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Abstract
We solve a challenging scheduling problem with parallel
batch processing and two-dimensional shelf strip packing
constraints that arises in the tool coating field. Tools are as-
sembled on so-called planetaries (batches) before they are
loaded into coating machines to get coated. The assembling
is not trivial and must fulfil specific constraints, which we
refer to as shelf strip packing constraints. Further, each tool
is associated with a starting time window s.t. tools can only
be put on the same planetary if their time window overlap.
The objective is to minimise the makespan and the number of
required planetaries. Since the problem naturally decomposes
into scheduling and packing parts, we tackle the problem with
a two-phase logic-based Benders decomposition approach.
The master problem assigns items to batches. The first phase
solves as subproblem the packing problem by checking if
the assignment is feasible, whereas the second phase solves
the scheduling subproblem. The approach is compared with
a monolithic mixed integer linear programming approach as
well as a monolithic constraint programming approach. Ex-
perimental evaluation shows that our proposed approach out-
performs the state-of-the-art benchmarks by solving more in-
stances to optimality in a shorter time.

1 Introduction
An essential task in the tool coating industry is to assemble
so-called planetaries with tools that should be coated with
the same coating material before they are put into a coating
machine. To increase productivity, assembling as many tools
as possible on one planetary is important. Further, tools are
assigned with a time window that indicates when the coat-
ing process should start s.t. tools can only be put on the same
planetary if their time window overlap. The assembly takes
place in two steps: (1) tools are placed on cups and (2) cups
are put on planetaries. This advanced bin packing problem
can be modelled as the two-dimensional shelf strip packing
(2DSSP) problem (Caprara, Lodi, and Monaci 2005). An-
other important aspect in the industry is not only to assemble
planetaries but also to consider the underlying scheduling
problem, i.e., selecting for each assembled planetary a coat-
ing machine and a specific time when coating should start.
The coating duration depends on the coating material and
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Figure 1: Example of an SPBP instance with five items,
width W = 4, and height H = 2. At least two batches
are needed to pack all items, ignoring time windows and
items’ family type. The first batch consists of two shelves
with items {1} and {2, 5}, respectively, whereas the second
batch consists of one shelf with items {3, 4}.

between two subsequent coating processes, a specific setup
time is needed to, e.g., clean the machine.

Therefore, this work covers a challenging variant of the
scheduling with parallel batch processing (SPBP) problem
to model important aspects of the above described industrial
problem. In this scenario, two-dimensional items can only
be grouped into batches when they fulfil a 2DSSP constraint.
The batches are then sequentially processed by one of multi-
ple homogeneous machines s.t. the makespan and the num-
ber of batches are minimised. The machines have a specific
width and height. To fulfil the 2DSSP constraint, items are
first grouped into so-called shelves (cups) s.t. items within
a shelf can only be placed side by side and the total width
of the items does not exceed the width of the machines. The
tallest item of a shelf defines the height of a shelf. In the sec-
ond step, the shelves are grouped into batches (planetaries)
by placing them on top of each other s.t. the shelves’ total
height is at most the maximum height of the machines. Each
item belongs to a specific family and is associated with a
time window. Items can only be packed into the same batch
if they belong to the same family and their time windows
overlap. A batch’s processing time depends on the packed
items’ family. In addition, there is a sequence-dependent
setup time between batches that also depends on the fami-
lies. Figure 1 shows an example of five items with different
dimensions that are grouped into two batches. Note that our
problem definition abstracts away some of the more compli-
cated application-specific details (e.g., different character-
istics for different machines or different cup and planetary
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types) in order to investigate the core complexities of the
SPBP problem with 2DSSP constraints.

To our knowledge, the combination of SPBP and 2DSSP
constraint is not considered in the literature so far. This paper
tries to solve the SPBP problem with 2DSSP constraints ex-
actly by a logic-based Benders decomposition (LBBD) ap-
proach that splits the problem into a master problem and two
subproblems. The master problem assigns items to a mini-
mum number of batches by solving a mixed-integer linear
programming (MIP) model. The first subproblem checks if
the assigned items fulfil the 2DSSP constraints by solving a
network-flow-based (NF) MIP model over a binary decision
diagram (BDD). To strengthening the master problem, the
NF model is added to it as a linear relaxation each time the
2DSSP constraints are violated. Finally, the second subprob-
lem uses a constraint programming (CP) model to schedule
the batches to minimise the makespan.

We contribute to the literature by, first, formalising the
real-world problem. Second, we devise and compare mul-
tiple modelling approaches to solve the problem exactly:
a monolithic MIP model, a monolithic CP model, and an
LBBD approach. Third, to do so we formulate a BDD model
of the 2DSSP constraint.

2 Related Work
Variants of the SPBP problem are well-studied in the liter-
ature. An important field where batch scheduling finds its
application is semiconductor manufacturing, where batch-
ing can be modelled as a bin packing problem (Mönch et al.
2011). A recent survey (Fowler and Mönch 2021) distin-
guishes between compatible and incompatible family types,
different machine environments and performance measures.
An SPBP problem with compatible family types means that
items of different families can be batched together, whereas
incompatible types allow only to batch items of the same
family together. The problem considered in this work con-
siders items with incompatible family types and a paral-
lel machine environment. Besides various works on single
and multi machines, i.e., Trindade, de Araújo, and Fampa
(2021); Queiroga et al. (2021); İbrahim Muter (2020), the
literature also considers different kinds of flow shop and job
shop environments, i.e., Shahnaghi et al. (2016b,a); Wang
and Luh (1997). For more information on alternative objec-
tive functions and proposed solution techniques, we refer to
the survey from Fowler and Mönch (2021).

A related problem to the SPBP problem with 2DSSP con-
straints is the single batch processing problem with two-
dimensional bin packing constraints (SBPM-2D) introduced
by Li and Zhang (2018), which deals with two-dimensional
items and two-dimensional batches. Items are allowed to
be rotated and are always placed parallel to the machine’s
edge. They presented a mixed integer programming (MIP)
model to solve the problem exactly, as well as heuristic al-
gorithms to solve larger instances. The heuristic algorithms
include a biased random-key genetic algorithm, four single-
sequence-based heuristics, and a hybrid greedy algorithm.
There are two main differences between the SPBP problem
with 2DSSP constraints and the SBPM-2D problem: (1) the

latter considers a single machine, whereas this work consid-
ers multiple parallel machines, and (2) the two-dimensional
items can be rotated and freely moved so that they fit into
a rectangular area whereas here the items are further con-
strained by arranging them into shelves.

Another relevant work by Tang and Beck (2020) solves
a two-stage bin packing and hybrid flowshop scheduling
problem (2BPHFSP) that arise in composites manufactur-
ing. The objective is to minimise the number of open bins
and the total job tardiness. The work proposes five solu-
tion approaches; a three-phase LBBD approach, a mono-
lithic CP approach, and various hybrid/CP heuristics. While
the problem itself is not identical with our problem (one-
dimensional two-stage bin packing vs. 2DSSP and hybrid
flowshop scheduling vs. multi machine scheduling), we will
use a similar three-phase LBBD approach to solve the SPBP
problem. The first stage, the master problem, groups items
into batches s.t. the second stage, the first subproblem,
checks if the assigned items fulfil the packing constraints.
If this is the case, the third stage schedules the batches to
machines s.t. the total tardiness is minimised.

3 Problem Description
The SPBP problem with 2DSSP constraints consists of a set
of n items I = {1, 2, . . . , n} and a set of m machines M =
{1, 2, . . . ,m}. Each item i ∈ I is associated with a width
wi ∈ N>0, a height hi ∈ N>0, a release time ri ∈ N>0,
and a deadline di ∈ N>0. Note that the time window [ri, di]
refers to the start time of processing item i on a machine. In
addition, each item belongs to a family ai ∈ A from the set
of families A = {1, 2, . . . , o} with o family types. For con-
venience, we define Ia = {i ∈ I | ai = a} as the subset of
items that belong to family a. LetRa(t) = {i ∈ Ia | ri = t}
and Da(t) = {i ∈ Ia | di = t} be the sets of all items of
family a that have the same release times and deadlines t,
respectively. The task is to group the items into batches that
will be processed sequentially on a machine j ∈ M . Items
can only be grouped into a batch if their time windows over-
lap, if all items belong to the same family and if they can
be feasibly packed into the machine. Thereby the items are
placed on a two-dimensional strip with widthW ∈ N>0 and
height H ∈ N>0 in two stages. First, a batch of items is
grouped into shelves where items are placed horizontally on
a shelf s.t. the total width of the placed items is at most W .
The height of a shelf is determined by its tallest assigned
item. Second, the shelves are packed vertically into the ma-
chine. If the total height of the shelves is at most H then the
packing is feasible and the machine can process the items.
The processing time pa ∈ N>0 depends on the loaded item’s
family a ∈ A. Between two batches a, b ∈ A : a 6= b, the
set-up time δab also depends on item families. The starting
time of a batch must be within the assigned item’s time win-
dow.

A solution to the SPBP problem consists of a set of
batches B. Each batch k ∈ B is associated with a set
of assigned items I(k), a family a(k), a time window
[r(k), d(k)] := ∩i∈I(k)[ri, di] , an assigned machine m(k),
and an assigned starting time s(k) ∈ [r(k), d(k)].
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Time Window Decomposition Most of the approaches
devised in Section 5 will make use of a so-called time win-
dow decomposition. Instead of assuming that a solution can
have at most n batches and the assigned items determine
the time window and the family of a batch, we assume that
there are already predefined batches k ∈ B with an assigned
time window [r(k), d(k)] and an assigned family a(k) in
advance. Only items that overlap entirely with the batch’s
time window, i.e. items of set X(k) = {i ∈ Ia(k) | ri ≤
r(k)∧d(k) ≤ di}, can be assigned to batch k. Furthermore,
we require that the intersection of the items’ time window
must result in [r(k), d(k)], i.e. there must be at least one item
assigned to the batch each from set R(r(k)) and D(d(k)).
The advantages are two-folded: (1) in this way, symmetries
are removed since not every item can be assigned to every
batch, and (2) it is more convenient to define logic-based
Benders cuts since batches with a certain time window can
be addressed directly (see Eq. (8) and (9) in Section 5.3). To
this end, let set Ta = {[ri, di] ∩ [rj , dj ] | i, j ∈ Ia} be the
set of all possible intersected time windows of items of fam-
ily a, which can be computed in at most O(n2) steps. For
each family ā ∈ A and each time window [r̄, d̄] ∈ Tā we
add min{|R(r̄)|, |D(d̄)|} batches k to B with release time
r(k) := r̄, deadline d(k) := d̄, and family a(k) := ā.

4 BDDs for the 2DSSP Constraint
In order to model the 2DSSP constraint, our approaches in
Section 5.1 will use a network flow model on an exact zero-
suppressed binary decision diagram (BDD) that represents
each possible assignment of a set X of items to shelves. The
main idea is that the model is infeasible if and only if it is
impossible to assign the items in X so that the 2DSSP con-
straints are satisfied.

Originally, BDDs were introduced to represent Boolean
functions graphically. In the last decade, BDDs found their
application also in combinatorial optimisation, where they
are successfully applied to well-studied standard optimisa-
tion problems (Andersen et al. 2007; Cire and van Hoeve
2013; Bergman et al. 2014; Kinable, Cire, and van Hoeve
2017). For a detailed introduction we refer to the textbook
by Bergman et al. (2016) and to the survey of recent ad-
vances by Castro, Cire, and Beck (2022).

In the context of this work, a BDD DX = (NX ,AX)
for items X ⊆ I is a layered-directed acyclic multi-graph
with node set NX , arc set AX , and root node r ∈ NX . The
nodes are partitioned into |X| + 1 layers Lq ,0 ≤ q ≤ |X|.
The first layer L0 is a singleton containing only r. An arc
α = (u, u′) ∈ AX with source node u ∈ Lq has always a
target node u′ ∈ Lq′ in a successive layer, i.e., q′ > q. Each
path from r to a node of the last layer represents the feasible
assignment of items fromX to a shelf as follows. Each layer
Lq , 0 ≤ q < |X| is associated with an item l(q) ∈ X .
Each node u ∈ Lq has at most two outgoing arcs. A 0-arc
represents the decision to assign the item to the shelf not and
is always associated with an arc value vα = 0. In contrast, a
1-arc represents the assignment of the item and is associated
with value vα = 1. To compile a BDD, we use the top-
down construction (TDC) (Bergman et al. 2016) method by

(0, 0)

(0, 0)

(0, 0)

(1, 2) (0, 0)

(1, 3) (1, 2) (2, 2) (0, 0)

(1, 4) (1, 3) (1, 2) (2, 4) (2, 3) (2, 2) (1, 1)

x1

x2

x3

x4

x5

Figure 2: Example of an exact zero-suppressed BDD for
item set X = {1, 2, 3, 4, 5}. The items’ dimensions can be
taken from Figure 1 with W = 4. The numbers on the side
of the nodes refer to the nodes’ state (h,w). If we assume
H = 4, a feasible packing is possible with three shelves.
The accentuated arcs indicate the corresponding flow.

associating each node u ∈ Nk with a state (h(u), w(u)) that
consists of the current height h(u) and the current withw(u)
of the shelf depending on the items that are already assigned
along the paths from r to u. When item i ∈ X(k) can be
feasibly assigned to the shelf, i.e., w(u) + wi ≤ W , than a
successor state from state (h(u), w(u)) can be computed by
(max{h(u), hi}, w(u)+wi). If the item is not assigned, then
the successor state is unchanged. Figure 2 shows an example
of an exact BDD for five items.

Compilation The TDC compiles the BDD layer-by-layer,
starting with the first layer with node r and state (0, 0). At
each layer Lq , 0 ≤ q < |X| all successor states are cre-
ated for each node u ∈ Lq and corresponding nodes u′
are inserted into Lq+1 together with arcs (u, u′). If multi-
ple nodes have the same states then those nodes are merged
into one node s.t. all incoming arcs are redirected to this
newly merged node. Then layer Lq+1 is processed in the
same way. This procedure is repeated until the last node is
reached. Note that we do not merge nodes in the last layer
to one target node, which is usually done in the literature.
Instead, we use the nodes’ state information to get the actual
height of the shelves. During compilation, we use a dynamic
variable ordering (Bergman et al. 2012), meaning that we
do not assign items to layers in advance but rather decide at
each current layer which item of the set of not yet assigned
items is assigned to the layer. We always select the item that
will produce the fewest successor states. Furthermore, we
produce a zero-suppressed BDD (Minato 1993) as follows.
During the compilation of the BDD, each time when a node
at the current layer will have only an outgoing zero-arc, we
do not create a successor node. Instead, we move the node
from the current layer to the next layer.
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Network-Flow Model To check if the 2DSSP constraint
holds for a given set X ⊆ I of items, we compile a BDD
DX = (NX ,AX) and define a network-flow (NF) model
NF(DX , x) with flow variables fα ∈ N≥0, α ∈ AX and
binary variables xi, i ∈ I (Castro, Cire, and Beck 2022).
The idea is that model NF(DX , x) is feasible if and only if
the 2DSSP constraint is fulfilled for all items in i ∈ X for
which xi = 1 holds. The model is as follows.

NF(DX , x) = {fα ∈ AX : (1a)∑
α∈Ao(u)

fα −
∑

α∈Ai(u)

= 1 u ∈ NX \ ({r} ∪ L|X|) (1b)

∑
α∈Ao(u),u∈Lq

vα fα = xl(q) 0 ≤ q < |X| (1c)

∑
α∈Ai(u),u∈L|X|

h(u) fα ≤ H} (1d)

The flow conservation constraints (1b) ensure that the in-
coming flow is always equal to the outgoing flow for each
node in the BDD. The terms Ao(u) and Ai(u) refer to
outgoing and incoming arcs of node u, respectively. Con-
straints (1c) establish that for each selected item i ∈ X that
should be part of the packing, i.e., xi = 1, there goes exactly
one unit of flow over a 1-arc of the corresponding layer. The
last Constraints (1d) secure that total shelf height of the se-
lected paths is at most the maximum allowed height H . The
network flow model will be used in the MIP formulation in
Section 5.1 to model the 2DSSP constraints as well as in the
LBBD approach in Section 5.3 to solving packing subprob-
lems. Note that there is also a strong connection between
network-flow models based on BDDs and arc-flow models.
In fact, the 2DSSP can be also modelled by an arc-flow for-
mulation by adapting the ideas from Brandão and Pedroso
(2016). However, preliminary experiments showed that the
above model (1a)–(1d) often provides a stronger relaxation
than the considered arc-flow formulation.

5 Solution Approaches
In the following sections, we solve the SPBP problem with
2DSSP constraints by using different MIP and CP formula-
tions, which are solved by CPLEX and ILOG CP Optimizer,
respectively, and notably using a LBBD approach.

5.1 Mixed Integer Programming Formulation
The proposed MIP model uses a discrete event formula-
tion to model the scheduling aspects of the SPBP problem.
Hence, for each pair of batches k1, k2 ∈ B we use binary
decision variables vjk1k2 to indicate if k2 is directly sched-
uled after k1 on machine j (=1) or not (=0). Binary decision
variable yjk indicates if batch k ∈ B is assigned to machine
j ∈ M (=1) or not (=0). To express if item i ∈ X(k) is
assigned to batch k ∈ B, binary decision variables xki are
used. Finally, binary decision variables zk indicate if batch
k ∈ B is used (=1) or not (=0). The first model term,

min θ +
∑
k∈B

zk, (2a)

minimises the makespan θ and the number of used batches.
The packing aspects are modelled by∑

k∈B|i∈X(k)

xki = 1 i ∈ I (2b)

xki ≤ zk k ∈ B, i ∈ X(k) (2c)

zk ≤
∑

i∈R(r(k))

xki k ∈ B (2d)

zk ≤
∑

i∈D(d(k))

xki k ∈ B (2e)

NF(DX(k), {xki | i ∈ X(k)}) k ∈ B (2f)

where Constraints (2b) ensure that each item is assigned to
exactly one batch and Constraints (2c) provide that if an item
is assigned to batch k then k must also be used. Note that
the model uses the time window decomposition, i.e. each
batch k ∈ B has a predefined time window [r(k), d(k)] and
a predefined family a(k) s.t. only items from set X(k) ⊆ I
can be feasibly assigned to k. Constraints (2d) and (2e) es-
tablish that for each used batch k the intersection of the as-
signed items’ time windows results in the batch’s time win-
dow [r(k), d(k)]. The last Constraints (2f) cover the 2DSSP
constraints by creating for each batch k a BDD and adding
the network flow constraints (1a)–(1d) to the MIP model.
Note that due to the time window decomposition, all items
in X(k) have the same family and their time windows over-
lap. Constraints∑

j∈M

yjk = zk k ∈ B̂ (2g)

∑
k2∈B

vjk1k2 = yjk1 k1 ∈ B̂, j ∈M (2h)

∑
k1∈B

vjk1k2 = yjk2 k2 ∈ B̂, j ∈M (2i)

cover the scheduling part, where batch k̂ ∈ B̂ = B ∪ {k̂}
represents a dummy batch indicating the first and last as-
signed batch to a machine. Constraints (2g) ensure that ev-
ery used batch is assigned to exactly one machine and Con-
straints (2h) and (2i) guarantee that every assigned batch has
a direct successor and direct predecessor, respectively. The
big-M constraints

Ck2 − Ck1 + V (1− vjk1k2) ≥ δa(k1)a(k2) + pa(k2) (2j)

for each pair of batches k1, k2 ∈ B̂, k1 6= k2, and each ma-
chine j ∈ M , take the sequence dependent setup times into
account with constant V = δa(k1)a(k2) + d(k1) + pa(k1) −
r(k2) and completion timesCk ∈ Z≥0 for each batch k. The
final set of constraints

zk̂ = 1 (2k)
Ck̂ = 0 (2l)
r(k) ≤ Ck − pa(k) ≤ d(k) k ∈ B (2m)
Ck ≤ θ (2n)

ensure that each batch starts within its time window and
compute the makespan θ.

5.2 Constraint Programming Formulation
The proposed CP formulation for the SPBP problem mod-
els the 2DSSP constraints by explicitly assigning items to
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shelves and shelves to batches. It does not use the time win-
dow decomposition described in Section 3 since the follow-
ing model outperformed the time window decomposition
approach in preliminary tests. Since items are batched to-
gether if they belong to the same family, we assume that
there are for each family type a ∈ A at most |Ia| shelves
and batches. Let Sa = Ba = {1, 2, . . . , |Ia|} be the index
sets for shelves and batches, respectively. Integer decision
variables xit

ai ∈ Sa represent the assignment of item i ∈ Ia,
a ∈ A to a shelf from Sa. In the same manner, integer de-
cision variables xsh

as ∈ Ba represent the assignment of shelf
s ∈ Sa to a batch fromBa. The scheduling aspects are mod-
elled by optional interval variables bak and yjak for j ∈M ,
k ∈ Ba, and a ∈ A, where bak is present in the model if and
only if batch k of family type a is used and yjak is present
if and only if batch k is scheduled on machine j. The CP
model is as follows. The term

min max
k∈Ba,a∈A

end(bak) +
∑
a∈A

cntDiff({xsh
ai | i ∈ Ia}) (3a)

minimises the completion of the last scheduled batch, i.e.
the makespan and the number of used batches, by using the
ILOG global constraint IloCountDifferent. The constraints

pack(W, {xit
ai | i ∈ Ia}, {wi | i ∈ Ia}), a ∈ A (3b)

use the global constraint IloPack and assign each item to a
shelf so that the assigned items do not exceed the width W .
Unfortunately, we can not use the global constraint IloPack
to assign shelves to batches since the constraint expects to
know the height of the shelves as a constant in advance.
However, this is not the case since the height hsh

as of a shelf
s ∈ Sa depends on the assigned items computed by con-
straints

hi ≤ hsh
a,xitai

, i ∈ Ia, a ∈ A (3c)

using the IloElement constraint to express variable xit
ai in

the index of hsh
as. Constraints∑

s∈Sa

hsh
as(x

sh
as = b) ≤ H, b ∈ Ba, a ∈ A (3d)

ensure that the total height of batch b of type a does not
exceed H by adding up the heights of each assigned shelf.
Thereby, the expression (xsh

as = b) is interpreted as one if
it is true and zero otherwise. To ensure that only items with
overlapping time windows are assigned to the same batch
constraints

ri ≤ rsh
a,xitai

≤ dsh
a,xitai

≤ di i ∈ Ia, a ∈ A (3e)

rsh
as ≤ rb

a,xshas
≤ db

a,xshas
≤ dsh

s s ∈ Sa, a ∈ A (3f)

are added to the model, using the integer decision variables
rsh
as, r

b
ak and dsh

as, d
b
ak representing the release time and dead-

line of shelves and batches, respectively. Constraints

max({xsh
ai | i ∈ Ia}) < cntDiff({xsh

ai | i ∈ Ia}) (3g)

(s >= max({xit
ai | i ∈ Ia}))→ (xsh

as = 0), s ∈ Sa (3h)

for each a ∈ A break some symmetries by ensuring that
the index of used batches is consecutive and an unused shelf
is always assigned to batch 0. Finally, interval variables are
connected by

(k ≤ max({xsh
as | s ∈ Sa}))↔ Pre(bak) (3i)

Pre(bak)→ (rb
k ≤ start(bak) ≤ db

k) (3j)

for k ∈ Ba, a ∈ A, where the first set of constraints enforce
that the interval variable bak is present in the model if and
only if a shelf is assigned the batch k ∈ Ba. The second
set of constraint enforces that the start time of the batch is
between the batch’s release time and deadline. Note that Pre
refers to the ILOG constraint IloPresenceOf. The constraints

alternative(bak, {yjak | j ∈M}), k ∈ Ba, a ∈ A (3k)
noOverlap({yjak | k ∈ Ba, a ∈ A}, δ), j ∈M (3l)

schedules a batch to a specific machine and ensure that
batches assigned to the same machine do not overlap in time.
Finally constraints

Pre(yjk)→
∨

p∈Ba:p≥k

Pre(yj−1p) (3m)

for all k ∈ Ba, a ∈ A, j ∈ M \ {0} break symmetries by
enforcing that if batch k is scheduled at machine j then there
must be a batch assigned to machine j − 1 with an higher
index than k.

5.3 Logic-Based Benders Decomposition
The SPBP problem naturally decomposes into a two-
dimensional packing problem and a parallel machine
scheduling problem. Hence, applying a decomposition
approach to solve the SPBP problem seems promis-
ing. The logic-based benders decomposition (LBBD) ap-
proach (Hooker et al. 1995), a generalisation of the classical
Benders decomposition (Benders 1962), has been applied
to a wide range of discrete optimisation problems (Hooker
2019). The idea is to decompose the problem into a mas-
ter problem (MP) and one or more subproblems. At each
iteration, the MP fixes a subset of the decision variables. Af-
terwards, the subproblems are solved by fixing the remain-
ing variables subject to the already fixed decision variables.
The solutions of the subproblems form a feasible solution
to the optimisation problem. From this solution, logic-based
Benders cuts are deduced and added to the MP s.t. the MP
chooses a different configuration in subsequent iterations.
Since the MP considers only a subset of variables, the MP
is a relaxation of the problem. Its solution provides a lower
bound that grows non-decreasingly with further iterations.
As soon as the objective value of the solutions of the sub-
problems is equal to the lower bound provided by the MP,
the LBBD approach proves optimality and terminates.

For the SPBP, the MP assigns items to batches. Our ap-
proach uses two kinds of subproblems. The first kind, a fea-
sibility problem, checks for each batch if the assigned items
can be feasibly packed according to the 2DSSP constraints.
If this is not the case, then a corresponding logic-based Ben-
ders cut is added that forbids the item assignment, and the
MP is solved again. If every item assignment is feasible, the
second kind of subproblem is solved. This subproblem is
a scheduling problem that assigns each batch to a machine
and minimises the makespan. After the scheduling subprob-
lem is solved, a corresponding cut is added to the MP. This
procedure is repeated until the time limit is succeeded or
optimality proven. Figure 3 illustrates the described LBBD
approach.
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Figure 3: Overview - Logic Based Benders Decomposition

Master Problem The MP assigns items to batches using
the time window decomposition described in Section 3. The
MIP model

min θ +
∑
k∈B

zk (4a)

Constraints (2c)–(2e) (4b)∑
i∈X(k)

xki wi hi ≤ zkW H k ∈ B (4c)

zk (r(k) + pa(k)) ≤ θ k ∈ B (4d)
Packing Benders Cuts (4e)
Scheduling Benders Cuts (4f)

assigns values to binary decision variables xki for each
batch k ∈ B and item i ∈ X(k) to indicate if i is assigned to
k (=1) or not (=0) while minimising the makespan θ and the
number of used batches. Binary variables zk indicate if batch
k is used (=1) or not (=0). Constraints (4b) secure that each
item is assigned to exactly one batch and if a batch is used
then there must be items assigned to it s.t. the items’ time
window results in the batch’s time window. Constraints (4c)
are a relaxation of the 2DSSP constraints by saying that the
total area of assigned items must be smaller than the area of
the batch. Constraints (4d) estimate the makespan by mak-
ing use of the fact that if a batch is used than the makespan
must be at least the release time of the batch plus the corre-
sponding processing time.

Packing Subproblem Let B̄ ⊆ B be the set of used
batches at the current iteration of the LBBD approach af-
ter the MP was solved. To check for each batch k, if the item
assignment I(k) is feasible and fulfils the 2DSSP constraints
we create a BDD DI(k) and solve the network-flow model

min
∑

α∈Ai(u), u∈L|I|

h(u) fα (5a)

NF(DI(k), {x̄ki | i ∈ I(k)}) (5b)
x̄ki = 1 i ∈ I(k), (5c)

minimising the total shelf height with binary decision vari-
ables x̄ki to indicate if item i is used (=1) or not (=0). The
usefulness of this variables will be explained in the next
paragraph. Since we only want to check if model (5a)–(5c)
is feasible, we terminate CPLEX as soon as a feasible so-
lution (a witness for feasibility) is found. If this is the case
then we proceed with the next batch in B̄. Otherwise, if no
feasible solution exits, we add feasibility cuts∑

i∈I(k)

xk′i ≤ |I(k)| − 1, k′ ∈ B : I(k) ⊆ X(k′) (6)

to the maser problem in order to forbid item assignment
I(k) in subsequent iterations.

To strengthen the cuts (6), we are interested in finding
the core conflict set of items responsible for violating the
2DSSP constraints. Hence, we want to find a smaller set
I ′(k) ⊆ I(k) s.t. model (5a)–(5c) is still infeasible. Here
come variables x̄ki into play. To this end, we sort items in
I(k) according to their area in non-decreasing order, assum-
ing that larger items are much more responsible for infea-
sibility. Then we remove the first item i′ according to this
sorted sequence and solve the model (5a)–(5c) again using
the same BDD by setting the corresponding x̄ki′ to zero. If
the model is still infeasible then we proceed with the sec-
ond item of the sorted sequence. This step is repeated until
the model becomes the first time feasible. Then the remain-
ing items, together with the last item i′ under consideration,
become set I ′(k). The procedure can be speed up by using
binary search.

If at least one batch violates the 2DSSP constraints, the
MP is solved again with the newly added feasibility cuts (6).

Since the network-flow model provides a strong linear re-
laxation, we also add stronger cuts by creating a BDDDX(k)

for each batch k where I ′(k) ⊆ X(k) holds and adding the
corresponding network-flow model as a linear relaxation to
the MP. We will discuss the impact of this in Section 6.

Scheduling Subproblem Suppose all batches B̄ have a
feasible item assignment. In that case, the scheduling sub-
problem is solved by assigning each batch to a machine and
finding a possible start time to minimise the makespan. This
is done by a CP model that uses interval variables bk with
processing time pa(k) to represent batch k ∈ B̄ and optional
interval variables yjk to represent the assignment of k to ma-
chine j ∈M . The model

min max
k∈B̄

end(bk) (7a)

r(k) ≤ start(bk) ≤ d(k) k ∈ B̄ (7b)

alternative(bk, {yjk | j ∈M}) k ∈ B̄ (7c)

noOverlap({yjk | k ∈ B̄}, δ) j ∈M (7d)

minimises the makespan subject to Constraints (7b) which
ensure that each batch starts within its time window. Con-
straints (7c) use the global ILOG constraint IloAlternative
which secure that each batch is assigned to exactly one ma-
chine. Constraints (7d) use the global constraint IloNoOver-
lap and establish that batches that are assigned on the same
machine do not overlap by taking the setup times δ into ac-
count. In addition, we add similar symmetry-breaking con-
straints (3m) as in Section 5.2 for the CP model.

If the CP solver finds an optimal solution to model (7a)–
(7d) with makespan θ∗ then the logic-based Benders cut

θ ≥ θ∗ (1−
∑
k∈B̄

(1− zk)) (8)

is added to the MP to ensure that if the batches B̄ are se-
lected again then the makespan is at least θ∗. Otherwise, if
the model is infeasible then we add the constraints∑

k∈B̄

zk ≤ |B̄| − 1 (9)
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Figure 4: Comparing the impact of adding linear relaxations
of BBD-based network-flow models to the master problem.
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Figure 5: Performance plot of results obtained from LBBD,
MIP, and CP over all 1260 instances.

to the master model, forbidding the selection of set B̄ in sub-
sequent iterations. As for the packing subproblem, we try to
strengthen Constraints (8) and (9) by reducing the size of B̄.
To this end, we sort the batches according to the start times
in non-decreasing order in case an optimal feasible solution
could be found. If the model is infeasible then the batches
are sorted according to how many times a batch overlaps
with other batches in non-decreasing order.

6 Computational Results
All proposed algorithms were implemented in C++. All tests
were performed on a single core of an Intel Xeon E5-6248R
processor with a memory limit of 32GB RAM. The MIP
and CP models were solved with ILOG CPLEX 20.1 and
CP Optimizer 20.1, respectively, both using default settings.
The time limit in all experiments is set to one hour.

We created a random benchmark instance set. Each in-
stance class of the benchmark set consists of 30 instances
for each combination of n ∈ {20, 40, . . . , 140} items, m ∈
{5, 10} machines, and o ∈ {5, 10}. In total we created 1260
instances, available at https://doi.org/10.4121/21641630.

Our experiments aim to solve as many instances as pos-
sible to proven optimality. Thereby we compare the LBBD
approach from Section 5.3 with the MIP approach and the
CP approach from Sections 5.1 and 5.2, respectively.

Our first experiments show the impact of the LBBD ap-
proach if a linear relaxation of the NF (LRNF) model (1a)–
(1d) based on a created BDD is added to the MP as dis-
cussed in Section 5.3. The left scatter plot in Figure 4 shows
the number of added feasibility cuts (6) to the MP when the
LRNF model is added and when not, while the right plot

shows the total computation time of LBBD. Clearly, adding
the LRNF to the MP reduces the number of required cuts (6)
to get a feasible solution regarding 2DSSP constraints. How-
ever, this only significantly impacts the total computation
times for some instances. This is because adding the LRNF
leads to longer solving times of the MP which does not pay
off in each case. Nevertheless, by adding the LRNF to the
MP, we can solve three more instances optimally and find a
feasible solution for five more instances. Therefore, we stick
to this option in the following experiments.

Figure 5 provides a performance plot over all instances.
The plot is divided into two parts; The left part reveals the
number of instances that could be solved within a certain
number of seconds. If instances cannot be solved to opti-
mality within one hour, the right part provides information
about the remaining optimality gap for the number of in-
stances. The optimality gaps are computed by 100%·(OBJ−
LB)/LB where OBJ is the obtained objective value and LB
is the lower bound obtained from the considered approaches.
The LBBD is able to solve 909 instances to optimality and
finds for 9 instances no feasible solution within one hour.
The highest remaining optimality gap is 20.8%. CPLEX can
solve 729 instances optimally but cannot find a solution for
471 instances at all. Finally, the CP approach finds a feasible
solution for 1011 instances but can only prove optimality for
330 instances.

Table 1 presents the main aggregated results obtained
from LBBD, MIP, and CP. Columns %-gap state the aver-
age optimality gap of final solutions and columns %-opt pro-
vides the percentage of optimally solved instances. Columns
%-fail list the number of instances for which no feasible so-
lution could be found within the time limit, whereas columns
t list the average computation times. If no feasible solution
can be found then the time limit is used to compute the aver-
age computation time. Column cuts list the average number
of cuts applied to the MP. Generally, if the number of ma-
chines decreases, finding an optimal or even feasible solu-
tion is more difficult. This is explained by the fact that more
machines offer more options to schedule items/batches. In
all considered cases, the LBBD approach is able to prove
more or the same number of instances to optimality than the
other approaches in a shorter time. The largest average re-
maining optimality gap of 9.14% is obtained for instances
with 80 items, three machines and ten family types. For this
instance class the MIP approach can find just one feasible
(and optimal) solution within the time limit and the CP ap-
proach provides for 22 instances a feasible solution with an
average optimality gap of 80.77%. The MIP approach can
solve more instances to optimality than the CP approach,
whereas the CP approach finds overall more feasible solu-
tions. On average, LBBD spends 5.9% of the time solving
the MP and 94.1% solving the subproblems.

7 Conclusions
We considered the problem of grouping a set of rectangular
items into batches and scheduling them on a set of machines
s.t. 2DSSP packing constraints, starting time windows, and
incompatible family types must be considered. The objec-
tive is to minimise the number of used batches and the over-
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LBBD MIP CP

o m n %-gap %-opt %-fail cuts t [s] %-gap %-opt %-fail t [s] %-gap %-opt %-fail t [s]

5

3

20 0.00 100 0 4.3 2 0.00 100 0 2 6.04 87 0 487
40 1.06 83 0 339.9 681 0.93 73 7 1189 45.93 37 3 2391
60 2.53 57 0 726.4 1679 1.47 47 40 2077 76.57 3 30 3572
80 3.28 47 0 691.3 1933 2.11 30 50 2566 84.36 0 53 3600

100 2.67 37 3 648.1 2351 1.34 17 70 3067 86.66 0 77 3600
120 2.07 40 0 721.1 2209 0.92 23 63 2886 88.26 0 83 3600
140 3.19 20 3 576.7 2886 0.00 3 97 3502 88.58 0 80 3600

5

20 0.00 100 0 1.1 <1 0.00 100 0 <1 0.00 100 0 1
40 0.00 100 0 2.0 <1 0.00 100 0 6 4.94 93 0 604
60 0.32 90 0 208.3 381 0.32 90 0 434 70.68 7 0 3434
80 0.02 97 0 31.1 189 0.12 90 7 619 77.58 0 3 3600

100 0.87 83 0 157.0 762 0.78 60 27 1887 79.32 0 30 3600
120 0.29 87 0 156.8 519 1.23 57 33 2492 81.72 0 30 3600
140 0.20 87 3 68.4 624 0.00 20 80 3323 83.37 0 60 3600

10

20 0.00 100 0 1.0 <1 0.00 100 0 1 0.00 100 0 1
40 0.00 100 0 1.5 <1 0.00 100 0 15 17.45 77 0 1144
60 0.00 100 0 1.9 <1 0.00 100 0 84 75.66 0 0 3600
80 0.00 100 0 3.9 <1 0.00 100 0 403 78.18 0 0 3600

100 0.00 100 0 6.0 <1 0.00 100 0 1204 78.22 0 0 3600
120 0.00 100 0 9.5 2 0.04 53 43 2970 78.97 0 0 3600
140 0.00 100 0 18.4 50 0.00 7 93 3568 80.01 0 0 3600

10

3

20 0.00 100 0 9.6 38 0.00 100 0 91 0.93 93 0 304
40 5.12 43 0 296.3 2299 3.53 20 53 3040 37.66 17 0 3104
60 5.91 20 0 338.4 3070 3.00 13 73 3194 54.85 13 17 3240
80 9.14 10 0 264.4 3347 0.00 3 97 3501 80.77 0 27 3600

5 100 6.88 7 0 245.8 3393 - 0 100 3600 84.60 0 23 3600
120 7.15 0 3 263.8 3600 - 0 100 3600 87.51 0 60 3600
140 6.09 0 3 256.9 3600 - 0 100 3600 89.70 0 83 3600

5

20 0.00 100 0 1.0 <1 0.00 100 0 <1 0.00 100 0 <1
40 0.00 100 0 7.0 5 0.27 93 3 378 6.68 83 0 618
60 1.44 63 0 129.7 1337 0.77 50 30 1997 48.61 23 3 3017
80 2.20 43 0 220.5 2208 1.28 17 77 3060 73.29 0 7 3600

100 2.97 47 3 172.5 2089 0.00 3 97 3521 78.25 0 33 3600
120 1.71 43 10 76.0 2176 0.00 13 87 3354 81.02 0 67 3600
140 2.48 30 0 112.8 2726 3.72 0 97 3600 83.06 0 60 3600

10

20 0.00 100 0 1.0 <1 0.00 100 0 <1 0.00 100 0 <1
40 0.00 100 0 1.1 <1 0.00 100 0 6 0.00 100 0 54
60 0.00 100 0 1.2 <1 0.00 100 0 30 21.79 60 0 2030
80 0.00 100 0 1.7 <1 0.00 100 0 121 64.48 7 0 3445

100 0.00 100 0 2.4 <1 0.00 100 0 424 71.99 0 0 3600
120 0.00 100 0 4.6 47 0.54 93 3 1245 75.09 0 0 3600
140 0.06 97 0 10.8 168 0.35 53 43 2585 75.66 0 0 3600

Table 1: Aggregated main results of LBBD, MIP, and CP.

all makespan. The problem arises in a more complex version
in the industrial tool coating field. We devised an LBBD ap-
proach that decomposes the problem into a MP, a packing
subproblem, and a scheduling subproblem. The approach is
compared with a MIP and CP approach. Experimental re-
sults show that the LBBD approach can solve more instances
to proven optimality in a shorter time than the other two
approaches. Further, we modelled the 2DSSP constraints
by a BDD-based NF formulation that is solved to check if
2DSSP constraints were violated. We investigated the option
to add a linear relaxation of this model to the MP each time

a 2DSSP constraint is violated. This strategy could signifi-
cantly reduce the number of added feasibility cuts. However,
on average, the total computation time could not be reduced
due to the longer solving time of the MP.

Nevertheless, it seems promising to investigate this ap-
proach further by considering different strategies to incor-
porate BDDs into the MP, e.g. NF models based on relaxed
BDDs that may result in smaller models. Further research
may consider more complex constraints or aspects relevant
to the industrial tool coating field, i.e., machines/batches
with different dimensions.
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