

Delft University of Technology

On the Importance of Initial Solutions Selection in Fault Injection

Krcek, Marina; Fronte, Daniele ; Picek, Stjepan

DOI
10.1109/FDTC53659.2021.00011
Publication date
2021
Document Version
Accepted author manuscript
Published in
2021 Workshop on Fault Detection and Tolerance in Cryptography (FDTC)

Citation (APA)
Krcek, M., Fronte, D., & Picek, S. (2021). On the Importance of Initial Solutions Selection in Fault Injection.
In M. O’Dell (Ed.), 2021 Workshop on Fault Detection and Tolerance in Cryptography (FDTC): Proceedings
(pp. 1-12). Article 9565588 IEEE. https://doi.org/10.1109/FDTC53659.2021.00011

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/FDTC53659.2021.00011
https://doi.org/10.1109/FDTC53659.2021.00011

On the Importance of Initial Solutions Selection in
Fault Injection

Marina Krček
Delft University of Technology

Delft, The Netherlands
m.krcek@tudelft.nl

Daniele Fronte
STMicroelectronics

Rousset, France
daniele.fronte@st.com

Stjepan Picek
Delft University of Technology

Delft, The Netherlands
s.picek@tudelft.nl

Abstract—Fault injection attacks require the adversary to
select suitable parameters for the attack. In this work, we
consider laser fault injection and parameters like the location
of the laser shot (x, y), delay, pulse width, and intensity of the
laser. The parameter selection process can be translated into an
optimization problem. A very popular and successful method
for various optimization problems is the genetic algorithm. To
further improve the performance of a genetic algorithm, it is
possible to combine it with local search to obtain a memetic
algorithm.
We conduct several experiments comparing the performance of
the memetic algorithm and the random search algorithm for
finding faults. We investigate the influence of different initializa-
tion techniques on the performance of the memetic algorithm. In
our experiments, the memetic algorithm is significantly better
at finding faults than the random search. While evaluating
different initialization techniques, we did not observe significant
differences when averaging results. However, when considering
the stability of the results with a memetic algorithm based on
different initialization techniques, we can distinguish preferable
techniques, such as LHSMDU and the Taguchi method.

Keywords-Laser fault injection; Genetic algorithm; Memetic
algorithm; Initialization methods

I. INTRODUCTION

Many hardware devices are used daily by millions of users,
promising secure transactions. Security analysts evaluate the
security of these hardware devices, and as adversaries, they
have numerous possibilities of attacking them. Passive tech-
niques exist, such as side-channel attacks, where the attacker
monitors side-channel (unintended) information. Examples of
the side-channel information are power consumption [1], elec-
tromagnetic radiation [2], and time [3]. On the other hand,
there are also active attacks, specifically fault injection at-
tacks, where the attacker aims to extract some secret/sensitive
information from the target device by exposing the device
to external interference. Doing this can cause the device to
deviate from the typical behavior and correct execution, which
the attacker might exploit, as in differential fault analysis
(DFA) [4], fault sensitivity analysis (FSA) [5], and statistical
fault attack (SFA) [6]. Attacks, such as ineffective fault attacks
(IFA) [7], and statistical ineffective fault attacks (SIFA) [8],
can exploit information even if induced faults do not change
the output of the execution on the device. The attacks can be
divided into two steps - inducing the faults and analyzing the
target device’s behavior and responses to achieve the attacker’s

goal. The focus of this work is on the first part - inducing
the faults using external interferences that can come from
different sources, such as optical (laser pulses) [9], electrical
glitches (voltage) [10], electromagnetic (EM) radiation [11],
and temperature changes [12].

The fault injection attacks can be divided by their in-
vasiveness. Invasive attacks remove layers of the target to
reach the silicon layer. In semi-invasive attacks, only the
packaging is removed, and in non-invasive attacks, the target
is attacked as it is, without any modifications. In this work,
we consider the optical fault injection technique introduced
in [9], namely Laser Fault Injection (LFI) attacks that are semi-
invasive attacks. Like other fault injection attacks, for LFI to
be successful, the adversary or security analyst must carefully
select and tune the attack. In the case of the LFI attacks, the
adversary needs to choose good parameters for successfully
injecting faults, such as the location of the laser shot (x, y),
focus, laser spot size, wavelength, laser trigger delay, laser
pulse width, and laser intensity. These parameters are limited
by the physical properties of the target and the equipment used
for performing the attack. For example, x and y are limited by
the target device and motorized stage (the minimum step it can
make for each axis). On the other hand, the laser parameters
are limited by the laser source equipment. In this work, we
aim at injecting faults that lead to exploitable faulty outputs
for attacks such as DFA. However, the same parameters can
be considered for inducing so-called ineffective faults used in,
e.g., SIFA.

The search space is often too large to perform an exhaustive
search in a reasonable time, considering all the parameters
and their possible values for laser fault injection. The attacker
could decrease the ranges for the parameters, but this requires
significant knowledge about the internal design of the target.
Unfortunately, this is not often the case as the attacks are
usually performed in a black-box setting. Consequently, lim-
iting the ranges of the parameters can lead to testing many
inadequate parameter combinations or failing to test parameter
combinations that would be successful. Additionally, the laser
effects on the target behavior can significantly vary between
two physically close positions, representing a problem to find
optimal parameter sets to perform the laser attacks.

There is a clear need for a “smart” technique for parameter
selection leading to a more effective security evaluation,

© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to
servers or lists, or reuse of any copyrighted component of this work in other works

considering the mentioned issues. The problem of selecting
suitable fault injection parameters can be easily translated into
an optimization problem, for which we can apply various
techniques. One example would be evolutionary algorithms
(EAs), such as genetic algorithms (GAs). There are several
papers where evolutionary techniques are used to optimize
fault injection attacks. In [13], the authors investigated a
new direction based on genetic algorithms for voltage (VCC)
glitching and found it suitable when not much is known about
the device under attack. A continuation of this work is done
in [14] where the authors compared the Monte Carlo search
with the genetic algorithm. Picek et al. also compared the
standard GA to the performance of an enhanced GA called
a memetic algorithm (MA) for voltage glitching [15]. The
memetic algorithm iterates the standard process of GA but
adds a local search. The memetic algorithm is also used by
Maldini et al. for Electromagnetic Fault Injection (EMFI) [16].
Another interesting approach using artificial intelligence tech-
niques, namely machine learning, was introduced in [17].
The authors presented a method for fast characterization of
the laser fault injection settings on the target. However, the
technique can be used for other semi-invasive fault injection
attacks and is transferable to different samples of the same
target.

This work applies a genetic algorithm with Hooke-Jeeves
as the local search to select laser fault injection parameters.
The algorithm begins with an initial population of solutions
that is evolved through a number of generations to reach
better solutions for the optimization problem. A well-selected
initial population of solutions is crucial because it can cause
the algorithm to converge to some local optima quickly
or cover more search space, which could help reach the
global optimum. After comparing the performance of the
memetic algorithm to the Monte Carlo approach for the laser
fault injection attacks, we experiment with several different
initialization methods for creating the initial population of
solutions for the memetic algorithm.

Our main contributions are as follows:
1) We use evolutionary algorithms (genetic algorithms) to

find parameters leading to a successful laser fault injec-
tion attack. To the best of our knowledge, this is the
first time that evolutionary algorithms are used for LFI.
Differing from the discussion in [17], we do not observe
genetic algorithms causing issues due to their exploratory
character (i.e., damaging the target). Additionally, the
laser effect may greatly vary between two very close posi-
tions that are of different nature. Evolutionary algorithms
work well with non-differentiable functions, making them
a natural choice for such settings.

2) We propose a memetic algorithm that combines genetic
algorithm and Hooke-Jeeves local search. In our opinion,
this improves over related works [15], [16] with memetic
algorithms as Hooke-Jeeves is a well understood and
efficient derivative-free optimization algorithm.

3) We are the first to explore the influence of the initial

population on the performance of the population-based
search algorithms for fault injection attacks.

II. BACKGROUND

This section briefly explains the memetic algorithm and
different initialization techniques for the initial population we
use in our experiments.

A. Memetic Algorithm (MA)

The memetic algorithm (MA) is a population-based hybrid
genetic algorithm enhanced with an added procedure perform-
ing local refinements on individuals from the population [18].
Such algorithms were applied in many different fields, such
as business analytics and data science [19], designing and
training artificial neural networks [20], and robotic motion
planning [21]. The memetic algorithms have shown to be
better than traditional GAs for some optimization problem
domains [22], [23]. The reason could be the trade-off be-
tween the exploration abilities of the underlying GA and the
exploitation abilities of the local search. The improvement cost
is more fitness evaluations and a fast loss of diversity within
the population.

Throughout the years, there have been many versions
of memetic algorithms proposed [24]. However, our work
considers a simple combination of the traditional genetic
algorithm and Hooke-Jeeves local search. The pseudocode
of the memetic algorithm can be seen in Algorithm 1. The
pseudocode is general, and it shows how the local search is
integrated into the genetic algorithm - after recombination of
the genetic algorithm, we perform local refinements on some
of the solutions from the population. To further explain the
pseudocode and memetic algorithm, we describe the genetic
algorithm and our chosen local search approach - the Hooke-
Jeeves algorithm.

Algorithm 1 Memetic Algorithm.

1: procedure MEMETICALGORITHM
2: generate population of size N
3: evaluate the population
4: iteration = 0
5: while stop condition not satisfied do
6: new population = best solutions (elite size)
7: select parent solutions for crossover
8: children = crossover(parents)
9: mutation(children)

10: add children to new population
11: evaluate the new population
12: perform the local search
13: iteration = iteration+ 1

14: return population

1) Genetic Algorithm: The genetic algorithm (GA) is the
most widely known type of evolutionary algorithm inspired by
the process of natural selection [25], [26]. Genetic algorithms
are often used for optimization problems [27].

Genetic algorithms work on a population of solutions of
size N . In the early application, solutions were represented
by bit strings, but representation can be adjusted for many
different problems nowadays. For example, considering the
LFI problem, the solution can be an array of integer and
floating-point values representing the parameter set of LFI,
namely the x, y, delay, pulse width, and laser intensity pa-
rameters. A set of such solutions constructs the population for
the genetic algorithm. After the initial population is created,
the solutions are evaluated to retrieve the fitness. Fitness is
a value that gives information about how ‘good’ or ‘bad’
the solution is for the problem (the definition of ‘good’ or
‘bad’ are problem-specific). In simple cases of finding an
optimum of well-defined functions, the evaluation retrieves
the function result based on the input, which is one solution
from the population. There, the function result is the fitness
value. Evaluation and fitness values are adjusted based on the
problem, as is the representation of the solutions. For the LFI
problem, we explain our definitions in Section III.

After evaluating all the solutions in the population, we
perform selection, which is usually done based on the fitness of
the solutions. The idea is to choose better solutions as parents
for reproduction since these solutions should have ‘good’
genes (solution values) to propagate into the next generation.
The reproduction is done using the crossover and mutation
operators by combining the genes of the selected parents
and introducing minor variations. The crossover is applied to
the selected parent solutions resulting in offspring solutions.
There are different versions of the crossover operator, such
as uniform crossover or average crossover. However, all these
variations combine the genes from the parent solutions to pro-
duce a new solution (or several solutions). The new offspring
solutions undergo mutation where each gene in the solution
is modified with probability pm. These variations help in the
exploration of the search space and prevent fast convergence
to a local optimum. The resulting intermediary population
forms the next generation replacing the previous one entirely.
However, complete individuals of the prior generation are
transferred to the new generation without modifications when
using elitism. Usually, a parameter often called the elite size
defines how many solutions are transferred unmodified for the
next generation.

Since we use the memetic algorithm, we select solutions that
should undergo the individual improvement procedure after
the described GA part. For the local improvements, we use
the Hooke-Jeeves algorithm described in Section II-A2. We
perform the local refinement on each of the selected solutions,
and the algorithm starts a new iteration by evaluating the
new solutions before parent selection. The process is repeated
until the stop (termination) condition is met. This condition
can consider different information about the progress of the
algorithm. However, often simply the number of iterations,
evaluations, or generations is considered. Further, one can
consider the fitness values of the solutions - if we find a
satisfying fitness, we could terminate the algorithm.

2) Hooke-Jeeves Algorithm: Hooke-Jeeves is a direct
search algorithm used to search for the optimum of a nonlinear
function without requiring derivatives of the function [28]. The
algorithm combines exploratory moves with pattern moves.
The step size can be different for each coordinate direction
and change during the search in the exploratory move. The
exploration starts from the initial point by exploring each
coordinate direction by the specified step size. If the fitness
does not improve, the opposite direction is considered. After
all the coordinates are investigated, the exploration move is
completed. If the exploration found a better solution, it is
followed by the pattern move. Otherwise, only the step is
decreased to try the exploration move again. The pattern
move calculates the direction of the improvement and moves
the starting point in that direction. The pattern move can be
calculated as:

xp
k+1 = xk + (xk − xk−1),

where xpk+1 is the temporary base point for a new exploratory
move, xk is the result of the exploratory move, and xk−1 is
the previous base point. The algorithm ends when the step size
cannot be reduced anymore.

B. Initialization Techniques for the Initial Population

The genetic algorithm requires an initial set of solutions
called the population to start the process of evolution. In this
work, we investigate different initialization techniques for the
initial population of solutions. The initial population, if well-
distributed, could lead to better performance of the genetic
algorithm [29], [30], [31]. Usually, the initialization is done
using Monte Carlo simulation, taking random values for each
gene of the solution [32], [33], [16]. We additionally explore
the Latin Hypercube Sampling (LHS) and a Taguchi method.

Next, we explain Latin squares and Orthogonal arrays
necessary to understand the LHS and Taguchi method, respec-
tively.

Latin Squares: A Latin square is an n × n array where
each of the n different symbols occurs exactly once in each
row and each column [34]. Table I gives an example of a Latin
square with n equal to three.

TABLE I: An example of a Latin square with n = 3.

1 2 3
3 1 2
2 3 1

A Latin hypercube is a generalization of a Latin square
concept from two dimensions to an arbitrary number of
dimensions.

Orthogonal Arrays: Orthogonal arrays generalize the
idea of mutually orthogonal Latin squares and are used in
the statistical design of experiments [35], cryptography [36],
and software testing [37], [38]. An orthogonal array is an
array whose elements come from a fixed finite set of symbols
arranged in such a way that for every selection of t columns of
the table, all ordered t-tuples of the symbols, formed by taking

the elements in each row restricted to these columns, appear
the same number of times [39]. An example of an orthogonal
array is shown in Table II.

Definition 1 (Orthogonal array [39]): An N × k array A
with entries from S is said to be an orthogonal array with s
levels, strength t and index λ (for some t in the range 0 ≤ t ≤
k) if every N × t subarray of A contains each t-tuple based
on S exactly λ times as a row.
N , k, s, t, and λ are the parameters of the orthogonal array,

denoted as OA(N, k, s, t)1. We can omit the λ as the other
parameters determine it.

TABLE II: An example of an orthogonal array of strength two.
The four ordered pairs (2-tuples) formed by the rows of the
first and third columns, namely (1,1), (2,1), (1,2), and (2,2),
are all the possible ordered pairs of the two-element set, and
each appears exactly once. The same would hold with other
combinations of two columns.

1 1 1
2 2 1
1 2 2
2 1 2

Following are short descriptions of Latin Hypercube Sam-
pling and Taguchi method techniques.

Latin Hypercube Sampling: The traditional technique for
generating samples of parameter values is Monte Carlo sim-
ulation (MCS) that randomly samples the cumulative distri-
butions to obtain the samples. The Latin hypercube sampling
(LHS) is a technique emphasizing uniform sampling of the
univariate distributions [40], [41], [42]. LHS accomplishes
this by stratifying the cumulative distribution function and
randomly sampling within the strata. Uniform sampling in-
creases realization efficiency while randomizing within the
strata prevents introducing a bias and avoids the extreme
value effect associated with regular stratified sampling. It has
been demonstrated for many applications that LHS is a more
efficient sampling method compared to MCS [43].

This work also considers the Latin hypercube sampling with
multidimensional uniformity (LHSMDU) [44]. This method
increases the multidimensional uniformity of a sampling ma-
trix by increasing the statistical distance between realizations.
The most closely related modification of Latin hypercube
sampling is the maximinLHS algorithm proposed by Johnson et
al. [45]. The LHSMDU uses MCS to generate many realization
inputs and sequentially eliminate realizations near each other
in the multidimensional space. The distributed realizations are
then post-processed to enforce univariate uniformity.

Taguchi Methods: Taguchi methods are statistical methods
initially developed to improve the quality of manufactured
goods [46], but now these methods are applied in various
areas, such as engineering [47] and marketing [48]. Taguchi
method presents an experimental strategy utilizing a modified
and standardized form of experiment design. Additionally, it
provides tools to analyze the results of the experiments to

1This notation is not universally accepted.

determine the design solution producing the best quality. Two
primary tools used in the Taguchi method are the orthogonal
arrays to design the experiments and the signal-to-noise ratio
to analyze them.

The design of an experiment involves several steps - first,
selecting independent variables (factors) and the number of
levels for each variable. Then, the user selects the orthogonal
array and assigns the variables to each of the columns. After
conducting all the experiments, the user analyzes the data to
find the best values for the variables. In our work, since we
use the memetic algorithm and the Taguchi method to reach
better distribution of tested parameter values in the initial
phase, we do not conduct the Taguchi recommended analysis
using a signal-to-noise ratio. Therefore, we only focus on using
orthogonal arrays to create the initial set of solutions for the
memetic algorithm.

III. IMPLEMENTATION

We previously explained the memetic algorithm in a general
setting, but here we describe our implementation of the algo-
rithm in detail. Explanations follow the flow of the algorithm.

A. Solution Representation and Initialization Methods

As discussed, the memetic algorithm works on a set
of solutions (population), improving it to reach the opti-
mal solution for the given problem. For the LFI problem,
the solutions are arrays representing the LFI parameters -
x, y, delay, pulse width, and laser intensity. Bounds for
these parameters are user-defined by setting values for the
minimum and maximum value of the parameter and the
allowed step.

In our experiments, we evaluate several initialization tech-
niques for the initial solutions of the population. First, we use
random initialization. That is a Monte Carlo sampling, where
parameter values are taken randomly for each solution, with
each value having the same probability of being selected. We
do not allow duplicate solutions in the population to enable the
random initialization to cover more search space. Additionally,
identical solutions do not provide more information, and the
laser shots would be wasteful.

The second initialization is using the Latin Hypercube Sam-
pling. We use the existing Python package called pyDOE22.
There are multiple options on how to sample the points, and
we use the default one, which randomizes the points within
the intervals. The number of samples defines the number of
intervals. The LHS method requires the number of factors and
the number of samples to be defined, which, in our case,
are the number of LFI parameters (five) and the population
size, respectively. Another similar method is Latin hypercube
sampling with multidimensional uniformity (LHSMDU) from
the Python package lhsmdu3. This technique should improve
the sampling for more dimensions than two, compared to the
previously described LHS.

2https://pypi.org/project/pyDOE2/
3https://pypi.org/project/lhsmdu/

https://pypi.org/project/pyDOE2/
https://pypi.org/project/lhsmdu/

Lastly, we use the Taguchi method by utilizing the Orthog-
onal Array (OA) package4, which contains functionality to
generate and analyze these types of designs. For generating
the arrays and designs, the package uses the exhaustive enu-
meration algorithm from [49] and the optimization algorithm
from [50].

B. Evaluation and Fitness Values

After the initialization of the population, the solutions need
to be evaluated. This is done by executing the laser shots with
the given parameters. We include a sorting algorithm since
the physical operations needed to adjust the laser bench for
the laser shot are time-consuming, and the most expensive
operations are the motorized stage movements. The motorized
stage is used to change the location of the laser shot (parame-
ters x and y). We sort the x and y coordinates using a greedy
algorithm with the Manhattan distance between the points as
a metric. We start at the lowest x and lowest y coordinate and
look for the nearest (x, y) coordinates based on the Manhattan
distance. Greedy algorithms provide a combination of the
best local choices, which does not guarantee the best global
solution, or in our case, the shortest path through all the points.
Nevertheless, greedy algorithms are helpful because they are
fast and often give good approximations of the optimum.

The evaluation consists of conducting the laser shot several
times for all the solutions. Each device response is categorized
into one fault class - pass, mute, changing, or fail. If the device
does not respond in a given time, the response is categorized as
mute. If the response of the device is expected, it is categorized
as pass, otherwise as a fail. If we get different classes with
multiple measurements, the response is categorized as the
changing class.

We need to have a fitness value for each fault class for
the memetic algorithm to distinguish the solutions based on
their quality. The fitness of the changing class is calculated as
fP ·NP +fM ·NM+fF ·NF

NP +NM+NF
, where fP , fM , fF represent the fitness

values for fault class pass, mute, and fail, respectively, and
NP , NM , and NF the number of the pass, mute, and fail class
occurrences in the number of measurements times. Therefore,
the denominator, the sum of NP , NM , and NF is equal to the
number of measurements per parameter set. The fitness values
for other fault classes are shown in Table III. The values are
taken from [16] to present the preference of the fault classes
and their relation. Since we are trying to maximize the fitness
of the solutions, we set the fitness value for the fail class the
highest followed by the mute and pass response. Accordingly,
the changing class with mute and fail classes results in a higher
fitness value than a combination of mute and pass classes.

TABLE III: Fitness values for pass, mute, and fail fault classes.

Fault class Fitness value
PASS 2

MUTE 5
FAIL 10

4https://pypi.org/project/OApackage/

C. GA Operators

After the evaluation, the genetic algorithm part starts creat-
ing a new population using the GA operators. For the selec-
tion operator, we use a roulette wheel (fitness proportionate)
selection. The fitness function assigns a fitness to possible
solutions, and it is used to associate a probability of selection
with each solution. Let fi be the fitness of an individual i
in the population, then its probability of being selected is
pi = fi

ΣN
j=1fj

, where N is the number of individuals in the
population.

For recombination of the gene material from the selected
parents, we use an average crossover. A child solution is
created by taking the average value of the parents’ values for
every gene (parameter). Next is the uniform mutation, where
a new random value can replace each gene (parameter) in
the solution with probability pm. We iterate this process until
the whole population of size N is again created. However,
we also use elitism, which means that we keep the best
solutions in the next generation of the population without
modifications. The elite size parameter defines the number of
those solutions. Therefore, we generate N − elite size new
solutions for the new population. New solutions are evaluated
before conducting the local search.

D. Local Search

We use the Hooke-Jeeves algorithm for the local search.
Only solutions with a fitness larger than 85% of the maximum
fitness value (fitness of the fail class - 10) are considered.
From these solutions, at most, three solutions are randomly
selected for the local search. Considering the conditions, the
number of solutions taken for local search can vary from
zero to three. In our first experiments, we performed a local
search on all the solutions with good-enough fitness. This
proved to be too many solutions going through the local
search because as the population improved, more and more
solutions satisfied the requirement. Thus, we limited it to only
three randomly selected solutions that fulfill the condition
on the fitness values. The steps of the parameter values are
defined with their bounds. We only allow two iterations for
the exploration phase of the Hooke-Jeeves algorithm, meaning
we start with the step doubles, and if no improvements are
found, we will only have one more exploration phase with the
decreased step size. Again, in our initial testing, we allowed
more exploration phases, where we started the local search
with the larger step size. It showed too much exploitation of
local space, neglecting the exploration of the search space.
Regarding the nature of implemented local search as described
in Section II-A2, the number of evaluations can vary during
the execution of the local search. Therefore, the number of
total tested parameter sets can vary with each execution of the
memetic algorithm.

E. Termination Condition

Both the genetic algorithm part and local search part consti-
tute one iteration of the memetic algorithm. The termination
of the algorithm is done according to the stopping condition.

https://pypi.org/project/OApackage/

In our experiments, the stopping condition considers only the
number of iterations - when the maximum number of iterations
is reached, the algorithm is terminated. The user sets the
maximum number of iterations as it is the parameter of the
memetic algorithm.

The source code is published on GitHub as a public
repository5. The repository only holds the implementation of
the memetic algorithm. To run the code with a laser bench
and setup, one needs to integrate the algorithm to the source
code controlling the bench. This can be done by replacing
the placeholders in the implementation with the real bench
connections and functions.

IV. EXPERIMENTAL SETUP AND RESULTS

A. Experimental Setup

We performed all the experiments on the same target, a
test chip from STMicroelectronics. Considering the company
policies, we may disclose only a portion of the confidential
information about the target device and the utilized laser
bench. The target chip is made using 40nm technology, and for
our experiments, we ran an implementation in C programming
language displayed in Pseudocode 1. The code running on the
target device is a test program where data words are copied
(loaded) from the non-volatile memory (NVM) into a register.
The trigger event function is a monitored event that is used
to inject faults at the desired time - on loading a data word
into a register (marked as a comment in Pseudocode 1). After
the fault injection, the register is read, and there is a fault if
the register value has changed (fault class fail).

Pseudocode 1: Pseudocode of the implementation running on
the target device.

. . .
t r i g g e r e v e n t ()
l o a d r e g i s t e r () / / i n j e c t i o n here
r e a d r e g i s t e r ()
. . .

Regarding the laser bench and the parameters, we adopted
an infrared laser wavelength, and for each of the five param-
eters, we used a subset of the available values. We defined
the subsets according to the previous knowledge of the target
device. The same subsets for all the parameters were applied
in all the experiments. We note there are 31 737 600 possi-
ble combinations considering the parameter values we use.
Each test case is repeated five times for a better statistical
representation of the results. We run an online optimization
where the results are based on how much fail classes are found
in a specific number of tested parameters instead of finding
only one best parameter set (recall, there is no single best
solution since all fail solutions are equally good and there can
be multiple distinct regions of parameter values that can lead
to fail classes), so repeating the same setting five times gives
us sufficient information. We note that having a small number

5https://github.com/AISyLab/memetic alg for laser FI

of experimental runs is more common for online optimization,
e.g., in the case of evolutionary fuzzing [51]. Also, we perform
the laser shot for each parameter set five times (number of
measurements).

First, we compare the memetic algorithm with a simple
random search of the LFI parameters. The random search
will test a defined number of parameter sets allowing unique
combinations. We test 9 130 different parameter sets and
compare the results with the memetic algorithm with the
random initialization technique. Running each setup five times,
we average the number of total parameter sets tested and the
fault classes’ percentages. As already mentioned, as the local
search in the memetic algorithm is not deterministic in the
number of evaluations, the number of tested parameters varies,
which is not the case with the random search.

Concerning the memetic algorithm parameters, we use
the population size of 36 and the elite size of 2. We use
a population size of 36 because we created a mixed-level
orthogonal array with 36 samples having three levels for the
x, y, and delay parameters and two levels for the pulse width
and intensity. The number of iterations (200) and mutation
probability (0.05) are the same throughout all the experiments.
Since we have an expensive evaluation of the solutions, we
want to keep the number of iterations low, but we chose to use
200 iterations since our population size is small. The mutation
probability is low because a high mutation probability can
cause the algorithm to behave like a random search. All
these parameters influence the algorithm’s performance, and
we do not claim these values to be optimal. The tuning of
these parameters could be further investigated. However, while
testing the setup for the experiments, these parameters led to
good convergence of the memetic algorithm and were kept
for comparison with random search and different initialization
methods.

In the experiments with different initialization methods for
the initial population of the memetic algorithm, we test with
a smaller population size of 36 with elite size 2, and then a
larger population of size 128 and elite size 10.

B. Results

In Table IV, with the memetic algorithm, we find signifi-
cantly more fail classes than with the random search having
tested 9 034 parameter sets on average (over five runs). To be
more precise, we find ≈ 30 times more fail classes, and ≈ 3
times more changing classes in a similar number of tested
parameters (9 130 for the random search, and 9 034 for the
memetic algorithm). We conclude that we benefit from using
memetic algorithms instead of a simple random search when
the exhaustive search is not feasible. An exhaustive search in
our case with reduced parameter bounds would take ≈ 59 days
if we ran each parameter set once and each evaluation lasted
≈ 0.16s. However, if we do not reduce the parameter bounds,
the exhaustive search could take years. On the other hand,
one run of the memetic algorithm in our case was around two
hours, with 9 034 parameter sets tested five times.

https://github.com/AISyLab/memetic_alg_for_laser_FI

TABLE IV: Results on average for random search algorithm
and memetic algorithm with random initialization of the
population of size 36.

Algo-
rithm

Tested
param-
eters

Fails
(%)

Chang-
ing
(%)

Mute
(%)

Pass
(%)

Random 9 130.0 0.90 2.58 2.54 93.98

Memetic 9 034.6 31.03 7.11 3.64 58.22

To further improve the performance of the memetic algo-
rithm, we test different initialization methods for generating
the initial set of solutions. Thus, instead of generating only
random initial solutions, we use techniques that try to dis-
tribute the samples taken from the allowed values over the
search space and cover as many combinations as possible,
considering the levels given to each parameter.

We compare four initialization methods, random initial-
ization, LHS, LHSMDU, and the Taguchi method. For the
Taguchi method, we use the orthogonal array of 36 samples,
with strength two, and factor levels 3, 3, 3, 2, 2 for the variables
x, y, delay, pulse width, and intensity, respectively. The
array can be seen in Table VII in Appendix A. We use the same
population size (36) and elite size (2) as the first experiment
with the memetic algorithm.

With the memetic algorithm, we are trying to maximize the
fitness function. Therefore, we prefer laser injection to result
in a corrupt register value which we categorize as the fail
class. Looking at the averaged results from Table V, the dif-
ference between the initialization techniques is not significant.
Furthermore, because of the variance in the number of tested
parameters, we see that the LHSMDU technique has the largest
number of tested parameters and the highest percentage of
fail classes. We conclude that all the initialization techniques,
on average, result in similar results. Therefore, if we have
time and can use the average results, we might not need to
consider using some of the proposed techniques to improve
the sampling for the initial population compared to the random
sampling.

TABLE V: Results on average for all initialization techniques
in experiments with population size 36.

Initiali-
zation

Tested
param-
eters

Fails
(%)

Chang-
ing
(%)

Mute
(%)

Pass
(%)

Random 9 034.6 31.03 7.11 3.64 58.22

LHS 8 812.8 28.80 7.73 4.59 58.88

LHS-
MDU

9 605.0 33.92 7.67 3.02 55.40

Taguchi 9 070.2 31.58 6.87 3.33 58.23

However, we also looked into individual results as we are
interested in the variation of the results. In Figure 1, we show
percentages of different fault classes for settings with all the

initialization techniques. For each initialization technique, we
show the percentage for each experiment to see the variation
and mark the average percentage with an X . What can be
seen is that even though with the random initialization of the
population we can get excellent results, we can also end with
the worst results considering the percentage of fail classes
(which we prefer) in Figure 1a. Similarly, using the LHSMDU
technique, we had the lowest variation, but the results did not
reach as good results as random initialization and Taguchi in
one of the experiments.

Looking at the number of tested parameters in Figure 2a, we
observe that, in the case with a smaller population, the ranges
among the different test cases are similar. With the LHSMDU,
we had a more consistent number of tested parameters, with
only one outlier. By combining the percentages of all the fault
classes and the number of tested parameters, we see that the
stability of the results is not coming directly from the number
of tested parameters. Having tested more parameters does not
necessarily lead to finding more interesting parameter sets.
For example, in the test case with the LHSMDU technique,
we often tested more parameters than random initialization.
However, the percentage of fail classes is larger with random
initialization than LHSMDU in some cases. Considering the
best results on the number of found fail classes and the stability
of the results (consistency), we can see that LHSMDU is the
best choice, followed by the Taguchi method.

Next, we increase the population size to 128 and elite size to
ten and run the same experiments. We generate an orthogonal
array of 128 samples for the Taguchi method, with strength
two and factor level two for all the variables. The array can
be seen in Table VIII in Appendix A.

Table VI gives the averaged results, where we observe that,
similarly, the experiments show, on average, no initialization
technique is significantly better. Again the largest percentage
of fail classes was found by the test case with the largest
number of tested parameters. Here, that was the Taguchi
method. The percentage of the fail classes is lower in these
experiments with a larger population because only a limited
number of fail classes can occur with our target and test
program. We test more unique parameter sets since we have
a larger population but the same number of iterations. The
more parameters we test, the closer we get to the exhaustive
search, which would only show the true distribution of the
fault classes. However, we did not run the exhaustive search
because, as already mentioned, it would take ≈ 59 days to run
it with our reduced intervals if we ran each parameter set only
once and each laser shot takes ≈ 0.16s.

Looking at the number of tested parameters with the larger
population in Figure 2b, with the Taguchi method, the number
became more stable, and the variation is reduced. This is
somewhat reflected in the results shown in Figure 3 presenting
the variance of the percentages of different fault classes.
Again, we see that the test case that tested the most parameters
in one of the runs (Taguchi) did not lead to the highest
percentage of fail classes (random initialization).

We can see that the experiments with Taguchi initialization

Random LHS LHSMDU Taguchi
Cases

20

25

30

35

40
Pe

rc
en

ta
ge

 (%
)

Percentage of fail classes

(a) Percentage of fail classes.

Random LHS LHSMDU Taguchi
Cases

5.5

6.0

6.5

7.0

7.5

8.0

8.5

Pe
rc

en
ta

ge
 (%

)

Percentage of changing classes

(b) Percentage of changing classes.

Random LHS LHSMDU Taguchi
Cases

1
2
3
4
5
6
7
8
9

Pe
rc

en
ta

ge
 (%

)

Percentage of mute classes

(c) Percentage of mute classes.

Random LHS LHSMDU Taguchi
Cases

52
54
56
58
60
62
64
66
68

Pe
rc

en
ta

ge
 (%

)

Percentage of pass classes

(d) Percentage of pass classes.

Fig. 1: Percentages of fail, changing, mute, and pass classes with all initialization techniques for a setting with a population
size of 36 and elite size of 2.

TABLE VI: Results on average for all initialization techniques
in experiments with population size 128.

Initiali-
zation

Tested
param-
eters

Fails
(%)

Chang-
ing
(%)

Mute
(%)

Pass
(%)

Random 23 226.6 22.07 6.55 4.19 67.18

LHS 22 183.0 20.24 6.55 3.42 69.80

LHS-
MDU

22 578.8 21.19 6.77 3.32 68.72

Taguchi 24 440.0 22.85 6.99 2.31 67.86

are more stable with a larger population. Considering the
results with the LHSMDU initialization, the stability is slightly
worse than with a smaller population. The LHSMDU divides
the interval for the parameter in the number of samples we
want to have, which, in this case, equals 128. For some smaller
intervals, this means many values get mapped to the same
value, which could be why the performance of this technique

has deteriorated with larger population size. On the other
hand, the stability of the random initialization technique is
improved with a larger population as we do not allow duplicate
parameter sets.

Considering the LHS method for initialization, LHSMDU
and Taguchi would be preferred over simple LHS for both
smaller and larger populations. The weaker performance of
this technique could be the fact that we experiment with five
parameters. We have a five-dimensional search space making
it harder for LHS to reach a better distribution of samples than
random sampling.

We conclude that we can benefit from using sampling
techniques that produce well-distributed samples, such as the
LHSMDU or Taguchi method, to create the initial popu-
lation. However, there could be more techniques that can
provide these characteristics. Additionally, we observe that
performance with random initialization improves with a larger
population, so it is more important to have a better sampling
method when working with a smaller population. Moreover,
we can see that the difference between the percentage of found

Random LHS LHSMDU Taguchi
Cases

7000
7500
8000
8500
9000
9500

10000
10500
11000

Number of total parameter sets

(a) The number of tested parameter sets with population size of 36.

Random LHS LHSMDU Taguchi
Cases

20000

21000

22000

23000

24000

25000

Number of total parameter sets

(b) The number of tested parameter sets with population size of 128.

Fig. 2: The number of tested parameter sets in a setting with
a smaller population (population size of 36 and elite size of
two) in Figure 2a and a larger population (population size of
128 and elite size of ten) in Figure 2b.

fail classes in the worst and best case decreases with the size
of the population. In the test cases with a smaller population
(Table V), the difference between the worst (LHS) and best
case (LHSMDU) is 5.12%, while with the larger population
(Table VI), the difference between the worst (LHS) and best
case (Taguchi method) is 2.61%.

V. CONCLUSIONS AND FUTURE WORK

This work showed that using the memetic algorithm can
greatly improve the results compared to the random search
algorithm. While with 9 130 tested parameters, the random
search found 0.9% of the fail classes, a memetic algorithm
with 9 034 tested parameters had 31.03% of fail classes. The
memetic algorithm used a random initialization of the popu-
lation, and since the initial population can have a significant
impact on the results of the algorithm itself, we tested different
techniques for initialization. We experiment with techniques
that aim to achieve a well-distributed set of samples for
exploring more of the search space and possible combinations:

the Latin Hypercube Sampling (LHS) and Taguchi methods.
There are two implementations of the LHS. First, the simple
one, where we sample from equally probable intervals of
the variable range, and another implementation (LHSMDU),
which sequentially eliminates realizations near each other in
the multidimensional space. On average, in our results, the
initialization technique does not significantly influence the
performance of the memetic algorithm. However, when we
consider all the experiments with the same setup, we see
that it is beneficial to use other techniques rather than simple
random sampling. With a smaller population size, LHSMDU
has excellent stability, with the random initialization being
the least stable and less reliable. With a larger population
size, Taguchi showed the best results, and it was stable. We
recommend using techniques that promote a better distribution
of randomly selected samples for initializing the population
for the memetic algorithms. It could make the algorithm more
robust and avoid fast convergence to a local optimum. Finally,
these techniques are shown to be very beneficial when working
with a smaller population.

This work shows that memetic algorithms can be very
beneficial and efficient in finding faults for laser fault injection
attacks. Therefore, it offers excellent potential for improving
these attacks. However, since this work is limited to one target
sample, we do not consider the evaluation of the memetic
algorithm complete. Therefore, we plan to test the algorithm
on different targets to test the approach in a more general
setting. We also plan to distinguish between exploitable faulty
outputs found by memetic algorithms since this work considers
only parameter sets that lead to a faulty output (a change
in the register value, in our case) that might be exploitable.
Therefore, this includes performing attacks such as DFA. Our
memetic algorithm can also be tested with different fault injec-
tion methods, such as voltage glitching and EMFI. Further, this
work can be improved by considering more population sizes
as it could benefit some of the initialization techniques. For
example, decreasing the population size from 128 could benefit
the LHSMDU method. For Taguchi, we can experiment with a
larger number of factor levels to help improve the algorithm’s
performance using this technique. Another interesting research
direction could consider which parameters would benefit more
from a good distribution in the initial set. Here, we considered
all the parameters, but there could be a subset of the parameters
that would benefit more than others.

REFERENCES

[1] P. C. Kocher, J. Jaffe, and B. Jun, “Differential power analysis,” in
Proceedings of the 19th Annual International Cryptology Conference
on Advances in Cryptology, ser. CRYPTO ’99. Berlin, Heidelberg:
Springer-Verlag, 1999, p. 388–397.

[2] J.-J. Quisquater and D. Samyde, “Electromagnetic analysis (ema):
Measures and counter-measures for smart cards,” in Proceedings of
the International Conference on Research in Smart Cards: Smart Card
Programming and Security, ser. E-SMART ’01. Berlin, Heidelberg:
Springer-Verlag, 2001, p. 200–210.

[3] P. C. Kocher, “Timing attacks on implementations of diffie-hellman, rsa,
dss, and other systems,” in Proceedings of the 16th Annual International
Cryptology Conference on Advances in Cryptology, ser. CRYPTO ’96.
Berlin, Heidelberg: Springer-Verlag, 1996, p. 104–113.

Random LHS LHSMDU Taguchi
Cases

16

18

20

22

24

26
Pe

rc
en

ta
ge

 (%
)

Percentage of fail classes

(a) Percentage of fail classes.

Random LHS LHSMDU Taguchi
Cases

4.5
5.0
5.5
6.0
6.5
7.0
7.5
8.0

Pe
rc

en
ta

ge
 (%

)

Percentage of changing classes

(b) Percentage of changing classes.

Random LHS LHSMDU Taguchi
Cases

2

4

6

8

10

Pe
rc

en
ta

ge
 (%

)

Percentage of mute classes

(c) Percentage of mute classes.

Random LHS LHSMDU Taguchi
Cases

62

64

66

68

70

72

Pe
rc

en
ta

ge
 (%

)

Percentage of pass classes

(d) Percentage of pass classes.

Fig. 3: Percentages of fail, changing, mute, and pass classes with all initialization techniques for a setting with a population
size of 128 and elite size of 10.

[4] E. Biham and A. Shamir, “Differential fault analysis of secret key
cryptosystems,” 1997.

[5] Y. Li, K. Sakiyama, S. Gomisawa, T. Fukunaga, J. Takahashi, and
K. Ohta, “Fault sensitivity analysis,” in Cryptographic Hardware and
Embedded Systems, CHES 2010, S. Mangard and F.-X. Standaert, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 320–334.

[6] T. Fuhr, E. Jaulmes, V. Lomné, and A. Thillard, “Fault attacks on aes
with faulty ciphertexts only,” in Proceedings of the 2013 Workshop
on Fault Diagnosis and Tolerance in Cryptography, ser. FDTC ’13.
USA: IEEE Computer Society, 2013, p. 108–118. [Online]. Available:
https://doi.org/10.1109/FDTC.2013.18

[7] C. Clavier, “Secret external encodings do not prevent transient fault
analysis,” in International Workshop on Cryptographic Hardware and
Embedded Systems. Springer, 2007, pp. 181–194.

[8] C. Dobraunig, M. Eichlseder, T. Korak, S. Mangard, F. Mendel,
and R. Primas, “Sifa: Exploiting ineffective fault inductions on
symmetric cryptography,” IACR Trans. Cryptogr. Hardw. Embed.
Syst., vol. 2018, Issue 3, pp. 547–572, 2018. [Online]. Available:
https://tches.iacr.org/index.php/TCHES/article/view/7286

[9] S. P. Skorobogatov and R. J. Anderson, “Optical fault induction attacks,”
in International workshop on cryptographic hardware and embedded
systems. Springer, 2002, pp. 2–12.

[10] C. H. Kim and J.-J. Quisquater, “Fault attacks for crt based rsa: New
attacks, new results, and new countermeasures,” in IFIP International
Workshop on Information Security Theory and Practices. Springer,
2007, pp. 215–228.

[11] N. Moro, A. Dehbaoui, K. Heydemann, B. Robisson, and E. Encrenaz,

“Electromagnetic fault injection: towards a fault model on a 32-bit
microcontroller,” in 2013 Workshop on Fault Diagnosis and Tolerance
in Cryptography. IEEE, 2013, pp. 77–88.

[12] M. Hutter and J.-M. Schmidt, “The temperature side channel and heating
fault attacks,” in International Conference on Smart Card Research and
Advanced Applications. Springer, 2013, pp. 219–235.

[13] R. B. Carpi, S. Picek, L. Batina, F. Menarini, D. Jakobovic, and
M. Golub, “Glitch it if you can: parameter search strategies for success-
ful fault injection,” in International Conference on Smart Card Research
and Advanced Applications. Springer, 2013, pp. 236–252.

[14] S. Picek, L. Batina, D. Jakobović, and R. B. Carpi, “Evolving genetic
algorithms for fault injection attacks,” in 2014 37th International Con-
vention on Information and Communication Technology, Electronics and
Microelectronics (MIPRO). IEEE, 2014, pp. 1106–1111.

[15] S. Picek, L. Batina, P. Buzing, and D. Jakobovic, “Fault injection with
a new flavor: Memetic algorithms make a difference,” in International
Workshop on Constructive Side-Channel Analysis and Secure Design.
Springer, 2015, pp. 159–173.

[16] A. Maldini, N. Samwel, S. Picek, and L. Batina, “Genetic algorithm-
based electromagnetic fault injection,” in 2018 Workshop on Fault
Diagnosis and Tolerance in Cryptography (FDTC). IEEE, 2018, pp.
35–42.

[17] L. Wu, G. Ribera, N. Beringuier-Boher, and S. Picek, “A fast character-
ization method for semi-invasive fault injection attacks,” in Cryptogra-
phers’ Track at the RSA Conference. Springer, 2020, pp. 146–170.

[18] P. Moscato, “On evolution, search, optimization, genetic algorithms
and martial arts - towards memetic algorithms,” Caltech Concurrent

https://doi.org/10.1109/FDTC.2013.18
https://tches.iacr.org/index.php/TCHES/article/view/7286

Computation Program, 10 2000.
[19] P. Moscato and L. Mathieson, “Memetic algorithms for business

analytics and data science: a brief survey,” Business and consumer
analytics: new ideas, pp. 545–608, 2019. [Online]. Available:
https://doi.org/10.1007/978-3-030-06222-4 13

[20] W. Sheng, P. Shan, J. Mao, Y. Zheng, S. Chen, and Z. Wang, “An
adaptive memetic algorithm with rank-based mutation for artificial
neural network architecture optimization,” IEEE Access, vol. PP, pp.
1–1, 09 2017.

[21] P. Rakshit, D. Banerjee, A. Konar, and R. Janarthanan, “An adaptive
memetic algorithm for multi-robot path-planning,” in Swarm, Evolution-
ary, and Memetic Computing, B. K. Panigrahi, S. Das, P. N. Suganthan,
and P. K. Nanda, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,
2012, pp. 248–258.

[22] W. E. Hart, “Adaptive global optimization with local search,” Ph.D.
dissertation, Citeseer, 1994.

[23] K. Michalak, “Evolutionary algorithm with a directional local search for
multiobjective optimization in combinatorial problems,” Optimization
Methods and Software, vol. 31, no. 2, pp. 392–404, 2016.

[24] X. Chen, Y.-S. Ong, M.-H. Lim, and K. C. Tan, “A multi-facet
survey on memetic computation,” IEEE Transactions on Evolutionary
Computation, vol. 15, no. 5, pp. 591–607, 2011.

[25] A. E. Eiben and J. E. Smith, Introduction to evolutionary computing.
Springer, 2003, vol. 53.

[26] J. H. Holland, Adaptation in Natural and Artificial Systems. Ann Arbor,
MI: University of Michigan Press, 1975, second edition, 1992.

[27] D. E. Goldberg, Genetic Algorithms in Search, Optimization, and
Machine Learning. New York: Addison-Wesley, 1989.

[28] R. Hooke and T. A. Jeeves, ““ direct search” solution of numerical and
statistical problems,” J. ACM, vol. 8, pp. 212–229, 1961.

[29] H. Maaranen, K. Miettinen, and A. Penttinen, “On initial populations
of a genetic algorithm for continuous optimization problems,” Journal
of Global Optimization, vol. 37, no. 3, p. 405, 2007.

[30] V. Toğan and A. T. Daloğlu, “An improved genetic algorithm with initial
population strategy and self-adaptive member grouping,” Computers &
Structures, vol. 86, no. 11-12, pp. 1204–1218, 2008.

[31] S. Poles, Y. Fu, and E. Rigoni, “The effect of initial population
sampling on the convergence of multi-objective genetic algorithms,” in
Multiobjective programming and goal programming. Springer, 2009,
pp. 123–133.

[32] D. Whitley, “A genetic algorithm tutorial,” Statistics and computing,
vol. 4, no. 2, pp. 65–85, 1994.

[33] F. H.-F. Leung, H.-K. Lam, S.-H. Ling, and P. K.-S. Tam, “Tuning of the
structure and parameters of a neural network using an improved genetic
algorithm,” IEEE Transactions on Neural networks, vol. 14, no. 1, pp.
79–88, 2003.

[34] K. Kishen, “On latin and hyper-graeco-latin cubes and hyper-cubes,”
Current Science, vol. 11, no. 3, pp. 98–99, 1942.

[35] C. R. Rao, “Some combinatorial problems of arrays and applications to
design of experiments,” in A Survey of Combinatorial Theory. Elsevier,
1973, pp. 349–359.

[36] C. Koukouvinos, B. Lappas, and D. Simos, “Encryption schemes using
orthogonal arrays,” Journal of Discrete Mathematical Sciences and
Cryptography, vol. 12, no. 5, pp. 615–628, 2009.

[37] I. S. Dunietz, W. K. Ehrlich, B. Szablak, C. L. Mallows, and A. Ian-
nino, “Applying design of experiments to software testing: experience
report,” in Proceedings of the 19th international conference on Software
engineering, 1997, pp. 205–215.

[38] L. Lazić and D. Velašević, “Applying simulation and design of exper-
iments to the embedded software testing process,” Software Testing,
Verification and Reliability, vol. 14, no. 4, pp. 257–282, 2004.

[39] A. Hedayat, N. Sloane, and J. Stufken, Orthogonal Arrays: Theory and
Applications. Springer Science & Business Media, 1999.

[40] P. Audze and V. Eglais, “New approach to planning out of experiments,”
Problems of dynamics and strength (in Russian), vol. 35, pp. 104–107,
1977.

[41] R. Iman, J. Helton, and J. Campbell, “An approach to sensitivity analysis
of computer models: Part i—introduction, input variable selection and
preliminary variable assessment,” J Qual Technol, vol. 13, pp. 174–183,
07 1981.

[42] R. L. Iman, J. M. Davenport, and D. K. Zeigler, “Latin hypercube
sampling (program user’s guide). [lhc, in fortran],” 1 1980.

[43] M. Mckay, R. Beckman, and W. Conover, “A comparison of three
methods for selecting vales of input variables in the analysis of output
from a computer code,” Technometrics, vol. 21, pp. 239–245, 05 1979.

[44] J. L. Deutsch and C. V. Deutsch, “Latin hypercube sampling with
multidimensional uniformity,” Journal of Statistical Planning and
Inference, vol. 142, no. 3, pp. 763–772, 2012. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0378375811003776

[45] M. Johnson, L. Moore, and D. Ylvisaker, “Minimax and maximin
distance designs,” Journal of Statistical Planning and Inference,
vol. 26, no. 2, pp. 131–148, 1990. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/037837589090122B

[46] G. Taguchi and A. P. Organization, Introduction to Quality Engineering:
Designing Quality Into Products and Processes. Asian Productivity
Organization, 1986. [Online]. Available: https://books.google.hr/books?
id=1NtTAAAAMAAJ

[47] G. Taguchi and V. Cariapa, “Taguchi on robust technology development,”
1993.

[48] P. Selden, Sales Process Engineering: A Personal Workshop. ASQC
Quality Press, 1996. [Online]. Available: https://books.google.nl/books?
id=Zqf-AQAACAAJ

[49] E. Schoen, P. Eendebak, and M. Nguyen VM, “Complete enumeration of
pure-level and mixed-level orthogonal arrays,” Journal of Combinatorial
Designs, vol. 18, pp. 123 – 140, 03 2009.

[50] P. T. Eendebak and A. R. Vazquez, “Oapackage: A python package
for generation and analysis of orthogonal arrays, optimal designs and
conference designs,” Journal of Open Source Software, vol. 4, no. 34,
p. 1097, 2019. [Online]. Available: https://doi.org/10.21105/joss.01097

[51] S. Rawat, V. Jain, A. Kumar, L. Cojocar, C. Giuffrida,
and H. Bos, “Vuzzer: Application-aware evolutionary fuzzing,”
in 24th Annual Network and Distributed System Security
Symposium, NDSS 2017, San Diego, California, USA,
February 26 - March 1, 2017. The Internet Society,
2017. [Online]. Available: https://www.ndss-symposium.org/ndss2017/
ndss-2017-programme/vuzzer-application-aware-evolutionary-fuzzing/

APPENDIX

In Table VII, we present the orthogonal array used in the
experiments with a population size of 36. Table VIII gives the
orthogonal array used in the experiments with a population
size of 128.

https://doi.org/10.1007/978-3-030-06222-4_13
https://www.sciencedirect.com/science/article/pii/S0378375811003776
https://www.sciencedirect.com/science/article/pii/037837589090122B
https://www.sciencedirect.com/science/article/pii/037837589090122B
https://books.google.hr/books?id=1NtTAAAAMAAJ
https://books.google.hr/books?id=1NtTAAAAMAAJ
https://books.google.nl/books?id=Zqf-AQAACAAJ
https://books.google.nl/books?id=Zqf-AQAACAAJ
https://doi.org/10.21105/joss.01097
https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/vuzzer-application-aware-evolutionary-fuzzing/
https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/vuzzer-application-aware-evolutionary-fuzzing/

TABLE VII: The orthogonal array used in the experiments
with a population size of 36. This is an array of strength
two with the number of samples being 36, and the number
of levels, for each factor, equals 3, 3, 3, 2, 2, respectively to
the order of columns (LFI parameters).

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 1
0 1 1 0 1
0 1 1 0 1
0 1 1 1 0
0 1 1 1 0
0 2 2 1 0
0 2 2 1 1
0 2 2 1 1
0 2 2 1 1
1 0 1 1 0
1 0 1 1 1
1 0 1 1 1
1 0 1 1 1
1 1 2 0 0
1 1 2 0 0
1 1 2 0 0
1 1 2 0 1
1 2 0 0 1
1 2 0 0 1
1 2 0 1 0
1 2 0 1 0
2 0 2 0 1
2 0 2 0 1
2 0 2 1 0
2 0 2 1 0
2 1 0 1 0
2 1 0 1 1
2 1 0 1 1
2 1 0 1 1
2 2 1 0 0
2 2 1 0 0
2 2 1 0 0
2 2 1 0 1

TABLE VIII: The orthogonal array used in the experiments
with a population size of 128. This is an array of strength two
with the number of samples being 128, and the number of
levels for every factor is two. In this representation, the first
column represents the number of times the same combination
repeats. There are eight different combinations of the factor
levels, and each repeats 16 times.

16x 0 0 0 0 0
16x 0 0 0 1 1
16x 0 1 1 0 0
16x 0 1 1 1 1
16x 1 0 1 0 1
16x 1 0 1 1 0
16x 1 1 0 0 1
16x 1 1 0 1 0

	Introduction
	Background
	Memetic Algorithm (MA)
	Genetic Algorithm
	Hooke-Jeeves Algorithm

	Initialization Techniques for the Initial Population

	Implementation
	Solution Representation and Initialization Methods
	Evaluation and Fitness Values
	GA Operators
	Local Search
	Termination Condition

	Experimental Setup and Results
	Experimental Setup
	Results

	Conclusions and Future Work
	References
	Appendix

