
Tailoring Attacks To Federated Continual Learning Models

Eames Trinh

Supervisors: Bart Cox, Jérémie Decouchant

EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
June 25, 2023

Name of the student: Eames Trinh
Final project course: CSE3000 Research Project
Thesis committee: Bart Cox, Jérémie Decouchant, Qing Wang

An electronic version of this thesis is available at http://repository.tudelft.nl/.

Abstract
Federated learning enables training machine learn-
ing models on decentralized data sources without
centrally aggregating sensitive information. Con-
tinual learning, on the other hand, focuses on learn-
ing and adapting to new tasks over time while
avoiding the catastrophic forgetting of knowledge
from previously encountered tasks. Federated Con-
tinual Learning (FCL) addresses this challenge
within the framework of federated learning. This
thesis investigates how FCL can be made vulnera-
ble to Byzantine attacks (from unpredictable or ma-
licious nodes), which aim to manipulate or corrupt
the training process, compromising model perfor-
mance. We adapt and evaluate four existing attacks
from traditional federated learning in the FCL set-
ting. Furthermore, we propose three tailored at-
tacks for FCL are proposed based on the insights
gained. Additionally, a novel attack called “In-
cremental Forgetting” is introduced, which specif-
ically targets the incremental knowledge retention
aspect of FCL. Our experimental evaluations of
the attacks carried out against various FCL algo-
rithms show that personalizing these towards FCL
provides varying degrees of performance benefits,
while the novel attack additionally exhibits evi-
dence showing it may be more practical against
real-world systems, strengthening its impact on the
FCL community. This research contributes to the
development of secure and resilient FCL systems
to build better defenses against such attacks in the
federated learning domain.

1 Introduction
Federated Learning is a discipline within the Machine Learn-
ing field with a single restriction: all training must be done on
decentralized machines with their own datasets, communicat-
ing only model parameters to a centralized server [6, 15]. It
is used in an ever-growing list of scenarios, ranging from ma-
chine learning on privacy-sensitive data such as in hospitals,
to machine learning at the edge, where different devices train
on the data they gather.

On the other hand, enabling deployed models to adapt to
new environments emulates how humans learn in the real
world. For example, an image classifier for different types
of cars can expand its knowledge to classify other things, like
bikes and motorcycles. Without preconceived training tech-
niques, simply retraining on a new dataset will cause catas-
trophic forgetting, where the model works fine on the cur-
rent training task, but loses any accuracy on the older tasks.
Being able to anchor the model to its past knowledge (sta-
bility), whilst also leveraging it to learn new things (plastic-
ity), is known as Continual Learning, and cuts down on re-
training costs enormously [5, 11–13]. From these fields, Fed-
erated Continual Learning (FCL) emerged, leading to sev-
eral algorithms already exist to achieve effective FCL results
[14, 22, 23]. The distributed nature of this environment intro-
duces a new vulnerability: Byzantine clients (unpredictable

or malicious clients) in the training cluster can send incor-
rect updates, leading to overall model degradation. Methodi-
cally attacking Federated Learning generally well understood
[1, 8, 19], and ways to defend it are even more comprehen-
sive [3, 16, 20]. However, the additional, specific weaknesses
of FCL (as opposed to basic federated learning) have not yet
been explored.

Our main research question lies at the intersection of these
three subjects and can be formulated as follows: “How
can Federated Continual Learning (FCL) be attacked using
Byzantine behavior in its clients?”. In this work, we first con-
sider existing Byzantine attacks to answer the subquestion,
“Are existing attacks successful in disrupting FCL?”. In par-
ticular, we test the sign-flipping, label-flipping, Gaussian, and
backdoor attacks on two existing FCL algorithms. Next, we
aim to answer the second subquestion, “How can novel at-
tacks be crafted to successfully disrupt FCL in particular?”
We design three different attacks: the final-task task flipping,
task-flipping, and task-based sign flipping based on existing
attacks, and a novel incremental forgetting attack. We test
their effectiveness against the existing generic attacks as base-
lines.

2 Related Work
Although Byzantine attacks exist, none have been applied to
FCL algorithms (only FL). In this section we elaborate upon
these FL attacks and assess their relevance to an FCL setting.

2.1 Gaussian Noise
Arguably the simplest of the chosen existing attacks, Gaus-
sian noise attacks the model by simply returning random pa-
rameters. The noise, X , is drawn from a zero-mean random
distribution X ∼ N(0, σ2) with variance, σ2, derived from
an iteration over all model parameters [9]. Due to its simplic-
ity, Gaussian noise is often used as a baseline to benchmark
other, more sophisticated attacks against [4].

2.2 Backdoor Attack
Generally, Byzantine attacks try to decrease the model accu-
racy on a subset of, or all classes, to make the global model
less effective. Backdoor attacks typically run counter this
goal. Such attacks try to “sneak” a key into the training data
so that during inference, any input with this key will be clas-
sified as a target label [1]. For example, by altering samples
of an employee image training set so that employees with
glasses (the key) are relabeled as CEO, means that in prac-
tice, for an attacker to be labeled as CEO, they must simply
put on glasses, gaining them higher privileges. This means
that we do not seek to indiscriminately lower accuracy, but
“alter” accuracy of a certain type of input on a certain out-
put. In this research, we apply the pixel-pattern attack, where
a certain pattern of pixels (the key) is inserted into training
data, and relabeled as a target label [1].

2.3 Label Flipping
Label flipping is a commonly used data poisoning attack,
where the labels of the training are altered in whatever way
the attacker sees fit [8]. It is typically an umbrella term for

2

two subdivisions: discriminate label flipping and indiscrim-
inate label flipping. The discriminate variant aims to make
the model misclassify a specific label, or set of labels. For
example, the attacker could switch all instances of label “5”
(the target label) with label “3”, rendering the model unable
to detect instances of label 5. While targeted flipping is pos-
sible, in an FCL setting, classes across different tasks do not
usually overlap. This makes the choosing the specific label
the adversary must target unclear, as we can choose a global
label to target, or perhaps one per task.

Therefore, we consider only indiscriminate flipping of
sample labels, that cares only about reducing the overall ac-
curacy of the model. One possibility of flipping is to per-
mute all available labels by, for example, applying a rotation
l = (l + 1)mod(n) where l is a label in range {0, ...n − 1}.
However, instead of applying rotations, we simply randomize
the label permutation, with the constraint that no label will
map to itself in the permutation. This is done to dispel any
intrinsic ordering the training data might have, as this order-
ing may have been purposely added to improve model train-
ing [2].

2.4 Sign Flipping
Sign flipping is one of the most commonly used model poi-
soning attacks, where Byzantine clients “flip” the gradients
they return. The Byzantine clients first train their model like
all of the other clients, which gives it an idea of the gradients
the other clients might return. Then, it returns the gradient for
task i, gi, (difference between the new model and the old), but
inverted −λgi (and multiplied by a constant λ).

The specific attack we employ is inspired by [7], which
involves first calculating a vector s where si is the sign of
the change from the received global model, wre, to the new
model. If the difference is positive, si = 1, else si = −1. To
craft the Byzantine parameters, we use w′ = wre−λs. λ can
be any constant, adjusted based on how “stark” of a difference
we want the returned parameters to have to the other, benign
clients.

3 Background
3.1 Federated Learning
Federated Learning (FL) is a form of machine learning
that aims to unlock the potential of private and inaccessi-
ble datasets on distributed devices, like pictures on a mobile
phone, by performing local model training, and only return-
ing its parameters to a federated server, to be aggregated into
a global model [15]. At each round, the global model, gg , is
distributed to a random set of the n client nodes, {0, ...n−1},
who train based on the model and their dataset, and return
an update gradient gi. The general algorithm for aggregat-
ing updates through, for example, averaging (known as Fe-
dAvg [15]) is defined as follows:

g
(t)
global =

1

n

n∑
i=1

gi (1)

3.2 Continual Learning
Continual Learning is an approach to machine learning that
allows machines to learn from new data overtime without re-

training on their entire dataset while remembering as much
as possible from past data (to avoid catastrophic forgetting)
[5, 11, 12]. Several approaches have already been developed,
and can generally be divided into three different groups. First,
regularization techniques emphasize applying modifications
to the loss function during training to avoid deteriorating im-
portant parameters. Next, rehearsal techniques attempt to
maintain a memory of past tasks, either in the form of samples
from that task, or alternate representations of that task. Fi-
nally, architectural techniques avoid catastrophic forgetting
by changing the model itself, for example adding new neu-
rons for a new task in a neural network. In continual learning,
learning is separated into a set of tasks (e.g. detect humans,
detect dogs, etc.), {0, ...T − 1}. Note that in a federated set-
ting, each client moves to different tasks independently.

3.3 Byzantine Behavior
Byzantine Behavior is, broadly speaking, a conundrum in dis-
tributed systems where certain nodes in a cluster exhibit un-
predictable or malicious behavior. This clearly applies to FL,
where certain training nodes can return (deliberately) poor
updates. Several Byzantine attacks exist, and have been stud-
ied in different settings. They can generally be divided into
two denominations, data poisoning, where Byzantine nodes
alter their local datasets in specific ways, and model poi-
soning, where Byzantine nodes exploit weaknesses in how
federated algorithms aggregate updates. On the other hand,
defenses also exist, typically trying to detect and mitigate
anomalous updates from nodes. In this research, we evalu-
ate four attacks from the literature (§2.1), and use them as
potential baselines off of which to base our FCL tailored at-
tacks.

Besides these attacks, several other attacks exist. For in-
stance, some do not attack the federated training stage, but
rather the inference-time testing stage [17]. A common tactic
is to strategically add perturbations to images (or other data),
known as “adversarial samples”, that are invisible to the hu-
man eye, but enough to cross an inscrutable boundary that
makes a model misclassify the image.

Other attacks are inventive, but less relevant to FCL, such
as synthetic sample crafting (an advanced data poisoning at-
tack) [10] to influence the global model. Finally, attacks like
reconstruction attacks aim to cause data leakages by recon-
structing a client’s private data based on the gradient updates
they share with the central server [21]. Such attacks will not
be the focus of this investigation.

3.4 Elastic Weight Consolidation
Elastic Weight Consolidation (EWC) [11] is a well known
regularization continual learning technique. It assigns impor-
tance weights to the parameters of a neural network based on
their impact on the performance of previous tasks. The loss
function, L, employed by EWC is a combination of the cur-
rent task’s loss and a regularization term that penalizes large
parameter changes. This regularization term ensures that im-
portant parameters for previous tasks are preserved, while al-

3

lowing flexibility for new tasks:

L = Ltask +

N∑
i=1

λ

2
· Fi · (θi − θ∗i)

2 (2)

where:
N : Number of parameters in the neural network
λ : Regularization strength
Fi : Fisher information matrix of parameter θi
θi : Current value of parameter θi
θ∗i : Value of parameter θi for the previous tasks
It is important to note that in this work we make use of

FedEWC, a federated version of EWC. All clients use EWC to
train on their local datasets for each task, and simply provide
the updated model parameters to the federated server which
uses FedAvg to aggregate the updates.

3.5 Federated Weighted Inter-client Transfer
Federated Weighted Inter-client Transfer (FedWeIT) [23] is
a hybrid regularization and rehearsal technique designed for
federated contexts. It works by capturing global parameters,
θG, that represent task-generic knowledge, and task adaptive
parameters, A, representing task-specific knowledge. Dur-
ing aggregation, clients send their updates for θG which are
then aggregated using any algorithm of choice. Simultane-
ously, task adaptive parameters are shared, which are then
added into the federated servers “knowledge base”. On each
training round, the server shares some subset of this knowl-
edge base with clients so they have some representation of
past tasks (rehearsal). Using this, θG, and an attenuation pa-
rameter, α, which learns what information is “useful” from
the knowledge base, the loss function regularizes the training
of the current task to strike a balance between itself and past
tasks.

4 Methodology
To find if and how FCL can be attacked, we must base our
methods in existing research. We search for, and select al-
gorithms from existing Byzantine attacks in normal federated
learning. We identify the ones to implement based firstly on
their prevalence in literature, so we can be sure it has been
tested by others can expect it to work. When choosing ex-
isting attacks, we evaluate perceived complexity since, real-
istically, certain creative and effective approaches have im-
plementation overheads exceeding the scope of this project
(some of these are discussed in Section 3.3).

After selecting and implementing the attacks, since these
remain untested in an FCL setting, we develop “evolutions”
of these attacks. These will retain original attack as a basis,
but modify the key elements of the approach in such a way
that makes it specific to FCL. It is important to understand
that although they do not have to generalize to FL, they do
have to generalize to FCL. The core logic of the attack must
not change between implementations within different FCL al-
gorithms. Finally, after examining and expanding upon the
existing literature for attacks, we attempt to develop a novel
attack that ideally learns from the other approaches, but does
not lay its foundation in them.

For breadth, attacks will be tested across two different
FCL algorithms. We select algorithms that are regularization-
based or rehearsal-based as these share more similarities
between them than either do with architectural-based algo-
rithms.

In order to evaluate all of these attacks, we will test them
according to several metrics (section 6.2). The primary base-
line will be the average accuracy of the global model on the
client datasets in the case where all client nodes are healthy.
For each attack that is based on an existing attack, the sec-
ondary baseline is the metrics of the existing attack. In this
way, we can quantify how well our approaches improve over
others.

5 Tailored Attacks and Novel Attack
It is evident from the abundance of Byzantine attacks, that
more than a few can be applied almost directly to an FCL
setting. However, their ability to generalize to most FL con-
texts hinders their potential to capitalize on the specific con-
straints FCL provides. In the scope of this research, since
we care only about generalizing attacks towards FCL, and
not the larger FL, we can choose some of these attacks to
evolve. From the existing “label flipping”, we derive task
flipping and final-task flipping. From “sign flipping”, we de-
rive task-based sign flipping. Finally, we introduce a novel
attack, incremental forgetting.

In general, when creating attacks tailored to FCL, we aim
to reverse its primary goal: maximizing catastrophic forget-
ting. To develop attacks, it is beneficial to search for ways to
minimize accuracy, but also to maximize catastrophic forget-
ting. Although in practice, circumstances may be different,
we do not assume that Byzantine nodes communicate with
each other (e.g. coordinate a specific permutation in a label
flipping attack).

5.1 Label Flipping Based Attacks
Task Flipping
This FCL attack is a natural extension of label flipping, where
instead of flipping the labels of the data samples, we flip the
“labels” of the tasks. In particular whereas a benign node
would report the gradient of the task i it trained itself on, cor-
responding to an agreed upon task, the Byzantine node claims
to train on task i, but instead trains itself on the data of any
other task, {0, ...T −1}\{i}. Again, it is possible to permute
by rotation, but literature suggests certain task orders might
improve final results [2]. If the central server has a specific
order for such a reason, rotating will only partially disturb it,
whereas randomizing will destroy it entirely. Therefore, we
permute through randomization, with the constraint that no
task maps to itself in the permutation.

Final-Task Flipping
In the basic label flipping scenario, we stipulated that we will
focus solely on indiscriminate flipping due to a lack of class
overlap between tasks. However, in the specific context of
FCL, we are now better equipped to target a certain “task”. In
the interest of maximizing catastrophic forgetting, it makes

4

sense to drag the global model to a place where it remem-
bers as little as possible of the other tasks. Besides label flip-
ping, the inspiration for this technique comes from the gen-
eral approach of skewing the model towards something less
useful [4]. In essence, at each iteration, the Byzantine nodes
claim to train on task i, but actually train towards the final
task in the global task sequence, T − 1 (all clients follow the
same sequence). The motivation behind choosing the final
task is that choosing any other previous task, {0, ...T − 2},
results in, at least for some number of iterations, dragging the
model towards a previous task, which is how some continual
learning algorithms try to prevent catastrophic forgetting in
the first place [11]. For example, if we instead choose task
T − 2 to always train on, then during task T − 1, the Byzan-
tine node will actually help the global model “remember” the
previous task. The final task is the only task that does not
suffer from this.

5.2 Task Based Sign Flipping
The FCL specific implementation takes this principle to a
higher degree. Instead of finding only the sign-flipped gradi-
ent between the currently trained model, and the last received
global model, it finds the flipped gradients between the cur-
rently trained model and all past tasks. The goal is to find a
flipped gradient which points the model away from all pre-
viously learned tasks (see Figure 1). Intuitively, this means

θold

θnew

θbyz

θbyz

θold

θnew-1

θnew-3

θnew-2

Sign Flipping Task Sign Flipping

Figure 1: Basic Sign Flipping and Task-Based Sign Flipping

that instead of only forgetting the most recent task, i − 1,
we take extra steps to continue forgetting tasks further into
the past, “catastrophically” forgetting them as well. Once we
have a list of flipped gradients, {g0, ...gi−1}, we aggregate
them into a single, flipped gradient using the quadratic pro-
gramming optimization formulation [13, 14]:

min
gi

1

2
∥gi−1, gi∥22 (3)

s.t. Ggi ≥ 0

It finds a gradient, gi such that it is acute to all G =
{g0, ...gi−1} (the dot product is greater than or equal to 0)
and is as close to gi−1 as possible. In the event that the op-
timization cannot find an angle within these constraints, we
iteratively remove the oldest gradient from the list (i.e. start-
ing with g0) and try again until it works. Unfortunately, the
number of parameters in neural networks can be quite large,
meaning finding a solution to the optimization will often fail.
Dimensionality reduction is therefore applied in the form of

calculating the diagonal of the Fisher Information Matrix, F ,
and identifying the most important proportion, p, of param-
eters. The optimization is then executed using this reduced
matrix. Empirically, this proportion must be tuned according
to the number of parameters in the model.

5.3 Incremental Forgetting
After testing and evolving existing techniques, we finally ar-
rive at a novel technique, specifically targeting FCL. In gen-
eral, continual learning aims to prevent catastrophic forget-
ting, by “anchoring” the model to its old parameters. This
means that if a model previously trained on task i, with pa-
rameters θi, is trained on task i+1, instead of moving towards
the optimal parameters, θi+1, it finds an intermediate posi-
tion. If the goal is to increase catastrophic forgetting, apply-
ing a counterweight that is closer to θi+1 but further from θi
would help “forget” θi. The inspiration for this is taken from
regularization methods, in particular, Elastic Weight Consol-
idation (EWC) [11], whose loss function includes the (here
simplified) term, λ(θnew − θold)

2. In our implementation we
flip this parameter to make it negative, so that it encourages
deviation from old parameters. However, by only flipping the
term, we can technically encourage infinite deviation, which
detracts from the need for it to be (somewhat) accurate on the
current task. To tackle this, we wrap this in an ln(x) func-
tion where lim

x→∞
ln(x) = ∞, but since lim

x→∞
d
dx ln(x) = 0,

the marginal profit of linearly increasing deviation decreases
quickly.

The overall loss function, LTask, is defined as follows,
where each difference at parameter, k, is summed and tuned
with hyperparameters, λ1 and λ2:

LTaski = α(LTaski)− (1− α)
∑
k

λ1 ln(λ2|θk,i − θk,i−1|)

(4)
where:
α : Balance between learning on current task and forgetting

previous task
k : Current index of parameter in the neural network
λ1 : Regularization strength
λ2 : Speed at which parameters reach “maximum” useful

difference
θk, i : Current value of parameter θk at task i
A significant advantage that Incremental Forgetting has

over other attacks is that although it attempts to “forget” the
past task, it can only do this with knowledge of what the
past task was. This is in contrast to other attacks, like (task-
based) label flipping, which return updates unrelated to the
current task. In this sense, we expect updates from Incremen-
tal Forgetting to resemble the other nodes in the cluster more
closely. This is useful against several types of defenses [16]
which try to detect outlier updates. This is further investigated
using cosine similarities in section 6.3.

6 Experimental Setup and Results
6.1 Simulation Environment
The CIFAR-100 dataset is chosen as the benchmark for its
diverse range of 100 classes, providing enough variety to dis-
tribute them amongst different tasks.

5

To evaluate the robustness of federated continual learning
algorithms against Byzantine attacks, two FCL algorithms are
tested: FedWEIT, and FedEWC. To maximize performance
and predictability of the existing FCL algorithms, we assume
Independent and Identically Distributed (IID) data distribu-
tions, as their robustness against non-IID distributions re-
mains orthogonal to our investigation.

The federated setup consists of 10 continual learning tasks,
with each task containing 10, non-overlapping but shuffled
classes. Every class in CIFAR-100 contains the same num-
ber of images, meaning that each task is of equal size. Al-
though some algorithms like FedWeIT are robust against ran-
domized task sequences due to their internal record-keeping
of past tasks, others like FedEWC have no intrinsic mecha-
nisms to handle this. Thus, the order of tasks is kept constant
across tasks as is common in literature [5]. Designating 20%
of the client nodes as Byzantine nodes is a common propor-
tion used in literature [10, 19] since it introduces a realistic
and challenging setting, and will be used in this experiment.

Each task is trained over 10 rounds, allowing the model to
gradually adapt to the new task while preserving previously
learned knowledge. Within each round, selected client nodes
execute 10 local epochs to update their local models using
their respective local datasets.

The model utilized is the LeNet architecture with minor
modifications. It incorporates convolutional and fully con-
nected layers, as well as specific adjustments for multi-task
learning. By combining these elements, the model provides a
flexible and efficient framework for making task-specific pre-
dictions, making it suitable for the experimental setup.

Layer Output Shape Parameters
Conv1 (batch, 20, 32, 32) 20 channels, kernel

size 5x5, padding 2
MaxPool1 (batch, 20, 16, 16) kernel size 3x3, stride

2, padding 1
Conv2 (batch, 50, 16, 16) 50 channels, kernel

size 5x5, padding 2
MaxPool2 (batch, 50, 8, 8) kernel size 3x3, stride

2, padding 1
FC1 (batch, 800) in: 800, out: 800
FC2 (batch, 500) in: 800, out: 500
Last (batch, n out) in: 500, out: n out

Table 1: Summary of the LeNetWeIT model’s layers - Note: The
“batch” dimension represents the number of samples processed in
each batch, and “n out” refers to the number of output classes in the
dataset.

6.2 Evaluation Metrics
The first chosen evaluation metric is the cumulative accuracy
of the model, ω, over all currently and previously trained
tasks (0, ...t):

CAcc(ω,C(t)) (5)

where C(t) =

t⋃
i=0

Di

Note, Di represents the testing set for task i. This will be pre-
sented as an accuracy score plotted over each round of train-
ing. Secondarily, we use the the average percentage differ-
ence (APD) between accuracies across all training rounds, r,
as a comparison metric between baseline attacks and evolved
attacks. This will be presented as a single value for each at-
tack (and its baseline comparison):

APD =
1

r

r∑
i=0

CAcc(ωbaseline, C(r))− CAcc(ωcur, C(r))

CAcc(ωcur, C(r))

(6)

6.3 Results
This section provides summaries of the results achieved from
running the backdoor attacks, label-flipping and sign flipping
family of attacks, and novel incremental forgetting attack.
An overview is presented in Table 2, where different attack
types are separated by shading. The graphical data presented
is from running the attacks on FedWeIT. For corresponding
graphs from FedEWC, refer to Appendix A.

FCL Attack FedWeIT FedEWC
Gaussian 1.8% 0.9%

Basic Sign Flipping 29.7% 22.0%
Task-Based Sign Flipping 35.2% 24.7%

Basic Label Flipping 2.3% 1.4%
Final-Task Label Flipping 6.7% 12.6%

Adjusted Final-Task Label Flipping 8.9% 14.5%
Task-Based Label Flipping 10.2% 15.1%

Basic + Final-Task Label Flipping 3.6% 1.4%
Basic + Task-Based Label Flipping 2.9% 2.3%

Incremental Forgetting 9.3% 12.9%
Adjusted Incremental Forgetting 10.5% 14.2%

Table 2: Gaussian, Sign Flip, Label Flip, and Incremental Forget-
ting Attack Accuracy Comparison Overview Against a No-Attack
Scenario (Average Percent Difference)

Backdoor
The data poisoning was conducted similarly to experiments
from Bagdasaryan et al. [1]. Namely, on Byzantine clients,
we also poison 8% of all images with a pixel pattern. This
corresponds to their figure of 5 samples per batch of 64.
The pixel pattern is symmetrical, randomized and overlays
roughly 10% of the image. We evaluate the accuracy of the
global model on unpoisoned test sets (from correct clients)
and on poisoned test sets containing 100% poisoned samples
(from Byzantine clients).

Backdoor Metric FedWeIT FedEWC
Global APD 1.1% 0.1%

Unpoisoned Data Accuracy 4.3% 5.3%
Poisoned Pixel Pattern Accuracy 9.9% 9.7%

Table 3: Backdoor Attack Accuracy Comparison Against a No-
Attack Scenario (Average Percent Difference) and Final Accuracies
on Unpoisoned and Poisoned Testsets

6

0 20 40 60 80 100
Round

0

20

40

60

80

100
Ac

cu
ra

cy
 (%

)
No Attack
Backdoor Attack Global
Backdoor Attack Target

Figure 2: Accuracy of unpoisoned test set (global) and poisoned test
set (target) performance using backdoor attack across 10 tasks in
FedWeIT

In this investigation, we only evaluated specifically tar-
geted attack, namely, the backdoor attack. From the experi-
mental results, it appears to work well. There does not appear
to be a large decrease in accuracy as a result of the data poi-
soning. FedEWC experienced as little as a 0.1% decrease in
performance, but a final target label accuracy of 9.7%, well
above the global model accuracy, 5.3%.

In Figure 2, it is evident that the pixel pattern detection has
a much higher accuracy than the regular image classification
(although it does see a similar degradation over tasks). This
was mostly caused by the fact that a pixel pattern is easier
to detect than a complex image primarily because such pat-
terns are constant (the same exact pixels have the same exact
RGB values). On top of this, the pattern is well defined and
obvious, something ideal for even fairly basic convolutional
networks like LeNetWeIT. This implies that there are fewer
weights in the network that the Byzantine node needs to alter,
which translates to an easier time successfully altering them
in the global model, and less degradation in the global model
on other classification tasks.

Sign Flipping

0 20 40 60 80 100
Round

0

10

20

30

40

50

Ac
cu

ra
cy

 (%
)

No Attack
Basic Sign Flip
Task-Based Sign Flip
Gaussian

Figure 3: Accuracy of Basic Sign Flipping, Task-Based Sign Flip-
ping, and Gaussian across 10 tasks in FedWeIT.

Within the sign flipping results, we insert the Gaussian at-

tack, to demonstrate the scale of the difference between a
simple attack, and something of the magnitude of the sign
flipping attacks. Table 2 shows that both sign flipping and
task-based sign flipping have similar performance, but Figure
3 shows a clear overall domination for task-based sign flip-
ping along the last 8 tasks. It presents the lowest accuracies
clearly and consistently. A full discussion on their effective-
ness can be found in section 7.3.

Label Flipping

0 20 40 60 80 100
Round

10

20

30

40

50

Ac
cu

ra
cy

 (%
)

3

4

5

6

No Attack
Basic Label Flip
Task Flip
Final-Task Flip

Figure 4: Accuracy of Label Flipping, Final-Task Flipping, and Task
Label Flipping across 10 tasks in FedWeIT

All of the label flipping attacks are effective to varying de-
grees. When reporting the average percent difference, with
respect to no-attack, we adjust the figure for final-task flip-
ping. This is because in the final task, its accuracy is, as ex-
pected, far higher than than the rest (see Figure 4). We omit
data from the final task in our calculations. Finally, we in-
vestigated what the effect of combining basic label flipping
with final-task and task-based flipping was. The results were
noticeably poorer than not combining them. This will be dis-
cussed further in Section 7.2.

Novel Incremental Forgetting

0 20 40 60 80 100
Round

10

20

30

40

50

Ac
cu

ra
cy

 (%
)

No Attack
(Novel) Incremental Forgetting

Figure 5: Accuracy of Incremental Forgetting across 10 tasks in Fed-
WeIT

7

Incremental Forgetting was experimented with using a
manually hyperparameter tuned model. It is evident from Ta-
ble 2 that Incremental Forgetting provides some amount of
benefit as opposed to no attack (see 7.4). However, by de-
sign, the attack is not active until the second task (see Figure
5). Therefore, we adjust the average percent difference to in-
clude only values from the second task onward.

Cosine Similarity
As stated in section 5.3, a useful metric for determining how
much of an outlier a local update is during global aggregation,
is cosine similarity of the update vectors [16]. This provides
insight into how well it may potentially be able to bypass FL
aggregation defenses. We can average all of a client’s updates
of a certain round against those of other clients. This enables
us to examine which clients typically cluster closer together,
and more importantly, which do not.

As will be expanded upon in the discussion (see 7.4), the
cosine similarities between clients in novel incremental for-
getting and its closest peer (in terms of performance), task-
based label flipping, are compared.

1 2 3 4 5
Client

1
2

3
4

5
C

lie
nt

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1 2 3 4 5
Client

1
2

3
4

5
C

lie
nt

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Figure 6: (a) Cosine similarities across five clients in Task-Based
Label Flipping using FedWeIT where client 4 is Byzantine (b) Co-
sine similarities across five clients in Novel Incremental Forgetting
using FedWeIT where client 4 is Byzantine

It can be seen in Figure 6 that for both attacks, the cosine
similarities of Byzantine clients are relatively similar to their
correct counterparts. However, the gap between the cosine
similarity of the Byzantine client and the average of the co-
sine similarities of the other clients, is considerably smaller
with incremental forgetting. In fact, the incremental forget-
ting is only 41.7% as dissimilar as task-based label flipping.
This suggests that, overall, its updates are more similar.

7 Discussion
7.1 Targeted Attacks
There does not seem to be any notable effect stemming from
the FCL setting, as opposed to a normal FL setting. This
leads us to believe that, for targeted attacks, tailoring it to
FCL is generally a less interesting endeavor. The reason for
this is simple: targeting a certain model, like a model that
detects specific pixel patterns as specific labels, is mostly in-
dependent of the domains of individual tasks. For example,
if task ti focuses on detecting cars, while task ti+1, focuses
on animals, but the pixel pattern the dataset is poisoned with
remains constant, then the update gradients will always be to-
wards an the same, unchanging target parameters. The pres-

ence of cars or animals in the “background” image is less rel-
evant, and can be generalized to an FL scenario, where we try
to filter out “background” noise to detect a pattern. This is in
contrast to untargeted attacks, where interrupting the update
gradients of the current task depend highly on the parameters
of the task itself.

7.2 Label Flipping Attacks
From the experimental results, it appears as if basic, indis-
criminate label flipping has little effect. From Table 2 it only
decreases the accuracy compared to no attack by 2.3% aver-
age percent difference (APD) in FedWeIT. The reason why is
not entirely clear, but perhaps some of it can be explained by
the fact that it was only marginally better than the Gaussian
attack. Since there are 100 different classes in the CIFAR-
100 dataset, mislabeling them for the Byzantine node results
in updates that are not necessarily consistent with the cor-
rect nodes, but also not consistent with itself. In other words,
between different tasks, the Byzantine nodes tries to drag
the model to a different, pseudo-random objective each time.
This causes the overall effect of the Byzantine updates to be
regarded more like random noise between different attacks.
Combining this attack with the tailored attacks clearly had
a similar effect, in that the task “obfuscation” was overshad-
owed by the noise created by the indiscriminate label flipping.
It was clear that tailoring this specific attack to FCL was re-
quired.

The results from the first evolved attack, task-flipping, are
positive and show an improvement compared to basic task
flipping. It showed a 10.2% APD compared to no attack.
Although it is also an indiscriminate attack, task flipping ap-
pears to suffer less from the aforementioned “noise” problem.
This is because it operates on the task-level as opposed to the
class level. It should be remarked upon that the much larger
number of classes, C, is what causes permuting them to re-
sult in noise. Since in our experiments, it holds that T << C,
where T is the number of tasks, task-flipping results in less
noise and a more “focused” attack. However, if the value of
T were ever to approach C, we would likely see the same
problems basic label flipping faced, and a degradation in per-
formance.

Finally, the second evolved attack, final-task flipping, has
fairly intuitive results. Overall, it has very similar perfor-
mance to task-flipping, with only an APD of 8.9% (meaning it
was slightly worse). However, at the final-task it had a notice-
ably higher accuracy, than task-flipping, and even no attack.
This makes sense, as throughout the course of the training,
the Byzantine node drags the global model to that of the final
task.

7.3 Sign Flipping Attacks
It is evident that among all implemented attacks (i.e. includ-
ing label flipping variations and the novel attack), basic sign
flipping and task-based sign flipping are by far the most effec-
tive. They present average differences of 29.7%, and 35.2%
compared to the baseline in Table 2. It is also clear that of
the two, task-based sign flipping provides a significant advan-
tage. The reason for this is that by considering all previous

8

tasks in the sign flipping, we can maximize catastrophic for-
getting for all tasks, not just the current task being trained on.
Because we alter the sign based on more than just the current
task, the flipping is less effective than basic sign flipping for
just a single task. However, the benefits of task-based sign
flipping are plainly seen in the cumulative accuracy, as they
consider accuracies of previous tasks as well.

However, in practice, this impressive decrease in overall
accuracy contains a major caveat. Against even basic FL
aggregation algorithms, sign flipping is too “drastic” of a
change [18]. It strays too far from the update parameters the
other client nodes return, and can be labeled as an outlier with
confidence. However, the results of this experiment are still
useful to the rest of the discussion as it provides an upper
bound for what an attack can be expected to return.

7.4 Novel Incremental Forgetting Attack
The qualitative effectiveness of the novel incremental forget-
ting attack appears to lie between the task based label flipping
attacks and the sign flipping attacks. In absolute terms, it had
an average percentage difference of 9.3% in FedWeIT from
Table 2. This puts it roughly on par with task-flipping. How-
ever, there is a slight caveat to this number, namely that the
attack does not become active until the second task, since it
cannot regularize away from a task that does not exist. There-
fore, if we discount the values from the first task, we receive
an APD of 10.5% from no attack, and a 0.3% improvement
from task-flipping.

We do not expect the numerical effectiveness of incremen-
tal forgetting to be able to compete with the sign flipping vari-
ants. As stated above, while the attacks have heavy effects,
they are also unrealistic. Incremental forgetting’s improve-
ment over task-flipping is present, but statistically insignif-
icant. With little predictability, task-flipping will work bet-
ter in some scenarios, while in others, incremental forgetting
will.

The main benefit that incremental forgetting provides is
practical: in the real world, against federated defense mech-
anisms, incremental forgetting is harder to defend against.
This is because although we allow the Byzantine model to
stray quite far from the parameters of the current task using
the tuning parameters in our experiments (i.e. we give the
regularization more weight), it is still anchored by the true
parameters of the current task. In particular, if the global
model is currently training on task i, task-flipping is train-
ing on task j such that j ̸= i, while incremental forgetting
still tries to train on task i to some degree, albeit significantly
less than the correct nodes. Moreover, instead of changing a
small subset of parameters drastically, the algorithm aims to
change all of the parameters to some smaller, controlled de-
gree. This makes it more difficult for it to be detected as an
outlier, and practically more useful (see 6.3).

8 Conclusion and Future Work
We demonstrate the existing Byzantine behavior attacks com-
monly employed in FL settings, can be applied to FCL with
varying degrees of success. Targeted attacks, like backdoor
attacks, are shown to be generally effective irrespective of

whether it is an FL or FCL setting and show little statistical
difference in accuracies. However indiscriminate label flip-
ping appears to become far less effective without modifica-
tion. Although an attack like sign flipping proves itself to be
highly effective, even this can benefit from tailoring itself to
FCL. It is shown that an effective guideline for doing so lies
in exploiting the nature of the tasks. For example, updates
can be crafted based on the least similar update with respect
to all previous tasks. On the other hand, misreporting the
current task being trained on appears to achieve significantly
improve results.

A novel attack is also introduced, inspired by corrupting
well-known continual learning techniques so that model pa-
rameters are regularized away from what they were in pre-
vious learning tasks, distancing itself from a correct global
model as far as possible. Such an approach is preferred in
scenarios where attackers would like to balance having po-
tent Byzantine updates with remaining undetected, hiding in
plain sight.

Our work is limited to basic, oftentimes naive global up-
date aggregation algorithms, such as averaging. Although the
discussion attempts to keep this in mind when interpreting ex-
perimental results, it would be invaluable to investigate how
the attacks presented in this research fare against real-world
defense mechanisms, and which approaches ultimately suc-
ceed.

9 Responsible Research
The very nature of this research aims to deepen the knowl-
edge of how to attack federated learning systems. Malicious
actors may potentially misuse this work in their efforts to in-
fect such systems. However, the ethical intent of this research
aligns with the goal of ultimately strengthening FL systems.
The broader impact of exposing weaknesses to the general
public means that they are now also equipped with a starting
point from which to make their own systems more resilient.
Therefore, it is critical that these findings are openly shared,
and that the target audience is not restricted to only certain or-
ganizations or individuals. In addition, although intentionally
disrupting production FL environments may be unlawful, our
experiments do not run this risk as they are implemented in
isolated, simulated environments.

Steps have also been taken to ensure that the presented ex-
perimental work is reproducible. Most importantly, a highly
detailed description of the simulation environment and model
architecture are provided. Moreover, the code used during
the experimental phase is also published alongside the re-
port, with associated instructions on how to run it, and stable
download links to key technologies (e.g. the PyTorch ver-
sion) are included. The code is written in such a manner, that
different Byzantine attacks are clearly differentiated, and sup-
plied with explanatory comments. The datasets used are also
open-source/publicly available. As far as space constraints
permit, a complete overview of processed statistics are pre-
sented, mitigating the need for potential reviewers to repro-
duce the results. Finally, the authors’ contact information is
publicly shared so that, should questions or concerns arise,
reviewers will feel encouraged to reach out for help.

9

References
[1] Eugene Bagdasaryan, Andreas Veit, Yiqing Hua, Debo-

rah Estrin, and Vitaly Shmatikov. How to backdoor fed-
erated learning. In Silvia Chiappa and Roberto Calan-
dra, editors, Proceedings of the Twenty Third Interna-
tional Conference on Artificial Intelligence and Statis-
tics, volume 108 of Proceedings of Machine Learning
Research, pages 2938–2948. PMLR, 26–28 Aug 2020.

[2] Samuel J. Bell and Neil D. Lawrence. The effect of task
ordering in continual learning, 2022.

[3] Peva Blanchard, El Mahdi El Mhamdi, Rachid Guer-
raoui, and Julien Stainer. Machine learning with adver-
saries: Byzantine tolerant gradient descent. In I. Guyon,
U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus,
S. Vishwanathan, and R. Garnett, editors, Advances
in Neural Information Processing Systems, volume 30.
Curran Associates, Inc., 2017.

[4] X. Cao and N. Gong. Mpaf: Model poisoning attacks
to federated learning based on fake clients. In 2022
IEEE/CVF Conference on Computer Vision and Pattern
Recognition Workshops (CVPRW), pages 3395–3403,
Los Alamitos, CA, USA, jun 2022. IEEE Computer So-
ciety.

[5] H. Cha, J. Lee, and J. Shin. Co2l: Contrastive con-
tinual learning. In 2021 IEEE/CVF International Con-
ference on Computer Vision (ICCV), pages 9496–9505,
Los Alamitos, CA, USA, oct 2021. IEEE Computer So-
ciety.

[6] Hongyan Chang, Virat Shejwalkar, Reza Shokri, and
Amir Houmansadr. Cronus: Robust and heterogeneous
collaborative learning with black-box knowledge trans-
fer, 2022.

[7] Minghong Fang, Xiaoyu Cao, Jinyuan Jia, and
Neil Zhenqiang Gong. Local model poisoning attacks
to byzantine-robust federated learning, 2021.

[8] Clement Fung, Chris J. M. Yoon, and Ivan Beschast-
nikh. Mitigating sybils in federated learning poisoning,
2020.

[9] Md Tamjid Hossain, Shahriar Badsha, Hung La, Haot-
ing Shen, Shafkat Islam, Ibrahim Khalil, and Xun Yi.
Adversarial analysis of the differentially-private feder-
ated learning in cyber-physical critical infrastructures,
2022.

[10] Jiyue Huang, Zilong Zhao, Lydia Yiyu Chen, and Ste-
fanie Roos. Blind leads blind: A zero-knowledge attack
on federated learning. ArXiv, abs/2202.05877, 2022.

[11] James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz,
Joel Veness, Guillaume Desjardins, Andrei A. Rusu,
Kieran Milan, John Quan, Tiago Ramalho, Agnieszka
Grabska-Barwinska, Demis Hassabis, Claudia Clopath,
Dharshan Kumaran, and Raia Hadsell. Overcoming
catastrophic forgetting in neural networks. Proceedings
of the National Academy of Sciences, 114(13):3521–
3526, 2017.

[12] Zhizhong Li and Derek Hoiem. Learning without for-
getting. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, PP:1–1, 11 2017.

[13] David Lopez-Paz and Marc’Aurelio Ranzato. Gradient
episodic memory for continual learning. In Proceedings
of the 31st International Conference on Neural Infor-
mation Processing Systems, NIPS’17, page 6470–6479,
Red Hook, NY, USA, 2017. Curran Associates Inc.

[14] Yaxin Luopan, Rui Han, Qinglong Zhang, Chi Harold
Liu, and Guoren Wang. Fedknow: Federated contin-
ual learning with signature task knowledge integration
at edge, 2022.

[15] Brendan McMahan, Eider Moore, Daniel Ramage, Seth
Hampson, and Blaise Aguera y Arcas. Communication-
Efficient Learning of Deep Networks from Decentral-
ized Data. In Aarti Singh and Jerry Zhu, editors, Pro-
ceedings of the 20th International Conference on Artifi-
cial Intelligence and Statistics, volume 54 of Proceed-
ings of Machine Learning Research, pages 1273–1282.
PMLR, 20–22 Apr 2017.

[16] Thien Duc Nguyen, Phillip Rieger, Huili Chen, Hos-
sein Yalame, Markus Miettinen, Shaza Zeitouni, Fari-
naz Koushanfar, Ahmad-Reza Sadeghi, and Thomas
Schneider. Flame: Taming backdoors in federated learn-
ing, 2022.

[17] Alexandru Serban and Erik Poll. Adversarial examples
- a complete characterisation of the phenomenon, 10
2018.

[18] Virat Shejwalkar, Amir Houmansadr, Peter Kairouz,
and Daniel Ramage. Back to the drawing board: A crit-
ical evaluation of poisoning attacks on production fed-
erated learning. In 2022 IEEE Symposium on Security
and Privacy (SP), pages 1354–1371, 2022.

[19] Junyu Shi, Wei Wan, Shengshan Hu, Jianrong Lu, and
Leo Yu Zhang. Challenges and approaches for mit-
igating byzantine attacks in federated learning. In
2022 IEEE International Conference on Trust, Security
and Privacy in Computing and Communications (Trust-
Com), pages 139–146, Dec 2022.

[20] Ziteng Sun, Peter Kairouz, Ananda Theertha Suresh,
and H. Brendan McMahan. Can you really backdoor
federated learning?, 2019.

[21] Jin Xu, Chi Hong, Jiyue Huang, Lydia Y Chen, and
Jérémie Decouchant. Agic: Approximate gradient in-
version attack on federated learning. In 2022 41st In-
ternational Symposium on Reliable Distributed Systems
(SRDS), pages 12–22. IEEE, 2022.

[22] Xin Yao and Lifeng Sun. Continual local training for
better initialization of federated models, 05 2020.

[23] Jaehong Yoon, Wonyong Jeong, Giwoong Lee, Eunho
Yang, and Sung Ju Hwang. Federated continual learn-
ing with weighted inter-client transfer. In Marina Meila
and Tong Zhang, editors, Proceedings of the 38th Inter-
national Conference on Machine Learning, volume 139
of Proceedings of Machine Learning Research, pages
12073–12086. PMLR, 18–24 Jul 2021.

10

A FedEWC Graphical Data
A.1 Backdoor

0 20 40 60 80 100
Round

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

No Attack
Backdoor Attack Global
Backdoor Attack Target

Figure 7: Accuracy of unpoisoned test set (global) and poisoned test
set (target) performance using backdoor attack across 10 tasks in
FedEWC

A.2 Gaussian

0 20 40 60 80 100
Round

10

20

30

40

50

60

Ac
cu

ra
cy

 (%
)

No Attack
Gaussian

Figure 8: Accuracy of the Gaussian Attack across 10 tasks in
FedEWC

A.3 Label Flipping

0 20 40 60 80 100
Round

10

20

30

40

50

60

Ac
cu

ra
cy

 (%
)

4

5

6

7

No Attack
Basic Label Flip
Task Flip
Final-Task Flip

Figure 9: Accuracy of Label Flipping, Final-Task Flipping, and Task
Label Flipping across 10 tasks in FedEWC

A.4 Sign Flipping

0 20 40 60 80 100
Round

10

20

30

40

50

60

Ac
cu

ra
cy

 (%
)

No Attack
Basic Sign Flip
Task-Based Sign Flip

Figure 10: Accuracy of Basic Sign Flipping and Task-Based Sign
Flipping across 10 tasks in FedEWC

11

A.5 Novel Incremental Forgetting

0 20 40 60 80 100
Round

10

20

30

40

50

60

Ac
cu

ra
cy

 (%
)

No Attack
(Novel) Incremental Forgetting

Figure 11: Accuracy of Novel Incremental Forgetting across 10
tasks in FedEWC

12

	Introduction
	Related Work
	Gaussian Noise
	Backdoor Attack
	Label Flipping
	Sign Flipping

	Background
	Federated Learning
	Continual Learning
	Byzantine Behavior
	Elastic Weight Consolidation
	Federated Weighted Inter-client Transfer

	Methodology
	Tailored Attacks and Novel Attack
	Label Flipping Based Attacks
	Task Flipping
	Final-Task Flipping

	Task Based Sign Flipping
	Incremental Forgetting

	Experimental Setup and Results
	Simulation Environment
	Evaluation Metrics
	Results
	Backdoor
	Sign Flipping
	Label Flipping
	Novel Incremental Forgetting
	Cosine Similarity

	Discussion
	Targeted Attacks
	Label Flipping Attacks
	Sign Flipping Attacks
	Novel Incremental Forgetting Attack

	Conclusion and Future Work
	Responsible Research
	Appendices
	FedEWC Graphical Data
	Backdoor
	Gaussian
	Label Flipping
	Sign Flipping
	Novel Incremental Forgetting

