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A B S T R A C T

The graph Laplacian is a tool which is commonly used in different applications,
amongst which spectral clustering. This report contains a research in different def-
initions for the graph Laplacian applied on directed graphs, since it is rarely used
in applications neither occurs often in literature. Two definitions are discussed into
more detail.

The first definition considers a directed graph as a bipartite graph between the
node set containing all nodes with outgoing edges and the node set containing all
nodes with incoming edges. A Laplacian is defined on both sets distinctly and later
on the two Laplacians are convexly combined to define a Laplacian on the whole
directed graph.

The second definition considers a random walk on a directed graph. We will
see why a random walk on a directed graph is equivalent to a finite Markov Chain
with a corresponding transition probability matrix. This definition will be used for
clustering.

The method for clustering as well as the definition for the directed graph Lapla-
cian require a unique stationary distribution associated with the transition proba-
bilities on the node set of the graph. The existence and uniqueness of the stationary
distribution became an important part of this report, because the given data set has
to meet up with these properties to be able to use this method.

Furthermore, the introduced definitions are used in a MATLAB based model, to
get more insights about the spectrum of the directed graph Laplacian. The biggest
conclusions to be drawn are that for strongly connected directed graphs, it seems
that there is a correlation between the multiplicity of eigenvalues that are close to 1
and the numbers of subsets such that all nodes in the subset are adjacent.
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1 I N T R O D U C T I O N

What do machine learning, the Poisson equation, heat transport phenomena, elec-
trostatics and waves all have in common? They all share a common use of the
Laplacian operator, or shortly the Laplacian, in partial differential equations. In
discrete mathematics the graph Laplacian is usually a matrix representation of a
graph, as often used in graph theory. If you are totally new to graph theory, you
can see a brief description of the basic concepts used for this report in Chapter 3. In
Chapter 2 the graph Laplacian will be clarified.

A graph is a way of visualising the dependencies in between different objects in
the form of structures that are made up by a set of nodes and edges. Often the depic-
tion is done with dots for nodes and lines for edges of a undirected graph and arcs
for edges of a directed graph. A graph can be weighted and can be either directed
or undirected. These concepts are explained in the following example.

To visualise this concept, we can use highway connections in between four states
in the southwestern corner of the United States of America, being Arizona, Califor-
nia, Nevada and Utah, whereby the cities are nodes and the highway connections
are represented by the edges of the graph, as depicted in Figure 1.1a.
The weight of the edge can be interpreted as the number of highway lanes con-
necting the states of the US, the higher the number of lanes, the higher the weight.
The concept of undirected and directed graphs can also be made clear with this
example, as the graph earlier referenced is undirected, i.e. drivers can go in both
directions. If however, due to maintenance the highway from California to Utah
would be closed, only a one-way high-way from California to Nevada would exist,
as depicted by the orange edge in Figure 1.1b.

Den Haag

Utrecht

Amsterdam

Rotterdam

(a) Undirected graph.

CALIFORNIA UTAH

NEVADA

ARIZONA

(b) Directed graph.

Figure 1.1: Example of high-ways between four states in the United States of America repre-
sented as a graphs

To see whether there are states that can be clustered into groups, we can use the
graph Laplacian. Research into the graph Laplacian is limited to the undirected
graph Laplacian (meaning the edges have the same weight in both ways), as proves
sufficient in many applications.
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2 introduction

The aim of this report is to research what kind of definitions are given in literature
for the graph Laplacian on directed graphs. The main articles that are used for the
literature studies on graph Laplacians are [1] where Luxburg gives an introduction
to the undirected graph Laplacian and [2], [3] where Zhou, Schölfopf, Huang and
Hofmann give different definitions for the directed graph Laplacian. Also the book
‘Spectral graph theory’ of Chung plays an important role in the understandings of
the graph Laplacian and its spectrum.

The following research questions are to be answered:

What definitions can we give for a graph Laplacian on directed graphs? What are
their properties? How can the graph Laplacian be used on spectral clustering

methods?

The structure of this thesis report is as follows: first an introduction to the Laplace
operator and spectral clustering will be introduced in Chapter 2, in Chapter 3 the
basic mathematical concepts and definitions relevant for this work will be given,
followed by the literature study regarding the types of graph Laplacians and its
application in Chapter 4 and Chapter 5, respectively. Finally, Chapter 6 contains the
conclusion and a discussion.

The reader is expected to have basic prior knowledge of linear algebra and prob-
ability theory.



2 T H E L A P L A C I A N & S P E C T R A L
C L U S T E R I N G

This section includes an introduction about the (graph) Laplacian. Also clustering
and spectral clustering are introduced in this chapter.

Figure 2.1: Clustering example of the same data set; left: unclustered - right: clustered [4]

2.1 the laplacian
Let f : Rn → R be a multivariate, continuous and differentiable function. Then, the
Laplacian ∆ of f is defined by

∆ f (x1, . . . , xn) := ∇ · ∇ f =
n

∑
k=1

∂ f 2

∂x2
k

In other words, the Laplacian of a function f is the divergence ∇· of the gradient
∇ of f , which is the row-vector with partial derivatives of f as its entries. Specifi-
cally, the gradient is an operator on a multivariate function f at a specific point x,
which shows the alteration of the function value at that point. So the divergence of
the gradient will be big when the gradient at a point approaches a minimum and
it will be small if the divergence approaches a maximum.This gives us an intuitive
explanation for the Laplacian operator for continuous function.

But what about the Laplacian defined on a graph or a set of points in Rn? Let
G = (V, E) be an undirected graph with corresponding adjacency matrix A and
degree matrix D (see Chapter 3 for explanation of these concepts). Then the graph
Laplacian on G is the discretesation of the Laplace operator on continuous functions.
The graph Laplacian of a function in a node i, is the sum of the value difference
between its adjacent nodes. In other words the graph Laplacian is defined by

(∆ f )(j) = ∑
i,j∈V
| f (i)− f (j)|,

with f : V → R a function defined on the node set of G. In Chapter 4 we will
show how this results in the following matrix representation of the graph Laplacian,
which is called the Laplacian matrix L:

L = D− A,

3



4 the laplacian & spectral clustering

which is defined on undirected graphs. The spectrum of L has many interesting
properties which are useful for spectral clustering. In the next section we will go
into further details of spectral clustering.

2.2 clustering
Referred to as “the gold of the 21st century” [5], data are an integral part of the mod-
ern era. With the technological enhancements of smart devices, sensors, Internet-
of-Things (IoT) and many more applications, the data influx is expanding rapidly.
Data to be analysed expands in size (also known as big data [6]), making methods
to analyse data of more relevance.

Data analysis starts by clustering overarching data and specifies clusters into
more detail as the algorithm processes. Therefore, the first indicator of groups
within the analysed data is generic. These groups help identify dependencies of the
analysed data and can be a useful starting point for further analysis. For a graphic
depiction of this concept, the reader is referred to Figure 2.1.

Clustering methods are applied in everyday life, from the simple clustering of
a survey result to the definition of different species. However, clustering is not
only limited to everyday life and its application ranges from unsupervised machine
learning to page ranking [7]. Spectral clustering is a category of clustering methods,
that is related to partitioning clustering, but makes use of the graph Laplacian. In
the following sections, the method will be briefly introduced.

2.2.1 Spectral clustering

Etymological research into the word spectral leads to the algebraic use of spectrum,
or in other words the set of eigenvalues. Spectral clustering offers benefits over
partitioning clustering methods as such that it can be solved with standard linear
algebra and can be implemented simply.

Spectral clustering is often seen in the application of machine learning, data anal-
ysis in statistics (named exploratory data analysis), speech analysis (to perform
deep-learning applications of speech, named speech processing) and visual data
analysis by computers, such as videos and images (named computer vision) [8].

Looking into the specifics of how spectral clustering works, it can be defined as
follows: a graph representation of the to be analysed data is created and the eigen-
vectors of its Laplacian matrix are computed. The graph representation is named
similarity graph, whereby the information is ordered based upon a relationship in
between the data. Then the k-means method is applied to the first k-eigenvalues,
which are ordered increasingly [1]. Whereas, the k-means method, is an algorithmic
approach that chooses k random points and clusters all the points by looking at the
distance to each following k.
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The approach for spectral clustering on undirected graphs can be described as
follows:

• Determine a similarity graph in between the data, with either of the two fol-
lowing methods:

– k-neighbourhood graph, based on lines connecting to each other, with an
integer number k defining the distance in between nearby data-points;

– ε-neighbourhood graph, where instead of lines connecting to each other
a sphere is drawn with a radius of ε to determine the distance in between
nearby data-points.

• Determine the eigenvalues of the constructed similarity graph, with special
emphasis on the first big difference in between the non-zero eigenvalues.

• The eigenvalues are ordered with respect to their magnitude and the k-means
method is applied to determine the appropriate cluster:

– Choose random points in the data set;

– Determine the mean of the clustered points;

– Define this as the new central point;

– Repetition of these steps until a global optimum is reached.

For mathematical descriptions of the above introduced terms, such as graphs and
spectrum, readers are referred to Chapter 3. In Chapter 5 another algorithm for
spectral clustering will be discussed because the algorithm above focuses only on
undirected graph constructions and for this report, we are interested in spectral
clustering for directed graphs.





3 B A S I C C O N C E P T S

In this chapter the basic concepts and notation that will be used in this research will
be introduced and explained.

3.1 graphs and matrix representations

A graph G = (V, E) is a pair of nodes (or vertices) and edges. The set V is the set
of nodes i and the set E ⊆ V × V is the set of edges eij = (i, j) with i, j = 1, . . . , n.
For the number of vertices n we write |V| := n. Edges are an ordered pair of two
nodes. So we have that eij ∈ E if and only if there is an edge between node i ∈ V
and j ∈ V. We say that nodes i and j are adjacent if there is an edge between them.
An undirected graph has edges with no directions, unlike a directed graph, which has
directed edges. So for an undirected graph we have (i, j) = (j, i). The edge (i, i)
is called a self-loop, where there is an edge from the node to itself. An undirected
graph without self-loops is referred to as simple.

In the case of a directed graph, the (directed) edge is an ordered pair (i, j) where
i and j are nodes of the graph and there is a directed edge going from node i to
node j. For directed graphs the node i is said to be adjacent to the node j and the
node j is said to be adjacent from the node i for the edge (i, j). A directed edge from
a node i to itself is also called a self-loop.

A bipartite graph G = (V1, V2, E) is a graph such that its vertex set can be divided
into two subsets V1 and V2 with V1 ∩ V2 = ∅. All edges of a bipartite graph have
one end in V1 and the other end in V2. Notice that for a directed bipartite graph the
edges have directions from one subset to the other.

There are different ways of transforming given data points into graphs and vice
versa. In this report we consider a matrix representation of a graph, which will be
defined in the following section.

3.1.1 Adjacency matrix

The n× n-matrix that will be used to show the adjacent nodes of a graph is called
the adjacency matrix A, with Aij = 1, if node i is adjacent to node j, and Aij = 0
otherwise. Notice that the adjacency matrix is symmetric for an undirected graph,
so Aij = Aji.

3.1.2 Weight matrix

When the edges of a graph have weights, it is called a weighted graph. This means
that every edge (i, j) has a value wij with i, j = 1, . . . , n. The weight of an edge is
taken positive, so wij ≥ 0. We write wij = 0 when node i and j are not adjacent.

7



8 basic concepts

It follows that for an undirected weighted graph wij is equal to wji. Putting these
values in an n× n-matrix gives us the following weight matrix:

W :=

w11 · · · w1n
...

. . .
...

wn1 · · · wnn


Notice that for an undirected graph, the weight matrix W is symmetric. This is not
the case for directed graphs, since wij does not need to be equal to wji. Also notice
that the adjacency matrix is a special case of the weight matrix, where wij = 1 if
eij ∈ E and wij = 0 if eij /∈ E. Sometimes the weight matrix is called the weighted
adjacency matrix. From now on we will assume that G is a weighted graph.
Remark: In this report both wij and w(i, j) are used as notations for the weight of an
edge from node i to node j.

3.1.3 Degree matrix

The degree d(i) of vertex i is the sum of the weights of all edges (i, j) such that
(i, j) ∈ E, so

d(i) := ∑
j∈V

wij.

Notice that d(i) is the sum of the elements of the i-th row of W. A diagonal matrix
D with the degrees d(i) on its diagonal, will be called the degree matrix of a graph,
so

D :=

d(1)
. . .

d(n)

 with Dij :=
{

d(i), i = j,
0, i 6= j.

Whereas, the volume of an undirected graph G is defined as

vol(G) := ∑
i∈V

d(i).

Directed graph

For directed graphs there are two different kind of degrees of a node i, namely the
indegree din(i) and the outdegree dout(i). The indegree of a node i is defined as

din(i) := ∑
j∈V

wij.

And the outdegree of a node i is defined as:

dout(i) := ∑
j∈V

wji.

We define diagonal matrices Din and Dout as follows:

Din :=

din(1)
. . .

din(n)

 with Din,ij :=
{

din(i), i = j
0, i 6= j

Dout :=

dout(1)
. . .

dout(n)

 with Dout,ij :=
{

dout(i), i = j
0, i 6= j
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3.1.4 Spectrum

The spectrum of a matrix is the set which contains its eigenvalues. In this report
the spectrum is an ordered set. So for the set of eigenvalues λ1, λ2, . . . , λn, we have
λ1 ≤ λ2 ≤ · · · ≤ λn.
When we speak of the spectrum of a graph, the context needs to be taken into
consideration. In this report the spectrum of a graph means the spectrum of the
corresponding graph Laplacian matrix.

3.1.5 Connectivity of graphs

An undirected graph G = (V, E) is called connected, if there is a path between every
two vertices in V. There exists a path between node i and j in V, if there exist
i1, . . . , ik ∈ V for some k > 0 such that:

w(i, i1)w(i1, i2) · · ·w(ik, j) 6= 0,

with i, j ∈ V. The i and j are called connected nodes. A subset S ⊆ V is called a
connected component of G, if S is connected and for all u ∈ S and v ∈ Sc there is
no path between u and v, with Sc := V\S. Notice that for an undirected graph all
paths are reversible, which means that if there is a path from i to j, there is also a
path from j to i.

For a directed graph G′ = (V′, E′) we use the term strongly connected, if there is
a reversible path between every pair of nodes. We say node i and j are strongly
connected if there exists a path from i to j and vice versa.

3.2 random walks and markov chains
Let G = (V, E) be a directed graph. In Section 4.2.2 a definition for the directed
graph Laplacian will be given, which makes use of the stationary distribution of
a random walk on a directed graph G. To clarify the concept of a random walk on
a graph, assume we are at an arbitrary node of a graph and choose to walk in a
random direction on an edge. When the graph is unweighted, the node visited in
the next time step will be chosen uniformly from among the neighbouring nodes
[7, 9]. In the case of a weighted graph, the probability of node i visiting node j is
proportionally related to the weight of the edge going from node i to node j [9].
So a random walk between two strongly connected nodes i and j is a path where
the edges in between the nodes are chosen by considering the weighted edge going
from i to j and the outdegree of i.

We will define the transition probability function p(i, j) : V×V → R
+ for a random

walk by

p(i, j) :=

{ w(i,j)
dout(i)

, if (i, j) ∈ E

0, otherwise,

which gives the probability of visiting node j, knowing that you are in node i. No-
tice that p(i, j) ≥ 0 for all i, j ∈ V.
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3.2.1 Markov Chains

The random walk on a graph can be considered as a finite Markov Chain as used in
the mathematical field of probability theory. A Markov Chain is a stochastic model
which consists of a set of states and a stochastic matrix[10]. The states i = 1, . . . n of
a Markov Chain are the possible positions of a random walk, where the position of
the next state depends only on the state you are in. The set of states X = {1, . . . , n}
will be called the state space. A Markov Chain is finite, when the state space is finite.
A stochastic matrix P is a non-negative matrix where its columns sum up to 1. In a
non-negative matrix, all elements are greater than or equal to zero. We will define
the transition probability matrix P by the matrix such that P(i, j) is the probability
that when a Markov Chain is in state i the next state will be j. This is similar to the
transition probability function p(i, j) described above.

We see that a finite Markov Chain with transition probability matrix P and states
i, j ∈ X is equivalent to a random walk on a directed graph with weight matrix
W and nodes i, j ∈ V. A path on a directed graph is equivalent with a walk on
a Markov Chain. The remaining of this section will contain concepts of Markov
Chains that are equivalent to the concepts from graph theory.

Let X = {1, . . . , n} be a finite state space.

3.2.2 Stationary distribution

The probability distribution π which satisfies:

πT = πT P

with P the transition probability matrix as described above, is called the stationary
distribution. Since it is a probability distribution, the following must hold for all
i ∈ X :

π(i) ≥ 0 and ∑
i∈X

π(i) = 1.

Notice that π is the eigenvector of P associated with the eigenvalue 1. We assume
that π is a column vector in Rn with its entries π(i) with i ∈ X . More insights
into the existence and uniqueness of the stationary distribution (and thus of the
eigenvalue 1 and its associated eigenvector) can be found in Section 4.2.2.

3.2.3 Communicating states

In Section 3.1.5 we have seen that node i and j are strongly connected if there exists
a path from i to j and vice versa. If we consider a Markov Chain with transition
probability matrix P, we say that two states communicate if the probability of a walk
starting from i visits j and vice versa is greater than zero. In other words, if for
some k > 0 we have that

Pk(i, j) > 0,

then i and j are communicating states. The value Pk(i, j) is equal to the element in
the ith row and jth column of the matrix Pk. In other words, Pk(i, j) is equal to
the probability of the next visit being j while in state i after k time steps. Notice
that communicating is a transitive relation. So if state i communicates with state j,
then state j communicates with state i as well. The state space X can be split into
communicating classes. A communicating class is a subset of X such that all states
communicate.

Remark: Note that communicating states in a Markov Chain correspond to strongly
connected nodes in a directed graph.
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3.2.4 Irreducible chain

When a Markov Chain consists of just one communicating class, it is called an irre-
ducible chain. In other words, if each state can be reached from every other state in
the chain, the Markov Chain is irreducible. The corresponding transition probability
matrix of a irreducible chain is also called irreducible.

Remark: Note that an irreducible chain corresponds to a strongly connected di-
rected graph.

3.2.5 Transient and (positive) recurrent states

Define τ
(k)
ij as

τ
(k)
ij := P(X1 6= j, . . . , Xk−1 6= j, Xk = j),

with X1, X2, . . . random variables which describe the state of a Markov Chain at a
time step. Then τ

(k)
ij is equal to the probability that a path which starts at state i

visits state j for the first time at some time step k. Define τ∗ij as

τ∗ij :=
∞

∑
k=1

τ
(k)
ij ,

which describes the probability that a walk which starts at state i will visit state j at
some later time step in the future. It is clear that if τ∗ij > 0 and τ∗ji > 0, then i and j
are communicating states.

If we have τ∗ii = 1, then we call i a recurrent state. In other words, if the probability
that the chain will return to state i when starting at state i is equal to one, the state i
is called recurrent. If τ∗ii < 1, then the state i will be called transient. In other words,
the probability to not come back to that state is bigger than zero.
Let tij be the time-step of the first visit to j when starting at i. Now define µij as

µij := E[tij].

This is the expected time for a walk from state i to j. The µii can be defined as the
expected return time. Then if µii < ∞, we will call state i a positive recurrent state.
In other words, a recurrent state with a finite expected return time is called positive
recurrent.

3.2.6 Periodic and aperiodic

Let i be a state such that Pk(i, i) > 0 for some k > 0, with Pk defined as in Sec-
tion 3.2.3. Then the period q of state i is equal to the greatest common divisor of all
k > 0 such that Pk(i, i) > 0. When q = 1, the state is called aperiodic. If all states in
a finite Markov Chain are aperiodic, the chain is called aperiodic.

Remark: The periodicity of state i can be considered as the greatest common
divisor of the lengths of all paths which start at node i and return to node i. The
length of a path is the number of edges in that path, without considering the weights
of the edges.





4 T Y P E S O F G R A P H L A P L A C I A N S

The graph Laplacian is a tool that is used for clustering methods, pageranking,
chemistry, etc. In Chapter 2 background information over the Laplace operator is
given. This chapter will focus on the types of graph Laplacians for undirected and
directed graphs. There are multiple ways of defining a graph Laplacian. Further-
more we will see some of their most interesting properties.
The graph Laplacian defined on undirected graphs will be called the undirected
graph Laplacian. The graph Laplacian defined on directed graphs will be called the
directed graph Laplacian.

Notice that there is no such thing as a unique definition of the directed graph
Laplacian.

4.1 undirected graph laplacians
Let us start by looking at an undirected graph G = (V, E) which is weighted and
has a weight matrix W as in Section 3.1.2 and a degree matrix D as in Section 3.1.3.
Let |V| = n. Let f : V → R be a function that is defined on the vertex set V of G.
Then f (i) is the value of f at the vertex i. We can denote f = ( f1, . . . , fn)T as a
column vector in Rn. Let V = { f : V → R} be the set of all functions defined on
V. Notice that V ∼= Rn. The graph Laplacian is a linear transformation ∆ : V → V ,
which is defined as

(∆ f )(i) := ∑
j∈V

wij( f (i)− f (j)), (4.1)

for all i ∈ V.

4.1.1 Unnormalised graph Laplacian matrix

To find a matrix representation for the graph Laplacian we are going to write out
the definition and for that we use the definitions from Section 3.1.2 and Section 3.1.3.
For all i ∈ V it holds that

(∆ f )(i) = ∑
j∈V

wij( f (i)− f (j))

= ∑
j∈V

wij f (i)− ∑
j∈V

wij f (j)

= d(i) f (i)− ∑
j∈V

wij f (j)

= (D f )(i)− (W f )(i)

= ((D−W) f )(i).

So we find a definition for the unnormalised graph Laplacian matrix L for a weighted
undirected graph G which is defined as

L := D−W with Lij :=


d(i)− wii, if i = j,
−wij, if i and j are adjacent,
0, otherwise.

13
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Notice that for an unweighted undirected graph the definition of the graph Lapla-
cian matrix reduces to L = D− A.
For spectral clustering a few properties of the graph Laplacian are important. The
following proposition will sum these up:

Proposition 1 (Properties of unnormalised graph Laplacian matrix L) Let L be the
unnormalised graph Laplacian matrix defined on an undirected graph G with non-negative
weights. Then the following hold:

1. Let f : V → R be a function. Then we have:

〈 f , L f 〉 = f T L f =
1
2

n

∑
i,j=1

wij( f (i)− f (j))2,

〈·, ·〉 the inner product.

2. The graph Laplacian matrix L is symmetric.

3. The graph Laplacian matrix L is positive semi-definite.

4. The graph Laplacian matrix L has 0 as its smallest eigenvalue with the constant one
vector 1 := (1, 1, . . . , 1)T as its associated eigenvector.

5. The number of eigenvalues of L is n with 0 = λ1 ≤ λ2 ≤ · · · ≤ λn and λ1, . . . , λn ∈
R.

Proof.

1. Since we have d(i) = ∑n
j=1 wi,j, it follows that for f ∈ Rn:

f T L f = f T D f − f TW f =
n

∑
i=1

d(i) f (i)2 −
n

∑
i,j=1

f (i) f (j)wij

=
1
2

(
n

∑
i=1

d(i) f (i)2 −
n

∑
i,j=1

f (i) f (j)wij +
n

∑
j=1

d(j) f (j)2

)

=
1
2

n

∑
i,j=1

wij( f (i)− f (j))2.

2. The symmetry of L follows from the symmetry of D and W. See Section 3.1.2
and Section 3.1.3.

3. From 1. it follows that for all f we have f T L f ≥ 0. This is exactly the definition
for positive semi-definiteness of L.

4. We have that L1 = 0, so 4. is trivial.

5. This follows immediately from 1-4.

In [11] and [12] many more properties can be found.

By inspecting the spectrum of the graph Laplacian L an important property for
the undirected graph G follows. This property can be found in Proposition 2:

Proposition 2 (Number of connected components and the spectrum of L)
Let G = (V, E) be an undirected weighted graph. Then the algebraic multiplicity k of the
eigenvalue 0 of L is equal to the number of connected components A1, . . . , Ak in the graph.
So if λ1 = 0 and λ2 > 0 with λi as in Proposition 1.5, then G is a connected graph. The
span of the indicator vectors 1A1 , · · · , 1Ak is the eigenspace of eigenvalue 0. The indicator
vector is defined as 1Ak the constant one vector which is the eigenvector which belongs to
the kth component of G.
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Proof.
Let G = (V, E) be an undirected connected graph. Then G have one component,
thus k = 1. Let f be an eigenvector with eigenvalue 0 of the graph Laplacian L.
Then we have L f = 0. Thus from Proposition 1.1 follows that

n

∑
i,j=1

wij( f (i)− ( f j))2 = f T L f = f T · 0 = 0.

From the definition of a weighted graph we have that wij ≥ 0. If the nodes i and
j are adjacent, then wij > 0, so f (i) needs to equal f (j) for this sum to be equal
to 0. It follows that f is constant for all connected nodes. See Section 3.1.5 for the
definition of connected nodes. If all nodes in a graph are connected, then f will
be a constant vector. Then G has the constant one vector 1 as its eigenvector with
eigenvalue 0 corresponding to the one connected component.
Now let G = (V, E) be a graph with k connected components. Assume without loss
of generality, that the nodes are ordered according to their corresponding connected
component. When the nodes are ordered, W and thus L have a block diagonal form
as follows:

L =


L1

L2
. . .

Lk

 .

Notice that block Li corresponds to the ith connected component of the graph.
For block diagonal matrices we know that the spectrum of L consists of the union
of the spectrum of the Li, with eigenvectors of L being the eigenvectors of Li with 0
entries on the positions of all Lj such that j 6= i. Since each Li is a graph Laplacian
of a connected graph, we know from Proposition 1.4 that each Li has an eigenvalue
0. From the first part of this proof we know that the corresponding algebraic mul-
tiplicity of the eigenvalue 0 is 1 with the eigenvector being the constant one vector
associated with the ith connected component. Thus, L has as many 0 eigenvalues
as the number of connected components with its eigenvectors being the indicator
vectors corresponding to the connected components.

4.1.2 Normalised graph Laplacian matrices

The two definitions for normalised graph Laplacians in the book ‘Spectral graph
theory’ [12] are as follows. The first definition is

Lsym := D−1/2LD−1/2 = I − D−1/2WD−1/2,

with L defined as in Section 4.1.1. In other words:

Lsym,ij :=


1− wii

d(i) , if i = j and d(i) 6= 0,

− wij√
d(i)d(j)

, if i and j are adjacent,

0, otherwise.

.

Notice that Lsym is a symmetric matrix. A second definition for a normalised
graph Laplacian is

Lrw := D−1L = I − D−1W.

In other words,

Lrw,ij :=


1− wii

d(i) , if i = j and d(i) 6= 0,

− wij
d(i) , if i and j are adjacent,

0, otherwise.

Lrw is not symmetric in general. Furthermore it is closely related to a random walk
which is described in Section 3.2. The entries Lrw,ij are defined as the weight of
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the edge (i, j) normalised by the degree of node i. So it can be considered as the
probability of walking to node j, knowing that you are at node i. In Section 4.2 a
closer look at random walks will be taken.

A few important properties of Lsym and Lrw are described in [13]. The most im-
portant properties for this project can be read in the following propositions.

Proposition 3 (Properties of Lsym and Lrw) Let Lsym and Lrw be normalised undi-
rected graph Laplacians. Then the following hold:

1. Let f : V → R be a function. Then we have:

〈 f , Lsym f 〉 = f T Lsym f =
1
2

n

∑
i,j=1

wij

(
f (i)√
d(i)
− f (j)√

d(j)

)2

.

2. An eigenvalue λ of Lrw has corresponding eigenvector u if and only if Lsym has
eigenvalue λ with corresponding eigenvector v = D1/2u.

3. The normalised undirected graph Laplacian Lrw has eigenvalue λ with corresponding
eigenvector u if and only if for λ and u we have that Lu = λDu.

4. The normalised undirected graph Laplacians Lrw and Lsym both have eigenvalue 0,
with corresponding eigenvectors the constant one vector 1 and D1/2

1 respectively.

5. The normalised undirected graph Laplacian Lsym is positive semi-definite and has n
eigenvalues such that 0 = λ1 ≤ · · · ≤ λn and λ1, . . . , λn ∈ R.

6. The normalised undirected graph Laplacian Lrw is positive semi-definite and has n
eigenvalues such that 0 = λ1 ≤ · · · ≤ λn and λ1, . . . , λn ∈ R.

Proof.

1. This can be proved in a similar way as in Proposition 1.1.

2. Let λ be an eigenvalue of both Lrw as Lsym. Then we have that Lsymv = λv.
Multiplying the definition of Lsym from the left with D−1/2 gives:

D−1LD−1/2v = λD−1/2v.

Substituting u = D−1/2v gives: D−1Lu = λu. So Łrwu = λu, which shows 2.
The other direction is analogous.

3. Same proof as 2. but multiply Lrwu = λu with D from the left side.

4. We have that Lrw1 = 0, so the constant one vector is indeed the corresponding
eigenvector of the eigenvalue 0 of Lrw. The from 3.2 it follows that D−1/2

1 is
the corresponding eigenvector of eigenvalue 0 of Lsym.

5. From 1. it follows that f T Lsym f ≥ 0, so Lsym is positive semi-definite.

6. This follows from 2. en 5.

Proposition 4 (Number of connected components and the spectrum of Lsym
Let G = (V, E) be an undirected weighted graph. Then the algebraic multiplicity k of the
eigenvalue 0 of Lsym and Lrw is equal to the number of connected components A1, . . . , Ak
in the graph. So if λ1 = 0 and λ2 > 0 with λi as in Proposition 3.5 and 3.6, then G
is a connected graph. The span of the indicator vectors 1A1 , · · · , 1Ak is the eigenspace of
eigenvalue 0 of Lrw. The span of the 1A1 , · · · , 1Ak is the eigenspace of eigenvalue 0 of Lrw.
The span of the D1/21A1 , · · · , D1/21Ak is the eigenspace of eigenvalue 0 of Lsym.

Proof.
The proof of Proposition 4. goes in a similar way as the proof of Proposition 2.
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4.2 directed graph laplacians and their proper-
ties

As seen in the previous section, the undirected graph Laplacians have interesting
properties which can be used for spectral clustering. This leaves us thinking:

Do we have the same properties when we apply the graph Laplacian on directed
graphs?

For the answer to this question we need dive into some definitions for the directed
graph Laplacian. Literature into directed graph Laplacians is scarce, as much of
research and applications mostly focuses on the undirected graph Laplacian. There-
fore, in this research, two different definitions of directed graph Laplacians are
introduced and compared with the undirected graph Laplacian.

4.2.1 Hub and authority sets

In [2], Zhou, Schölkopf and Hoffmann give a definition for a directed graph Lapla-
cian. Notice that for this method no self-loops in directed graphs are allowed.

Let G be a weighted directed graph. In [2] it states that every directed graph G
can be represented as a bipartite graph G = (Vout, Vin, E). Here Vout is a copy of the
set of nodes with a positive outdegree and Vin is a copy of the set of nodes with a
positive indegree. For node i ∈ V with positive outdegree we write iout ∈ Vout and
for j ∈ V with positive indegree we write jin ∈ Vin. In other words,

Vout := {iout : i ∈ V and dout(i) > 0}

and
Vin := {jin : j ∈ V and din(j) > 0}.

Furthermore E ⊆ Vout × Vin is the set of edges (iout, jin) from Vout to Vin. Note
that this bipartite graph is still a directed graph which has directed edges from the
set Vout to Vin.

The idea to construct a directed graph as a bipartite graph was proposed by
Kleinberg in an article regarding authoritative hyperlink sources in the Journal of
the Association for Computing Machinery [14]. In this article, Kleinberg introduced
hub and authority web models, where authoritative pages have relevance to a spe-
cific topic, whereas hub pages do have a hyperlink to many related authorities.
Note that a web page can both be an authoritative and hub page at the same time.
This is equivalent to saying that a node in a directed graph can have both an out-
degree as an indegree larger than zero. Furthermore, one of the essential findings
of the paper is that a relevant authority page has a lot of hyperlinks from different
relevant hub pages, whereas a relevant hub page has a lot of hyperlinks to relevant
authority pages. Based on the proposal of Kleinberg, within this research Vout will
be referred to as the hub set and Vin will be called the authority set. Notice that
Vout and Vin are disjoint. If a node i ∈ V has a out- and indegree greater than zero,
we do not say i is in Vout and in Vin, since we put copies iout and iin of i in Vout and
Vin respectively. There are no edges between the nodes in Vout and also no edges
between the nodes in Vin.

So let us take a look at the directed graph of Figure 4.1a with V = {1, 2, 3} and
w(1, 2) = 2, w(2, 1) = 2 and w(2, 3) = 3. So the corresponding directed bipartite
graph can be shown as in Figure 4.1b. For this graph we have Vout = {1out, 2out} and
Vin = {1in, 2in, 3in} with the weighted edges E = {(1out, 2in), (2out, 1in), (2out, 3in)}.
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(a) Directed graph G = (V, E) with V = {1, 2, 3},
E = {(1, 2), (2, 1), (2, 3)} and weights
w(1, 2) = 2, w(2, 1) = 2 and w(2, 3) = 3.

1in

2out

3in

2in

1out

2

2

3

(b) Bipartite graph G = (Vout, Vin, E) with on the
left the hub set Vout = {1, 2} and on the right
the authority set Vin = {1, 2, 3} with weights
w(1, 2) = 2, w(2, 1) = 2 and w(2, 3) = 3.

Figure 4.1: Directed graph and bipartite graph.

To define a directed graph Laplacian, in [2] first Laplacians are defined on the
hub set Vout and the authority set Vin. Then these two are combined to define a
Laplacian on the whole vertex set V in the following way:

First we define the graph Laplacian on the authority set Vin. Let Q be a linear
operator defined on H(Vin), which is the space of functions f : Vin → R. Then
Q : H(Vin)→ H(Vout) is defined as

(Q f )(iout) := ∑
iin∈Vin

w(iout, iin)√
dout(iout)din(iin)

f (iin).

Then the adjoint of this operator, Q∗ : H(Vout)→ H(Vin), is:

(Q∗ f )(iin) = ∑
iout∈Vout

w(iout, iin)√
dout(iout)din(iin)

f (iout).

Multiplying Q∗ with Q gives a new operator SVin : H(Vin)→ H(Vin):

SVin := Q∗Q,

which finally gives us a definition for the graph Laplacian ∆Vin : H(Vin) → H(Vin)
on the authority set Vin:

∆Vin := I − SVin .

with I denoting the identity operator. In [15] the authors use SVin to determine a
ranking for the authoritative pages, so for all nodes with an indegree bigger than
zero. We will not go into the details of the application in page ranking.

A careful reader might have noticed the similarities between the directed graph
Laplacian defined on the authority set and the definition of the normalised undi-
rected graph Laplacian Lsym as defined in Section 4.1.

Let us first compare the inner product 〈 f , ∆Vin f 〉with the inner product 〈 f ∗, Lsym f ∗〉,
with f denoting a function on Vin and f ∗ denoting a function on V. The inner
product on a function space H(V) is defined by: 〈 f , g〉 = ∑i∈V f (i)g(i). From
Proposition 3 in Section 4.1 we know that:

〈 f , Lsym f 〉 = f T L f =
1
2 ∑

i,j∈V
wij

(
f (i)√
d(i)
− f (j)√

d(j)

)2

. (4.2)
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In [2] a functional is defined which measures the smoothness of a function f and
approaches small variances in the function values for nodes in Vin.

ΩVin( f ) :=
1
2 ∑

iin ,jin∈Vin

∑
iout∈Vout

ciout(iin, jin)

(
f (iin)√
din(iin)

− f (jin)√
din(jin)

)2

, (4.3)

with

ciout(iin, jin) =
w(iout, iin)w(iout, jin)

dout(iout)

Let iin, jin ∈ Vin and iout ∈ Vout such that there is an edge from iout to both iin as
jin. The value ciout(iin, jin) is referred to as the co-bridge value.

For example in Figure 4.1b node 1in and 3in both have an edge coming from 2out.
Their corresponding co-bridge value is: c2out(1in, 3in) =

6
5 .

Notice that Equation 4.3 looks like Equation 4.2. Writing out the right side
of Equation 4.3, substituting ciout(iin, jin) and using that ∑jin∈Vin

w(iout ,jin)
dout(iout)

= 1 and

∑iout∈Vout
w(iout ,jin)

din(iin)
= 1 gives:

ΩVin( f ) = ∑
iin∈Vin

f 2(iin)− ∑
iin ,jin

∑
iout

f (iin)
w(iout, iin)√

dout(iout)din(iin)
w(iout, jin)√

dout(iout)din(jin)
f (jin)

= 〈 f , ∆Vin f 〉.
(4.4)

We can define a new graph Gin = (Vin, Ein) with edge weights

ω(iin, jin) := ∑
iout∈Vout

ciout(iin, jin),

with corresponding weight matrix W with ω(iin, jin) as its entries on the ith row and
jth column. For our example of Figure 4.1a the corresponding graph defined on the
authority set Vin looks as follows:

1in

ൗ6 5

ൗ9 5

2

2in

3in

ൗ4 5

Figure 4.2: Graph Gin = (Vin, Ein) with edge weights ω(1in, 1in) = 4
5 , ω(2in, 2in) = 2,

ω(3in, 3in) =
9
5 and ω(1in, 3in) = ω(3in, 1in) =

6
5

The corresponding degree and weight matrix are:

D =

2
2

3

 and W =

 4
5 0 6

5
0 2 0
6
5 0 9

5


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Notice that ω(iin, jin) = ω(jin, iin), so Gin is an undirected graph. We also notice
that the degree of a node jin of graph Gin is equal to d(jin) = ∑iin∈Vin

ω(iin, jin). We
can show that this is equal to the indegree of jin as follows:

Proof.

∑
iin∈Vin

ω(iin, jin) = ∑
iin∈Vin

∑
iout∈Vout

ciout(iin, jin)

= ∑
iin∈Vin

∑
iout∈Vout

w(iout, iin)w(iout, jin)
dout(iout)

= ∑
iout∈Vout

w(iout, jin) ∑
iin∈Vin

w(iout, iin)
dout(iout)

Since:

∑
iin∈Vin

ω(iout, iin)
dout(iout)

=
1

dout(iout)
∑

iin∈V
ω(iout, iin) =

dout(iout)

dout(iout)
= 1,

we have that

∑
iin∈Vin

ω(iin, jin) = ∑
iout∈Vout

w(iout, jin)

= din(jin).

We see that the definition of the graph Laplacian on the authority set of a directed
graph is equivalent to the symmetric normalised graph Laplacian on an undirected
graph.

So the graph Laplacian on the authority set can be written as:

∆Vin = I − D−1/2WD−1/2,

with D the degree matrix of the graph on the authority set and W the weight matrix
defined on Vin with ω(iin, jin) as its entries.

From Equation 4.4 we have that ∆Vin is a positive semi-definite matrix. The eigen-
values of ∆Vin are in [0, 1]. This can be shown in the same as in Proposition 1 and 3.

In the same way we can define a graph Laplacian on the hub set with:

SVout = QQ∗ and ∆Vout = I − SVout ,

with both operators defined on H(Vin). The cobridge value can be defined as:

ciin(iout, jout) =
w(iout, iin)w(jout, iin)

din(iin)
,

where iout, jout ∈ Vout both have an edge to the same node iin in the authority
set. We can define a graph Gout in the same way as for Gin. Furthermore another
smoothness functional is defined as in Equation 4.3, but for the hub set Vout:

ΩVout( f ) =
1
2 ∑

iout ,jout∈Vout

∑
iin∈Vin

ciin(iout, jout)

(
f (i)√
dout(i)

− f (j)√
dout(j)

)2

. (4.5)
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In the same way as for ΩVin , we have that:

ΩVout( f ) = 〈 f , ∆Vout f 〉.

Thus the properties of the spectrum of ∆Vout are the same.

As seen above we have defined a graph Laplacian for two subsets of the vertex set
of a directed graph G. We have considered a new graph on Vin and Vout with edge
weights ω(iin, jin) = ∑iout∈Vout ciout(iin, jin) and ω(iout, jout) = ∑iin∈Vin

ciin(iout, jout).
So we still do not have a proper definition of a graph Laplacian defined on all of a
directed graph. The definition will be constructed as follows:

First let us start with the linear operator Q which is only defined on H(Vin).The
idea is to extend the domain of Q to H(V). We will do that by defining:

(Q f )(i) =

0, if i ∈ Vin\Vout

∑j∈Vin
w(i,j)√

dout(i)din(j)
f (j), if i ∈ Vout.

Its corresponding adjoint Q∗ with extended domain will give:

(Q ∗ f )(i) =

0, if i ∈ Vout\Vin

∑j∈Vout
w(j,i)√

dout(j)din(i)
f (j), if i ∈ Vin.

Then we can define Sδ : H(V)→ HV by:

Sδ = δSVin + (1− δ)SVout with 0 ≤ δ ≤ 1.

The parameter δ emphasises the importance of each S . It will also be used to
define the graph Laplacian ∆δ : H(V)→ H(V) for the whole node set V:

∆δ = I − Sδ = δ∆Vin + (1− δ)∆Vout .

Linearly combining the two smoothness functionals by again using the parameter
δ, gives a mapping defined on V:

Ωδ( f ) = δΩVin( f ) + (1− δ)ΩVout( f ) = δ〈 f , ∆Vin f 〉+ (1− δ)〈 f , ∆Vout f 〉,

and by linearity of the inner product we find that:

Ωδ( f ) = 〈 f , ∆δ f 〉.

Thus we have found a definition for a graph Laplacian defined on a directed
graph, which is:

∆δ = δ∆Vin + (1− δ)∆Vout

= δ(I − D−1/2
Vin

WVin D−1/2
Vin

) + (1− δ)(I − D−1/2
Vout

WVout D
−1/2
Vout

),

with DVin , WVin and DVout , WVout the degree and weight matrix of the the graphs Gin
and Gout respectively.
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4.2.2 Transition Probability Matrix

The second definition for the directed graph Laplacian comes from the article of
Zhou, Huang and Schölkopf [3]. Also Chung uses the same definition in her article
[13]. It contains the transition probability matrix of a random walk on a directed
graph, which can be considered as a finite Markov Chain. See Section 3.2 for an
introduction to these concepts.

Let G = (V, E) be a directed graph, with |V| = n. The definition that will be
explained in this section, is applicable to graphs that are both strongly connected
and aperiodic. Later we will clarify why aperiodicity is not necessary, but can be
useful. For now, we assume that G is a strongly connected and aperiodic graph.
A random walk defined on G with associated transition probability function p :
V ×V → R

+ is

p(i, j) :=

{ wij
dout(i)

, if (i, j) ∈ E

0, otherwise,

with i, j = 1, . . . , n. The matrix representation of the transition probabilities will be
called the transition probability matrix P as in Section 3.2.
The next step in the definition for a directed graph Laplacian requires a unique
stationary distribution π for the random walk, which is defined as in Section 3.2.
The following comes to mind:

1. (Existence) Does a finite Markov Chain always have a stationary distribution?

2. (Uniqueness) If so, when is the corresponding stationary distribution unique?

Existence of stationary distribution π

First we will start by showing the existence of π. Assume that we have a Markov
Chain defined on a finite state space X = {1, 2, ..., n}.
Claim:

For every finite Markov Chain there exists a stationary distribution.

For the proof of this statement we will use the Krylov–Bogoliubov argument [16],
which shows that every finite Markov Chain has a stationary distribution, even
when not irreducible. Let P be the set of probability distributions that are defined
on the finite state space X :

P := {v ∈ Rn | for all i ∈ X : v(i) ≥ 0 and ∑
i∈X

v(i) = 1}.

We consider v ∈ P as column vectors. A probability distribution can be considered
as a column vector in Rn with the ith entry being the probability of being in that
state, where its entries sum up to 1. The argument uses that P is compact. Notice
that X is closed and bounded. Then from the Heine–Borel theorem [17] it follows
that X is compact. The probability distributions are continuous and defined on a
compact set. Then from Theorem 8.4 in [17] the probability distributions are com-
pact and thus P ⊂ R

n is compact. Now we have that P is compact we can use
Bolzano–Weierstrass [17], which states that every sequence in a compact set P has
a convergent subsequence. Then we show that this limit is a stationary distribution.

Choose a ∈ P arbitrary. Define a sequence (aT
n ) such that:

(aT
n ) :=

1
n

n

∑
k=1

aT Pk =
aT P + aT P2 + · · ·+ aT Pn

n
.

The elements of this sequence are called a Cesàro mean [10]. Notice that taking an
average of positive vectors with elements that sum up to one is again a vector with
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the same properties. And thus for all 1 ≤ m ≤ n we have aT
m ∈ P . So aT

n has a
convergent subsequence aT

nl
with limit:

lim
l→∞

aT
nl

:= πT .

It suffices to show that π is a stationary distribution, in other words: πT P = πT . By
continuity of the multiplication with a matrix we have that:

πT P = ( lim
l→∞

aT
nl
)P = lim

l→∞
(aT

nl
P)

= lim
l→∞

1
nl

nl

∑
j=1

aT PjP

= lim
l→∞

1
nl

nl+1

∑
j=2

aT Pj

= lim
l→∞

1
nl

(
aT Pnl+1 − aT P +

nl

∑
j=1

aT Pj

)

By continuity of the mapping of multiplying rowvector by P is continuous, we have
that liml→∞(aT Pnl+1 − aT P) = 0. Thus

πT P = lim
l→∞

1
nl

nl

∑
j=1

aT Pj

= πT

Thus πT is a stationary distribution.
So we have shown that for a Markov Chain defined on a finite state space, there
always exists a stationary distribution.

Uniqueness of stationary distribution

After some research in the literature of stationary distributions, most of the found
theorems regarding the uniqueness of the stationary distribution state that for irre-
ducible Markov Chains aperiodicity is required to have a unique stationary distribu-
tion. See for instance Theorem 3.1 in [18], the article of Zhou, Huang en Schölkopf
[3] and the book ‘Spectral graph theory’ from Chung[12]. It is true that if a chain is
irreducible and aperiodic the stationary distribution is unique.

We can give a counterexample where a directed graph is strongly connected and
not aperiodic, but has a unique stationary distribution. See Figure 4.3.

The associated transition probability matrix of the graph is:

P =


0 1

2
1
2 0

0 0 0 1
1 0 0 0
0 0 1 0

 with PT =


0 0 1 0
1
2 0 0 0
1
2 0 0 1
0 1 0 0


Solving ker(PT − λI) with λ = 1 gives us:

−1 0 1 0
1
2 −1 0 0
1
2 0 −1 1
0 1 0 −1

 ∼


1 0 −1 0
0 1 0 −1
0 0 1 −2
0 0 0 0

 .
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Figure 4.3: Strongly connected and periodic directed graph with period 2.

This yields in the following set of linear equations:
x1 − x3 = 0

x2 − x4 = 0

x3 − 2x4 = 0

x4 = x4

Leading to the normalised eigenvector

π =


1
3
1
6
1
3
1
6

 ,

which corresponds to eigenvalue 1 and is unique.
We assume from Theorem 7.4 from [10] that for an aperiodic irreducible Markov

Chain with finite state space X and corresponding transition probability matrix P
there exists a unique stationary distribution π described as in Section 3.2. Theorem
7.4 from [10] says that we also have:

lim
k→∞

Pk(i, j)→ π(j) for all i, j ∈ X . (4.6)

So π is also the limit distribution of P. We will now show that if a Markov Chain is
irreducible and is not aperiodic, the stationary distribution will still be unique.

Assume we have an irreducible Markov Chain on a finite state space X with
period q. Then we know that a stationary distribution exists. First we will show
that X can be partitioned into q nonempty disjoint subsets X0, . . . , Xq−1.

Proof. Consider the Markov Chain which makes q steps at a time, so its correspond-
ing transition probability matrix is Pq. Fix one of the subsets of X and name it X0.
Define Xρ by

Xρ := {j ∈ X | there exist i ∈ X0 and k ∈ {ρ, ρ+ q, ρ+ 2q, . . . } such that Pk(i, j) > 0},

with 1 ≤ ρ ≤ q− 1. Claim:

The finite state space X is the union of X0, . . . , Xq−1 with Xρ ∩ Xρ∗ = ∅.

Since the Markov Chain is irreducible, we know that every i, j ∈ X communicate.
So it follows that X = X0 ∪ · · · ∪Xq−1. Choose ρ1, ρ2 and arbitrary j1 ∈ Xρ1 , j2 ∈ Xρ2 .
From the definition of Xρ and the irreducibility of the Markov Chain it follows that
for some i1, i2 ∈ X0 and k, k′, k∗, k∗∗ we have that the transition probabilities:

Pρ1+kq(i1, j1), Pρ+k′q(i2, j2), Pk∗q(i1, i2), Pk∗∗(j1, i1) > 0
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Suppose j1 = j2. Then from the transitions probabilities that the number of steps
from i1 to i1 can be either k1 := ρ1 + kq+ k∗∗ or k2 := k8q+ ρ2 + k′q+ k∗∗. The chain
has period q, so state i1 also has period q. Then from the definition of periodicity
follows that k1 and k2 have q as their divisors. In particular, q is a divisor of ρ1 − ρ2.
This is a contradiction and since we chose j1 and j2 arbitrary, we can conclude that
Xρ1 ∩ Xρ2 = ∅ for all ρ1, ρ2 ∈ {1, . . . , q− 1}. In the same way we can show that if
you start at a state i ∈ Xρ, you will stay in Xρ when you make q steps. So it follows
that under Pq each Xρ is aperiodic.
Now it remains to show that the Markov Chain has a unique stationary distribution
π.
Define

C := lim
k→∞

∑k
i=1 Pi

k
.

Notice that this is the Cesàro mean. Consider we are at i, j ∈ Xρ. The Markov Chain
on each Xρ is irreducible and aperiodic with transition probability matrix Pq. So
from Equation 4.6 we know that Xρ has a limit distribution. With the continuity of
the matrix multiplication we have that:

CP = lim
k→∞

(P2 + · · ·+ Pk+1)

k
= lim

k→∞

(P + · · ·+ Pk+1)

k + 1
= C,

with the stationary distribution πT as its rows. So we find that πT P = πT . Notice
that C is a stochastic matrix, so we have ∑n

i=1 π(i) = 1. If there is another probability

distribution such that π̃T P = π̃, then we have π̃
(P+···+Pk)

k = π̃. So π̃C = π̃. Thus
π̃T = πT . So πT is the unique stationary distribution of the irreducible chain with
period q.

Now that we have showed that irreducibility is enough for a unique stationary
distribution for a finite Markov Chain, we can continue to define the directed graph
Laplacian. Notice that for a random walk directed graph, the graph needs to be
strongly connected to have a uniwue stationary distribution. Let G = (V, E) be
a directed graph which is strongly connected. Let P be its associated transition
probability matrix with unique stationary distribution π. Define a diagonal matrix
Π with the stationary distribution on its diagonal. Then we can define a linear
operator Θ on H(V) such that for i, j ∈ V:

(Θ f )(j) =
1
2

(
∑
i∈V

π(i)p(i, j) f (i)√
π(i)π(j)

+ ∑
i∈V

π(j)p(j, i) f (i)√
π(jπ(i)

)
,

with associated matrix:

Θ =
Π

1
2 PΠ−

1
2 + Π−

1
2 PTΠ

1
2

2
.

Then the graph Laplacian can be defined as:

∆Θ = I −Θ,

where I is the identity matrix.
Let us take a look at the spectrum of Θ. Notice that Θ can be written as:

Θ = Π
1
2
(P + Π−1PTΠ)

2
Π

1
2 .
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Let Φ be Φ := (P+Π−1PTΠ)
2 ,then the eigenvalues of Θ are the same as the eigenval-

ues of Φ. Now assume that λφ is an eigenvalue of Φ with corresponding eigenvector
φ, then Φφ = λφφ. Choose j ∈ V such that: |φ(j)| = maxi∈V |φ(i)|. Then:

|λφ||φ(j)| =
∣∣∣∣∣∑i∈V

Φ(j, i)φ(i)

∣∣∣∣∣ ≤ ∑
i∈V

Φ(j, i)|φ(j)|

=
|φ(j)|

2

(
∑
i∈V

p(j, i) + ∑
i∈V

π(i)p(i, j)
π(j)

)
= |φ(j)|.

Thus we find that |λφ||φ(j)| ≤ |φ(j)| and thus |λφ| ≤ 1. So all eigenvalues of Θ
lie in [−1, 1]. Furthermore we can show that the corresponding eigenvector of the
eigenvalue 1 is equal to

√
π:

Θ
√

π =
1
2

(
∑
i∈V

π(i)p(i, j)
√

π(i)√
π(i)π(j)

+ ∑
i∈V

π(j)p(j, i)
√

π(i)√
π(j)π(i)

)

=
1
2

(
1√
π(j) ∑

i∈V
π(i)p(i, j) +

√
π(j) ∑

i∈V
π(j)p(j, i)

)
=
√

π(j).

So we have that Θ
√

π = 1 ·
√

π and thus the eigenvector associating with eigen-
value 1 is:

√
π.



5 A P P L I C AT I O N S O F D I R E C T E D G R A P H
L A P L A C I A N S

In this chapter we will apply directed spectral clustering using the definition of the
directed graph Laplacian defined in Section 4.2.2.

5.1 directed spectral clustering
In [3] an algorithm for directed spectral clustering is given. The idea is to partition
the vertices of a directed graph G = (V, E) into k parts which have similarities
between them. Note that the input is a weighted adjacency matrix, which will be
visualised as a graph. Furthermore, the data we use is self-constructed unless stated
otherwise.

5.1.1 Directed spectral clustering in 2 clusters

The algorithm to cluster a strongly connected directed graph G = (V, E) into two
clusters consists of 3 steps:

1. First a random walk over G is defined with a transition probability matrix P,
such that it has a unique stationary distribution π.

2. The next step in the algorithm is computing Θ as described in Section 4.2.2.

3. Compute the eigenvector θ of Θ corresponding to the second largest eigen-
value λ2 and then partition V of G into two parts such that: S = {i ∈ V |
θ(i) ≥ 0} and Sc = {i ∈ V | θ(i) < 0}

From Section 4.2.2 we know that the eigenvalues of Θ are scattered in [−1, 1].

Directed graph with 10 nodes

First we will start with a small graph with 10 nodes. See Figure 5.1.

1
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7

8
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(a) Directed graph with 10 nodes

1
2

3

4

5

6

7

8

9

10

(b) Subsets S (red) and Sc (green)

Figure 5.1: Directed graph with n = 10 nodes containing edge weights wij ∈ {5, 6, 7, 8, 9, 10}
with i, j = 1, . . . , 10

27



28 applications of directed graph laplacians

On the left in Figure 5.1a we see the constructed strongly connected directed
graph with edge weights equal to randomly chosen integers between 5 and 10. On
the right in Figure 5.1b we see the subsets S and Sc, as described in the algorithm,
in red and green respectively.
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(a) Eigenvector θ(i), with i = {1, . . . , 10}.
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0.8

1

(b) Eigenvalues λ1, . . . , λ10 of Θ.

Figure 5.2: Eigenvectors and eigenvalues

In Figure 5.2b we see that there are two eigenvalues close to 1. Notice that we
have plotted the sorted eigenvalues in descending form. In Figure 5.2a we see that
for nodes 1, . . . , 5 it follows that θ ≥ 0. For 6, . . . , 10 we have that θ < 0. We can
also see a slight peak at node 3 and 7, this is because there are edges between them
even though they belong to different clusters.

5.1.2 Directed spectral clustering in k clusters

The algorithm to cluster a directed graph G = (V, E) into k clusters has almost the
same structure:

1. First a random walk over G is defined with a transition probability matrix P,
such that it has a unique stationary distribution π.

2. The next step in the algorithm is computing Θ as described in Section 4.2.2.

3. Compute the k eigenvectors corresponding to the k largest eigenvalues λi of
Θ and create K ∈ Rn×k such that its columns are the eigenvectors are the first
k eigenvectors of Θ.

4. Use k-means algorithm to partition V of G into clusters V1 ∪ · · · ∪Vk.
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Directed graph with 6 clusters

Take a look at the strongly connected directed graph in Figure 5.3a. The graph con-
tains 6 subsets of nodes such that they have weighted directed edges between every
two nodes in that subset. In Figure 5.3b we zoomed in on one of the subsets. Be-
tween each of those subsets we define edges such that the whole graph is strongly
connected. The nodes which belong to the same cluster have the same color, as can
be seen in Figure 5.3a
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(a) Directed graph with 6 clusters.
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(b) Zoomed in on one of the 6 subsets of the di-
rected graph on the left.

Figure 5.3: Strongly connected directed graph with 6 clusters.

In Figure 5.4b we see that there are 6 eigenvalues very close to 1. Applying the
algorithm by choosing k = 6, gives us 6 clusters, which are highlighted in different
colors in Figure 5.3a.
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(a) Eigenvectors for the nodes i ∈ V
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(b) Eigenvalues of Θ

Figure 5.4: The first 6 eigenvectors and the eigenvalues of Θ.

In Figure 5.4a we have plotted the first 6 eigenvectors of Θ. We see that each
eigenvector has a turning point when defined on nodes from a different subset.

It seems that if we make strongly connected graphs with subsets such that they
are even stronger connected in between the nodes of that subset, the number of
eigenvalues close to 1 are equivalent to the number of clusters in that graph.

If we combine two of the subsets by defining an edge between all of the nodes of
the two subsets, in particular, the nodes {16, . . . , 45}, we get Figure 5.5, with k = 5.
We see that now we have 5 eigenvalues which are almost equal to 1, see Figure 5.6b.
Also the first 5 eigenvectors show that the V could be divided in 5 subsets.
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Figure 5.5: Directed graph with 5 clusters
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(a) Eigenvectors for the nodes i ∈ V
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(b) Eigenvalues of Θ

Figure 5.6: The first 6 eigenvectors and the eigenvalues of Θ.

Migration in the United States of America

We will apply the algorithm on a data set which shows the migration between states
in the USA, see Figure 5.7. The data set has the form of a weighted adjacency matrix.
The graph representation of the data set is a strongly connected directed graph. The
eigenvalues of the graph can be seen in Figure 5.8b.

Figure 5.7: States of the USA clustered by the migration data.

We see that there is just one eigenvalue close to 1 which is 1 itself. From the
eigenvector corresponding to the second largest eigenvalue, it seems like there are
26 clusters. So we apply the algorithm by using k = 26. There is no structure in the
eigenvalues nor in the figure for which we can take conclusions. This could have
something to do with that there is not enough difference in the migrations between
the states.
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(b) Eigenvalues of Θ

Figure 5.8: The first 6 eigenvectors and the eigenvalues of Θ.

Directed graph which is not strongly connected

What if a graph is not strongly connected? Take a look at Figure 5.9a. This graph
shows the websites which have links to or from https://www.mathworks.com. The
nodes are a representation of the websites and the edges are links between the
websites. This is an existing data set in MATLAB. Notice that this graph is not
strongly connected. So that means we cannot apply our algorithm since there is no
unique stationary distribution associated with its transition probability matrix.

(a) Eigenvectors for the nodes i ∈ V (b) Strongly connected directed graph correspond-
ing to the graph on the left.

Figure 5.9: Graph representation of the websites which have links to https://www.

mathworks.com

https://www.mathworks.com
https://www.mathworks.com
https://www.mathworks.com
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We made the graph symmetric, by adding its transpose to its weighted adjacency
matrix and dividing by two. The graph is also strongly connected now. In Fig-
ure 5.9b you can see the 15 different clusters for the symmetric graph shown by
different colored nodes. In Figure 5.10a we see that there are 15 eigenvalues which
are almost equal to one, which again corresponds with the number of cluster such
that all nodes in the clusters are adjacent.

0 20 40 60 80 100
Index

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
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(b) Eigenvalues of Θ

Figure 5.10: The first 6 eigenvectors and the eigenvalues of Θ.



6 C O N C L U S I O N S A N D
R E C O M M E N DAT I O N S

After our research on directed graph Laplacians, we can answer our research ques-
tions:

What definitions can we give for a graph Laplacian on directed graphs? What are
their properties? How can the graph Laplacian be used on spectral clustering

methods?

Let G = (V, E) be a directed graph on V. The first definition that we can give for
the directed graph Laplacian is:

∆δ = δ∆Vin + (1− δ)∆Vout

= δ(I − D−1/2
Vin

WVin D−1/2
Vin

) + (1− δ)(I − D−1/2
Vout

WVout D
−1/2
Vout

),

with DVin , WVin and DVout , WVout the degree and weight matrix of the the graphs Gin
and Gout respectively. The matrices Gin and Gout are as described in Section 4.2.1.
We have seen that the graph Laplacian on Gin and Gout is positive semi-definite and
has eigenvalues between 0 and 1.

Let G = (V, E) be a strongly connected directed graph. Then the second defini-
tion for the graph Laplacian will be defined as:

∆Θ = I −Θ,

with

Θ =
Π

1
2 PΠ−

1
2 + Π−

1
2 PTΠ

1
2

2
,

with P the transition probability matrix and Π the diagonal matrix with the unique
stationary distribution π of the random walk on a G. We have shown that there
exist a unique stationary distribution for the random walk on a directed graph if
the graph is strongly connected.
The matrix Θ has eigenvalues between −1 and 1 with the eigenvector which corre-
sponds to the eigenvalue 1 equal to

√
(π).

In Chapter 5 we have defined an algorithm for directed spectral clustering. The
results seem to show that there is a correlation between the multiplicity of the
eigenvalues really close to 1 and the number of subsets of V such that all the nodes
in those subsets are adjacent. There is no proper proof given for this and yet there
is not enough research done on these types of graphs to assume that this is true.
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further research
The directed graph Laplacian applied on spectral clustering is not a simple problem.
There is still a lot of research that remains to be done on this topic. Therefore, we
propose some ideas for further research. One statement which can be either proved
or disproved is:

1. Let G = (V, E) be a strongly connected directed graph. Then the number of
eigenvalues, really close to or equal to 1, gives the number k of disjoint strongly

connected clusters A1, . . . , Ak such that for all i, j ∈ Al we have that (i, j) and
(j, i) ∈ E, with 1 ≤ l ≤ k.

Another idea for further research is:

2. Are there different spectral clustering algorithms for directed graphs which are
not strongly connected?
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