
A framework for automatic repair of 3D city
models

P2 - The research proposal

Lisa Keurentjes
student 4557670

1st supervisor: Hugo Ledoux
2nd supervisor: Ivan Pad̄en

November 2, 2024

1



1 Introduction

The world grows more complex every day with continuously increasing social, ecological,
economic, and infrastructural challenges. To tackle this complexity, we tend to make cities
“smarter by using simulations from various disciplines, such as wind field or flood simula-
tions Willenborg et al. (2016). These simulations and analysis have become essential tools for
decision-making in urban planning and analytics; some use cases can be found in Figure 1. For
these simulations, models of the built environment are needed. With advances in technolo-
gies to collect 3D elevation information, the way practitioners model our built environment
is rapidly changing from a 2D to a 3D representation, resulting in an increasing number of
municipalities building up 3D city models (Kolbe and Gröger (2003)). A 3D City model rep-
resents an urban environment with a three-dimensional geometry of common urban objects
and structures, with buildings as the most prominent feature (Biljecki et al. (2015)). These
models can be derived from various construction methods, from automatic construction by
photogrammetry and laser scanning to manually processed 2D drawings. In section 2.1.2,
construction methods will be elaborated.

Figure 1: Some examples of use cases of 3d city models (Biljecki et al. (2015))

3D city models come in many varieties, depending on the use cases. To standardize 3D city
models into classes, the Open Geospatial Consortium (OGC) attempts to classify grades of
3D data with the LOD categorization (Biljecki (2017)). The geometric detail and the semantic
complexity increase with each level (Figure 2). When doing spatial analysis and/or simula-
tion, two factors influence the accuracy of the results, namely the semantic and geometric level
of detail (Biljecki (2017)) and the correctness of the data (Coors et al. (2020)). 3D city models,
therefore, need to meet certain requirements before being used. To validate the quality of the
data and achieve interoperability, the ISO 19100 series standards were created (Wagner et al.
(2013)). However, depending on the purpose of the model, not all requirements are manda-
tory. For example, watertight geometry is not required if the model is used for visualization
only. However, if the same model should be used for analytic purposes such as heating de-
mand simulation, watertight geometry is mandatory (Coors et al. (2020)).

Figure 2: The five LODs of the OGC CityGML 2.0 (Biljecki (2017))

2



According to Biljecki et al. (2016a) a significant amount of 3D city models is not considered
valid to the standards needed, they contain geometric as well as topological errors. Some
examples of these errors are duplicate vertices, missing surfaces, nonwatertight solids, and
intersecting volumes (Figure 3). Errors hinder the further analyzing or processing of these
models, so pre-processing of the models needs to be done. Biljecki et al. (2016a) states that the
only solution at this moment is to spend a substantial amount of hours manually repairing
the data. Since manual repair of 3D City models is very time-consuming and prone to errors,
automatic repair methods are highly desirable. There is a growing field of science that deals
with automatic repair (Ledoux (2018)). Still, most automatic repair focuses on only one type of
repair (for example Attene (2010) for polygons, Ledoux et al. (2014) for polygons and Mulder
(2015) for solids) or leaves the model with other errors (Alam et al. (2013)).

(a) (b)

(c)

Figure 3: Some examples of 3d city model errors (Biljecki et al. (2016a)) (a) a missing surface,
(b) non-watertight solid, (c) intersecting volumes

This thesis focuses on developing a framework for automatically repairing and reconstructing
3D city models. This framework aims to repair 3D city models to be valid according to the
ISO standards and reconstruct towards additional requirements for various use cases. It will
be supported by a software framework as proof of concept. Some example repairing meth-
ods are discussed in section 2.5 and will form the base for parts of some repairing methods in
the software. To validate the 3D city models and see if the software works, val3dity (Ledoux
(2018)) will be used. In section section 2.3, further details on the val3dity validator will be
provided. The developed software aims to replace all the manual pre-processing steps before
doing simulations or analysis with 3D city models.

This thesis proposal explains this research’s context, motivation, and approach in further de-
tail. section 2 provides an overview of the background and existing related work, containing
background on 3D city models (section 2.1), their validity and as a response possible errors

3



(section 2.3), additional validity requirements for different use-cases (section 2.4) and some
existing repair options (section 2.5). The research question and the proposed methodology for
the proof of concept are discussed in section 3 and section 4. After that, tools and test data will
be discussed (section 5). Lastly, an outline of the time-planning can be found (??).

2 Background and related work

2.1 3D Citymodels

2.1.1 Level-of-detail

The level of detail (LOD) is the most important specification of a 3D city model; seeing it
indicates the model’s grade and usability, seeing the concept conveys the complexity of the
models and their degree of abstraction from the real world (Biljecki et al. (2015)). In Figure 2,
the five base LODs are shown, but Biljecki et al. (2016b) argued that from a geometric point of
view, the five LODs are insufficient and that their specification is ambiguous. Therefore, they
proposed a refined set of 16 LODs focused on the grade of the exterior geometry of buildings,
which provides a stricter specification and allows less modeling freedom (Figure 4).

Figure 4: the refined LOD’s (Biljecki et al. (2016b))

2.1.2 Construction

Different methods can be used to construct a 3d city model. To decide the right method, it
needs to be decided which real-world features need to be mapped, resulting in a LOD (Bil-
jecki et al. (2014)). Figure 5 shows an example of how different LODs have different lists of
real-world features geometrically mapped (for example, if you need windows for your simu-
lation, you need to acquire a 3d city model of LOD-C, while if you for instance only need the
roof for sun-analysis you would have enough when using a 3d city model with LOD-B). The

4



most common methods to construct a 3d city model are GPS, lasergrammetry (using drones
or airborne lidar), photogrammetry (for example, using Close range, Aerial, and Satellite im-
ages), and combinations of these three (Singh et al. (2013)). Hajji and Jarar Oulidi (2021) state
that lasergrammetry is well suited to the development of building scale and large urban scale
(LOD 1.0 - LOD 2.1) and that Photogrametry mostly remains a complementary method to
collect more detail, for example, dormers and window locations (LOD 2.2 - LOD 3.3).

Figure 5: A simplified explanation of the concept of the presence of city objects and their ele-
ments in three different LODs of a 3D city model (Biljecki et al. (2014). Note that LOD-A is
nowadays named LOD 1.0, LOD-B is named LOD2.3, and LOD-C is named LOD3.3.

2.1.3 CityJSON

Although many ways exist to store a 3d city model, for example, obj, ply, and gIFT, most can
not be used easily for simulations and/or analysis. This is because they mostly focus on ge-
ometries but lack support for semantics and attributes (Ohori et al. (2022)). In 2008, the Open
Geospatial Consortium (OGC) standardized CityGML as a representation and the exchange
of 3D city models, resulting in being used on a worldwide scale (Gröger and Plümer (2012)).
CityGML is a format based on the Extensible Markup Language (XML) and the ISO 19100
standards family and also takes the objects’ semantics, their thematic properties, taxonomies,
aggregations, and interrelations are taken into account (Willenborg et al. (2016)). Ledoux et al.
(2019) argued that the XML-based exchange format of CityGML has several drawbacks and
therefore represented CityJSON, a new JSON-based exchange format for the CityGML. CityJ-
SON aims to be compact while not losing any information and to be friendly for web and
mobile development.

2.2 Geometry

To represent geometries, CityJSON uses the ISO 19107 geometric primitives (Ledoux (2018)).
The ISO 19107 standard defines 4 primary primitives (GM_primitives), namely GM_point (0D),
GM_curve (1D), GM_surface (2D) and GM_solid (3D), where the n-dimension is build from (n-
1)-dimension primitives (FRANCOIS et al. (2010)). These four primitives can be combined
into "groups" of the same dimension and saved as a composite (called composite*) or an

5



aggregate primitive (called multi*), which results in the ISO object hierarchy shown in Fig-
ure 6a. CityGML, and therefore CityJSON, have two restrictions, seeing it uses a subset of the
ISO19107 (Ledoux (2018)). These two restrictions are:

1. GM_curves can only be linear, which results in lineStrings and LinearRings

2. GM_surfaces can only be planar, which results in Polygons

These restrictions result in Figure 6b being the geometries a CityJSON (and with that a 3d city
model) consists of (different from the figure points are type multipoint and linear rings and
or line strings are type multLineString, but can consist only one point or line).

(a) (b)

Figure 6: the geo-primitives of ISO 19107 (a) objects hierarchy (FRANCOIS et al. (2010)) (b)
visual representation (Ledoux (2018))

2.3 validation of geo-primitives

Seeing that CityJSON uses ISO 19107 primitives, the primitives should compile with the def-
initions for this ISO standard.As a result of ISO 19107 stating that for a 3D primitive to be
valid, all its lower-dimensionality primitives should also be valid, Ledoux (2013) argues that
validation of a solid needs to be performed hierarchically, starting from the lowest dimension-
ality primitives. Ledoux (2018) extended the hierarchical validation with multisolids and
compositesolids can also be validated, resulting in Figure 7.

6



Figure 7: validation workflow (Ledoux (2018))

To automatically handle the validation process, Ledoux (2018) implemented a validator,
called val3dity based on this methodology. At each level, the validator checks the require-
ments; if those are not met, it reports an error and an error code. Val3dity has 32 error codes
(Figure 8a); 26 are primitive-based and divided over the different dimensions, and the other
six are based on CityGML, input, and unknown errors. The primitive errors are based on unit
tests developed for validation requirements (some examples are shown in Figure 8b). The
error list is, therefore, essentially the validation requirements list.

2.4 Additional validity requirements for different use cases

Although primitive validity is a step in the right direction, it does not necessarily mean that a
3d city model is ready to be used. For example, Paden (2021) states that Computational Fluid
Dynamics (CFD) have some additional requirements not covered by ISO19107. Additional
requirements for the application of 3d city models are, according to Coors et al. (2020), use-
case-dependent. This results in not all requirements being mandatory for all use cases and
that requirements for a certain use case can contradict the requirements of other use cases.
Table 1 summarizes the additional requirements for the 29 distinct use cases of 3d city mod-

7



(a)

(b)

Figure 8: Val3dity errors (a) listed by error code (b) example unit tests (Ledoux (2018))

els described by Biljecki et al. (2015). Some extra requirements can be achieved by using the
3D model, but other needs to be met by collecting new and/or additional data. Since this
thesis focuses on automatic repair, the unrepairable ones are outside the scope and can be
seen in italic. The additional requirements can be divided in two types of repair, namely
reconstructing the geometry and adding semantics to surfaces. The use cases for which ge-
ometry reconstruction is the additional requirement are Energy demand estimation (Coors
et al. (2020), Geo-visualisation (and visualization enhancement) (Coors and Zipf), and Com-
putational fluid dynamics (Paden (2021)). The use cases for which adding semantics is the
additional requirement are: Estimation of the solar irradiation (Biljecki et al. (2015)), Estima-
tion of the propagation of noise in an urban environment (Biljecki et al. (2015), Emergency
response and Routing Jebur (2022). Note that if door surface does not exist, those semantics
cannot be added, resulting in needing to collect new and/or extra data, which is outside the
scope of the thesis.

8



Use-case Additional requirement(s) Source
Estimation of the solar
irradiation

building needs to have an identifiable
surface(s) with type RoofSurface

Biljecki et al.
(2015)

Energy demand estimation buildings need to be consist of 1 solid (or
composite solid)

Coors et al.
(2020)

Aiding positioning none found
Determination of the floor
space

Not needed, but help-full: attribute with number of
floors

Biljecki et al.
(2015)

Classifying building types Attribute with classification
Geo-visualisation and
visualisation enhancement

no overlapping polygons Coors et al.
(2020)

Visibility analysis none found
Estimation of shadows cast
by urban features

real world position and true north needs to be
correct

Doellner et al.
(2005)

Estimation of the
propagation of noise in an
urban environment

Not needed, but helpful: semantics for
surface(s) of the building and attributes
naming the material of a surface

Biljecki et al.
(2015)

3D cadastre attributes about the physical counterparts of the
legal objects

Biljecki et al.
(2015)

Visualisation for navigation attributes naming the material of surfaces and/or
photocopies on surfaces

Coors and
Zipf

Urban planning An High LOD Köninger and
Bartel (1998)

Visualisation for
communication of urban
information to citizenry

An High LOD and attributes naming the material
of a surface

Biljecki et al.
(2015)

Understanding SAR images none found
Facility management LOD4: Interior walls and or rooms Bleifuss et al.
Automatic scaffold
assembly

attributes containing legal and other thematic data Köninger and
Bartel (1998)

Emergency response Attributes Information about building entry points
and/or identifiable surface(s) with type door

Biljecki et al.
(2015)

Lighting simulations none found
Radio-wave propagation attributes naming the material of surfaces Kolbe and

Donaubauer
(2021)

Computational fluid
dynamics

No small features, small edges, and small gaps
between buildings

Paden (2021)

Estimating the population
in an area

attribute with number of residents Biljecki et al.
(2015)

Routing building needs to have identifiable surface(s)
with type door

Jebur (2022)

Forecasting seismic damage geometry attribute containing geographic position,
and relationship to their immediate neighborhood

Redweik et al.
(2017)

Flooding Cityobjects of type land-use Jebur (2022)
Change detection None found
Volumetric density studies correct height of buildings, so preferably at least

LOD2
Biljecki et al.
(2015)

Forest management none found
Archaeology none found

Table 1: Additional requirements for different use-cases

9



2.5 Current repair methods

In this section, I only discuss the existing repair methods and the scientific papers for which an
implementation is available (and thus ignore purely theoretical solutions). The existing repair
methods for 3D city models, in publication order, are:

• Polygon mesh repair

• Local repair of CityGML Alam et al. (2013)

• Shrink wrapping method Zhao et al. (2013)

• Repairing GIS Polygons with triangulation Ledoux et al. (2014)

• Voxelization Mulder (2015) and octree extension Sindram et al. (2016)

• Triangular mesh approach Rashidan et al. (2022)

Polygon mesh repair can be used for general Computer-aided Design (CAD) model repair. At-
tene et al. (2013) analyzed numerous proposed Polygon mesh repair methods in terms of capa-
bilities, properties, and guarantees, resulting in a distinction between local and global repair
methods is defined. Local repair methods use local modification, which don’t modifying the
whole mesh. This repairs the defects, but not creating new defects can’t be guaranteed. On
the other hand, global repair methods make use of completely re-meshing the object, which
results in guaranteed results, but loses details of the object.

According to Mulder (2015), 3D building models have different characteristics than most CAD
models, resulting in needing different methods. Alam et al. (2013) and Zhao et al. (2013) de-
scribed the first repair methods for repairing 3D city models. Alam et al. (2013) repair method
is focused on Local repair of CityGML. This method iterates through all the geometries and re-
pairs found defects, which is efficient and fast. However, the method can not solve all defects.

Zhao et al. (2013) made a global repair method called Shrink Wrapping. This method is based
on graph theory, where all the building vertices are graph vertices. The graph applies tetra-
hedralization on all faces and its convex hull (Figure 9a). These method effectively repairs
gaps, holes and self-intersections, however it cannot repair overshoots (Figure 9b) and is very
sensitive to floating point errors.

(a) (b)

Figure 9: Shrink wrap (a) method (b) example of defect (Zhao et al. (2013))

Ledoux et al. (2014) proposed a method to automatically repair single Gis polygons, named pre-
pair. This method is based on triangulation and uses two repair options, namely an extension
of the odd-even algorithm and a point set difference rule (setdiff). Seeing prepair can only re-
pair a single polygon, Ohori et al. (2012) proposed pprepair, which can repair a set of polygons.

10



In 2015, another global repair method was proposed by Mulder. This method is called Vox-
elization and is a voxel-based repair method. As shown in Figure 10 in this repair method,
input is converted into a binary 3S grid. This method is very robust but has two significant
drawbacks: the potential shift of the geometry and the possible loss of attributes. Also the
slow processing of voxelization is a drawback, to optimize this process Sindram et al. (2016)
presented an extension of this method introducing the use of an Octree. This approach signif-
icantly reduces computation time while preserving the same robustness as the original algo-
rithm.

Figure 10: Voxelization (Mulder (2015))

Lastly, Rashidan et al. (2022) proposed another local repair method. triangular mesh repair
focuses on filling holes in 3D city models and is based on the triangulation of polygons. This
method results in watertight solids but only works if holes are relatively planar.

2.6 Conclusions from literature review

The main conclusions of the literature review are:

1. 3D city models come in many varieties based on their use-case and construction method.
The level of detail (LOD) is the most important specification.

2. A way to store a 3D city model is by using CityJSON, a JSON replacement of CityGML.
CityJSON is based on the ISO19107 geo-primitives and, therefore, follows its standards.

3. Currently, no algorithm automatically does the pre-processing of making a 3D city model
validate, leaving users with many manual repairs before a 3D city model is useful.

4. If you want to validate geo-primitives on the ISO 19107 standards, it needs to be done
hierarchically, starting from the lowest dimension. This results in the repair process also
needing to be hierarchical.

5. Use-cases sometimes have additional requirements for a 3D city model to be valid. This
can be distinguished into two requirement types: geometry reconstructing and adding
semantics to surfaces.

6. Two kinds of repair algorithms exist: local and global. Local algorithms are less robust
but more efficient and better for detail.

11



3 Research questions

This Thesis has the following main research objective:

Develop a software framework for the automatic repair and reconstruction of 3D city models to ac-
complish validity and facilitate different use cases.

This research aims to develop an algorithm that automatically pre-processes 3D city models
for user-defined use cases. This algorithm will focus on repairing the validity errors, based on
the ISO 19107 standard discussed in section 2.3, and full-filling extra requirements for different
use cases as described in section 2.4. The algorithm will combine existing repairing methods
(section 2.5 and complementary newly developed repair methods.

3.1 Sub-questions

To achieve the main research objective, it will be supported by the following sub-questions:

(a) How to achieve ISO19107 validity with the use of automatic repair?

(b) How to facilitate additional requirements in automatic repair based on geometry recon-
struction?

(c) How to facilitate additional requirements in automatic repair based on adding seman-
tics?

(d) What level of validity can be achieved? To what extent does this improve current 3D city
models?

3.2 Scope

This thesis will focus on making a framework for the repair of 3D city models in CityJSON
format. Where the files themselves are not broken, so defensive programming is not needed.
This framework will focus on the following:

• Repairing cityobjects of type Building and type BuildingPart and focuses on repairing
the individually.

• Repairing so that the ISO19107 standards are met

• Repairing the following additional requirements:

– geometry reconstruction - making buildings one watertight solid (or one water-
tight composite solid), which is necessary, among other things, for energy de-
mand reconstruction.

– geometry reconstruction - No small features, small edges, and small gaps between
buildings, which is necessary, among other things, for computational fluid dynam-
ics.

– Adding semantics - Define the type of added surfaces during ISO and other addi-
tional requirement repairs, which is necessary, among other things, for the estima-
tion of solar power and noise propagation.

When having enough time or after the thesis, this framework can be extended with, for ex-
ample, the extra requirements for Geo-visualisation and Emergency response routing. The
repairs them-self will have the following scope:

12



• The repairs will not use auxiliary data; only the geometry of the city-Object itself will
be used.

• The repairs will be as local as possible, and global repairs will only be used when no
other option exists.

• The repairs will focus on preserving the semantics of the original object.

• The repairs will be deleted as little as possible.

• The repairs can change the LOD of an object, but the LOD member of the geometry must
change into the new LOD.

4 Methodology

The workflow of the proposed methodology is provided in Figure 11. The method consists
of 4 steps: Read the CityJSON, the repair loop, post-processing the data, and write the new
CityJSON. When finished, the original file can be compared with the output file, and progress
can be evaluated. These steps will be written into a C++ software framework; these steps will
be discussed in the following subsections.

Figure 11: Flowchart of the methodology

4.1 Read the CityJSON

The first stage of this method consists of reading the CityJSON. As discussed in section 2.1.3, a
CityJSON consists of at least five keys. The three needed for the repair process are: "transform",

13



"CityObjects" and "vertices". The other keys will be stored and copied to the output data,
seeing they won’t change. The "Transform" will only be used to find the decompress factor
for the tolerance (discussed more in section 4.2.2), but also won’t be changed and copied to
the output data. The "vertices" will be placed in a vector instead of the array they are in be-
cause a vector size can change dynamically. A changeable size is needed, seeing for the repair
new points may need to be added or in the post-processing step vertices may be deleted. The
"CityObjects" will be sent directly into the repair loop.

4.2 Repair loop

As shown in Figure 7, the repair loop consists of three sub-steps, namely getting a single
CityObject, doing automatic repair based on ISO19107 validity, and doing automatic recon-
struction based on use-case(s). For the repair and reconstruction extra input is needed, a user
can add this input in a JSON file, otherwise default standards are used.

4.2.1 Getting a Singles objects

Seeing "CityObjects" is a dictionary; a single object can be captured by iterating over all
objects. Primarily, a single cityObject consists of multiple parts, for example, Geometry and
Attributes. To avoid losing any parts, the cityObject is written into a TU3DJSON. A TU3DJSON
is a simple format to store/exchange 3D features Ledoux (2021). The object will be saved in the
"features" with as "vertices" the whole vertices vector. The advantage of using TU3DJSON
over just using the geometry is that a TU3DJSON can be read by val3dity (moreover in sec-
tion 4.2.2) and it can be easily translated back into a cityObject.

4.2.2 automatic repair

Each Cityobjects validity will be evaluated based on the ISO 19107 standards (described in
section 2.2). This will be done with a validator called val3dity implemented by Ledoux (2018).
Val3dity can read TU3DJSON as input, which allows checking on CityObject at the time. As
described in section 2.3 val3dity works hierarchical, resulting in that solving an error doesn’t
mean that there are the cityobject is valid. Therefore, after each repair, val3dity will review the
cityObject again until there are no more errors. There is no plan for what to do when an error
cannot be solved, which results in an object never being valid. A possible solution would be a
maximum number of loops before going to the next object.

Val3dity uses the concept of tolerance to ignore small errors (Ledoux (2018)). Tolerance is
used for four situations, namely:

• Planarity of polygons: Are all vertices on the same plane (default value in val3dity is
distance-to-plane: 1cm) and/or are two polygons in the same plane (default value in
val3dity is normals orientation: 20 degrees)

• Snapping between vertices: When are vertices "the same" and snapped together (default
value in val3dity is (distance-to-plane): 1mm)

• Erosion by overlap of solids or BuildingParts: When two should not be overlapping,
see Figure 12 (default value in val3dity is unused/0cm)

• Dilatation by overlap of solids or BuildingParts: When two are disjoint but should be
one solid, see Figure 12 (default value in val3dity is unused/0cm)

14



In Val3dity tolerance values can be decided by user defined input or the default values can be
used. For the automatic repair the same concept and default values will be used, resulting
in a user deciding which (small) errors can be ignored. When making all the repair function
maybe other choices or other tolerance decisions will occur, these will also get default values,
but can be changed by user input.

Figure 12: Example of how the tolerance is applied when validating a CompositeSolid con-
taining 2 Solids(Ledoux (2018))

The repair methods will use inheritance because one dimension can have multiple errors (Fig-
ure 8a). According to Bieman and Zhao (1995), it is a perfect way to organize abstraction and
a superb reuse tool, as it uses a base class with multiple sub-classes. The sub-classes can use
the base class, for example, to read geometry and then have their own repair function. This
results in, for example, ring level one base class, named ring level, and four subclasses for the
four errors and their possible reparation.

Propositions on how to repair all possible val3dity dimension errors are described in the fol-
lowing list:

• Ring level

– 101 - Too few points - Delete the ring, no chance of repairing, if it was impor-
tant polygon probably ends up showing 301 or 302 as next error (too few/shell not
closed), there try capping to get the ring (or later polygon) back.

– 102 - Consecutive points are the same - Delete the second point which is the same.
User can decide a tolerance for when points needs to be snapped together cause
they are also the "same" point.

– 103 - Ring not Closed - Cannot happen with CityJSON; otherwise, repair it by putting
the first point also last.

– 104 - Ring self-intersection - This error can happen in three cases (1) Point is used
twice, (2) two points have the same coordinate, (3) edges cross each other (see Fig-
ure 13) The two main solutions, splitting surfaces into multiple surfaces and or use
concave or convex hull. To decide which to choose, try both and see what the next
errors are. Ledoux et al. (2014) automatic repair tool prepair can help with this re-
pair.

• Polygon level

15



Figure 13: Ring self-intersection errors (validity docs)

– 201 - Intersection rings - This can happen in two situations: (1) the inner ring in-
tersects with the exterior ring, and (2) two inner rings intersect. When case one
happens, make a cut out by calculating the ring intersection points and creating
a contour. When case 2 happens combine the two inner rings into one by again
constructing a contour.

– 202 - Duplicate rings - Deleting the Duplicate ring. Users can decide a tolerance for
when points need to be snapped together, which can result in a duplicate or not.

– 203 - Nonplanar polygon distance plane - There needs to decide when to split the
plane into multiple planes and when to use the least square to find out the best
base plane. A user-set tolerance can decide this. When changing the base plane, the
"wrong" points can be projected back on the plane by normal-based projection.

– 204 - Nonplaner polygon normal Deviation - The same method as for error 203
can be used.

– 205 - Polygon interior disconnected - Split the polygon into two (or more) polygons
so they become separate polygons. User can decide a tolerance, which can results in
interior being disconnected. prepair of Ledoux et al. (2014) can help with this repair

– 206 - Inner ring outside - Deleting the inner ring, since keeping would introduce
new geometries. prepair of Ledoux et al. (2014) can help with this repair

– 207 - Inner rings nested - Deleting the nested ring„ since keeping would introduce
new geometries. prepair of Ledoux et al. (2014) can help with this repair

– 208 - Orientation rings same - Changing the orientation so the exterior is coun-
terclockwise and the interior(s) clockwise. To find out the outside ring ray tracing
in combination with the Möller–Trumbore algorithm could be used (Möller and
Trumbore (1997)).

• Shell level

– 300 - Not valid 2-manifold - This error happens when the exact error is unknown.
Seeing we don’t know the problem, local repair methods are not possible, therefore
a global method should be used, for example

– 301 - Too few polygons - If a solid has less than four polygons, then it is not possi-
ble to repair; the only exception is a triangular pyramid with one missing triangle
Alam et al. (2013). We want to delete as little as possible, so this solid could be
replaced with a load one bounding box, bounding the existing surfaces. A user-
defined tolerance for a minimal volume of this bounding box will help decide if the
shell isn’t too incomplete to repair.

– 302 - Shell not closed - The proposed algorithm of Rashidan et al. (2022) (sec-
tion 2.5) could be used for filling gaps or capping solids. When the gaps are not
(almost) planar, local repair methods are insufficient, and a global method should
be used.

16



– 303 - Non manifold case - First check orientation as described by error 307, if error
remains find the the incident polygons and split them into a new geometry. Based
on user-defined tolerance, the new geometries can be kept or deleted.

– 305 - Multiple connected components - Find the disconnected polygon and split it
into a new geometry. Based on user-defined tolerance, the new geometries can be
kept or deleted.

– 306 - Shell self-intersection - Using a global repair method for this error is most
robust

– 307 - Polygon wrong orientation - To find out the outside use, ray tracing in com-
bination with Möller–Trumbore algorithm could be used (Möller and Trumbore
(1997)). Then, check if the outside is counterclockwise.

• Solid level

– 401 - intersection shells - This can happen in two situations: (1) the inner shell
intersects with the exterior shell, (2) two inner shells intersect. When case one hap-
pens, make a cut out by calculating the intersection points and creating a contour.
When case 2 happens combine the two inner shells into one by again constructing
a contour.

– 402 - Duplicate Shells - Deleting the Duplicate shell. Users can decide a tolerance
for when points need to be snapped together, which can result in a duplicate or not.

– 403 - Inner shell Outside - Deleting when the inner shell, since keeping would
introduce new geometries

– 404 - Solid interior disconnected - Split the solid into two (or more) solids so they
become separate solids. User can decide a tolerance, which can results in interior
being disconnected.

– 405 - Wrong orientation Shell - To find out the outside use, ray tracing in combina-
tion with Möller–Trumbore algorithm could be used (Möller and Trumbore (1997)).
Then, check if the outside is counterclockwise.

• Solid interaction level

– 501 - Intersection Solids - Find the intersection plane and use it to cut the solid(s),
then trim the smallest parts.

– 502 - Duplicate Solids - Deleting the Duplicate solid. Users can decide a tolerance
for when points need to be snapped together, which can result in a duplicate or not.

– 503 - Disconnected Solids - Two options based on user-defined tolerance; if the
solids are close (user-defined tolerance), use generalization to combine them into 1
when far to change the type to multiSolid.

When local repair methods fail and cannot repair the object, 3D alpha wrapping will be used
as a last resort(Alliez et al. (2022)). This CGAL component generates a valid triangulated sur-
face mesh that strictly contains the input (watertight, intersection-free, and 2-manifold). The
algorithm used is based on shrink-wrapping and lets users define two parameters, which have
an impact on the level of detail of the output mesh.

4.2.3 reconstruction for additional requirements

As discussed in section 2.4, some use-cases have additional requirements for a 3D city model
to be used. Therefore, a user can also add additional requirements to the repair process. The

17



default value for this will be doing none of the repairs, and based on the user input, recon-
struction based on the use-case chosen by the user can be done. The rebuilding will work the
same as the repair process: checking if the requirement is met, not repairing, and then check-
ing again. Propositions on reconstructing the use cases discussed in the scope of this thesis
(section 3.2) can be found below.

For computational fluid dynamics geometry reconstruction is needed, buildings can not have
small features, small edges, and also small gaps between buildings. Paden (2021) describes that
the first two can be simplified and the last with building footprint generalization.For simplifi-
cation Park et al. (2020) developed a 5 step plan (Figure 14). After repairing, faces are divided
into major and minor based on area, distance, and angle to adjacent faces and a user-defined
threshold. After that, the minor faces can be generalized with the help of automatic mesh
generation (Paden (2021)). For building footprint generalization, the half-space method can
be used (Commandeur (2012)). The half-space method uses weighted lines (boundaries) to
decide the best fit. In combination with user-defined thresholds for angles and differences,
gaps between buildings can be discharged.

Figure 14: 5 step simplification plan(Park et al. (2020))

For energy demand reconstruction geometry reconstruction for non watertight buildings are
needed, seeing buildings need to be one solid (or (CompositeSolid). After automatic repair
(section 4.2.2), existing and composite solids should be watertight. But buildings could
also exist of MultiSolids or CompositeSurfaces or MultiSurfaces. MultiSolids could be-
come single solids by splitting nonadjacent solids and making them into new geometries.
CompositeSurfaces and Multisurfaces are not checked if they are watertight, so a possible
method to check this is translating those into solids and then doing the val3dity solid checks
again.

For estimation of solar power and estimation of propagation of noise adding semantics’s is
needed, seeing the surfaces need to be divided into types, namely RoofSurface, WallSurface and
GroundSurface. When, during a repair, a surface is added, it has no semantics. The method
described by Alam et al. (2014) is used to define the surface types. The technique identifies the
GroundSurface as the surface with the smallest Z-Coordinates and the least deviation concern-
ing the direction of the normal vector. After that, the WallSurfaces are identified by sharing

18



a standard edge with the GroundSurface and having a normal vector close to (-)90 degrees.
To decide what is close enough, the user can define a tolerance, or a default tolerance can be
used. Lastly, the RoofSurfaces are the surfaces remaining after identifying the other two.

4.3 post-processing

It could happen that, due to the repair and reconstruction process, there will be duplicate ver-
tices or orphan vertices. To clean-up the vertices list before writing it in the new CityJSON a
C++ replica of the python method used in CJIO will be used. This method removes duplicate
vertices, checks all objects, renumbers the ones that need to be changed, and deletes all the or-
phan vertices, after which all the high vertices need to be enumerated again in the boundaries.

It could also happen that a CityObject is deleted for some reason, which can result in miss-
ing parent-child relationships. Also, these one-sided relationships need to be cleaned up. This
will be done by a lookup method, and when none is found, the relationship will be deleted.

4.4 Evaluate the Output

To evaluate the output and measure the result, there will be two-factor counting, namely (1)
the repair percentage and (2) the geometric difference from the original. The repair percentage
will calculate how many of the 3D city models were considered valid before and how many
of the 3d city models were considered valid after the repair and reconstruction. This results in
a percentage of improvement. To make repairs that are not too radical the geometric difference
between both models is also calculated. This will be done by comparing the before and after
3D city models and measuring the similarities. The more similar the better, this is to prevent
drastic repairs, such as deleting. Both factors will make a good balance to evaluate the im-
provement.

Some errors may not be solvable, so it would be nice to notify the user why no repair is pos-
sible. A way to do this would be to output a repair report next to the new 3D city model. A
user could find in this report which CityObjects are repaired and/or reconstructed, which are
still invalid, and, if known, why they could not be repaired.

5 Tools and datasets used

5.1 Test data

The proof of concept will be made to repair CityJSON. The following datasets will be used as
test data for the repair software:

1. simple geometries - The CityJSON website list some simple geometries. They are firstly
used to check if the software works for singular objects. They will be manually be made
to contain errors and see if the software can repair those.

2. Cities on dataset page - The CityJSON website also list some cities and their validity.
Those will be used as the first cities to be repaired.

3. 3DBAG - The 3D BAG is an up-to-date data set containing 3D building models of the
Netherlands. The 3D BAG is open data and can be downloaded from the 3D BAG Down-
load site. It contains 3D models at multiple levels of detail, which are generated by com-
bining two open data sets: the building data from the BAG and the height data from the
AHN.

19

https://www.cityjson.org/datasets/#simple-geometries
https://www.cityjson.org/datasets/#cities-converted-from-citygml
https://3dbag.nl/nl/download
https://3dbag.nl/nl/download


4. Cities/regions around the world with open datasets - The 3d geoinformation group
made a list of all the Cities/regions around the world with open datasets. The list can
be found on their website. These will be used when extra datasets are needed to test for
automatic repair.

5.2 Tools

The software framework will be used as a proof of concept and will be written in C++. The
two reasons to use C++ are that C++ provides performance and memory efficiency, which
results in the program being faster than, for example, python when using large data sets, and
that C++ allows easy use of inheritance, which can be used in the repair classes. To make the
C++ software framework, The following open-source tools will be used:

• Nlhoman will be used to read and write JSON files. Seeing both the input files, namely
the 3d city model (in CityJSON) and the user-defined requirements, and the output, the
repaired 3d city model, will be in JSON.

• Tu3djson will bu used to store single 3D features in the repair process. Seeing the repair
loop will focus on repairing one object at a time.

• Val3dity (with GDAL and CGAL) will be used to validate 3D primitives according to the
international standard ISO19107. Seeing it shows what needs to be repaired. Val3dity
accepts Cityjson as well as tu3djson input.

• Repair helper tools will be used to repair 3D features with existing repair methods or
help repairs. Rewriting the existing code for the repairs is a waste of time. The helper
tool will consist of for example, prepair and a triangulation tool

• Cjio will be used for post-processing of the repaired file. Seeing it can easily remove
duplicate vertices and orphan vertices. Although the code of cjio is in Python, it will
form the base for a C++ version.

For visualization I will use up3date in Blender. Up3date allows importing, editing, and ex-
porting new instances of CityJSON-encoded 3D city models in Blender. All buildings’ levels
of detail (LoD), attributes, and semantic surfaces are stored and accessed via Blender’s graph-
ical interface. For fast visualization, I will also use Ninja, the official CityJSON web viewer.

Seeing not all open data cities (??) are in CityJSON CityGML-tools, which converts CityGML
to CityJSON, or Autoconverter, which convert most of the other 3d city file types to CityJSON,
could be used to create more test data cities.

20

https://3d.bk.tudelft.nl/opendata/opencities/
https://github.com/nlohmann/json
https://github.com/tudelft3d/tu3djson
https://github.com/tudelft3d/val3dity/
https://github.com/tudelft3d/prepair
https://github.com/cityjson/cjio
https://github.com/cityjson/Up3date
https://www.blender.org/
https://ninja.cityjson.org/
https://github.com/citygml4j/citygml-tools
https://www.automapki.com/products/autoconverter.html


References

N. Alam, D. Wagner, M. Wewetzer, J. V. Falkenhausen, V. Coors, and M. Pries. Towards au-
tomatic validation and healing of cityGML models for geometric and semantic consistency.
2013. doi: 10.1007/978-3-319-00515-7_5.

N. Alam, D. Wagner, M. Wewetzer, J. von Falkenhausen, V. Coors, and M. Pries. To-
wards Automatic Validation and Healing of CityGML Models for Geometric and Seman-
tic Consistency. In U. Isikdag, editor, Innovations in 3D Geo-Information Sciences, Lec-
ture Notes in Geoinformation and Cartography, pages 77–91. Springer International Pub-
lishing, Cham, 2014. ISBN 978-3-319-00515-7. doi: 10.1007/978-3-319-00515-7_5. URL
https://doi.org/10.1007/978-3-319-00515-7_5.

P. Alliez, D. Cohen-Steiner, M. Hemmer, C. Portaneri, and M. Rouxel-Labbé. 3D Alpha Wrap-
ping. In CGAL User and Reference Manual. CGAL Editorial Board, 5.5 edition, 2022. URL
https://doc.cgal.org/5.5/Manual/packages.html#PkgAlphaWrap3.

M. Attene. A lightweight approach to repairing digitized polygon meshes. The Visual Com-
puter, 26(11):1393–1406, Nov. 2010. ISSN 1432-2315. doi: 10.1007/s00371-010-0416-3. URL
https://doi.org/10.1007/s00371-010-0416-3.

M. Attene, M. Campen, and L. Kobbelt. Polygon mesh repairing: An application perspective.
ACM Computing Surveys, 45(2):15:1–15:33, 2013. ISSN 0360-0300. doi: 10.1145/2431211.
2431214. URL https://doi.org/10.1145/2431211.2431214.

J. M. Bieman and J. X. Zhao. Reuse through inheritance: a quantitative study of C++ software.
ACM SIGSOFT Software Engineering Notes, 20(SI):47–52, Aug. 1995. ISSN 0163-5948. doi:
10.1145/223427.211794. URL https://doi.org/10.1145/223427.211794.

F. Biljecki. Level of detail in 3D city models. 2017. doi: 10.4233/uuid:
f12931b7-5113-47ef-bfd4-688aae3be248. URL https://repository.tudelft.nl/islandora/
object/uuid%3A6fe1dea8-53b3-4734-9e0c-ff01ed393d79.

F. Biljecki, H. Ledoux, J. Stoter, and J. Zhao. Formalisation of the level of detail in 3D city
modelling. Computers, Environment and Urban Systems, 48:1–15, Nov. 2014. ISSN 0198-9715.
doi: 10.1016/j.compenvurbsys.2014.05.004. URL https://www.sciencedirect.com/science/
article/pii/S0198971514000519.

F. Biljecki, J. Stoter, H. Ledoux, S. Zlatanova, and A. Çöltekin. Applications of 3D City Models:
State of the Art Review. ISPRS International Journal of Geo-Information, 4(4):2842–2889, Dec.
2015. ISSN 2220-9964. doi: 10.3390/ijgi4042842. URL https://www.mdpi.com/2220-9964/
4/4/2842. Number: 4 Publisher: Multidisciplinary Digital Publishing Institute.

F. Biljecki, H. Ledoux, X. Du, J. Stoter, K. H. Soon, and V. H. S. Khoo. The most com-
mon geometric and semantic errors in cityGML. In ISPRS Annals of the Photogrammetry,
Remote Sensing and Spatial Information Sciences, volume IV-2-W1, pages 13–22. Coperni-
cus GmbH, Oct. 2016a. doi: 10.5194/isprs-annals-IV-2-W1-13-2016. URL https://www.
isprs-ann-photogramm-remote-sens-spatial-inf-sci.net/IV-2-W1/13/2016/. ISSN: 2194-
9042.

F. Biljecki, H. Ledoux, and J. Stoter. An improved LOD specification for 3D building models.
Computers, Environment and Urban Systems, 59:25–37, Sept. 2016b. ISSN 0198-9715. doi: 10.
1016/j.compenvurbsys.2016.04.005. URL https://www.sciencedirect.com/science/article/
pii/S0198971516300436.

21

https://doi.org/10.1007/978-3-319-00515-7_5
https://doc.cgal.org/5.5/Manual/packages.html#PkgAlphaWrap3
https://doi.org/10.1007/s00371-010-0416-3
https://doi.org/10.1145/2431211.2431214
https://doi.org/10.1145/223427.211794
https://repository.tudelft.nl/islandora/object/uuid%3A6fe1dea8-53b3-4734-9e0c-ff01ed393d79
https://repository.tudelft.nl/islandora/object/uuid%3A6fe1dea8-53b3-4734-9e0c-ff01ed393d79
https://www.sciencedirect.com/science/article/pii/S0198971514000519
https://www.sciencedirect.com/science/article/pii/S0198971514000519
https://www.mdpi.com/2220-9964/4/4/2842
https://www.mdpi.com/2220-9964/4/4/2842
https://www.isprs-ann-photogramm-remote-sens-spatial-inf-sci.net/IV-2-W1/13/2016/
https://www.isprs-ann-photogramm-remote-sens-spatial-inf-sci.net/IV-2-W1/13/2016/
https://www.sciencedirect.com/science/article/pii/S0198971516300436
https://www.sciencedirect.com/science/article/pii/S0198971516300436


R. Bleifuss, A. Donaubauer, J. Liebscher, and M. Seitle. Entwicklung einer CityGML-
Erweiterung für das Facility Management am Beispiel Landeshauptstadt München. page 10.

T. J. F. Commandeur. Footprint decomposition combined with point cloud segmentation for
producing valid 3D models. 2012. URL https://repository.tudelft.nl/islandora/object/
uuid%3Ac0c665f7-0254-42c6-895b-cb59acc079f2.

V. Coors and E. Zipf. Mona 3d– Mobile Navigation Using 3d City Models.

V. Coors, M. Betz, and E. Duminil. A Concept of Quality Management of 3D City Models
Supporting Application-Specific Requirements. PFG – Journal of Photogrammetry, Remote
Sensing and Geoinformation Science, 88(1):3–14, Feb. 2020. ISSN 2512-2819. doi: 10.1007/
s41064-020-00094-0. URL https://doi.org/10.1007/s41064-020-00094-0.

J. Doellner, H. Buchholz, M. Nienhaus, and F. Kirsch. Illustrative visualization of 3D
city models. In Visualization and Data Analysis 2005, volume 5669, pages 42–51.
SPIE, Mar. 2005. doi: 10.1117/12.587118. URL https://www.spiedigitallibrary.org/
conference-proceedings-of-spie/5669/0000/Illustrative-visualization-of-3D-city-models/
10.1117/12.587118.full.

A. FRANCOIS, R. Raffin, and M. Daniel. Geometric Data Structures and Analysis in GIS: ISO
19107 Case study. Nov. 2010.

G. Gröger and L. Plümer. CityGML – Interoperable semantic 3D city models. ISPRS Jour-
nal of Photogrammetry and Remote Sensing, 71:12–33, July 2012. ISSN 0924-2716. doi:
10.1016/j.isprsjprs.2012.04.004. URL https://www.sciencedirect.com/science/article/pii/
S0924271612000779.

R. Hajji and H. Jarar Oulidi. Development of the BIM Model. In Building Infor-
mation Modeling for a Smart and Sustainable Urban Space, pages 41–62. John Wiley &
Sons, Ltd, 2021. ISBN 978-1-119-88547-4. doi: 10.1002/9781119885474.ch3. URL
https://onlinelibrary.wiley.com/doi/abs/10.1002/9781119885474.ch3. Section: 3 _eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1002/9781119885474.ch3.

A. K. Jebur. Application of 3D City Model and Method of Create of 3D Model- A Review
Paper. Saudi Journal of Civil Engineering, 6(4):95–107, Apr. 2022. ISSN 25232657, 25232231.
doi: 10.36348/sjce.2022.v06i04.005. URL https://saudijournals.com/media/articles/SJCE_
64_95-107.pdf.

T. H. Kolbe and A. Donaubauer. Semantic 3D City Modeling and BIM. In W. Shi, M. F.
Goodchild, M. Batty, M.-P. Kwan, and A. Zhang, editors, Urban Informatics, The Ur-
ban Book Series, pages 609–636. Springer, Singapore, 2021. ISBN 9789811589836. doi:
10.1007/978-981-15-8983-6_34. URL https://doi.org/10.1007/978-981-15-8983-6_34.

T. H. Kolbe and G. Gröger. Towards unified 3D city models. 2003. URL https://mediatum.
ub.tum.de/1145769.

A. Köninger and S. Bartel. 3d-Gis for Urban Purposes. GeoInformatica, 2(1):79–103, Mar.
1998. ISSN 1573-7624. doi: 10.1023/A:1009797106866. URL https://doi.org/10.1023/A:
1009797106866.

H. Ledoux. On the Validation of Solids Represented with the International Stan-
dards for Geographic Information. Computer-Aided Civil and Infrastructure En-
gineering, 28(9):693–706, 2013. ISSN 1467-8667. doi: 10.1111/mice.12043.
URL https://onlinelibrary.wiley.com/doi/abs/10.1111/mice.12043. _eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1111/mice.12043.

22

https://repository.tudelft.nl/islandora/object/uuid%3Ac0c665f7-0254-42c6-895b-cb59acc079f2
https://repository.tudelft.nl/islandora/object/uuid%3Ac0c665f7-0254-42c6-895b-cb59acc079f2
https://doi.org/10.1007/s41064-020-00094-0
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/5669/0000/Illustrative-visualization-of-3D-city-models/10.1117/12.587118.full
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/5669/0000/Illustrative-visualization-of-3D-city-models/10.1117/12.587118.full
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/5669/0000/Illustrative-visualization-of-3D-city-models/10.1117/12.587118.full
https://www.sciencedirect.com/science/article/pii/S0924271612000779
https://www.sciencedirect.com/science/article/pii/S0924271612000779
https://onlinelibrary.wiley.com/doi/abs/10.1002/9781119885474.ch3
https://saudijournals.com/media/articles/SJCE_64_95-107.pdf
https://saudijournals.com/media/articles/SJCE_64_95-107.pdf
https://doi.org/10.1007/978-981-15-8983-6_34
https://mediatum.ub.tum.de/1145769
https://mediatum.ub.tum.de/1145769
https://doi.org/10.1023/A:1009797106866
https://doi.org/10.1023/A:1009797106866
https://onlinelibrary.wiley.com/doi/abs/10.1111/mice.12043


H. Ledoux. val3dity: validation of 3D GIS primitives according to the international standards.
Open Geospatial Data, Software and Standards, 3(1):1, Feb. 2018. ISSN 2363-7501. doi: 10.1186/
s40965-018-0043-x. URL https://doi.org/10.1186/s40965-018-0043-x.

H. Ledoux. TU3DJSON, Sept. 2021. URL https://github.com/tudelft3d/tu3djson. original-
date: 2021-08-10T06:47:50Z.

H. Ledoux, K. Ohori, and M. Meijers. A triangulation-based approach to automatically repair
GIS polygons. Computers & Geosciences, 66, May 2014. doi: 10.1016/j.cageo.2014.01.009.

H. Ledoux, K. Arroyo Ohori, K. Kumar, B. Dukai, A. Labetski, and S. Vitalis. CityJSON: a
compact and easy-to-use encoding of the CityGML data model. Open Geospatial Data, Soft-
ware and Standards, 4(1):4, June 2019. ISSN 2363-7501. doi: 10.1186/s40965-019-0064-0. URL
https://doi.org/10.1186/s40965-019-0064-0.

D. T. Mulder. Automatic repair of geometrically invalid 3D City Building models using
a voxel-based repair method. 2015. URL https://repository.tudelft.nl/islandora/object/
uuid%3A8ef4459d-b940-4007-bc3c-d87349015129.

T. Möller and B. Trumbore. Fast, Minimum Storage Ray-Triangle Intersection. Journal of
Graphics Tools, 2(1):21–28, Jan. 1997. ISSN 1086-7651. doi: 10.1080/10867651.1997.10487468.
URL https://doi.org/10.1080/10867651.1997.10487468. Publisher: Taylor & Francis _eprint:
https://doi.org/10.1080/10867651.1997.10487468.

K. Ohori, H. Ledoux, and R. peters. 3D moddeling of the build enviroment. Feb. 2022. URL
https://github.com/tudelft3d/3dbook/releases.

K. A. Ohori, H. Ledoux, and M. Meijers. Validation and Automatic Repair of Pla-
nar Partitions Using a Constrained Triangulation. Photogrammetrie - Fernerkundung -
Geoinformation, pages 613–630, Oct. 2012. ISSN ,. doi: 10.1127/1432-8364/2012/
0143. URL https://www.schweizerbart.de/papers/pfg/detail/2012/78561/Validation_
and_Automatic_Repair_of_Planar_Partitio?af=crossref. Publisher: Schweizerbart’sche Ver-
lagsbuchhandlung.

I. Paden. Automatic reconstruction of 3D city models tailored to urban flow simulations.
page 59, June 2021.

G. Park, C. Kim, M. Lee, and C. Choi. Building Geometry Simplification for Improving Mesh
Quality of Numerical Analysis Model. Applied Sciences, 10(16):5425, Jan. 2020. ISSN 2076-
3417. doi: 10.3390/app10165425. URL https://www.mdpi.com/2076-3417/10/16/5425.
Number: 16 Publisher: Multidisciplinary Digital Publishing Institute.

H. Rashidan, A. Rahman, I. Musliman, and G. Buyuksalih. TRIANGULAR MESH
APPROACH FOR AUTOMATIC REPAIR OF MISSING SURFACES OF LOD2 BUILD-
ING MODELS. The International Archives of the Photogrammetry, Remote Sensing
and Spatial Information Sciences, XLVI-4/W3-2021:281–286, Jan. 2022. doi: 10.5194/
isprs-archives-XLVI-4-W3-2021-281-2022.

P. Redweik, P. Teves-Costa, I. Vilas-Boas, and T. Santos. 3D City Models as a Visual Sup-
port Tool for the Analysis of Buildings Seismic Vulnerability: The Case of Lisbon. In-
ternational Journal of Disaster Risk Science, 8(3):308–325, Sept. 2017. ISSN 2192-6395. doi:
10.1007/s13753-017-0141-x. URL https://doi.org/10.1007/s13753-017-0141-x.

23

https://doi.org/10.1186/s40965-018-0043-x
https://github.com/tudelft3d/tu3djson
https://doi.org/10.1186/s40965-019-0064-0
https://repository.tudelft.nl/islandora/object/uuid%3A8ef4459d-b940-4007-bc3c-d87349015129
https://repository.tudelft.nl/islandora/object/uuid%3A8ef4459d-b940-4007-bc3c-d87349015129
https://doi.org/10.1080/10867651.1997.10487468
https://github.com/tudelft3d/3dbook/releases
https://www.schweizerbart.de/papers/pfg/detail/2012/78561/Validation_and_Automatic_Repair_of_Planar_Partitio?af=crossref
https://www.schweizerbart.de/papers/pfg/detail/2012/78561/Validation_and_Automatic_Repair_of_Planar_Partitio?af=crossref
https://www.mdpi.com/2076-3417/10/16/5425
https://doi.org/10.1007/s13753-017-0141-x


M. Sindram, T. Machl, H. Steuer, M. Pültz, and T. Kolbe. VOLUMINATOR 2.0 – SPEEDING
UP THE APPROXIMATION OF THE VOLUME OF DEFECTIVE 3D BUILDING MODELS.
ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences, III-2:29–36,
June 2016. doi: 10.5194/isprs-annals-III-2-29-2016.

S. P. Singh, K. Jain, and V. R. Mandla. Virtual 3d City Modeling: Techniques and
Applications. ISPRS - International Archives of the Photogrammetry, Remote Sensing and
Spatial Information Sciences, XL2:73–91, Aug. 2013. ISSN 2194-9034 The International
Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences.
doi: 10.5194/isprsarchives-XL-2-W2-73-2013. URL https://ui.adsabs.harvard.edu/abs/
2013ISPAr.XL2b..73S. ADS Bibcode: 2013ISPAr.XL2b..73S.

D. Wagner, N. Alam, and V. Coors. Geometric validation of 3D city models based on stan-
darized quality criteria. In Urban and Regional Data Management, UDMS Annual 2013 - Pro-
ceedings of the Urban Data Management Society Symposium 2013, pages 197–210. May 2013.
ISBN 978-1-138-00063-6. doi: 10.1201/b14914-24. Journal Abbreviation: Urban and Regional
Data Management, UDMS Annual 2013 - Proceedings of the Urban Data Management So-
ciety Symposium 2013.

B. Willenborg, M. Sindram, and T. Kolbe. Semantic 3D City Models Serving as Information
Hub for 3D Field Based Simulations. June 2016.

Z. Zhao, H. Ledoux, and J. Stoter. Automatic repair of CityGML LOD2 buildings using shrink-
wrapping. ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences,
II-2/W1:309–317, Sept. 2013. doi: 10.5194/isprsannals-II-2-W1-309-2013.

24

https://ui.adsabs.harvard.edu/abs/2013ISPAr.XL2b..73S
https://ui.adsabs.harvard.edu/abs/2013ISPAr.XL2b..73S

	Introduction
	Background and related work
	3D Citymodels
	Level-of-detail
	Construction
	CityJSON

	Geometry
	validation of geo-primitives
	Additional validity requirements for different use cases
	Current repair methods
	Conclusions from literature review

	Research questions
	Sub-questions
	Scope

	Methodology
	Read the CityJSON
	Repair loop
	Getting a Singles objects
	automatic repair
	reconstruction for additional requirements

	post-processing
	Evaluate the Output

	Tools and datasets used
	Test data
	Tools


