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Ambient intelligence (AmI) relying on elec-
tronic devices employing information and 
communication technology (ICT) and artificial 
intelligence (AI) embedded in the network 
connecting these devices tends today to be 
insufficiently used. This deficiency implies 
that spaces are uncomfortable and consider-
able energy dissipates due to distribution 
losses, excessive or unnecessary climate 
control of little- and unoccupied spaces, etc. 

Building operations are responsible for ±27% 
of annual carbon dioxide (CO2) emissions, 
and infrastructure materials and construc-
tion are responsible for an additional ±13% 
annually; both need to be addressed inte-
gratively to meet sustainability goals.1, 2 This 
paper addresses this in three AI-supported 
AmI test simulations of applications focusing 
on illumination and ventilation systems 
embedded in the built environment. 
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Introduction and Context
Ambient Intelligence (AmI) relying on electronic devices 
employing Information and Communication Technology (ICT) 
embedded in the network connecting these devices was driven 
in the last decades by the understanding that sensors and 
actuators integrated into the environment adapt the respective 
environment to the users’ needs (inter al. Zelkha et al. 1998). 
Recent advancements in AI enable AmI systems to improve its 
response to individual requirements, as shown in the case stud-
ies presented in this paper.

State-of-the-Art
At its core, AmI refers to environments wherein computing 
devices are seamlessly integrated. Without AI, these environ-
ments may still exhibit some intelligence through predefined 
rules and simple automation but cannot learn, adapt, or make 
complex decisions (inter al. Gams et al. 2019).

AI involves various techniques for machinic perceiving, syn-
thesizing, and inferring information. In AmI environments AI is 
instrumental in creating personalized experiences. By analyz-
ing historical data and user behavior, AI algorithms tailor ser-
vices and interactions to meet individual preferences, providing 
a more user-centric and adaptive environment. Furthermore, 
by analyzing historical data the AI-supported predictive capa-
bility allows AmI systems to anticipate user preferences, mak-
ing proactive adjustments to the environment to enhance user 
satisfaction. AI also enables AmI systems to continuously learn 
and improve over time. As these systems gather more data and 
user feedback, they refine their algorithms and become more 
adept at meeting user needs and expectations (inter al. Gams 
et al. 2019). Furthermore, AI contributes to optimizing energy 
consumption by analyzing data from sensors to make real-time 

decisions about lighting and other energy-consuming systems, 
aiming to reduce energy waste and enhance efficiency (inter al. 
Lee et al. 2022).

1.2 Contribution
From the plethora of AI-supported approaches for AmI sys-
tems, the developed applications employed computer vision 
(CV) for lighting using digital images from cameras as sensory 
measures and large machine learning (ML) models,3 aka deep 
learning (DL), to identify and classify ambient conditions and 
then react to those (inter al. Nixon and Aguado, 2019) as well 
as Human Activity Recognition (HAR). Furthermore, for ventila-
tion Autoregressive (AR) and Autoregressive Integrated Moving 
Average (ARIMA) models using CO2 data to predict and classify 
air pollutants have been explored. The proposed integration 
of such systems into the built environment relies on Design-
to-Robotic-Production and Operation (D2RP&O) techniques4 

that link design with to production and operation of building 
components (inter al. Bier at al. 2018). While these techniques 
are not new, their integration with AI-supported approaches for 
AmI is new and very promising with respect to its potential for 
increasing users’ comfort while reducing energy consumption.

Approach, Methodology, and Results
The case studies addressing lighting and ventilation present 
what has been achieved so far and indicate the challenges 
ahead. 

2.1 Lighting
Various lighting levels are required for multiple types of work 
and interaction, e.g., reading, writing, working on the computer, 
performing, etc. (inter al. Aries 2005). The following two simu-
lation scenarios focused on work and interaction activities.

2.1.1 CV-Supported Optimization of Lighting Conditions
The Computer Vision (CV) case study addressed the problem of 

v Opening Image. Components of a stage integrated with responsive 
lighting to engage speakers during a symposium at TU Delft. (Credit: TU 
Delft for all figures unless otherwise noted)

r Figure 1. Lighting via skylight (left) with unequal distribution 
(middle) and simulation with reflective rotating panels (right). 
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poor distribution of daylight in the Technical University (TU) 
Delft library, which has an open floor plan with flexible fur-
niture configuration. The study explored the potential of 140 
reflective panels with adjustable rotation angles to improve 
lighting conditions by increasing illuminance and reducing 
substantial differences in light levels that force users’ eyes to 
adapt when moving from one condition to another (Figure 1). 
The rotation angles of the panels were derived from the best 
possible light redistribution scenarios based on the possible 
changes in the furniture layout. To achieve this, several steps 
were implemented:

2.1.1.1 AI for Panel Configuration
Synthetic images of the space simulated in Rhino Grasshopper5 
were created to determine the base configurations of different 
furniture layouts. After capturing images throughout the entire 
year and creating luminance maps, the necessary panel rotation 
angles were determined with the Galapagos optimizer to find 
the most suitable angles of the panels based on the lighting 
conditions and the type of functional use. These are registered 
as a ‘reference’ to look up the best configuration for certain 
lighting conditions (Figure 2). In this context, the CV model is 
trained to identify similarities between the actual (live) lighting 
condition and the closest one in the registry. Once the most 
similar image regarding lighting condition and functional usage 
is found then the ‘reference’ is used to retrieve the best rota-
tion angles for the panels.

2.1.1.2 Image Classification
The same setting with synthetic image generation based on 
simulation data is used to classify the furniture configurations. 
This procedure involves a base configuration defined by a 

set of cameras for capturing images in the area that requires 
improvement based on the solar radiance analysis. The dataset 
was generated by defining certain classes of furniture layouts 
for individual and collaborative study. The cameras record local 
variations of these classes, where the position of cameras and 
furniture pieces varies. This training data augmentation pro-
vides additional data while making the training more robust 
and generalizable to unseen data. The classification labels that 
correspond to these synthetic training images are the classes 
indicating the types of furniture layouts. To further increase 
the size of the training set for the image classification models, 
variations of images are generated for each class of furniture 
configurations. Eighty percent of the synthetic dataset is used 
for training purposes and 20% for testing the model’s perfor-
mance accuracy. A Convolutional Neural Network (CNN) has 
been trained on the image dataset to assign the images with 
local variations to the predetermined classes.6

2.1.1.3 ML Model
With the data collected in the previous step, the ML model 
‘learns’ from the training datasets to find the best fit. After the 
training on image datasets presenting the base and varied fur-
niture configurations, the ML model is ready to predict out-
puts on unseen data. The software for the training involved 
two pretrained scripts, Resnet18 and VGG16. While Resnet18 
takes only the new information from the previous training to 
the next training layer, which reduces the risk of increasing the 
inaccuracy in each training layer, VGG16 uses a 3 by 3 pixel 
filter which is much smaller than the usual filter sizes of other 
training models. This increases the accuracy of image classifi-
cation significantly. The advantage of using pretrained models 
is that the model training can be updated with relatively small 
datasets to perform successful classification with new but rela-
tively small datasets.

With respect to the training accuracy and validation accu-
racy (Table 1), currently the model has only been trained on 

r Figure 2. Luminance was measured at various days and 
times for various uses, such as individual and collaborative 
study (left top and bottom) and training results (right top and 
bottom) compared to before (middle top and bottom). 
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synthetic datasets, meaning that the value of these results will 
not be indicative of the real-world performance of the model. 
Testing on representative datasets will give a true measure of 
the performance. Both models have a perfect validation accu-
racy of 1. This is potentially problematic and could point to 
overfitting, indicating that the model has seen the testing data 
before or that it has overfitted on the testing data during the 
development of the model. Another possibility is that the size 
of the training and testing dataset is too small. In this case, the 
performance metrics do not reliably indicate the model’s ability 
to generalize unseen data well. Training the model with a larger 
dataset would help to achieve more reliable metrics for the vali-
dation loss and accuracy. 

Table 1. Resnet 18 and VGG16 resulting training loss, 
accuracy, and validation loss for both the furniture 
classification algorithm and the ML algorithm that 
optimizes the angles of the panels.
 
Architecture RESNET18 VGG16

Training Epochs 24 24

Training Time 34m 18s 15m 18s

Training Loss / 
Accuracy

0.1503 / 0.9529 0.2348 / 0.9193

Validation Loss / 
Accuracy

0.0005 / 1.000 0.0042 / 1.000

Best Validation 
Accuracy

1.000 1.000

Potential next steps include the implementation of the actu-
al library camera footage since there is a difference between 
the synthetic dataset and the camera data collected from the 
library. This also applies to the differences between synthetic 
and actual furniture configurations. This real data will contain 
noise in the form of people and their belongings, varying light-
ing during the day, furniture being moved around, etc. Testing 
on such representative data will give an accurate measure of 
the robustness of the model. The model can be improved and 
retrained based on the findings.

Another improvement of the system would be to include 
predictive control. This involves predicting how the reflections 
will change over time and using a predictive model to counter-
act the changing lighting conditions. In an ideal situation, the 
panels would readjust slowly based on the sun's movement and 
library camera feedback. The current model could be retrained 
or extended to meet these requirements.

The traditional approaches have several constraints when 
comparing the data-intensive approach to traditional light 
sensor-actuator systems. These systems cannot connect the 
measured lighting values to the panel angle adjustments, con-
sidering the changing lighting conditions and variations in the 
furniture configurations. Even if a more advanced but not 
AI-supported system, such as a pre-programmed system that 
contains a database of the angles of the panels based on the 
time of the year, would be able to update the panel angles with-
out AI automatically, this system fails when the furniture con-
figurations and weather change over time.

However, the system based on the CNN can update the pan-
els’ behavior automatically without human intervention. In this 
case, the AI-supported AmI approach facilitates the improve-
ment of lighting conditions. It can be applied to other AmI 
problems involving environmental control performed by wire-
lessly networked components if the control relies on images—
for instance, tracking activities and movement flows as in the 
following application developed for responsive lighting.

2.2 Responsive Lighting
Responsive lighting was explored to engage speakers with the 
audience during a symposium at TU Delft (Liu Cheng et al. 
2017) by changing light intensity, color, and the on-off rhythm 
of the light emitting diodes (LEDs) integrated into an adaptive 
stage (Figure 3). In this case, the AI aspects involve (a) Human 
Activity Recognition (HAR) and (b) corresponding reactions that 
promote users’ spatial experience via continuous regulation of 
illumination to activities. 

Three reactions were explored: (1) start-up, (2) presentation, 
and (3) break. In the first, the stage slowly pulsates in one color, 
suggesting ‘awakening,’ thus instigating interest in the audience. 
In the second and third, various interactions were envisioned. 
First, the stage reacts to the speaker’s movements, and the 
color pattern shifts from start-up to presentation mode. Then, 
the color pattern changes to the next speaker or break mode as 

r Figure 3. Based on HAR data, responsive lighting changes 
color, intensity, and on-off pattern. 
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soon as the allocated time runs up and according to schedule. 
In the break, the stage invites the audience to interact with the 
stage, which instantiates color pattern changes correlated to 
specific movements. In addition to these automated cause-and-
effect modes, the illumination system is equipped with a man-
ual override control.

Integrating the system into the built environment relied on 
a design-to-production approach that linked the computa-
tional design with numerically controlled production machines 
(Figures 4 and 5). This ensures increased efficiency with 
machines possibly operating continuously, 24/7, with minimal 
downtime, contributing to CO2 reduction. While the two illu-
mination applications are very different in their approach and 
implementation, both involve AI to adjust illumination by actu-
ating reflective panels and controlling the color, intensity, and 
on-off pattern of LEDs, respectively. The integration with other 
environmental aspects and D2RP&O processes has been only 
partially implemented.

3. Ventilation
Poor indoor air quality has significant adverse impacts on 
well-being, leading to fatigue, lethargy, headaches, cardiac 
arrhythmia, and difficulties in attention, memory, and cognitive 
functioning (Apte and Erdmann 2003; Burge 2004; Erdmann 
et al. 2002; Fisk 2010; Grifths and Eftekhari 2008; Seppänen 
et al. 1999). This is particularly concerning when people spend 
increasingly more time indoors, estimated at around 90% 
in developed countries. The issue of high concentrations of 
indoor air pollutants is especially prevalent in shared spaces 

such as meeting rooms and classrooms. For example, a recent 
study conducted in Switzerland found that two-thirds of the 
learning spaces in 100 schools exceeded the recommended 
CO2 threshold, affecting students’ learning capacity (Swiss 
Federal Office of Public Health 2016). Similarly, a study in the 
UK demonstrated that unfavorable environmental conditions in 
offices result in an annual productivity loss of 13 billion pounds 
(Gorvett 2016).

Furthermore, preliminary studies conducted during the 
COVID-19 pandemic suggest that improving indoor air quality 
by increasing the supply of fresh air can help control the spread 
of the virus in enclosed spaces. 

Understanding indoor conditions expands, the field of Indoor 
Environmental Qualities (IEQ) has begun to explore the oppor-
tunities that recent advances in sensing techniques and data 
science can create to prevent situations of poor air quality in 
shared spaces. This preventive approach is motivated by two 
factors: (1) the considerable costs, in terms of both time and 
productivity, associated with recovering from the consequenc-
es of poor indoor air quality, and (2) the potential long-term 
negative impact on overall well-being resulting from the repeat-
ed occurrence of mild health issues such as lethargy, head-
aches, or other symptoms caused by exposure to inadequate 
air quality, even during brief periods. 

3.1 AI Application for Controlling Indoor Air Quality
Data-oriented methods help predict and prevent poor indoor 
air quality in shared spaces, as shown in the presented case 
study, aimed at predicting the carbon dioxide level in the meet-
ing rooms of an office building even before the meeting starts. 
In the next step, building on the findings of that project, con-
sideration will be given to the ability to modify the space in 
the building through robotic components that can help reach 

r Figure 4. Heterogeneous system architecture facilitates 
changes of light color, intensity, and on-off pattern (left) of 
in-building components integrated lighting (right). 
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the final goal—from the prediction of poor indoor air quality to 
prevention.

3.1.1 Predicting Indoor Air Quality
The collected air quality data from more than 1000 meeting 
sessions in an office building was used to examine various ML 
models that can predict indoor air quality. The concentration of 
CO2 indoors, primarily from human respiration, directly corre-
lates with the number of people in a room. However, the CO2 
level is also influenced by factors such as room size, ventila-
tion rate, relative humidity, and outdoor air quality (e.g., Fang et 
al. 1998). Since measuring all these parameters would require 
extensive instrumentation of the environment and occupants, 
the objective is to develop a prediction model that can operate 
independently of their fluctuations.

Specifically, the aim is to create and compare real-time pre-
diction algorithms that can determine whether the CO2 level 
in a room will surpass a predefined threshold based sole-
ly on past CO2 measurements within the same office setting 
(Alavi et al. 2020).

The application of AR and ARIMA models using CO2 data 
collected from shared office spaces and meeting rooms 
was explored to achieve this. Data was obtained through 
sensing systems developed in collaboration with an indus-
trial partner. These recorded air pollutant concentrations 
every five seconds. The Long Short-Term Memory (LSTM), a 
recurrent neural network architecture, was investigated by 

formulating the problem as multiple parallel input and multi-
step output scenarios.

The percentage of predicted values that fell within a confi-
dence interval of 30 parts per million (ppm) around the actual 
value was measured to assess the accuracy of the prediction. 
This confidence interval was determined based on the tech-
nical error range of the sensor. The model’s overall accuracy 
was determined by averaging the accuracies of all prediction 
instances conducted in a single day of data. These predictions 
were performed on four devices, with 12 predictions made per 
hour for 10 hours, excluding the last 20 minutes.

A sliding window approach has been utilized to test the AR 
and ARIMA models. This involved using an observation buf-
fer to construct the model for predicting the CO2 concentra-
tion in the subsequent Delta T minutes. Various combinations 
of observation buffer sizes, including 10 and 20 minutes, and 
Delta T values of 5, 10, and 15 minutes were tested.

Across all the conducted tests, the Autoregressive (AR) 
model consistently outperformed the other methods in terms 
of both accuracy and training time. Specifically, when using 
the AR model with a buffer size of 20 minutes, a prediction 
accuracy of 97.66% for Delta T = 5 minutes and 87.51% for 
Delta T = 20 minutes was achieved.

In the next step, the possibility of predicting the future 
evolution of air quality before a meeting or classroom ses-
sion is explored (Zhong et al. 2021). Rather than predicting 
the exact CO2 concentration level, the objective is to forecast 
how the CO2 level will change during the upcoming session. 
This prediction is based on various parameters such as room 
size, number of participants, outdoor weather conditions, and 
time of the day.

r Figure 5. Design-to-production of the stage linked the 
computational design (top left) with numerically controlled 
production of components (bottom left and right). 
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A hierarchical clustering analysis of data collected from the 
meeting sessions held in 26 meeting rooms has been imple-
mented to accomplish this. This analysis allowed the identifica-
tion of seven distinct patterns of CO2 evolution.

Each pattern is characterized by an initial value and the rate 
of increase during the first and second halves of the session 
(Figure 6). The data for this analysis was obtained from CO2 
sensors developed by an industrial partner, installed on meeting 
room desks, and recorded CO2 values every 10 seconds over 
five months. The study involved more than 300 employees 
who used the meeting rooms, which were naturally ventilated 
and varied in size, for sessions typically lasting around one hour.

The goal was to find a combination of external parameters to 
indicate which of the seven patterns would occur in an upcom-
ing session. Linear Discriminant Analysis (LDA) was employed 
for this purpose, considering parameters such as room size, 
number of occupants, indoor conditions (temperature, humid-
ity, light, etc.), outdoor conditions (temperature, humidity, lumi-
nosity, wind speed, etc.), time of day, and the concentration 
level of indoor air pollutants before the session.

The results revealed specific indications in the form of a 
combination of external parameters that can predict which of 
the seven patterns of CO2 evolution is most likely to occur in 
an upcoming session (Zhong et al. 2021). 

3.1.2 Robotic Control Using Predicted Patterns of Air Quality 
Evolution
Several solutions were envisioned bridging from predicting 
poor indoor air quality to actions that prevent hazardous condi-
tions. In the test case presented in Section 3.1.1, the goal was 
to engage the meeting room users to take preventive action 
using alternative forms of interaction design, namely personal 
displays (e.g., smartwatches (Zhong et al. 2021)), public devices, 
and ambient embodied by the meeting room window. In these 
scenarios, the problem is that interruption is required. In the 
context of meetings, this can be perceived as intrusive, thus 
creating a countereffect, with predictions and required coun-
termeasures eventually being ignored. A primary advantage of 
a robotic automated approach is that it is unobtrusive and func-
tions autonomously without human intervention. 

The second possible advantage relates to the autonomous 
window closing once enough fresh air is provided to lose mini-
mal thermal comfort and minimize the energy needed to main-
tain thermal comfort. This can be done by simply interfacing 
the prediction algorithm with the actuation system that con-
trols the ventilation.

However, beyond automating the ventilation system with 
robotic systems that can control the opening and closing of 
windows, there is an opportunity to adapt the spatial configu-
ration of the spaces to reshape how the concentration of air 
pollutants increases in the meeting room. 

Previous studies show that among the parameters that deter-
mine the level of CO2 in a shared space, the spatial character-
istics of the environment, including the furniture’s positioning 
and the room’s geometrical form, are notable. This condition 
opens an opportunity to examine how, by changing the shape 
and arrangement of the space (through robotic techniques), one 

could reshape the evolution of the concentration of air pollutants 
and thus postpone the time when preventive action is needed. 

Future Steps
The AI-supported approaches for lighting and ventilation pre-
sented will be further advanced and integrated with heating in 
the future. The overall goal is to determine the indicators that 
can be applied to tune the environment to the different pref-
erences and needs of occupants for ventilation, lighting, and 
thermal quality. To adapt to the contextual needs of the users 
and their activities and achieve an effective embedded AmI, two 
main challenges have to be addressed at the level of AI devel-
opment: (a) classifying and detecting the context characterized 
by parameters such as social and individual activities as well as 
the subjective perception of comfort assessed by physiological 
and behavioral signals, and (b) training reinforcements learn-
ing models that control the actuators and perpetually correct 
themselves based on the changes in the contextual parameters. 
Furthermore, the integration into building components presents 
challenges for material systems (e.g., walls, floors, etc.) consisting 
of various subsystems (e.g., sensor-actuators, wiring, etc.) that 
need consideration from the very start of the D2RP&O process.

In this context, the D2RP&O is part of a larger Design-to-
Robotic-Production-Assembly and Operation (D2RPA&O) 
process that integrates all aspects of building design, construc-
tion, and operation from the very beginning of the process and 
with AI supporting at various stages of the process (inter al. 
Bier et al. 2022). 

The main challenge is to conceptualize AmI as a distributed 
AI-supported cyber-physical system and embed it into building 
components.1 This involves two models:

(a) The human model, which aims to determine 
approaches that best can be applied to tune the environ-
ment to the different preferences and needs of occupants 
with respect to light, air, and thermal quality. Unobtrusive 
sensing methods are embedded in the built environment 
to collect anonymized data about everyone’s physiological 
responses to environmental qualities. For example, visual 
sensors can log autonomic reactions to lighting conditions 
such as blinking rate, pupil size change, frowning, and 
squinting. The inferences from these parameters can be 
validated against well-established but intrusive methods 
of predicting human mood, emotion, and comfort, such 
as on-skin physiological sensing and brain signal loggers. 
In addition, data about human needs are complemented 
with information about human conscious preferences and 
desires through sensing behavioral cues, e.g., interaction 
with digital and physical building elements.  
 
(b) The built environment model involves the integration 
of intelligent local control devices into building compo-
nents, developing reliable indoor environmental indica-
tors and effective D2RP&O mechanisms, i.e., robust 
control algorithms and fast deploying sensors and actua-
tors, efficient communication protocols for distributed 
networks, and sustainable embedding procedures. The 

PEER R
E

V
IE

W
 / C

LIM
ATE



162

TA
D

 8
 : 

1

focus is on developing the D2RPA&O process and the 
1:1 prototyping of building components with integrated 
sensor actuators. While the D2RPA&O process implies 
advancing a reliable design (modeling and simulation) to 
the production and operation system, the prototyping 
involves testing and improving building components. By 
establishing a framework for an integrated approach from 
3D to 4D modeling and simulation of indoor-outdoor 
environments to the D2RPA&O of building components, 
the knowledge indicating system requirements for dimen-
sions, complexity during installation, and degree of climate 
control that can be achieved, scalability and life-cycle will 
be developed.

5. Conclusion 
The example simulation cases showcased the use of 
AI-supported AmI to address lighting and ventilation require-
ments. Both proved AI’s potential to address real-world prob-
lems such as AmI with insufficient local control, rendering 
spaces, if not unhealthy, uncomfortable. Knowing that the inte-
gration of AI-supported AmI systems into the built environment 
using D2RP&O makes building production and operation more 
energy efficient, thus reducing CO2 emissions (inter al. Louis 
et al. 2014), further advancement is needed as only some of 
the relevant aspects have been considered so far. The goal is 
to develop a systematic approach for integrating AI-supported 
AmI applications into adaptive architecture solutions that can 
respond to occupants’ changing needs and preferences.

Since indoor climate has an impact on outdoor climate 
and both have a massive impact on humans, advancing 
AI-supported approaches for ambient control is of great rel-
evance. When acknowledging that building operations are 
responsible for ±27% of annual CO2 emissions and infrastruc-
ture materials and construction are responsible for an addition-
al ±13% annually, both must be addressed integratively to meet 
sustainability goals.7, 8 

While AI-supported lighting and ventilation were explored 
to a certain degree in the presented case studies, heat-
ing still needed to be investigated. Also, they lack integration 
with D2RPA&O methods, which will be implemented in the 
next step. The approach to integrate in the built environment 
AI-supported lighting, ventilation, and heating systems that 
would automatically adjust to the required environmental con-
ditions based on actively tracked and collected data on out-
door and indoor conditions would ensure control accessible 
from anywhere via mobile apps while contributing to indoor—
and indirectly outdoor—climate improvement. 
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Notes
1. UN report: https://www.unep.org/news-and-

stories/press-release/co2-emissions-buildings-and-
construction-hit-new-high-leaving-sector.

2. UN-agenda: https://sdgs.un.org/goals. 

3. ML algorithms build models based on sample data, 
i.e., training data, to make predictions or decisions.

4. D2RP&O is part of a larger Design-to-Production-
Assembly and Operation (D2RPA&O) process that 
integrates all aspect of building design, construction, and 
operation from the very beginning of the process.

5. Grasshopper is a visual programming environment 
that runs within the Rhinoceros 3D application. 

6. CNNs are a variant of artificial neural networks that is 
inspired by biological neural networks able to ‘learn’ 
to perform tasks by learning from examples.

7. Cyber-physical systems are composed of physical (i.e., 
hardware) and cybernetic (i.e., software) systems.

8. UN report: https://www.unep.org/news-and-
stories/press-release/co2-emissions-buildings-and-
construction-hit-new-high-leaving-sector 

9. UN-agenda: https://sdgs.un.org/goals
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