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Abstract
In data assimilation (DA) schemes, the form representing the processes in the evolution models are pre-determined except
some parameters to be estimated. In some applications, such as the contaminant solute transport model and the gas reservoir
model, the modes in the equations within the evolution model cannot be predetermined from the outset and may change with
the time. We propose a framework of sequential DA method named Reversible Jump Ensemble Filter (RJEnF) to identify the
governing modes of the evolution model over time. The main idea is to introduce the Reversible Jump Markov Chain Monte
Carlo (RJMCMC) method to the DA schemes to fit the situation where the modes of the evolution model are unknown and
the dimension of the parameters is changing. Our framework allows us to identify the modes in the evolution model and their
changes, as well as estimate the parameters and states of the dynamic system. Numerical experiments are conducted and the
results show that our framework can effectively identify the underlying evolution models and increase the predictive accuracy
of DA methods.

Keywords Data assimilation · State-space models · Bayesian inference · RJMCMC · Model identification

1 Introduction

The quality of a forecast depends on the accuracy of the
initial condition, the dynamic system, and its dynamical con-
sistency (Barthélémy et al. 2022). Data assimilation (DA)
methods estimate the state based on observations, a dynamic
system, and statistical information. DA has been success-
fully applied to improving the forecast accuracy in a wide
range of dynamical models including ocean (van Leeuwen
2003; Vetra-Carvalho et al. 2018), weather forecast (Bach-
mann et al. 2020), air quality (Jin et al. 2019), and storm
surge models (Wang et al. 2022).

From a statistical perspective, DA is equivalent to filter-
ing inference in a state-space model. In a state-space model,
the evolution models describe the dynamics of the state vari-
ables over time. In many applications, the evolution models
which contain unknown processes and uncertain parameters
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are imperfect (Chang and Zhang 2019). The imperfection
stems from an incompleteness, an inability to account for all
relevant processes (Lewis et al. 2006).

Identifying the evolution equations corresponding to the
actual physical processes is important, which can be inter-
preted as learning the modes and parameters of the evolution
equations. In this study,we consider the PDEof the following
form

∂xk
∂t

= �(xk, α)β =
ncand∑

j=1

φ j,k(xk, α j,k)β j,k, (1)

where xk ∈ R
n is an n-dimensional vector represent-

ing the state at time k. k ∈ N is a discrete time step.
�(x, α) denotes the library of ncand candidate processes
and empirical models, in which α are the unknown param-
eters, and β denotes the unknown coefficients. Let θk �
{αT

1,k, α
T
2,k, · · · , αT

ncand ,K ;β1,k, β2,k, · · · , βncand ,k}T be the
vector of parameters at time k, where the dimensions of α j,k

can be different from each other and are denoted as pα, j,k ,
j = 1, 2, · · · , ncand . In some occasions, φi (x, αi ) could not
appear at the same time.

For example, for contaminant solute transport in subsur-
face formation, simultaneous processes may exist, such as

0123456789().: V,-vol 123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11222-024-10499-1&domain=pdf


  184 Page 2 of 15 Statistics and Computing           (2024) 34:184 

advection (ADV), dispersion (DIS), and sorption (SORP)
(Chang and Zhang 2019). Different from the ADV and DIS,
theSORPcannot be easilymodeled (ChangandZhang2019).
Various empirical models are usually proposed (based on
laboratory experiments) for modeling SORP by considering
different conditions. Two equilibrium sorption modes, such
as Freundlich sorption isotherm (F-SORP) and Langmuir
sorption isotherm (L-SORP), could occur in contaminant
solute transport in subsurface formation. The processes F-
SORP and L-SORP cannot happen concurrently. In the field
of the gas reservoir, the identification of the evolution model
is difficult because of the unknown underground processes
and terrain (Chang and Zhang 2019; Lim et al. 2020).

Although there is an enormous literature on state estima-
tion and sequential estimation of both states and parameters
(Vrugt et al. 2013;Moradkhani et al. 2012; Stroud et al. 2018;
Katzfuss et al. 2020; Drovandi et al. 2022), we have not
found papers considering both the processes identification
and the state and parameter estimation together. As oppo-
site to off-line model identification, incorporating the model
identification into the process of DA can enhance the preci-
sion of the evolution model and enable the identification of
the change in the dynamics. So, this problem is worthy of
study.

Within a Bayesian prospect, all relevant information about
the states of a process {x1, x2, · · · , xk} given observations up
to and including time k can be obtained from the posterior
distribution p(x1, x2, · · · , xk |z1, · · · , zk). zk ∈ R

n is a m-
dimensional vector representing the observation at time k. In
the existing works, the model processes in Eq. (1) assumed
to be known, which means that the modes in the equations
within the evolution model are already decided. However,
the evolution model cannot fit the underlying dynamical
system perfectly in some situations. The modes in the evo-
lution equation corresponding to the processes may change,
which means the mode of the dynamic system changes, and
also the type and the number of parameters may change
during the time interval considered. So we cannot know
when the dynamical system might change from one mode
to another mode. For this reason, in the process of DA, the
dynamic identification of underlying physical processes with
the incorporation of observational data exhibits a diverse
range of applications. What’s more, this methodology can
tackle the intricate issue of elucidating complex evolution-
ary equations during the preliminary phases of DA.

Typically, the DA problem is solved sequentially over a
sequence of assimilation time windows, which are usually
fixed-length intervals in time. Let M : R

n → R
n denote

a mapping of the state space into itself. It is assumed that
the state of the dynamic system evolves according to the
nonlinear difference equation

xk = M(xk−1) + εk−1, (2)

where εk−1 is the n−dimensional vector denoting the exter-
nal forcing. It is usually assumed that εk−1 is a white noise
sequence (Lewis et al. 2006). E(εk−1) = 0. It is serially
uncorrelated, that is, E(εk−1εr−1) = 0 for r �= k and
Cov(εk−1) = E(εk−1εk−1

T ) = Qk−1 ∈ R
n×n , is a known

symmetric and positive definite matrix.
h : Rn → R

m is a mapping from the model space, Rn to
the observation space, Rm . Then

zk = h(xk) + vk (3)

defines in general, a nonlinear relationshipbetween theobser-
vations z and the state x . vk ∈ R

m is a white noise sequence
with E(vk) = 0 andCov(vk) = Rk ∈ R

m×m and Rk is a real
symmetric and positive definite matrix (Lewis et al. 2006).

Let x0 be the random initial condition. In this framework,
hierarchical state-space models (HSSMs) can be used as the
general representations of systems observed over time. A
HSSM describes the temporal evolution of the system state,
and the relationship of the state xk to observations zk , which
allows for unknown time-varying parameters in any part of
the model. Here we focus on parameters θ included in evo-
lution function M(·|θ). In this case, the HSSM is given by

Observation: zk |xk,∼ Nmk (hk(xk), Rk),

Evolution: xk |xk−1, θk ∼
Nn(Mk−1(xk−1|θk−1), Qk−1),

Parameter : θk |θk−1 ∼ p(θk |θk−1), (4)

which is also a general framework for DA problems. The
parameter vector θk contains the unknown parameters in the
evolution function M(·|θ).

An important form of inference for HSSMs is the sequen-
tial Monte Carlo (SMC) method. SMC method, also known
as particle filter (PF), is a class of DA methods, whose
original version is first proposed by Gordon et al. (1993).
Gilks and Berzuini (2001) introduce Markov chain Monte
Carlo (MCMC) methods in PF, which can enhance parti-
cle diversity to alleviate the degeneracy problem and sample
impoverishment in PF (Gustafsson 2010; Elfring et al. 2021).
The framework combining MCMC with PF, also known
as Particle Filter Markov Chain Monte Carlo (PMCMC),
explores hidden states by PF, while parameters are esti-
mated using an MCMC algorithm (Knape and De Valpine
2012). PF methods and MCMC methods mutually benefit
each other in the problem of inference in HSSMs (Andrieu
et al. 2010). Vrugt et al. proposed Particle-DREAM method
which combines the strengths of sequential Monte Carlo
sampling and Markov chain Monte Carlo simulation and
is especially designed for the treatment of forcing, param-
eter, model structural, and calibration data error (Vrugt et al.
2013).Moradkhani et al. proposed an improved PF algorithm
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for hydrologic prediction using MCMC moves to increase
parameter diversity within the posterior distribution (Morad-
khani et al. 2012).

Except for combining with PFs, MCMCmethods can also
combine with ensemble Kalman filter (EnKF) for Bayesian
inference in HSSMs. Katzfuss et al. (2020) introduced a
class of ensemble filtering and smoothing algorithms, namely
eMCMC by replacing PF methods in PFMCMC with EnKF.
In their methods, both the ensemble of parameters and the
ensemble of states are considered to realize both the param-
eter estimation and state update.

The aforementioned methods are all based on the assump-
tion that the evolution model is deterministic, in which the
equations and the dimension of the parameters are fixed.
These methods are not applicable to problems of identify-
ing unknown processes in the evolution models, because the
dimension of the model parameters may change when the
type of processes changes. To overcome this gap, we propose
a new framework named Reversible Jump Ensemble Filter
(RJEnF). In the framework,wedesign a newReversible Jump
Markov Chain Monte Carlo (RJMCMC) method for the DA
field, whose transition kernel is designed based on ensemble
filters.RJMCMCis a type ofBayesian inferencemethodused
for static parameter estimation in complex models where the
dimension of the parameters can vary. Compared with the
standard MCMCmethods where the dimension of the model
parameters remains fixed, RJMCMC allows for changes in
the dimensionality of the model itself. This is achieved by
including moves that change the number of parameters, such
as adding or deleting parameters. RJMCMC can be effec-
tively applied to data assimilation problems, which allows
RJMCMC to be used in dynamic systems with sequential
acquired observational data. Wiese et al. (2015) combines
PF with RJMCMC to estimate the directions of arrival of
sources. Clay et al. (2021) utilizes the RJMCMC algorithm
to select different Unscented Kalman Filters during the data
assimilation process.

In this work, we proposed a new Bayesian DA framework
that not only can update the states and model parameters, but
also identify and update the model processes. This innova-
tive framework is developed that uses data-driven methods
for simultaneously and recursively identifying physical pro-
cesses and estimating states and model parameters, which
can get better predictions of states in the forecast step. This
methodology,which combines the state andparameter update
and evolutionmodel identification together, has not been con-
sidered in the previous literature.

The rest of this article is structured as follows. In Sect. 2
we propose a DA method to perform Bayesian statistical
inference on the states, model parameters, and the process
of model. Three physical models are used to test and evalu-
ate our method in Sect. 3, namely the linear spatio-temporal
evolution model, the Lorenz 96 model, and the contaminant

solute transport model.We discuss limitations, further exten-
sions, and possible future research in Sect. 4.

2 Methodology

2.1 Sequential Monte Carlo algorithm

PF andEnKF are two important ensemble filters for Bayesian
inference SSMs (4). Filtering for SSMs consists of two
steps at every time point: a forecast step and an update step
(Katzfuss et al. 2016, 2020). Assuming that the filtering dis-
tribution at the previous time k is given by

p(xk |z1:k), (5)

where z1:k = {z1, z2, · · · , zk}denotes the observations avail-
able at time k. and the forecast step computes the forecast
distribution at time k based on (2) as

p(xk |z1:k−1) = p(xk |xk−1)p(xk−1|zk−1). (6)

In this part, we assume that the modes in the equations within
the evolutionmodelM(·|θ) fromEq. (4) is known, but θ1:k are
unknown. The Bayesian filtering problem requires comput-
ing the joint posterior distribution p(xk, θk |z1:k) of the state
and the parameters at each time k = 1, 2, · · · , T . This joint
posterior integrates all available information about the states
and parameters contained in the prior and observations, and
it is typically summarized through marginal distributions,
posterior means, standard deviations, or credible intervals,
which accounts for parameter uncertainty.

The joint posterior distribution is unavailable in closed
form, so Monte Carlo methods must be used to approximate
the distribution. As θ here is the parameter in evolution func-
tion M(·|θ), it is logical to use the decomposition of the
joint posterior distribution of the state and parameters into
two terms: the conditional posterior distribution for the states
given the parameters and the marginal posterior distribution
for the parameters (Stroud et al. 2018):

p(xk, θk |z1:k) = p(xk |θk, z1:k)p(θk |z1:k). (7)

The problem we focus on is identifying the processes
dynamically with sequentially acquired observations. There-
fore, our framework is based on SMC. We have the initial
information on the parameter and state in the modes in prior
distribution p0(x) and p0(θ).

Then we focused on the forecast step and update step at
a single time point k, k = 1, 2, · · · . Assume that there will
not be drastic changes in the parameters at adjacent time
steps, or multiple drastic changes in the parameters within
a short period of time. At every time step, we can use the
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Fig. 1 The flow chart of the model-identification-fused DA

posterior distribution of the parameters p(θk−1|zk−1) from
the previous time step as the prior distribution of the param-
eters pk(θk) at the current time step. For the i-th ensemble
member, we sample a proposal parameter θ∗

i,k . Then we can
run the evolution model with θ∗

i,k :

x∗
i,k = M(x̂∗

i,k−1|θ∗
i,k−1) + εi,k−1, (8)

and the observation function

z∗i,k = h(x∗
i,k) + vi,k . (9)

Then calculate the proposal weight

w∗
i,k = pk(θ

∗
i,k) · L(z∗i,k |zk), (10)

where L(z∗i,k |zk) is the likelihood function. Similarly, we can
calculate the weight of the parameter θi,k

wi,k = pk(θi,k) · L(zi,k |zk). (11)

Then we can calculate the acceptance probability w∗
i,k/wi,k

and choose whether to accept or reject the proposed param-

eters and get the new ensemble of parameters
{
θ̂

(i)
k

}N

i=1
as

well as the new ensemble of states
{
x̂ (i)
k

}N

i=1
.

2.2 Reversible jump ensemble filter framework
for dynamic model identification

The goal is to make sequential Bayesian inference on the
potential evolution processes, states xk and parameters θk for

HSSMs (4). The core of the process identification lies in rec-
ognizing which φ j,k(x, α j,k) occurs in Eq. (1). Sometimes,
data-driven methods are needed to identify the evolution
model. Chang and Zhang (2019) proposed a method to
identify the physical process via combined data-driven and
data-assimilation methods and a set of fixed spatiotemporal
measurement data, while this method is not applicable in DA
framework. Usually, we cannot identify the candidate pro-
cesses at the beginning when the observations are deficient.
Moreover, the leading or governing equations may change as
time goes by. Therefore, except for the reason that the obser-
vations are acquired sequentially, themodes in Eq. (1) cannot
be determined at the beginning of the SMC algorithm, and
can change during the process. So determining the evolu-
tion equation M(·|θ) and inferring uncertain parameters θ of
nonlinear models should be considered in a sequential way,
which can be fused in the DA framework (See Fig. 1).

Figure1 provides a schematic overview of our framework.
At each time step, we first calculate the current state based
on the previous state and parameter ensemble in the forecast
step. When new observations are obtained, the update step
performs identifying the process, estimating parameters, and
updating the state.

Existing SMCmethods are not suitable for the current sit-
uation because during process identification, the processes at
adjacent time stepsmay change, resulting in the dimensional-
ity changes of the parameters. Here, an ensemble of evolution

function
{
M (i)

k (·|·)
}N

i=1
�

{
M (1)

k (·|·), M (2)
k (·|·), . . . , M (N )

k

(·|·)
}
is introduced to consider the uncertainty of the pro-

cesses changes. Here we propose a sequential Monte Carlo
method for Bayesian DA named Reversible Jump Ensemble
Filter (RJEnF). Reversible JumpMarkov ChainMonte Carlo
(RJMCMC) is a Bayesian statistical method for the estima-
tion of parameters inmodels where the number of parameters
is unknown or variable. RJMCMCcan be viewed as an exten-
sion of theMetropolis-Hastings algorithmmore general state
spaces, which was first proposed by Green (1995). RJM-
CMC is a type of MCMC algorithm that allows the posterior
distribution to be explored over a space of models with dif-
ferent numbers of parameters. In this way, we can achieve
sequential process identification, as well as parameter and
state estimation.

For notational simplicity, we leave out the notation k for
the time step here. In this study, we consider the number of
the formats of the evolution equations to be finite. Suppose
that for observed data zwehave a countable collection of can-
didate evolution models M = {M1, M2, · · · , Mnq } indexed
by q ∈ Q � {1, 2, · · · , nq}. Each model Mq has an rq -
dimensional vector of unknown parameters, θq ∈ R

rq , where
nq can take different values for different models q ∈ Q. The
joint posterior distribution of (q, θq) is
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π(q, θq |z) =
L

(
z|q, θq

)
p(θq |q)p(q)

∑
q ′∈Q

∫
R
nq′ L

(
z|q ′, θ ′

q ′
)
p(θ ′

q ′ |q ′)p(q ′)dθ ′
k′

.
(12)

where L(z|q, θq) is the likelihood, and p(q, θq) = p(θq |q)

p(q) is the joint prior distribution.
The reversible jump algorithm uses the joint posterior dis-

tribution in Eq. (12) as the target of a Markov chain Monte
Carlo sampler over the parameter space where the dimension
of (q, θq) can vary over the state space.

The difficulty in designing the reversible jump algorithm
lies in determining the mapping functions and the transition
kernel (Green and Hastie 2009; Fan and Sisson 2011). Let
pqq ′ denote the probability of transition from q to q ′. For the
case of the finite set of potential models, the transition kernel
can be expressed in the form of a transition matrix

T =

⎡

⎢⎢⎢⎣

q11 q12 . . . q1nq
q21 q22 . . . q2nq
...

...
. . .

...

qnq1 qnq2 . . . qnqnq

⎤

⎥⎥⎥⎦

nq×nq

. (13)

Given the application scenario of ensemble DA, where

there is an ensemble of evolution models
{
M (i)

k−1(·|·)
}N

i=1
.

M (i)
k−1(·|·) represents an evolution model, which means every

ensemble member of state corresponds to its own evolution
model. The transitionmatrix T is designed based on the num-
ber of ensemble members representing different evolution
models. Let Nq denote the number of ensemble members
representing the evolution Mq , and

∑nq
i=1 Nq = N . Let

pqq ′ = Nq ′/N . In practice, we do not want the probability
of remaining in the current state to be too high, as it hin-
ders the exploration of other possibilities. At the same time,
we do not want the probability of remaining in the current
state to be too low, such that the evolution function followed
by each particle changes frequently. Therefore, we set an
upper bound qmax and a lower bound qmin on pqq ′ to ensure
qmin ≤ pqq ′ ≤ qmax . Finally, we proportionally scale the
remaining transition probabilities to satisfy

∑nq
q=1 pqq ′ = 1.

After defining the transition matrix, we can implement the
RJEnF algorithm asAlgorithm 1.We first determine a library
�(x, α) comprised of potential processes, and by selecting
different potential processes from �(x, α), we can construct
various evolution models M (i)

k (·|·). The prior distribution
p0(θ) of the parameter is given to sample the ensemble of
parameters. The algorithm starts with an ensemble of evo-

lution functions
{
M (i)

0 (·|·)
}N

i=1
, an ensemble of parameters

{
θ

(i)
0

}N

i=1
, and an ensemble of initial state

{
x (i)
0

}N

i=1
. For

every time step k, The i-th ensemble member of x (i)
k is prop-

agated by the evolution model M (i)
k (·|·) with θ

(i)
k :

x (i)
k = M (i)

k−1(x
(i)
k−1|θ(i)

k−1). (14)

The forecast state is given by

x̃k = 1

N

N∑

i=1

x (i)
k (15)

When the observations zk are obtained, the update step starts.
For every ensemble member, a new evolution model M∗(i)

k
is proposed by transition matrix (13), then the proposal
parameter θ∗(i) for M∗(i)

k−1 is generated. We can compare the
likelihood functions to decide whether to accept or reject the
proposed evolution model and parameter. After the accep-
tance/rejection step, the analyzed state x̂k can be updated
in different ways depending on which DA method is used.
By the acceptance/rejection step, the ensemble members of
parameters converge to the true parameter.

Algorithm 1 RJEnF Framework
Initialization: Library of latent processes �(x, α);

1: The ensemble of evolution functions
{
M (i)

0 (·|·)
}N

i=1
;

2: The ensemble of parameters
{
θ

(i)
0

}N

i=1
;

3: The ensemble of initial state
{
x (i)
0

}N

i=1
;

4: The prior distribution of parameter p(θ).
For time step k, k = 1, 2, · · · : New observation zk .
5: for i = 1, 2, · · · , N do
6: x (i)

k = M (i)
k−1(x

(i)
k−1|θ(i)

k−1).

7: Propose a proposal evolution function M∗(i)
k−1 by transition matrix

(13) and a proposal parameter θ∗(i) from pk−1(θ).

8: Calculate L(zk |M (i)
k−1, θ

(i)
k−1) and L

(
zk |M∗(i)

k−1, θ
∗(i)
k−1

)
, and decide

the M (i)
k and θ

(i)
k .

9: end for
10: Update the distribution of θ as pk(θ).
11: Update the ensemble of state.
12: k = k + 1.

By combining RJEnF with different DA methods, we
obtain 2methods, namelyReversible JumpEnsembleKalman
Filter (RJEnKF) and Reversible Jump Particle Filter (RJPF).
RJEnKF uses EnKF to update the states which is easy to
implement. While RJPF is more suitable for nonlinear and
non-Gaussian problems as it uses PF to update the states
without linear and Gaussian assumptions.

Designing the transfermatrix T and sampling the proposal
evolution model only increase some negligible computa-
tional cost. Similar to the PFMCMC algorithm, the com-
putational cost of the RJEnF algorithm primarily lies in
the evolution of the state vector by Eq. (8). For the more
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intractable or computationally expensive evolution model, a
threshold for the likelihood function can be introduced. For
every ensemble member, the likelihood L(zk |M (i)

k−1, θ
(i)
k−1) at

time k − 1 is easy to compute. In the propagation from time
k−1 to k, for those ensemblemembers whose likelihoods are
below the threshold, sampling the proposal evolution func-
tions and parameters and accepting/rejecting steps follow the
Algorithm 1. For the remaining ensemble members, these
steps are omitted, which can reduce the total number of times
of computing the propagation of states.

2.2.1 Reversible jump ensemble Kalman filter

As mentioned earlier, we have two methods to implement
state updates in the analysis step, and one of these meth-
ods is the EnKF method when the evolution function M(x)
and observation function h(x) in Eqs. (2) and (3) can be lin-
earized as thematrixM ∈ R

n×n and H ∈ R
m×n respectively,

which is named as Reversible Jump Ensemble Kalman Filter
(RJEnKF).

For EnKF, the forecast step computes the forecast distri-
bution at time k based on (2) as

xk |z1:k−1 ∼ Nn (̃xk, P̃k), (16)

where x̃k and P̃k are the forecast mean and covariance matrix
at time k. The filtering distribution at the previous time k is
given by

xk |z1:k ∼ Nn(x̂k, P̂k), (17)

where x̂k and P̂k are the updated mean and covariance
matrix with new observation zk . The update step modi-
fies the forecast distribution using the new observations

zk at time k. Assume that the ensemble
{
x (i)
k

}N

i=1
�

{
x (1)
k , x (2)

k , . . . , x (N )
k

}
is a set of N samples from the fil-

tering distribution at time k. The EnKF then propagates each
state vector forward and acquires the forecast state x f ,(i)

k by

x f ,(i)
k = Mk−1(x

(i)
k−1) + ε

(i)
k−1, i = 1, 2, · · · , N , (18)

and forecast mean x̃k and the forecast covariance matrix are
given by

x̃k = 1

N

N∑

i=1

x f ,(i)
k , (19)

and

P̃k = C ◦
[

1

N − 1

N∑

i=1

(
x f ,(i)
k − x̃k

) (
x f ,(i)
k − x̃k

)′
]

, (20)

which is the element-wise product of the empirical forecast
covariance matrix with a sparse tapering correlation matrix
C for implementing localization (Farchi and Bocquet 2018).
As in most applications, we have n 
 N , and some form
of regularization of this covariance matrix is necessary. The
Kalman gain is calculated by

Kk = P̃k H
′[H P̃kH

′ + Rk]. (21)

At the update step, every ensemble member of states x (i)
k is

updated by

xa,(i)
k = x (i)

k + Kk[zk − Hx f ,(i)
k + v

(i)
k ], (22)

where v
(i)
k ∼ N (0, Rk). The mean and covariance matrix of

states are updated with the new observation zk by

x̂k = 1

N

N∑

i=1

xa,(i)
k , (23)

and

P̂k = C ◦
[

1

N − 1

N∑

i=1

(
xa,(i)
k − x̂k

) (
xa,(i)
k − x̂k

)′
]

. (24)

Besides the ensemble of initial state
{
x (i)
0

}N

i=1
, RJEnKF

also requires the library of latent processes �(x, α), the

ensemble of evolution functions
{
M (i)

0 (·|·)
}N

i=1
, and the

ensemble of parameters
{
θ

(i)
0

}N

i=1
as the initialization. We

also need the assumption of the observation error matrix Rk ,
which is usually considered as a diagonal matrix.

The algorithm of the RJEnKF is described in Algorithm 2.
In every analyse step at time k, and for i-th ensemblemember,
the evolution model is

x f ,(i)
k = M (i)

k−1(x
(i)
k−1|θ(i)

k−1) + ε
(i)
k−1, i = 1, 2, · · · , N . (25)

To realize the identification of the evolution model, proposal
evolution model M∗(i)

k−1 and a proposal parameter θ∗(i) are
sampled. After the acceptance/rejection step, a more appro-
priate pair of evolution model and parameter is kept for the
i-th ensemblemember. Then the forecast state and its forecast
covariance matrix are given by Eqs. (19) and (20).

2.2.2 Reversible jump particle filter

When the evolution model is strongly nonlinear, the update
of states should be calculated using PF. Instead of the Gaus-
sian assumption, the PF approximates the probability density
function (pdf) representing the posterior by a discrete pdf
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Algorithm 2 RJEnKF
Initialization: Library of latent processes �(x, α);

1: The ensemble of evolution functions
{
M (i)

0 (·|·)
}N

i=1
;

2: The ensemble of parameters
{
θ

(i)
0

}N

i=1
;

3: The ensemble of initial state
{
x (i)
0

}N

i=1
;

4: The prior distribution of parameter p(θ);
5: The observation error matrix Rk
For time step k, k = 1, 2, · · · : New observation zk .
6: for i = 1, 2, · · · , N do
7: x (i)

k = M (i)
k−1(x

(i)
k−1|θ(i)

k−1).

8: Propose a proposal evolution function M∗(i)
k−1 by transition matrix

(13) and a proposal parameter θ∗(i) from pk−1(θ).

9: Calculate L(zk |M (i)
k−1, θ

(i)
k−1) and L

(
zk |M∗(i)

k−1, θ
∗(i)
k−1

)
, and decide

the M (i)
k and θ

(i)
k .

10: Propagate the ensemble member x (i)
k through the corresponding

M (i)
k and θ

(i)
k decided in the previous step by x (i)

k = M (i)
k (x (i)

k−1|θ(i)
k )

11: end for
12: Update the distribution of θ as pk(θ).
13: Calculate the forecast state and its covariance matrix by Eqs. (19)

and (20).
14: Calculate the Kalman gain by Eq. (21).
15: Update all the ensemble members of states by Eq. (22).
16: k = k + 1.

such that the distributions of states and parameters do not
have to fit the Gaussian assumption. The distribution is
approximated by a sum of weighted samples:

p(xk |z1:k) ≈
N∑

i=1

ω
(i)
k δ(xk − x (i)

k ). (26)

If we consider an ensemble of parameter θ as
{
θ

(i)
k

}N

i=1
�

{
θ

(1)
k , θ

(2)
k , . . . , θ

(N )
k

}
, then we have

p(xk, θk |z1:k) ≈
N∑

i=1

ω
(i)
k δ((xk, θk) − (x (i)

k , θ
(i)
k )). (27)

Here
{
ω

(i)
k , x (i)

k , θ
(i)
k

}N

i=1
is an ensemble containing N mem-

bers of state and parameter and weights. Each member
{x (i)

k , θ
(i)
k } represents a possible realization of the state and

parameter sequence. A weight ω
(i)
k represents the relative

importance of each of the N samples and
∑N

i=1 ω
(i)
k = 1.

Samples associated with high weights are believed to be
closer to the true state sequence than samples associated with
low weights. δ(·) denotes the Dirac delta function:

δ(xk, θk) =
{
1, if (xk, θk) = (x (i)

k , θ
(i)
k ),

0, if (xk, θk) �= (x (i)
k , θ

(i)
k ).

(28)

The weights ω
(i)
k are given by

ω
(i)
k = p(zk |x (i)

k , θ
(i)
k )

∑N
j=1 p(zk |x ( j)

k , θ
( j)
k )

. (29)

For each time k, in the update step, the weights of the mem-
bers are calculated by Eq. (29) based on the observation zk ,
and the posterior distribution is given by Eq. (27). In the
forecast step, each member is propagated by the evolution
function, and the joint forecast distribution is

p f (xk, θk |z1:k−1) ≈
N∑

i=1

ω
(i)
k−1δ((xk, θk)− (x (i)

k , θ
(i)
k )). (30)

If the process of propagation of the ensemble and assim-
ilation of new observations are repeated a few times (or
with a large number of observations only once), only one
member with a large weight will remain and all others
have negligible weight. This is called particle collapse or
degeneration, which means that the statistical information
in the ensemble is lost; effectively only one particle has
all information available to us. A way to avoid this is
the so-called resampling. Vrugt et al. (2013) and Morad-
khani et al. (2012) proposed resampling methods based
on MCMC methods, which can relieve the collapse of
PF.

Based on the concept of sequential importance sampling
and the use of Bayesian theory, PF is particularly useful in
dealing with nonlinear and non-Gaussian problems. In PF,
the distributions are approximated by discrete random mea-
sures defined by particles and weights w

(i)
k assigned to the

particles:

E = {M (i)
k (·|·), θ(i)

k , x (i)
k , w

(i)
k }Ni=1. (31)

If the total uncertainty in the system becomes too large,
there will be too few samples with meaningful weights,
leading to the collapse of the ensemble, or weight degen-
eration (Snyder et al. 2008). There are many different PF
methods, some of which avoid particle degeneracy by using
resampling algorithms. Here we choose a simple resampling
scheme which is suggested by van Leeuwen et al. (2019).
The threshold of resampling is determined by drawing a sam-
ple value from the uniform distributionU [0, 1/N ]. Then the
ensemble members whose weights are under the threshold
are replaced by the resampling members. The Pseudo-code
of RJPF is given in Algorithm 3. To illustrate the effective-
ness of RJPF, we use the Lorenz 96 model as a nonlinear
problem in Sect. 3.2.
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(a) RJEnKF method for γ2. (b) PFMCMC method for γ2. (c) RJEnKF method for γ3.

(d) PFMCMC method for γ3. (e) RJEnKF method for γ4. (f) PFMCMC method for γ4.

(g) RJEnKF method for γ5. (h) PFMCMC method for γ5. (i) Size of the ensemble members.

Fig. 2 The estimation of the parameters and the identification of mod-
els in Sect. 3.1 with N = 30 and 5% observation error. The sub-figures
(a–h) show the estimation of the parameters byRJEnKF andPFMCMC.
The red lines represent the true parameters; the blue lines represent the
predicted parameters for each particle, and the orange lines represent the
estimated parameter. From sub-figure (a), it can be seen that when the

evolution model in the second stage does not include the parameter γ2,
only a few particles choose the evolution model containing γ2 at certain
time points. The sub-figure (i) shows the identification of models by the
different sizes of the ensemble members representing different models
changing with time. The different colors represent different models

3 Case study

3.1 Linear evolution

First, we evaluate the proposed RJEnKF method by con-
sidering the linear dynamic spatiotemporal model (Xu and
Wikle 2007; Stroud et al. 2018), but we pay attention to
the parameters in the evolution model instead of the param-
eters in the observation function and covariance matrices.
Our goal is to identify the true model, estimate the model
parameters, and assimilate the states step-wisely. The model
is a vector autoregression plus noise, where the state vec-
tor xk = (xk1 , · · · , xkn )

′ corresponds to n equally spaced
locations {1, 2, 3, · · · , n} along a spatial transect. Following
the notation in (2) and (3), the evolution function is linear,

M(xk−1) = Mxk−1 where the propagator matrix is pentadi-
agonal with parameters γ = (γ1, γ2, γ3, γ4, γ5)

′:

M =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

γ1 γ2 γ4 0

γ3 γ1 γ2
. . .

γ5 γ3 γ1
. . .

. . .

. . .
. . . γ1 γ2 γ4
. . . γ3 γ1 γ2

0 γ5 γ3 γ1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(32)

We consider the situation where γ2 and γ4 have exactly
one zero, and γ3 and γ5 have exactly one zero. Then there
are 3 potential processes, and the corresponding evolution
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(a) RJEnKF method for γ2. (b) PFMCMC method for γ2. (c) RJEnKF method for γ3.

(d) PFMCMC method for γ3. (e) RJEnKF method for γ4. (f) PFMCMC method for γ4.

(g) RJEnKF method for γ5. (h) PFMCMC method for γ5. (i) Size of the ensemble members.

Fig. 3 The estimation of the parameters and the identification of models in Sect. 3.1 with N = 30 and 1% observation error

Algorithm 3 RJPF
Initialization: Library of latent processes �(x, α);

1: The ensemble of evolution functions
{
M (i)

0 (·|·)
}N

i=1
;

2: The ensemble of parameters
{
θ

(i)
0

}N

i=1
;

3: The ensemble of initial state
{
x (i)
0

}N

i=1
;

4: The initial weights ω
(i)
0 = 1/N The prior distribution of parameter

p(θ).
For time step k, k = 1, 2, · · · : New observation zk .
5: for i = 1, 2, · · · , N do
6: x (i)

k = M (i)
k−1(x

(i)
k−1|θ(i)

k−1).
7: Calculate the weights ω(i) and normalize the weights.
8: end for
9: for ω(i) > u ∼ U [0, 1/n] do
10: Propose a proposal evolution functionM∗(i)

k−1 by transitionmatrix
(13) and a proposal parameter θ∗(i) from pk−1(θ).

11: Calculate L(zk |M (i)
k−1, θ

(i)
k−1) and L

(
zk |M∗(i)

k−1, θ
∗(i)
k−1

)
, and

decide the M (i)
k and θ

(i)
k .

12: end for
13: Recalculate the weights ω(i).
14: Update the distribution of θ as pk(θ).
15: Update the ensemble of state.
16: k = k + 1.

matrices for Mode 1, Mode 2, and Mode 3 are denoted as
M1, M2, and M3, respectively:

M1 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

γ1 γ2 0 0

γ3 γ1 γ2
. . .

0 γ3 γ1
. . .

. . .

. . .
. . . γ1 γ2 0
. . . γ3 γ1 γ2

0 0 γ3 γ1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

M2 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

γ1 γ2 0 0

0 γ1 γ2
. . .

γ5 0 γ1
. . .

. . .

. . .
. . . γ1 γ2 0
. . . 0 γ1 γ2

0 γ5 0 γ1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,
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(a) RJEnKF method for γ2. (b) PFMCMC method for γ2. (c) RJEnKF method for γ3.

(d) PFMCMC method for γ3. (e) RJEnKF method for γ4. (f) PFMCMC method for γ4.

(g) RJEnKF method for γ5. (h) PFMCMC method for γ5. (i) Size of the ensemble members.

Fig. 4 The estimation of the parameters and the identification of models in Sect. 3.1 with N = 100 and 5% observation error

M3 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

γ1 0 γ4 0

γ3 γ1 0
. . .

0 γ3 γ1
. . .

. . .

. . .
. . . γ1 0 γ4
. . . γ3 γ1 0

0 0 γ3 γ1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

We denote the parameters of 3 different models as θ1 =
(γ1, γ2, γ3)

′ ∈ 1, θ2 = (γ1, γ2, γ5)
′ ∈ 2, and θ3 =

(γ1, γ3, γ4)
′ ∈ 3 respectively. For all 3 models, the sum

of the parameters should be 1. For example, if the evolution
process obeys model 1, then γ1+γ2 +γ3 = 1. First, we sim-
ulated the true states xtrue,k, k = 1, 2, · · · ,m, from the true
model with dimensions n = m = 20 for T = 60 time points,
with the first stage t ∈ [1, 2, · · · , 30], and the second stage
t ∈ [31, 32, · · · , 60]. The true evolution model is taken to be
M1 with true parameter θtrue,1 = (0.8, 0.1, 0.1)′ for the first
stage, and M3 with true parameter θtrue,3 = (0.4, 0.3, 0.3)′
for the second stage. Then we synthetically add noise to the
true data as:

zk = xtrue,k × (1 + δ × e), (33)

where δ denotes the level of observation error; and e denotes
the uniform random variable taking values from −1 to 1.
Considering δ = 5% here, we compare our method with
the classical PFMCMC method. For the PFMCMC method,
since it is unable to choose between different models, we
need to consider the evolution matrix M in Eq. (32), and
the 5-dimensional parameter θ � (γ1, γ2, γ3, γ4, γ5)

′ ⊂ ,
with

∑5
i=1 γi = 1. For all the models, γ1 is determined

by other parameters, so for M1, M2, and M3, the numbers
of unknown parameters are 2; while for M , the number of
unknown parameters is 4. For both methods, we choose the
number of ensemblemembers N as 30. The results are shown
in Fig. 2. In Fig. 2a–h, the red lines represent the true param-
eters. The blue lines are the ensemble members, and the
orange lines represent the estimation of parameters. For γ3,
the results of RJEnKF can converge to the true parameters
in both stages (see Fig. 2c), while the results of PFMCMC
could not converge to the true parameter in the first stage (see
Fig. 2d). For γ4, in Fig. 2e, the estimation of the parameter
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Fig. 5 The root mean squared error(RMSE) of prediction for RJEnKF
and PFMCMC in Sect. 3.1

Fig. 6 The estimation of the parameters and the identification ofmodels
in Sect. 3.2 for RJPF

through RJEnKF method converges to the true parameter,
while the PFMCMC could not converge to the true parame-
ter, as shown in Fig. 2f. Figure2i shows the sizes of ensemble
members representing the different models. In the first stage,
the number of the ensemblemembers representingmodel 1 is
the largest, which identifies themodel 1 as the truemodel. As

Fig. 7 The estimation of the parameters and the identification ofmodels
in Sect. 3.2 for RJPF when the dynamic system is more chaotic

long as it comes to stage 2, the number of the ensembles for
model 3 dominates. When the dynamic changes at time point
31, the number of ensemble members representing evolution
model 1 suddenly decreases, while the number of ensemble
members representing evolutionmodel 3 suddenly increases.
It shows that the RJEnKFmethod is sensitive to the change of
the evolution model, which means that RJEnKF can identify
the processes in the dynamic system as well as their changes.

To study the method’s sensitivity to the observation error,
let δ = 1%. Figure3 shows the results, in which the iden-
tification of the models for both two stages gets better.
Especially for the second stage, almost all of the ensem-
ble members are related to model 3, which means we are
certain the true model is model 3. We also increase the size
of the ensemble members to let N = 100. The results are
shown in Fig. 4. The PFMCMC method still cannot provide
better results. As for PFMCMCmethod, the evolution model
is imprecise, and the dimension of parameters is higher. So
the ensembles may converge to wrong results.

To demonstrate the effectiveness of the proposed method,
we investigated the prediction errors of two methods, which
are RJEnKF and PFMCMC (Moradkhani et al. 2012), for
different sizes of ensembles and different observation errors.
From Fig. 5a and b, one can see that the prediction errors by
both twomethods decreasewhen the ensemble sizes increase,
and increase with the observation error. The prediction errors
of RJEnKF are smaller than those of PFMCMC.
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3.2 Nonlinear evolution case: Lorenz 96model

We consider RJPF applied to the extensively used medium-
dimensional dynamical system Lorenz’96 model (L96)
(Lorenz 1996). This model, which is developed by Edward
Lorenz, represents a nonlinear chaotic dynamic system. The
evolution model is

dx j
dt

= −x j−1(x j−2 − x j+1) − x j + F . (34)

We define a different evolution equation that corresponds to
the reverse propagation of the state in the Lorenz 96 equation:

dx j
dt

= −x j+1(x j+2 − x j−1) − x j + F, (35)

where x = {x j ; j = 1, ..., n} is the n−dimensional state vec-
tor. The true solution of (x1k, x2k, · · · , xnk)T with�t = 0.03
and n = 40 is computed for t ∈ [0, 30] from the initial condi-
tion x0 = (x1,0, x2,0, · · · , xn,0)

T = (1 + 0.01, 1, · · · , 1)T ,
which means that there are 1001 time steps in total.

For the first 501 time steps, the evolution model follows
Eq. (34) with F = 2; then for the next 500 time steps, the
evolution model follows Eq. (35) with F = 1. Synthetic
observations are subsequently created by perturbing each
data point of the reference solution with a uniformly dis-
tributed measurement error. We choose the observation error
to be 5%, and the RJPF works well. From Fig. 6a, one can
see that, for both stages, the ensemble of particles can accu-
rately predict the true parameter F and identify the change
of the evolution process. At the same time, as can be seen
from Fig. 6b, it is evident that by the change of the size of the
ensemble representing different processes, our method can
dynamically identify the evolution processes. For example,
in the second stage, the size of the ensemble representing
model 2 is 100, which confidently identifies that the evolu-
tion process follows the true model 2.

When the model becomes more chaotic by letting F = 6
for the first stage, and F = 4 for the second stage (Albarakati
et al. 2022; Vrugt et al. 2013), and let first 501 time steps fol-
low Eq. (34), and the last 500 time steps follow Eq. (35). The
estimation of the parameter F gets worse, even though the
observation error is only 1%. Figure7a presents the results
of the predicted parameter F. From Fig. 7b, one can see that
through the change of the ensemble size, the evolution pro-
cess can still be identified.

3.3 Contaminant solute transport

Next, let’s consider the example of contaminant solute trans-
port mentioned at the beginning of the article. The library of

latent process � = [∂C
∂x

,
∂2C

∂x2
,Ca−1 ∂C

∂t
,

1

(1 + KC)2
∂C

∂t
],

where Ca−1 ∂C

∂t
and

1

(1 + KC)2
∂C

∂t
never appear together.

The evolution function can be written as:

∂C

∂t
= −β1

∂C

∂x
+ β2

∂2C

∂x2
− f (C, α3)

∂C

∂t
, (36)

where

f (c, α3) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0, No − SORP,

Ca−1, F − SORP,
1

(1 + KC)2
, L − SORP.

(37)

C is the concentration of solute in aqueous phase, and β =
[β1, β2, β3]T and α3 = [a, K ]T .

Three possiblemodels corresponding to the three different
sorption modes are considered here:

Model 1 : ∂C

∂t
= −β1

∂C

∂x
+ β2

∂2C

∂x2

Model 2 : ∂C

∂t
= −β1

∂C

∂x
+ β2

∂2C

∂x2
− Ca−1 ∂C

∂t

Model 3 : ∂C

∂t
= −β1

∂C

∂x
+ β2

∂2C

∂x2
−

1

(1 + KC)2
∂C

∂t

(38)

The aim is to obtain a full probabilistic description of the pos-
terior probabilities of potential models, the parameters and
the states with the sequential observed data. The parameter
is θ = (β1, β2, a, K )T .

We consider 300 time steps, and the true evolution func-
tion follows Model 2 for the first 150 time steps and Model 3
for the following 150 time steps. In the first stage, which
contains the first 150 time steps, the true parameter is
θtrue,stage1 = (β1, β2, a) = (0.9, 1.4, 0.4)T . In the second
stage, the true parameter is θtrue,stage2 = (β1, β2, K ) =
(1.4, 1.4, 0.2)T . In this case, the prior distribution p(θ) of
the parameters (β1, β2, a, K )T is assumed to be a normal
distribution N (μ0, P0), with μ0 = (0.4, 1.3, 0.3, 0.3)T , and
P0 = diag(0.2, 0.2, 0.1, 0.2). We set the size of the ensem-
ble to be N = 20. The observations are acquired every 20
time steps with 5% observation errors.

As can be seen from Fig. 8, the RJEnKF method is able
to identify the potential evolution equations which is shown
through the sizes of ensembles corresponding to each model
in Fig. 8e.

In the second experiment, we keep the same setting of the
previous experiment, which is model 2 and θtrue,stage1 =
(β1, β2, a) = (0.9, 1.4, 0.4)T ; the second stage follow
the model 1 with parameter θtrue,stage2 = (β1, β2) =
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(a) Parameter advection β1. (b) Parameter dispersion β2. (c) Parameter F-SORP α.

(d) Parameter L-SORP K. (e) Size of the ensembles.

Fig. 8 The identification of the models and estimation of the parameters for the example of contaminant solute transport. The red lines represent
the true parameters; the blue lines represent the predicted parameters for each particle, and the orange lines represent the estimated parameter

(a) Parameter advection β1. (b) Parameter dispersion β2. (c) Parameter F-SORP α.

(d) Parameter L-SORP K. (e) Size of the ensemble members.

Fig. 9 The identification of the models and estimation of the parameters for the example of contaminant solute transport. The red lines represent
the true parameters; the blue lines represent the predicted parameters for each particle, and the orange lines represent the estimated parameter

(0.9, 1.4)T . The results are shown in Figure. 9, in which the
true parameters can be estimated well again, and the true pro-
cesses (see Fig. 9a–d ) are correctly identified (see Fig. 9e).

4 Discussion and conclusion

The ability to dynamically and correctly identifying the
underlying modes of the evolution model can improve the
accuracy of DA methods. We have introduced a new class of
DA methods which can solve three tasks together: determin-
ing the evolution equation, which includes identifying the
occurring (or dominant) processes and selecting the proper

empirical models; estimating the uncertain model parame-
ters in the evolution equation; and updating the states based
on the sequential observations.

The RJEnF framework we propose here is very flexible.
On the one hand, theRJEnF framework canbe combinedwith
different DA methods to adapt to various problems, namely
RJEnKF and RJPF. On the other hand, if we leave out the
‘jump’ step, the method reduces to the fixed dimension SMC
(Vrugt et al. 2013; Moradkhani et al. 2012; Katzfuss et al.
2020). The algorithm introduces RJMCMC from statistics
literature to theDAcommunity, which can identify the occur-
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ring processes fused in the DAmethods. Themain advantage
of our algorithm is that it can solve the DA problem with
undecided modes in evolution models, that has not been dis-
cussed in the DA literature before. We test and evaluate the
proposed methods with both linear and nonlinear examples.
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