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H I G H L I G H T S  

• Street-level air quality models can substantially benefit from a validation using a one-off widespread spatial monitoring campaign. 
• In the case of NO2, such widespread spatial data collection is possible through mass-scale citizen science using low-cost passive samplers. 
• The availability of the extensive spatial dataset enables a “deep validation”, which can result in substantially improved model skill. 
• The optimized ATMO-Street model chain passes the FAIRMODE model quality threshold, substantiating its suitability for policy support.  
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A B S T R A C T   

Detailed validation of air quality models is essential, but remains challenging, due to a lack of suitable high- 
resolution measurement datasets. This is particularly true for pollutants with short-scale spatial variations, 
such as nitrogen dioxide (NO2). While street-level air quality model chains can predict concentration gradients at 
high spatial resolution, measurement campaigns lack the coverage and spatial density required to validate these 
gradients. Citizen science offers a tool to collect large-scale datasets, but it remains unclear to what extent such 
data can truly increase model performance. Here we use the passive sampler dataset collected within the large- 
scale citizen science campaign CurieuzeNeuzen to assess the integrated ATMO-Street street-level air quality 
model chain. The extensiveness of the dataset (20.000 sampling locations across the densely populated region 
Flanders, ~1.5 data points per km2) allowed an in-depth model validation and optimization. We illustrate 
generic techniques and methods to assess and improve street-level air quality models, and show that considerable 
model improvement can be achieved, in particular with respect to the correct representation of the small-scale 
spatial variability of the NO2-concentrations. After model optimization, the model skill of the ATMO-Street chain 
significantly increased, passing the FAIRMODE model quality threshold, and thus substantiating its suitability for 
policy support. More generally, our results reveal how a “deep validation” based on extensive spatial data can 
substantially improve model performance, thus demonstrating how air quality modelling can benefit from one- 
off large-scale monitoring campaigns.   

1. Introduction 

Air pollution remains a key environmental problem in most Euro
pean cities (WHO, 2016; EEA, 2019), and so an accurate assessment of 
air pollution patterns and abatement strategies is vitally important to 

reduce the impact on human health. Many of the associated policy 
questions are addressed using air quality models: models have been 
successfully applied to interpolate pollution levels in between mea
surement locations (Thunis et al., 2016), estimate the population 
exposure on regional and urban scales (Jerrett et al., 2005; Hoek, 2017; 
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Xie et al., 2017), and quantify the health impact related to long-term 
exposure (Hoek et al., 2013; Faustini et al., 2014; EEA, 2019). Addi
tionally, air quality models are essential tools to develop and evaluate 
policy scenarios (Miranda et al., 2015; Brusselen et al., 2016; Thunis 
et al., 2016). 

Nitrogen dioxide (NO2) is one of the important air pollutants in 
urban environments. More than 90% of the urban population in the EU 
is exposed to concentrations that exceed the guidelines put forward by 
the World Health Organization (WHO), leading to approximately 70.000 
premature deaths every year (EEA, 2019). When quantifying the pop
ulation exposure and health impacts of NO2, a particular challenge is the 
spatial heterogeneity of the concentration field. Because of 
street-canyon effects and the proximity to main emission sources, the 
NO2-concentrations vary strongly over short distances (Marshall et al., 
2008; Cyrys et al., 2012; Lefebvre et al., 2013b; Jensen et al., 2017). To 
attain suitable model skill, air quality models should adequality capture 
this short-scale spatial variation, and reliably predict the concentration 
field on a scale of tens of meters. 

Validation (and subsequent model improvement) are essential when 
models are used for regulatory purposes. Model simulated pollution 
maps need to be validated at the proper spatial and temporal scales. 
Street level models that target prediction of within-street variation of 
NO2 at high spatial resolution, should hence be validated using mea
surement campaigns that have a suitably dense sampling grid. Mea
surements in streets with different traffic loads are required to capture 
the small-scale spatial variability of NO2-concentrations. Because of 
logistical and financial constraints, such a high sampling density cannot 
be obtained using official telemetric stations (Vardoulakis et al., 2011). 
As an alternative, wind tunnel experiments have been used (Ketzel et al., 
2000; Baker and Hargreaves, 2001). Although these validation cam
paigns provide an opportunity to validate air quality models in a 
controlled environment (e.g. controlled boundary conditions) (Var
doulakis et al., 2003), one of the main challenges in field campaigns is to 
handle all the variability in boundary conditions and the way long-term 
averages are achieved. 

Mass-scale citizen science offers an innovative way to generate the 
large datasets required for such a validation campaign (Irwin, 2018; Van 
Brussel and Huyse, 2019; De Craemer et al., 2020a; Meysman et al., 
2022; Bo et al., 2020), but it is presently unclear to what extent such 
datasets can truly generate improved model performance. There is an 
important trade-off in this respect. While citizen science has the 
advantage of generating data at high spatial resolution, one typically 
uses passive sampler measurements, and so the resulting data is gener
ally less accurate and of lower quality than those collected via official 
telemetric stations. Citizen science has clear benefits in terms of raising 
awareness about air pollution (Van Brussel and Huyse, 2019), but to 
what extent can the resulting high-resolution data truly support the 
improvement of air quality models? 

To address this question, we validate and optimize the ATMO-Street 
model chain (Lefebvre et al., 2013b) using the extensive NO2-dataset 
collected within the CurieuzeNeuzen citizen science project (htt 
ps://2018.curieuzeneuzen.be/). While this article makes a case study 
of one particular model chain, many of our findings, methods and 
techniques are readily and generically applicable to other (street-level) 
models, and so the conclusions are highly relevant for air quality models 
in general. 

ATMO-Street is an integrated model chain (Lefebvre et al., 2013b) 
that models air quality at high, street-level resolution (i.e. 10 m), and 
hence representative for the class of high-resolution, state-of-the-art 
models that is operated by Environment Agencies across the world for 
planning and policy purposes. ATMO-Street is used by the Flanders 
Environment Agency (Vlaamse Milieumaatschappij, VMM) to assess the 
air pollution at the street level scale for Flanders, a densely populated 
region in Northwestern Europe (13,522 km2, 485 inhabitants km− 2; 
total population 6,552,000). In addition, ATMO-Street is the default tool 
used for planning purposes, evaluating the impact of regional and local 

air quality plans and health impact assessments in Flanders. The model 
chain has been previously validated via several dedicated measurement 
campaigns, focusing both on spatial patterns and time series (Lefebvre 
et al. 2011, 2013b). However, these validation campaigns focused on a 
relatively small number of sampling locations, with at most a few dozens 
of locations distributed among a single urban region. 

In 2018, the citizen science project CurieuzeNeuzen Vlaanderen 
project engaged 20.000 citizens across Flanders to measure NO2 con
centrations in front of their house using a low-cost sampler design 
(Meysman et al., 2022). This measurement campaign was internation
ally unprecedented in terms of coverage and spatial density: 20.000 
sampling kits containing NO2 diffusion samplers were distributed (~1% 
of all households in Flanders), thus allowing measurements across a 
wide urbanized region (~250 km × 50 km) at high spatial density (~1.5 
sites on average per km2). The resulting extensive dataset is used here 
for a detailed validation case study of the ATMO-Street model chain. 

We develop a generic three-step methodology to validate and opti
mize the model chain by means of the CurieuzeNeuzen dataset. Firstly, 
the original ATMO-Street model chain is validated against the NO2 data 
using validation plots and statistical techniques. The extensiveness of 
the measurement dataset allows us to perform an in-depth model per
formance analysis by evaluating the concentrations based on different 
aspects (type of location, concentration class etc.). In the second step, we 
introduce improvements and optimizations to the model chain based on 
the findings of the validation. The effectiveness of the optimization is 
again verified by validating the results of the optimized model chain 
against the NO2 data. Finally, we evaluate the remaining discrepancies 
between the modeled and measured concentrations and provide an 
outlook for further improvement of air quality modelling. In this last 
step, we pay special attention to the ability of ATMO-Street to capture 
the short-scale spatial variation of the NO2-concentrations. 

2. Methods 

2.1. Measurement dataset 

The measurement campaign will be only briefly summarized here, 
and is discussed in more detail in (De Craemer et al., 2020b; Meysman 
et al., 2022). In the CurieuzeNeuzen Vlaanderen citizen science 
campaign, 20.000 sampler kits were distributed to individual citizens, 
schools, companies, social organizations and municipalities to measure 
outdoor NO2 concentration at streetside locations. At the front of the 
house (facing the street), two passive NO2 samplers of the Palmes 
diffusion tubes type were strapped to a real estate sign panel and 
attached to a window pane. This set-up standardized air turbulence 
conditions near the Palmes tubes across all sampling points. Measure
ments were conducted preferably on the first floor or otherwise ground 
floor to constrain the height effect on NO2 concentrations. 

A four-week measurement was performed from 11 a.m. April 28th to 
1 p.m. May 26th, 2018. Note that the duration of the Palmes tubes 
campaigns should be limited to approximately one month, to avoid 
saturation of the tubes. The exact time period for the campaign has been 
chosen to maximize the legitimacy of the validation results: background 
concentrations in May closely resemble the annual mean background 
concentrations, and May is one of the few months without a long 
vacation period, eliminating the need for time-specific corrections to the 
traffic data. The meteorological conditions during the measurement 
period were, however, somewhat atypical. The average temperatures 
during May 2018 were significantly higher than during a typical month 
May in the climatological baseline considered by the National Meteo
rological Agency (1981–2010), with a profound gradient in the bias 
from the west (coastline) to the east of the region (bias of approximately 
3 ◦C in the east, and approximately 1.5 ◦C at the coastline). Moreover, 
there has been much less precipitation (30% less on average), much 
smaller wind speeds, and also the prevailing wind direction was clearly 
different. During May 2018, the prevailing wind directions were north- 
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north-west and north-east, while on average winds from the southwest 
are dominant in Flanders. 

Duplicate samplers showed good precision (root mean square error 
1.7 μg/m3 between replicates, relative standard deviation < 5%). These 
raw NO2 data were calibrated by simultaneous deployment of passive 
samplers at 24 EPA reference monitoring stations dispersed across the 
measurement region, and averaged across the two duplicates, thus 
resulting in mean NO2 concentration over the 4-week measurement 
period. After a quality control, 17886 measurement locations were 
retained for the model validation campaign (Meysman et al., 2022). 
Assuming errors are random and uncorrelated, the addition of the 
standard deviations of the passive sampler measurement (1.7 μg/m3) 
and calibration (2.2 μg/m3) resulted in a total standard deviation of 3.9 
μg/m3, thus providing a relative uncertainty of 10% at the 
WHO-guideline value of 40 μg/m3. 

2.2. The ATMO-Street model chain 

2.2.1. General overview 
Street-level nitrogen dioxide concentrations are modeled using a 

model chain that captures the different scales of urban air quality. The 
ATMO-Street model chain (Lefebvre et al., 2013b) consists of the 
land-use based interpolation model RIO determining background con
centrations (Janssen et al., 2008a), the bi-gaussian plume dispersion 
model IFDM accounting for the impact of local emissions from traffic 
and industry (Lefebvre et al., 2011), and the street-canyon module 
OSPM that calculates the in-street increment resulting from 
street-canyon effects (Berkowicz et al., 1997). Road traffic emissions are 
computed by the traffic emission model FASTRACE (Veldeman et al., 
2016). The model chain calculates hourly concentrations at a number of 
irregularly spaced receptors, which are subsequently gridded to a reg
ular raster with a 10 m resolution. The flowchart of the model chain is 
provided in Fig. 1. 

For verification purposes, the simulations by the full ATMO-Street 
model chain were compared to versions that use only part of the 
model chain. In one type of sensitivity analysis, only the background 
concentrations from the RIO-model were considered, thus evaluating 
the predictive capability of only using wide-scale land use regression. In 
another sensitivity analysis, we used the RIO-IFDM combination, which 
combines the background concentrations with local contributions from 
traffic and industry, but neglects the street-canyon increment. The 
remainder of this section explains the three model components and their 
coupling in more detail. 

2.2.2. Components 
FASTRACE is a traffic emission model that calculates geographically 

explicit emissions for road transport, based on (1) emission factors (i.e. 
emissions per vehicle type per speed per kilometer) (2) fleet data (i.e. 
number of vehicles and mileages), and (3) mobility data (i.e. vehicle 
counts on a network). Emission factors were obtained from region spe
cific calculations with the COPERT-tool, which is EU-wide used to 
calculate emission inventories for road transport (Ntziachristos et al., 
2009). FASTRACE calculates yearly total emissions for each road 
segment, which are subsequently combined with daily, weekly and 
monthly traffic intensity profiles, to obtain hourly emissions for each 
road segment. 

Background concentrations are modeled using RIO (Hooyberghs 
et al., 2006; Janssen et al., 2008b), a land use regression model for the 
interpolation of hourly pollutant concentrations as measured by the 
official telemetric network. The model is based on a residual kriging 
interpolation scheme using a land use derived covariate. A polynomial 
regression determines the statistical relationship (trend functions) be
tween the long-term averaged concentrations at each hour of the day 
and the underlying land use parameter. RIO produces hourly concen
tration maps for NO2, NO, and O3 on a 4 × 4 km2 grid, which are sub
sequently used as background concentrations for the IFDM and OSPM 
components of ATMO-Street chain. 

Local open-street concentrations due to traffic emissions and indus
trial point sources are modeled by the bi-Gaussian plume model IFDM 
(Immission Frequency Distribution Model) (Lefebvre et al., 2013a). 
IFDM is a receptor grid model: air pollutant concentrations are 
computed for an abundance of receptor locations. Instead of a regular 
grid, we use a point source and road-following grid. This approach en
sures that more receptor points are available where the largest con
centration gradients are expected (Lefebvre et al., 2011). Since the 
model uses an hourly time resolution, we assume that the chemical 
equilibrium in the NOx-O3 reaction is reached. We take this chemical 
reaction into account using the fast-ozone-chemistry scheme (Berkowicz 
et al. 1997, 2008), which relies on temperature and solar height data. To 
avoid double-counting of the emission sources, a specific coupling be
tween the regional model and the urban-scale model has been developed 
(Lefebvre et al., 2011). 

To calculate the effect of buildings on the street level concentrations, 
the IFDM model is coupled to the Operational Street Pollution Model 
(OSPM) (Berkowicz et al., 1997; Ottosen et al., 2015; Jensen et al., 
2017). Street level concentrations due to road traffic emissions are 
calculated using a combination of a plume model for the direct contri
bution and a box model for the recirculating part of the pollutants in the 
street. In the current set-up for OSPM, a receptor location is placed every 
20 m on each road with a row of buildings adjacent to the road (i.e. at a 
maximum distance of 50 m to the middle of the road). The concentra
tions at the receptor locations of the IFDM and OSPM models are 

Fig. 1. Flowchart of ATMO-Street model.  
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eventually combined and gridded via a three-step postprocessing mod
ule. At first, IFDM results are gridded using Delaunay triangulation to 
obtain gridded open street concentrations. Secondly, we grid the OSPM 
results using nearest-neighbour interpolation. In the final step, both 
gridded maps are combined into a map with a 10 m resolution, by using 
the OSPM results at locations where buildings are adjacent to the road, 
and the IFDM results at all other locations. 

A priori, we expect large deviations between the measurements and 
the modeled data for the background model RIO. Because of the coarse 
resolution, there will be a lot of scatter, a large underestimation of the 
results (especially close to busy roads) and not much correlation be
tween the measurements and model values. Adding the Gaussian 
dispersion model IFDM should improve the results, especially for open 
locations, which should also significantly improve the scatter and the 
correlation. However, the RIO-IFDM model chain neglects the recircu
lation of pollution at locations with buildings adjacent to the road, hence 
a large bias is still expected. Adding the OSPM module should resolve 
this issue, but it also increases the susceptibility of the model chain to 
input errors. Because the concentration field at locations with recircu
lation is very sensitive to many parameters describing the setting (traffic 
emissions, vehicle speed and numbers influencing the traffic-induced 
turbulence, detailed building configuration in the immediate sur
roundings of the location) and many of these parameters are only 
approximatively known, we expect a lot of scatter for the locations 
where the OSPM model is applied. 

2.2.3. Set-up for the validation campaign 
In this study, the ATMO-Street model chain was applied to the same 

4-week period as the citizen science measurement campaign. Input data 
stem from official datasets of the regional authorities. The regional 
background model RIO has been set up using the data from the tele
metric network of the Flanders Environment Agency (VMM) and the 
Corine Land Cover of the Copernicus Land Monitoring Service (CLMS) as 
land-use input. Vehicle fleet and traffic data for the major roads in 
Flanders are provided by the Flemish Department for Mobility. Minor 
roads are only sparsely represented in these traffic data, and these roads 
are thus not considered in the present air quality assessment. There are 
also some known issues with the traffic data for urban locations, as 
recent mobility plans (e.g. low-traffic zones in city centers) are not al
ways correctly represented. Point sources stem from the official emission 
inventory for industry of VMM. Building data has been retrieved from 
the official building dataset for Flanders (Informatie Vlaanderen). 

The Gaussian dispersion model internally computes stability classes 
based on the Bultynck-Malet parametrization (Bultynck and Malet, 
1972), and thus only requires surface temperature, wind speed and wind 
direction as meteorological input. These parameters have been 
composed by the Belgian Interregional Environment Agency (IRCEL - 
CELINE) by assimilating Copernicus C3S ERA5 reanalysis data (Coper
nicus Climate Change Service, 2017) with measurements at several 
meteorological stations, yielding surface wind and temperature fields 
with a 1 km resolution. Because the model uses input data for the actual 
time frame of the measurements, we do not expect an influence of the 
atypical meteorological conditions during the measurement period on 
the final conclusions of the study. 

The coordinates of the measurement locations were recorded with a 
precision of 2 m. The corresponding model concentrations are deter
mined by the concentration for the pixel (10 m × 10 m) in the gridded 
map that contains the measurement location. Note that in this way, the 
coordinates of the measurement locations are not used when defining 
the receptor grid. Model results are always reported at 1.5 m height, 
even in cases where the measurements were done at higher locations. 
Differences between the measurements and the model result at their 
location in this manuscript thus include uncertainties in the measure
ments, errors in the model input data, model errors and errors from the 
postprocessing. 

3. Model optimization 

3.1. Initial validation 

Firstly, we focus on the validation statistics of the original setup of 
the ATMO-Street model chain before optimization (the so-called “orig
inal model”). Table 1 provides the validation statistics obtained by 
comparing the CurieuzeNeuzen data with the model values (see the 
appendix for a mathematical definition of the statistical quantities). The 
Pearson correlation coefficient (0.58) points at a reasonable correlation 
between the measurements and the model results, and is in line with 
results obtained in previous validation campaigns (Lefebvre et al., 
2013b). The bias of the original model is substantial and negative (− 4.1 
μg/m3, − 20%). This indicates that the model underestimates the NO2 
concentrations in general, which is also reflected by the shift in histo
grams (see Fig. 2). Especially for the lower concentrations (<25 μg/m3), 
the modeled distribution is shifted to lower concentrations in compari
son with the measured contribution. The other statistics, such as the Bias 
Corrected Root Mean Square Error (BCRMSE 4.6 μg/m3) and fraction of 
model values within a factor of two of the observation (Fac2: 99%) are 
more in line with the results of previous validation studies. 

Additional insight into the discrepancy between modeled and 
measured concentrations is obtained by considering the bias and RMSE 
per concentration class. For this purpose, we grouped the locations in 
ten classes according to the deciles for the measured concentrations 
(Fig. 3). Apart from the 10th decile, the original model shows the highest 
relative biases (up to − 22%) for the lower deciles. Similarly, the (rela
tive) RMSE is larger for the third to sixth decile than for the seventh to 
ninth decile. As locations with higher-than-average concentrations are 
the most sensitive to issues with the Gaussian dispersion model or the 
street canyon module (or one of their input datasets), which would 
introduce larger (relative) deviations for the higher deciles, these find
ings therefore point at issues with the background model, which un
derestimates the background concentrations for the lower deciles. If we 
plot the bias across the spatial domain (Fig. 4), we indeed observe that 
underestimations are mainly occurring in rural locations (i.e. in the less 
densely populated areas), whereas the bias is much smaller for the urban 
locations. Finally, this underestimation of the background concentra
tions is also observed in the histogram (Fig. 2). 

An in-depth analysis of the deviations between models and mea
surements uncovered a second issue with the original model, which 
concerned to the coupling of the Gaussian dispersion model (IFDM) and 
the street-canyon module (OSPM). When gridding the final concentra
tion maps (i.e. during the postprocessing as discussed in Section 2.2), the 
grid cells with street-canyon module increments do not always corre
spond to the street side location where citizens put their diffusive 

Table 1 
Validation statistics for the original and the optimized ATMO-Street model 
chain. The validation statistics for the separate buildings blocks of the optimized 
model chain (RIO and RIO-IFDM) are also provided. Statistics include the bias, 
the Root Mean Square Error (RMSE), the bias-corrected RMSE (BCRMSE), the 
Pearson R2 coefficient, the FAIRMODE model quality indicator (MQI) and the 
fraction of model values within a factor of two of observations (Fac2). A 
mathematical definition of the statistical quantities is provided in the Appendix.  

Statistic ATMO- 
Street 
Original 
model 

ATMO-Street 
Optimized 
model 

RIO-IFDM 
Optimized 
model 

RIO 
Optimized 
model 

Bias (μg/m3) − 4.1 − 2.7 − 4.3 − 4.5 
RMSE (μg/ 

m3) 
5.5 5.2 6.2 7.0 

BCRMSE (μg/ 
m3) 

4.6 4.4 4.4 5.3 

Pearson R2 0.58 0.58 0.51 0.33 
MQI 0.96 0.80   
Fac2 (%) 99.0 99.4 98.0 96.2  
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samplers. This was especially apparent for streets that are diagonal with 
respect to the north-south axis, as illustrated in Fig. 5. These locations 
are therefore incorrectly assigned the results of the Gaussian dispersion 
model, instead of the results of the street-canyon module. Although this 
situation only occurred at a limited number of locations, large un
derestimations were obtained at these locations, which hence signifi
cantly influence the bias for the largest decile in Fig. 3. 

Note that the two issues discussed above (background underesti
mation, incorrect street canyon postprocessing assignment) could only 
be detected due to the extensiveness of the Curieuzeneuzen dataset. 
While ATMO-Street has previously been validated with smaller datasets, 
this analysis has been unable to reveal the background concentration 
issue, as a large and spatially widespread dataset is required for the type 
of analysis presented in Figs. 3 and 4. Additionally, the postprocessing 
issue was only observed for a small number of locations, and so the issue 
can only surface in suitably large datasets (the probability to include 
such locations in a dataset increases with the sampling size). 

3.2. Model optimization 

Guided by the results of the initial validation, model optimizations 
were implemented. A first improvement targeted the rural background 
concentrations, as the results of the Curieuzeneuzen campaign clearly 

indicated an overestimation at these locations in the original model. 
After a detailed analysis, relying on land use data for the Curi

euzeneuzen sampling locations, we found that the problem was linked to 
the land-use parameterization that is used in the RIO module. In this 
module, NO2 data are assimilated from reference stations of the envi
ronmental monitoring agencies across the whole of Belgium. Yet, there 
is a strong north-south difference in urbanization in Belgium, which 
makes that there are relatively few reference stations in rural areas of 
Flanders (the northern part of Belgium). As a result, the land use 
parameterization applied in the original RIO module was heavily 
influenced by the observations at EPA reference stations in rural areas of 
Wallonia (the southern part of Belgium). Since background NO2 values 
are lower in Wallonia (which is less densely populated and less indus
trialized), this caused an underestimation of background concentrations 
in Flanders, which was uncovered for the first time thanks to the Curi
euzeneuzen sampler data. 

Guided by the citizen science data, the RIO module was adapted by 
improving the parameterization of the different rural land use classes, 
yielding an optimized relation between the concentrations and the land 
use parameters (trend function). These optimizations principally con
sisted of a decoupling of the rural land uses classes (namely forests, 
natural areas and arable land) in the northern urbanized part and 
southern non-urbanized part of Belgium. Note that the finetuning 
required the availability of an abundance of measurement data at many 

rural locations with different land uses in their surroundings, and the 
Curieuzeneuzen measurements have thus been indispensable. 

The citizen science data were only used to determine an improved 
land use parameterization, but they are not directly used in the spatial 
interpolation itself. The model results hence remain independent of the 
measurements, and thus independent validation of the optimized model 
using the citizen science data is still possible. 

A second correction targets the incorrect street canyon postprocess
ing assignment, by adjusting the GIS-tools that determine the locations 
where the street-canyon concentrations are applied. To this end, we 
modified the parameter that determines the maximal extent of the street 
canyon concentrations (expressed as the distance to the middle of the 
road), to make sure the OSPM results are used for all locations where the 
concentration is significantly influenced by the presence of the build
ings. Moreover, in the optimized model version, the concentrations of 
the OSPM street-canyon module are now also used for half-open loca
tions, i.e., for roads with a continuous row of houses at one side of the 
street.1 Due to these two modifications, the (higher) street-canyon 

Fig. 2. Comparison between measured and modeled NO2 concentrations at the 
17.886 measurement locations with high quality data. Histograms for the 
measurement data (green), the updated model chain (blue) and the original 
model chain (red). (For interpretation of the references to color in this figure 
legend, the reader is referred to the Web version of this article.) 

Fig. 3. Comparison between measured and modeled NO2 concentrations per concentration class (10 deciles of the measured concentrations – decile 0 contains lowest 
concentrations). Relative bias (left) and RMSE (right) per decile. The panels provide the results for the original model chain (blue) and the updated model chain 
(orange). (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 

1 Because the size of the recirculation vortex is only dependent on the upwind 
building in the OSPM model, the model can also be used for locations with a 
continuous row of buildings at one side of the road. 
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contributions are attributed to more sampling locations, leading to an 
increase in the mean NO2 concentration across all sampling locations. 

3.3. Analysis of the optimizations 

3.3.1. Basic analysis 
Table 1 provides the validation statistics for the optimized model. 

Fig. 2 shows the histogram and Fig. 3 depicts the bias and RMSE per 
decile. The optimized model outperforms the original model in many 
aspects. The bias and RMSE are markedly lower for the optimized 
model. The largest improvements in the bias and RMSE are observed for 
the lower deciles, as shown by Fig. 3, and as expected because of the 
nature of the optimizations. Moreover, also the Fac2 increases from 99% 
to 99.4%, which implies that the number of sampling sites for which the 
modeled data deviates more than a factor of two of the observations 
decreases with 40% from 1% to 0.6%. The relative difference map of the 
original and the optimized model (Fig. 4) highlights moreover the 
reduced (relative) bias in rural locations. For many of the locations in 
the rural areas, the relative difference between the modeled and 
measured data is reduced to less than 10%. 

To facilitate the interpretation of these results, we compare the sta
tistics of the validation reported in this Paper (based on more error- 
prone citizen science data) with those of more traditional studies 
(with more controlled measurements), for ATMO-Street and similar 
street-level models used for policy support in Europe. Typically, the bias 
is somewhat higher for the study at hand, compared to a bias of − 0.7% 
for the ADMS-Urban map in London (Hood et al., 2018) and 2% for the 
DEHM/UBM/OSPM map in Copenhagen (Jensen et al., 2017). On the 
other hand, the correlation, RMSE and Fac2 are more in line with those 
found in the traditional campaigns (e.g. correlation 0.6 in Aarhus and 
0.7 in Copenhagen (Jensen et al., 2017), correlation 0.7 in London 
(Hood et al., 2018), and RMSE 6 μg/m3 in Antwerp (Lefebvre et al., 
2013b)). A detailed comparison is, however, complicated, as both the 
set-up of the measurement campaigns and the model chains vary 
significantly among the studies. 

The optimization does, however, not remove all differences between 

Fig. 4. Map of the relative difference between the 
measured and the modeled concentrations (in %) 
across the region of Flanders (17.886 measurement 
locations with high quality data). Negative (red) 
values indicate model underestimation, positive 
(green) values signify model overestimation. The top 
panel shows results for the original model, the bottom 
panel for the optimized model. (For interpretation of 
the references to color in this figure legend, the 
reader is referred to the Web version of this article.)   

Fig. 5. Illustration of the issue concerning the coupling between the Gaussian 
dispersion and the streetcanyon model. In the original model chain, the 
streetcanyon concentrations are only used for the red colored grid cells. For 
some of the sampling locations (blue dots), the Gaussian dispersion results are 
hence applied. In the optimized model, the streetcanyon contribution is also 
used for the green grid cells, and hence for all three sampling locations in the 
domain of the figure. (For interpretation of the references to color in this figure 
legend, the reader is referred to the Web version of this article.) 
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measurements and modeled concentrations. The histogram (Fig. 2) in
dicates that the underestimation for many locations with low-to-middle 
concentrations is reduced, but has not completely disappeared, and that 
the distribution of the model values for the optimized model still de
viates from the distribution for the measured values. In addition, also, 
the Pearson R2 is the same for the optimized and the original model (see 
Table 1), indicating that the correlation between the measured and 
modeled data does not improve. 

3.3.2. MQI 
As an additional benchmark for the model quality, we focus on the 

model quality index (MQI) as proposed by the Forum for Air Quality 
Modelling in Europe (FAIRMODE). This indicator describes the 
discrepancy between measurements and modelling results linked to the 
RMSE (Thunis et al., 2016; Pisoni et al., 2019; Janssen et al., 2020). The 
MQI is a quality indicator that is specifically designed to assess the 
performance of a model as a policy support tool for official assessments 
and EU reporting. The FAIRMODE model quality objective (MQO) states 
that air quality models can be used for official assessment purposes if the 
MQI is less or equal to one. 

The original ATMO-Street model just meets the MQO objective, as 
the MQI is equal to 0.96 (Table 1). The ensuing model optimization 
however decreased the RMSE and bias, which resulted in a substantial 
decrease of the MQI to 0.80, and the optimized model thus satisfies the 
objective with a far greater margin, indicating that the optimized model 
is better suited for policy support. 

3.3.3. Spatial variation 
Street-level air quality models are designed to simulate street-level 

concentration fields with high spatial resolution. We use a semi- 
variogram analysis to test how well different models represent the 
spatial heterogeneity of the concentration field. The semi-variogram 
visualizes the degree of spatial variation of a set of observations by 
quantifying the differences between observations at a given distance 
through the semi-variance (Cressie, 1992) 

γ(h)=
1

2N(h)
∑

N(h)

(
ci − cj

)2 

Here, the sum is over all pairs of locations that are a certain distance 
h apart, ci and cj are the concentrations at these two locations, and N(h)
is the number of pairs that are considered. The semi-variance γ(h)
quantifies the difference between two observations separated by a dis
tance h, with larger values indicating larger spatial variations. The 
technique is only effective if the (spatial) resolution of the sampling 
dataset is in line with the actual spatial scale of the gradients in the 
concentration field. An application for NO2 concentrations thus requires 
a dataset with a dense sampling, like the citizen science dataset analyzed 
here. 

Fig. 6compares the semi-variogram for the citizen science data to the 
ATMO-Street model results, for both the original and the optimized 
model chain. As NO2 tends to vary over short spatial scales, we only 
consider measurement locations that are less than 2 km apart. The figure 
highlights how the short scale spatial variations are clearly better rep
resented by the optimized model. The underlying reason is the optimi
zation in street canyon postprocessing (i.e., improvement of the 
coupling between the Gaussian dispersion and the street canyon mod
ule), which yields a much better representation of the spatial gradients 
on a local scale. The analysis shows how the optimized model chain 
adequately captures the short-scale spatial variation of the concentra
tion field, whereas the original model underestimates the spatial vari
ation. Although over- and underestimations of the spatial heterogeneity 
can still occur at specific locations, the mean heterogeneity of the NO2- 
concentrations in Flanders is trustworthily explained by the optimized 
model chain. 

3.3.4. Conclusions regarding the optimization 
In summary, we conclude that the optimization resulted in sub

stantial improvement of model performance, as substantiated by 
increased validation statistics, an improved MQI and a better repre
sentation of the short-scale spatial variations. This extensive analysis 
was made possible by exploitation of the large-scale data of the citizen 
science campaign. Although the optimization procedure presented here 
is specific to the ATMO-Street model, the underlying methodology and 
resulting conclusions are of wider interest for the air quality modelling 
community. Our “in-depth” validation of the ATMO-Street model relies 
on a statistical analysis that is applicable for any large-scale model 
validation, whereas the techniques to improve the RIO-model are 
applicable to any land use regression (LUR) model. Moreover, the 
observation that model shortcomings remain hidden when validation is 
done with limited data and only revealed through suitable large spatial 
datasets, is particularly relevant to the whole field of air quality moni
toring and modelling. 

Although the optimizations greatly improve many aspects of the 
model chain, they do not remove all differences between measurements 
and modeled concentrations, as e.g. indicated by the unchanged corre
lation coefficient and the updated histogram. In the next sections, we 
elaborate further on the validation of the optimized model and focus on 
the remaining discrepancies between the modeled and the measured 
concentrations. 

4. In-depth validation of the optimized model 

4.1. Analysis of the submodels 

Environmental agencies use a range of different air quality model 
types for policy purposes, with different spatial resolution. Some models 
are solely based on land use regression, while others include more 
computationally intense approaches that explicitly include point and 
line emissions and simulate the ensuing atmospheric dispersion of the 
emitted pollutants and/or account for street canyon effects. The three 
different model components of the ATMO-Street chain reflect this cu
mulative complexity and increasing spatial detail. To examine the 
importance of the different components, Fig. 7 and Table 1 compare the 

Fig. 6. Semi-variogram. The blue line indicates the semi-variance for the 
measurements of NO2, while the other lines provide model results for NO2 for 
three different types of models. The purple line provides results for the opti
mized RIO, the red line for the optimized RIO-IFDM and the orange line for the 
optimized ATMO-Street chain. The green line shows the results for the original 
ATMO-Street chain. (For interpretation of the references to color in this figure 
legend, the reader is referred to the Web version of this article.) 
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validation statistics of the full optimized ATMO-Street chain with the 
background model only (RIO), and the combination of the background 
model with the Gaussian dispersion model (RIO-IFDM, i.e. ATMO-Street 
without street-canyon increments). 

The background model only substantially underestimates the 
measured concentrations (Fig. 7). As substantiated by the linear 
regression coefficient and the scatterplot, the highest concentrations are 
particularly underestimated. The RIO model provides background con
centrations on a 4 by 4 km resolution, and the highest roadside peaks in 
traffic dense streets are clearly missed. The addition of the Gaussian 
dispersion model IFDM considerably decreases the model-data discrep
ancy at these locations, and, consequently, the correlation and linear 
coefficient substantially improve. There is however still a significant 
bias, which is due to an underestimation of the street-canyon locations. 
Only the complete ATMO-Street model chain appropriately captures the 
recirculation of the pollution at these locations, yielding a much smaller 
bias. 

The results for the RMSE, bias and correlation are in line with the 
expectations regarding the model components (see Section 2.2.2). The 
(absolute) bias and RMSE are large and the correlation low for the RIO- 
model. The RIO-IFDM model substantially improves on the RMSE and 
the correlation, but still has a large bias. When OSPM is added, the bias 
and the RMSE further decrease, but the improvement in RMSE is 
exclusively due to the decrease in bias, as indicated by the BCRMSE. 

We conclude that only a model chain that takes the street-canyon 
increments explicitly into account manages to adequately assess the 
NO2-concentrations. These findings emphasize the importance of the 
street-canyon contributions, and are in line with the results observed in 
other studies concerning modelling of air quality at street-level scale 
(Vardoulakis et al., 2003; Lefebvre et al., 2013b; Jensen et al., 2017). 

We furthermore analyze the effect of the different submodels on the 
spatial variation of the modeled concentration field. In addition to the 
results of the full ATMO-Street chain, Fig. 6 also shows the spatial 
variation modeled by the RIO and RIO-IFDM submodels. Clearly, the 
RIO-background model largely underestimates the spatial variation 
observed in the citizen science data. This is not unsurprising given the 
coarse resolution of the RIO model (4 km × 4 km). The Gaussian 
dispersion model IFDM adds the open-street concentrations due to the 
road traffic and point sources, and as a result, the spatial variation in
creases. However, the semi-variance of the RIO-IFDM model still falls 
widely below that of the citizen science data. Adding the street canyon 
module OSPM greatly improves the representation of spatial variation: 
the spatial heterogeneity now closely approximates that observed by the 
measurements. The semi-variogram analysis thus demonstrates that 
street level air quality models like ATMO-Street are capable of capturing 
the general spatial heterogeneity of the NO2 concentration field, if street 
canyon increments are included in the model chain. 

Fig. 7. Scatterplots showing the modeled concentration as a function of the measured concentrations for all sampling locations Different panels depict the full 
ATMO-Street model chain (top), the Gaussian dispersion model (RIO-IFDM, bottom left) and the background model only (RIO, bottom right). To improve the 
visibility, the scatter points have been binned per 0.5 μg/m3. The colorscale indicates the number of points in each bin. The dashed lines indicate the upper and lower 
boundary of the interval [0.5 * measurements; 1.5* measurements]. 
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4.2. Breakdown by location type 

To gain some further insight in the remaining discrepancies between 
the modeled concentrations and the measurements, and the impact of 
the input data on these, we analyze the validation for some specific 
location types. 

First, we group the sampling locations based on the model that is 
applied at the sampler location. We divide all the locations in two 
groups: locations where RIO-IFDM is applied (labeled ‘IFDM’), or loca
tions where RIO-IFDM-OSPM is applied (labeled ‘OSPM’). The former 
set are typically locations with isolated buildings, whereas the second 
set consists of (more complex) locations with a row of buildings adjacent 
to a road. The validations statistics for the full ATMO-Street model chain 
at these two groups of locations are provided in Table 2. The results 
indicate a slightly lower bias for the locations where OSPM has been 
used, but also a much larger scatter (RMSE) and much lower correlation 
for these locations, as expected, because of the larger sensitivity to input 
errors for the OSPM locations (see 2.2.2). 

Secondly, we split the sampling locations according to the avail
ability of traffic data for the nearest road to the measurement location. 
The traffic dataset contains traffic flows for a limited number of streets 
(the major roads). The (absolute value of the) bias is lower for the lo
cations for which traffic data is available (absolute bias − 2.4 μg/m3, 
relative bias − 10%) compared to the locations without known traffic 
data (bias − 2.9 μg/m3, − 15%) (see Table 2). Note that the mean 
measured concentration is higher for the locations for which traffic data 
is available (23.4 μg/m3 versus 19.6 μg/m3). As the relative bias in
creases with increasing concentration, we would expect the (relative) 
bias to be higher for the locations close to the roads. Since we observe 
the opposite, we definitely detect underestimations for sampling loca
tions near roads where traffic data is lacking. Note, on the other hand, 
that the scatter is larger for the locations with traffic data (as quantified 
by a lower R2 and larger BCRMSE). The underlying reason is the 
abundance of OSPM locations for the samplers in the vicinity of roads 
with traffic data (for 76% of the locations with traffic data OSPM has 
been used, while OSPM is not used for locations without traffic data). As 
the results in Table 2 indicate, the scatter is much larger for the OSPM 
locations, which is also reflected in a larger scatter for the locations with 
traffic data. 

Finally, we make a comparison between cities in Flanders. We 
consider three groups of locations: Flanders’ largest city Antwerp 
(500.000 inhabitants; 1002 samplers), Flanders’ second largest city 
Ghent (250.000 inhabitants; 800 samplers), and samplers located in the 
other 8 largest cities (60.000–120.000 inhabitants; 2549 samplers). 
Validation statistics are provided in Table 2. The city of Ghent stands out 
from the other. This is because a new mobility plan has been introduced 
in 2017, which led to the introduction of new pedestrian streets, and 
modified traffic flows in the nearby streets, thus altering traffic flows 
within the historical city center. However, the available traffic data do 
not (yet) account for this new condition, and so the traffic data used for 
Ghent in the model set-up are less accurate than those for other cities. 
The validation statistics reflect these shortcomings in the traffic data. 
The BCRMSE in Ghent (22%) is higher than in Antwerp (16%) and the 

other cities (17%), while similarly, the correlation coefficient in Ghent 
(0.40) is lower than in Antwerp (0.52) and the other cities (0.46). When 
we only focus on the 200 samplers in the inner city of Ghent, where the 
largest impact of the new circulation plan is observed, the validation 
statistics become even worse. The correlation coefficient decreases to 
0.27, and the relative BCRMSE increases to 25%. 

4.3. Open issues 

As the validation indicates, there are some remaining discrepancies 
between the modeled concentrations and the measurements, indicating 
some room for further improvement of the model and its input data. 

An important issue concerns the quality of the mobility data that is 
used as input. Firstly, the traffic dataset only contains traffic flows for a 
limited number of streets. The validation substantiates that the NO2- 
concentrations are, as expected, more adequately modeled for sampling 
locations near the roads that are included in the traffic data. Further
more, the spatial pattern of the traffic data is outdated, which has an 
impact on the model quality for locations at which new mobility plans 
have recently been introduced (e.g Ghent). These findings clearly 
highlight the importance of up-to-data traffic data for air quality 
modelling at the local scale. Our analysis hence reveals that Environ
mental Protection Agencies should invest in the collection of traffic data, 
and keep these datasets also up to date, in order to support their air 
quality policies. 

The statistics per city hint at a remaining issue with the optimized 
model, related to the urban background concentrations in Flanders’ 
largest city, Antwerp. The bias in the largest city, Antwerp (− 3.9 μg/m3, 
− 12%), is significantly larger than the bias in Ghent (− 1.1 μg/m3, − 4%) 
and the other cities (− 2.0 μg/m3, − 8%) (see Table 2). These results hint 
at a strong underestimation of the urban background concentration in 
Antwerp. Note, however, that previous validation studies have not 
observed the current underestimation: in a dedicated campaign focusing 
on Antwerp, a bias of − 2 μg/m3 has been observed (Lefebvre et al., 
2013b), which is more in line with the bias observed in this work for the 
other urban locations. Therefore, the underlying reason of the issue is 
unclear, as it could either be related to the measurements (e.g. the 
calibration of the sampling results is mostly based on mid-range con
centrations, whereas higher concentrations are mainly observed in 
Antwerp), or the model set-up (e.g. because the trend function of the 
land use regression model RIO may be unable to adequately represent 
the concentration in the dense urban area in Antwerp). 

5. Conclusions 

We have validated and optimized the high resolution ATMO-Street 
air quality model chain using the data of a large-scale citizen science 
measurement campaign. The extensiveness of the measurement dataset 
allows us to perform an in-depth model validation and optimization. We 
have evaluated the modeled concentrations by clustering the sampling 
sites by different aspects (type of location, concentration class etc.), 
thereby paying special attention to the small-scale spatial variability of 
the NO2-concentrations. Optimizations guided by the data increased the 

Table 2 
Validation statistics for the optimized ATMO-Street model, with sampling locations clustered by location type. The table provides the bias, the relative bias, the relative 
bias-corrected RMSE (BCRMSE) and the Pearson R2 coefficient. Columns 2 and 3 are related to the breakdown based on the model applied at the sampler location, 
columns 4 and 5 to the breakdown based on the availability of traffic data and the remaining columns to the breakdown based on the Flemish cities. More details on the 
binning are provided in the main text.  

Statistic IFDM locations (isolated 
building) 

OSPM locations (multiple 
buildings) 

Traffic data 
available 

Traffic data 
unavailable 

Antwerp Ghent Other 
Cities 

Bias (μg/m3) − 2.83 − 2.43 − 2.4 − 2.9 − 3.9 − 1.1 − 2.0 
Relative Bias (%) − 14 − 10 − 10 − 15 − 12 − 4 − 8 
Relative BCMRSE 

(%) 
16 25 19 15 16 22 17 

Pearson R2 0.61 0.47 0.50 0.64 0.52 0.4 0.46  
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model performance and enhanced the capability of the model to 
correctly capture the spatial variation of the air pollution. The ATMO- 
Street model chain attains the FAIRMODE model quality objective, 
substantiating that the model is suited for policy support. 

Our detailed model validation and optimization study reveals 
methodologies and insights that are of wider importance for the air 
quality monitoring and modelling community. Foremost, it demon
strates how the availability of an extensive spatial dataset enables a 
“deep validation”, which can result in substantially improved model 
skill. Secondly, the validation also highlights the importance of the 
street-canyon contributions. Only a model chain that takes the street- 
canyon increments caused by the recirculation of pollution explicitly 
into account, manages to adequately assess the NO2-concentrations in 
Flanders. Thirdly, a model is only as good as the input it receives. 
Gaussian dispersion models and street-canyon modules are very sensi
tive to the availability and quality of the traffic data. Our analysis shows 
that the performance of the model chain is significantly reduced at lo
cations where the traffic flows are outdated or locations which lack 
traffic data. Therefore, in order to improve the predictive power of 
street-level air quality models, a clear policy recommendation is to 
invest in the collection of accurate, up-to-date traffic data across the 
whole road network (i.e. not solely focusing on the major roads). 

Finally, the most important lesson learnt is that street-level air 
quality models can substantially benefit from a validation using a one- 
off widespread spatial monitoring campaign. Such a detailed and 
rigorous validation of air quality models with large datasets is presently 
not a standard practice. Currently, the monitoring strategy of environ
mental monitoring agencies is focused on capturing temporal variability 
(i.e., high frequency monitoring at telemetric reference stations), while 
devoting far less attention to a profound documentation of spatial 
variability. As a result, model validation studies must typically focus on 
a small number of sampling sites. The analysis presented here, such as 
the semivariogram analysis regarding the spatial variation of concen
trations, however highlights the importance of such large-scale mea
surement datasets with a high spatial resolution. In the case of NO2, such 

widespread spatial data collection is possible through mass-scale citizen 
science using low-cost passive samplers. As such, citizen science offers 
not only a tool to increase awareness about air quality, but also removes 
a critical bottleneck to ascertain and improve the quality of air quality 
models. 
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Appendix. definition of the validation statistics 

In this appendix, we provide an overview of the validation statistics that have been used. We henceforth assume that the difference between data 
set X (with values xi) and data set Y (with values yi) is studied. < . > indicates the mean of a dataset, f.e. x is the mean of X.  

• Bias: The bias indicates the relative difference between both data sets. Here the bias is indicated relative to the mean of the measurements. 

Bias = 〈X〉 − 〈Y〉

• Root mean square error (RMSE): The RMSE is the sample standard deviation of the differences between predicted values and observed values. 
Both the absolute and relative RMSE are used. The absolute RMSE is 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
N

∑

i
(xi − yi)

2

√

while the relative RMSE is 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
N

∑

i
(xi − yi)

2
√

〈X〉

• Bias corrected root mean square error (BCRMSE): The BCRMSE is the RMSE of the unbiased data sets. 

BCRMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
N

∑

i
((xi − 〈X〉 ) − (yi − 〈Y〉 ) )2

√
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• The Pearson correlation coefficient quantifies is a measure of linear correlation between two sets of data. We always report the square of the 
Pearson coefficient, R2, where R is defined as 

R=
COV(X, Y)
σ(X)σ(Y)

• Factor2 (FAC2): the FAC2 indicates the percentage of modeled points that lies within a factor two of the measured values, i.e. the percentage of 
data points that satisfies 12yi < xi < 2 yi.
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