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Abstract—We consider the transmission and storage of data
that use coded symbols over a channel, where a Pearson-distance-
based detector is used for achieving resilience against unknown
channel gain and offset, and corruption with additive noise. We
discuss properties of binary Pearson codes, such as the Pearson
noise distance that plays a key role in the error performance of
Pearson-distance-based detection. We also compare the Pearson
noise distance to the well-known Hamming distance, since the
latter plays a similar role in the error performance of Euclidean-
distance-based detection.

I. INTRODUCTION

In mass data storage devices, the user data are translated
into physical features that can be either electronic, magnetic,
optical, or of other nature. Due to process variations, the
magnitude of the physical effect may deviate from the nominal
values, which may effect the reliable read-out of the data. For
example, over a long time, the charge in memory cells, which
represents the stored data, may fade away, and as a result
the main physical parameters change resulting in channel
mismatch and increased error rate. It has been found that such
retention errors to be dominant errors in solid-state memories.

The detector’s ignorance of the exact value of the channel’s
main physical parameters [1], [2], [3], [4], a phenomenon
called channel mismatch, may seriously degrade the error per-
formance of a storage or transmission medium [5]. Researchers
have been seeking for methods that can withstand channel
mismatch. Immink and Weber [5] advocated a novel data
detection method based on the Pearson distance that offers
invariance, “immunity”, to offset and gain mismatch. They
also showed the other side of the medal of Pearson-distance-
based detection, namely that it is less resilient to additive noise
than conventional Euclidean-distance-based detection.

In this paper, we investigate the relationship between the
noise resilience of Euclidean distance versus Pearson distance
detection. The outline of the paper is as follows. In Section II,
we present the channel model under consideration, we re-
capitulate the relevant prior art of minimum Euclidean and
Pearson distance detection, and we review the definition of
Pearson codes. In Section III, we discuss properties of binary
Pearson codes, such as lower and upper bounds to the error
performance of detectors based on the Pearson distance, and
the difference in noise resilience of minimum Euclidean versus
minimum Pearson distance detection. Section IV concludes
our paper.

II. BACKGROUND AND PRELIMINARIES

In this section we present some prior art, mainly from [5],
and set the scene for the results of this paper.

A. Pearson distance

We start with the definition of two quantities of an n-vector
of reals, z, namely the average of z by z = 1

n

∑n
i=1 zi and

the (unnormalized) variance of z by

σ2
z =

n∑
i=1

(zi − z)2. (1)

The Pearson distance between the vectors x and y in Rn is
defined by

δp(x,y) = 1− ρx,y, (2)

where the (Pearson) correlation coefficient [6] is defined by

ρx,y =

∑n
i=1(xi − x)(yi − y)

σxσy
. (3)

It is immediate that the Pearson distance δp(x,y) is undefined
if x or y has variance zero, i.e., is a ‘constant’ vector
(c, c, . . . , c) with c ∈ R. Further, note that the Pearson distance
is not a regular metric, but a measure of similarity between
the vectors x and y. It can easily be verified that the triangle
inequality condition, δp(x, z) ≤ δp(x,y) + δp(y,z), is not
always satisfied. For example. let n = 4 and let x = (0001),
y = (0011), and z = (0010), then δp(x, z) = 1.3333,
δp(x,y) = 0.4226, and δp(y, z) = 0.4226.

B. Channel model

We assume a simple linear channel model where the sent
codeword c, taken from a finite codebook S ⊂ Rn, is received
as the real-valued vector

r = a(c+ ν) + b1, (4)

where 1 is the all-one vector (1, 1, . . . , 1) of length n, while
a, a > 0, is an unknown gain, b ∈ R is an unknown offset,
and ν = (ν1, . . . , νn) is additive noise with νi ∈ R being
zero-mean independent and identically distributed (i.i.d) noise
samples with Gaussian distribution N (0, σ2), where σ2 ∈ R
denotes the variance. We assume that the parameters a and b
vary slowly, so that during the transmission of the n symbols
in a codeword the parameters a and b are fixed, but that these
values may be different for the next transmitted codeword.



C. Detection

A minimum Pearson distance detector outputs a codeword
according to the minimum distance decision rule

cp = argmin
ĉ∈S

δp(r, ĉ). (5)

Due to the properties of the Pearson correlation coefficient
such a detector is immune to gain and offset mismatch [5].
However, it is more sensitive to noise than the well-known
minimum Euclidean distance detector which outputs

ce = argmin
ĉ∈S

δ2(r, ĉ), (6)

with

δ2(x,y) =
n∑

i=1

(xi − yi)
2 (7)

being the squared Euclidean distance between x and y.
The computation of the probability that a minimum Pearson

distance detector errs has been investigated in [5]. A principal
finding is that it is not the (minimum) Pearson distance,
δp(x,y), between codewords x and y, that governs the error
probability, but a quantity called Pearson noise distance, which
is denoted by d(x,y). The squared Pearson noise distance,
d2(x,y), between the vectors x and y is given by

d2(x,y) = 2σ2
xδp(x,y) = 2σ2

x(1− ρx,y). (8)

The union bound estimate of the word error rate (WER) is

WERPear ≤
1

|S|
∑
x∈S

∑
y∈S,x̸=y

Q

(
d(x,y)

2σ

)
, (9)

where Q(x) = 1√
2π

∫∞
x
e−

u2

2 du is the well-known Q-
function. Note the similarity with the union bound for the
WER in case of a Euclidean detector, which reads

WEREucl ≤
1

|S|
∑
x∈S

∑
y∈S,x̸=y

Q

(
δ(x,y)

2σ

)
(10)

for an additive Gaussian noise channel, i.e., a channel as in
(4) with the values of a and b being known to the receiver.
We emphasize again that for WER performance of the Pearson
distance detector it does not matter whether the gain and offset
values are known to the receiver or not, while the performance
of the Euclidean distance detector quickly deteriorates when
the gain and offset drift away from their ideal values a = 1
and b = 0 while being unknown to the receiver [5].

For small σ, the WER is dominated by the term with the
smallest distance between any x and any different y ∈ S , so
that

WERPear ≈ Np,minQ

(
dmin

2σ

)
, σ ≪ 1, (11)

where dmin = minx,y∈S,x̸=y d(x,y) and Np,min is the num-
ber of codewords y (called nearest neighbors) at minimum
Pearson noise distance dmin from x, averaged over all x ∈ S.

D. Pearson codes

In order to allow easy encoding and decoding operations,
it is common to use a q-ary codebook S, i.e., S ⊆ Qn with
Q = {0, 1, . . . , q − 1}. Since a minimum Pearson distance
detector cannot deal with codewords c with σc = 0 and cannot
distinguish between the words c and c11 + c2c, c2 > 0,
well-chosen words must be barred from Qn to guarantee
unambiguous detection. Weber et al. [7] coined the name
Pearson code for a set of codewords that can be uniquely
decoded by a minimum Pearson distance detector. Codewords
in a Pearson code S satisfy two conditions, namely

• Property A: If c ∈ S then c11+c2c /∈ S for all c1, c2 ∈ R
with (c1, c2) ̸= (0, 1) and c2 > 0;

• Property B: c1 /∈ S for all c ∈ R .
For a binary Pearson code, i.e., q = 2, this implies that only
two vectors must be barred, namely the all-‘0’ vector 0 and
all-‘1’ vector 1. Hence, the largest binary Pearson code of
length n is

Pn = {0, 1}n \ {0,1}. (12)

However, in order to improve the error performance, it may
be necessary to further restrict the codebook, particularly by
avoiding codeword pairs with a small Pearson noise distance.
In the next section we investigate properties of the Pearson
(noise) distance and detector that provide more insight and as
such could be useful in the process of designing good Pearson
codes.

III. PROPERTIES OF BINARY PEARSON CODES

In this section, we study the important binary case, q = 2.
Particularly, we will determine bounds on the Pearson noise
distance and make comparisons with the Hamming distance.

First we give some notation. Let x and y be two n-vectors
taken from the code S ⊂ {0, 1}n. We define the integers

wx =
n∑

i=1

xi, wy =
n∑

i=1

yi, wxy =
n∑

i=1

xiyi, (13)

where wx and wy are the weights of the vectors x and y,
respectively, and wxy, the index of ‘1’-coincidence (or overlap)
of the vectors x and y, denotes the number of indices i where
xi = yi = 1. Note that all additions and multiplications in
(13) are over the real numbers.

For clerical convenience, we define the real-valued function

φn(wx, wy, wxy) = d(x,y). (14)

Using (8) and the above definitions, we have

φ2
n(wx, wy, wxy) = 2σ2

x

(
1−

wxy − wxwy

n

σxσy

)
, (15)

where

σ2
x = wx − w2

x

n
and σ2

y = wy −
w2

y

n
. (16)

For all x,y ∈ Pn, the integer variables wx, wy , and wxy

satisfy
1 ≤ wx, wy ≤ n− 1, (17)



max{wx + wy − n, 0} ≤ wxy ≤ min{wx, wy}, and (18)

wxy ≤ wx − 1 if x ̸= y and wx = wy. (19)

In the next subsections we present the main results of this
paper.

A. Bounds on the Pearson noise distance

Since the Pearson noise distance d(x,y) plays a crucial role
in the performance of a Pearson code, we should investigate
which values it can take. We start with a simple upper bound.

Theorem 1: For any two codewords x and y in Pn, n ≥ 2,
it holds that

d2(x,y) ≤ 4σ2
x ≤

{
n if n is even,
n− 1/n if n is odd,

where equality holds in the first inequality if and only if y =
1 − x, while equality holds in the second inequality if and
only if wx = ⌊n/2⌋ or wx = ⌈n/2⌉.
Proof. It is a well-known property of the Pearson correlation
coefficient, ρu,v , of any two real-valued non-constant vectors
u and v of the same length, that |ρu,v| ≤ 1 and also that
ρu,v = −1 if and only if v = c11+c2u, where the coefficients
c1 and c2, c2 < 0, are real numbers [6, Sec. IV.4.6]. Hence,
for any x ∈ Pn, d2(x,y) is maximized over all y ∈ Pn if
and only if y = 1 − x, i.e., by setting y as the inverse of
x. The results as stated in the theorem now easily follow by
observing that

d2(x,1− x) = φ2
n(wx, n− wx, 0) = 4σ2

x = 4

(
wx − w2

x

n

)
and that the last expression is maximized if and only if wx =
⌊n
2 ⌋ or wx = ⌈n

2 ⌉.
In case two codewords have equal weight, we have the

following useful observation.
Lemma 1: For any two codewords x and y in Pn, n ≥ 2,

of equal weight, it holds that

d2(x,y) = 2(wx − wxy).

Proof. From (14)-(16) and the fact wx = wy it follows that

d2(x,y) = 2σ2
x

(
1−

wxy − w2
x

n

σ2
x

)
= 2

(
σ2
x − wxy +

w2
x

n

)
= 2(σ2

x − wxy + wx − σ2
x) = 2(wx − wxy),

which shows the stated result.
The minimum Pearson noise distance, dmin, between any

two different codewords plays a key role in the evaluation
of the error performance of the minimum Pearson detector,
see (11). The next theorem shows that dmin of Pn equals
φn(1, 2, 1). This was already conjectured in [5], but is now
formally proved.

Theorem 2: For any two different codewords x and y in
Pn, n ≥ 3, it holds that

d2(x,y) ≥ φ2
n(1, 2, 1) =

2n− 2

n

(
1−

√
n− 2

2n− 2

)
,

where equality holds if and only if wx = wxy = 1, wy = 2
or wx = n− 1, wy = wxy = n− 2.
Proof. Our strategy is to look for three integers, wx, wy , and
wxy , that minimize the function φn(wx, wy, wxy), under the
constraints (17)-(19). Any two different codewords x and y
having the found parameters will then minimize d(x,y). Since
ρx,y = ρy,x, it follows from (8) that it holds for such x and
y that σ2

x ≤ σ2
y , i.e., wx ≤ wy ≤ n − wx. Further, we may

and will assume wx ≤ n/2 since

d(x,y) = d(1− x,1− y) (20)

for all x and y in Pn.
With regard to the selection of the integer wxy , it is

straightforward from (15) that we should choose it as large as
possible for any values of wx and wy . We distinguish between
the cases wx = wy and wx < wy .

In case wx = wy , the value of wxy is at most wx − 1
since x ̸= y. Hence, from Lemma 1, we find d2(x,y) =
2(wx − wxy) ≥ 2. Note that the expression in the theorem is
clearly smaller than 2.

In case wx < wy , the maximum value of wxy is wx. Note
that wx < wy implies that 1 ≤ wx ≤ ⌊(n−1)/2⌋. We proceed
with the selection of wy . From (14)-(16), we have

φ2
n(wx, wy, wx) = 2σ2

x(1− α), (21)

where

α2 =

(
wx − wxwy

n

)2
σ2
xσ

2
y

=

(
1

wy
− 1

n

)
w2

x

σ2
x

, α > 0. (22)

It is immediate from (21) and (22) that, for any value of
wx, the function φn(wx, wy, wx) is at a minimum when the
factor 1

wy
− 1

n is at a maximum. We conclude that, for all wx,
the choice wy = wx + 1 minimizes (21). Subsequently, we
substitute wy = wx + 1, and analyze the function

ψn(wx) = φ2
n(wx, wx + 1, wx) = 2σ2

x(1− β) (23)

in the single (integer) variable, wx, where, using (22), we write

β2 =

(
1

wx + 1
− 1

n

)
w2

x

σ2
x

=
wx(n− 1− wx)

(wx + 1)(n− wx)
, β > 0.

(24)
In order to determine the value of wx ∈ {1, 2, . . . , ⌊(n−1)/2⌋}
minimizing ψn(wx), we consider the function fn(w) which is
obtained by replacing the discrete variable wx in ψn(wx) by
the continuous variable w, with w ∈ [1, ⌊(n − 1)/2⌋]. We
replace wx by w in (24) as well and then express w in β,
obtaining

w =
n− 1

2
− n

2

√
gn(β), (25)

where

gn(β) = 1 +
1

n2
+

2(β2 + 1)

n(β2 − 1)
, 0 < β0 ≤ β ≤ β1 < 1,

β2
0 = β2|w=1 =

n− 2

2n− 2
,



0 5 10 15 20 25 30
0.76

0.77

0.78

0.79

0.8

0.81

0.82

0.83

n

m
in

im
u

m
 P

e
a

rs
o

n
 n

o
is

e
 d

is
ta

n
c
e

Fig. 1. Minimum Pearson noise distance of Pn.

and

β2
1 = β2|w=⌊n−1

2 ⌋ =
⌊n−1

2 ⌋⌈n−1
2 ⌉

⌊n+1
2 ⌋⌈n+1

2 ⌉
.

Note that gn(β) is strictly decreasing with β on the interval
under consideration, and thus w is a strictly increasing function
of β. Next, we substitute (25) in fn(w), and the resulting
function with variable β is

hn(β) =

(
n2 − 1

2n
− ng(β)

2
−
√
g(β)

)
(1− β)

=
β − 1

n
+
β2 + 1

β + 1
+ (β − 1)

√
g(β). (26)

It is not hard to show that the three terms in (26) are all strictly
increasing with β in the range β0 ≤ β ≤ β1, so that hn(β) is
at a minimum for β = β0. Thus, φn(wx, wy, wx) achieves a
minimum when wx = wxy = 1 and wy = 2. The expression
stated in the theorem follows by substituting these parameters
into (15). Because of (20), also the choice wx = n − 1 and
wy = wxy = n− 2 achieves this minimum. Finally, it follows
from the strict monotonicity of the functions used in the above
derivation that no other choices achieve the minimum Pearson
noise distance.

Note that it follows from this theorem that, for large values
of n, the minimum Pearson noise distance of the code Pn

approaches
√
2−

√
2 ≈ 0.765. A graphical representation is

provided in Figure 1.
We conclude this subsection with a look at the number

of codeword pairs having a certain Pearson noise distance
between each other. In this respect, note that the number of
pairs (x,y) with given values for wx, wy , and wxy is

n!

wxy!(wx − wxy)!(wy − wxy)!(n− wx − wy + wxy)!
, (27)

which easily follows from standard combinatorial arguments.
For example, it follows from this result and Theorem 2 that the
number of codeword pairs (x,y) in Pn at minimum Pearson
noise distance is 2× n!

1!0!1!(n−2)! = 2n(n−1). Hence, dividing

this expression by the number of codewords gives Np,min,
which can be used, together with the minimum distance result
from Theorem 2, in (11) to obtain an approximate value for
the WER of a Pearson distance based detector.

B. Hamming versus squared Pearson noise distance

The Hamming distance between two vectors is an essen-
tial notion in coding theory, and a comparison between the
properties of Hamming and Pearson distance is therefore
relevant. Since xi, yi ∈ {0, 1}, the Hamming distance equals
the squared Euclidean distance, i.e.,

dH(x,y) =
n∑

i=1

(xi − yi)
2
= wx + wy − 2wxy. (28)

It is essential that we define a fair yardstick for quantify-
ing the noise resilience of minimum Euclidean and Pearson
distance detection. To that end, we consider the ratio between
the squared Pearson noise distance and the Hamming distance,
denoted by gx,y , i.e.,

gx,y =
d2(x,y)

dH(x,y)
. (29)

It follows from the WER analysis in Subsection II-C that this
ratio being smaller than one implies that the Euclidean detector
is more resilient to noise than the Pearson detector in case x is
transmitted and y is considered as an alternative for x in the
decoding process. Vice versa for this ratio being larger than
one.

As a first observation, note that it follows from Lemma 1
and (28) that d2(x,y) = dH(x,y) and thus gx,y = 1 in
case x and y are of equal weight. Evidently, there is no
error performance difference between minimum Pearson and
Euclidean detectors for codewords drawn from a constant
weight set.

In the remainder of this subsection, we consider vectors x
and y from Pn with the weight of x being fixed at wx ∈
{1, 2, . . . , n − 1} and the Hamming distance dH(x,y) being
fixed at dH ∈ {1, 2, . . . , n}. Since the overlap wxy of x and
y is expected to have a high impact on gx,y , we consider
two extreme options for wxy in our analysis: 1) we choose
wy ∈ {1, 2, . . . , n− 1} such that wxy is as small as possible,
2) we choose wy such that wxy is as large as possible, in both
cases under the constraints of the fixed values for the weight
of x and the Hamming distance between x and y.

Case 1: It follows in a straightforward way that the minimal
overlap of x and y is

wxy =

 wx − dH if 1 ≤ dH ≤ wx − 1,
1 if dH = wx,
0 if wx + 1 ≤ dH ≤ n,

(30)

achieved for

wy =

 wx − dH if 1 ≤ dH ≤ wx − 1,
2 if dH = wx,
dH − wx if wx + 1 ≤ dH ≤ n.

(31)
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Case 2: Similarly, we have that the maximal overlap of x
and y is

wxy =

 wx if 1 ≤ dH ≤ n− wx − 1,
wx − 1 if dH = n− wx,
n− dH if n− wx + 1 ≤ dH ≤ n,

(32)

achieved for

wy =

 wx + dH if 1 ≤ dH ≤ n− wx − 1,
n− 2 if dH = n− wx,
2n− dH − wx if n− wx + 1 ≤ dH ≤ n.

(33)

The g-ratios can now be obtained from (29) by applying
(14), (15), and (28). Figures 2 and 3 show, for Cases 1 and 2,
respectively, the resulting gx,y and gy,x values for n = 20,
wx = 6, and 1 ≤ dH ≤ 20.

Several interesting observations can be made from these
figures. First of all, note that there are ‘irregularities’ for the
gy,x curves at dH = wx = 6 (Case 1) and dH = n−wx = 14
(Case 2). For Case 1 this can be explained as follows. From
(30) we see that wxy equals max{0, wx − dH}, except when
dH = wx = 6, because this would imply wy = 0 (impossible
since 0 /∈ Pn). Hence, wxy = 1 > 0 for dH = 6, which leads
to the observed notch. Similarly for Case 2 (using 1 /∈ Pn).

Further, we observe that all curves end at the same point.
This is due to the fact that for dH = n the only possible

options for wy and wxy when wx is given read wy = n−wx

and wxy = 0. The resulting value is

gx,1−x = g1−x,x =
4σ2

x

n
=

4wx

(
1− wx

n

)
n

(34)

in general, and thus 0.84 for the example under consideration.
Finally, note that, as expected, the largest g-ratios are found

in Case 1. Most strikingly, we see that these ratios may even
exceed the value one (see Figure 2), suggesting that the noise
resistance of the Pearson detector is higher than the noise
resistance of the Euclidean detector for these cases. Of course,
this cannot be true, since a Euclidean detector is well-known
to be optimal in case of Gaussian noise. Indeed, we observe
that in all cases that gx,y exceeds one, its counterpart gy,x
is smaller than one. Similarly, gy,x > 1 implies gx,y < 1.
Since codeword pairs with smaller distances are dominant
with respect to contributions to the WER, the overall result
is still that from the noise perspective Euclidean detectors
are superior to Pearson detectors, which is the price to be
paid for the immunity of the latter detectors to gain and
offset mismatches. The analysis as done in this paper can be
exploited in the design of new Pearson codes, i.e., subsets
of Pn, with a noise performance closer to the Euclidean
case, by avoiding the selection of codeword pairs with small
Pearson noise distances. It is clear that in order to increase
the Pearson noise distance, the focus should not only be on
Hamming distance increase, since these two distance measures
are certainly not growing proportionally. Rather, also the
codeword weights must be taken into account.

IV. CONCLUSIONS

We have investigated various properties of Pearson-distance-
based detection and Pearson codes. For binary codes, we have
derived upper and lower bounds on the Pearson noise distance
and studied relations with the Hamming distance.

As possibilities for future work we identify (i) application
of the findings in order to construct codes with an increased
minimum Pearson noise distance and (ii) extension of the
results to q-ary codes.
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