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This paper aims to recognize driving risks in individual vehicles online based on a data-driven
methodology. Existing advanced driver assistance systems (ADAS) have di±culties in e®ectively

processing multi-source heterogeneous driving data. Furthermore, parameters adopted for eval-

uating the driving risk are limited in these systems. The approach of data-driven modeling is

investigated in this study for utilizing the accumulation of on-road driving data. A recognition
model of driving risk based on belief rule-base (BRB) methodology is built, predicting driving

safety as a function of driver characteristics, vehicle state and road environment conditions. The

BRBmodel was calibrated and validated using on-road data from30 drivers. The test results show
that the recognition accuracy of our proposed model can reach about 90% in all situations with

three levels (none, medium, large) of driving risks. Furthermore, the proposed simpli¯ed model,

which provides real-time operation, is implemented in a vehicle driving simulator as a reference for

future ADAS and belongs to research on arti¯cial intelligence (AI) in the automotive ¯eld.

Keywords : Driving data; vehicle driving risk; data-driven; belief rule-base; ADAS.

1. Introduction

With the rapid growth of vehicle volume worldwide, the number of road tra±c

accidents is increasing correspondingly. Driving risk identi¯cation is one of the key
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technologies to improve driving safety. As vehicle state estimation and prediction are

largely improved in recent studies, the precise evaluation of vehicle behavior can be

achieved through these techniques.30 However, the complex models of vehicle

dynamics, which are based on inference of accurate formulae and modeling, have

di±culties dealing with the uncertainties in complicated conditions.24 Similarly,

advanced driver assistance systems (ADAS) only utilize vehicle-mounted sensors to

detect the vehicle states as well as information about road tra±c (obstacles, lane

marking, etc.) to identify risks during driving. The current methods to identify

driving risks are mostly based on simple factors (safety distance, lane departure,

etc.). Even though these traditional technologies on driving risk identi¯cation have

reduced the possibility of accidents to certain extent, they neglect the complex e®ects

on driving safety brought by driver, vehicle and road environment interaction.

The lack of consideration of all factors from driver, vehicle and road environment

limits the usability of the ADAS under complicated driving conditions.19,31

With the increasing intelligence levels of vehicles as well as the unceasing accu-

mulation of all kinds of massive online/o²ine driving data, it has become possible for

data-driven methods to improve the ADAS. By utilizing the system's online or o²ine

data, the data-driven methods can generate a variety of data-based functions in-

cluding forecasting, evaluating, adjusting, monitoring, diagnosing, decision-making

and optimizing.29 Data-driven modeling refers to establishing the mathematical

connections between leading variables and instrumental variables by mining useful

information from the controlled system's input/output data for modeling. The data-

driven models include arti¯cial neural network, support vector machine, fuzzy logic,

expert system, etc.6

While driving in complex tra±c, a number of factors such as a driver, a vehicle

and road environment are involved in a closed-loop system of driving risk recogni-

tion. If the analysis comes from the accurate mathematical modeling, the identi¯-

cation of driving risks will become particularly sophisticated. As a matter of fact, the

ADAS merely need (intuitively) qualitative instructions of risk identi¯cation to carry

out corresponding alarms. Instead, the system requires the driving risk recognition

model to be able to make real-time responses.5 Therefore, in order to utilize all kinds

of information with uncertainties to realize quick and e®ective recognition of driving

risks, this paper establishes a recognition model of driving risk based on belief rule-

base (BRB) methodology that can take multi-source heterogeneous driving data into

consideration. The accuracy and applicability of the proposed model are veri¯ed and

evaluated by utilizing real world test data. Finally, the model is implemented in a

vehicle driving simulator as a reference for future ADAS.

The driving risk recognition model discussed in the paper belongs to the ¯eld of

pattern recognition (PR). Its application scenario is the road environment of unpi-

loted driving in the future, which provides preliminary basis for the highly intelligent

driving in the future, and belongs to research on arti¯cial intelligence (AI) in the

automotive ¯eld. This paper is organized as follows: Section 2 presents a review of
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previous research on driving behavior and BRB methodology; in Sec. 3, the data

collection and pre-analysis are described; Sections 4 and 5 detail the establishment,

test and implementation of the model; Section 6 gives some concluding remarks and

discusses possible improvements.

2. Literature Review

This section provides an overlook of the research development in the ¯eld of driving

behavior and BRB methodology.

The necessity for an objective method to understand daily driving behavior which

derives from the driving style has been emphasized in many studies. Aarts and Van

Schagen1 highlighted the importance of correlation between vehicle speed on road

and tra±c safety. According to their research, the collision risk and its severity will

rise with increasing speed. Miyajima et al.16 used longitudinal, lateral acceleration

and velocity signals captured in driving recorders for the driving risk analysis. Bonsal

et al.7 explored the modeling of various driving styles, especially in urban tra±c,

based on several driving parameters. Another interesting technique was presented by

Macadam et al.,15 in which the driving behavior was classi¯ed under ¯ve di®erent

categories using both range and range rates of longitudinal closures. Othman et al.18

conducted a study on driver behavior and obtained data from a driving simulator

using a predetermined computer simulated driving course. In order to extract rele-

vant information from the raw data set, the authors used a linear prediction analysis

technique to extract relevant features that could best describe the driver operation

behavior. Raksincharoensak et al.20 used a combined driver behavior model based on

a state transition feature for modeling naturalistic driving behavior in tra±c sce-

narios. Lin et al.14 categorized the driver characteristics based on either driver's

operational behavior or the driver behavior characteristics. They discussed appli-

cations of the identi¯cation of the driver behavior characteristics to the intelligent

driver advisory system the driver safety warning system and the vehicle dynamics

control system. These studies advanced the ¯eld and some of the technologies

developed have been commercialized.

Bayes Network (BN) is one of the most popular methods used for risk assessment

in the transportation ¯eld.32 BN builds the relationships among factors by condi-

tional probability tables (CPTs). The assessment is then carried out by combining

CPT with prior values of all variables on the basis of Bayes theory. However, one

limitation for BN is that the size of the CPT grows exponentially with the number of

variables, which makes it very di±cult to apply in real time.13 One possible solution

is that the CPT can be decomposed and calculated separately if the variables are

independent.21 The theory of belief functions, also referred to as evidence theory, is a

general framework for reasoning with uncertainty, with the combination of other

frameworks such as probability, possibility and imprecise probability theories.4 BRB

is another method that has a di®erent theoretical foundation compared to BN.26,27

BRB makes inferences by combining all the activated BRBs based on evidence

A Recognition Model of Driving Risk Based on Belief Rule-Base Methodology

1850037-3

In
t. 

J.
 P

at
t. 

R
ec

og
n.

 A
rt

if
. I

nt
el

l. 
20

18
.3

2.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 D

E
L

FT
 U

N
IV

E
R

SI
T

Y
 O

F 
T

E
C

H
N

O
L

O
G

Y
 o

n 
05

/2
7/

20
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



theory, which is nonlinear.8 BRBs and CPTs in BN are similar methods. However,

the evidence theory makes it possible to obtain BRBs by combining various experts'

knowledge, so that the BRBs can be more reliable. Furthermore, the factors that

have impacts on risks can be divided into groups, and assessed separately in an

iterative way. This reduces the dimensions of BRBs substantially. BRB theory has

been successfully applied to the accident analysis28 and technique selection for ship

emission reduction25 in the maritime domain. BN and evidence reasoning were also

integrated to carry out quantitative risk assessment.22

For the modeling of complicated decision-making problems with uncertain

quantitative information and qualitative knowledge, and for the purpose of risk

recognition and evaluation on target model, in Refs. 2, 3, 9 and 12 the author has

adopted algorithms such as Bayesian network, neural network, support vector ma-

chine, grey theory, and rough set to construct risk evaluation model, and achieved

certain e®ects. The major research ¯elds include military security, network security,

and oil and gas engineering. However, e®ective weight allocation is lacking in input

index and training rule of these methods, resulting in low data service e±ciency.

Some methods have to be realized with large amounts of computation and compli-

cated reasoning process. Considering advanced driver assistance system demands

high instantaneity, while the calculation capacity of vehicle device is quite limited,

this paper plans to build a vehicle driving risk recognition model based on driving

data. The recognition model will recognize the driving risks in the vehicle driving

process with novel method of belief rule-base which is convenient for plug-and-play

on vehicle device. Inference method of con¯dence rule base is developed based on D-S

evidence theory, decision-making theory, fuzzy theory, and traditional IF-THEN

rule base and equipped with the capability of modeling incomplete, and fuzzy data

with probabilistic uncertainty, subjectivity/objectivity, and nonlinearity. The in-

ference method is suitable for building evaluation rules on vehicle driving risk rec-

ognition and the relevant knowledge representation method and is able to realize

data input and reading in the vehicle device e®ectively. It can be applied to advanced

driver assistance system in practice.

3. Data Collection and Preanalysis

3.1. Experimental design

Thirty professional taxi drivers with an average age of 46.3 (SD¼ 8.2) were recruited

to participate in this ¯eld driving test. Each participant was required to drive the test

vehicle along the G70 (Han-Shi) Expressway from Wuhan to Suizhou in China for

more than 2.5 h to complete a test trip. In each single test day, only one participant

would drive through the test trip. So 30 participants did the experiment in 30 days.

However, we needed to con¯rm that the weather was sunny and tra±c condition was

moderate every single test day, so the experiment lasted for about two months

in total. The length of the selected road is about 300 km with two-way four lanes,

C. Sun et al.
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and the width of each lane is 3.75m. The vehicle test was instrumented with an

inertial navigation system (INS) and a Mobileye C2-270 system. Three additional

cameras were installed on the windscreen of the vehicle (Resolution ratio is 800*640.

Video sample rate is 30 fps), which, respectively, recorded the front road environ-

ment, the facial expression of the driver and the operation behavior of the driver. The

driving data, such as longitude and latitude, speed, accelerations, azimuth, headway

to lead vehicles, lane position, were collected via INS and Mobileye together.

3.2. Screening driving data for safety-critical events

The recorded data include no collisions or other accidents, but several critical events

were encountered along with many periods without apparent risks. Manually, ana-

lyzing the road and driver video data of all 75 h collected data would need an im-

mense e®ort. Hence, the video reviewing method of safety-critical events was adopted

from previous research.23 The key capture has been done to the de¯ned safety-critical

events by setting a certain screening threshold, which is to save the events at the

moment when the acceleration absolute value is greater than 1.99m/s2. The capture

process of these safety-critical events has been done by manual handling. The time

range of emergency in safety-critical events has been classi¯ed. Other parameters,

such as road environment and the operational behavior of driver, were extracted

from watching videos and vehicle-mounted data synchronously, which is the primary

method of constructing a BRB model extracting multi-source heterogeneous driving

parameter in a complicated tra±c environment.

Safety-critical events of the test vehicle on the expressway mainly occurred in the

following driving scenes: lane-changing, car following, overtaking/overtaken. It was

found, after reviewing and analyzing the videos, that the primary potential accident

type of the instrumented vehicle is a vehicle to vehicle collision. It is unlikely to have

other accident types like rollover or road departure. In conclusion, the risk identi¯-

cation of driving behavior analyzed in this paper is mainly done based on the risky

events of vehicle's possible collisions on expressways.

3.3. Driving parameter quantization for collision risk

Too many input variables will result in redundancy of making driving risk identi-

¯cation rules when constructing the recognition model of driving risk on the basis of

BRB. This could overload the calculation of the subsequent process of evidence

reasoning and optimization. However, it will not be su±cient to describe the rela-

tionships between input and output if only few input variables are taken into ac-

count. Therefore, deciding what to quantify on these multi-source heterogeneous

driving data shall be done according to the driving data characteristics and testing

conditions as shown in Table 1. Speci¯c values used to de¯ne the categories of

driving parameter and the boundaries of the categories will be de¯ned later in

Table 4.

A Recognition Model of Driving Risk Based on Belief Rule-Base Methodology
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3.4. Driving risk state calibration

The driving parameter selection provides a driving assessment index to the data-

driven model. While, a large amount of historical data is needed as a data-driven

source, one part of the historical data can be used as a training sample data to train

the recognition model. The second part can be used as testing sample data to check

the accuracy rate of the trained recognition model. Before training the data, driving

risk state needs to be classi¯ed by a subjective estimate method which has been

widely used in the research of transportation.11 The driving data collected including

three-channel camera videos and real-time vehicle data provide reliable evidence for

experts' subjective evaluation.

With the warning characteristic of the existing ADAS as a reference, the experts

classi¯ed the risk states of driving events into three levels, namely, None (Low),

Medium and Large.5 The data was sampled by reviewing the (near) safety-critical

events in the videos, which helped us quickly gather enough data for all the levels of

driving risk. The experts determined the risk states of all the samples. We randomly

selected 16.7 points of time in each participant's data on average, 500 (16.7*30)

points of time in total as historical data set which is shown in Fig. 1 and Table 2.

Each sampled data was the driving data at a selected momentary time point. In

addition, the assessment was made by jointly analyzing objective information, such

as speed, acceleration, time headway and the video of the driver's face, excluding

obvious inaccurate labeling of the sample data.

Table 1. Driving parameter quantization for collision risk.

Category Parameter/Description Quantization Selection

Driver Gender Male M
p

Female F

Age Small YS
p

Medium YM

Large YL
Driving experience in years Short DS

p
Medium DM

Long DL

Vehicle state Brake Performance Normal —

Speed (km/h) Small VS
p

Medium VM
Large VL

Acceleration (vector) (absolute

value, m/s2)

Small AS
p

Medium AM

Large AL

Time headway (s) Small TS
p

Medium TM
Large TL

Driving condition Road condition Dry asphalt —

Lane position of vehicle Running DL
p

Overtaking OL

Ramp RL

C. Sun et al.
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Finally, there were 116 samples of risk state N, 160 samples of risk state M, and

224 samples of risk state L. Out of the 500 samples of driving events, 300 were taken

as the training sample data of the recognition model leaving the other 200 as testing

sample data. Note the time headway being 0 s indicates no other vehicles are detected

in front of the subject vehicle.

4. Methodology

Based on Dempster–Shafer theory of evidence, decision theory and fuzzy set theory,

Yang et al. proposed a new methodology for building a hybrid rule-base using a belief

Table 2. Driving data of 500 fragments.

No. ID Speed Acceleration Headway Brake Road Lane Risk State

1 D3 83 kph 0.21 g 2.5 s Normal Dry Asphalt Overtaking L
2 D3 95 kph 0.13 g 1.8 s Normal Dry Asphalt Running L

3 D8 98 kph 0 g 0 s Normal Dry Asphalt Running N

4 D15 92 kph 0 g 0 s Normal Dry Asphalt Running N

5 D9 65 kph 0 g 2.5 s Normal Dry Asphalt Ramp M
. . . . . . . . . . . . . . . . . . . . . . . . . . .

496 D21 86 kph �0.26 g 0.5 s Normal Dry Asphalt Overtaking L

497 D20 71 kph 0.32 g 0 s Normal Dry Asphalt Overtaking M

498 D14 108 kph �0.11 g 1.8 s Normal Dry Asphalt Running L
499 D7 98 kph �0.08 g 1.6 s Normal Dry Asphalt Overtaking L

500 D5 65 kph �0.02 g 0 s Normal Dry Asphalt Ramp N

Fig. 1. 500 Fragments of driving risk state for Calibration.

A Recognition Model of Driving Risk Based on Belief Rule-Base Methodology
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structure and for inference in the rule-based system using the evidential reasoning

(ER) approach. The methodology is referred to as a generic rule-base inference

methodology using the ER approach: RIME.8,25–28

4.1. Belief rule-base

In the RIMER approach, a belief IF-THEN rule, for example the kth rule Rk, is

expressed as follows:

Rk: If x1 is Ak
1 ^ x2 is Ak

2 ^ � � � ^ xTk
is Ak

Tk
;

Then fðD1; �1kÞ; ðD2; �2kÞ; . . . ; ðDN ; �NkÞg;
XN
i¼1

�ik � 1;

with a rule weight �k and attribute weight �1; �2; . . . ; �Tk
;

ð1Þ

where Ak
i is the referential value of the ith antecedent attribute and Tk the number of

antecedent attributes used in the kth rule. �ikði ¼ 1; 2; . . . ;NÞ is the belief degree to
which Di is believed to be the consequent if ðx1;x2; . . . ;xTkÞ ¼ ðAk

1;A
k
2; . . . ;A

k
TkÞ.

L is the number of all rules in the rule-base. If �N
i¼1�ik ¼1, the kth rule is complete;

otherwise, it is incomplete. Note that �N
i¼1�ik ¼ 0 denotes total ignorance about

the output given the input in the kth rule. Rule (1) is also referred to as a belief rule.

It is further supposed that T is the total number of antecedent attributes used in the

rule base.

Let

X ¼ ðx1;x2; . . . ;xTk
Þ; Ak ¼ ðAk

1;A
k
2; . . . ;A

k
Tk
Þ; D ¼ ðD1;D2; . . . ;DNÞ;

� k ¼ ð�1k; �2k; . . . ; �NkÞ; and � ¼ ð�1; �2; . . . ; �T Þ:
X is referred to as an input vector to the kth rule; Ak is a packet antecedent, Ak

i

(i ¼ 1; 2; . . . ;Tk) is the ith referential values of the packet antecedent Ak; D is the

consequent vector; � k is the vector of the belief degrees; and � is the attribute weights

of all the T antecedent attributes in the rule base.

It is not di±cult to see the di®erence between a traditional IF-THEN rule and a

belief IF-THEN rule. In the traditional rule, the consequence is either 100% true or

100% false. Such a rule base has limited capacity in representing knowledge in a real

world. The belief structure in the belief rule base provides better °exibility in

representing the knowledge of di®erent structures and complexity, such as contin-

uous and uncertain relationships between antecedents and consequents.

4.2. Inference with BRB using ER approach

Given an input to the system, X ¼ ðxi; i ¼ 1; 2; . . . ;T Þ, T is the total number of

antecedents in the rule base; xiði ¼ 1; 2; . . . ;T Þ is the ith attribute which can be one

of the following types: continuous, discrete, symbolic and ordered symbolic.

Before the start of an inference process, the matching degree of an input to each

referential value in the antecedents of a rule needs to be determined, so that an

C. Sun et al.
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activation weight for each rule can be generated. This is equivalent to transforming

an input into a distribution on referential values using belief degrees. It can be

accomplished using di®erent techniques such as the rule or utility-based equivalence

transformation techniques.

Using the notations provided above, the activation weight of the kth rule wk is

calculated as

wk ¼ �k
YTk

i¼1

ð�ikÞ� i
,XL

j¼1

�j
YTk

l¼1

ð�ljÞ� l ; ð2Þ

where �i ¼ �i
maxi¼1;...;Tk

f�ig ; �ikði ¼ 1; . . . ;TkÞ is the individual matching degree to where

the input xi matches the ith referential value Ak
i of the packet antecedent A

k in the

kth rule, �ik �0, and �Tk
i¼1�ik �1. �k ¼

QTk

i¼1 ð�ikÞ� i is called the combined matching

degree.

Having determined the activation weight of each rule in the rule base, the ER

approach can be directly applied to combine the rules and generate ¯nal conclusions.

Suppose the outcome of the combination yields the following:

Y ðXÞ ¼ fðDj; �jÞ; j ¼ 1; . . . ;Ng: ð3Þ
Equation (3) means that if the input is given by X, then the consequent is D1 to a

degree of �1,D2 to a degree of �2; . . . ; andDN to a degree of �N . Using the analytical

format of the ER algorithm, the combined belief degree �j in Dj can be generated as

follows:

�j ¼
u
QL

k¼1 wk�jk þ 1� wk

PN
j¼1 �jk

� ��QL
k¼1 1� wk

PN
j¼1 �jk

� �� �
1� u

QL
k¼1ð1� wkÞ

� � ; ð4Þ

where u ¼ PN
j¼1

QL
k¼1

wk�jk þ 1� wk

PN
j¼1�jk

� �
� ðN � 1Þ QL

k¼1

1� wk

PN
j¼1�jk

� �� ��1

and wk is as given in Eq. (2).

4.3. BRB training

The initial belief rules and knowledge representation parameters including rule

weights, attribute weights and consequent belief degrees in a BRB can be given by

the domain experts or randomly generated. Hence, the rules may not be 100%

accurate. An initial BRB can be trained using historical data to improve its ability

for representing the clinical domain knowledge.

The aim of BRB training is to ¯nd a set of parameters (�ik; �k; �iÞ of a BRB that

can help it accurately represent the domain speci¯c knowledge. The training process

is implemented by minimizing the discrepancy between BRB results and sampled

data. Assuming there areM cases in a training sample, and the input–output pairs of

the M cases are ðXm; bYmÞðm ¼ 1; 2; . . . ;MÞ, the process of learning from these M

datasets can be illustrated as Fig. 2, where Ym is produced by the BRB system; the

A Recognition Model of Driving Risk Based on Belief Rule-Base Methodology
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real output bYm is observed by experts or acquired by instruments; and �ðP Þ repre-
sents the di®erence between the real output and the system output. In the

BRB optimization model, the objective function is to minimize �ðP Þ, and the con-

straints de¯ne what the knowledge representation parameters of a BRB system

should follow. As a result of the training process, there will be a new set of (�ik; �k; �iÞ
for BRB.

5. Model

By establishing the applicable BRB system for the driving risk identi¯cation, non-

linear relations are expected to be described between the driving behavior charac-

teristic, vehicle states, road environment and the driving risk levels. For the

established BRB system, the input ofX is the driving data related to vehicle collision

risk, the output of Y is the risk level of vehicle driving.

5.1. Input and output

The inputs X of the model have been selected according to Table 1 (subject data,

vehicle data and environment). As for the output indexes, we take as Ref. 5 existing

ADAS for collision mitigation that is divided into two parts: early warning and

active control. The warning signals given by auditory and visual interfaces are

normally categorized into several levels depending on the severity of the potential

hazards. Therefore, the output parameter Y was divided into None (Low), Medium

and Large according to the level of driving risk (see Table 3).

The reference values (classi¯cation boundaries) also need to be determined for all

the inputs X. Instead of using strict mathematical derivation, the reference values

were determined on the basis of the previous research on driving data characteristic

distribution.10,17,23 For example, the rate data for near-crashes are fairly evenly

distributed among the four-time headway categories of < 1 s, 1–1.99 s, 2–2.99 s,

and > 3 s. Other driving indexes data are categorized reasonably with similar rules

(see Table 4).

Fig. 2. Training process.

C. Sun et al.
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5.2. Constructing the initial BRB system

Based on the input of the driving risk recognition model, a double-layered BRB

system is established, see Fig. 3. The ¯rst layer system is composed of three BRB

subsystems: (1) three driver factors are utilized as the ¯rst input of BRB subsystems

to judge the driver's status; (2) three vehicle factors are taken as the second input of

BRB subsystems to judge the vehicle's status; (3) one road environment factor is the

third input of BRB subsystems to judge the road environment's status. The second

layer system utilizes the driver's status, vehicle's status, road environment's status

data from the ¯rst layer system as the input, and gives the ¯nal driving risk recog-

nition output. Since the bottom layer's antecedent input has been divided into

various states (discrete values), there is no need to handle input transformation to

continuous variables.

Table 3. Input X and Output Y classi¯cation.

Driving Behavior XD Semantic Value Vehicle XV Semantic Value

Gender x1 Male M Speed x4 Small VS
Female F Medium VM

Large VL

Age x2 Small YS Accelerated Speed x5 Small AS
Medium YM Medium AM

Large YL Large AL

Driving years x3 Small DS Time Headway x6 Small TS

Medium DM Medium TM

Large DL Large TL

Road XR Semantic Value Level of Driving Risk Y

Lane position x7 Running DL Level y None N

Overtaking OL Medium M
Ramp RL Large L

Table 4. Reference values of input X and output Y .

Input X Quantization Reference Value Input X Quantization Reference Value

x1 M 1 x5 AM 3
x1 F 2 x5 AL 5

x2 YS 25 x6 TS 1

x2 YM 45 x6 TM 2

x2 YL 55 x6 TL 3
x3 DS 10 x7 DL 1

x3 DM 20 x7 OL 2

x3 DL 30 x7 RL 3

x4 VS 50 Output Y Quantization Reference Value

x4 VM 80 y N 0

x4 VL 110 y M 1

x5 AS 1 y L 2

A Recognition Model of Driving Risk Based on Belief Rule-Base Methodology
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where x1–x7 are system antecedent inputs; y is system output; and u1–u3 are

introduced as the middle factors to evaluate the driver, the vehicle and the road

environment.

According to Fig. 3, the BRB system is composed of four BRB subsystems. Also

three driver factors x1–x3 are the antecedent input of the ¯rst BRB subsystem, and

driver status u1 is the subsystem output. Three vehicle factors x4–x6 are the ante-

cedent input of the second BRB subsystem, vehicle status u2 is the subsystem out-

put. One road environment factor x7 is the antecedent input of the third BRB

Fig. 3. BRB system of driving risk recognition model.

C. Sun et al.
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subsystem, road environment status u3 is the subsystem. The ¯rst three layer sub-

systems' outputs form the inputs for the second layer BRB subsystem. The ¯nal

identi¯cation ¯ndings for the driving risk level are given according to these ante-

cedent inputs, utilizing the fourth BRB subsystem. In the second layer BRB struc-

ture, because it is a basic belief structure lead by the ¯rst layer BRB structure, input

transformation of the second layer BRB subsystem is also not necessary.

The establishment of initial belief rules employed the following four methods:

expert knowledge, credible historical data, previous driving risk identi¯cation rules,

and random selection rules. In this paper, according to the expert knowledge and the

distribution characteristic of real vehicle test statistics, the initial belief rules of

four subsystems are established. The belief rule of the ¯nal subsystem (BRB sub-

system 4) is

R4
k: If u1 is B1;k ^ u2 is B2;k ^ u3 is B3;k

Then fðN; � 4
1;kÞ; ðM; � 4

2;kÞ; ðL; � 4
3;kÞg;

where B1;k, B2;k, B3;k are respectively the semantic values of middle factor U and the

speci¯c data is not set; N , M , L are semantic values of the system output showing

low, middle and high level of driving risk status; � 4
1;k, �

4
2;k, �

4
3;k are respectively

belief degree to which N, M or L is believed to be the consequent if (u1, u2,

u3Þ ¼ ðB1;k, B2;k, B3;kÞ; and in total we have 27 rules (3� 3� 3).

The initial belief rule of the ¯nal subsystem (BRB subsystem 4) is shown in

Table 5.

As the initial BRB system is established on the basis of expert knowledge and

historical data with respective subjective and objective indeterminacy, the initial

BRB system is imprecise and needs to be optimally trained.

5.3. Training of the initial BRB system

The training of the initial BRB system is conducted on the basis of a subset of

the sample data. A total of 300 samples were chosen randomly from 500 historical

data samples as training sets, which leaves the remaining 200 samples as test samples

(see Fig. 1). All these data cover every categories of input and output data. The

learning process is implemented in MATLAB and outlined in the following

seven steps.

(1) Set initial parameters;

(2) Transform the input;

(3) Calculate rule activation weight;

(4) Combine activated rules;

(5) Estimate driving risk;

(6) Calculate the driving risk di®erence between the observed and estimated;

(7) Find a new set of parameters P to minimize the di®erence de¯ned in Eq. (7).

A Recognition Model of Driving Risk Based on Belief Rule-Base Methodology
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Having obtained the outcome shown in Eq. (3), the estimated the level of driving

risk is calculated as follows:

RiskðY Þ ¼ D1�1 þD2�2 þD3�3: ð5Þ
Hence the Risk(Y ) is a continuous quantity between 0 and 2. Discretizing the

Risk(Y ) makes it easier to compare the driving risk di®erence between the observed

and the estimated ones. The ADAS also often need discrete qualitative instructions

of risk identi¯cation to provide corresponding alarms. The level of driving risk is

discretizing as

Estimated RiskðY Þ ¼
0 0 � RiskðY Þ � 0:5

1 0:5 < RiskðY Þ � 1:5

2 1:5 < RiskðY Þ � 2:

8<: ð6Þ

According to the above-mentioned steps, we put the 300 sets of training samples

into the initial BRB system, then we get the estimated values of corresponding

Table 5. Initial belief rules of BRB subsystem 4.

Input U(Middle Factor)

Attribute Weights 1 1 1 Output Y (Belief Degree)

Rule Number Rule Weight u1 u2 u3 N M L

1 1 S S S 1 0 0
2 1 S S M 0.8 0.1 0.1

3 1 S S L 0.6 0.2 0.2

4 1 S M S 0.6 0.2 0.2

5 1 S M M 0.7 0.1 0.2
6 1 S M L 0.5 0.2 0.3

7 1 S L S 0.4 0.2 0.4

8 1 S L M 0.2 0.2 0.6

9 1 S L L 0 0.2 0.8
10 1 M S S 0.9 0.1 0

11 1 M S M 0.7 0.2 0.1

12 1 M S L 0.5 0.3 0.2
13 1 M M S 0.5 0.2 0.3

14 1 M M M 0.6 0.1 0.3

15 1 M M L 0.4 0.2 0.4

16 1 M L S 0.2 0.2 0.6
17 1 M L M 0.1 0.2 0.7

18 1 M L L 0 0.1 0.9

19 1 L S S 0.8 0.1 0.1

20 1 L S M 0.5 0.2 0.3
21 1 L S L 0.4 0.3 0.3

22 1 L M S 0.4 0.2 0.4

23 1 L M M 0 0.4 0.6
24 1 L M L 0 0.3 0.7

25 1 L L S 0.1 0.1 0.8

26 1 L L M 0 0.1 0.9

27 1 L L L 0 0 1

C. Sun et al.
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training samples. By comparing the estimated values with the real sample output,

the accuracy rate of driving risk identi¯cation can be obtained (see Table 6). We can

see that the initial BRB is not perfect because of the subjective indeterminacy of

expertise. The accuracy of identifying the middle and high-level driving risk status is

only about 50%, leading to not-so-high overall detection accuracy. This is because the

BRB built on the basis of expertise and historical data cannot model the relationship

between input and output accurately. However, the correct identi¯cation of middle

and high-level driving risk status is essential in the early warning strategy of ADAS.

Therefore, the training sample needs to be optimized to improve the accuracy of

identi¯cation.

Table 6. Identi¯cation accuracy rate based on
initial BRB (Training samples).

Driving Risk Level N (0) M (1) L (2)

Accuracy rate 83.6% 51.4% 50.8%

Table 7. Trained belief rules of BRB subsystem 4.

Input U(Middle Factor)

Attribute Weights 0.967 1 0.927 Output Y (Belief Degree)

Rule Number Rule Weight u1 u2 u3 N M L

1 1 S S S 1 0 0
2 0.86 S S M 0.9 0 0.1

3 0.99 S S L 0.5 0.3 0.2

4 1 S M S 0.6 0.2 0.2

5 1 S M M 0.7 0.1 0.2
6 0.56 S M L 0.4 0.3 0.3

7 0.87 S L S 0.3 0.2 0.5

8 0.97 S L M 0.1 0.2 0.7

9 1 S L L 0 0.2 0.8
10 1 M S S 1 0 0

11 1 M S M 0.7 0.2 0.1

12 1 M S L 0.5 0.3 0.2
13 0.87 M M S 0.4 0.3 0.3

14 0.82 M M M 0 0.5 0.5

15 0.98 M M L 0.3 0.3 0.4

16 0.79 M L S 0.1 0.2 0.7
17 1 M L M 0.1 0.2 0.7

18 1 M L L 0 0.1 0.9

19 0.97 L S S 0.7 0.2 0.1

20 0.85 L S M 0.4 0.2 0.4
21 0.79 L S L 0.3 0.4 0.3

22 0.91 L M S 0.3 0.3 0.4

23 1 L M M 0 0.4 0.6

24 0.91 L M L 0 0.2 0.8
25 0.97 L L S 0 0 1

26 0.99 L L M 0 0 1

27 1 L L L 0 0 1

A Recognition Model of Driving Risk Based on Belief Rule-Base Methodology
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The mean value of the quadratic sum of di®erence between the real sample output

True Risk(Y ) and the estimated output Estimated Risk(Y ) can be expressed as

�ðP Þ ¼ 1

300

X300
i¼1

½True RiskðY Þi � Estimated RiskðY Þi�2: ð7Þ

The objective of the learning process is to ¯nd a set of parameters P , so that the

di®erence between the observed and the estimated driving risk is minimized. This

leads to the minimal �ðP Þ, the constraint condition including: 0� �k �1, 0� �k �1,

0� �j; k �1 and
P3

j¼1 �j;k ¼ 1, k ¼ 1; 2; . . . ; 27.

The Fmincon function of the MATLAB optimization toolbox is used to realize the

above processes. Then, the optimized belief rules of BRB can be composed by its

optimization results. The results of optimized belief rules are shown in Table 7.

After con¯rming the optimized BRB system, the preceding steps were repeated:

input 300 sets of training samples into the optimized BRB to get corresponding

estimated values of training samples. The results show that the optimized BRB has

greatly improved the accuracy on the driving risk identi¯cation. The accuracy of

identifying all three levels of driving risk has reached 95%. Therefore, the reliability

of the BRB model can be evaluated in the remaining test data as described below.

6. Test and Implement

6.1. Model test

A total of 200 sets of data were used to test the identi¯cation accuracy of the

optimized BRB. The di®erences between the results of testing sample output

and estimated output are as shown in Fig. 4, and the test accuracy is shown in

Table 8.
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Fig. 4. Di®erence value between testing sample output and estimated output.
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According to the test results, a more accurate nonlinear mapping relationship

between input and output has been established by the optimized BRB. The di®er-

ence in values of driving risks represents the absolute di®erence between testing

sample output and the estimated output. For example, if a testing sample output

is 0, and the corresponding estimated output is 2, then the driving risk di®erence is 2.

The higher the absolute value is, the higher the error is. There are two samples with

the absolute di®erence of 2 and 20 samples with the absolute di®erence of 1 in 200

sets of test data. Moreover, the identi¯cation accuracy of the optimized BRB can

reach almost 90% in three levels (none, medium, large) driving risk situations.

In the testing environment (Intel(R) Core(TM) i5-5200U CPU @ 2.20GHz,

RAM: 8GB), time needed to give the estimated values by BRB is 0.875ms at every

turn. At present, the sampling frequency of existing various vehicle sensors generally

does not exceed 50Hz, so the time interval of our BRB outputting the estimated

value is far shorter than the generic signal sampling intervals in ADAS. Certainly,

this model can be applied in real time as part of an early warning strategy in ADAS.

6.2. Model implementation

The driving risk recognition model (the optimized BRB system), which has reliable

accuracy and low computational cost, was implemented in a driving simulator to test

its safety and real time performance. We used a programmable and fully interactive

virtual reality driving simulator powered by a programmable software engine. It

includes three independently con¯gurable driving displays that provide a wide driver

¯eld-of-view, a full-sized steering wheel with advanced dynamics based feedback, and

advanced vehicle dynamics software modeling (see Fig. 5).

While setting its external-connected procedures, the recognition model was

written in MATLAB environment, and the driving parameters generated from the

simulator in real-time were introduced to the BRB system. Then the recognition

model outputs the level of driving risk in real-time. Finally, according to the risk

status (N, M, L), the warning interface was set and feedback given to the driver (see

Fig. 6).

This simulator test was to discuss the possible implementation of model on

ADAS, so only one test driver and one test scenario were selected. In order to

implement the driving risk recognition system, a 32-year old male with six years of

driving experience, was chosen to be the subject of the test. A typical expressway

driving environment is adopted as the road environment for the test. The driver's

Table 8. Identi¯cation accuracy rate based on optimized BRB (Test samples).

Driving Risk Level N (0) M (1) L(2) Average

Accuracy amount 39/43 49/55 90/102 178/200
Accuracy rate 90.7% 89.1% 88.2% 89%

Missing amount 3/43(M) 1/43(L) 4/55(N) 2/55(L) 3/102(N) 9/102(M) 22/200

Missing rate 7.0%(M) 2.3%(L) 7.3%(N) 3.6%(L) 2.9%(N) 8.8%(M) 11%
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parameters are set into the driving simulator system beforehand, namely, x1 ¼ 1,

x2 ¼ 32, x3 ¼ 6. The other parameters of x4, x5, x6, x7 are input into the driving

simulator directly as parameters from the model.

The test scenario was as follows: The tested driver was driving on one side of the

closed highway, where the density of tra±c °ow was medium, and the target vehicle

had occupied the overtaking lane for quite a long time. In front of the target vehicle,

there was a truck that had also occupied the overtaking lane for quite a long time.

The target vehicle intended to overtake the truck by illegally cutting through the

right side of the truck's lane. The speed, acceleration and time headway of target

vehicle were recorded, and the level of the driving risk status was calculated in real

time (see Fig. 7).

The segments of the whole process are as follows: (a) [0:48] the target vehicle

(tested) cruised in the overtaking lane, when a truck was cruising in front of the

target vehicle. (The target vehicle's state was 63 km/h, 0.14m/s2, and driving risk

was N); (b) [1:03] as the target vehicle found that it was too close to the truck, it

braked and intended to overtake the truck by illegally changing lane to the running

lane. (The target vehicle's state was 64 km/h,�0.42m/s2 and the driving risk was L);

Fig. 5. Driving simulator.

Fig. 6. Human–computer interaction.
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(c) [1:08] the target vehicle completed the changing-way and sped up to overtake the

truck. (The target vehicle's state was 69 km/h, 0.69m/s2, and the driving risk

was L); (d) [1:18] the target vehicle was overtaking steadily. (The target vehicle's

state was 71 km/h, 0.14m/s2, and the driving risk was M). The whole process lasted

for about 30 s.

This proves that the driving risk recognition model based on BRB has rather

feasibly estimated the level of driving risk status during the whole process of illegally

overtaking. Even though the parameters of the model as well as the settings of

the driving scenario in the simulator were quite simple, this simulation o®ers the

possibility of applying our model to improve ADAS.
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Fig. 7. Time-domain plot of driving data in test scenario.
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7. Conclusions and Recommendations

This paper adopts the approach of data-driven modeling, utilizing the accumulation

of on-road driving data, to comprehensively consider the in°uence on driving safety

brought by driver, vehicle and road environment, and establish a recognition model

of driving risk based on a BRB methodology. The results show that the model has

high accuracy of up to about 90% for the three-level driving risk recognition. The

model with reliable accuracy and fast computation time can meet the needs of

practical systems. Finally, the application and test of our model were carried out to

provide a certain basis for improving the ADAS in a driving simulator.
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Compared to nonlinear modeling methods, such as neural network, BRB system

uses not only the objective sampled, but also subjective information provided by the

experts. Moreover, its adjustable parameters have a clear physical meaning.

Therefore, it is closer to practical application, and it is also easier for drivers to accept

and take part in the entire modeling process of the BRB. However, the on-road

vehicle driving data utilized in this paper was collected in certain driving conditions

which may a®ect the usability of the model in all conditions in the real world.

Therefore, a further assessment involving a wider range of drivers and test scenarios

can be conducted for model implementation as a follow-up study.
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