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Domain adaptation for target classification using
micro-Doppler spectra in radar networks
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Abstract—In this paper, the classification of human activity
from micro-Doppler spectrograms measured by a radar network
is considered. To cope with differences between the training and
test datasets due to changes in the set of participants, signal-to-
noise ratio and polarimetry, domain adaptation is proposed. To
realize this, linear mapping between the two domains is assumed
and estimated by one of two methods, expectation-maximization
or empirical estimates of statistical moments. The performance
of the methods is evaluated on experimental data measured by
a multi-static radar network. The proposed methods increase
the classification accuracy by 5–15 percentiles on the recorded
dataset.

Index Terms—radar target classification, micro-Doppler signa-
ture, domain adaptation, multi-static radar network

I. INTRODUCTION

A radar sensing network comprises radar nodes that are
able to observe a target under different observation conditions
such as the orientation to the target, polarimetry and signal-to-
noise ratio (SNR). Target classification may benefit from the
diversity in observation conditions and the increased number
of measurements provided by the radar nodes. However,
there exist difficulties in creating a classification model which
generalizes well to the data from all sensing nodes due to the
unavailability of labeled data under all possible observation
conditions. This work explores the utilization of unlabeled
data from each sensing node to adapt the classification model
to the specific observation conditions of the sensing node
and proposes a novel domain adaptation method based on
expectation-maximization.

The performance of a classification model will generally
decrease as the test conditions become different than the condi-
tions the training data was drawn from [1]. In a general setting
this problem is referred to as domain shift. Such differences
can appear in many practical applications including radar
networks, where it plays an important role due to changes
in the radar nodes’ observation conditions such as the SNR of
the received signal, polarimetry and the multi-static scattering
angle. Consistent with the nomenclature used in [1], the
distribution to which the classification model was fit is referred
to as the source distribution and the data distribution in which
we are attempting to perform inference where some latent
factor has changed is referred to as the target distribution.
Techniques to alleviate the effects of domain shift are here
referred to as domain adaptation. These techniques make use

of the dissimilarity between the source and target domains to
increase the classification performance in the target domain.

Recent work in image classification has explored techniques
that use empirical estimates of feature moments in a target
domain in order to increase the classification performance of
convolutional neural networks (CNN) [2], [3], here referred to
as standardization methods. In these works, the parameters of
a batch normalization layer [4] are estimated from the target
domain. This method showed positive results when applied to
a CNN which was fit on a dataset of handwritten numbers,
MNIST, and evaluated on a dataset of house numbers, SVHN
[3].

Related work in pattern recognition has also explored the
application of expectation-maximization to fit a classification
model jointly to the labeled data in the source domain and
the unlabeled data in the target domain [5]. The method treats
domain adaptation as a missing data problem and assumes that
the source and target data are drawn from the same domain.

Previous works in domain adaptation which focuses on
feature standardization in the target domain [2] [3] [4], as-
sumes that the data in the target domain can be characterized
by its mean and variance. Sampling bias may cause some
classes to be missing from the target domain data and the
standardization-based techniques will then provide an incor-
rect estimate of data distribution in the target domain. In
surveillance applications such as drone detection, the class
distribution in the target domain may be significantly different
than in the source domain as the drone class may be missing
from the target domain data. Therefore domain adaptation
methods that can mitigate the effect of sampling bias are in
demand.

This work focuses on the classification of human activity
from micro-Doppler spectrograms derived from the radar data;
however, the presented methodology is generally applicable
for classification tasks. In literature, many classification algo-
rithms have been proposed for radar target classification using
the micro-Doppler spectrum [6] such as Markov models of
micro-Doppler characterizations [7] and learnt representations
[8]–[10] In this work, we validate our methodology the fol-
lowing models: a support-vector machine with a radial basis
kernel [11] and a Gaussian naive Bayes classifier [12].

The above-mentioned models will be considered as dis-
criminative models which estimate the conditional distribution
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p(y | x) of the class variable y given the features x. We will
consider that the model was fit in a source domain with the
conditional distribution pS(y | x) and is evaluated in a target
domain with distribution pT (y | x) and that there exists some
function f(·) which maps the target distribution to the source
distribution. The mapping f(·) is either parameterized as a
translation which is estimated by expectation-maximization or
parametrized as a linear function and estimated by matching
statistical moments between the source and target domains.
We show on experimental data that we are able to increase
the classification performance in the target domain by utilizing
this mapping.

This work investigates the effectiveness of domain adap-
tation on data gathered from a coherent pulsed multi-static
sensing network. It is investigated how domain adaptation
improves the fused classification of a radar sensing network.
The latent factors which differentiate the target and source
domain are: the bistatic angle to the target, the receiver
polarimetry and changes to signal-to-noise ratio (SNR). Recent
research indicates that the variation in micro-Doppler signature
between individuals is significant [13]. Therefore, adaptation
to previously unseen individuals is investigated as well.

In summary, the contributions of this paper are:

• The first published investigation of domain adaptation for
target classification using micro-Doppler spectra.

• A novel method for domain adaptation based on
expectation-maximization which is verified on experi-
mental data from a multi-static radar network and pro-
vides positive results in terms of increasing classification
accuracy.

The signal model is presented in Section II while the pro-
posed domain adaptation method and evaluation methodology
are presented in Section III and IV respectively. The experi-
mental data and its characterization is presented in Section V.
Results and concluding remarks are found in Section VI and
VII.

II. SIGNAL MODEL

A radar receiver measures the backscatter signal s(t) with an
instantaneous frequency spectrum ŝ(t, ω). The instantaneous
spectrum is here characterized by 9 features that describe
the micro-Doppler signature. Let µω, σω denote the first two
moments of the frequency response at any frequency and
time. The size of the frequency silhouette is defined as the
proportion of ŝ(t, ω) with a larger response than µω − 0.3σω .
The contour of ŝ(t, ω) is defined by the highest and lowest
frequencies with a response larger than µω+0.3σω . Frequency
peaks are extracted from the upper contour. The features then
comprise: the size of the frequency silhouette, the first two
moments of the contour, peak height, Doppler centroid and
Doppler Bandwidth as defined in [12]. For reproducibility,
code to generate these features has been made available1.

1https://github.com/petersvenningsson/feature-extraction-micro-doppler

Input: XS , XT ,M
XS , yS The source domain data and labels
XT The unlabeled target domain data
M The classification model
µk, Σk, wk The source domain feature mean, covariance
matrix and class distribution of class k
Tn,k Probability of sample n belonging to class k
θ̂µ Estimated feature translation
L Total likelihood of the target domain data

Output: ŷT Target domain class predictions

1: while |L(t) − L(t−1)| << 1 do

2: T
(t)
n,k =

wkN(xn|µk−θ̂(t−1)
µ ,Σk)∑K

j=1 wjN
(
xn|µj−θ̂(t−1)

µ ,Σj
)

3: θ̂
(t)
µ =

(∑N
n=1

∑K
k=1 T

(t)
n,k logwk(µk−xn)TΣ−1

k

)
(
∑N
n′=1

∑K
k′=1

Tn′,k′ logwkΣ−1
k )

4: L(XT )(t) =
∏N
n=1

∑K
k=1 wkN (xn | µk − θµ,Σk)

5: t ← t+ 1

6: Fit M on XS , yS
7: ŷT ← M(XT − θ̂(t)

µ )
8: return ŷT

Fig. 1: The proposed domain adaptation method based on
expectation-maximization.

III. METHOD

The proposed method of expectation-maximization based
domain adaptation is described below as well as the stan-
dardization method which is used as a benchmark. In both
these methods, we assume that the classification model has
high performance in the source domain. Therefore we estimate
a function f(·) which maps the target domain to the source
domain such that,

pS(y | x) ≈ pT (y | f(x)). (1)

A. Expectation-maximization

In the proposed method we assume that the feature-
distribution for each class is multivariate normal,

pS(x | yk) = N (x | µk,Σk), k ∈ {1, · · · ,K}

with the parameters µk,Σk estimated from labeled data drawn
from the source domain for the K classes. The choice of the
analytical form of the distribution is motivated by that the sam-
ple distributions are approximately unimodal and symmetrical.
We also assume that the domain shift can be parameterized as
a translation in each feature dimension,

f(x) = x− θµ, (2)
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where θµ denotes the translation parameter. We can then
describe pT (x) as a mixture of Gaussians,

pT (x) =
∑
k

wkN (x | µk − θµ,Σk),

with total likelihood,

L(XT ) =

N∏
n=1

K∑
k=1

wkN (xn | µk − θµ,Σk), (3)

where w = pS(y) and XT denotes the N data samples drawn
from the target domain.

With the objective to find θµ which maximizes (3) we
iteratively estimate the class-membership T of each data point
in XT ,

T
(t)
n,k =

wkN
(
xn | µk − θ̂(t−1)

µ ,Σk

)
∑K
j=1 wjN

(
xn | µj − θ̂(t−1)

µ ,Σj

) (4)

and the maximum likelihood estimator of θ(t)
µ given θ(t−1)

µ ,

θ̂(t)
µ =

(∑N
n=1

∑K
k=1 T

(t)
n,k logwk(µk − xn)TΣ−1

k

)
(∑N

n′=1

∑K
k′=1 Tn′,k′ logwkΣ−1

k

) , (5)

where (4) and (5) defines the expectation and maximization
steps respectively.

The estimation of f(·) and the subsequent generation of
class predictions in the target domain is described in Algorithm
1. In each iteration, the total likelihood increases monotoni-
cally and may converge to a local minima or a saddle point
[14]. The termination criteria is here defined as an increase in
total likelihood lower than 10−6 between two iterations.

In summary, the function f(·) which maps the data from
the source domain to the target domain is parameterized as a
simple translation in each feature dimension. The translation
is estimated by maximizing the total likelihood of a statistical
model which assumes that the feature distribution of each class
is normally distributed.

B. Standardization

The proposed domain adaptation method is compared to the
standardization method which estimates f(·) by matching the
mean and variance of the source and target domain data. The
standardization method assumes that the function f(·) can be
parameterized independently for each feature as,

f(x) =
x− θµ
θσ

, (6)

where θµ and θσ defines a translation and a scaling of the
feature respectively and that the mapping between the source
and target domains can be defined as,

pS(x) = pT (f(x)). (7)

The parameters in (6) are estimated by the sample mean and
sample variance in both domains given the relationships

µS =
µT − θµ
θσ

, σ2
S =

σ2
T
θ2
σ

, (8)

which follow from (7), where µS , σ2
S and µT , σ2

T denotes
the mean and variance of the source and target domains
respectively.

In summary, a model which is fit from data in the source
domain is evaluated on data in the target domain by first
mapping the features to the target domain. The mapping f(x)
is estimated by the sample mean and sample variance of these
domains using the relationships in (8).

IV. EVALUATION

A classifier is trained in a source domain and evaluated
on data drawn from a target domain in which some latent
factor has changed. The domain adaptation method described
in Section III is evaluated by the increase in accuracy in the
target domain, in comparison to the standardization method
and model evaluation without adaptation. The three latent
variables are considered here are:
• The target domain consists of data drawn from individuals

not seen in the source domain, here referred to as leave-
one-participant-out (LIPO) validation.

• The target domain consists of samples with lower SNR
than the source domain.

• The target and source domain consists of data measured
from two different radar nodes, signifying changes to
polarimetry and the bistatic angle.

With the aim to evaluate the domain adaptation method
quantitatively, a large number of classification models are
evaluated. The performance of the domain adaptation method
is characterized as the mean performance of the classification
models which are fit to different feature sets and combinations
of the relevant latent variables. For instance, when domain
adaptation across the three sensing nodes is considered there
exists 6 combinations of the latent factor. To ensure sufficient
model flexibility only feature sets larger than 6 are considered
and stratified 5-fold validation is used where applicable. For
each experiment 3× 104 models are generated.

The effect of sampling bias in the target domain is evaluated
by removing a number of classes from the target domain data
used by the domain adaptation method. The model is then
evaluated on the complete dataset in the target domain.

V. EXPERIMENTAL SETUP AND DATA PROCESSING

The data is recorded using the multi-static coherent pulsed
radar NetRAD, developed by University College London and
the University of Cape Town. The sensing network comprises
three nodes as visualized in Fig. 3. Node 1 is a monostatic
transceiver that receives in V polarization and transmits in
V polarization a linearly modulated up-chip with bandwidth
45 MHz, center frequency 4.2 GHz 18 dBi gain, 23 dBm
transmit power and PRF 5 kHz. Node 2 is co-located with the
transceiver and records H polarization. Node 3 is a bistatic
node that records co-polarized data. The three nodes operate
under the same clock cycle which is synchronized by a wired
connection. Each node uses an independent local oscillator,
with residual drifts between different oscillators corrected in
post-processing as described in [15].
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(a) No added noise
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(b) 20dB SNR
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(c) 5dB SNR

Fig. 2: Spectrograms containing the micro-Doppler signature of a person walking towards the monostatic radar node. The SNR
of the received signal has been reduced by the addition of complex Gaussian noise. The amplitude of the signal is visualized
in logarithmic scale (dB).

Fig. 3: A diagram of the coherent pulsed multi-static radar
sensing network used to record the dataset.

A measurement sequence consists of one individual walking
towards Node 1. The class variable specifies what the person
is carrying. A non-exhaustive list of the seven available classes
is: walking, walking while carrying a backpack and walking
while carrying a steel pipe. Four individuals recorded 10
measurements of 10 s sequences for each class. Each sequence
is subdivided into 3 s non-overlapping samples. The dataset
was recorded in 2016 and has been used in previous research
[12], [11] A complete description of the dataset is found in
[12].

A short-time Fourier transform is used to generate the
instantaneous frequency spectrum of the radar measurements
which describe the micro-Doppler signature of the movement.
A 0.3 s Hamming window function is used with 95 % overlap.
Stationary clutter in the environment generates a strong re-
sponse across several Doppler frequencies. These are replaced
by linearly interpolating from the nearest unaffected Doppler
frequencies as performed in [16]. When applicable, the SNR
is reduced by adding complex Gaussian noise to each pulse

in the measurement as described in [11]. A visualization of a
spectrogram with and without added noise can be shown in
Fig. 2.

VI. EXPERIMENTAL RESULTS

Results from the evaluation as outlined in Section IV are
presented below. Results from the multi-static radar network
fusion scenario are found in Section VI-A while in Section
VI-B–VI-E results regarding the adaptation of individual nodes
is presented.

A. Multi-static radar network fusion scenario
A classifier is trained on data from the mono-static Node 1.

The presented domain adaptation methods are used to adapt
the classifier to each radar node. Decision-level fusion is used
to generate a prediction from the radar network which is
evaluated in the LIPO setting. The results found in Fig. 4
show that the domain adaptation methods are able to increase
the performance of the multi-static radar network by 5–
15 percentiles. The proposed expectation-maximization based
method outperforms standardization when fewer than three
classes are present in the target domain data due to sampling
bias.

B. Adaptation to new individuals LIPO
A classifier is trained on data from three individuals and

validated on one individual not found in the training data.
The results are shown in Fig. 5. Both domain adaptation
techniques are able to increase the average performance of
the classification models by 8–10 percentiles when all 7
classes are present in the target domain, with standardization
outperforming expectation-maximization. When fewer classes
than 3 are present in the target domain, the expectation-
maximization based approach outperforms standardization.
Note that standardization is detrimental to the classification
performance when fewer than three classes are present in the
target domain.
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Fig. 4: Domain adaption applied to a multi-static radar net-
work. A classifier is trained on data from the mono-static
Node 1 and the classifier is adapted to each radar node. The
performance of the network is evaluated by decision-level
fusion evaluated in the LIPO setting. The performance of the
domain adaptation is characterized as the mean accuracy of a
large number of models with the shaded region indicating a
95 % confidence interval.
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Fig. 5: The effectiveness of domain adaptation when the
individuals in the target domain are not found in the source
domain. Expectation-maximization outperforms standardiza-
tion when fewer than half of the classes are present in the
target domain. The shaded region indicates a 95 % confidence
interval of the mean performance of the classification models.
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Fig. 6: The performance of domain adaptation when a classifi-
cation model is transferred between two radar nodes. Indicat-
ing a change in polarimetry and or bistatic angle. The graph
shows the mean accuracy over 3×104 models fit with varying
feature sets and source/target node combinations.

C. Adaptation to changes received polarization and multi-
static scattering angle

A classification model is fit on data from a source node and
evaluated on data from a different target node. The domain
shift is then a consequence of changes to received polarization
and bistatic angle between the source and target domain.
The results shown in Fig. 6 indicate that the expectation-
maximization method outperforms the standardization method
when fewer than half of the classes are present in the target
domain. When all classes are present in the target domain,
the domain adaptation methods provide an increase in perfor-
mance of 5 percentiles for the SVM model and provide no
significant increase for the Naive Bayes model.

The impact of domain adaptation when a model is trans-
ferred between sensor nodes is also evaluated using LIPO
validation. The results are shown in Fig. 7. In this setting,
the differences between the source and target domain are
greater and the domain adaptation techniques are more able
to increase the classification performance than in the setting
without LIPO validation. Consistent with the LIPO results in
Section VI-B, the expectation-maximization technique outper-
forms standardization when less than half of the classes are
present in the target domain. When all classes are present in
the target domain, the domain adaptation methods are able
to increase the classification accuracy by 8–12 percent with
standardization outperforming expectation-maximization.

D. Adaptation to reduced SNR

The SNR is reduced by adding complex Gaussian noise
to each recorded pulse. A model is fit in a source domain
with no added noise and evaluated in a target domain where
the SNR has been reduced. The performance of the domain
adaptation methods are shown in Fig. 8 when all classes
are present in the target domain. Both domain adaptation
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Fig. 7: The performance of domain adaptation when a clas-
sification algorithm is transferred between two radar nodes
and validation is performed in the LIPO setting. The domain
adaptation algorithms show stronger performance in the LIPO
setting as the source and target domains are less similar.
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Fig. 8: The performance of the domain adaption methods when
the SNR in the target domain has been reduced by the addition
of complex Gaussian noise. All seven classes are present in the
target domain. The shaded region indicates a 95 % confidence
interval of the mean performance of the classification models.

methods give a performance increase of 5–20 percentiles.
In this setting, the performance of the SVM model shows
higher improvement than the Naive Bayes model. Consistent
with results in Sections VI-B and VI-C, the standardization
method shows stronger performance than the expectation-
maximization based method when all classes are present in
the target domain. At low SNR values the domain adaptation
methods provide negligible improvement.

As shown in Fig. 9 the two domain adaptation methods
provide a performance increase of 5–15 percentiles when the
number of classes in the target domain is limited to two. The
expectation-maximization method outperforms the standard-
ization method only for high SNR in the target domain.
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Fig. 9: The accuracy of the three classification algorithms
when evaluated on data with artificially reduced SNR. The
models are fit to data with no added noise. Two classes are
present in the target domain.
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Fig. 10: The performance of the domain adaptation methods
when individuals in the target domain are not found in the
source domain with the inclusion of simplified standardization
which only estimates a feature translation.

E. Direct comparison of expectation-maximization and stan-
dardization

The expectation-maximization and standardization
approaches to domain adaptation utilize two different
parametrizations of the function f(·) as defined in (6), (2).
To make an analysis of the estimation procedures directly
comparable, a simplified standardization method is evaluated
using the parametrization f(x) = x−θµ. The LIPO validation
scenario in Section VI-B is reproduced with the addition of
the simplified standardization method. The results presented
in Fig. 10 show that the simplified standardization method
performs 2–4 percentiles better than the standardization
method when less than four classes are present in the target
domain and performs 1–3 percentiles worse when more than
five of the seven classes are present in the target domain.
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VII. CONCLUSION

A novel method for domain adaptation is proposed based on
expectation-maximization and its performance is compared to
the standardization method. Both methods are applied to data
acquired by a multi-static radar network where variations in the
radar nodes’ observation conditions cause differences in the
micro-Doppler features of the same target while observed by
several radar nodes. It has been shown that domain adaptation
methods that utilize unlabeled data to adjust the feature char-
acterization of micro-Doppler spectrograms to the observation
conditions can be used to increase the classification accuracy
of the radar nodes as well as their fused predictions. These
results are a step in the direction of creating portable radar
target classification models in micro-Doppler spectra which
is of particular importance when a target is observed by a
multi-static radar network given the diverse set of observation
conditions.

The results presented in Section VI show that the proposed
method for domain adaptation and the standardization method
are able to increase the classification performance for a variety
of causes of domain shift. When sampling bias introduces
differences in the number of classes present in the target and
source domains, the proposed method based on expectation-
maximization is able to provide an increase in performance,
while the method based on standardization is detrimental to
the classification performance.

The proposed expectation-maximization based approach is
able to robustly estimate the domain shift by utilizing a
statistical model of the distribution of the classes. In contrast,
the standardization method characterizes the source and target
distribution only by their mean and variance and is therefore
less robust when sampling bias is present.

The standardization method utilizes a more flexible parame-
terization to describe the mapping from the source to the target
domain which translates and scales the features while the
mapping used in the expectation-maximization based approach
only translates the data. When all classes are present in the
target domain, the standardization method outperforms the
expectation-maximization method. These results indicate that
scaling the features to match the domains’ second moments is
beneficial if the variance can be correctly estimated.

Matching the second moment of the source and target
distributions has a detrimental influence on the classification
performance when sampling bias causes a limited number of
classes to be present in the target domain. If only a few classes
are present in the domain, the variance is underestimated as
its dependency on the separation between the classes is not
fully accounted for.

The expectation-maximization method does not correctly
estimate the feature translation when all classes are present
in the target domain. This may occur if the expectation-
maximization algorithm has converged to a local minima or
a saddle point. This effect could be mitigated by initializing
many expectation-maximization optimization procedures with
different initial states as performed in [5].

The expectation-maximization based approach utilizes a
parameterization of the mapping between the two domains
which is a simple translation in each feature. If the param-
eterization is extended to include changes to the covariance
matrix, there exists no closed-form solution of the parameters
in the maximization step. However, it may be possible to find
an approximate solution. It may also be beneficial to find
parameterizations that are driven by expert knowledge in how
the features change between domains, such as attenuation of
Doppler velocities for non-radial motion. These are topics for
future work.
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