPSS, which we consider an acceptable value for our
experiments.
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One of the visualizations that we propose to examine interpretabil-
ity in maintenance is the plot presented in Fig. 11. In the picture,
we show the increasing RUL CFEs in green and the decreasing RUL
CFEs in red. As expected, the increasing CFEs result (with some oscil-
lations) in higher RUL predictions and the decreasing CFEs in lower
RUL predictions. This visualization demonstrates how different input
scenarios — represented by the counterfactual explanations — can push
the model’s predictions in either direction. This interpretive output is
particularly useful for tuning maintenance actions based on anticipated
RUL outcomes.

In the visualization, we can observe that as the system approaches
the end of its life, the uncertainty associated with the CFEs decreases
significantly. This reduction in uncertainty suggests that the model
becomes more confident in its explanations during this critical phase.
Consequently, it becomes easier to trust that any corrective mainte-
nance action proposed based on these CFEs will yield the expected
results. This behavior is intuitive since, near the end of life, the degra-
dation patterns are more apparent and predictable, allowing the model
to generate more reliable predictions and reduce variability in the
outcomes.

Another visualization tool that we propose is shown in Fig. 12,
where we present the counterfactuals from the perspective of input
features. In this plot, we illustrate how varying specific input param-
eters impacts the model’s predictions, offering a clear view of which
features lead to an increase or decrease in predicted RUL. The central
lines depict the denoised sensor inputs throughout the life cycle of an
engine. Although the example engine is used for illustration purposes,
the overall trends remain consistent across the entire testing dataset.
The green lines represent modifications to the original inputs aimed
at increasing the RUL at that specific time point, while the red lines
indicate alterations intended to decrease the RUL.

The overlap of CFE points in Fig. 12 is because each sliding window
input is adjusted to its respective counterfactual input, and neighboring
windows exhibit significant overlap. The shown patterns enable us
to assess whether the different CFE explanations for the same time
point align. The concentration of green points provides strong evidence
that the system is in a condition where corrective actions—such as
maintenance or operational adjustments — would have a positive effect
on extending the RUL. This type of insight is of value for maintenance
planning. Additionally, this approach facilitates the identification of
outliers and trends, as subsets of extreme or conflicting counterfactual
explanations become more discernible.

To produce “green counterfactuals” (alternative positive scenarios),
we can change the input data in different ways, such as by doing light
maintenance. For example, a water wash on the engine can decrease
the temperature of the engine and prolong its life. Also, the sensor data
can also be contaminated by noise and inaccuracies. Applying a data
denoising can also result in an adjustment of certain sensors, resulting
in a more realistic set of trajectories and a better estimated RUL.

In the third visualization tool we propose, the focus is on evaluating
the uncertainty of the generated CFEs. The tool shown in Fig. 13(b)
enables us to observe how confident the model is in its suggested CFEs
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Comparison of the Baseline B-LSTM vs Augmented by Counterfactuals B-LSTM.

Baseline Augmented

uncertainty CF

Augmented
RUL CF (increasing)

Augmented
RUL CF (decreasing)

Augmented
RUL CF (combined)

RMSE

RMSE Std
Accuracy a=0.2
Score

9.56
8.68
74%
2802.69

8.47
7.38
79%
2312.69

9.60
7.78
70%

2815.19

9.01
7.42
78%
2391.36

10.26
7.19
68%
3148.24

by visualizing the degree of uncertainty associated with each explana-
tion. Larger uncertainty bands indicate that the model is less certain
about the impact of the input change on the predicted Remaining Useful
Life (RUL), while narrower bands suggest a higher confidence in the
prediction.

In our results, the diversity of the generated counterfactual explana-
tions (CFEs) was significant with a result of 0.43 (between 0 and 1) in
line with the charts of Fig. 13(b). This diversity level can be attributed
to the approach used to generate the counterfactuals. Specifically, the
optimization process focused on finding counterfactuals that closely
resemble the original instance while still being moderatively varied.
This strategy ensures that counterfactuals remain realistic and feasible,
while exploring the different regions of the feature space.

5.3. Data augmentation by counterfactuals

In this subsection, we present the findings of our data augmentation
experiments, which utilized various types of CFEs (RUL CFEs and
Uncertainty CFEs). To this aim, we compared the results of the several
models explained in Section 3.3. The results are shown in Table 4 and
Figs. 14 and 15. The model augmented with Uncertainty CFEs can be
seen as the optimal choice, outperforming all other models across three
out of four metrics. We attribute this performance to the decreased
uncertainty and hence the superior quality of the Uncertainty CFEs.

Surprisingly, the model augmented with all RUL CFEs (both decreas-
ing and increasing) did not exceed the performance of its counterparts,
except for RMSE Standard deviation. In this last dimension, the model
is the best (RMSE std = 7.19 cycles) but the RMSE value itself is
significantly high (RMSE = 10.26 cycles). This result suggests that
effective data augmentation using counterfactuals may require a more
targeted approach, possibly focusing on similar types of counterfactuals
to enhance overall model performance.

5.4. Counterfactuals and causality

It is important to note that distinguishing between correlation and
causation in counterfactual explanations remains a challenge, espe-
cially when the features in question are correlated with, but not causal
for, the RUL. Several general approaches to address this problem have
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Fig. 13. Counterfactual explanations (CFEs) for sensor 2, 17 and 20 of engine 4. Center
line = original input, red = 10 cycles lower RUL, green = 10 cycles higher RUL.

been proposed over the years. A work of note is by Xu and Dang
[123] who propose a data-driven framework to discover and represent
causal relationships between quality issues and production factors using
a causal knowledge graph.

This approach, as well as other methodologies in graphical causal
modeling [124], have the limitation of depending on the availability
of causal knowledge. A topic to explore in future work is instrumental
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Fig. 14. Overall performance of the 5 trained models per section of the life cycle.

variable methods for causal inference [125]. These methods are bene-
ficial when causal knowledge is incomplete as they rely on structural
assumptions or external sources of variation rather than expert causal
understanding.

In real-world applications, domain expertise will continue to play
a critical role. For example, in the case of high temperature due to
poor lubrication, a domain expert would be able to point out that tem-
perature is merely a symptom and the underlying cause (lubrication)
should be adjusted. Incorporating domain knowledge into the model
or validating counterfactuals through domain expert feedback is going
to be important to avoid misleading suggestions.

6. Conclusions & recommendations

The goal of this research is to find and apply methods that combine
Counterfactual Explanations (CFEs) with Bayesian uncertainty to im-
prove the interpretability and performance of RUL estimation models.
To achieve this, we set out the answer the following research question:

How can Bayesian uncertainty and Counterfactual Explana-
tions be used in predictive maintenance to improve inter-
pretability and predictive performance?

This study involved the development and implementation of a
Bayesian LSTM model (B-LSTM). This model was shown capable of
accurately predicting the Remaining Useful Life (RUL) throughout the
lifespan of a series of simulated synthetic engines, while also providing
a measure of uncertainty.

The use of a Bayesian model enabled the generation of various types
of counterfactual explanations, namely RUL CFEs
(increasing/decreasing) and uncertainty CFEs. The generation of un-
certainty CFEs would be unattainable through a deterministic model
lacking stochastic modeling capabilities.
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The CFEs, derived from manipulated sensor inputs, showed trends
and gave practical guidance for interpreting engine lifespan. The ap-
proach provided valuable information on the correlation between sen-
sor data and engine health, laying the foundations for maintenance
strategies and further exploration in predictive maintenance modeling.
RUL CFEs can elucidate how much a given maintenance repair can
affect the RUL, ahead of time. For instance, if a counterfactual tells us
that raising the HPC temperature by x leads to a new RUL of RUL,, and
our programmed maintenance repair causes an increase of x, it becomes
clear how many cycles remain until failure and the effectiveness of the
maintenance repair.

The second part of this research attempted to use CFEs as a data
augmentation method to generate more data points for model training.
Among the CFEs used we used the Bayesian uncertainty of the B-
LSTM to generate CFEs with a reduced measure of uncertainty. These
uncertainty CFE inputs, along with the RUL CFE inputs, were added to
the training data. Analyzing the performance of five models differently
augmented we could observe that the addition of CFE with reduced
uncertainty improved the overall model performance. This finding
confirms that this CFE data augmentation method is a viable approach
to model performance enhancement.

In conclusion, our study contributes to the ongoing debate regarding
the trade-off between accuracy and explainability in Al models. While
traditional perspectives often suggest a compromise between these two
aspects, our findings demonstrate that it is possible to enhance both
interpretability and model performance simultaneously. By generat-
ing counterfactual explanations and augmenting the dataset, we have
shown that models can not only achieve higher accuracy but also
provide insights into decision processes.

For applying this method in future research, it is advised to im-
plement a CF generation model tailored specifically for reducing un-
certainty, such as the Counterfactual Latent Uncertainty Explanations
(CLUE) model [126], in order to get a more consistent uncertainty
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Fig. 15. Performance of 5 trained models: RMSE (top), STD (middle), a« — 4 score
(bottom).

reduction over the engine life cycle. Also, we recommend applying this
method to a more complex dataset, as all the tested models evaluated
significantly well due to the relatively simple dataset. We also recom-
mend looking into what is the best fraction of CFE inputs to real inputs
in order to find the optimal amount of augmented CF data to add to
the training set in order to maximize performance.

CRediT authorship contribution statement

Jilles Andringa: Writing — original draft, Validation, Software,
Methodology, Formal analysis, Conceptualization. Marcia L. Baptista:
Writing — review & editing, Writing — original draft, Supervision,
Methodology. Bruno F. Santos: Supervision.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

12

Information Fusion 118 (2025) 102972
Acknowledgments

This work was supported by national funds through FCT (Fundagéo
para a Ciéncia e a Tecnologia), under the project - UIDB/04152/2020 -
Centro de Investigacdo em Gestdo de Informacao (MagIC)/NOVA IMS)
(https://doi.org/10.54499,/UIDB/04152/2020).

Appendix. Acronyms

Al Artificial Intelligence

ARIMA Auto-Regressive Integrated Moving Average
B-LSTM Bayesian Long Short-Term Memory

BNN Bayesian Neural Network

BNNs Bayesian Neural Networks

C-MAPSS Commercial Modular Aero-Propulsion System Simulation
CFEs Counterfactual Explanations

CLUE Counterfactual Latent Uncertainty Explanations
CMAPSS Dataset of Turbofan Data

DiCE Diverse Counterfactual Explanations

DNNs Deep Neural Networks

DRL Deep Reinforcement Learning

EOL End of Life

GM Gray Model

HPC high-pressure compressor

HPT High-pressure turbine

KL Kullback-Leibler

LIME Local Interpretable Model-Agnostic Explanations
LPC Low-Pressure Compressor

LPT Low-Pressure Turbine

LR Learning Rate

LSTM Long Short Term Memory

MCMC Markov Chain Monte Carlo

ML Machine Learning

NASA National Aeronautics and Space Administration
NDS Normalized Diversity Score

PHM Prognostics and Health Management

PrcM Prescriptive Maintenance

PrdM Predictive Maintenance

PrvM Preventive Maintenance

RMSE Root Mean Squared Error

RNN Recurrent Neural Network
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RUL

Remaining Useful Life

SHAP Shapley Additive Explanations

STD

VI

Standard Deviation

Variational Inference

WP Wiener Process

XAI Explainable Artificial Intelligence

Data availability

The CMAPSS dataset is a public dataset made available by NASA.
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