
Point cloud based improvement of
the trajectory of a Railway Mobile
Mapping System

Pablo Secco

MSc Thesis Report – April 2022



Point cloud based improvement of
the trajectory of a Railway Mobile

Mapping System

by

Pablo Secco

to obtain the degree of Master of Science
at the Delft University of Technology,

to be defended publicly on Monday April 25th, 2022 at 10:30 (GMT+1).

Student number: 4931084
Project duration: July 2020 – April 2022
Thesis committee: Dr.ir. A.A. Verhagen, TU Delft, chair, daily supervisor

Dr. R.C. Lindenbergh, TU Delft, daily supervisor
Dr. L. TruongHong, TU Delft, external assessor
ir. L. Amoureus, Fugro, coreader

An electronic version of this thesis is available at http://repository.tudelft.nl/

http://repository.tudelft.nl/


Abstract

Absolute accuracy plays a crucial role in most geospatial applications. Particularly in the case of mo
bile mapping systems (MMS) where large amounts of data are collected, it comprises a key factor that
can sometimes be dangerously underestimated. Mapped data must be accurately georeferenced to
its true position in the real world to be useful. By guaranteeing accurate measurements, the quality of
projects increases and generally allows them to be completed faster, also reducing the time needed
for resurveying. Under conditions of low absolute accuracy, the measurements could still be relatively
accurate and close to a standard value in relative terms, but far from the true absolute value. Within
the scope of mobile laser scanning, the accuracy of the measurements is mainly ruled by the quality
of the navigation solution. Commonly, as for the MMS that Fugro employs to capture 3D measure
ments from railway surroundings, called RILA, the trajectory of these mobile systems is determined by
integrating data from positioning sensors, such as GNSS and IMU. Due to their complementary charac
teristics, the accuracy and robustness of the navigation solution can generally be considered sufficient.
Nevertheless, in certain challenging environments where GNSS positioning conditions are limited, the
trajectory results attained may not yet be accurate enough. Since processing the currently available
data with different settings might not produce such a different outcome, the immediate solution would
be to integrate data from other sensors to aid the trajectory estimation. Along these lines, the inclusion
of LiDARSLAM for this purpose has been researched, but unfortunately, this did not seem feasible with
the current measurement setup of RILA due to lack of overlap between consecutive LiDAR frames.

Therefore, this study presents an alternative procedure to enhance the navigation solution of this MMS,
making use of the point cloud data already acquired and georeferenced. Multiple runs or passes of
the mapping system over the same problematic area take place at different times and some might
possess satisfactory outcomes. Hence, after employing this dataset as reference, the quality of the
others could be improved by means of point cloud matching methods. Next, the computed registration
values are also applied to the trajectory, accordingly. Results over the area of interest selected show
that applying Iterative Closest Point (ICP) using just a few feature points can already enhance the
results. ICP iteratively finds the optimal rotation and translation to match two point clouds, minimising
the differences between them. Furthermore, trajectory accuracies increase with the implementation of
ICP utilising all points, without leading to extra processing times. However, GNSS/INS errors are not
constant throughout time and space, which means that the application of a single rigid transformation
may not be adequate. For that reason, an interpolated ICPbased method has been introduced and
tested. An increasing number of point cloud sections was considered and among all, the solution
with a relatively high number of sections performed better. This algorithm comprised a division of the
point cloud data into 1000 contiguous sections or slices along the trajectory, each approximately 60
cm wide. The RMSE of the resulting absolute trajectory error and its standard deviation were greatly
improved, with their values decaying from 41.1 cm and 18.1 cm to just 4.1 cm and 2.4 cm, respectively.
In addition, provided a good reference dataset is available, the method proposed can be executed
completely automatically and independently of the type of data captured and environment conditions.
Even though these results might not yet reach the desired accuracy of around 1 cm to correctly geo
reference RILA’s LiDAR data, it has been proven that this method has the potential to yield much more
accurate, consistent and reliable outcomes. Further research should be directed at generating an
accurate reference dataset when none is initially available, by collectively and statistically combining
the results of multiple surveys.
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1
Introduction

The first chapter begins with a theoretical background on Mobile Mapping System (MMS) positioning.
Secondly, the RILA system developed by Fugro is introduced briefly, followed by an explanation of the
current methods and limitations related to the trajectory estimation of this MMS. In order to achieve an
enhancement of these problems, the main research question of this study and its subquestions are
formulated. Lastly, an overview of the master thesis structure is presented to briefly inform the reader
about the content of each chapter.

1.1. MMS positioning
Mobile mapping is widely known as the process in which geospatial data is collected from a mobile plat
form in a fast and efficient way (ElSheimy, 2005). Due to continuous growth of scanning, imaging and
positioning technologies, MMS approaches are becoming increasingly important in many application
fields.

For example, Fugro collects 3D measurements from railway surroundings using a MMS mounted on a
train. Its postprocessed data can then be used by asset owners such as ProRail for various railway
engineering applications, including track, overhead line and switch & crossings design, monitoring and
maintenance, without having to send people on or near the track to gather the information. Above
all, the trajectory estimation of the MMS is considered to be a core factor, since it strongly affects the
positional accuracy of all other relative parameters computed.

The elementary sensors for mobile mapping can be divided into two categories: positioning sen
sors employed for trajectory estimation, namely Inertial Navigation System (INS) or Inertial Measure
ment Unit (IMU), Global Navigation Satellite System (GNSS), Distance Measurement Indicator (DMI);
and those necessary for perception or imaging, such as digital cameras, Light Detection and Rang
ing (LiDAR), Sound Navigation and Ranging (SONAR) and Radio Detection and Ranging (RADAR).

On one hand, GNSS sensors can provide stable longterm highly accurate absolute position and ve
locity estimates. One of the main advantages of GNSS is that the errors are not accumulated with
time, despite the fact that the dynamic performance and antiinterference ability are not as good as
those of the sensors with high output data rate (Kaplan and Hegarty, 2005). However, they may easily
experience shortterm losses of signals due to the signal blockage, interference or jamming, especially

1



2 1. Introduction

in urban environments (Sklar, 2003).

On the other hand, selfcontained INS sensors can provide a smoother and more continuous navigation
solution at higher data rates, as they are autonomous and immune to the interference threats which
deteriorate GNSS positioning quality (Farrell, 2008). Nevertheless, they suffer from accuracy degra
dation over time, commonly known as drift, since the composition of the gyroscope and accelerations
errors would be accumulated when it operates in standalone mode (Lavalle et al., 2014). The noise
or bias is what contributes to the drift when accumulated over longer time frames, without additional
constraints. Even the small biases present in the raw IMU observations will accumulate and integrate
over time, leading to IMU drift.

Due to the complementary error characteristics of GNSS and INS, GNSS/INS fusion has become a
standard configuration and a core Position and Orientation System (POS) for geospatial mapping tasks.
Their integration provides definitely a more accurate, continuous and robust navigation solution, in
comparison when only one of the sensors is employed (Karaim et al., 2014).

For the purpose of achieving continuous highperformance navigation, GNSS/INS integration is per
formed by the adoption of a filtering technique, which usually leads to stable results and provides robust
performance (Shin, 2005). A Kalman Filter (KF) is typically selected due to its estimation optimisation
and timerecursion properties. It continuously measures and estimates the navigation system state,
i.e. position, velocity, attitude and biases, while constantly updating the estimated states by incoming
new measurements. The two most common types of GNSS/INS integration algorithms are Loosely
Coupled (LC) and Tightly Coupled (TC), and they basically differ from each other in the way the KF is
applied.

According to Jing et al. (2020), even though highperformance positioning sensors are employed for
mobile mapping, the accuracy can easily be reduced in some scenarios, since GNSS navigation states
are highly dependent on the environment and receiving satellite signals. In the presence of GNSS signal
outages and multipath effect, INS would still provide relative attitude measurements and accelerations.
However, these measurements will likely be able to correctly aid the navigation solution only during a
short period of time, since without external corrections, INS errors tend to increase very quickly over
time (Lavalle et al., 2014).

Therefore, reaching highly accurate positioning in some environments such as over urban canyons or
under dense tree canopy is a very challenging task. As a consequence, the navigation accuracy may
not always fulfil the required or desired accuracy to correctly georeference the acquired mapping data
(Jing et al., 2020).

1.2. RILA system
Fugro’s unique trainborne track measurement system, named Rail Infrastructure aLignment Acquisi
tion (RILA), exists since the year 2009. Since then, several developments have been realised to further
improve and expand the functionality of it. Using this system, data is collected safely without disrupting
regular railway operations and without any human appearance in or near the track.

RILA can measure the absolute track position, relative track geometry and the wider railway corridor
with millimeter accuracy. Currently, the RILA system comprises a GNSS antenna, an IMU, a 360°
LiDAR scanner, three video cameras and two laser vision systems (rail scanners), as shown in Figure
1.1. All sensors are fixed to the carbon fiber housing unit and the carbon fiber mast where the GNSS
antenna attaches, is foldable for easy transportation.

In the current RILA configuration, the 2D LiDAR scanner is aimed vertically, perpendicular to the di
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rection of the train. It rotates at 250 Hz (250 lines per second), while recording 4000 points per line,
resulting in one million measurements per second.

Figure 1.1: Overview of the measurement devices present in RILA.

For the purpose of this study, the RILA system would be employed merely as a Mobile Laser Scanning
(MLS) system, i.e. just considering GNSS, IMU and LiDAR. The georeferenced point cloud obtained
can then be used for various purposes, such as railway corridor mapping and overhead line design.

1.3. Current methods and limitations
In the case of the railway MMS used by Fugro called RILA, under normal conditions, the trajectory of
the system can be well estimated by the integration of INS and GNSS sensors. According to Wang and
Berkers (2019), its standard deviation is considered to be less than 8 mm on the horizontal direction
and less than 12 mm on the vertical one, whereas the accuracy of the processed georeferenced point
cloud would typically be around 10 and 15 mm, respectively. Nevertheless, when the environment is
less favourable for GNSS tracking, the trajectory accuracy may gradually decrease.

Point cloud data is generated based on the calculated trajectory and the acquired LiDAR data. There
fore, errors and drifts in the trajectory will propagate directly to the processed point cloud data, causing
wrong offsets and rotations and thus, deteriorating its quality. Consequently, after the same area is
scanned multiple times, georeferenced point clouds often differ from each other in the range of several
decimeters. As a matter of illustration, Figure 1.2 includes some quality control plots after GNSS/INS
sample trajectory data has been postprocessed in Inertial Explorer1. This corresponds to a covered
station area, where the train stops for almost 2 minutes.

Firstly, Figure 1.2b shows the standard deviation of the final position computed. As it can be noted, the
3D positional accuracy drops to just below 50 cmwhen the train is standing still, whereas it considerably
improves after it begins to move again. This may be connected to the effect of the IMU drift in the
absence of GNSS aid and the fact that IMU excitation is also important to make the inertial sensor work
more precisely.

The lack of accuracy can also be explained by observing Figure 1.2d, which represents the quality of
the GNSS ambiguity resolution process carried out. In this figure, green values mean fixed integer

1Highprecision GNSS/INS integrated postprocessing software developed by NovAtel Inc.
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(a) Body velocity (b) Estimated position accuracy

(c) Forwardreverse position separation (d) GNSS quality status

Figure 1.2: Sample trajectory processing quality control plots. Adapted from Inertial Explorer.

satellite carrier phase ambiguities with good satellite geometry, resulting in centimeterlevel accuracy.
The epochs colored in light blue represent noisy fixed integer solution with marginal satellite geometry,
with an accuracy in the range of a few decimeters, whereas dark blue indicates that the float solution
may have converged to a decimeterlevel value. Finally, red areas denote the epochs when satellite
ambiguities have not been solved, resulting in qualities similar to those from differential GNSS mode,
i.e. meterlevel accuracy.

During most of the time the train is inside the station, the number of GNSS satellites being tracked is
larger than 4, but the Position Dilution of Precision (PDOP) values, related to the satellite geometry, are
not very promising. In addition, it is highly likely that the multipath conditions are very large, as there
are typically many surrounding objects close to the GNSS antenna. This will in turn, limit considerably
the convergence of the solution and hence, decrease its quality.

Secondly, the position separation plot in Figure 1.2c contains the position differences between forward
and reverse processing directions. This key parameter is reasonably large throughout this area, which
means that forward and reverse solutions are not agreeing closely and therefore, results in a loss of
confidence in the solution. As it can be observed, these differences tend to be larger at the extremes
of the problematic area where GNSS coverage is limited, probably on account of the different solution
types (fixed and float) or different levels of float ambiguity convergence between the two processing
directions.

It is worth to mention that if a new survey would be performed over the same area and using the same
MMS, it is very likely that the trajectory processing results would differ from the ones shown in Figure
1.2. On one hand, it would be very hard to recreate the same environment conditions, as multiple
factors extrinsic to the survey affect the results. Furthermore, the GNSS sky configuration is constantly
changing with the course of the day, and there is always a certain degree of randomness in the GNSS
data and its associated errors.

Commonly, every RILA survey includes multiple runs or flight lines, referring to the different passes
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of the train over the same track. The postprocessing results from each of them are weighted and
averaged, in order to increase the reliability and accuracy of the final trajectory. In general, the weighting
is an automated process whereby runs that differ greatly from the mean are weighted less. Computing
the weighted average might be a good solution, however, it would only aid the final solution if each
survey independently possesses an acceptable absolute accuracy. Otherwise, the averaged values
would be relatively precise, but still not very accurate, i.e. far from the actual true trajectory values.

Over the last decades, different approaches were used to improve the accuracy of GNSS/INS trajecto
ries. This takes even more relevance over the areas where GNSS signals are blocked. For example,
a Distance Measurement Indicator (DMI) could be integrated into the system to provide information
about the wheel odometry. DMI measures how far the wheel to which it is attached has travelled, by
keeping track of its revolutions (Puente et al., 2013). Nevertheless, installing such instrument on a train
wheel would demand some mechanical problems.

The most common method to validate and then correct the trajectory in MLS applications, is the instal
lation of physical targets that act as control points (Kersting and Friess, 2016). Having said that, this is
often considered not to be an ideal solution, as it results in extra costs and some other inconveniences
(Puente et al., 2013). Alternatively, Løvås (2017) argues that tie points can be introduced, reducing
the workload needed in the field. They consist in point features than can be identified in multiple over
lapping parts of the georeferenced point cloud, for the purpose of measuring the offset and rotation
between them. Next, tie point observations, defined by a vector from the trajectory to the tie points,
can be integrated into the GNSS/INS Kalman filter, increasing the accuracy of the trajectory (Løvås,
2017).

Similarly, Simultaneous Localization and Mapping (SLAM) has been extensively implemented within
the MMS scope. There are several variations of the SLAM problem, but they all share the same basis.
Briefly, it is defined as the estimation of a map of a previously unknown environment, while simulta
neously updating the positioning of the sensor relative to the map (Thrun and Leonard, 2008). Raw
observations from the mapping sensors currently available in MMSs, such as laser scanners or digital
cameras, could be employed as input for the SLAM algorithm, without the need to add extra sensors
to the system. In addition, SLAM could be considered complementary to GNSS in terms of applicable
scenes, since it performs better when the environment is full of 3D texture features, while GNSS does
it in open spaces (Bresson et al., 2017). Therefore, SLAM may be regarded as an alternative to be
integrated into the GNSS/INS trajectory processing and enhance its accuracy.

Most of the SLAMrelated research done recently is connected to robotic applications located indoors.
Despite being similar to some SLAM algorithms implemented in automobile applications (e.g. Qian
et al. (2017), Løvås (2017), Chiang et al. (2019)), applying this technique in a rail environment or train
station with a MMS mounted on a train, is definitely something that has not been broadly studied yet.

Nowadays, SLAM technology based on LiDAR is still in the stage of improving its general performance,
precision and robustness, and it has important research significance (Yang et al., 2019). Furthermore,
few studies (e.g. Grisetti et al. (2007), Kohlbrecher et al. (2011), Hess et al. (2016)) were found that
propose the use of 2D LiDAR scanners to perform SLAM. The purpose of this study is to investigate
the possible application of SLAM with 2D LiDAR scanners, as the one which RILA contains, in order
to get a better estimate of the MMS trajectory. To reach this goal, data over a train station captured by
RILA is employed, together with other opensource data sets.

The trajectory accuracy needed for each survey usually depends on the particular project or client’s
requests. Hence, although the basis is always very similar, the processing procedure followed by Fu
gro is not exactly the same for every case. Sometimes, the standard deviations over areas such as
train stations exceed the requirements, typically in the centimeter or subcentimeter order. As a con
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sequence, the results are adjusted manually, considering the quality analysis of all flight lines together;
or ultimately, if still in presence of decimeterlevel or even worse results, parts of the data have to be
removed from the processing. Both solutions may likely not be considered ideal, so if higher accuracies
are requested for these areas, control points must be collected, leading to additional costs. Taking this
into account, the introduction of SLAM would be of great relevance in these situations, mainly due to
the increase of the quality of the results, but also because the gaps in the trajectory solutions would be
greatly minimised, without the need for additional measurements in the field.

1.4. Research questions
The main objective of this research is to propose a new methodology to improve the trajectory estima
tion of railway MMS in challenging environments, where GNSS signals are partially blocked. Moreover,
the application of LiDARSLAM within RILA is initially investigated and its feasibility is further analysed.
Even though the final method might not be tightly connected to SLAM, the principal goal concerning tra
jectory enhancement using LiDAR data from RILA as input will remain unchanged. Ideally, it would be
as least datadriven and as automated as possible, which would result in independence of the dataset
considered.

The previously mentioned objective can be formulated into the following main research question:

What could be a feasible way to enhance RILA’s trajectory estimation in challenging en
vironments by employing its currently acquired LiDAR data?

To support the main research question, seven subquestions have been formulated:

1. What are the current limitations and problems of RILA’s trajectory estimation?

2. What is the applicability of LiDARSLAM to improve RILA’s trajectory estimation? To what extent
can LiDARSLAM be used with the current measurement setup of RILA?

3. How can multiple runs or flight lines over the same area be used to enhance the results?

4. How to estimate trajectory displacements from point cloud matching information?

5. Which procedures could be followed to assess the quality and validate the results?

6. What would be the added value and limitations of this method in comparison with the current
GNSS/INS solution that RILA employs?

7. Could the results and conclusions be generalised to other types of areas such as tunnels, or are
they tightly dependent on the environment of each situation?

1.5. Thesis outline
Chapter 2 provides background information that is relevant for the understanding of MMS process
ing. The main topics in this chapter are the components of MLS systems and their respective coordi
nate frames, RILA’s trajectory estimation and point cloud georeferencing. The concepts of SLAM and
LiDARSLAM in particular are thoroughly explained in Chapter 3, along with our related work. Chapter
4 consists essentially of two parts; first, the study area is introduced and second, a description of the
RILA data employed is provided. In Chapter 5 the methodology which is used in this thesis is cov
ered. This stepbystep approach includes an introduction, data preprocessing, ICPbased trajectory
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adjustment, and validation. Subsequently, results and implications are presented in Chapter 6. In con
clusion, Chapter 7 briefly answers all the research questions and gives recommendations for future
related research.



2
Fundamentals of Mobile Mapping

This chapter introduces the concept of Mobile Mapping Systems (MMS) and describes the techniques
behind the most common sensors employed in Mobile Laser Scanning (MLS), i.e. Inertial Navigation
System (INS), Global Navigation Satellite System (GNSS), and Light Detection and Ranging (LiDAR).
Next, an overview of the different coordinate frames underlying MLS is presented. The last sections
of the chapter explain how RILA’s trajectory is currently estimated and elaborate on the concept of
georeferencing.

2.1. Basic concepts
Over the last two decades, Mobile Mapping Systems have become an emerging trend in mapping
applications because they have proved to be capable of providing fast, efficient, costeffective and
complete data collection. These systems can be used for example for 3D mapping of roads, railways,
urban and coastal areas.

Their development has been motivated by a desire to overcome the problems with alternative methods
of spatial data collection such as pointwise GNSS and traditional terrestrial surveying, which tend not
to be convenient for rapid or dense data collection. MMS can avoid these limitations, while still being
costeffective and capable of providing similar spatial accuracies (ElSheimy, 2005).

Ellum and ElSheimy (2002) defineMMS as a system that integrates navigation sensors and algorithms,
along with sensors that can be used to determine the position of points remotely. Each sensor is rigidly
mounted on a mobile platform and whereas the former sensors determine the position and orientation
of it, the latter sensors measure the position of remotely sensed points.

One of the main strengths of MMS is the georeferencing technology, in which the navigation sensors
are integrated in order to directly determine the position and orientation of the mapping sensors.

2.2. System components
This section separately describes three of the most common MMS components, in particular those em
ployed for MLS, namely Inertial Navigation System (INS), Global Navigation Satellite System (GNSS),

8
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and Light Detection and Ranging (LiDAR).

2.2.1. INS

Inertial navigation is a selfcontained navigation technique in which measurements provided by ac
celerometers and gyroscopes are used to track the position, velocity and orientation of an object relative
to a known starting pose (Grewal et al., 2001). These high rate sensors have an update frequency of the
order of a few hundred hertz and can provide a full navigation solution in 6 degrees of freedom (DOF).

On one hand, angular accelerometers or gyroscopes (rotation rate sensors) measure how the vehicle
is rotating in space, resulting in angular rates or angular increments from an initial known orientation
relative to the 3D inertial space. These angular increments must be integrated once to determine the
attitude of the sensor. On the other hand, linear accelerometers measure the specific force, also called
nongravitational acceleration (Bitenc et al., 2010). In simple words, they measure the movement of
the vehicle in space. All measurements are temperaturecompensated and are mathematically aligned
to an orthogonal coordinate system.

Moreover, through double integration of the linear acceleration measurements, the position of the sys
tem can be estimated. This process is based on the dead reckoning principle (Woodman, 2007), which
consists of the estimation of the current position of the vehicle from a previously determined position,
given its motion. First, in order to obtain the velocity at the current time, the specific force is integrated
and added to the previous velocity. Next, the current position can be obtained by integrating the velocity
and adding the obtained displacement to the previous computed position.

From the above, one can note that INS updates are relative increments of attitude, velocity, position.
Consequently, INS measurement errors sum up and the errors of position, velocity and attitude grow
over time. According to BenAfia (2017), these errors consist of the following:

• Turnon or initial bias: Generally being constant and deterministic, it is the average of each INS
measurement, obtained during a specific period whilst the sensor is not undergoing any motion.

• Inrun bias stability: Modelled as a GaussMarkov process (Angrisano, 2010), it is due to flicker
noise in the electronics and other components susceptible to random flickering (Woodman, 2007).

• Random walk noise: Modelled as a zeromean white noise, it is the thermomechanical pertur
bation that affects the specific force and angular rate measurements. Its values can be usually
extracted from the sensor specification datasheet. When integrated, this error becomes a zero
mean random walk affecting both the velocity and the angle.

• Scale factor: Modelled as a GaussMarkov process (Angrisano, 2010), it is the ratio between the
change in the output signal of the sensor and the change in the physical quantity to measure.

Taking into account the aforementioned error sources, INS measurements can be modelled as (Ben
Afia, 2017):

�̃� = (1 + 𝑘𝑚)𝑚 + 𝑏𝑚 + 𝜂𝑚 (2.1)

Where �̃� is one of the measurements (gyro or acceleration) outputted by the INS sensor;𝑚 represents
the true value of the INS measurement; 𝑘𝑚 is the scale factor affecting the measurement; 𝑏𝑚 is the
bias which affects the measurement; and 𝜂𝑚 is the white random noise affecting the measurement.

The accuracy of an INS is strongly dependant on the drift and noise of the gyroscopes (Titterton and
Weston, 2004). Firstly, gyro uncompensated biases result in a growing angular error over time of the
attitude, due to timewise integration. Then, this erroneous attitude estimate is used for the gravity
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compensation of the acceleration measurements, causing a misleading acceleration which is further
integrated twice for position estimation. As a result, the vehicle trajectory will diverge from the actual
path, mostly controlled by the quality of the INS sensors and the mission duration (Bitenc et al., 2010).

Hence, a longterm stable INS requires additional measurements. External sensors are needed to get
a good initial state of the system and are helpful to limit the error growth and drift (Titterton and Weston,
2004). Therefore, the navigation quality can be improved if a fixed reference is available, e.g. GNSS.
A GNSS/INS integrated system can also estimate the INS biases from GNSS measurement updates,
in order to compensate the drift.

2.2.2. GNSS1

Global Navigation Satellite System (GNSS) provides absolute geographic position, velocity and time
almost anywhere on Earth, and hence, it can be used to aid the INS navigation solution. GNSS is a
general term used to describe a satellitebased navigation or positioning system (e.g. American GPS,
Russian GLONASS, European Galileo, Chinese BeiDou) and has three major system components:
space segment with the satellite constellation, ground segment including the monitoring stations, and
the GNSS receiver as user segment.

GNSS positioning is based onmeasuring the time delay that it takes for a signal transmitted by a satellite
to reach a user receiver on ground. This signal propagation time is then multiplied by the speed of light
to obtain an estimate of the satellitetoreceiver range. In this way, by measuring the propagation time
of the signals broadcast from at least three satellites with known precise ephemerides, the receiver
can determine the position of its antenna (Teunissen and Montenbruck, 2017). However, the receiver
clock error will introduce an error into the computation and thus, in order to provide a unique solution,
a range to a fourth satellite must be observed.

The satellite ephemerides are calculated by the GNSS space segment and form the navigation mes
sage transmitted by them. In some applications, these parameters may be considered not suffi
ciently accurate. For this purpose, International GNSS Service (IGS) regularly computes the precise
ephemerides of every satellite, which the user could employ to enhance the positioning solution. These
contain postprocessed information about their orbit parameters, from measurements collected by var
ious monitoring stations worldwide that track these satellites.

Furthermore, the carrier phase of the signal transmitted by GNSS satellites can be used to find the dis
tance between them and the receiver, by calculating the difference between the phase of the receiver
generated carrier signal and the carrier signal received from the satellite at the instant of the measure
ment. In fact, this measures a fraction of a cycle and defines with high precision a fractional part of the
distance between the satellite and receiver, given by the wavelength of the signal.

Therefore, an initial number of whole cycles is needed to get the entire distance. The number of full
phase cycles between the receiver and the satellite at the starting epoch, called integer ambiguity,
is initially unknown and needs to be estimated. Once the ambiguity is solved, the distance between
the satellite and receiver becomes known accurately. Nevertheless, if the receiver temporarily loses
a signal (lossoflock), a discontinuity of an integer number of cycles occurs in the measured carrier
phase. This cycle slip or jump in the integer part of the carrier phase measurement will most likely
result in a range error.

The mathematical model of the GNSS carrier phase measurement transmitted on each of the multiple
GNSS frequencies is described in Teunissen and Montenbruck (2017) as follows:

1Most of the theoretical aspects of this subsection were summarised from Teunissen and Montenbruck (2017).
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𝜙 = 𝜌 + 𝑐 (𝛿𝑡𝑅 − 𝛿𝑡𝑆) + 𝑇 − 𝐼 + 𝑁 𝜆 + 𝜖𝜙 (2.2)

Where 𝜙 is the phase measurement expressed as range; 𝜌 represents the geometric distance between
receiver and satellite; 𝑐 is the speed of light in vacuum; 𝛿𝑡𝑅 and 𝛿𝑡𝑆 are the receiver and satellite clock
offsets fromGNSS time; 𝑇 and 𝐼 are the tropospheric and ionospheric delays; 𝑁 is the integer ambiguity;
𝜆 is the carrier wavelength; and 𝜖𝜙 includes other errors such as multipath and receiver noise.

The described GNSS principle requires synchronised satellite and receiver clocks to compute the signal
propagation time. As a consequence, the computed satellitetoreceiver range includes a time com
ponent associated to the offset between these clocks. Accordingly, this computed distance is named
pseudorange. Then, the satellitereceiver clock offset remains unknown and must be estimated within
the GNSS positioning solution.

There are several error sources which can affect the GNSS observations, decreasing the position
accuracy. These possible errors are summarised below:

• Satellite clock error, due to uncertainties on the satellite clock offset correction model

• Ephemeris (orbital) errors

• Ionosphere and troposphere propagation error, due to atmospheric delays

• Receiver noise

• Multipath and nonline of sight (NLOS) signals

• Errors due to other unmodelled effects

When a GNSS signal propagates from the satellite to the GNSS antenna, it travels through the atmo
sphere and undergoes ionosphere and troposphere delays. Furthermore, clear sight from the GNSS
receiver to the satellites is needed, since the signal cannot penetrate through thick forests, mountains
or buildings. In these environments, it might be challenging to track the signals from enough satellites
simultaneously to be able to properly estimate the position of the receiver.

In addition, some signals may be reflected by buildings and structures surrounding the antenna, result
ing in the reception of a reflected signal besides the direct signal, known as multipath, or even receiving
only the reflected signal, socalled nonline of sight (NLOS). Both effects are very hard to be detected
and further mitigated, and whereas the impact of multipath on the carrier phase measurements can be
in the order of a few centimeters, the potential error due to NLOS is unlimited. As a matter of illustration,
Figure 2.1 shows a typical railway environment, indicating some of the possible multipath sources it
may contain.

Moreover, poor geometry of satellites can decrease the accuracy of the GNSS positioning solution.
When the satellites employed in the computations are well spread out as seen from the position of
the receiver, there would be good satellite geometry. On the contrary, bad geometry occurs when the
satellites are close together. The Position Dilution of Precision (PDOP) is the parameter designed to
measure the satellite geometry. The higher the PDOP value, the lower the accuracy of the estimated
position.

Different techniques of GNSS signal processing can reduce or eliminate some of the aforementioned
errors. The most common GNSS positioning method within the MMS scope is realtime kinematic
(RTK) (Teunissen and Montenbruck, 2017), which consists of a stationary base station at a known
position and a receiver placed on the mobile platform. Considering a short baseline between the two
receivers of a few kilometers, the atmospheric delays can be suppressed, assuming that their quantities
are approximately the same at both locations.
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Figure 2.1: Possible multipath causes in railway environment. Image source: Heirich (2020).

RTK positioning is implemented in realtime through the provision of a communication link between
the receivers, such as radio link, although postprocessing kinematic (PPK) positioning leads to higher
accuracy, reaching values of up to 5 mm + 1 ppm (Humphreys et al., 2016). At the reference or base
station, the difference between the current position calculated from satellite observations and the known
fixed position is computed and transmitted to the user receiver. The latter then applies this correction
to its GNSS observations and thus, estimates its current position more accurately than when operating
in standalone mode.

2.2.3. LiDAR2

Light Detection and Ranging (LiDAR), or simply laser scanning, is a surveying technique that employs
laser beams to measure the distance to surrounding objects. The basic concept consists of three
components: positioning, orientation and ranging. The laser scanner emits laser pulses, which are
reflected back by objects and then sensed by the scanner. Every reflected laser beam contains range
and angle measurements of the point on the surface where the laser pulse was reflected, obtaining
as a result the 3D coordinate position of the point in the scanner’s own coordinate system (SOCS)
(Vosselman and Maas, 2010). Following this procedure, a large number of points can be collected
every second, making LiDAR an efficient surveying method. In addition, it has the advantages of high
precision, long detection distance and independence from illumination conditions (Yang et al., 2019).

In current laser scanning systems, two different principles are used to obtain the distance measurement
between the sensor system and its target: timeofflight (TOF) and phaseshift (PS). A TOF scanner
sends a short laser pulse to the target and then the time difference between the emitted and received
pulses can be used to determine the distance from the center of the sensor to the scanned point
(Gokturk et al., 2004). The range 𝑟 is calculated through the following expression:

𝑟 = 1
2
𝑐 Δ𝑡
𝑛 (2.3)

Where 𝑐 represents the speed of light in vacuum; 𝑛 is the refractive index which takes into account the
air temperature, pressure and humidity; and Δ𝑡 is the time of flight of the pulse (Gokturk et al., 2004).

2Most of the theoretical aspects of this subsection were summarised from Vosselman and Maas (2010).
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In contrast, in order to determine the range, PS laser scanners employ the phase difference between
the emitted and received backscattered signal of a frequency modulated continuous wave (FMCW). Ac
cording to this principle, the relationship between the phaseshift and range is provided by the following
equation:

𝑟 = 1
2 (

Δ𝜑
2𝜋

𝑐
𝑓 +

𝑐
𝑓 𝑛) (2.4)

Where 𝑐 represents the speed of light in vacuum; 𝑓 is the modulation frequency; Δ𝜑 is the phaseshift;
and 𝑛 is the unknown number of full wavelengths between the scanner and the target, related to the 2𝜋
ambiguity problem. The factor 12 included in Equations 2.3 and 2.4 is related to the fact that the pulse
has to travel the same distance twice before it is detected.

Typically, PS scanners do not have the same performance as TOF scanners, as they tend to be more
accurate and faster than the latter. Their biggest drawback compared to TOF scanners used to be their
shorter detection range, making them less suitable for longrange measurements. However, Suchocki
(2020) argues that over the last years, this feature of PS scanners has improved considerably.

With regard to the characteristics of every LiDAR scanner, its aperture angle or field of view (FOV) indi
cates the angular span in which it can take measurements and the operating range specifies the max
imum distance it can measure. Also, the angle between consecutive range measurements is referred
as angular resolution, whereas the scanning frequency indicates the number of scans per second.

Considering all the measurements acquired by a LiDAR scanner together, a point cloud (set of laser
points with 3D coordinates) would be formed, in which objects can be identified by their geometry or
shape and their size or volume can be measured accurately. Moreover, intensity values of points can
also be used to identify features in the point cloud. This parameter represents the strength of the laser
pulse return that generated the point observation. It is a relative measure, partly dependent on the
reflectiveness of the target surface and incident scan angle of the laser pulse.

Besides the systematic errors caused by imperfections in instrument manufacture, environmental ef
fects can also cause LiDAR sensors to make faulty measurements. Similar to what occurs with GNSS
observations, multipath can cause problems to laser scanning (Vosselman and Maas, 2010). This
happens when the pulse is reflected by multiple objects before returning to the scanner, resulting in
a scanned point located further away from its true position. Additionally, objects with too low or high
focused reflectivity can cause the pulse to be reflected incorrectly on another direction.

Mobile mapping applications require in general large coverage (governed by the FOV of the sensor),
high point cloud densities of more than 100 points/m2 and accuracies within 5 cm (Alsadik, 2020).
Nevertheless, sometimes these characteristics contradict each other. For instance, large operating
ranges may increase the coverage, but this will likely result in a higher beam divergence and range
uncertainty (Alsadik, 2020). Within this scope, singlebeam or 2D LiDAR scanners that can acquire
profiles of parallel planes intersecting surrounding infrastructures have been widely employed (Puente
et al., 2013). The third dimension of the captured profile data is obtained as a result of the forward
movement of the mobile platform on which the scanner is mounted.

Singlebeam scanners are relatively lightweight, compact and have high geometric properties of range
accuracy, angular resolution and beam divergence. One example of such a scanner is Riegl VUX1HA,
used as part of RILA system and considered in the present research. This highgrade 2D TOF scanner
has 5 mm range accuracy, 360° FOV, 0.001° angular resolution and a rotation rate of 250 Hz, resulting
in up to 1 million points measured per second3.

3Manufacturer specifications extracted from http://www.riegl.com

http://www.riegl.com
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Over the last decade, multibeam or multiline laser scanners, also called 3D LiDAR scanners, have
become increasingly popular for MMS purposes (Yang et al., 2020). These systems use an array of
laser transmitters to scan and measure simultaneously and in parallel, producing a 3D point cloud with
both horizontal and vertical FOV. Nowadays, they are often preferred over traditional singlebeam
LiDAR scanners because of the advantages of lower price and multiple FOVs. However, point clouds
acquired by these sensors tend to be noisier, due to slightly lower precision of range, angle and intensity
measurements, and the presence of internal errors among multibeam lasers (Yang et al., 2020).

An example of this type of sensor is Velodyne Puck VLP16, which is employed in some of the open
source datasets used in this research. This mediumgrade 3D TOF scanner consists of 16 pairs of
simultaneously rotating laser transmitters and receivers within a compact sensor pod. It has 3 cm
range accuracy, 360°×30° FOV and its rotation rate varies from 5 to 20 Hz with a set default value of 10
Hz, which gives an horizontal angular resolution of 0.2° (see Table 2.1). This results in 300,000 points
measured per second, or double that quantity in dual pulse return mode4.

Riegl VUX1HA Velodyne Puck VLP16
Channels (laser beams) 1 16
Operating range 420 m 100 m
Range accuracy (1𝜎)5 5 mm 3 cm
FOV (horizontal) 360° 360°
Angular resolution (horizontal) 0.001° 0.1°0.4°
Beam divergence (horizontal) 0.03° 0.18°
FOV (vertical) —— 30°
Angular resolution (vertical) —— 2.0°
Beam divergence (vertical) —— 0.09°
Rotation rate 250 Hz 520 Hz
Output rate (pts/s) 1,000,000 300,000 (600,000 dual)
Wavelength 1550 nm 903 nm
Height 22.7 cm 7.2 cm
Diameter 12.5 cm 10.3 cm
Weight 3.5 kg 830 g
Power consumption 65 W 8 W
Year of launch 2015 2014
Approx. price € 95,000 € 3,500

Table 2.1: Comparison between the manufacturer specifications of Riegl VUX1HA and Velodyne Puck VLP16 scanners.
Information extracted from their respective datasheets.

2.3. Coordinate frames
In any aided inertial navigation system as part of a MLS, multiple sensors are used to estimate the
navigation solution. Since their observations belong to different coordinate frames, the transformation
(rotation and translation) between them is necessary for sensor fusion (GrejnerBrzezinska et al., 2005).

To further understand the role of different coordinate frames within the operation of a MLS, all relevant
global and local coordinate frames are briefly described. These definitions follow from Ellum and El
Sheimy (2002) and Farrell (2008). The Earthcentered inertial (ECI) and Earthcentered, Earthfixed
(ECEF) frames are the global frames that define the position of the MLS on Earth, whereas the mapping

4Manufacturer specifications extracted from http://www.velodynelidar.com
5Assuming normal distributions, 1𝜎 indicates that 68.27% of the observations lie within one standard deviation of the mean.

http://www.velodynelidar.com
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and body frames are the local frames needed to maintain the attitude information, and the laser scanner
frame is a local sensor coordinate system.

An inertial frame (iframe) is defined as a nonrotating and nonaccelerating frame with respect to the
fixed stars. The Earthcentered inertial (ECI) frame is an example of a (nearly) nonrotating and non
accelerating frame. It is defined as follows:

Origin: Center of mass of the Earth
Z𝑖axis: Earth’s mean rotational axis
X𝑖axis: Pointing towards the mean vernal equinox
Y𝑖axis: Orthogonal to X and Z axes, completing a righthanded orthogonal coordinate system

An Earthcentered, Earthfixed (ECEF) frame (eframe) is similar to the ECI, except that its axes ro
tate with the Earth. For practical applications, this system must be realised. An example of such a
realization, especially for GNSS use, is the World Geodetic System 1984 (WGS84), which is a global
terrestrial reference frame (TRF) or datum that defines a reference ellipse with its origin located at the
center of the Earth (Parkinson et al., 1996). An ECEF frame is defined as follows:

Origin: Center of mass of the Earth
Z𝑒axis: Earth’s mean rotational axis
X𝑒axis: Pointing towards the intersection of the Equator with the Prime Meridian of Greenwich
Y𝑒axis: Orthogonal to X and Z axes, completing a righthanded orthogonal coordinate system

A mapping frame (mframe) is a geodetic frame that is defined locally on Earth. The end result of
the processed trajectory and georeferenced point cloud are often given in this coordinate system. A
mapping frame can be defined in various ways, however the most popular choice is the socalled local
NorthEastDown (NED) frame, defined as follows:

Origin: A fixed origin with respect to Earth
X𝑚axis or Naxis: Pointing towards the geodetic North (direction parallel to the tangent to the

respective Meridian)
Y𝑚axis or Eaxis: Pointing towards the geodetic East (direction along the line of latitude)
Z𝑚axis or Uaxis: Pointing downwards in the direction of the ellipsoidal normal

A body frame (bframe) is a frame associated with the vehicle or platform and whose axes coincide
with those of the IMU. It is typically defined as follows:

Origin: Center of mass of the IMU
X𝑏axis: Pointing in the right direction of the platform
Y𝑏axis: Pointing in the forward direction of the platform
Z𝑏axis: Pointing in the upward direction of the platform

All navigation measurements will be taken in this coordinate system. In addition, this frame can be
used to relate the navigation system to other sensors on the platform, such as a laser scanner. In 3D
space, there are mainly three ways to represent rotations: through quaternions, rotation matrices and
Euler angles. Euler angles describe the orientation of a rigid body (bframe) with respect to a fixed
coordinate system, e.g. mframe. The three Euler angles in 3D space are roll, pitch and yaw and they
indicate rotations around the X, Y and Zaxis, respectively (see Figure 2.2).

As stated by Ellum and ElSheimy (2002), the full rotation matrix between the body frame and mapping
frame, also called direction cosine matrix (DCM), can be obtained after three consecutive rotations
around X𝑏, Y𝑏 and Z𝑏axis (see Equation 2.5, for the case where the NED frame definition is followed).
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Figure 2.2: Position of all three axes, with the righthand rule for indicating their respective Euler angles. Image source: Linear
Motion Tips (2020).

𝑅(𝜔, 𝜑, 𝜅) = 𝑅𝑧(𝜅) ⋅ 𝑅𝑦(𝜑) ⋅ 𝑅𝑥(𝜔) = [
𝑐𝑜𝑠 𝜅 −𝑠𝑖𝑛 𝜅 0
𝑠𝑖𝑛 𝜅 𝑐𝑜𝑠 𝜅 0
0 0 1

] [
𝑐𝑜𝑠 𝜑 0 𝑠𝑖𝑛 𝜑
0 1 0

−𝑠𝑖𝑛 𝜑 0 𝑐𝑜𝑠 𝜑
] [
1 0 0
0 𝑐𝑜𝑠 𝜔 −𝑠𝑖𝑛𝜔
0 𝑠𝑖𝑛 𝜔 𝑐𝑜𝑠 𝜔

]

= [
𝑐𝑜𝑠 𝜑 𝑐𝑜𝑠 𝜅 −𝑐𝑜𝑠 𝜔 𝑠𝑖𝑛 𝜅 + 𝑠𝑖𝑛𝜔 𝑠𝑖𝑛 𝜑 𝑐𝑜𝑠 𝜅 𝑠𝑖𝑛 𝜔 𝑠𝑖𝑛 𝜅 + 𝑐𝑜𝑠 𝜔 𝑠𝑖𝑛 𝜑 𝑐𝑜𝑠 𝜅
𝑐𝑜𝑠 𝜑 𝑠𝑖𝑛 𝜅 𝑐𝑜𝑠 𝜔 𝑐𝑜𝑠 𝜅 + 𝑠𝑖𝑛𝜔 𝑠𝑖𝑛 𝜑 𝑠𝑖𝑛 𝜅 −𝑠𝑖𝑛𝜔 𝑐𝑜𝑠 𝜅 + 𝑐𝑜𝑠 𝜔 𝑠𝑖𝑛 𝜑 𝑠𝑖𝑛 𝜅
−𝑠𝑖𝑛 𝜑 𝑠𝑖𝑛 𝜔 𝑐𝑜𝑠 𝜑 𝑐𝑜𝑠 𝜔 𝑐𝑜𝑠 𝜑

]

(2.5)

Where 𝜔, 𝜑 and 𝜅 refer to roll, pitch and yaw, and 𝑅𝑥(𝜔), 𝑅𝑦(𝜑) and 𝑅𝑧(𝜅) are the rotation matrices
around X𝑏, Y𝑏 and Z𝑏axis, respectively.

Finally, a laser scanner frame (sframe) is a righthanded local coordinate frame defined relative to the
laser scanner. In the presence of a 2D LiDAR sensor, this frame consists of a scanning plane and an
axis of rotation. As a consequence, the coordinates of a target point in the laser scanner frame can be
computed using the raw range and incident scan angle measurements (Glennie, 2007). The geometric
relationship between the spherical coordinates (horizontal angle 𝛼, range 𝑑) and Cartesian coordinates
(𝑋, 𝑌, 𝑍) is a particular case of the generic computation of laser scanning coordinates, considering a
vertical angle 𝛽 equal to 0°:

𝑋𝑃 = [
𝑋𝑃
𝑌𝑃
𝑍𝑃
] = [

𝑑 ⋅ 𝑐𝑜𝑠 𝛽 ⋅ 𝑐𝑜𝑠 𝛼
𝑑 ⋅ 𝑐𝑜𝑠 𝛽 ⋅ 𝑠𝑖𝑛 𝛼

𝑑 ⋅ 𝑠𝑖𝑛 𝛽
] (2.6)

2.4. RILA’s trajectory estimation
The estimation of RILA’s trajectory is currently achieved through GNSS/INS integration using a high
precision GNSS/INS integrated postprocessing software, such as Inertial Explorer. Besides the raw
data collected by RILA, other parameters are needed in order to determine the absolute positioning of
the system. The required data inputs are summarised below:

• Raw IMU observations (300 Hz sampling frequency)
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• Raw GNSS observations (5 Hz sampling frequency)

• GNSS base data from master stations (1 Hz sampling frequency)

• Precise Ephemeris

• Calibration parameters (GNSS antenna lever arms and rotation angles)

To enhance the accuracy of the GNSS data, the raw observations are postprocessed in conjunction
with the data from the GNSS local reference network, applying the concept of Virtual Reference Station
(VRS) (Retscher, 2002). In this way, besides the GNSS sensor mounted on the train, no base GNSS
data needs to be acquired in the field. VRS base data (master stations) is supplied by the regional
GNSS network provider (e.g. 06GPS in the Netherlands) and then, the RINEX files are processed
jointly with the raw GNSS observations. This VRS generation process can be performed through two
approaches: placing VRSs along the track line every 10 km, employing them as base stations in post
processing kinematic (PPK) mode (suitable for long and snakeshaped trajectories); or for smallscale
surveys, enclosing the trajectory with a network of VRSs which is used to generate the corrections at
the location of the RILA GNSS antenna. In addition, precise ephemeris are imported from the website
of the International GNSS Service (IGS) and are included in the processing.

Next, GNSS and IMU data are integrated together utilising a Kalman filter, processing them in both
forward and reverse chronological order. Typically, this is done in a looselycoupled fashion, although a
tightlycoupled scheme can be chosen instead. When considering both directions, independent forward
and reverse solutions are processed and automatically combined. Inverse variance weighting is then
applied to ensure that the direction with the lower estimated errors receives the most weight in the
combined trajectory and thus, maximises the accuracy of the final solution (Cosandier et al., 2018). A
key component of this process is the backsmoother, which recursively processes the data and updates
the error filter states as it proceeds. With precise error modelling for each sensor, the backsmoother
can improve the navigation accuracy significantly. As a result, the Smoothed Best Estimated Trajectory
(SBET) for the MMS is computed (Mattheuwsen et al., 2019). The position coordinates (x, y, z) and
angles (roll, pitch, yaw) present in the SBET file correspond to a geodetic Cartesian reference frame
(eframe) such as the European Terrestrial Reference System 1989 (ETRS89).

2.5. Direct Georeferencing
The determination of the absolute position and orientation of the MMSmapping sensors by direct use of
GNSS/IMU fusion is called direct georeferencing (DG). Its mathematical model relates the coordinates
of the point acquired by a mapping sensor, an integrated GNSS/IMU navigation system and calibra
tion parameters. This process defines the direct measurement of the exterior orientation parameters
(three position coordinates and three orientation angles) of the mapping sensors, for each timestamp
considered (GrejnerBrzezinska et al., 2005).

Accordingly, the fundamental georeferencing equation (Eq. 2.7), shown below for a LiDAR sensor as
part of a MLS system, is delineated for example in GrejnerBrzezinska et al. (2005) and Glennie (2007).
This is the primary tool in order to apply the computed exterior orientation parameters to transform the
measured sensor coordinates into the ground coordinates in the selected mapping frame. As it can be
noted, the mathematical relationship can be derived through the summation of three vectors (𝑋𝑃, ⃗𝑋𝐼𝑀𝑈,
𝑟𝑠𝑃 ) illustrated in Figure 2.4, after applying the appropriate rotations matrices (𝑅𝑀𝐼𝑀𝑈 , 𝑅𝐼𝑀𝑈𝑆 ).

[
𝑋𝑃
𝑌𝑃
𝑍𝑃
] = [

𝑋𝐼𝑀𝑈
𝑌𝐼𝑀𝑈
𝑍𝐼𝑀𝑈

] + 𝑅𝑀𝐼𝑀𝑈(𝜔, 𝜑, 𝜅) ⋅ (𝑅𝐼𝑀𝑈𝑆 (Δ𝜔, Δ𝜑, Δ𝜅) ⋅ 𝑟𝑠𝑃 (𝛼, 𝑑) + [
𝑙𝑥
𝑙𝑦
𝑙𝑧
]) (2.7)
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Figure 2.3: Point cloud georeferencing workflow diagram.

Where:

• 𝑋𝑃 represents the 3D coordinate vector of target point 𝑃 in the mapping frame

• ⃗𝑋𝐼𝑀𝑈 is the 3D coordinate vector for the origin of the IMU in the mapping frame, obtained by
GNSS/IMU integration

• 𝑅𝑀𝐼𝑀𝑈 stands for the rotation matrix (employing orientation angles roll, pitch and yaw) between the
IMU body frame and mapping frame, derived by GNSS/IMU integration

• 𝑅𝐼𝑀𝑈𝑆 is the boresight rotation matrix between the laser scanner frame and IMU body frame, de
termined by system boresight calibration

• 𝑟𝑠𝑃 refers to the relative position information of point 𝑃 in the laser scanner frame, computed using
the raw range and incident scan angle measurements

• 𝑙 is the 3D vector which contains the lever arm offsets between the laser scanner frame and IMU
body frame, obtained by system calibration

Equation 2.7 demonstrates that the final ground point position calculated for the laser return is based
on 14 observed parameters:

• 𝑋𝐼𝑀𝑈 , 𝑌𝐼𝑀𝑈 , 𝑍𝐼𝑀𝑈 : position of center of mass of the IMU w.r.t. the mapping frame

• 𝜔, 𝜑, 𝜅 : roll, pitch and yaw between the IMU body frame and mapping frame

• Δ𝜔, Δ𝜑, Δ𝜅 : boresight angles which align the laser scanner frame with the IMU body frame

• 𝑙𝑥 , 𝑙𝑦 , 𝑙𝑧 : lever arm offsets between the laser scanner frame and IMU body frame

• 𝛼, 𝑑 : scan angle and range measured and returned by the laser scanner

From the above, one can note that the accuracy of the georeferenced point cloud will depend on 3
elements: LiDAR intrinsic errors (e.g. range measurement and scan angle error) related to the scan
ner employed, positioning of the sensors relative to the platform (translational and rotational misalign
ments), and accuracy of the navigation trajectory (position and orientation in the mapping coordinate
system) (Yi, 2007). The spatial location of the sensors within the system can be precisely determined by
following an appropriate sensor calibration procedure. Hence, when a wellcalibrated and highgrade
LiDAR scanner is used, the quality of the registered point cloud is essentially controlled by the position
and orientation accuracy provided by the GNSS/IMU navigation solution (Yi, 2007).
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Figure 2.4: DG scheme in a MLS system. Image source: Ma et al. (2018).
.



3
Simultaneous Localization and Mapping

In this chapter, the background theory of Simultaneous Localization and Mapping (SLAM) is delineated.
Moreover, the state of the art of LiDARSLAM is provided, with special focus to the relevant LiDAR
SLAM algorithms for this research, followed by a brief literature study on recent GNSS/INS/LiDAR
SLAM integrated systems and our related work.

3.1. SLAM background theory
Simultaneous Localization and Mapping (SLAM) was first introduced in Smith et al. (1987) as a tech
nique that allows a mobile system or robot (e.g. autonomous vehicle) to simultaneously build a map of
the previously unknown environment around it, while computing a best estimate of where it is located
within the environment.

Positioning and mapping are two tasks that complement each other in SLAM technology and as the
name suggests, they are carried out simultaneously. Mapping consists of building a map of the sur
rounding environment given the known sensor pose, whereas the meaning of localization is to deter
mine the pose of the sensor using landmarks in the map. By moving its position within the environment,
all environmental features, such as walls and floors, will move in relation to the device and the SLAM
algorithm can improve its estimate with the new positional information (Thrun and Leonard, 2008).
Hence, SLAM is an iterative process, since the more iterations the system takes, the more accurately
it can position itself within that space.

As DurrantWhyte and Bailey (2006) states, SLAM is best described by a probabilistic approach. The
sensor or landmark is not seen in an exact position but has a probability distribution to its location. Even
though probabilistic distribution models may vary, there are mainly two forms of the SLAM problem: full
(offline) and online SLAM.

The full SLAM problem aims to estimate the entire path 𝑥0∶𝑡 together with the map𝑚 of the environment
by calculating their probability distribution, given observed sensor data 𝑧1∶𝑡 and its controls 𝑢1∶𝑡. The
following expression is a mathematical description of the full SLAM problem:

𝑝 (𝑥0∶𝑡 , 𝑚 | 𝑧1∶𝑡 , 𝑢1∶𝑡) (3.1)

20
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In full SLAM the sensor keeps track of all the previous poses including the current one. On the other
hand, the online SLAM problem is performed incrementally one at a time, aiming to recover only the
recent pose 𝑥𝑡 and map 𝑚, marginalising out the previous poses (DurrantWhyte and Bailey, 2006). It
is mostly suited for autonomous robots that need to know where they are and how they can move next.
The probability distribution of online SLAM is shown in Equation 3.2.

𝑝 (𝑥𝑡 , 𝑚 | 𝑧1∶𝑡 , 𝑢1∶𝑡) (3.2)

There are three main paradigms for solving the SLAM problem from which most of the others are
derived: Extended Kalman Filter (EKF) SLAM, Particle Filter (PF) SLAM and Graphbased SLAM.

EKFSLAM is the earliest formulation of SLAM and has been applied to a large number of navigation
problems, but it has become less popular due to its computational complexity. It applies the EKF to
solve the online SLAM problem using maximum likelihood data association (Thrun, 2002). As any
EKFalgorithm, EKFSLAM makes a Gaussian noise assumption for the sensor motion and observed
environment, shown in Equation 3.3. In addition to estimating the sensor pose, it estimates the posi
tion of all landmarks and adds them to the state vector in the EKF. Hence, the covariance matrix of
the system grows quadratically with the number of landmarks. Consequently, due to computational
reasons, EKFSLAM employs a featurebased map composed of a moderately small number of point
landmarks.

𝑝 (𝑥𝑡 , 𝑚 | 𝑧𝑡 , 𝑢𝑡) = 𝑁(𝜇𝑡 , Σ𝑡) (3.3)

Where 𝜇𝑡 represents the state vector including the estimate of the sensor pose and position of land
marks in the map, and Σ𝑡 is the covariance matrix used as the expected error for the guess 𝜇𝑡.

Similarly, employing another recursive Bayes filter, PFSLAM is a popular method to solve the online
SLAM problem, where it represents a posterior through a set of particles. In the context of SLAM, each
particle is best taught as a concrete guess as to what the true value of the state may be (Thrun and
Leonard, 2008). After many such guesses have been collected into a set of guesses or particles, the
particle filter can calculate the posterior distribution. An example of a common PFSLAM algorithm is
RaoBlackwellization or FastSLAM (Montemerlo et al., 2002), which decomposes the SLAM problem
into a sensor localization problem and a collection of landmark estimations that are also conditioned
on the estimate of the sensor pose. PFSLAM is not limited to Gaussian distributions, but its main
drawback is that this type of filters scale exponentially with the dimension of the underlying state space.
For instance, in the case of FastSLAM, each particle processes as many Kalman filters as landmark
locations conditioned on the path estimate are present.

Graphbased SLAM solves the full SLAM problem using a factor graph where sensor poses and land
marks are represented by nodes, and edges between the nodes represent spatial constraints (relative
transformations) between the sensor poses (Grisetti et al., 2010). Normally, there are constraints be
tween only a few nodes, leading to a sparse factor graph. This sparsity has the positive consequence
that if taken into account in the SLAM algorithm, it may likely reduce its computational complexity. The
objective of graphbased SLAM is to calculate a Gaussian approximation of the posterior of the sen
sor trajectory, by finding the node configuration that maximises the likelihood of the observations. In
the backend, the optimization problem of the full trajectory can be solved applying sparse nonlinear
optimization methods, such as GaussNewton or LevenbergMarquardt algorithms. Once the sensor
trajectory is estimated, the map can be retrieved.

The data association problem is one of the hardest challenges related to SLAM, briefly defined as the
problem of deciding which target generated each observation (Thrun and Leonard, 2008). In theory, this
would be easy under singletarget tracking conditions, but when the association is more ambiguous and
tracks multiple targets simultaneously, the assignment of the observations becomes more difficult to
solve. In addition, moving objects within the environment can obstruct the data association, introducing
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noise and degrading the positional accuracy and reliability. For example, dense traffic scenes can have
a negative effect on autonomous driving applications. Having said that, in railway environments where
there are very few moving objects alongside, this may not constitute a relevant issue.

Another common problem in SLAM is that the probability of the sensor position over time decreases due
to drift accumulated in the sensor trajectory over time. Loop closing is a way to increase the probability
of the position due to the recognition of an area visited at an earlier stage. Accordingly, data from
the current position is associated with data from a previous one. A correct loop closure may improve
the constructed map drastically, however an incorrect loop closure could be catastrophic. It is worth
mentioning that in environments where loop closing is not possible, e.g. long straight trajectories, drift
cannot be avoided without additional external localization sources, such as GNSS.

The sensors employed in SLAM applications may include visual data such as camera imagery, or non
visible data sources (LiDAR, SONAR, RADAR, etc), and basic positional data using an IMU. Generally,
digital cameras and LiDAR are the two most common sensors for SLAM, and each of them has its
strengths and weaknesses.

Camerabased SLAM algorithms, also called Visual SLAM, have gained great interest recently due to
the possibility to extract intense visual information, their simplicity and costeffectiveness. Neverthe
less, visual sensors usually have short detection range and fail in lowtexture or repetitive environments
because these algorithms search for similar features in consecutive images (Tschopp et al., 2019).
Moreover, the light conditions in indoor environments are sometimes not good enough for capturing
highquality images.

3.2. LiDARSLAM
Despite having a higher cost, LiDARbased SLAM algorithms can directly obtain the structure informa
tion of environments, while being hardly influenced by light or weather. They have the advantages of
high frequency, high precision and long detection range, both indoors and outdoors. Therefore, LiDAR
SLAM technology is suitable to be applied on largescale, lightdark environments (Yang et al., 2019).
By knowing the distance from each point on the path to the surrounding features, it builds a 3D point
cloud of the space. After the platform or sensor moves forward, the entire process is repeated. In fact,
this process is repeated at each acquisition epoch throughout the duration of the scan.

In order to estimate pose change from LiDARmeasurements, there are about three different categories
of scan matching methods: featurebased, pointbased and mathematical propertybased. Feature
based scan matching method matches with some key elements which can be geometric primitives
such as points, lines, and polygons, or a combination thereof in the LiDAR data. This method is efficient
and accurate, however it relies on features extracted from the environment. Thus, it may fail to work
properly in outdoor or indoor unconstructed environments (Chang et al., 2019).

Pointbased scan matching directly searches and matches the corresponding points in the LiDAR data.
The Iterative Closest Point (ICP) algorithm which performs matching by minimising the sum of dis
tances between two point clouds, is the most popular method in this category. There have been many
improvements on the classical ICP algorithm, such as Iterative Closest Projected Point (ICPP), Polar
Scan Matching (PSM) and Iterative Closed Line (ICL). All these pointbased scan matching methods
are accurate and independent of environment characteristics. Nonetheless, they are usually very time
consuming due to the inevitable iteration process. Furthermore, they mainly use consecutive pairs of
scans for matching, without using historical scans, leading to an accumulation of the matching error
over time (Qian et al., 2017).
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Mathematical propertybased scan matching can use various mathematical properties to calculate the
transformation between frames of point clouds, such as the Normal Distribution Transform (NDT), or
more commonly the probability gridmap. In this category, there is no feature extraction nor feature
data association process. A likelihood gridbased occupancy map will be built based on all previous
scans and then, the optimal rigidbody transformation will be computed by scantomap matching. An
excellent method based on grid maps is Improved Maximum Likelihood Estimation (IMLE). Whereas
an occupancy grid map is suitable for representing 2D indoor spaces with good accuracy, it does not
scale well for outdoor spaces. Qian et al. (2017) suggests that more accurate initial values and search
ranges would significantly enhance the robustness of this bruteforce search matching method, which
indicates that integration with aided inertial navigation information may result in substantially improved
positioning accuracy.

3.2.1. State of the art of LiDARSLAM

There exist numerous works on LiDARSLAM in the literature. Here, the review will be limited to the
most relevant ones, categorising them into LiDARonly odometry and mapping, looselycoupled and
tightlycoupled LiDARinertial fusion algorithms.

LiDAR Odometry and Mapping
LiDARSLAM has been widely discussed and improved over the last two decades. 2D/3DOF LiDAR
SLAM reduces the point cloud information and reprojects the environment on a 2D plane. Occupancy
grid SLAM is one of the famous SLAM methods that transforms the 2D point cloud into an occupancy
grid map. Gmapping (Grisetti et al., 2007) and Hector SLAM (Kohlbrecher et al., 2011) are both based
on this framework. Gmapping is one of the most broadly used gridbased SLAM techniques for mobile
robots, utilising RaoBlackwellised particle filters (RBPFs) to achieve realtime positioning andmapping.
On the other hand, Hector SLAM adopts a scan matching approach according to the GaussNewton
model, which increases the flexibility and adaptability for different applications. The main disadvantage
of this algorithm is that it is heavily dependent on the initial position and heading (Chiang et al., 2020).

Essentially, LiDARbased 3D odometry requires calculating the 6DOF egomotion, given consecutive
frames of point clouds. The term was inspired by wheel odometry, which estimates the distance trav
elled by accumulating the number of wheel turns over time. The traditional scan registration method
that builds the foundation of LiDAR odometry is Iterative Closest Point (ICP), which registers the clos
est points together without considering the feature information (Besl and McKay, 1992). However, ICP
is timeconsuming and its accuracy depends on the density of point cloud. In contrast, featurebased
methods are relatively faster and more robust.

Therefore, much attention has been dedicated to featurebased LiDARSLAM. In Chen and Medioni
(1992), planar patches are extracted to perform ICP with a pointtoplane metric and this was further
generalised in Segal et al. (2009), where a planetoplane metric was proposed to enhance robust
ness. A novel method called LiDAR Odometry and Mapping (LOAM) is proposed in Zhang and Singh
(2014). Here, features are extracted from object edges and planes for scan matching using point
toedge and pointtoplane metrics. After calculating the roughness of a point in its local region, it
is designated as edge feature or planar feature, depending on whether it has high or low roughness
values, respectively. Realtime performance is achieved by dividing the estimation problem into two
individual algorithms. One algorithm runs at high frequency and estimates the velocity of the sensor
with low precision, whereas the other algorithm runs at low frequency but returns high accuracy motion
estimation. The two estimates are combined to produce an accurate single motion estimate at high
frequency and with low drift. According to the KITTI odometry benchmark site (Geiger et al., 2012), the
resulting accuracy of LOAM is the best achieved by a LiDARonly estimation method.
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Despite its success, LOAM presents some limitations. For instance, Shan et al. (2020) argue that sav
ing its data in a global voxel map makes it difficult to perform loop closure detection and incorporate
other absolute constraints for pose correction, such as GNSS. In addition, its online optimization pro
cess becomes less efficient when the voxel map gets dense in a featurerich environment. LOAM also
suffers from drift in largescale surveys, as it is a scan matching method at its core. Subsequently,
many variants of LOAM have been developed, such as LeGOLOAM (Shan and Englot, 2018) and
LOAMLivox (Lin and Zhang, 2019). Whilst these methods work well for structured environments, their
solution easily degenerates in featureless environments and this problem becomes even more obvious
when the LiDAR scanner employed has small FOV.

Looselycoupled LiDARinertial fusion
IMU measurements are commonly used to mitigate the problem of LiDARonly odometry deteriora
tion under fast motion or in featureless environments. Looselycoupled LiDARInertial Odometry (LIO)
methods generally process LiDAR and IMU measurements independently to infer their motion con
straints which are fused later. For example, IMUaided LOAM (Zhang and Singh, 2014) takes the
orientation and translation computed by the IMU as prior motion estimates for LiDAR odometry, as well
as for deskewing the raw point clouds.

Zhen et al. (2017) fuse IMU measurements with pose estimates from a Gaussian particle filter output of
LiDAR measurements using the errorstate EKF. In Sarvrood et al. (2016), the LiDAR scan registration
is aided by adding an IMU gravity model to estimate 6DOF egomotion. A common procedure of the
looselycoupled approach is to obtain a pose measurement by registering a new scan and then fuse
it with IMU measurements. The separation between scan registration and data fusion reduces the
computation load, but it may lead to information loss and inaccurate estimates (Qian et al., 2017).

Tightlycoupled LiDARinertial fusion
The reason for fusing IMU and LiDAR in a tightlycoupled scheme is to enhance the performance in chal
lenging situations with limited overlap, where the above methods may fail. Unlike the looselycoupled
scheme where scan registration results are fused with IMU measurements, tightlycoupled methods
directly fuse raw LiDAR feature points with IMU data in a joint optimization or filtering framework.

Ye et al. (2019) introduce the established LIOmapping (for brevity, abbreviated as LIOM in the follow
ings) which is based on graph optimization and incorporates both LiDAR and IMU residuals in a sliding
window fashion, with a novel constrained rotation mapping method to optimise final poses and maps.
The feature extraction method is taken from LOAM, while the LiDARIMU integration applied differs a
lot from it. The main drawback of LIOM is that constraint construction and batch optimization in a local
map window, in which it maintains a local map over multiple LiDAR scans and solves all relative states
through maximum a posteriori (MAP) formulation, are too timeconsuming for realtime application.

Moreover, Shan et al. (2020) propose LiDAR Inertial Odometry via Smoothing and Mapping (LIOSAM).
It represents a novel tightlycoupled LIO system based on the incremental smoothing and mapping
framework iSAM2 (Kaess et al., 2012), which adapted the LOAM approach by performing scan match
ing on a local scale instead of global scale. This allows new keyframes to be registered in a sliding
window of prior subkeyframes merged into a voxel map. It can achieve high performance by formu
lating the state and trajectory problem considering four factors via MAP, namely IMU preintegration,
LiDAR odometry, GNSS and loop closure factors.

For filterbased methods, Bry et al. (2012) use a Gaussian particle filter (GPF) to fuse planar 2D LiDAR
and IMU measurements. This method has also been employed in the wellknown Boston Dynamics
Atlas humanoid robot. Nevertheless, since the complexity of the PF computation grows rapidly with
the number of feature points and system dimension, Kalman filtering and its variants are usually more
preferred, such as EKF (Hesch et al., 2010), unscented KF (Cheng et al., 2015) and iterated KF (Qin
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et al., 2020). Hesch et al. (2010) introduce a LiDARaided inertial EKF based on a 2D LiDAR, but its
application scenarios are limited to indoor environments because it requires that all surrounding planes
be in an orthogonal structure. Qin et al. (2020) propose LINS, a tightlycoupled LIO system using a
robocentric iterated errorstate KF, which enables highprecision and realtime egomotion estimation
in challenging environments where degeneration occurs.

3.3. GNSS/INS/LiDARSLAM integration
During the last decade, many excellent SLAM systems based on a single sensor have been developed,
such as IMLSSLAM (Deschaud, 2018), SUMA (Behley and Stachniss, 2018) and LOAM (Zhang and
Singh, 2014). Nevertheless, the errors of these SLAM algorithms, which are mainly reduced by closed
loop correction, will also increase with the moving distance. The problem that arises here is that in
largescale outdoor motion, SLAM is less likely to form a closed loop (Chang et al., 2019). In addition,
SLAM based on a single sensor is not able to provide absolute navigation information.

Concerning the issues mentioned in the previous paragraph, research has been carried on over the
last years to develop new strategies to cope with an integrated GNSS/INS/LiDARSLAM system. As
Chiang et al. (2020) concludes, the combination of these three kinds of data implements a high level
of integration with various information received from multiple sensors, that collectively compensate for
the specific drawbacks of each of them.

Firstly, it is possible to correct the divergence and drift problems of SLAM using the initial pose infor
mation from INS and the refreshing process from a GNSS/INS integrated system, reducing the depen
dence of SLAM on closed loop correction. The shorter the GNSS outages, the less important the loop
correction becomes and thus, higher accuracies can be obtained.

Moreover, LiDARSLAM assistance plays a key role in maintaining navigation accuracy over areas
where due to the lack of GNSS aiding information, the GNSS/INS navigation system gradually degrades
its position and attitude. LiDAR constraining INS errors can provide an accurate position prediction to
aid the GNSS ambiguity resolution process until signal tracking is restored (Wan et al., 2018).

Lastly, the main feature of GNSS aiding is that it provides absolute navigation information to fulfil the
complementary advantages of the three techniques (Chang et al., 2019).

In Shamseldin et al. (2018), a pseudoGNSS/INS integrated system is proposed that utilises proba
bilistic 3D LiDARSLAM techniques to estimate the pose and heading of the platform. This presented
an original approach to implement the MLS framework for flexible operation in GNSSdenied/GNSS
affluent areas, as it can be flexibly converted into an integrated GNSS/INS system for operation in
GNSSaffluent areas. Another novel GNSS/INS/LiDARSLAM integrated system based on 3D prob
ability map matching with graph optimization is proposed in Chang et al. (2019), in which a sliding
window method was adopted to ensure that the computational load does not increase over time.

Chiang et al. (2019) propose a GNSS/INS/LiDARSLAM semitightly coupled integrated system com
bining a EKF and gridbased SLAM, from which velocity and heading measurements are used to mit
igate the INS drifting problem during periods of long GNSS outages. In addition, they suggest that in
challenging environments to navigate, a multiresolution map strategy is helpful to mitigate loop closure
problems by adjusting map resolution and maintaining consistency across the whole map. However,
the resolution of the map cannot be automatically adjusted, since it depends on the environment and
performance of sensors. Consequently, the final result might fail or lead to local minimum if the map
resolution is not well determined.

Furthermore, a GNSS/INS/refreshedSLAM fusion algorithm is proposed in Chiang et al. (2020) and



26 3. Simultaneous Localization and Mapping

there are two breakthroughs in this algorithm. The refreshedSLAM method solves traditional SLAM
problems such as drift, divergence and loop closure over travelled distance. The fundamental concept
is to refresh or regenerate the existing map based on the loosely coupled GNSS/INS integrated system,
once the local minimum or divergence is detected. Secondly, an update mechanization is built to qualify
the measurements before the EKF update process, reducing the possibility of incorporating outliers.
This would mean that inaccurate measurements, whether related to GNSS or SLAM, can be removed
to protect the core navigation state.

3.4. Related work
During the first stage of the present research, when LiDARSLAM used to be the main topic, we decided
to implement LIOSAM (Shan et al., 2020) on RILA data. LIOSAM is considered to be among the most
widely used Robot Operating System (ROS)based LiDARSLAM algorithms nowadays. One of the
main advantages of this algorithm when comparing it to others is its accuracy and robustness. Also
importantly, its code can be freely found online1. For this purpose, the algorithm was initially tested on
RILA dataset over Rotterdam train station, followed by the KITTI sequence described in Appendix A.2.

Once the Ubuntu and ROS environments were completely configured, satisfying the requirements
needed to run LIOSAM algorithm, we proceeded to preprocess the RILA dataset. Combining raw
IMU and LiDAR data, together with IMU error information computed from its manufacturer datasheet,
RILA data was converted and compiled into a BAG file, format needed to run ROSbased SLAM algo
rithms. Next, the system was calibrated and configured in order to match the algorithm settings.

LIOSAM was then tested on RILA dataset, however, this was not satisfactorily. After running the
algorithm, there were no particular error arose by it. On the contrary, there was simply no output
obtained at all. This indicated that the data format and system settings were fine, and the source of the
problem was directed connected to the data itself.

The algorithm is not able to find correspondences between consecutive frames, since there is no over
lap between them. The way in which the MMS is set results in vertical 2D profiles which are parallel to
each other. Although points from consecutive frames could belong to the same feature (e.g. column
edge), the system cannot associate them effectively, even when tightly integrating IMU data. Hence,
it cannot estimate the pose change between them either.

For this reason, we decided to test the algorithm on KITTI as well, which it has already worked according
to previous research. There was little preprocessing required in this case, since the dataset was
already downloaded with the proper file formats. Despite the fact that the results obtained are in the
metrical order (see Figure 3.1), probably due to a wrong calibration, the output is acceptable up to some
extent. Therefore, it confirms that the source of the problem when using RILA data is not the SLAM
algorithm itself.

1http://www.github.com/TixiaoShan/LIOSAM

http://www.github.com/TixiaoShan/LIO-SAM
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Figure 3.1: Trajectory error obtained after applying LIOSAM method over KITTI dataset.

.



4
Project area and data description

Background information on MMS and LiDARSLAM was provided in the previous chapters. In this
chapter, possible areas of interest are delineated, followed by the introduction of the research area.
Next, RILA datasets are described, including information about its calibration parameters and briefly
how these datasets where obtained.

4.1. Study site
The focus is on challenging GNSS environments where signals are blocked or contaminated with re
flected signals causing multipath. Accordingly, there are mainly 4 types of areas of interest based on
the bad accuracies obtained with the current GNSS/INS navigation solution: urban canyon, dense for
est, train station and tunnel. Studying all of them together is not feasible for the present research, since
they have different conditions or limitations and should be treated independently.

For example, tunnels are in principle challenging for SLAM due to their textureless and repetitive en
vironments, as scan matching is generally based on geometric features. Nevertheless, despite the
limited GNSS coverage, short tunnels might not be so problematic because INSonly solutions can still
be reasonably accurate there, especially if the train travels at high speed since the IMU drift is time
dependent. Across urban canyons and dense forests, GNSS/INS processing can sometimes work
relatively well using a tightlycoupled integration scheme, although this heavily depends on current
GNSS tracking conditions, i.e. number of GNSS satellites tracked and PDOP, among others.

Covered train stations have similar environments to tunnels from the GNSS coverage point of view,
however they possess better surroundings to perform scan matching as plenty of features are present.
RILA is mostly mounted on passenger trains, which means that they usually have to stop for a few
minutes at stations and this consequently leads to IMU drift. In addition, moving objects in railway
stations, such as people and trains, can represent a challenge for SLAM by introducing noise into the
problem.

Original site

Considering the areas described above, the original study area of the present research is centered on
Rotterdam Central Station, located near the center of the Dutch city of Rotterdam. It is a 250 mlong
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covered train station with 15 tracks in total, see Figure 4.1.

Figure 4.1: Interior of Rotterdam Central Station at railway track level. Image source: Rijnmond Public Broadcast (2020).

The research area also comprises a few hundred meters before and after entering the station. In these
areas the trajectory accuracy can sometimes still not be good, considering that for example, it takes a
few seconds after the MMS exits the station to reacquire good GNSS tracking conditions. Moreover,
from the point of view of SLAM, since train speeds are low around railway stations, the point cloud
containing the features needed for scan matching will likely be very dense, which in turn will enhance
the performance of SLAM.

An important aspect to consider when selecting the appropriate dataset is that not only the train onwhich
RILA is mounted must stop at the station, but most importantly, while doing so, the acquisition system
should be positioned underneath the covered part of the station. In this way, GNSS measurements
would not be able to aid the navigation system and thus, the IMUonly solution will drift.

Definite site

This study site corresponds to a 600 mlong railway area, just east of Rotterdam Central Station, see
Figure 4.2. Even though covered train stations constituted the original research area, an opensky area
was chosen due to validation reasons (see Section 5.4 for more details). It contains several distinctive
objects that can be used for scanmatching, such as poles, electricity boxes and traffic signs. A common
groundlevel view of this area captured by RILA system can be observed in Figure 4.3.

4.2. RILA data
RILA data is the principal source of data employed as input for this research, however within it two
independent datasets were employed: raw data along Rotterdam Central Station to apply SLAM (RILA
1) and secondly, alreadyprocessed data over the final study area (RILA2). Both datasets correspond
to the survey conducted on March 5th, 2018 by RILA 04 system, where data was cut manually to fulfil
both study sites. In spite of not being thoroughly utilised in the end (see Section 3.4), the former dataset
will be explained more in detail because it is somewhat more complex than the alreadyprocessed
dataset.
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Figure 4.2: Satellite image of the final study area. Extracted from Google Earth (2019).

Figure 4.3: Sample image of the final study area at railway track level, captured by RILA system.

RILA1

The original RILA dataset consists mainly of raw IMU and raw LiDAR data collected during 5 minutes,
while the MMS was located inside Rotterdam’s train station. IMU measurements are acquired using a
highgrade IMU device (iMAR iNAV RQH5003) and these contain timestamp, gyroscope and acceler
ation records in bframe with a collection frequency of 300 Hz. Raw LiDAR data gathered with Riegl
VUX1HA 2D scanner (described in Section 2.2.3) is given in RXP (Riegl) format and includes times
tamp, Cartesian coordinates in sframe and intensity values for every point. Alternatively, the position
of the scanned points can be expressed as spherical coordinates.

In RILA, the pulse per second (PPS) signals and NMEAGPRMCmessage from the GNSS/IMU receiver
are used to synchronise the LiDAR scanner, which is connected by cable to the IMU. Upon synchro
nisation, the laser scanner reads the time from the GPRMC message and uses this information to set
its timestamp.

Timestamped values provided by the aided inertial navigation system are critical because they are
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used for georeferencing. In the case of LiDARSLAM, time synchronisation between the different
sensors is also key to correctly integrate LiDAR measurements with IMU and GNSS data. The time
reference of the raw IMU data is Global Positioning System (GPS) second of week (SOW) (counting
since the beginning of the previous Sunday at 00:00), whilst for the raw LiDAR data is second of day
(SOD) (counting from the start of the survey day at 00:00). Therefore, before processing begins, the
timestamps of the scanned points should be adjusted to match those of the IMU.

Similarly, LiDAR measurements must be spatially transformed in order to be expressed in the same
coordinate frame as the IMU employed. This process is called IMULiDAR calibration and is determined
by the extrinsic rotation and translation values between these two sensors. The 3x3 rotation matrix
shown in Equation 4.1 holds the rotation determined by system boresight calibration from laser scanner
frame (sframe) to IMU body frame (bframe) and is denoted relative to the NED definition. This is a
righthanded frame where roll 𝜔, pitch 𝜑 and heading 𝜅 rotate around forward, right and down axis,
respectively.

𝑅(𝜔, 𝜑, 𝜅) = 𝑅𝑧(𝜅) ⋅ 𝑅𝑦(𝜑) ⋅ 𝑅𝑥(𝜔) = [
−0.0476 −0.0602 −0.9971
−0.2521 0.9666 −0.0463
0.9665 0.2491 −0.0612

] (4.1)

Also, Equation 4.2 indicates the 3D vector which contains the lever arm offsets expressed in m between
sframe and bframe, relative to the NED definition and obtained by system lever arm calibration.

𝑙 = [
𝑙𝑥
𝑙𝑦
𝑙𝑧
] = [

0.3029
0.3087
0.5736

] (4.2)

Therefore, combining the calibration parameters described above, the spatial transformation between
LiDAR and IMU measurements of RILA dataset can be computed as follows:

⃗𝑋𝐼𝑀𝑈 = 𝑅 ⋅ ⃗𝑋𝐿𝑖𝐷𝐴𝑅 + 𝑙 (4.3)

RILA2

The second and most important RILA dataset, since it is from whom the results are shown in the next
chapters, is also split into two subdatasets: processing or source dataset and reference or validation
dataset. Both datasets are composed by navigation data in the form of an SBET file (GNSS/INS pro
cessed trajectory) and LiDAR georeferenced point cloud data (see Figure 4.4). With a duration of 40
s, each dataset includes 12,000 trajectory poses and around 25 million points mapped. Over this area,
mobile mapping data has been collected while moving at a speed of 50 km/h on average.

The SBET file contains the GNSS/INS trajectory already postprocessed in Inertial Explorer and its
time reference is GPS Time. This continuous time scale was defined through the use of atomic clocks
within the GPS control segment and is referenced to the Coordinated Universal Time (UTC), starting
on January 5th, 1980 at 00:00 UTC (Dunn, 2013). It is worth mentioning that despite the fact that the
SBET file contains also attitude information, this is not taken into account since including it as part of
the matching algorithm exceeds the scope of this research.

On the other hand, the point cloud data is simply the product of processing raw LiDAR data in combi
nation with the navigation file mentioned above, in the same way as explained in Section 2.5. Every
point contains, in addition to 3D positional information, a timestamp value synchronised with the GPS
Time from the SBET file.
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Figure 4.4: Top view visualisation of RILA2 dataset. Misalignments between reference (blue) and source (red) point clouds are
noticeable, whereas deviations between reference (green) and source (yellow) trajectories are much harder to perceive at this
scale. The coordinates shown are expressed in the local reference system called RDNAP2008.

The reference dataset is obtained after processing GNSS/IMU data as normally done in Inertial Explorer
(see Section 2.4), whereas the source dataset was processed similarly, but selecting a few different
parameters. In particular, the elevation mask angle is set as very high on purpose, in order to manually
disable some GNSS observations. As a consequence, the quality of the GNSS data is much lower,
degrading the GNSS/INS integrated solution. This lack of GNSS input intends to simulate the situations
where GNSS coverage is limited due to nearby obstructions, such as over urban canyons or dense
forests.
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Methodology

This chapter presents the methodology used to answer the main research question. It begins with
a motivation or introduction to the method chosen. Next, the preprocessing steps are delineated in
Section 5.2. In Section 5.3, the Iterative Closest Point (ICP) based trajectory adjustment algorithm is
explained. Lastly, the validation procedure to be applied to the results is described.

5.1. Motivation
After proving that SLAM would not work on RILA data, a new approach was considered. This would
certainly differ fromSLAM in its core, however keeping the same ultimate goal: to enhance the trajectory
estimation of the MMS over the areas where GNSS signals are partially blocked. Multiple alternative
solutions were taken into consideration and despite some key differences between them, they all shared
one elemental attribute which was not to work with raw data anymore. Instead, all these approaches
required the need to work with already georeferenced point cloud data.

Two common methods to improve point cloud accuracy are relative registration and control point geo
referencing. Georeferencing using ground control points achieves unrivalled accuracy and reliability,
but it requires the installation of physical targets on field, which is usually not convenient or practical
due to the amount of manual labour needed (Puente et al., 2013).

On the other hand, relative registration requires the existence of another dataset of the same scan
location with higher accuracy, known as the reference data. The data of concern is then matched
to the reference data using methods such as Iterative Closest Point (ICP) and the entire process is
completed without having to revisit the site. In such manner, point cloud registration could also be
used for pose estimation by aligning two point clouds and generating the pose information (position
and orientation) between them.

Multiple research works have studied the application of point cloud registration for MMS trajectory
adjustment purposes. For example, Yan et al. (2020) introduce a graph matchingbased framework for
point cloud registration, transforming point clouds into graphs and in this way, optimising the trajectory.
The trajectory’s constraints are formed by matching the overlapping point clouds scanned at different
times using ICP.

Moreover, Cosandier et al. (2018) study relative coordinate updates derived from LiDAR data using
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ICP. This information expressed as a difference between epochs is employed as input into the naviga
tion Kalman filter (KF). Similarly, Jing et al. (2020) present a semiautomated georeferencing trajec
tory correction method by extracting poleshaped feature information from the target and source point
clouds. This information is then integrated with the navigation trajectory, reprocessing it through a
particle filter (PF). PFs are more flexible than KFs to integrate external (and nonlinear) measurements
from different sources. In this case, the PF itself does not really take care of GNSS/IMU integration,
it only updates the trajectory using LiDAR feature information where it thinks the navigation solution is
not good enough.

Based on the above, we designed our own approach to improve the trajectory estimation. Briefly, it
consists of first computing the 3D rigid body transformation between the target and source point clouds
through ICP and then, applying it directly on the trajectory file of concern.

5.2. Preprocessing
At first glance, the georeferenced point clouds appeared to be too dense, containing up to 7,000
points/m2. Therefore, directly applying ICP on them would be too timeconsuming. In order to speed
up the registration, a common extension to the original ICP algorithm is to register only subsets of the
input point clouds sampled in an initial selection step.

Firstly, the point clouds were downsampled randomly, reducing the total number of points by 10 times
and consequently, the computational load as well. In addition, a ground removal filter was applied to
keep only offground points, as ground areas tend to be noisier in railway environments, hindering the
matching process.

To further increase the speed of the ICP algorithm, we initially used only distinctive features to perform
data association, in particular poleshaped features. These could be identified by looking at the esti
mated normal vector for each point, calculated employing its 10 neighbouring points to fit a local plane.
The points whose normal vector component in X or Y direction was larger than 0.99, were considered
part of poleshaped features. An example of one of these features can be found in the center of Figure
5.1a and its associated satellite image (Figure 5.1b). These points belong to a tall utility post, clearly
identified in both datasets.

(a) (b)

Figure 5.1: Zoomed view of the study area containing one selected feature in the center, shown in the form of point cloud (a)
and satellite imagery (b) extracted from Google Earth (2019).

Then, the points that represented this type of features were segmented and isolated applying Density
based spatial clustering of applications with noise (DBSCAN) (Ester et al., 1996). This algorithm groups
together points with a certain density and discards outliers. DBSCAN can be easily implemented and
it employs just two parameters: minimum number of points in the neighbourhood of each point to be
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part of a cluster and search radius of the neighbourhood, set equal to 20 and 1 m, respectively. Finally,
30 clusters for each of the two point cloud sets (target and source) were selected, containing only the
points which belong to the features going to be employed in the ICP algorithm.

On the other hand, the coordinates present in the trajectory files needed to be transformed to the local
coordinate reference system (CRS). Thus, the coordinate transformation from European coordinates in
ETRS89 (epsg:4258) to Dutch coordinates in RD (epsg:28992) and NAP height named RDNAP2008,
has been performed through RDNAPTRANS™2008 (Nederlandse Samenwerking Geodetische Infras
tructuur, 2021).

5.3. ICPbased trajectory adjustment
Iterative Closest Point (ICP) is arguably the most widely used method for rigid point cloud registration
and builds the foundation of LiDAR odometry. 3D rigid point cloud registration is a task that finds
a rigid body transformation consisting of rotation 𝑅 and translation 𝑡, to align a source point cloud
𝑋 = {𝑥𝑖 ∈ ℝ3|𝑖 = 1, ..., 𝑁} and a target point cloud 𝑌 = {𝑦𝑖 ∈ ℝ3|𝑖 = 1, ..., 𝑀}, where 𝑅 ∈ 𝑆𝑂(3)1, 𝑡 ∈ ℝ3,
and 𝑁 and 𝑀 represent the number of points in 𝑋 and 𝑌, respectively.

In the ICP algorithm formulated by Besl and McKay (1992), closest points in Cartesian space are
considered to correspond to one another. An optimal transformation is estimated which minimises the
Euclidean distances between found pairs of closest points in the least squares sense.

Corresponding points in the two data sets and the transformation that aligns them are obtained by
minimising the cost function:

𝑒(𝐶, 𝑅, 𝑡) =
𝑁

∑
𝑖

𝑀

∑
𝑗
𝐶𝑖,𝑗 ‖𝑅𝑥𝑖 + 𝑡 − 𝑦𝑗‖22 (5.1)

Where the matrix 𝐶 = {0, 1}𝑁𝑥𝑀 represents the correspondences between points in 𝑋 and 𝑌. If 𝑥𝑖 and
𝑦𝑖 are a pair of corresponding points, 𝐶𝑖,𝑗 is equal to 1; otherwise, it is 0.

This process is iteratively repeated until a certain termination criterion is met. Typical termination criteria
are maximum number of iterations, sufficiently small error, or convergence. The source point cloud is
expected to converge towards the target one as the correspondences become increasingly better and
better.

Furthermore, ICP is highly sensitive to the initial transformation and the presence of outliers, since
given these conditions it could converge to a false minimum or get caught in local minima (Cosandier
et al., 2018). However, if the clouds are already roughly aligned, as is the case with the current RILA
datasets georeferenced with the same highgrade navigation system and employing the same coor
dinate system, iterative registration provides efficient and robust means to refine the initial guess and
optimally align the point clouds.

Initially, ICP was implemented in Matlab, only using the points which belonged to the 30 extracted
features from the point clouds, as explained in the previous section. Nevertheless, unexpectedly to
our knowledge, at a later stage after trying to apply ICP on the entire datasets comprising more than
50 million points in total, it turned out that it was not so timeconsuming. Therefore, both approaches
were executed to compare the results obtained, by means of inspecting their resulting point cloud
misalignments and trajectory deviations.

ICP usually gives quick and efficient results with reasonable accuracy in general registration problems.

1The special orthogonal group 𝑆𝑂(3), also known as 3D rotation group, is the group of all rotations about the origin of ℝ3.
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Nonetheless, as with all georeferencing methods for Mobile Laser Scanning (MLS) applications, it is
unable to deal with inconsistent errors within the same point cloud dataset.

Taking this into account, we proceeded to split both the source and target point clouds into multiple
subsets of the same length, timewise. Different time lengths were considered in order to further study
their effect on the transformation results. This led to the production of new datasets, dividing the data
into 20, 50, 200, 500, 1000, 2000 and 5000 sections. Considering that the entire survey lasts 40
seconds, when splitting the data into 20 subsets, each of them has a duration of 2 seconds. Whereas
considering 1000 subsets, each of them lasts for 0.04 seconds.

In each of these slices of data, ICP with a pointtopoint metric was applied independently. Then, all
the registration results per section were combined, interpolating between them. If this smoothening did
not take place, jumps between the rigid transformations would appear, resulting in jumps/gaps at the
edges of each point cloud section too.

For each pair of consecutive sections, the translations estimated by ICP were linearly interpolated
between the central time of each of them. However, linear interpolation between consecutive rotations
is not considered optimal, since it leads to nonvalid rotations.

Rather, spherical linear interpolation (SLERP) of quaternions, first introduced by Shoemake (1985), is
more suitable. This method produces a segment of geodesic on the surface of the quaternion unitary
sphere. In this way, the shortest and most direct path between two consecutive orientations performed
at constant angular velocity is obtained. For this purpose, each computed rotation matrix must initially
be converted into a quaternion, and after the interpolation is completed, they are converted back to
their matrix form. According to SLERP, the interpolated quaternion between two quaternions 𝑞0 and 𝑞1
can be calculated through the following formula:

𝑞𝑚 = 𝑞0 𝑠𝑖𝑛 ((1 − 𝑡)𝜃) + 𝑞1 𝑠𝑖𝑛 (𝑡𝜃)
𝑠𝑖𝑛 𝜃 (5.2)

Where 𝑡 represents a scalar between 0 (at 𝑞0) and 1 (at 𝑞1); and 𝜃 ∈ [0, 𝜋) is the angle between 𝑞0 and
𝑞1 determined by 𝑐𝑜𝑠 𝜃 = 𝑞0 ⋅ 𝑞1 (Shoemake, 1985).

Finally, the interpolated registration results composed by translation vectors and rotation matrices were
applied on the source trajectory data, as well. This was achieved timewise, i.e. considering the same
transformation among the point cloud and trajectory for the same time range.

It is worth mentioning that we have assumed that there is no presence of MLS systematic errors affect
ing our results, namely IMULiDAR boresight angles and lever arms, range offset and scan angle offset.
In fact, since the reference and source datasets use the same raw data, processed in different ways,
these errors are equal for both and hence, they are cancelled out. Consequently, we can presume that
the current point cloud misalignment is entirely due to the trajectory error.

In parallel, for further comparison, this interpolation method was later also applied directly on the tra
jectory data, instead of initially using point cloud data as input. For this purpose, the ICP matching
algorithm does not match point correspondences between point clouds, but between trajectory points.
The methodology is exactly the same as that described for the point cloudbased approach, except
for the final step. In this case, the corrected trajectory is computed immediately after performing the
interpolation, whereas to obtain the corrected point cloud it would be necessary to georeference again
the raw LiDAR data employing this adjusted navigation data2.

2This particular georeferencing part has not been covered by the present study. Hence, the method presented in this paragraph
is assessed only by analysing the resulting trajectory accuracy.
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5.4. Validation
Ideally, in order to assess the quality of any result obtained using ground measurements as input, it is
recommended to employ ground control points. These are usually previously measured by traditional
surveying techniques and serve as ground truth. The main drawback of control surveys is their cost
effectiveness, especially when dealing with a largescale mapping area.

Particularly in railway areas, conducting such measurements is considered a challenging task, not from
the point of view of the workload itself, but due to all the permits and paperwork that are required. The
main concern in this regard is safety, which makes complete sense when someone’s life is at risk.
Hence, carrying out a control survey for the purpose of this research was not very feasible in practice.

Without the possibility to use GCP, the solution taken was to use another dataset captured by RILA
which had very accurate results and could be considered as reference. This meant that the chosen
study site had to be revised, as with the current RILA settings it is nearly impossible to obtain very good
results in covered train stations to be employed as validation data.

It is worth mentioning that there are a couple of exceptions to the above, namely when the train passes
quickly through a station without stopping and when despite stopping at the station, the RILA system is
located outside of it. Nevertheless, the former scenario results in a sparse point cloud and is therefore
not appropriate for point cloud matching, whereas the latter leads to still inaccurate trajectory results
due to multipath conditions.

Taking the above into account, an area with opensky environment was selected. In this site, where
GNSS conditions are optimal, the georeferenced point cloud obtained by RILA through the normal
processing procedure is considered as the reference point cloud. In addition, the trajectory solution
acquired is regarded as reference and employed for validation purposes.

Moreover, making use of the opensource software CloudCompare, point cloudmisalignments between
the reference point cloud and each of the comparison clouds can be numerically analysed. Nearest
neighbour distances between point clouds are computed through the tool CloudtoCloud (C2C) dis
tance and consequently, the absolute distances between them can be evaluated. For each point of
the comparison cloud, it searches for the nearest point in the reference cloud and calculates their Eu
clidean distance. Accordingly, a histogram of the absolute distances can also be computed for each
method for further comparison between them.

Two commonly employed methods to assess the quality of an estimated trajectory are relative pose
error (RPE) and absolute trajectory error (ATE). Relative pose error measures the local accuracy of the
trajectory over a fixed time interval, also regarded as drift. RPE has the advantage that it comprises both
translational and rotational errors, while ATE only considers translational errors. However, rotational
errors typically manifest themselves in wrong translations and thus are indirectly captured by the ATE,
meaning that both error metrics are actually strongly correlated (Sturm et al., 2012).

Instead of evaluating relative pose differences, ATE first aligns the two trajectories and then evaluates
global consistency by comparing the absolute distances between the estimated and reference trajec
tories. As both trajectories can be specified in arbitrary coordinate frames, they must first be aligned.
Nevertheless, since the datasets employed in the current research are defined in the same coordinate
system, this initial alignment between them would not be necessary.

From a practical perspective, ATE computes a single number metric, has an intuitive visualization
which facilitates visual inspection and is handier for comparison. Moreover, in principle, the estimated
trajectory would not experience a clear drift effect, but rather irregular errors. Therefore, ATE is the
evaluation method considered to analyse the results of this study.
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The trajectory data utilised has a duration of 40 s and 300 Hz output rate, resulting in 12,000 individual
absolute pose errors along it. Then, statistics for the whole trajectory are calculated. To quantify
the quality of the entire trajectory, its root mean square error (RMSE) is usually used (Equation 5.3),
accompanied by the computed standard deviation. Alternatively, it is possible to evaluate the mean
and median errors, attributing less influence to outliers.

𝑅𝑀𝑆𝐸 = √ 1𝑛

𝑛

∑
𝑖=1
[(𝑋𝑇𝑖 − 𝑋𝑖)2 + (𝑌𝑇𝑖 − 𝑌𝑖)2 + (𝑍𝑇𝑖 − 𝑍𝑖)2] (5.3)

Where 𝑛 represents the total number of poses; (𝑋𝑇𝑖 , 𝑌𝑇𝑖 , 𝑍𝑇𝑖 ) is the true trajectory position taken from the
reference dataset; and (𝑋𝑖 , 𝑌𝑖 , 𝑍𝑖) is the trajectory position estimated by the algorithm.
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Results and implications

In this chapter, the main results relevant to the research questions are shown. It begins with a section
about point cloud misalignment, which gives an indepth understanding about the influence of inaccu
rate trajectory estimation on georeferenced LiDAR data. Next, a comparative analysis of the trajectory
accuracy results obtained through the applied methods is presented and discussed in Section 6.2.

6.1. Point cloud misalignment
Before processing the data using the methodology described in the previous chapter, the point clouds
were inspected to visually comprehend their behaviour. Figure 6.1 illustrates the misalignment between
reference and source point clouds (review Section 4.2 regarding the definition of these point clouds).
It corresponds to the part of the research area closest to the station, where the deviations are greater.

One can notice that through a quick inspection of Figure 6.1, overall, no big or sudden jumps occur.
However, looking more closely, the degree to which the source point cloud spatially relates to the
reference one certainly differs within 100 m. This is mostly due to the difference in the trajectory’s
accuracy throughout this time period, as can be observed later in Figure 6.8.

Moreover, the misalignment between the point clouds seems to be related mainly to an attitude differ
ence, rather than a positional displacement. Consequently, this error increases as the distance from
the laser source to the measured point increases, which leads to larger deviations at points located far
from the trajectory. See an illustration of this error in Figure 6.2.

Interestingly, since the main error source is apparently related to an incorrect heading estimation, it
behaves symmetrically around the trajectory. This means that the direction of the point cloud misalign
ment between the points from both sides of the trajectory is opposite on the horizontal plane.

Commonly, during IMU drifts, roll and pitch observations are about 10 timesmore accurate than heading
observations (GrejnerBrzezinska et al., 2005) and this has also been perceived in the present study
(see Figure 6.3). Small drifts in heading magnitude get accumulated and result in a big positional error,
which is the reason why heading values computed from GNSS observables are employed to correct
the IMU heading. In fact, some MMSs even attach another GNSS antenna in dual mode to further
augment this capability. Nevertheless, in the presence of limited GNSS data due to blockages, little
remains to be done from the point of view of GNSS/IMU processing to diminish this heading effect.
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Figure 6.1: Misalignment illustration between reference (blue) and source (red) point clouds, which theoretically without the
presence of errors should overlap. The reference trajectory (green) is also plotted to guide the reader, whilst the source trajectory
is ignored since it almost coincides with the reference one at this scale.

Figure 6.2: Positional error in a MLS survey due to attitude uncertainty.

Figure 6.3: Standard deviation of the orientation of the navigation system, estimated by the trajectory processing software.
These values are not completely reliable, but can be somewhat used to evaluate the accuracy of attitude observations.

As explained in Section 5.2, points from 30 distinct poleshaped features were initially extracted from
the source point cloud, as well as those points of the reference point cloud which correspond to the
same features. The features selected are intentionally positioned fairly scattered throughout the study
area (see Figure 6.4), although many of them are close to the trajectory.
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Figure 6.4: Study site containing the entire source point cloud with every feature central position marked. Theoretically, without
the presence of errors, blue crosses and red squares should overlap.

Ideally, longer distances to the trajectory are desired, since this would result in larger displacements
along the scope, as shown in Figure 6.5, obtained using the present dataset. Hence, succeeding
a proper alignment process, features positioned far from the trajectory will likely translate into more
robust adjustment calculations too. However, this was not possible to apply in practice because most
poleshaped features in railway environments are located near the rail tracks. Looking at the current
dataset, this spreadrelated limitation is amplified as the distance to the train station increases.

Figure 6.5: Graph showing the relation between the observed feature displacement and the horizontal distance from it to the
trajectory. Additionally, a linear polynomial has been fitted to the graph.

Cloudtocloud (C2C) distances

In order to numerically evaluate the deviation between point clouds, cloudtocloud (C2C) distances
were computed between the reference point cloud and the source point cloud corrected by eachmethod
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considered. Their resulting histograms can be found in Figure 6.61.

(a) Initial source point cloud (b) Source point cloud after applying ICP using only feature points

(c) Source point cloud after applying ICP using all points (d) Source point cloud after the smoothed ICP algorithm using 20 sect.

(e) Source point cloud after the smoothed ICP algo. using 1000 sect. (f) Source point cloud after the smoothed ICP algo. using 5000 sect.

Figure 6.6: Histograms of the C2C absolute distances between the reference point cloud and the processed source point cloud
after applying each method considered.

Additionally, a Gaussian distribution was fitted to every C2C histogram and their mean value and stan
dard deviation were calculated, as shown in Table 6.1.

At first glance, after inspecting Figure 6.6 and Table 6.1, it can be noted that the results obtained after
applying the initial ICP algorithm using only points of the extracted features look very similar to the
original deviation between reference and source point clouds. Even though the resulting point cloud
contains 10 times fewer points due to prior downsampling, when comparing both histograms, it can be
easily noticed that the misalignment is still largely unresolved.

There are possibly multiple reasons for this lack of improvement in the deviation between the point
clouds after applying ICP, and a combination of these is what most likely happened. For example,

1Some histograms seemed very similar to others and therefore, we have decided not to include them here. However, a summary
of all their results is provided in Table 6.1.
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𝑀𝑒𝑡ℎ𝑜𝑑 𝑚𝑒𝑎𝑛𝐶2𝐶 (𝑚) 𝜎𝐶2𝐶 (𝑚)
Initial cloud 0.310 0.245

ICP (features) 0.291 0.224
ICP (all pts.) 0.120 0.191
20 sections 0.038 0.053
50 sections 0.025 0.026
200 sections 0.023 0.019
500 sections 0.024 0.021
1000 sections 0.024 0.034
2000 sections 0.026 0.060
5000 sections 0.047 0.111

Table 6.1: Statistics of the Gaussian distribution fitted to each C2C histogram, indicating their mean value and standard deviation.

imperfect distribution of features along the study area and inaccurate identification of feature points
due to wrong parameters chosen or simply due to noise affecting their geometries, might have taken
place, leading to miscalculated transformations. Moreover, features located close to the trajectory
do not explicitly indicate much misalignment and thus, are not very useful to properly estimate the
misalignment between the point clouds, as described above.

In parallel, the ICP algorithm using the complete point clouds was executed successfully. The results
acquired with this simple method seem definitely more promising than when just employing feature
points (see Figure 6.6c). This histogram possesses overall a nicer appearance, being more clearly
rightskewed or positively skewed, with its highest peak lying towards the origin. Nevertheless, this
approach still could not minimise incorrect attitude estimations very much, as the mean value of the
computed C2C distances is equal to 12 cm.

Contrary to what was initially thought, implementing ICP on the entire dataset wasmore timeconsuming
yet quite manageable, totalling around 15 minutes for its completion, using an Intel i99980HK CPU
@ 2.40 GHz with 32.0 GB RAM. The fact that the point clouds were originally roughly aligned could
have played a key role and accelerated the ICP convergence process. In total, more than 25 million
points were engaged to calculate the desired rigid transformation between the reference and initial
source point cloud. In the case when employing the entire point clouds, 10 iterations were needed to
converge, whereas 4 iterations were enough when just using feature points.

Most importantly, it is highly likely that the spatial deviation between the reference and source point
clouds is not constant throughout the entire study site because of changing accuracies in the GNSS/INS
solution within the scope, as can be observed later in Figure 6.8 which shows the source trajectory er
ror. Therefore, estimating only one transformation for the whole area will not take into account all these
variations and consequently, it cannot be considered an appropriate solution. On the contrary, it is
expected that dividing the research area into several subsets and computing the interpolated transfor
mations among them can reach better results.

Subsequently, the smoothed ICP algorithm described in Section 5.3 was applied using 20 sections and
the outcome has been greatly improved (see Figure 6.6d), with 4/5 of all calculated distances being
smaller than 4 cm. As can be seen in Table 6.1, augmenting the number of sections led to increasingly
enhanced results. Within this smoothed approach, the best mean and standard deviation values of
the C2C distances calculated were 2.3 cm and 1.9 cm, respectively. However, employing more than
1000 sections, namely 2000 and 5000 sections, resulted in worse results, witnessing a rapid growth
of the estimated standard deviation. This implies that in principle, increasing the number of sections
to interpolate between them does not necessarily improve the results, but, on the contrary, there is a
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certain threshold value from which this positive effect is reversed.

To conclude this section in which the point cloud misalignment has been analysed, Figure 6.7 illustrates
the misalignment between the reference point cloud and the corrected source point cloud after applying
the smoothed ICP algorithm using 1000 sections. As a consequence of this adjustment, the point clouds
are much better aligned and it becomes now very difficult to visually identify any remaining positional
or attitude miscalculation.

Figure 6.7: Misalignment illustration between reference (blue) and adjusted source (red) point clouds, after applying the
smoothed ICP algorithm using 1000 sections. The reference trajectory (green) is also plotted to guide the reader, whilst the
adjusted source trajectory is ignored since it almost coincides with the reference one at this scale.

6.2. Trajectory accuracy comparison
Figure 6.8 denotes the source trajectory’s positional displacement, i.e. the positional deviation between
the reference trajectory and initial source trajectory, showing each 3D component separately. It can be
noticed that although each component does not show the same behaviour, the total displacement is
larger at the beginning of the research area when the system is closer to the train station. This is very
clear when looking at the Ycomponent, for which the deviation starts at 30 cm and drops to nearly 0 at
the end of the study area. However, the deviation around the Xaxis oscillates around 10 cm throughout
the entire area, without evidencing a clear trend.

On the other hand, the vertical component of the positional displacement is the most interesting to
analyse. The trajectory deviation around this axis is the greatest for the whole area, as is the case
with most mobile mapping surveys due to GNSS positioning limitations (Alsubaie et al., 2017), but its
behaviour is slightly different from the other two components. It does improve quite sharply, starting at
around 75 cm and decreasing to just above 10 cm after 32 s. Nevertheless, it worsens again in the last
8 s. Furthermore, a couple of sudden jumps occur, with large deviation changes (up to 15 cm) in less
than 0.1 s.

The reason for this strange behaviour is connected to the internal processing of the GNSS/INS files.
Navigation data is postprocessed in forward and reverse directions in order to achieve better results.
However, these two independent solutions may sometimes not process exactly the same epochs, due
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Figure 6.8: Source trajectory positional displacement per each 3D component, expressing the positional deviation between the
reference trajectory and initial source trajectory.

to possible gaps in one or both directions. Therefore, this translates into abrupt jumps observed in the
smoothed solution, computed after integrating both processing directions.

In this particular case, only the middle part of the study area has been processed in both directions
successfully. Thus, the edges of this section witness sudden decays of the positional displacement,
mainly seen in the Zcomponent. The preceding section has been processed only in reverse mode,
whereas the final section is only included in the forward solution. It can be observed that due to worse
GNSS conditions and hence, worse accuracies, the initialization time of the forward solution was almost
double that of the backward solution.

The Euclidean norm of the 3D positional deviation between the reference trajectory and initial source
trajectory is shown in Figure 6.9. This parameter is also referred as absolute trajectory error (ATE),
described in Section 5.4. In the same figure, the resulting ATE after applying the most representative
adjustment methods is also plotted, namely ICP employing all points, ICP employing just feature points,
and smoothed ICP algorithm using 20 and 1000 sections.

As can be easily seen in Figure 6.9, the general behaviour of the ATE of the initial source trajectory
is very similar to the displacement in its vertical component. Since this component has the greatest
deviation, it clearly dominates the computed Euclidean norm. Moreover, the calculated RMSE of its
ATE is larger than 40 cm, which is undoubtedly too high to be employed to georeference LiDAR data
acquired in mobile mapping surveys of these characteristics.

After applying ICP to correct the initial source trajectory using only the points that belonged to the 30
features extracted from the point clouds, the ATE of the resulting trajectory has improved overall. Its
RMSE has decreased from 41 cm to 24 cm and its standard deviation has also improved considerably,
dropping from 18 cm to 4 cm, decreasing the uncertainty of the estimated trajectory.

The enhancements at the start and end of the research area are still perceived, as well as the sharp
jumps due to differences in the forward and backward processing solutions. The biggest improvement
is found at the beginning of the research area, however, interestingly, the accuracy in the middle area
(between 17 s and 32 s) is slightly worse after applying ICP.

One possible reason for this decrease could have been sparseness of features or inaccurate identi
fication of feature points in one or both point clouds, which leads to miscalculated transformations to
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Figure 6.9: ATE of the initial source trajectory (red), together with that of after employing ICP with only feature points (blue), ICP
with all points (green) and smoothed ICP algorithm with 20 (cyan) and 1000 sections (magenta). The blue line does not cover
the entire time frame, since only data located between the first and last features was employed for this method.

be applied on the source trajectory. Consequently, despite witnessing a general enhancement of the
results, this featurebased ICP solution cannot be considered adequate in practice, or at least under
the parameters utilised in the current study.

On the other hand, the application of ICP using all the points from the point cloud resulted in a more
accurate outcome than just using feature points, one can conclude by looking at Figure 6.9. Neverthe
less, the general behaviour of the ATE of the trajectory remains similar to when only feature points are
utilised, concerning the decay in accuracy when approaching the start, middle and end epochs; and
the two sharp jumps.

Overall, the accuracy has improved as the RMSE of the computed ATE has decreased from 24 cm
to 16 cm, while the standard deviation remains almost unchanged. The two sudden jumps still take
place with this solution, however, to a lesser extent. In addition, the results have greatly improved in
the second half of the research area, reaching a peak of 20 cm at the start of it but then decreasing to
around 13 cm.

In spite of some visible improvements, the results using a single ICP solution do not seem accurate
enough. As explained before, since the spatial deviation between the reference and source trajectories
is not constant throughout the entire area, only one rigid transformation cannot handle these small
positional and orientational variations very well.

Consequently, after implementing the interpolated registration results on the source trajectory data,
the outcome has greatly improved. Initially, a subdivision into only 20 sections was performed for this
purpose. The new RMSE of the ATE is equal to 8.5 cm, with its standard deviation still just below 4 cm.
Looking at Figure 6.9, it can be observed that the general behaviour of the ATE has certainly changed
as a result of this algorithm. The decays at the start, middle and end epochs no longer occur. Also, the
sudden, almost vertical jumps present in the methods discussed previously have slightly diminished.

Despite the overall accuracy improvement, the ATE graph looks much less smooth now. It contains
multiple contiguous sharp increases and reductions in accuracy, in some cases varying by more than
15 cm within just 1 s. The main reason for these large deviations is likely to be the big differences
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between the respective calculated rigid transformations of two neighbouring sections. Even though the
solution is interpolated among these sections, if their transformations differ very much from each other,
undesired jumps will occur at the transitions between them.

One would expect that by considering more point cloud subdivisions prior to the interpolation, these
sudden misalignments will increase in number while tending to decline in size and duration, thus rep
resenting very punctual deviations. This statement can be confirmed by observing Figure 6.10, which
depicts the accuracy results obtained with the solutions utilising 20, 50 and 200 sections. As a conse
quence, in addition to possessing a more irregular behaviour but with smaller peaks, the RMSE of the
ATE and its standard deviation have also been enriched.

Figure 6.10: ATE of the corrected source trajectory after applying the interpolated ICP solution with 20 (red), 50 (blue) and 200
(green) sections.

Nevertheless, this is not always valid when increasing the number of sections to interpolate between
them. As depicted in Figure 6.11, it is true that employing 500 sections instead of 200 resulted in an
accuracy improvement and smaller peaks, but a different effect occurs when augmenting the number
of sections from 500 to 1000. In this case, the resulting ATE improves from 4.7 cm to 4.1 cm, yet its
standard deviation degrades from 1.8 cm to 2.4 cm. In addition, its graph is, as expected, even more
irregular and contains a higher number of peaks, but these are now much more larger, possessing
values above 25 cm instead of just around 15 cm.

Furthermore, this behaviour is even worsened by increasing the number of sections to 2000 and 5000
(see Figure 6.12). This plot shows that when such a high number of sections is considered, sudden ATE
jumps in the meter order can occur. Seemingly, a certain threshold is reached around 1000 sections,
above which the standard deviation and undesired values of the ATE start to grow considerably. As the
consecutive point cloud segments would become too thin, it could easily deteriorate the results due to
inappropriate point correspondences to be matched.
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Figure 6.11: ATE of the corrected source trajectory after applying the interpolated ICP solution with 200 (red), 500 (blue) and
1000 (green) sections.

Figure 6.12: ATE of the corrected source trajectory after applying the interpolated ICP solution with 1000 (red), 2000 (blue) and
5000 (green) sections. For a more clear interpretation of the results, only the first 5 seconds of data are depicted.

Table 6.2 summarises the performance statistics of every method applied in this study, showing that
at first glance, with the dataset employed, almost all ICPbased methods already led to more accurate
results. Overall, the smoothed ICP solution that has been introduced has worked very well, gradually
improving its performance by increasing the number of sections considered until a certain value is
reached.
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𝑀𝑒𝑡ℎ𝑜𝑑 𝑅𝑀𝑆𝐸𝐴𝑇𝐸 (𝑚) 𝜎𝐴𝑇𝐸 (𝑚)
Initial trajectory 0.411 0.181
ICP (features) 0.242 0.042

ICP 0.158 0.038
20 sections 0.085 0.037
50 sections 0.067 0.028
200 sections 0.058 0.019
500 sections 0.047 0.018
1000 sections 0.041 0.024
2000 sections 0.155 0.149
5000 sections 0.369 0.348

Table 6.2: Overall performance statistics of all applied methods, indicating their resulting RMSE and standard deviation 𝜎 of
each computed ATE.

Even though its standard deviation is not strictly among the lowest, the method that uses 1000 sections
was the one which obtained the best results, according to the RMSE of its computed ATE. Therefore,
in order to further examine its behaviour, we divided it per 3D component and study them separately,
as shown in Figure 6.13. Interestingly, the Zcomponent of the source trajectory positional displace
ment has been considerably enriched, since it initially witnessed the largest deviations among the 3
directions, according to Figure 6.8. In this final solution, as a result of smoothening, it generally oscil
lates around 0. Moreover, the two sudden jumps due to differences in the navigation data processing
directions, explained when describing Figure 6.8, have completely vanished.

Figure 6.13: Source trajectory positional displacement per 3D component, expressing the positional deviation between the
reference trajectory and the corrected source trajectory after applying the smoothed ICP solution with 1000 sections.

As for the horizontal part of the trajectory displacement, by comparing Figures 6.8 and 6.13, it can be
seen that despite noticing an improvement in the accuracy results, such a big enhancement as in the
vertical component did not take place. The Xcomponent was on average around 10 cm initially and in
the corrected solution it is somewhat around 3 cm, without experiencing any large peak.

However, there seems to be some kind of residual error which makes this component behave worse
than the other two most of the time. It might be affected by the direction of the trajectory itself at each
epoch. Since its movement is mainly in the Xdirection throughout the whole survey, roughly from west
to east, the point cloud sections used for interpolation are too thin around this axis, each seen as tiny
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slices 60 cm wide. In fact, towards the beginning of the research area, where the trajectory direction
seen from above is more diagonal rather than horizontal, the difference between the X and Y error
components is smaller compared to when it moves only in the Xaxis direction.

Furthermore, the Ycomponent of the trajectory displacement has been improved throughout the study
site and especially with a significant enhancement at the start of it, yet not in the same magnitude as
the Zcomponent. Nonetheless, one can perceive that all the peaks larger than 6 cm present in Figure
6.13 occur in the Ydirection. Even though these represent very punctual deviations, the trajectory
displacement has been enlarged at these locations due to the introduction of this smoothening method,
compared to the initial source trajectory.

It seems that it is just due to a malfunction or false convergence of the ICP algorithm, which cannot
fully fix the horizontal misalignment between the point clouds over these sections. Likely, after the
algorithm has iteratively aligned the point clouds over these sections to reduce the initial deviations in
the vertical direction, which was successfully performed, the computed rigid transformations resulted
in misalignments in the horizontal direction, mainly affecting the Ycomponent.

Additionally, this smoothed ICPbased adjustment method has also been applied directly on the trajec
tory, as explained in Section 5.3. In Figure 6.14, where the resulting ATE employing this solution with
20 and 40 sections are depicted, it can be noticed that on average, they lead to an enhancement of
the results. For example, making use of 20 sections reduces the RMSE and standard deviation of the
computed ATE to 12 cm and 6 cm, respectively. This improvement is already triggering a somewhat
similar outcome to the case when a single ICP transformation is considered for the entire point cloud,
however, it cannot achieve similar accuracies to the smoothed method previously applied on the point
cloud.

Figure 6.14: ATE of the initial source trajectory (red), together with that of after employing the purely trajectory based adjustment
with 20 (blue) and 40 sections (green).

Moreover, some big jumps arise as a consequence of this adjustment, which coincide with the epochs
when differences between forward and backward navigation processing were observed. In fact, this
issue escalates rapidly after increasing the number of sections, as one can note by looking at the
solution that employs 40 sections. Therefore, it can be concluded that the point cloud based adjustment
algorithm, whose results were shown and discussed in this section, definitely outperforms the purely
trajectory based adjustment method.
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Conclusions and recommendations

This chapter firstly presents the key findings related to the main goal of this study, followed by a dis
cussion of the outcomes of each research question. Finally, recommendations for future work are
provided.

7.1. Conclusions regarding the main research objective
The primary objective of this study was, using the already acquired LiDAR data as input, to propose a
feasible way to improve RILA’s current trajectory estimation under limited GNSS conditions. Initially, the
innovative idea of implementing a SLAM algorithm was taken into account and tested, but unfortunately
without success. Although points from consecutive LiDAR frames may belong to the same feature, the
algorithm cannot match them effectively due to lack of overlap. Accordingly, pose estimation between
these frames cannot be performed, even with the assist of IMU. Subsequently, several methods using
ICP registration were carried out for this purpose and their results were assessed.

Owing to the fact that GNSS/INS errors can vary in magnitude and direction within a surveyed area,
the application of only one rigid transformation may not be able to correctly model these changing
deviations. As a consequence, after comparing these approaches, we deduced that the interpolated
ICPbased solutions, computing several consecutive rigid transformations, are the most suitable and
accurate.

Among all, the solution using 1000 sections was the one which led to the best results, with the input
data considered. The RMSE of RILA’s computed absolute trajectory error and its standard deviation
were greatly improved, with their values decaying from 41.1 cm and 18.1 cm to just 4.1 cm and 2.4 cm,
respectively. This algorithm required the subdivision of the point cloud dataset into 1000 contiguous
sections along the trajectory, each approximately 60 cm wide.

Additionally, this solution possesses the positive characteristics of being automated and almost com
pletely dataindependent. Therefore, it can be concluded that even though the results of the corrected
trajectory employing this proposed methodology might not yet reach the desired accuracy of around 1
cm to appropriately georeference RILA’s LiDAR data, it has the potential to obtain muchmore accurate,
consistent and reliable outcomes.

51
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7.2. Answers to the research questions
1. What are the current limitations and problems of RILA’s trajectory estimation?

Under normal conditions, RILA’s trajectory can be well estimated by integrating INS and GNSS data.
However, in areas where GNSS signals become weak or unavailable, RILA’s positioning accuracy
based on aided inertial navigation gradually deteriorates. Data collected by the other sensors available
in this MMS, such as laser scanner and cameras, is processed using the navigation data. Accordingly,
an inaccurate trajectory estimation often results in incorrect georeferencing of acquired mapping data.
In the worstcase, part of the collected data needs to be removed from the final deliverables.

Furthermore, there is very little to be done strictly from the point of view of RILA’s GNSS/INS integration
in order to enhance the current trajectory solution. To our knowledge, the chosen parameters of the
navigation Kalman filter within the postprocessing software employed are considered optimal, or at
least we are sure that modifying themwill not lead to a notorious refinement of the output that is normally
obtained.

2. What is the applicability of LiDARSLAM to improve RILA’s trajectory estimation? To what
extent can LiDARSLAM be used with the current measurement setup of RILA?

In mobile mapping, laser scanners are typically used to gather information about the surroundings,
but they can also be employed to find information about the relative movement of the MMS. Taking
advantage of SLAM, the observations from the laser scanner can be utilised to aid inertial navigation
when estimating RILA’s trajectory, improving its accuracy and reducing its gaps.

Unfortunately, it has been proven that with the present measurement setup of RILA it is not possible to
apply LiDARSLAM. At least one 3D laser scanner needs to be integrated for the purpose of SLAM,
keeping the current laser scanner for mapping applications only.

3. How can multiple runs or flight lines over the same area be used to enhance the results?

RILA’s surveys usually contain multiple runs or flight lines, referring to the different passes of the train
over the same track. Also, it often revisits the same study site a few months later, merging the old
acquired data together with the new one. Due to specific conditions of each run that are different from
those of other runs, such as train speed and GNSS sky configuration, differences in their respective
processed point clouds are found.

In the presence of a run considered as with satisfactory accuracy results due to good conditions at
the time of acquisition, point cloud data belonging to this run could be accounted as reference. The
performance of the trajectory results of a certain run can be assessed, among others, by examining the
estimated position accuracy calculated by the software, or by inspecting the plots containing the GNSS
conditions per epoch. Consequently, it would be possible to enhance the trajectory solution of the other
runs through minimising the displacement between their respective georeferenced point clouds.

4. How to estimate trajectory displacements from point cloud matching information?

In the absence of LiDARrelated systematic errors, themisalignment observed between georeferenced
point clouds could be regarded entirely due to trajectory deviations. Naturally, these errors are linearly
enlarged as a function of the distance from the trajectory pose to the acquired point. Therefore, in
the same way, one can estimate trajectory displacements between trajectory poses by looking at the
relative matching between points mapped from these poses.

This point cloud matching procedure could be carried out within a single dataset, when the same area
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is mapped from different locations, or, as for this research, when a new survey revisits an area already
mapped. In the latter case, considering one dataset as reference, we can align the point clouds by
means of point cloud matching and registration methods, such as ICP, and apply the computed rigid
transformation on the trajectory as well.

5. Which procedures could be followed to assess the quality and validate the results?

Typically, traditional surveying of physical targets that act as ground control points is the most common
technique for validating geospatial results. As in the present study we made use of a certain dataset as
reference, using control points was not necessary. Hence, the results obtained were validated through
the comparison with the reference data.

In addition to visually analysing the resulting point cloud misalignments, the global consistency of the
solution has been assessed by comparing the absolute distances between the estimated and reference
trajectories, known as absolute trajectory error (ATE). Despite the fact that ATE only estimates trans
lational errors, trajectory rotational errors are manifested as wrong translations in the georeferenced
point cloud and are thus indirectly captured by ATE. To further examine the results, statistics for the
entire corrected trajectory were calculated, namely root mean square error (RMSE) of the ATE, accom
panied by its standard deviation.

6. What would be the added value and limitations of this method in comparison with the current
GNSS/INS solution that RILA employs?

Even though partially simulated RILA data was utilised as source data in this research, the trajectory
results obtained have proven that the current GNSS/INS solution which RILA employs could be im
proved by almost 90%. This is particularly applicable for those challenging areas where due to limited
GNSS coverage, processed trajectory data is quite inaccurate and often even needs to be removed.

The results might still be just below the desired accuracy of around 1 cm to properly georeference
LiDAR data, but they are certainly more reliable and consistent. As shown in Section 6.2, the RMSE
of the ATE could be lowered from submeter order to the order of a few cm, with a standard deviation
equal to about 2 cm.

Given the right input datasets, the method proposed can be executed completely automatically, with no
manual work required from the user. The main limitation concerns the existence of reliable reference
data, as this dataset is also captured by RILA over the same area, but it must possess a very accurate
outcome. Especially in problematic areas, it may be difficult to gather and process data which meets
common requirements, i.e. navigation data with uncertainties smaller than a couple of cm. Employing
a faulty dataset as reference might result in relatively good matching between it and the source dataset,
however the objects mapped from the corrected point cloud will likely deviate from the actual ones in
reality.

7. Could the results and conclusions be generalised to other types of areas such as tunnels, or
are they tightly dependent on the environment of each situation?

Provided a good reference dataset is available, this algorithm can be implemented in any area surveyed
by the MMS, regardless of its environment. The alignment process is primarily based on pointtopoint
correspondences. Therefore, just enough points acquired and sufficiently well distributed are needed
for matching, without having to find and extract distinct features.

Moreover, excluding extremely big areas, the extension of the area of interest would not represent a
strong limitation. Since this ICPbased method is interpolated sectionwise, larger survey areas directly
result in an increased number of sections to be interpolated. It is worth to mention that there is no
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ideal section size to be used, as it depends on how much the trajectory deviations vary throughout
the scope. As shown in our results, making use of a higher number of sections can lead to accuracy
improvements. However, there exists also a tradeoff between the possible accuracy to be achieved
and the number of sections or section size, since employing very small slices of point cloud data could
hinder the registration process. In these cases, very few points will become available for matching and
inappropriate point correspondences might occur, thus deteriorating the results.

7.3. Recommendations for future work
The method described and tested in this study to improve RILA’s current trajectory estimation relies
on the existence of an accurate reference dataset acquired over the same area of interest, which is
sometimes particularly challenging to accomplish in certain problematic areas. Taking this into account,
a new procedure should be performed for the cases where reference data is not already available. For
example, as there is usually data redundancy due to several RILA surveys collected in the same area,
yet none with sufficiently accurate outcomes, by considering collectively and statistically the results
of all these surveys together, a robust and accurate solution could be computed to be employed as
reference.

With regard to the implementation of SLAM within RILA, it has already been mentioned that for this
aim, another laser scanner needs to be integrated. In this way, the current highgrade laser scanner
would maintain the desired precision and point density for mapping, but the inclusion of SLAM within
the trajectory processing would become very helpful to aid RILA’s absolute positioning. Nowadays,
there are many 3D LiDAR scanners developed for mobile mapping applications which are small, light,
cheap and low on power consumption. Their precision might not fulfil RILA requirements, however they
could simply be utilised for SLAM purposes.

Moreover, if SLAM is integrated in a tightly coupled scheme, it will help INS resolve ambiguities until
GNSS signals are reacquired, allowing correct integer ambiguities to be quickly restored. In addition,
the combination of SLAM with Machine Learning is definitely something worth looking into in the near
future. This can comprise for instance, to visually detect challenging areas where to apply SLAM and to
train the algorithm in order to get better results, especially considering that railway environments tend
to be very repetitive.



A
Relevant tools

A.1. ROS
For most of the SLAM implementations on actual robots, Robot Operating System (ROS) serves as
a widely used powerful framework. ROS is an opensource1, metaoperating system introduced in
Quigley et al. (2009) that provides hardware abstraction, device drivers, libraries, visualizers, message
passing, package management and more, to help build roboticrelated applications and share conve
niently with other robots without much effort. It is developed and based on Ubuntu Linux, sharing its
process management system, file system, user interface and programming utilities.

The principal idea behind ROS is to have an environment where many modules or algorithms with
specific functionalities can run simultaneously and communicate, with zero copy transport between
them. Moreover, it also provides tools and libraries to obtain, build, write and run code on multiple
computers. Rather than redefining and changing the programming vocabulary and grammar, ROS just
adds features and libraries to the traditional C++ program. In this way, the user can simply use some
function calls and classes instead of rewriting the main parts of code.

Furthermore, each application runs as a node that is connected to the ROS network, which means
that all processes are connected and can communicate with each other by sending messages. Every
message belongs to a message topic that is published by certain nodes and it can be received by other
nodes by subscribing to it. Message topics must have defined message types and these could also be
delineated by users in their applications. Hence, ROS can convert message topics from data structures
to byte streams and vice versa. In order to receive and send certain messages topics, the nodes need
to include some functions within the ROS library, namely ROS Subscriber and ROS Publisher.

ROS has its own unique file system. For instance, regarding data inputs, rosbag files include all the
sensor data information from ROS topics with appropriate time sampling. In addition, launch files
typically initiate multiple ROS nodes and can also change some aspects of the code in the nodes by
replacing topic names and setting parameter values. Launch files are particularly convenient when
trying to connect different sensors to the algorithms, since only a few parameters in these files need to
be modified, rather than changing the code itself.

1http://www.ros.org
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A.2. KITTI dataset
Besides RILA data, in order to test the SLAM algorithms considered, a few opensource datasets were
also used. Unfortunately, these are not acquired using railway MMSs and consequently, they do not
belong to railway environments. This also means that the movement of the system is greater than in
RILA, since in the latter the train on which the MMS is mounted moves primarily in just one direction.
However, the environment conditions for scan matching can sometimes be comparable, as similar
features are observed, e.g. wall edges.

Most of these datasets employ a 3D LiDAR scanner, such as Velodyne Puck VLP16, and a lowcost
highfrequency IMU sensor. Whereas the difference between this laser scanner and the one used by
RILA was already explained in Section 2.2.3, highgrade and lowcost IMU sensors differ from each
other in the size of their respective IMU measurement errors detailed in Section 2.2.1 (see Table A.1).

Among the opensource datasets considered, KITTI is the one described below and from which its
sample results are shown in Section 3.4. The KITTI odometry benchmark (Geiger et al., 2012) is a
project of Karlsruhe Institute of Technology (KIT) and Toyota Technological Institute at Chicago (TTIC)
in which a largescale dataset is presented for use in mobile robotics and autonomous driving. KITTI
dataset2 has been recorded from a MMS mounted on a car travelling around the German city of Karl
sruhe with diverse traffic scenarios, ranging from freeways over rural areas to innercity scenes with
many static and dynamic objects.

The system is equipped with a 6DOF IMU (OxTS RT3003) with 100 Hz data output rate, a GNSS that
provides ground truth trajectory when integrated with the IMU, stereo cameras and a Velodyne HDL
64E 3D LiDAR scanner. This rotating 64channel laser scanner has 2 cm range accuracy, 360°×27°
FOV and its rotation rate varies from 5 to 20 Hz, recording up to 1,300,000 points per second.

There are various sequences within the KITTI dataset, grouped according to the environment where
they were acquired. For the present research, sequence 2011_09_30_drive_0028 was chosen, con
sisting of a 3.2 kmlong trajectory across a residential neighborhood, acquired during 7 minutes at an
average speed of just below 30 km/h. The dataset is timestamped and contains synchronised raw data,
among others images in PNG format, point clouds in BIN format and navigation data in TXT files. A
large number of objects are observed that could be used to perform feature scan matching, such as
those belonging to buildings, light poles and tree trunks.

..OiMAR..O ..OOxTS..O
(RILA) (KITTI)

Accelerometer

Initial bias (𝜇g) 25 —
Inrun bias stability (𝜇g) 10 2

Random walk noise (𝜇g/√Hz) 8 8
Scale factor (ppm) 100 1000

Gyroscope

Initial bias (°/h) 0.003 36
Inrun bias stability (°/h) 0.002 2
Random walk noise (°/√h) 0.002 0.2

Scale factor (ppm) 5 1000

Table A.1: Comparison between the measurement errors of the IMU sensor employed in RILA (iMAR iNAV RQH5003) and
KITTI (OxTS RT3003). Information extracted from their respective datasheets.

2http://www.cvlibs.net/datasets/kitti/raw_data.php

http://www.cvlibs.net/datasets/kitti/raw_data.php
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Figure A.1: MMS employed for the acquisition of KITTI dataset.
Acquired from Geiger et al. (2012).

Figure A.2: Representative frame of the sequence chosen
from KITTI dataset.

.



Bibliography

Alsadik, B. (2020). Ideal angular orientation of selected 64channel multi beam LiDARs for Mobile
Mapping Systems. Remote sensing, 12(3), 510.

Alsubaie, N., Youssef, A., and ElSheimy, N. (2017). Improving the accuracy of direct georeferencing
of smartphonebased Mobile Mapping Systems using relative orientation and scene geometric con
straints. Sensors (Basel, Switzerland), 17(10).

Angrisano, A. (2010). GNSS/INS integration methods. Ph.D. thesis. University of Naples Parthenope,
Italy.

Behley, J. and Stachniss, C. (2018). Efficient surfelbased SLAM using 3D laser range data in urban
environments. Robotics: Science and Systems (RSS).

BenAfia, A. (2017). Development of GNSS/INS/SLAM algorithms for navigation in constrained envi
ronments. Signal and Image processing. Ph.D. thesis. INP Toulouse, France.

Besl, P. and McKay, N. (1992). A method for registration of 3D shapes. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 14(2):239–256.

Bitenc, M., Lindenbergh, R., Khoshelham, K., and van Waarden, A. (2010). Evaluation of a laser
landbased Mobile Mapping System for monitoring sandy coasts. ISPRS Commission VII MidTerm
Symposium, IAPRS, 38(7B):92–97.

Bresson, G., Alsayed, Z., Yu, L., and Glaser, S. (2017). Simultaneous Localization and Mapping: A
survey of current trends in Autonomous Driving. IEEE Transactions on Intelligent Vehicles, 2(3):194–
220.

Bry, A., Bachrach, A., and Roy, N. (2012). State estimation for aggressive flight in GPSdenied environ
ments using onboard sensing. IEEE International Conference on Robotics and Automation (ICRA),
pages 1–8.

Chang, L., Niu, X., Liu, T., Tang, J., and Qian, C. (2019). GNSS/INS/LiDARSLAM integrated navigation
system based on graph optimization. Remote Sensing, 11(9).

Chen, Y. and Medioni, G. (1992). Object modeling by registration of multiple range images. Image and
Vision Computing, 10(3):145–155.

Cheng, Z., Liu, D., Yang, Y., Ling, T., Chen, X., Zhang, L., Bai, J., Shen, Y., Miao, L., and Huang,
W. (2015). Practical phase unwrapping of interferometric fringes based on unscented Kalman filter
technique. Optics Express, 23(25):32337–32349.

Chiang, K., Tsai, G., Chang, H., Joly, C., and ElSheimy, N. (2019). Seamless navigation and mapping
using an INS/GNSS/gridbased SLAM semitightly coupled integration scheme. Information Fusion,
50:181–196.

Chiang, K., Tsai, G., Chu, H., and ElSheimy, N. (2020). Performance enhancement of
INS/GNSS/RefreshedSLAM integration for acceptable lanelevel navigation accuracy. IEEE Trans
actions on Vehicular Technology, 69(3):2463–2476.

58



Bibliography 59

Cosandier, D., Martell, H., and Roesler, G. (2018). Direct utilization of LiDAR data in GNSS/IMU pro
cessing for Indoor and Mobile Mapping Applications. NovAtel Inc.

Deschaud, J.E. (2018). IMLSSLAM: Scantomodel matching based on 3D data. IEEE International
Conference on Robotics and Automation (ICRA), pages 2480–2485.

Dunn, M. (2013). Global Positioning Systems Directorate Systems Engineering & Integration: Interface
specification ISGPS200H. Navstar GPS Space Segment/Navigation user interfaces.

DurrantWhyte, H. and Bailey, T. (2006). Simultaneous Localization and Mapping (SLAM): Part I, The
essential algorithms. IEEE Robotics & Automation Magazine, 13:99–110.

ElSheimy, N. (2005). An overview of Mobile Mapping Systems. FIG Working Week 2005 and GSDI8.

Ellum, C. and ElSheimy, N. (2002). Landbased Mobile Mapping Systems. Photogrammetric Engi
neering and Remote Sensing, 68(1):13–17.

Ester, M., Kriegel, H., Sander, J., and Xu, X. (1996). A densitybased algorithm for discovering clusters
in large spatial databases with noise. Proc. of 2nd International Conference on Knowledge Discovery
and Data Mining, pages 226–231.

Farrell, J. (2008). Aided Navigation Systems: GPS and high rate sensors. New York: McGrawHill.

Geiger, A., Lenz, P., and Urtasun, R. (2012). Are we ready for autonomous driving? The KITTI vi
sion benchmark suite. IEEE International Conference on Computer Vision and Pattern Recognition
(CVPR), pages 3354–3361.

Glennie, C. (2007). Rigorous 3D error analysis of kinematic scanning LiDAR systems. Journal of
Applied Geodesy, 1(3):147–157.

Gokturk, S., Yalcin, H., and Bamji, C. (2004). Timeofflight depth sensor  system description, issues
and solutions. 4th IEEE Computer vision and pattern recognition workshop, pages 35–43.

GrejnerBrzezinska, D., Toth, C., and Yi, Y. (2005). On improving navigation accuracy of GPS/INS
systems. Photogrammetric Engineering & Remote Sensing, 71:377–389.

Grewal, M., Weill, L., and Andrews, A. (2001). Global positioning systems, inertial navigation, and
integration. John Wiley & Sons, Inc.

Grisetti, G., Kümmerle, R., Stachniss, C., and Burgard, W. (2010). A tutorial on graphbased SLAM.
IEEE Intelligent Transportation Systems Magazine, 2(4):31–43.

Grisetti, G., Stachniss, C., and Burgard, W. (2007). Improved techniques for grid mapping with Rao
Blackwellized Particle Filters. IEEE Transactions on Robotics, 23(1):34–46.

Heirich, O. (2020). Localization of trains and mapping of railway tracks. Ph.D. thesis. Technische
Universität München, Germany.

Hesch, J., Mirzaei, F., Mariottini, G., and Roumeliotis, S. (2010). A laseraided Inertial Navigation Sys
tem (LINS) for human localization in unknown indoor environments. IEEE International Conference
on Robotics and Automation (ICRA), page 5376–5382.

Hess, W., Kohler, D., Rapp, H., and Andor, D. (2016). Realtime loop closure in 2D LiDAR SLAM. IEEE
International Conference on Robotics and Automation (ICRA), pages 1271–1278.

Humphreys, T., Murrian, M., van Diggelen, F., Podshivalov, S., and Pesyna, K. (2016). On the feasibility
of cmaccurate positioning via a smartphone’s antenna and GNSS chip. IEEE/ION Position, Location
and Navigation Symposium (PLANS), pages 232–242.



60 Bibliography

Jing, H., Meng, X., Slatcher, N., and Hunter, G. (2020). Efficient point cloud corrections for mobile
monitoring applications using road/railside infrastructure. Survey Review, pages 1–17.

Kaess, M., Johannsson, H., Roberts, R., Ila, V., Leonard, J., and Dellaert, F. (2012). iSAM2: Incre
mental Smoothing and Mapping using the Bayes Tree. International Journal of Robotic Research
(IJRR), 31(2):216–235.

Kaplan, E. and Hegarty, C. (2005). Understanding GP”: Principles and applications. Artech House
Mob. Commun., pages 598–599.

Karaim, M., Karamat, T., Noureldin, A., Tamazin, M., and Atia, M. (2014). Cycle slips: Detection and
correction using Inertial Aiding. GPS World Magazine, 25:64–69.

Kersting, A. and Friess, P. (2016). Postmission quality assurance procedure for surveygrade Mobile
Mapping Systems. The International Archives of the Photogrammetry, Remote Sensing and Spatial
Information Sciences, XLIB1:647–652.

Kohlbrecher, S., von Stryk, O., Meyer, J., and Klingauf, U. (2011). A flexible and scalable SLAM sys
tem with full 3D motion estimation. IEEE International Symposium on Safety, Security, and Rescue
Robotics (SSRR), pages 155–160.

Lavalle, S., Yershova, A., Katsev, M., and Antonov, M. (2014). Head tracking for the Oculus Rift. IEEE
International Conference on Robotics and Automation (ICRA), pages 187–194.

Lin, J. and Zhang, F. (2019). LOAMLivox: A fast, robust, highprecision LiDAR Odometry and Map
ping package for LiDARs of small FoV. IEEE International Conference on Robotics and Automation
(ICRA), pages 3126–3131.

Linear Motion Tips (2020). Motion basics: How to define roll, pitch, and yaw for linear systems. http://
www.linearmotiontips.com/motionbasicshowtodefinerollpitchandyawforlinearsystems, Ac
cessed on May 5th, 2021.

Løvås, M. (2017). Increasing the accuracy of positioning in Mobile Mapping Systems. A method sup
ported by Simultaneous Localization and Mapping. M.Sc. thesis. NTNU, Norway.

Ma, L., , Li, Y., Li, J., Wang, C., Wang, R., and Chapman, M. (2018). Mobile laser scanned pointclouds
for road object detection and extraction: A review. Remote Sensing, 10,1531.

Mattheuwsen, L., Bassier, M., and Vergauwen, M. (2019). Theoretical accuracy prediction and vali
dation of lowend and highend Mobile Mapping System in urban, residential and rural areas. The
International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences,
XLII2/W18:121–128.

Montemerlo, M., Thrun, S., Koller, D., and Wegbreit, B. (2002). FastSLAM: A factored solution to the
Simultaneous Localization and Mapping problem. 18th National Conference on Artificial Intelligence,
pages 593–598.

Nederlandse Samenwerking Geodetische Infrastructuur (2021). RDNAPTRANS: Official and accurate
transformation between RD, NAP and ETRS89. http://www.nsgi.nl/rdnaptrans, Accessed on October
4th, 2021.

Parkinson, B., Spilker, J., Axelrad, P., and Enge, P. (1996). Global Positioning System: Theory and
applications. American Institute of Aeronautics and Astronautics, Vols. 1 and 2.

Puente, I., GonzálezJorge, H., MartínezSánchez, J., and Arias, P. (2013). Review of mobile mapping
and surveying technologies. Measurement, 46(7):2127–2145.

http://www.linearmotiontips.com/motion-basics-how-to-define-roll-pitch-and-yaw-for-linear-systems
http://www.linearmotiontips.com/motion-basics-how-to-define-roll-pitch-and-yaw-for-linear-systems
http://www.nsgi.nl/rdnaptrans


Bibliography 61

Qian, C., Liu, H., Tang, J., Chen, Y., Kaartinen, H., Kukko, A., Zhu, L., Liang, X., Chen, L., and Hyyppä,
J. (2017). An integrated GNSS/INS/LiDARSLAM positioning method for highly accurate forest stem
mapping. Remote Sensing, 9(3).

Qin, C., Ye, H., Pranata, C., Han, J., Zhang, S., and Liu, M. (2020). LINS: A LiDARinertial state
estimator for robust and fast navigation. IEEE International Conference on Robotics and Automation
(ICRA), pages 8899–8906.

Quigley, M., Gerkey, B., Conley, K., Faust, J., Foote, T., Leibs, J., Berger, E., Wheeler, R., and Ng, A.
(2009). ROS: An opensource Robot Operating System. ICRAWorkshop on Open Source Software,
3.

Retscher, G. (2002). Accuracy performance of Virtual Reference Station (VRS) networks. Journal of
Global Positioning Systems, 1(1):40–47.

Rijnmond Public Broadcast (2020). Reizigersorganisaties willen langere perrons op Rotterdam Cen
traal. http://www.rijnmond.nl/nieuws/198040, Accessed on May 5th, 2021.

Sarvrood, Y. B., Hosseinyalamdary, S., and Gao, Y. (2016). VisualLiDAR odometry aided by reduced
IMU. ISPRS International Journal of GeoInformation, 5, 3.

Segal, A., Haehnel, D., and Thrun, S. (2009). GeneralizedICP. Robotics: Science and Systems (RSS),
2(4).

Shamseldin, T., Manerikar, A., Elbahnasawy, M., and Habib, A. (2018). SLAMbased pseudo
GNSS/INS localization system for indoor LiDAR Mobile Mapping Systems. IEEE/ION Position, Lo
cation and Navigation Symposium (PLANS), pages 197–208.

Shan, T. and Englot, B. (2018). LeGOLOAM: Lightweight and groundoptimized LiDAR Odometry and
Mapping on variable terrain. IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pages 4758–4765.

Shan, T., Englot, B., Meyers, D., Wang, W., Ratti, C., and Rus, D. (2020). LIOSAM: Tightlycoupled
LiDAR Inertial Odometry via Smoothing and Mapping. IEEE/RSJ International Conference on Intel
ligent Robots and Systems (IROS), pages 5135–5142.

Shin, E. (2005). Estimation techniques for lowcost Inertial Navigation. Ph.D. thesis. University of
Calgary, Canada.

Shoemake, K. (1985). Animating rotation with quaternion curves. SIGGRAPH ’85 Computer Graphics,
19(3):245–254.

Sklar, J. (2003). Interference mitigation approaches for the Global Positioning System. Lincoln Labo
ratory, 14:167–180.

Smith, R., Self, M., and Cheeseman, P. (1987). A stochastic map for uncertain spatial relationships.
4th International Symposium on Robotic Research, pages 467–474.

Sturm, J., Engelhard, N., Endres, F., Burgard, W., and Cremers, D. (2012). A benchmark for the
evaluation of RGBD SLAM systems. IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pages 573–580.

Suchocki, C. (2020). Comparison of timeofflight and phaseshift TLS intensity data for the diagnostics
measurements of buildings. Materials, 13(2), 353.

Teunissen, P. and Montenbruck, O. (2017). Springer Handbook of Global Navigation Satellite Systems.
Springer.

http://www.rijnmond.nl/nieuws/198040


62 Bibliography

Thrun, S. (2002). Probabilistic robotics. Communications of the ACM, 45(3):52–57.

Thrun, S. and Leonard, J. (2008). Simultaneous Localization and Mapping. Springer Handbook of
Robotics, pages 871–889.

Titterton, D. and Weston, J. (2004). Strapdown inertial navigation technology, 2nd edition. The Institu
tion of Electrical Engineers (IEE).

Tschopp, F., Schneider, T., Palmer, A., NouraniVatani, N., Cadena, C., Siegwart, R., and Nieto, J.
(2019). Experimental comparison of visualaided odometry methods for rail vehicles. IEEE Robotics
& Automation Letters, 4(2):1815–1822.

Vosselman, G. and Maas, H. (2010). Airborne and terrestrial laser scanning. Whittles Publishing.

Wan, G., Yang, X., Cai, R., Li, H., Zhou, Y., Wang, H., and Song, S. (2018). Robust and precise vehicle
localization based on multisensor fusion in diverse city scenes. IEEE International Conference on
Robotics and Automation (ICRA), pages 4670–4677.

Wang, H. and Berkers, J. (2019). Absolute and relative track geometry: Closing the gap. 2019 Inter
national Conference on Railway Engineering, pages 1–13.

Woodman, O. J. (2007). An introduction to inertial navigation. Tech. Rep. UCAMCLTR696, University
of Cambridge.

Yan, L., Dai, J., Tan, J., Liu, H., and Chen, C. (2020). Global fine registration of point cloud in LiDAR
SLAM based on pose graph. Journal of Geodesy and Geoinformation Science, 3(2):313–321.

Yang, J., Li, Y., Cao, L., Jiang, Y., Sun, L., and Xie, Q. (2019). A survey of SLAM research based on
LiDAR sensors. International Journal of Sensors, 1(1):1003.

Yang, R., Li, Q., Tan, J., Li, S., and Chen, X. (2020). Accurate road marking detection from noisy point
clouds acquired by lowcost mobile LiDAR systems. ISPRS International Journal of GeoInformation,
9(10), 608.

Ye, H., Chen, Y., and Liu, M. (2019). Tightly coupled 3D LiDAR Inertial Odometry and Mapping. IEEE
International Conference on Robotics and Automation (ICRA), pages 3144–3150.

Yi, Y. (2007). On improving the accuracy and reliability of GPS/INSbased Direct Sensor Georeferenc
ing. The Ohio State University, Columbus, OH.

Zhang, J. and Singh, S. (2014). LOAM: LiDAR Odometry and Mapping in realtime. Robotics: Science
and Systems (RSS), 2(9).

Zhen, W., Zeng, S., and Soberer, S. (2017). Robust localization and localizability estimation with a
rotating laser scanner. IEEE International Conference on Robotics and Automation (ICRA), pages
6240–6245.


	Abstract
	Preface
	List of Figures
	List of Tables
	List of Acronyms
	Introduction
	MMS positioning
	RILA system
	Current methods and limitations
	Research questions
	Thesis outline

	Fundamentals of Mobile Mapping
	Basic concepts
	System components
	INS
	GNSS
	LiDAR

	Coordinate frames
	RILA’s trajectory estimation
	Direct Geo-referencing

	Simultaneous Localization and Mapping
	SLAM background theory
	LiDAR-SLAM
	State of the art of LiDAR-SLAM

	GNSS/INS/LiDAR-SLAM integration
	Related work

	Project area and data description
	Study site
	RILA data

	Methodology
	Motivation
	Pre-processing
	ICP-based trajectory adjustment
	Validation

	Results and implications
	Point cloud misalignment
	Trajectory accuracy comparison

	Conclusions and recommendations
	Conclusions regarding the main research objective
	Answers to the research questions
	Recommendations for future work

	Relevant tools
	ROS
	KITTI dataset

	Bibliography

