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Abstract

This research contributes to addressing climate change challenges through the examination
of hydrogen combustion. It investigates the flow dynamics within a simplified model
of Ansaldo Energia’s GT36 reheat combustor using Large Eddy Simulation (LES) at
a high pressure of 20 bar, focusing on the autoignition flashback phenomena observed.
More specifically, it explores predicting the apparition of this event through the use of
a modularity-based clustering algorithm and its subsequent suppression by using water
injection.
In the LES simulation, lean, premixed and high-pressure conditions are used, revealing an
unsteady behaviour in the flame dynamics, i.e. an autoignition event in the mixing duct
which repeats itself due to high-amplitude pressure waves and their subsequent convergence
in the mixing duct. Using this simulation, time-series of multiple variables are acquired
over the course of 8 flashback events. These variables are then pruned using a co-kurtosis
PCA based dimensionality reduction technique. This method, by measuring the joint
occurrence of outliers in the flow variables, identifies successfully which are the most
important variables (𝑇, 𝜌, 𝑃, 𝑉𝑥, 𝑌HO2

and 𝑌OH) that introduce a lasting change in the
system and are potentially useful in finding a precursor to the flashback event.
The time-series of these variables are then introduced in the modularity-based clustering
algorithm. This algorithm tessellates the phase space of the system and then transforms it
into a graph, thus retaining the information about the dynamics of the system. Then, it
clusters this graph using a metric called modularity. The method proves effective in finding
a precursor for the autoignition event, resulting in an average prediction time for the 8
flashback events of 𝑡𝑝𝑟𝑒𝑑 = 32.12 𝜇s, which is over 50% of the time that the combustor is in
the normal operating state. Furthermore, the algorithm performs very well in the number
of false positives, and, due to a change made to the algorithm in this study, the number of
true positives is increased to 100%. The algorithm is then put through several robustness
tests, which include the use of different sampling locations, less features, unseen data and
relying only on temperature and pressure information sampled at the combustor walls.
Here, the algorithm retained its performance, with only a small decrease in the prediction
time, demonstrating its potential towards its use in an online prediction scenario. Lastly,
the level of fidelity of the LES simulation was increased by using the digital filter method
to simulate turbulent fluctuations at the inlet and fully-developed velocity profile, where
once again it was found that the algorithm retains a good prediction time.
For the second part of this research, a flashback event and its afferent prediction time
were chosen to investigate the use of water injection and its potential at suppressing the
flashback when the water is injected based on the prediction time. Here, following an
empirical design approach, where the Sauter Mean Diameter (SMD), the mass flow, the
diameter of the nozzle, the angles of the cone were varied, a preliminary design was sought.
It was found that the SMD is highly influential towards the spread of the spray, with
larger particles being preferred to their ability to retain their momentum and more quickly
cover the mixing duct. In addition, large angles for the cone and a high injection velocity
are again necessary for a good spread and a quick response time. An attempt was also
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made to place a set of sprays at the walls of the mixing duct, where it was found that the
flashback event now takes place upstream of the spray due to aerodynamic blockage. The
design process culminates in a setup where six spray are placed at the inlet of the mixing
duct. In this setup, the spray is able to quickly cover the mixing duct and the flashback is
suppressed, while also retaining an evaporation efficiency of 96.3%.
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1
Introduction

1.1. Overview
Over the past century, the surface air temperature has increased by 1∘C, leading to the
warmest period in the history of modern civilization. This apparently insignificant difference
gives rise to a series of phenomena such as: extreme weather events, melting of the ice
sheets, the displacement of natural habitats and ocean acidification. The review done
by Abbass et al. [1] highlights the negative consequences of climate change (CC) on the
viability of different industries worldwide.

Figure 1.1: Radiative forcing (RF; hatched) and effective radiative forcing (ERF; solid)
between 1750–2011. Uncertainties (5% to 95% confidence range) are given for RF (dotted

lines) and ERF (solid lines) [2].

The thermal balance of the Earth is maintained through the absorption and reflection of
sunlight, the emission of outgoing infrared radiation, and the absorption and subsequent
re-emission of infrared radiation by the atmosphere, a process influenced by the presence
of greenhouse gases (GHGs). Using radiative forcing (RF) as a metric, which is the
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instantaneous change in net radiative flux following a change in a climate factor, the
assessment done by Wuebbles et al. [2] concludes that it is this increase in GHGs, primarily
caused by human activities, that is the main driving force of the observed warming and
related phenomena (Figure 1.1).

The world’s countries began their efforts to combat the GHG emissions in 1992 with
the adoption of the UN Framework Convention on Climate Change (UNFCCC), which
in turn lead to the Kyoto protocol and later to the Paris Agreement of 2015 [3], the
most relevant climate action protocol to date. The Paris Agreement is a treaty that was
adopted by 194 countries and it has the main objective of limiting the increase of global
average temperatures to less than 2∘C as compared to the pre-industrial era. Within this
framework, each participating country submits their National Determined Contributions
(NDCs), which are specific commitments of reducing GHG emissions across the different
contributing industrial sectors. In 2018, the largest portion of global emissions came from
the energy sector with 34%, followed by industry (production of metals, chemicals, cement
and others) with 24%, agriculture, forestry and other land use (AFOLU) (21%), transport
(14%) and the operation of buildings (6%) [4], where the yearly trend can be observed in
Figure 1.2. With these unfavourable trends in mind, it is clear that radical solutions and
technologies have to be researched and implemented. One such technology that could help
alleviate the demands of the energy sectors is the hydrogen powered gas turbine.

Figure 1.2: Global GHG emissions by sector [4]

1.2. Outlook
Hydrogen, due to its carbon-free structure, has been extensively studied and proposed as
a promising alternative for conventional fuels in gas turbines (GTs). Besides the lack of
carbon dioxide (CO2) emissions and high energy content, considering its broad flammability
range [5], hydrogen burnt under lean premixed conditions can also curb the release of
harmful nitrogen oxides. In this mode, the excess air absorbs heat, effectively lowering
temperatures and mitigating the production of nitrogen oxides or NOx through the thermal
pathway [6]. Another advantage of hydrogen is its potential seamless integration within
the renewable energy framework. As hydro, solar and wind energy are becoming more and
more common, their intermittent nature can be turned from a disadvantage to an advantage
by using the excess energy produced during peak production times for the production of
hydrogen using electrolysis.

Indeed, these advantages have already been recognized in the industry, as certain manufac-
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turers, such as Ansaldo Energia, Siemens and General Electric (GE), have already shown
that some of their gas turbines are able to operate on 100% hydrogen fuel. This being said,
the technology is still new, but, with sufficient attention, it could play an important role in
the energy sector decarbonisation. In fact, the International Energy Agency (IEA), in their
most optimistic scenario [7], where net-zero emissions (NZE) are achieved by 2050, predicts
that hydrogen combustion could account for 2% of the total energy production in the world.
In this scenario, leading economies such as the European Union, United States and Japan
will adopt this technology and, by 2030, up to 190 GW of power will be produced from gas
turbines retrofitted with hydrogen and/or ammonia dual fuel capabilities, with this figure
rising to 580 GW by 2050.

Figure 1.3: Hydrogen gas turbine predicted capacity by country for 2050. a) no hydrogen
need, b) low hydrogen need, c) high hydrogen need. The three columns of each country

represent assumed cost of natural gas and biogas where the middle column is the baseline
and the left and right columns represent a 25% decrease and a 25% increase respectively [8]

Another study done by Öberg et al. [8] analysed the potential for hydrogen powered
gas turbines by forecasting the installed capacity by 2050 in several Western and Central
European countries. The results, shown in Figure 1.3, indicate that the adoption of this
technology is highly dependent on the electricity demands and sources of each individual
country, as well as on how much hydrogen will be required for other purposes such as
aviation and industry. This claim is also supported by another study [9], which attributes
these differences between the countries based on the availability of renewable energy. Their
findings suggest that hydrogen powered gas turbines would be needed to meet the electricity
demand in times of low renewable output, therefore creating a synergy between the two.
For example, UK’s significant 18 GW energy requirement is attributed to its dependency
on wind power, a less predictable source of energy which can result in larger variability.
On the other hand, countries like Spain, where solar power is more reliable, could turn to
batteries to store the excess energy produced during peak production times.

1.3. Drawbacks
Unfortunately, the use of hydrogen fuel in gas turbine also presents several disadvantages.
First off, although hydrogen is more than twice as energy dense on a mass basis as compared
to CH4, on a volume basis it is only one third as energy dense. This causes issues when
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it comes to transporting and storing hydrogen effectively, a problem which is especially
important for the aviation sector. Besides this, the low volumetric energy density means
that GTs need to be adapted to provide the required volume flow [10].

From a safety point of view, hydrogen is less favourable than conventional fuels. First, a
hydrogen flame is harder to detect visually as compared to a methane flame, thus requiring
flame detection systems made specifically for hydrogen. Secondly, hydrogen’s small atomic
radius and its diffusive properties make it prone to slipping through seals. Moreover, H2
induces embrittlement in numerous fuel plumbing materials [11], jeopardizing the integrity
of various metals and materials typically utilized in gas turbines. These then have the
potential to give rise to additional leaks and accelerate the deterioration of flow control and
instrumentation equipment. Finally, hydrogen is more flammable than conventional fuels,
meaning that, in the case of a fuel leak, it would ignite much easier. In comparison to CH4,
by mass, the lean flammability limit of H2 is only 10% that of CH4. This means that power
plant procedure and safety regulations need to be changed when working with hydrogen
[10] with implications in purging after a failed start and higher ventilation capabilities [12].

Furthermore, hydrogen’s reactivity and its high thermal-diffusivity do pose notable chal-
lenges, such as an increase in adiabatic flame temperature when compared to conventional
fuels. The increased adiabatic flame temperature, if not properly addressed, in turn leads
to an increased NOx production, a greenhouse gas that is also harmful to human health.
Coupled with these properties, the flame speed, which is an order of magnitude higher than
conventional fuels, could make the hydrogen flame propagate upstream into the premixing
zone, causing a flashback [12]. These issues lead to more stringent design requirements
and a possibly limited operational range to mitigate high maintenance costs and damaged
components [13]. This last drawback, i.e. the flashback phenomena, is the topic of research
for this study as discussed in the following section.

1.4. Objectives
The objectives of this research are predicting and suppressing the flashback event observed
in LES simulations of Ansaldo Energia’s GT36 reheat combustion chamber model. As GTs,
like the GT36, are designed to use higher proportions of H2, as driven by the need for
cleaner and more sustainable energy sources, they increasingly encounter the phenomenon of
flashback. This adverse effect, characterized by the reverse flow of flames into the premixing
tube, presents significant operational and safety issues. The focus of this thesis is to explore
strategies for predicting and mitigating flashback, through the means of machine learning
derived prediction methods and water injection, respectively. Successfully forecasting and
controlling flashback could help with increasing H2 content in GTs, advancing their potential
towards clean power generation. The potential benefits of this are as follows: predictive
measures would enhance the safety and reliability of these systems, reducing the risk of
damage and extending their operational lifespan. The optimized use of water injection for
flashback suppression, informed by ML predictions, could also lead to improvements in
thermal efficiency, as water usage is tailored to the need of the system rather than used
uniformly, allowing for this approach to not only warn against and mitigate flashback but
to also improve the power output of the GTs. To summarize, the main research objectives
of this study are as follows:

• Identify and apply a suitable machine learning-derived prediction method to determine
in advance the apparition of the flashback event observed in the LES simulation.
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• Find a suitable design for the water injection system and assess its capability in
suppressing the flashback in the situation where the water is injected only after a
flashback has been detected.

In addition, the secondary research objectives can also be formulated as follows:

• Use a dimensionality reduction technique to trim the number of flow variables coming
from the LES simulation that can potentially be used in the prediction method.

• Assess the performance of the prediction method when it is constrained to conditions
similar to those necessary for online prediction (limiting the available information,
unseen data).



2
Background

This chapter outlines the background of the problem, starting with the specific emission
goals for power-generation gas turbines and what technologies have been developed by the
industry to reach these goals. This is then followed by the specific details of the gas turbine
studied here: Ansaldo Energia’s GT36. Next, the different types of flashbacks and ways to
mitigate them are discussed. Then, the flashback type encountered in the GT36 is discussed
in detail. This is done by introducing general characteristics of hydrogen combustion and
the autoignition phenomena, which lies at the heart of the flashback studied here. Lastly,
other potential factors which can influence the autoignition process are discussed. These
include high pressure effects, flame instabilities and how the flame regime affects flame
instabilities. Lastly, a background is given for water injection system, as well as typical
design parameters which are adjusted to fit the purpose.

Figure 2.1: BAT-associated energy efficiency levels (BAT-AEELs) for natural gas
combustion [14]

6
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2.1. Emissions regulations and gas turbine technologies
The latest regulations on land-based gas turbines were released by the European Union on
the 31st of November 2021 [14]. In terms of efficiency, gas turbines are required to have a
net electrical efficiency upwards of 50%, as seen in Figure 2.1, while for the NOx emissions
the yearly average ranges from 10 to 55 mg/Nm3, which is equivalent to 7.94 - 43.66 NO2
ppm, assuming a 95% concentration of NO, see Figure 2.2.

Figure 2.2: BAT-associated emission levels (BAT-AELs) for NOx emissions from natural
gas combustion in GTs [14]

Along with these stringent requirements, the EU also gives a list of potential technologies
to be added to existing GTs or incorporated in new GTs. These are advanced control
systems which ensure optimum loading and efficiency at all times, water/steam addition, a
method which is designed to reduce NOx emissions by lowering the overall temperature
in the combution chamber, dry low-NOx burners (DLN), low-load design concepts and
finally, selective catalytic reduction systems (SCR). All of these potential solutions have
their drawbacks when hydrogen is incorporated, where, more often than not, flame stability
is a key issue.

In their attempts to satisfy these requirements, as well as introducing hydrogen based
combustion, large manufacturers of gas turbines have already started to adopt some of these
technologies [12]. For example, Siemens and General Electric (GE) have adopted DLN in a
variety of their models, already achieving more than 50% hydrogen concentrations. This
figure is still limited due to hydrogen’s complicated combustion dynamics, coupled with the
lean premixed principle of DLN. GTs using this technology can be subject to phenomena
such as undesired autoignition, flashbacks and thermo-acoustic instabilities. Nevertheless,
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these companies were also able to achieve 100% H2 content using this technology coupled
with Wet Low Emissions (WLE). Furthermore, Mitsubishi Heavy Industries (MHI) has
introduced a multicluster technology featuring a multicluster diffusion burner, which relies
on micro-mix technology. As of right now, the technology is capable of accommodating
up to 30% hydrogen content on the H-25 gas turbine, with plans to use 100% H2 in 2024.
Another gas turbine which has already successfully ran using hydrogen-containing fuel is
Ansaldo Energia’s sequential gas turbine, the GT36, which is the configuration of reference
for this study.

2.2. Ansaldo Energia’s GT36
The GT36 gas turbine, as shown in Figure 2.3, is the latest development in Ansaldo
Energia’s series of sequential gas turbines and a model of its reheat combustion chamber is
the object of study for this thesis.

Figure 2.3: Render of the GT36 gas turbine and the CPSC system [15]

The initial development of sequential combustor technology can be attributed to Alstom,
which introduced the first model, the GT24/GT26, utilizing this technology in 1994. In
2016, when Alstom was acquired by Ansaldo Energia, the two companies enhanced the
sequential combustor design and recently unveiled the GT36. Sequential combustion involves
two stages of combustors functioning in the lean premixed regime. In the initial stage,
flame stability is maintained through flame propagation assisted by a vortex breakdown
mechanism, while in the second stage (or the reheat stage), stabilization primarily relies on
autoignition. This type of system, due to the flexibility of injecting different amounts of
fuel in the two stages, proves advantageous when a high reactivity fuel, such as hydrogen, is
used. A schematic of how this system works when hydrogen is added is shown in Figure 2.4.
In this diagram, the progression of the temperature of the flow, as well as the position of
the flame across the two stages is shown. The red line represent the baseline case, while
the green line indicates the way in which the system can be adapted for using hydrogen as
fuel, providing certain advantages while still retaining the original power and efficiency.
Firstly, this adaptation works by using less fuel in the first stage. This results in the
flame being position more downstream, thus avoiding the risk of overheating the burner
walls and decreasing the residence time in this first stage. Furthermore, due to the lower
equivalence ratio, the flame temperature is also lower. This is advantageous because both
the shorter residence time and the lower flame temperature reduce the formation of NOx
through the thermal or Zeldovich pathway, which is the main mechanism through which
NOx is produced. In this pathway, the main reactions that occur are NO + O ⇆ O + N2,
O + N2 ⇆ NO + N and N + OH ⇆ NO + N. By lowering the residence time, there is less
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time for these reactions to occur and thus the amount of NOx is reduced. Furthermore,
the lower temperature decrease the kinetic energy of the molecules and thus, because the
aforementioned reaction have a high activation energy (the energy of a collision needed to
break the bonds of the reactants), in turn, it reduces the NOx formation.
Secondly, the unused fuel in the first stage can now be used in the second stage. In
this stage, the position of the flame is independent of the amount of fuel, as it relies on
autoignition to sustain the combustion. Autoignition is the spontaneous combustion of fuel.
This phenomena typically occurs at a certain temperature, where the heat generated by
the chemical reactions exceeds the heat lost to the surroundings. As such, the position of
the flame relies only on the inlet temperature at this stage. Due to the lower mean exit
temperature (MET) of the first stage and due to the dilution with air which takes place in
between the two stages, the inlet temperature is thus lower and the position of the flame
is again pushed downstream due to the increased ignition delay time (the time interval
between when a fuel-air mixture reaches ignition conditions and the onset of spontaneous
combustion). Once again, this reduces the residence time in the reheat stage and thus
lowers the amount of NOx produced. Furthermore, due to the presence of water vapour
coming from the products of the first stage, the production of NOx is further reduced.
According to Le Chatelier’s principle, if the equilibrium of a system is disturbed by a
change, the system tends to adjust itself to a new equilibrium by counteracting as far as
possible the effect of the change. Thus, by adding water, the reactions 2OH ⇆ H2O + O
and OH + H2 ⇆ H2O + H are partially suppressed. Meanwhile, the production of H2O2
and the reduction in OH are in turn increased due to the reaction H2O2 + H ⇄ H2O + OH.
This results in less O and OH radicals being available for the formation of NOx [16].

Figure 2.4: Temperature progression of the GT36 gas turbine [17]

In the first iteration of this gas turbine, the GT26, the two combustion stages are separated
by a so-called interstage turbine. In the first stage, the fuel is burned at pressure over
30 bars, and, after passing through the turbine, the pressure drops to half of that. The
GT36 improves upon this design by replacing the interstage turbine with a air dilution
and mixing stage. By using this system, called Constant Pressure Sequential Combustion
(CPSC), the same pressure level is maintained in the reheat combustor. This allows for
H-class performance with low emissions, by injecting the fuel at around 1000∘C, a firing
temperature that is typically smaller than those found in F and H class gas turbines.
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Besides the addition of the CPSC system, characteristic to the GT36 is also the cavity-
trapped vortex combustor, a technology which is a key part in assuring flame stability for this
GT. In the GT36’s reheat combustor, two combustion modes coexist: an autoignition process
and a deflagration (subsonic propagation of premixed flames) triggered by interactions
between recirculation vortices and heat transfer to the walls of the combustion chamber.
The efficient combustion dynamics hinge on the loss of heat to the mixing duct walls, causing
reactants near the walls to be cooler than those in the main flow. As these cooler reactants
enter the combustion chamber, their temperature is not favourable for autoignition. A
sudden expansion in the chamber creates a recirculation region, promoting the propagation
of flames towards unburned reactants. This mechanism stabilizes the flame and ensures
efficient combustion [18]. A schematic of this system is shown in Figure 2.5.

Figure 2.5: Schematic of the cavity-trapped vortex combustion system [18]

The next topic investigated here is the flashback phenomena, which is known to appear at
high pressure conditions in LES simulations of a model of the reheat combustion chamber
of the GT36 [19].

2.3. Flashback
A flashback is a critical phenomenon in combustion systems that involves the undesirable
upstream propagation of the flame inside the mixing duct. Generally, this occurs when the
turbulent flame velocity becomes higher than the velocity of the incoming reactant stream.
As the trend in gas turbines leans towards lean premixed combustion and hydrogen addition,
the flashback phenomena becomes an increasing concern. The occurrence of flashback is
closely linked to the flame stabilization mechanisms and is influenced by other factors
including flow velocity, mixture composition, temperature gradients, and the presence of
obstacles or sudden expansions in the combustion chamber. The phenomenon is more
prevalent in gaseous fuels with high hydrogen content due to their wide flammability limits
and low quenching distances, making the understanding of flashback dynamics crucial for
the development of efficient and safe combustion technologies.
Historically, the study of flashbacks has been a subject of extensive research due to its
implications on the design and operation of combustion systems. The complex interplay
between the turbulent flow structures and the flame’s response to these structures governs
the onset and progression of flashback. Theoretical models and empirical correlations
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have been developed to predict the conditions under which flashback occurs, integrating
parameters such as the laminar burning velocity, turbulence intensity, and scale of turbulence
into predictive tools for flashback propensity.

There are five different types of flashback which are commonly encountered in gas turbines
[20, 21]:

• Core flow flashback: Core flow flashback happens when turbulent flame speed
𝑆𝑇 surpasses local flow speed within the core [22], with the magnitude of 𝑆𝑇 being
the main influencing factor. It occurs due to interactions between turbulent flames
and chemistry, influenced by fuel composition and turbulence structures [23, 24].
Furthermore, flame stabilization methods in devices might inadvertently trigger core
flashbacks by altering flow velocities and flame behavior. This type of flashback is
more prominent in the case of hydrogen fueled combustion, due to its higher flame
speed. There are several correlations which have been found to accurately model
the turbulent burning velocity to predict core flow flashback, but they are usually
dependent on the fuel composition, and thus they are difficult to generalize [25, 24,
23].

• Combustion instabilities induced flashback: Flashback from combustion instability
results from large amplitude flow field fluctuations. Interactions between acoustic
modes, heat release fluctuations, and flow patterns lead to pressure and velocity
oscillations. These interactions can induce flame movement and generate vortices,
potentially causing the flame to move upstream and trigger flashback. In an experi-
mental study done by Keller et al. [26] it was found that the pulsation cycle of the
flow structure lifted the flame from the edge of the expansion step, which later on
induced flashback.

• Combustion induced vortex breakdown (CIVB) flashback: CIVB flashback is
prevalent in swirl combustors. It occurs when the swirl number exceeds a threshold,
leading to vortex breakdown and reverse flow regions [27]. Changes in velocity
distribution due to azimuthal velocity increase induce vortex breakdown, altering
flame and flow patterns. Whether flame propagation occurs upstream is dictated
by the balance between volume expansion and baroclinic torque, where the flame
position relative to the expanding bubble is crucial [28].

• Boundary layer flashback: Boundary layer flashback primarily happens in premixed
flames such as jet/Bunsen flames. Flashback occurs where local burning velocity
surpasses local flow velocity [29]. This typically happens in the boundary layer due
to the small velocities at the wall. For confined boundary layer flashbacks (when the
flame resides inside a channel) the concept of ”critical velocity gradient” characterizes
the propensity for flashback under specific conditions. Meanwhile, for unconfined BL
flashback (when the flame resides after an expansion step), the variables which tend
to dominate are velocity fluctuations and flame stretch [30].

• Autoignition flashback: Although not generally categorized as a flashback mechanism,
autoignition can trigger the appearance of the flame in the mixing duct, with the same
negative consequences on the gas turbine. As discussed in Section 2.4.3, autoignition
occurs when the ignition delay time is less than the residence time in the mixing duct.
In GTs, this may occur when there is a decrease in flow velocity or a local increase
in temperature. This increase in temperature can occur due to convective/radiative
heating, flame expansions and/or pressure waves [21].
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To avoid these different types of flashback, different authors have suggested a multitude
of methods which prove to be effective depending on the studied case. Key approaches
include:

• Increasing Axial Velocity: Elevating the axial velocity reduces the likelihood of core
and Convective Internal Vortex Breakdown (CIVB) flashbacks. This leads to a
pressure loss, proportional to the square of the velocity change, impacting operational
efficiency. Enhancing the axial fuel diameter strengthens the central jet, preserving
downstream coherent structures and postponing vortex breakdown [31]. However,
this negatively impacts NOx production and does not affect the boundary layer (BL)
flashback, necessitating additional measures for its control [32].

• Reducing Swirl: While high swirl numbers aid in reactant mixing and emission
reduction, they also diminish flashback resistance. Modifying the azimuthal opening
jet angle at the mixing duct outlet induces negative azimuthal vorticity, promoting
vortex breakdown. Conversely, reducing swirl lowers the combustion area in the
burner, increasing axial velocity and flashback resistance.

• Preventing Boundary Layer Detachment: In turbulent, high-swirl flows, the stabilized
flame penetrates closer to the burner walls than in laminar combustion. Nozzle geom-
etry, determining quenching distance, influences flashback resistance. Maintaining
a thin, attached boundary layer in critical areas like the mixing duct reduces BL
flashback risks [33]. Techniques like micro-riblet structures to reduce skin friction
or air effusion in walls to dilute the mixture help prevent flashback [32, 34, 35, 36].
Baumgartner and Sattlemayer [36] suggest that air injection up to 10% of the total
flow near the burner outlet can divert flashback towards the rich central zone.

• Diluent Injection: Air humidification, by slowing reaction rates, can stabilize the
flame. Pappa et al. demonstrate that a 10% water mass fraction dilution decreases
hydrogen reactivity while maintaining flame speeds [37]. Exhaust gas recirculation as
a diluent is also effective in reducing flashback risks and NOx emissions [38]. Nitrogen
addition, as investigated by York et al. [39], lowers hydrogen content, enhancing
flashback resistance.

• Fuel Momentum: The increased volumetric flow required for hydrogen substitution
adds significant fuel momentum, influencing premixing flow. Reichel and Paschereit
[40] define the momentum ratio 𝐽 as:

𝐽 =
𝜌fuel𝑢2

fuel
𝜌air𝑢2

air
(2.1)

Higher momentum ratios, achievable by maintaining constant air mass flow or pre-
heating the air, move the flame front and vortex breakdown downstream, effectively
preventing flashback [41]. These findings suggest that increasing the equivalence ratio,
which initially seems counterintuitive, can be beneficial for flashback resistance when
incorporated into combustor design.

From previous work [19], it is already known that at high pressure conditions, the flashback
type observed in GT36’s reheat combustor is of the autoignition type. Before moving
on to flashback prediction and suppression techniques, a more in depth understanding of
hydrogen combustion and autoignition is needed first.
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2.4. Hydrogen combustion
2.4.1. General characteristics

Figure 2.6: Energy densities of various sources of energy. [42]

Hydrogen, a chemical element found naturally as a diatomic gas at standard conditions, is
a great candidate to be used as fuel due to its large higher heating value (HHV) (141.86
MJ/kg) and ease of production. It can be obtained through the process of steam reforming
of natural gas and coal gasification, but also in a environmentally sustainable manner by
using electrolysis with energy produced from renewable sources [43]. On the other hand, H2
has low volumetric energy density with a HHV of only 0.01188 MJ/L, which is more than
three times lower than the 0.0378 MJ/L HHV of natural gas at standard conditions. In
comparison to other sources of energy, see Figure 2.6, H2 again lies at the extreme end of
spectrum, posing the highest mass energy density and the lowest volumetric energy density.

Furthermore, hydrogen also has a broader flammability range in comparison to natural gas,
i.e. 4-75% compared to 3.5-15%, allowing for ultra-lean combustion where the equivalence
ratio can be as low as 𝜙 = 0.1. Other differences include a considerably larger adiabatic
flame temperature, corresponding to 2318 K at stochiometric conditions, which can lead
to higher NOx emissions. On the other hand, NOx can not form through the Fenimore
and fuel pathways. H2 also has a lower quenching distance than that of natural gas, at
0.64 mm and 2.1 mm, respectively, a property which can prove detrimental when it comes
to the apparition of boundary layer flashback. Other aspects of H2 also include a much
thinner flame front as compared to natural gas, a Prandtl number of 0.701 under standard
condition, compared to 0.707 for air, and an autoignition temperature which ranges from
793-1023 K, well within standard operating conditions of reheat combustion chambers. Also,
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the diffusion coefficient of H2 is 0.61 cm2/s in air at standard conditions, a value which
is considerably larger than the 0.22 cm2/s of methane, resulting in more radicals being
transported upstream of the flame. This also implies a small Lewis number, i.e. LeH2

= 0.3,
resulting in potential instabilities. Finally, H2 has the fastest burning velocity among all
fuels [44] and a small autoignition delay time [45], properties which, when coupled together,
can lead to an unstable flame and an available residence time which may not allow for
proper mixing. A summary of H2’s properties, as compared to other fuels, can be found in
Table 2.1. Furthermore, an in-depth view of how these properties affect the combustion
dynamics, and consequently, the flashback phenomena, will be detailed in the following
sections.

Table 2.1: Properties of H2 and other fuels at 25∘C and 1 atm. Superscripts denote the
following: a - liquid at 0∘C, b - stochiometric conditions, c - methane, d - vapor.

Property Hydrogen CNG Gasoline Methane
Density (kg/m3) 0.0824 0.72 730𝑎 0.651
Flammability limits (volume % in air) 4-75 4.3-15 1.4-7.6 5.5-15
Flammability limits (𝜙) 0.1-7.1 0.4-1.6 0.7-4 0.4-1.6
Autoignition temperature in air (K) 858 723 550 813
Minimum ignition energy in air (mJ)𝑏 0.02 0.28 0.24 0.29
Flame velocity (m/s)𝑏 1.85 0.38 0.37-0.43 0.40
Adiabatic flame temperature (K)𝑏 2480 2214 2580 2226
Quenching distance (mm)𝑏 0.64 2.1𝑐 ≈ 2 2.5
Stoichiometric fuel/air mass ratio 0.029 0.069 0.068 0.058
Stoichiometric volume fraction (%) 29.53 9.48 2𝑑 9.48
Lower heating value (MJ/m3) 9.9 32.6 - 32.6
Lower heating value (MJ/kg) 119.7 45.8 44.79 50.0
Heat of combustion (MJ/kg air )𝑏 3.37 2.9 2.83 2.9

2.4.2. Chemical kinetics
Understanding the reactions that take place in hydrogen combustion is critical in under-
standing the autoignition flashback of this study. Describing the sequence of reactions
occurring at molecular level during combustion through a chemical mechanism is vastly
simplified when using hydrogen due to the absence of carbon species. There are different
chemical mechanisms usually employed in simulations which posses different characteristics,
making them suitable for different applications. In 2014, Olm et al. [46] conducted a
comparative study of these mechanisms, ranking them based on an overall average error
function value, as shown in Figure 2.7.
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Figure 2.7: Overall performance of the different H2 mechanism. The black squares
represent all data and the green ones only the data also found in at least one other
mechanism. The overall average error function value represents the deviation from

experimental values of each individual chemical kinetic model, averaged across multiple
datasets.

For the purposes of this study, the mechanisms of Li et al. [47] and Burke et al. [48] present
the most interest due to their popularity, performance and ease of comparison to previous
studies as done by Kruljevic et al [49]. Out of the two, the choice leaned in favour of the
mechanism suggested by Li et al. due to its slightly better computational efficiency and
demonstrated efficacy at predicting autoignition [19]. Furthermore, they also present a
good performance at high pressures. The reactions involved in these mechanisms are shown
in Table 2.2, where 𝐴 is the exponential factor, 𝑛 is a constant and 𝐸𝑎 is the activation
energy as employed in the Arrhenius equation:

𝑘 = 𝐴𝑇 𝑛 exp (− 𝐸𝑎
𝑅𝑇

) (2.2)
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Table 2.2: The reactions involved in the Li et al. mechanism. M can be either N2, Ar or
He [47]

𝐴 𝑛 𝐸
H2/O2 chain reactions

R1. H + O2 ⇄ O + OH 3.55 × 1015 -0.41 16.6
R2. O + H2 ⇄ H + OH 5.08 × 104 2.67 6.29
R3. H2 + OH ⇄ H2O + H 2.16 × 108 1.51 3.43
R4. O + H2O ⇄ OH + OH 2.97 × 106 2.02 13.4

H2/O2 dissociation/recombination reactions
R5. H2 + M ⇌ H + H + M𝑎 4.58 × 1019 -1.40 104.38

H2 + Ar ⇄ H + H + Ar 5.84 × 1018 -1.10 104.38
H2 + He ⇄ H + H + He 5.84 × 1018 -1.10 104.38

R6. O + O + M ⇌ O2 + M𝑎 6.16 × 1015 -0.50 0.00
O + O + Ar ⇄ O2 + Ar 1.89 × 1013 0 -1.79
O + O + He ⇌ O2 + He 1.89 × 1013 0 -1.79

R7. O + H + M ⇌ OH + M𝑎 4.71 × 1018 -1.0 0.00
R8. H + OH + M ⇄ H2O + M𝑏 3.80 × 1022 -2.00 0.00

Formation and consumption of HO2
R9. H + O2 + M ⇄ HO2 + M𝑐 6.37 × 1020 -1.72 0.52

H + O2 + M ⇄ HO2 + M 9.04 × 1019 -1.5 0.49
R10. HO2 + H ⇄ H2 + O2 1.66 × 1013 0.00 0.82
R11. HO2 + H ⇄ OH + OH 7.08 × 1013 0.00 0.30
R12. HO2 + O ⇄ OH + O2 3.25 × 1013 0.00 0.00
R13. HO2 + OH ⇄ H2O + O2 2.89 × 1013 0.00 -0.50

Formation and consumption of H2O2
R14. HO2 + HO2 ⇄ H2O2 + O2 4.20 × 1014 0.00 11.98

HO2 + HO2 ⇄ H2O2 + O2 1.30 × 1011 0.00 -1.63
R15. H2O2 + M ⇄ OH + OH + M𝑑 1.20 × 1017 0.00 45.5
R16. H2O2 + H ⇄ H2O + OH 2.41 × 1013 0.00 3.97
R17. H2O2 + H ⇄ H2 + HO2 4.82 × 1013 0.00 7.95
R18. H2O2 + O ⇄ OH + HO2 9.55 × 106 2.00 3.97
R19. H2O2 + OH ⇄ H2O + HO2 1.00 × 1012 0.00 0.00

H2O2 + OH ⇄ H2O + HO2 5.80 × 1014 0.00 9.56

𝑎𝜖H2O = 12, 𝜖H2 = 2.5, 𝜖Ar = 0.75, 𝜖He = 0.75

𝑏𝜖H2O = 12, 𝜖H2 = 2.5, 𝜖Ar = 0.38, 𝜖He = 0.38
𝑐𝜖H2O = 11, 𝜖H2 = 2, 𝜖O2 = 0.78

𝑑𝜖H2O = 12, 𝜖H2 = 2.5, 𝜖Ar = 0.64, 𝜖He = 0.64
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2.4.3. Autoignition characteristics
Autoignition refers to the phenomena where the fuel in a combustion chamber spontaneously
ignites once it reaches a certain temperature, without the need for an external ignition
source. This characteristic is used in Ansaldo Energia’s GT36 and other GTs, for the
operation of reheat combustion chambers due to the ideal conditions present there, i.e. high
temperatures of more than 1000 K and high pressures 15-30 atm. A more exact definition is
provided by Zeldovich (1980), which states the autoignition regime occurs when the inverse
of the local ignition time is larger than the deflagration velocity but smaller than the speed
of sound of the unburned gas [50].

Figure 2.8: Co-flow LES parametric study of autoignition length with respect to
turbulence intensity [51]

As such, it is the choice of an appropriate autoignition delay time which dictates the
successful design of a reheat combustion chamber. In the case of premixed combustion,
an autoignition delay time which is too short would results in the ignition of the flow
happening in the mixing duct. This means that, to keep the flame at its design location,
either the inlet conditions have to be changed or the mixing duct has to be shortened.
Conversely, if the mixing duct is too short, then the reactants do not have enough time
to mix to create the desired premixed conditions, resulting in a hotspot with a higher
temperature and a higher predisposition for autoignition in the rest of the combustion
chamber. These two competing aspects make the successful design of a reheat combustion
chamber challenging. Moreover, to further complicate the problem, autoignition is also
affected by strain. Moderate turbulence facilitates autoignition, while a large amount of
turbulence has an impeding effect. This is illustrated in Figure 2.8, where the turbulent
time scale is inversely proportional to the turbulence intensity [51].

Nevertheless, the main influence on the autoignition delay time is exerted by the inlet
conditions: temperature, pressure and equivalence ratio, where of particular importance is
the temperature, especially through the cross-over temperature, which will be defined in
the upcoming paragraphs. These influences can be observed in Figure 2.9, where it can
be seen that the autoignition delay time becomes smaller with an increasing temperature.
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Furthermore, 𝜏𝑖𝑔𝑛 presents a complex behaviour with pressure, where low pressures imply
a higher 𝜏𝑖𝑔𝑛 at low and high temperatures, and lower 𝜏𝑖𝑔𝑛 in between. In the case of the
GT36, the temperature falls in this in between regime, where the autoignition delay time
benefits from the larger pressure, allowing for more time for reactant mixing.

Figure 2.9: Ignition delay of premixed hydrogen as a function of pressure and temperature
of the reactants. Left [52]: 𝜙 = 0.4. At the highest temperature: the three curves are at 1,

13 and 25 atm from top to bottom. Right [50]: different simulations based on
homogeneous, 0D, isobaric and adiabatic PFR models, as well as different experiments.

Figure 2.10: Cross-over temperature as a function of pressure. [53]

Also seen in Figure 2.9 is a section where the dependence of the autoignition delay time
on the temperature is very high. This temperature range is commonly referred to as the
cross-over temperature. Furthermore, it can be observed that this region presents a higher



2.4. Hydrogen combustion 19

slope, and therefore a higher dependence, for mixtures at a lower pressure. Álamo et al.
[53] proposes an estimate of the cross-over temperature, see Figure 2.10, based on the range
of validity of the six-reaction hydrogen-air mechanism.

Figure 2.11: Mass fractions indicating the autoignition delay time for 𝜙 = 0.35 and
𝑇 = 1100 K [19].

Figure 2.12: Mass fractions indicating the autoignition delay time for 𝜙 = 0.35 and
𝑇 = 1100 K [19].

To further distinguish between the different behaviours of the autoignition delay time with
pressure, three ignition limits can be used as defined by Fleck et al. [54, 55] and Kreutz
et al. [56]. Within the first limit, which is characterized by low pressure, the reactions
H + O2 ⟶ OH + O, O + H2 ⟶ H + OH, and H2 + OH ⟶ H2O + H compete with the
production of HO2 through H + O2 + M ⟶ HO2 + M (R9). In this regime, HO2 and H2O
act as sinks due to their low chemical reactivity and they are slowly transported out of the
reaction zone. Furthermore, R9 is less present, indicating a potential for the mixture to
ignite at lower temperatures due to the limited availability of the HO2 sink. But, this is
not the case because diffusion plays a larger role for the consumption of H and O radicals,
resulting in a decrease in the ignition delay as the pressure increases.
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For the second limit, corresponding to moderate pressures (10 atm), the radicals are
produced by reactions H2 + O ⇄ H + OH (R2) and H2 + OH ⇄ H2O + H (R3) and they
are consumed by H + O2 ⇄ O + OH (R1) and R9. In this regime, the diffusion loses are
less pronounced and R9 is now the main factor for radical losses. This results in an increase
in the ignition delay for an increase in pressure.

In the third autoignition limit, the concentration of HO2 increases significantly, enabling
the reaction 2HO2 ⟶ H2O2 + OH (R14). Furthermore, H2O2 is also partly produced by
the reaction H2O2 + H ⇄ H2 + HO2 (R17). As a result, H2O2 now begins to act as a sink,
replacing the role of HO2, by dissociating through H2O2 + M ⟶ 2OH + M (R15). This
decomposition process, although limited by the convection of H2O2 outside of the reaction
zone, leads to a reduction in ignition delay as the pressure increases [19]. At this limit,
Rodhiya et al. [57] also observed an increased rate of movement of the flame, attributed
to the higher sensitivity to temperature and pressure fluctuations. The mass fraction of
the involved species at these three limits, indicating the autoignition delay time, can be
observed in Figure 2.11 and Figure 2.12. A visualization of these ignition limits as found
by Kreutz et al. [56] for heated air flowing against a mixture of 60% H2 in N2 can be seen
in Figure 2.13. Here, the behaviour of the ignition temperature, which is linked directly to
the ignition delay time as previously discussed, can be see for a range of pressures.

Figure 2.13: Ignition limits as a function of pressure for heated air flowing against a cold
mixture with 60% H2 in N2 at a density-weighted strain rate of ̃𝑎 = 100 s−1 [56].

As previously mentioned, the corresponding pressure at which these limits are found changes
depending on the temperature of the reactants. More precisely, for the case considered in
this work, P. Rouco [19] found that at T = 1180 K, the chemical kinetics of the GT36 reside
in the second ignition limit. This analysis provides valuable information for the species and
reactions to consider when analyzing flashback precursors.
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Another interesting finding of Rodhiya et al. [57] related to pressure scaling under reheat
conditions is that, at high pressures, the consumption regime significantly changes. Whereas,
at atmospheric pressures, 90% of the fuel was consumed by autoignition, this value drops
down to 50% for 10 atm, indicating an increased importance of the flame propagation
combustion regime of the shear layer.

Figure 2.14: Turbulent flame speed under varying levels of turbulence (left) and across
different temperatures and pressures (right). DNS study of a hydrogen-fueled reheat

combustor at 𝜙 = 0.35 [58].

A noteworthy observation is also reported by Aditya et al. [59], where a 3D DNS simulation
employing Chemical Explosive Mode Analysis (CEMA) was performed for a hydrogen-
fueled sequential combustor (𝜙 = 0.35). Their findings revealed that in a stable state,
combustion predominantly happens through autoignition aided flame propagation at various
flame locations. Concurrently, they identified an unstable state characterized by periodic
emergence of autoignition kernels within the mixing duct. In this state, the autoignition
locally expands the gasses, inducing pressure waves in the upstream and downstream
directions. Ultimately, these pressure waves converge in the mixing duct, locally compressing
the gas, inducing a positive temperature fluctuation, followed by autoignition at this location.
In this case, the flame travels upstream, as in the case of a flashback, and then moves back
downstream. This phenomena highlights the importance of low frequency thermo-acoustic
instabilities. Furthermore, Gruber et al. [58] explored similar phenomena through both
two-dimensional and three-dimensional DNS of reheat burners. Their results highlighted a
compressibility dependency, particularly at temperatures near the crossover point. This
phenomenon was also observed in the variation in turbulent flame speed, when changing
the inlet temperature from 𝑇in = 1000 K to 𝑇in = 1135 K, as illustrated in Figure 2.14.
Here, the local diffusion of H atoms and heat increases reactivity with increased turbulence
intensity, resulting in a large turbulent flame velocity ranging from 30 to 60 m/s.
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2.4.4. Flame instabilities

Figure 2.15: Illustration of thermo-diffusive instability with flame front expansions and
contractions. The blue arrows represent the diffusion of species, the orange arrows

represent heat diffusion and the red arrows indicate the decrease/increase of flame speed.
[60].

• Thermo-diffusive instabilities and pressure effects: Combustion dynamics are sig-
nificantly influenced by multiple types of instabilities. The foremost is the thermo-
diffusive instability, which arises due to unequal diffusion rates of thermal energy and
reactants within the combustion environment. As depicted in Figure 2.15, the flame
front exhibits a series of expansions and contractions, respectively convex and concave
toward the unreacted gases. These expansions increase the surface area of the flame
relative to the reacted gases, resulting in considerable thermal energy loss from the
flame (symbolized by orange arrows) and an influx of fresh gases (symbolized by blue
arrows). In contrast, the contractions present reduced availability of reactants, leading
to a thermal accumulation surrounded by hot combustion products. In the case of
hydrogen, where Le < 1, the expansions rapidly attract new reactants compared to
heat loss, enhancing the flame speed. Conversely, at the contractions, less hydrogen
atoms are able to diffuse towards the flame front, and thus the flame speed is smaller.
This results in an unstable flame, leading to increased curvature and self-generated
wrinkling.
Thermo-diffusive instabilities also present different behaviours when subjected to
higher pressures. In a DNS study performed by Rieth et al. [61], the authors
demonstrated that H2 diffuses towards convex regions (expansions), while H diffuses
towards concave regions (contractions). Furthermore, by analyzing a scenario where
ammonia was used as fuel, they concluded that the diffusion of atomic hydrogen in
concave regions under atmospheric conditions helps stabilize the flame by increasing
the heat release. But, under higher pressures (10 atm), this effect was reduced as
the concentration of H was lower due to the three body reactions H + O2 + (M) ⇄
HO2 + (M), leading to an increased propensity for thermo-diffusive instabilities and
local enrichment.
Other effects that influence the behaviour of the flame at elevated pressure include
[62]:

– The laminar flame speed and the laminar flame thickness tend to decrease.
– The Peclet number also decreases, resulting in a predominance of diffusion over

convection, exacerbating the predisposition to thermo-diffusive instabilities.
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– The Markstein length, which quantifies the distance over which diffusive-thermal
processes, like heat and mass diffusion, influence the flame, gets smaller, indicat-
ing an increase in flame speed with negative curvature. This is associated with
an increase in fuel consumption rates and a decrease in flame thickness.

– Finally, the flames generally exhibit more wrinkles, the positive curvature regions
becomes thinner, increasing the flame speed, and the negative curvature regions
become thicker, leading to a decrease in flame speed and instabilities.

• Thermoacoustic instabilities: These happen in various types of thermodynamic
engines. This instability typically arises from the interaction between irregular heat
release and acoustic disturbances. It is known for creating continuous, large-amplitude
oscillations that are self-sustaining. The fluctuating heat release acts as a powerful
source for generating sound waves, which travel inside the engine, with some reflecting
back from the engine walls. These reflected waves, once they return to the area
where they were generated, cause further disturbances in the rate of heat release. If
the irregular release of heat aligns with the sound pressure, it leads to a stronger
variation in sound pressure. Eventually, some form of non-linear behavior in the
burning process will limit the amplitude of these oscillations [63]. Thermoacoustic
instabilities are not the focus of this work, but they are worthy of mentioning due
to their similarity to the unstable autoignition state discussed in [59]. Furthermore,
authors have shown interest in predicting these instabilities through the means of
machine learning methods.

These types of instabilities make the flame particularly unstable in the case of hydrogen
due to the small Lewis number, the thin flame front and its increased reactivity. This
leads to a challenging design and analysis of combustion chambers using hydrogen, where
classical methods of flame stabilization such as flame holders or step-like structures are
often not enough to contain the movement of the flame. They are also particularly relevant
for the autoignition phenomena. As previously explained in Section 2.4.3, the chemical
kinetics under the cross-over temperature rely on the availability of H radicals to participate
in exothermic reactions. As these instabilities, particularly thermo-diffusive instabilities,
are responsible for diffusing H atoms away from the autoignition region in the case where
Le < 1, they can decelerate the autoignition process and increase the autoignition delay
time. This is dependent on the location of the wrinkled flame fronts which appear in
the flame propagation regime and the location of the autoignition zone in the premixing
duct. If the autoignition zone is far away from this location, this effect is likely to be less
pronounced.

2.5. Water injection systems
For the purpose of this research, it was decided that using a water injection system would
be the means of suppressing the flashback. As such, to better understand these systems
and the results of their application found in the various studies presented in Section 3.4, a
background is given in the following.
Water injection is a process whereby H2O, in the form of liquid droplets or steam, is
introduced in combustion-driven power systems. It was first introduced in the Allison
J33-A-35 engine with the purpose of providing additional power to the F-80 fighter jet
[64]. The underlying idea was to increase the mass accelerated by the engine. The same
principle was later also applied to the Boeing 707 aircraft to increase the thrust during
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take-off. However, this technology was quickly abandoned partly due to the complications
arising with the need of carrying water on board and partly due to the advancement of
aero-engine technology which allowed them to produce more thrust [65]. The automotive
sector has also introduced water injection over the years. For example both rally cars and
Formula 1 cars have used to increase the power output. Furthermore, it has also been used
in diesel engines to suppress the formation of NOx and finally the car manufacturer SAAB
has also used it in the past on the I99 model to reduce the air temperature [66]. Finally,
water injection was also introduced in the power generation sector with the purpose of
reducing the NOx emissions in gas turbines. However, this technology was again abandoned
in favour of dry premixed combustion because of the need of demineralised water [67]. Due
to the increasingly stringent regulations on emissions, water injection has seen increased
interest in all three of the aforementioned fields mainly because of its high potential of
reducing NOx.

The purpose of water injection systems in gas turbines depends on the injection location.
When the water is injected in the compressor, the evaporation of the droplets lowers the
flow temperature which in turn leads to higher densities and power output. Unfortunately,
injecting water in the compressor leads to corrosion due to the humid air, especially if
the water contains minerals. Furthermore, as the residence time in the compressor is very
short, incomplete evaporation may lead to airfoil sputtering. Both of these effects can lead
to an increased maintenance cost [68]. In the other case, when the water is injected in
the combustion chamber, which is the case of interest for this study, the purpose shifts to
stabilizing the flame and to reducing the NOx emissions. As a downside, however, thermal
efficiency is decreased and fuel use is increased [69]. The main interest of this study is to
see how efficient is the water spray in stopping the flame front from entering the mixing
duct if it is activated at the time a flashback precursor has been detected. As such, water
shall be injected in the combustion chamber where the design parameters of the spray shall
be tuned for this purpose.

2.5.1. Spray design parameters
The effectiveness of the spray depends on several parameters related to the properties of
the injected liquid water and the design of the spray itself. These are:

• Atomizer: The first choice in the design of the spray relates to its atomizer configura-
tion. Atomization refers to the process whereby the liquid water is transformed into
droplets. Common configurations are the plain orifice atomizer and the pressure swirl
(simplex) atomizer. The plain orifice injects a solid spray cone through a small orifice
by turning the pressure energy into kinetic energy. Meanwhile, the simplex atomizer
uses outlet orifice in the form of a disk, through which water can be injected in the
form of a swirled spray or a non-swirled spray. The two configurations can be seen in
Figure 2.16. The resulting shape of the spray is annular. Both of these atomizers
have found applications in combustion applications, but, generally, the hollow cone
spray design is preferred in gas turbine applications due to its superior atomization
potential [70].
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Figure 2.16: The solid and hollow cone spray configurations [70]

• Injection velocity and pressure: The injection velocity plays a critical role in deter-
mining the trajectory of the water droplets. Furthermore, it influences the residence
time and consequently the time in which the droplets are able to evaporate. It can
be estimated by applying Equation 2.3, where �̇�𝐿 is the mass flow of the liquid, 𝜌𝐿
is the density of the liquid and 𝑑0 is the injection diameter.

𝑣𝑖𝑛𝑗 = 4�̇�𝐿
𝜋𝑑2

0𝜌𝐿
(2.3)

From the injection velocity the pressure difference between the spray outlet and the
combustion chamber can also be obtained by applying Bernoulli’s equation, as shown
in Equation 2.4.

Δ𝑃 = 1
2

𝜌𝐿𝑣2
𝑖𝑛𝑗 (2.4)

• Water mass flow: The water mass flow, appearing in Equation 2.3, is a critical
parameter in determining the stability of the flame and the reduction in emissions.
The more water that is added to the products of the first combustion chamber, the
lower the adiabatic flame temperature will be, resulting in lower NOx, as previously
explained in Section 2.2

• Sauter Mean Diameter (SMD): The SMD is defined as the average diameter of
a sphere which has the same volume to surface ratio as the typical particle of the
spray. This parameter is highly influential towards the physics of the spray through
it’s impact on the evaporation efficiency and the spread of the spray. The first is
increased when the residence time is long enough to allow for complete evaporation.
Furthermore, smaller droplets also evaporate faster due to their decreased mass.
Meanwhile, the distribution of the spray benefits from a larger SMD. This is because
larger droplets have a higher momentum and thus the drop dispersion imposed by
the nozzle is less affected by the surrounding flow.
In general, the liquid surface tension and the liquid viscosity increases the SMD
size. Furthermore, while the SMD increases with increasing flow rates and flow
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numbers, it also decreases when the pressure differential gets larger. For the ambient
medium properties, it was found that the SMD has a non-linear relationship with
the ambient pressure, where it first increases until approximately 3 bar and then
decreases again until 10 bar. Finally, a similar non-linear relationship was also found
for the atomizer dimensions. Both the length/diameter ratio of the swirl chamber
and the length/diameter ratio of the final orifice seem to first lead to an increase in
the SMD, followed by a subsequent decrease as these ratios get larger.

• Swirl number: If one wishes to use a simplex injector where the flow is also swirled,
the swirl number also becomes an important parameter that influences the flow
dynamics and the effectiveness of the spray. Increasing the swirl tends to improve
the mixing of the water with the ambient by promoting the break-up of droplets.
However, in some cases, it can lead to decreased flashback resistance through the
combustion induced vortex breakdown (CIVB) pathway. Nevertheless, it is important
to note that an increase in swirl will lead to an increase in combustion efficiency and
a smaller amount of water [71]. The influence of the swirl number on the SMD can
be observed directly in the flow dynamics through the tangential component of the
velocity and in the modification of the SMD through the adjustment of the pressure
differential.

• Atomizer geometry: The geometry of the atomizer is composed of several parameters,
depending on the desired configuration. For the solid cone atomizer, the parameters
of interest are the length of the orifice, its diameter and the cone angle. Meanwhile,
for the simplex injector, the thickness angle serves as an extra parameter which
determines the ratio between the air core flow and the water flow. As seen in
the previous sections, these parameters influence the SMD. In addition to that, the
dispersion of the droplets throughout the combustion chamber is also highly influenced
by the external angle and the thickness of the resulting annular sheet.

• Injection location: The performance of the spray in suppressing the flashback could
also be highly influenced by the injection location. While the most common location
is in the premixing duct, other studies [71, 72] have quantified the performance of the
combustion when the spray was injected either in the ignition zone, after it, or in a
combination of the three locations. As the autoignition flashback studied in this work
travels close to the speed of sound, an injection location closer to the autoignition
zone could prove useful in this scenario, minimizing the time needed for the particles
to influence the temperature of the flow.



3
Literature review

This chapter provides an overview on the state of the art research involved in the work of
this thesis. First, the problem of predicting the flashback event is tackled. For this, a short
description of dynamical systems exhibiting extreme events is given, followed by general
machine learning algorithms that attempt to predict such dynamics. Then, a more in depth
review containing methods that have been specifically applied to predicting events similar
to flashback is given.

3.1. Dynamical systems
A dynamical system [73] is a mathematical framework used to describe a system whose
state evolves over time according to a fixed rule. It encompasses any system, from simple
mechanical systems to complex biological or financial systems, where the current state of
the system uniquely indicates its future state. While simple systems can be approximated
by a linear equation, others, which are nonlinear and high dimensional, may be harder to
describe and even harder to predict.

The branch of dynamical systems which studies the underlying behaviour of such complex
systems displaying aperiodic behaviour over time is called chaos theory. This theory
states that the behaviour of such a system can be predicted only for a short duration, i.e.
the predictability time. Central to chaos theory is the butterfly effect, which describes
how infinitesimal disruptions in initial conditions can lead to vastly different result in
deterministic nonlinear systems. This effect highlights the limited predictability in chaotic
systems due to their sensitivity to initial conditions. This also indicates that approximating
the present state shall not give an approximate view of the future [74].

Mathematically, this can be expressed by considering a dynamical system described by a
set of equations. If 𝐽(𝑥(𝑡)) is the state of the system at a given time 𝑡 with the initial
condition 𝑥0, then, for two slightly different initial conditions 𝑥0 and 𝑦0, the states at a
later time diverge according to:

|𝐽(𝑥(𝑡)) − 𝐽(𝑦(𝑡))| ≈ |𝐽(𝑥0) − 𝐽(𝑦0)| 𝑒𝜆𝑡

where 𝜆 is the largest global Lyapunov exponent, which, for chaotic systems, must be larger
than 0. This equation signifies that as time progresses, the difference in the trajectories of
the system, originating from these slightly different initial conditions, grows exponentially.
This leads to unpredictable and divergent outcomes, indicative of chaotic behavior [73].

27
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Prime examples of systems displaying this kind of behaviour are turbulent flows, the medium
in which combustion takes place in gas turbines.

Although predicting the dynamics of chaotic systems is a challenging task, considerable
attention has been given to these system due to their tendency to present extreme events.
Extreme events are sudden, significant deviations in the dynamics of a system, often leading
to substantial impacts [75]. Such events take place in a wide range of nonlinear, dynamic
processes observed in daily life, including environmental phenomena like rogue waves and
avalanches, as well as socio-economic occurrences like stock market crashes. The widespread
nature and potential for severe consequences underscore the importance of understanding
and predicting these events [76, 77, 78].

The complexity of these phenomena makes creating accurate mathematical models difficult.
While simplifications can capture general process characteristics, they fall short in predicting
rare and extreme events. A key challenge is data scarcity, as these events are infrequent,
leaving insufficient data for developing and validating predictive algorithms [79].

The behaviour of chaotic systems often results in non-stationary time series [80]. These
present a varying mean, variance and autocorellation. Some usual techniques that adjust a
non-stationary time series to make it more predictable include the following: differencing,
where the time series is transformed to the difference between one time step and the next,
detrending, where long-term shifts in the data are removed and seasonal adjustment, where
fluctuations in the data are accounted for. Nevertheless, these do not always manage to
make a time series stationary. This is partly the reason why machine learning methods,
which are more capable of learning non-stationary data, especially when helped by the
aforementioned techniques, are becoming increasingly popular for tasks which involve
predicting dynamical systems.

3.2. Machine learning
Machine learning is a branch of artificial intelligence dedicated to creating algorithms and
statistical models that allow computers to carry out tasks by recognizing patterns and
drawing conclusions from data, instead of adhering to explicit instructions. This field
combines aspects of computer science and statistics to provide machines with the ability
to make predictions or decisions adaptively as they are exposed to new data. At its core,
machine learning involves training models on datasets, which then learn to make predictions
or decisions that are refined through continuous exposure to new data.

The field encompasses a range of algorithms, each suited to different types of tasks and data.
These algorithms can be categorized into three primary groups: supervised learning, where
models are trained using labeled data; unsupervised learning, which involves finding patterns
and links in unlabeled data; and reinforcement learning, which focuses on taking decisions
based on a system of rewards and penalties. For applications that involve predicting the
behaviour of dynamical systems, certain machine learning algorithms are particularly useful.
They are adept at handling sequential data, extracting relevant temporal patterns and
correlations crucial for effective forecasting and detecting anomalies. These can be divided
into two classifications.



3.2. Machine learning 29

3.2.1. Approach towards predicition
The first classification of machine learning algorithms that are able to predict dynamical
systems can be made based on the approach used to make the prediction. The two
approaches available are time series prediction and precursor identification.

Time series prediction refers to the process of using historical data to forecast values in
a sequence of time-orderd data points. It involves analyzing patterns in the historical
data, such as trends, seasonal variations, and cycles, to predict future values. The primary
focus of time series prediction is forecasting, which can range from short-term predictions
(like stock prices for the next day) to long-term forecasts (like climate change effects over
decades). Use of time series forecasting is widespread, with applications being found in
finance, meteorology and other physical phenomena. Common techniques for time series
prediction are classical methods such as autoregressive moving averages (ARMA) used for
financial data and newer methods involving neural networks such as CNNs and LSTMs,
transformers, generative adversial networks (GAN) and/or others.

Precursor identification, on the other hand, involves the detection of specific patterns or
indicators within a time series that signal the likelihood of a significant event or change in
the future. Unlike time series prediction, which forecasts specific future values, precursor
identification focuses on recognizing the signs or conditions that often precede an event.
This is particularly important in areas like healthcare, where identifying precursors can
lead to early intervention for diseases, or in system monitoring, where detecting early signs
of failure can prevent breakdowns. Here, common approaches include clustering-based,
density-estimation-based and reconstruction-based methods.

3.2.2. Learning methodology

Figure 3.1: ML algorithm classified into supervised, unsupervised and semi-supervised [81]

The second classification is the type of machine learning used, supervised or unsupervised,
both of which have been argued for in terms of viability for the prediction of a flashback-type
event. The first, as previously explained, aims to create a map between inputs and outputs,
usually through the means of classification or regression. The intuitive advantage of this
method would be the inherent flexibility of such algorithms, which are able to learn any type
of function, according to its own set of rules, as long as there is enough data to represent
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that function. Unfortunately, this is potentially one of the problems of applying these types
of algorithms for extreme events, due to their sparsity. This is where unsupervised machine
learning could become useful, as this type of algorithm identifies the structure and patterns
which the data follows on its own. Different machine learning algorithms which fall under
these categories can be seen in Figure 3.1. An explanation for some of the most popular
algorithms and their uses is detailed in the following paragraphs.

Supervised learning
In general, supervised learning implies using corrective information to minimize a cost
function that in turn determines the correct parameters of the learning method. The most
well-known methods within this category are neural networks (NNs), which can be described
as function approximators. Their popularity stems from the universal approximation
theorem [82], which states that a sufficiently large and deep neural network can approximate
any given function. At its core, a NN is composed of layers of neurons connected by weights
and biases, which are updated throughout the learning process using backpropagation.

In the context of predicting the behaviour of dynamical systems there are several types of
neural networks which have been applied successfully, with some of them finding applications
in predicting extreme events as well [80]. Some of the more popular ones are the following:

• Convolutional neural networks (CNNs) [83]: This type of neural network has an
architecture that is generally composed of convolution, pooling and fully connected
layers. In a CNN, a neuron is exclusively connected to a single input region and the
neurons in a layer share a weight matrix. These particularities allow the network to
detect patterns in the data, independent of the location in the 1D or the 2D field.
This is useful for both precursor identification, by identifying peculiar features of
the dataset, and time-series forecasting, by feeding the network a certain input and
allowing it to complete the rest of the sequence using the learned patterns. The major
shortcoming of CNNs for forecasting applications is the relatively short prediction
horizon. Nevertheless, the extracting the relevant features using convolution and
using them for points which are farther away can still be achieved by using temporal
convolutional networks (TCNs), by graph neural networks (GNNs) and by other
hybrid networks, such as combinations between CNNs and recurrent neural networks
(RNNs).

• Recurrent neural networks (RNNs) [83]: RNNs implicitly take into account the
relationship between the current sample of the time series and past ones, automatically
determining how far behind to look in the past. They make use of recurrent layers,
where one input time step is processed at a time. As traditional RNNs suffer from
unstable training (the vanishing or exploding gradients), which prevents the network
from understanding long term dependencies, currently, they are being replaced by
more sophisticated rsions sveuch as echo state networks (ESNs), long short-term
memory networks (LSTM), gated recurrent units (GRUs) and reservoir computing
methods (RC).

There are many other models which have been developed recently, with some of the more
popular being graph neural networks (GNNs) [84], deep gaussian processes (DGPs)[85],
generative adversarial networks (GANs) [86], diffusion models and transformers.

Identified drawbacks of the aforementioned methods are as follows [80]. Firstly, deep
learning methods, with the exception of DGPs, can not provide an uncertainty interval of
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the model prediction. Secondly, when creating a deeper and more complex network, these
architectures are subject to overfitting. Thirdly, there is a need for sufficiently long time
series. Some deep learning architectures need to estimate millions of parameters, indicating
thus the need for a large amount of training data. This problem has been partially solved
by means of data augmentation, but the proposed methods are still lacking. Finally, the
last problem is that most of the architectures assume that the time series is stationary
over time. When the dynamical system is chaotic, a concept drift phenomena is observed,
whereby the prediction accuracy is dramatically decreased.

Unsupervised learning
In supervised learning the task implies the extraction of feature or other relevant patterns
from the data by specifying global criteria, without the need for labeled training data.
Unsupervised learning deals with problems of dimensionality reduction, quantization and
clustering [81].
Dimensionality reduction is a method of representing a dataset composed of multiple
dimensions, such as a multi-variate time series, by a lower dimensional model. This
technique is necessary when dealing with datasets which contain a large number of variables,
such as combustion flows. Besides lowering the computational power necessary in the
models, it also allows for the methods to focus on the variables (or characteristics arising
from combinations of variables) that best represent an extreme event and its precursor.
Some common methods include:

• Proper orthogonal decomposition (POD) [87]: POD, also known as Principal Com-
ponent Analysis (PCA) and commonly used in the field of fluid dynamics, is an
eigenvalue-based method which extract the dominant modes or features from a
dataset. It identifies orthogonal modes which capture the most variance (or the
maximum kinetic energy) by decomposing the data using methods such as singular
value decomposition (SVD). Mathematically, this can be written as follows:

𝑢(𝑥, 𝑡) =
∞

∑
𝑖=1

𝑎𝑖(𝑡)𝜙(𝑥) (3.1)

where 𝑢(𝑥, 𝑡) is the velocity vector field, 𝜙𝑖(𝑥) are deterministic spatial functions or
modes, and 𝑎𝑖(𝑡) are the time-dependent coefficients.

• Co-kurtosis PCA [88]: This method was proposed to improve on the classical principal
component analysis, as it was observed that PCA, which transforms the thermo-
chemical state space into eigenvectors based on the co-variance of the data (much
like POD), could fail when it comes to identifying localized chemical dynamics such
as ignition kernels. Instead, this method proposes to use the fourth order statistical
moment, the co-kurtosis tensor, to compute the principal vectors. In this way, the
directions of these vectors now point towards the outliers contained in the dataset,
which can locally indicate the appearance of ignition kernels. The method was tested
on a synthetic dataset and proved to be better than PCA in terms of reconstruction
error of the original thermo-chemical state. Furthermore, in [89], CoK-PCA was also
successfully used for anomaly detection. In this algorithm, the data is decomposed
into several spatial sub-domains, and the principal kurtosis tensors are computed in
each sub-domain and at each time step to identify the relative importance of each
features towards the overall co-kurtosis. By comparing the feature moment metric
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distribution to its value at a regular time step/location, anomalies were identified for
two turbulent auto-ignition combustion cases reliably.

• Autoencoders [81]: Autoencoders are a type of neural networks that particularly
excel in dimensionality reduction and feature learning. The first component is an
encoder, the part of the network which compresses the input data into a smaller
dimensions. This part could be composed of different layers such as CNN layers
or LSTM layers which allow for the network to capture different spatio-temporal
patterns and features. The network’s second component is the decoder, which aims
to rebuild the original data based on the encoder’s output. Training these networks
involves reducing the error between the original data and the decoder’s output, often
employing a loss function such as Mean Squared Error (MSE). They can be used
for denoising, anomaly detection (by learning to reconstruct normal data and failing
to do so with anomalous data) and, similarly to the other dimensionality reduction
techniques, they can be used to reduce the computational load of another method.

While most of the aforementioned methods in the supervised learning part have found
applications in time-series forecasting, clustering, on the other hand, has found direct
applications in precursor identification. Clustering is an unsupervised learning technique
whereby data is clustered into similar groups. Common methods includes the following:

Figure 3.2: K-means algorithm applied to the colors in an image of a flower. Voronoi cells
and their centroids are shown in blue. [90]

• K-means clustering: Initially introduced by Hartigan [91], this algorithm divides a
dataset of 𝑛 points into 𝑘 clusters, where each observation is partitioned into the
cluster with the nearest mean. This results in a tessellation into so-called Voronoi cells,
as shown in Figure 3.2. While an improved version of this algorithm, k-means++, was
applied in modelling the mixing layer of turbulent boundary layer with satisfactory
results, this method has not actually been applied to chaotic systems showing extreme
events, with the exception of Golyska [92] which shall be discussed shortly.

• Spectral clustering [93]: Spectral clustering is a widely used technique for grouping
data. It operates by identifying communities of nodes and the connections (edges)
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between them, akin to the principles seen in graph theory. The method involves
computing the eigenvalues of the graph data’s similarity matrix, which are then
employed in the clustering process. This approach can be visualized as a two-
dimensional system of masses and springs, where each data point is depicted as a
mass, and the springs between them - with stiffness representing the edge weight -
signify the similarity between data points. Despite its usefulness, spectral clustering is
often considered resource-intensive due to the computational demands of calculating
the eigenvalues of the similarity matrix.

Figure 3.3: The clustered path of the Moehlis-Faisst-Eckhardt (MFE) system in the phase
space. Left figure shows the clustering achieved with the k-means++ algorithm and the

right figure corresponds to the clustering achieved by the modularity-based algorithm. The
clusters classified as extreme are indicated by red numbers for the cluster centers [92].

• Modularity-based clustering: This type of clustering technique, similarly to spectral
clustering, is applied to graphs. It relies on maximizing modularity, which is a measure
of strength of division into communities based on comparing the edges and the weights
of the network in question to a network composed of the same nodes but with a
random distribution of edges and weights. Maximizing this difference, this method
finds communities which are similar to each other, where intra-connectivity is high
and inter-connectivity with other communities is low. Of particular interest is the
method proposed by Newman [94] due to its high modularity score as compared to
other methods, relatively good complexity (𝒪(𝑁2log 𝑛)) [92] and the fact that it has
already found applications in extreme event analysis [95]. The method of Newman
[94] was in fact compared with the k-means++ algorithm in a study performed by
Golyska [92] where several systems exhibiting extreme events were studied. Although
no conclusive difference was found in terms of prediction time (or the time spent
by the system in the clusters prior to the extreme clusters), the modularity-based
clustering approach resulted in better scores in the confusion matrix. This indicates
that modularity-based clustering does a better job at identifying the dynamics of a
system. Furthermore, Golyska [92] also indicated that if the approach is modified to
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include only extreme nodes in extreme communities, these results should be further
improved. The problem of not having this exact division between the extreme and
non-extreme communities becomes evident by looking at Figure 3.3. Here, it can
be seen that both clustering approaches result in extreme clusters which have little
extreme nodes and non-extreme clusters which may contain extreme nodes. From
these figures, one can also intuitively understand that a clustering algorithm which
focuses on identifying the systems dynamics should outperform a method which merely
relies on variance. This is because a precursor cluster identified based on variance
should result in a large rate of false positives as compared to a precursor cluster
identified based on the system dynamics. Nevertheless, if one wishes to accurately
compare these two algorithms, the aforementioned change to the extreme clusters
should be applied to both methods first.

3.3. Methods applied to chaotic systems
In this section, an overview of the existing method which are a close fit for autoignition
flashbacks is presented. These methods have been chosen either due to their application to
extreme events, in particular thermo-acoustic instabilities and turbulent flows exhibiting
energy bursts, or due to their application to chaotic systems. In the following, they are
split between unsupervised learning and supervised learning methods.

3.3.1. Unsupervised learning
A clustering-based, purely data driven approach aimed to fully describe dynamical systems
was first introduced by Schmid et al. [95, 96] and then further developed by Golyska and
Doan [92] to use it for precursor identification. Here, the Moehlis-Faisst-Eckhart model
and the Kolmogorov flow model were represented in the phase space and then tesselated
to reduce the system’s size. Then, a transition probability matrix and modularity based
clustering were used to describe the systems behaviour, resulting in communities with
similar flow structures and the likelihood of transitioning between them. Finally, to predict
the extreme events, communities were divided into normal clusters, precursor clusters and
extreme clusters, and the prediction time is based on the time spent in precursor clusters
which have a high probability of transitioning to an extreme cluster. Although showing
a significant rate of false positives, by slightly altering the definition of extreme clusters
and their detection, this algorithm seems like a good candidate which could be applied
to flashbacks. While in this study the quantities represented in the phase space were the
energy dissipation rate and the kinetic energy, the algorithm’s flexibility allows for the
use of any other representative variable, which for instance, in the case of autoignition
flashback, could be pressure, temperature, certain species or velocity fluctuations.

The next method considered is based on recurrence quantification and was applied to pressure
time series of a combustion experiment with the purpose of detecting an incoming flashback
[97]. The authors stipulate that recurrence analysis should be able to identify patterns of
deterministic and non-deterministic dynamics that signify the changes in the dynamics
of a system appearing just before the extreme event. As such, the phase portrait was
reconstructed using time delay embedding and after a recurrence threshold was chosen, the
recurrence matrix was constructed and plotted. Finally, recurrence quantification analysis
was performed using indicators such as recurrence rate, divergence and determinism, and
flashback was predicted with 2-4 seconds prior to the event. As mentioned before, although
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different in nature, the flashback event observed in the LES simulation does have similar
characteristics in terms of pressure time series. As such, this method also look promising
due to the robust detection and large prediction time. One disadvantage is the longer
computational time, which might not be suitable for online detection. Furthermore, another
drawback again lies in the simulation duration, i.e. because a lasting observable change has
to be detected first, the time scale of recurrence analysis might not be small enough.
Different hybrid approaches involving complex networks were proposed by Murugesan
et al. [98] and Kobayashi et al. [99] and applied to thermoacoustic instabilities, which
is often a precursor to flashback [26]. Here, the authors of [99], use a synchronization
index, which increases when the mutual coupling between pressure fluctuations and heat
release rate strengthens to calculate the frequency of transition in the ordinal partition
transition network. This network consists of order patterns expressing the relationship
between the two time series in adjacent locations (how one increases/decreases with respect
to the increase/decrease of the other and with respect to the increase/decrease of itself)
and the frequency of transition between the patterns as weighted and directed edges. The
network is expressed as an adjacency matrix. Then, PCA is applied to the probability
distribution in the 16-dimensional transition patters in the ordinal transition networks and
the vectors emerging from PCA are used as input to an SVM classifier, which classifies
the data based on clusters generated through the k-means method. As for results, the
synchronization index clearly shows a region of the combustion chamber where positive
coupling between the pressure and heat-release-rate fluctuations emerges near the shear
layer formed due to the large-scale vortices. Furthermore, the ordinal partition transition
networks do successfully capture the beginning of the instabilities, and the same can be said
by the PCA vectors. Finally the SVM manages to categorize the data into noise, transition
and instability, and through it, online suppression is also achieved. Now although this is
a hybrid approach, where the known behaviour of thermoacoustic instabilities was taken
advantage of, these methods still present significant interest as the flashback phenomena of
this study presents a somewhat similar behaviour, i.e. autoignition is induced due to the
temperature fluctuations arising from pressure waves generated by heat release. Another
drawback that should be mentioned is the significantly higher amount of data needed in
the discussed study.
Another popular approach again employed for the detection of an incoming thermoacoustic
instability is through the critical slowing down theory (CSD) [100]. CSD refers to a system
which exhibits a reduced recovery rate to perturbations as a bifurcation is approaching.
This study was able to detect CSD well before the amplitude of thermoacoustic oscillation
increased, through both the variance and the lag-1 autocorellation coefficient applied to
pressure time series, verifying both for statistical significance.
The unsupervised learning methods found show promise towards prediction the flashback
event, with each of them presenting their own advantages and disadvantages. Firstly, the
modularity-based clustering approach is a great candidate due to its insensitivity towards
the underlying physical phenomena. Indeed, being purely data-driven offers and advantage,
mitigating the need for data that fits certain criteria, while still capturing the true dynamics
of the system due to the modularity-based clustering technique. This is reflected in the study
of Golyska and Doan [101] in the application of the algorithm to multiple chaotic system,
ranging from simple ones such as the Lorentz attractor to complex Kolmogorov flows. The
next two methods discussed show promise due to their proven capabilities in an online
setting. The issue is that they have been applied to thermo-acoustic instabilities, thus taking
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advantage of the known behaviour of this phenomena. As such, although the autoignition
flashback shares some common characteristics with thermo-acoustic instabilities, it remains
a question whether or not this type of analysis fits the requirements. Lastly, the main
disadvantage of CSD is that some of its indices, such as autocorellation, are known to
under-perform on non-stationary time-series. This is the case of the autoignition flashback
as the mean and the variance of the different variables change over time. All in all, for
unsupervised learning, two points must be highlighted. Firstly, a large advantage is given
by methods which are agnostic to the underlying physical phenomena and, secondly, the
method chosen should be able to deal with non-stationary time-series to detect extreme
events in chaotic systems.

3.3.2. Supervised learning
Another study that analyzed pressure time series of thermoacoustic oscillations was done
by Bury et al. [102]. The authors, inspired by the critical slowing down theory, gathered a
large dataset of systems presenting bifurcations and used it to train a convolutional neural
network (CNN) combined with a long short-term memory (LSTM) network, with the idea
that the NN could not only detect an incoming bifurcation, but it could also determine
which type of bifurcation it is. As for the results, it was shown that the NN was able to
detect an incoming instability with a better score on the receiver operating characteristic
(ROC) curve, but it did not always assign the correct type of bifurcation. Postulating on
the similarity between the pressure time series used in these studies and the pressure time
series available from the LES simulation, either CSD or a CNN-LSTM combination, along
with the training data set, could potentially be used to detect an incoming flashback. It
should be mentioned that this sort of method, due to easily obtainable data, is preferable, as
a non-intrusive pressure probe could be used in a real gas turbine with ease, thus achieving
online prediction. Nevertheless, even though there is a considerable amount of data in this
study which could be used, there is not data pertaining to autoignition flashback. This may
prove problematic as the network might not be able to learn the new phenomena through
the limited amount of data which can be supplied through LES simulations.
Asch et al. [103] sought out to predict extreme events in dynamical systems in a more
data-driven way by using neural networks. The feedforward NN, the LSTM NN and the
reservoir computing network were used in three separate dynamical systems, with good
prediction times. A sensitivity analysis was carried out showing that the feedforward NN
was the most sensitive to noisy data and model hyperparameters. The LSTM RNN was
more robust in that sense, with minimal tuning of the hyperparameters needed and finally
the RC network did consistently outperform the other two for the Kolmogorov flow. While
these results are promising, the proposed method has one critical flaw, which is the lack of
data availability for training that contains extreme events. To circumvent this, the authors
performed computationally expensive simulations to gather enough data for these systems,
which although applicable for simpler systems such as the ones analyzed here, is a more
expensive task when it comes to LES simulations.
McCartney et al. [104] also studied precursor identification in thermoacoustic instabilities
with the specific aim of online detection. To begin, they reviewed the existing methods
stating that intermittency based methods such as recurrence plots and the Hurst Exponent
do seem to provide good warning times but they are slow to compute and insufficient for an
online detection. As such, the authors looked towards supervised machine learning methods.
In particular, two methods of supervised learning are showcased and contrasted with the
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Hurst exponent and Auto-Regressive (AR) models. In the first approach, the original
dynamic pressure signal is fed into Hidden Markov Models (HMMs) to categorize its state.
The second approach involves utilizing the signal that has undergone transformation through
Detrended Fluctuation Analysis (DFA) as input. A universal machine learning classifier is
applied to this transformed signal, with the classifier being chosen and optimized through
the process of Automatic Machine Learning (AutoML), for the purpose of categorizing
the signal’s state. For the results, the ML methods initially outperform the AR and
Hurst exponents methods, but their accuracy drops to similar levels as soon as the data is
normalized. Finally, the ML methods completely fail to predict the incoming thermoacoustic
instability when a point unseen during the training is fed as input. This again highlights
the problem of supervised machine learning using a small set of training data, a problem
that could also occur with the data available in this study. It should also be mentioned that
the AR model involving CSD theory not only is more robust than the ML methods, but
it also is quicker to calculate than the Hurst exponent and it requires much shorter time
scales, which is of interest considering that the flashback event happens extremely fast.

Another method considered also making use of recurrence networks was developed by Ruiz
et al. [105] and applied to the problem of thermoacoustic instabilities. Here, the aperiodic
and periodic structures in the recurrence network were classified using a Convolutional
Neural Network (CNN) which was further used to define the proximity of the dynamic state
to the onset of the instability by making use of the knowledge that pressure fluctuations
during normal operation are aperiodic and thermoacoustic instabilities are periodic. In
terms of training, the lack of data could be circumvented by feeding the network periodic
data coming from different sources and aperiodic data in the form of noise. Nevertheless,
the use of information that is unique to thermo-acoustic instabilities is a disadvantage.

In a research done by Qi et al. [106], the authors used a densely connected CNN network
model to detect extreme events arising in the truncated Korteweg-de Vries (tKdV) equation,
which generates skewed distributions similar to outcomes from laboratory observations
of shallow water waves encountering a sudden depth change. The method employs a
data-driven architecture where the relative entropy loss function, together with empirical
partition functions, is used to capture the differences in the shape of the density distribution
functions of the output and the training data over both time and space. Here the dominant
structures of the turbulent flow field are emphasized, such that the network does not
get overwhelmed with learning small-scale dynamics. The network showed high skill in
accurately predicting the statistical emergence of extreme events over a large number of
statistical regimes. One particular merit of this method is that the NN was trained using
data which was drawn only from the near-Gaussian regime of the tKdV model solutions.
Another merit of this method consists in the CNN architecture used. The network employs
convolutions with dilated kernels, by adding zeros between the elements of the original
kernel. This dilation allows the network to capture structures at multiple scales more
effectively, as it can adaptively include different spatial and temporal scales, making it able
to better understand the multiscale nature of turbulent dynamics. Furthermore, the network
architecture also incorporates dense connections. This means that the output from each
layer is not just passed to the next layer, but is also used as input for all subsequent layers.
In this way, information is integrated from various scales in each layer. One drawback
of this solution when applied to reheat combustion dynamics is the need to pre-process
the data and create appropriate probability distribution functions (PDFs) for the different
variables obtained from the LES simulation. This is difficult due to the complexity of
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combustion flows, which span a wide range of values over both time and space. Meanwhile,
for the tKdV equation, the steady-state distribution can be characterized by the invariant
Gibbs measure derived from statistical mechanics principles.
In a study done by Jiang et al. [107], the authors have developed a framework utilizing two
deep convolutional neural network (DCNN) for data-driven prediction of extreme events
in two-dimensional nonlinear physical systems, both temporally (”when”) and spatially
(”where”). This approach involves using two-dimensional snapshots or images as data or
measurements. For effective training of the DCNN, a suitable labeling scheme is adopted,
aimed at predicting extreme events within a specified time horizon. Once the DCNN
predicts the likelihood of an extreme event within this time frame, a spatial labeling
method is then employed to determine where the event is likely to occur. The effectiveness
and accuracy of this machine-learning-based prediction framework are demonstrated and
validated by the authors through synthetic data derived from the two-dimensional complex
Ginzburg-Landau equation and empirical wind speed data from the North Atlantic Ocean.
For the CGLE system, the time prediction was investigated for 10 time steps in advance
resulting in 94.4 % AUC for the ROC curve metric for the better network out of the two
(ResNet-50). When moving to 20 time steps in advance, ResNet-50 now resulted in a AUC
value of 82%. In terms of the spatial accuracy, when trying to predict where the extreme
event will happen inside a 2 x 2 grid, ResNet-50 achieved an AUC of 90%. When moving
to a 5 x 5 grid, the AUC is not significantly smaller, with a value of 85%. The results are
similar for the wind speed data, indicating an overall good performance of these networks.
One mention here is the large amount of training data available in this study, corresponding
to approximately 100.000 2D snapshots for the CGLE system and 44.000 snapshots of wind
speed data.
A study done by Racca et al. [108] used echo state networks to predict and control extreme
events in a chaotic shear flow. They indicate that the network was able to predict extreme
events up to more than five Lyapunov times in the future. Furthermore, by training the
NN with datasets containing non-converged statistics (short time series), they also showed
that the NN is able to extrapolate the flow’s long-term statistics. The network was also
tested for robustness showing good behaviour over a wide range of Reynolds numbers.
Another notable feature of this study is the use of Recycle Validation, which exploits
Bayesian sampling, to select the hyperparameters of the NN. The authors indicate that the
hyperparameters are key in the performance of the method.
Another study done by Ren et al. [109] demonstrated the performance of a CNN + LSTM
neural network in predicting the evolution of a freely propagating turbulent premixed flame
and BL turbulent premixed flame, when trained on DNS data. The authors used this
type of architecture on the premises that the CNN model is able to capture the spatial
dependencies, while the LSTM model is able to solve the temporal ones. Indeed, the results
indicated that the performance of the CNN + LSTM architecture was much better than a
stand-alone LSTM model. Training on average on 8 2D snapshots, the model was tasked
with the prediction of the next snapshot, which was 0.012𝜏𝐿 for the freely propagating
flames and 0.006𝜏𝐿 for the boundary layer flames away, where 𝜏𝐿 = 3.47 ms is the laminar
flame time for the freely propagating flame and 𝜏𝐿 = 0.31 respectively for the BL turbulent
premixed flame. For the mass fractions, the model retained a correlation coefficient between
the DNS data and the CNN + LSTM prediction of 0.99 for the boundary layer flame and
0.93 for the freely propagating flames. This work demonstrates the capabilities of the
discussed network to accurately predict the evolution of various turbulent flames. Although,
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in the work of this thesis, autoignition is the phenomena of interest, the ability of this model
to predict information about the mass fractions of different species makes it interesting for
its application away from the flame region as well.
Another study which has compared neural networks to each other for time series forecasting
of wind speed data was done by Liu et al. [110]. Here, the authors proposed a new network
architecture based on wavelet-package decomposition (WPD), a CNN and a LSTM network.
The WPD is utilized to break down the original wind speed time series into several sub-layers
of varying frequencies. Subsequently, a CNN employing 1D convolution is applied to predict
the high-frequency sub-layers, while a combined CNN-LSTM architecture is deployed for
forecasting the low-frequency sub-layers. To verify the results of the proposed model, the
authors compared it to the ARIMA model, SVM model, WPD-BP model, WPD-GRNN
model, WPD-Elman model, WPD-ELM model, WPD-CEEMDAN-RBF model using four
wind speed data sets. The results indicated that the WPD is effective in extracting the
features of the signal and that their proposed model performs the best among all the others
in terms of prediction accuracy. Furthermore, the proposed model also performed the best
when the wind speed experienced sudden shifts.
It can be seen that supervised learning techniques have been widely applied with varying
degrees of success to different kinds of time series, including chaotic systems presenting
extreme events. Similarly to the modularity-based clustering technique [101], most of
these methods are purely data-driven, making them agnostic to the underlying physical
phenomena, which is partly the reason for their popularity. In terms of their prediction
capabilities, it was observed that most of the employed methods are able to predict 10-20
time-steps in advance. This raises the problem of compromising between a time-step small
enough to accurately capture the dynamics of the system and one that would give a larger
prediction horizon. Furthermore, the major drawback of supervised learning methods
is their dependency on training data. This is especially detrimental in the context of
chaotic system presenting extreme events, due to the scarcity of these extreme states.
As previously mentioned, they are fundamentally different in their approach, relying on
time-series forecasting, rather than precursor identification. Lastly, similarly to statistical
methods of time-series forecasting, supervised methods tend to perform better in a shorter
time-frame and on stationary data.
The method chosen to predict the autoignition flashback needs to present several features.
These features are computational speed for online detection, robustness, an actionable
prediction horizon and ease of implementation in a real gas turbine. From the literature
review on supervised and unsupervised machine learning method, it was seen that most
of the methods compromise in one or more of these areas. The methods applied to
thermoacoustic instabilities lack generalizability and the neural networks explored may
lack extreme event containing training data in order for them to be accurate over a large
enough prediction horizon. However, one emerging candidate should be considered further,
i.e. the modularity-based clustering algorithm. This method shows promise due to being
purely data-driven, as reflected in its success over several methods presenting extreme
events. Furthermore, as this method relies on precursor identification instead of time-series
forecasting, it should also be more robust to changes in the system. It should be although
be noted that this method also has its own drawback. Like the neural networks, albeit less
so, it needs a considerable amount of data which is sufficient for the convergence of the
transition probability matrix. In addition, it does not have the best computational speed,
indicating the need for a work-around to achieve online prediction.
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3.4. Effect of water injection and its design parameters
As seen from Section 2.5.1, the effect of water injection depends on several parameters and
it can be quantified through different metrics. There have been several studies made on the
effects of water injection in both gas turbines an internal combustion engines. This section
has the purpose of highlighting some of their findings.

In internal combustion engines, numerous studies found benefits when using water injection,
particularly in terms of emissions. For example, Adnan et al. [111] studied the performance
and emission of a hydrogen fueled compression engine with variable water injection timing.
They found that injecting water after the compression stroke, i.e 20∘ ATDC for duration
of 20∘ crank angle degrees lead to better engine performance by increasing the gross work
and the thermal efficiency. Furthermore, they found that this configuration is also the best
for reducing emissions, where a reducing of more than 50% was found for NOx. Similar
results were also obtained by Taghavifar et al. [112] when analysing both diesel fueled and
hydrogen fueled IC engines through CFD. They found that when water is injected at 15%
mass fraction and at a temperature of 60∘ the highest pressure peak, indicated torque and
thermal efficiency were found. Furthermore, both soot formation and NOx emissions were
reduced by an order of magnitude when water injection was used, but it was found that
this reduction was smaller with an increase in water mass fraction.

Several authors have also quantified the effect of water injection in the case of gas turbines.
For example, Amani et al. [71], using a 2D k-𝜔 SST simulation of natural gas fueled gas
turbine found several interesting results such as a reduction in NOx of 87%. They indicate
that parameters which most influence the combustion efficiency and the emissions are
the swirl number, where a high value (1.96) was found to be optimal. Outlet maximum
temperature and water loading, however, were found to be more influenced by pre-injection
and post-injection water mass flow rates. Here, a water-to-fuel ratio of 3.4 injected in a
80% majority in the post-flame region achieved the best results. The authors also note that
in the case when flame instabilities arise due to pressure fluctuations, the water-to-fuel
ratio should be reduced to 2. Another study using water injection on a methane fueled gas
turbine was done by Farokhipour et al. [72]. Here, the authors found that the water droplets
should not become entrained in the inner recirculation zone (IRZ) as this results in a lack
of evaporation and participation in the combustion process due to the low temperature of
this region. On the other hand, it was found that droplet entrapment in the swirling vortex
increases the residence time, allowing for a more efficient evaporation. Finally, the authors
also investigated the optimal injection location, indicating that post-ignition region best
satisfies the aforementioned criteria. Another study done by Shahpouri et al. [113], using
the same approach as the previous studies, compared the effectiveness of water injection
and steam addition in natural gas turbines. It was found that injecting water was 1.69
times more efficient at reducing NOx than steam addition with the drawback of reduced
thermal efficiency. Furthermore, it was found that optimal water to fuel ratio was close to
1, as using ratio higher than this greatly reduces the efficiency.

Other studies have also specifically looked at the stability of the flame when water injection
is used. Pappa et al. [37] investigated the potential of water injection at preventing
flashback in micro gas turbines when using natural gas enriched with hydrogen. Their
findings indeed affirmed this assumption, but, the scope of the research was limited to
a hydrogen concentration of only 10%. Another study, done by Tanneebrger et al. [69],
experimentally investigated pure hydrogen combustion with steam injection. The authors



3.4. Effect of water injection and its design parameters 41

identified two distinct modes for the flow field: a stable low-swirl jet flame and high swirling
flow that causes a recirculation region. Most interestingly, it was found that increasing the
amount of steam dilution leads to a transition towards the recirculating flow regime due to
the positive pressure gradient over the area expansion.

Figure 3.4: Sensitivity analysis of the different performance parameters to the design
variables [19].

Studies with water injection were also performed on a model based on Ansaldo Energia’s
GT36 gas turbine. Here the authors studied a hydrogen fueled reheat combustion chamber
through the means of LES simulations. Kruljevic et al. [49], simulating the flow at
atmospheric pressure, found that water injection is effective in pushing the flame downstream,
reducing its reactivity and the NOx emissions. This again came with the drawback of
reduced thermal efficiency. Furthermore, this study also found that using direct water
injection is more effective than steam addition in emission reduction. The authors also
attempted to retrieve the original power output obtained without the addition of water
by increasing the equivalence ratio, however it was found that this only increased the
NOx emissions, with little impact on the combustion efficiency. Another notable result of
this study was that the periodic flashback phenomena, which originally moved the flame
front to the premixing duct, was suppressed by the water spray, resulting in the flame
front no longer moving further upstream than the step location. While the authors of
this study provide further insight into the effects of the design parameters of the spray,
a similar parametric analysis was also done by P. Rouco [19] at high pressure (20 atm),
which is the condition of interest for this study. Firstly, P. Rouco also found that the spray
proved effective in lowering NOx levels and flame oscillations at the cost of reduced thermal
efficiency. Unfortunately, unlike the 1 atm case, the flame front was not prevented from
entering the premixing duct, but, nevertheless, the author suggests that with additional
tunning of spray design parameters, this is also achievable in the high pressure case. For
the sensitivity analysis, P. Rouco chose to vary the mass flow, the SMD, the external
cone angle and thickness angle for a hollow cone spray with no swirl. Furthermore, the
performance metrics chosen were the NOx production, the thermal efficiency, the pattern
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factor and the evaporation efficiency. The main results of this sensitivity analysis are shown
in Figure 3.4. For the thermal efficiency, the figure indicates that the main influencing
factor is the water mass flow. The dispersion of particles, as characterized by the three
other design parameters, also seems to affect the thermal efficiency but to a lesser extent.
A similar behaviour can also be observed for the NOx production, but, this time, the
dispersion of particles seems to be more influential than before. This is expected as a
more uniform reduction in temperature better reduces the formation of hot spots and
consequently the production of NOx. What is interesting for this parameter is that the
thickness angle of the cone seemingly plays no role. For the pattern factor, which is a
better measure of the uniformity of the flow field, it is clear that only the dispersion of
particles plays a role while the mass flow of water is irrelevant. From the remaining three
parameters, the external angle is the most important. Finally, in terms of the evaporation
efficiency, the water mass flow is again the most important, followed by the thickness angle
and the external angle. Evidently, as more water is introduced, the evaporation efficiency
decreases due to the lack of available heat. The thickness angle also plays an important role
as tightly grouped droplets are less able to capture the surrounding heat. For the purpose
of preventing the flame from entering the premixing duct, it can be inferred that both
the amount of water and the droplet dispersion are important parameters. The flashback
phenomena is initialized by autoignition and it acts on the whole transversal length of the
premixing duct. As such, uniform cooling should be achieved with the water spray.

3.5. Research questions
For the purpose of this study, the modularity-based clustering algorithm for precursor
identification developed by Schmid et al. [95] and Golyska et al. [101] is chosen as the
prediction method. This approach has been selected due to its demonstrated potential
as a data-driven technique applied to complex systems. In this thesis, its application
towards turbulent reacting systems is further explored. These systems are chaotic and
high-dimensional, which implies that there are a multitude of paths from which extreme
events can originate, due to the wide range of spatio-temporal scales and perturbations. As
such, this data-driven technique, which is insensitive to the underlying physical mechanisms,
is though to be a good fit towards providing a precursor to the flashback events. In this
study it will be applied to the obtained data from the LES simulations in multiple scenarios.
Furthermore, to reduce the computational load for this method, the co-kurtosis PCA
dimensionality reduction technique [88] shall be applied to limit the number of features
used in the prediction algorithm.
To accompany this main goal, several tests for the precursor algorithm should be considered.
Of interest is the performance of the algorithm in non-ideal scenarios. These include
reducing the number of features available for the clustering algorithm and changing the
sampling location such that it is further away from the ideal location (near the autoignition
zone). Furthermore, another test shall be conducted to assess the performance on the
algorithm on previously unseen data. Here, the clusters are computed based on a shorter
time-series and then unseen data is classified based on its proximity to the previously
computed clusters. This test assesses the performance of the algorithm when trained on
a shorter time-series. In addition, it allows for computational speeds suitable for online
prediction, thus making a first assessment of the algorithm in this setting. Another test
further delves into the capabilities of the algorithm in online prediction. Instead of using
the features indicated by the co-kurtosis PCA, the pressure at the wall is now fed to the
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algorithm, along with the temperature. Lastly, the algorithm will be assessed based on
data from an LES simulation where the flow is more turbulent. This checks the robustness
of the algorithm towards fluctuation conditions.

In the last part of the thesis, the interest lies in assessing the capability of water injection
in suppressing a flashback. For this purpose, the numerous design parameters will be
tuned, with the purpose of finding a preliminary spray design. Using this spray, a new LES
simulation will be done where the water spray is activated at the moment an incoming
flashback has been detected. Based on this approach, it is now possible to formulate the
research questions. The main research question is as follows:

”Can the modularity-based clustering algorithm predict an incoming flashback event
as observed in the high pressure reheat combustion LES simulations when using the
features indicated by co-kurtosis PCA? ”
and the sub-questions accompanying this main goal are:

• ”How does this method perform for the following robustness tests: less features,
shorter time-series and unseen data, relying on pressure data, fluctuation conditions
and changing the sampling location?”

• ”How well can a flashback be suppressed through the injection of water after an
incoming flashback was detected?”



4
Methodology

This chapter delves into the methodology behind the approaches used in this study. The
first part gives part about the details of the LES mathematical model, as implemented in
Converge CFD. This covers the governing equations, Reynolds stress modelling, methods
applied to the boundary conditions and the detailed chemistry model. In addition a
short description of the spray model used for the water injection is given. Furthermore,
the computational setup is given, where the geometry, the mesh, boundary and initial
conditions are given, as well as the numerical solvers employed in this simulation. After a
short description of how the data is extracted from the LES simulation, the second part of
this chapter covers the dimensionality reduction technique used, in the form of co-kurtosis
PCA and the precursor identification technique, in the form of the modularity-based
clustering algorithm. The next section covers the robustness analysis employed to test the
limits of the algorithm and explore its use in an online setting. Lastly, the final section of
this chapter provides the guidelines used for the design of the spray. This methodology
covers all of the steps from running the LES simulations, acquiring the data, pruning it
to reduce the computational load and finally finding the precursor to the flashback event,
which lastly, is used to time the injection of water and suppress the flashback event.

4.1. LES framework
In this section, the methodology for obtaining flashback data through Large Eddy Simula-
tion (LES) and implementing flashback suppression via water injection is outlined. The
description begins with an exposition of the mathematical model supporting the employed
LES models. Following this, the mathematical models governing the spray are presented,
and lastly, a detailed account of the computational setup is provided.

The importance of turbulent combustion modeling has grown significantly within the
power generation and transportation industries, playing a crucial role in understanding and
optimizing various combustion systems. Broadly, turbulent flame modeling faces a range of
interconnected challenges, as explained by Veynante et al. (2002) [114]. These challenges
include a solid grasp of the fluid mechanical properties inherent to the combustion system,
necessary for modeling various transfer phenomena like heat transfer, molecular diffusion,
and convection. Moreover, detailed chemical reaction schemes are needed to govern reactant
consumption, product and pollutant species formation, as well as parameters like ignition
delay time, and the stabilization and extinction of the flame. In some instances, the
modeling scope extends to include two-phase flows, requiring a thorough representation of
interactions between a liquid phase (e.g. fuel or water droplets) and the surrounding gaseous
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medium. Finally, the complexity is further compounded in scenarios where radiative heat
transfer models must be used to capture additional intricacies. As a result, a comprehensive
approach to turbulent combustion modeling involves addressing these interconnected facets
for a complete and accurate representation of the combustion processes under consideration.

4.1.1. Governing equations
The set of transport equations governing combustion flows is comprised of the Navier-Stokes
equations, the species and the energy transport equations. Converge CFD uses the following
formulations.
The compressible equations for mass transport and momentum transport are given by
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where the viscous stress tensor is given by:
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In the above equations, 𝑢 is velocity, 𝜌 is density, 𝑆 is the source term, 𝑃 is pressure, 𝜇𝑡 is
turbulent viscosity, and 𝛿𝑖𝑗 is the Kronecker delta. Furthermore, the energy equation is
given by:
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where 𝑌𝑚 is the mass fraction of species 𝑚, 𝐷𝑚 is the species mass diffusion coefficient,
𝑒 is the specific internal energy, 𝐾𝑡 is the turbulent conductivity, and ℎ𝑚 is the species
specific enthalpy. The turbulent conductivity is given by:

𝐾𝑡 = 𝐾 + 𝑐𝑝
𝜇𝑡

𝑃𝑟𝑡
(4.5)

where 𝑐𝑝 is the specific heat at constant pressure, and 𝑃𝑟𝑡 = 𝑐𝑝𝜇𝑡
𝑘𝑡

is the turbulent Prandtl
number. The species conservation equation is given by:
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where 𝑌𝑚 is the mass fraction of species 𝑚 and 𝑆𝑚 is a source term that accounts for
evaporation, chemical reactions and other submodels. Furthermore, the local mixture-
averaged diffusion coefficient is calculated as:

𝐷𝑚 = 1 − 𝑋𝑚
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where 𝑋𝑚 is the mole fraction of species 𝑚 and 𝐷𝑚𝑗 is the binary diffusion coefficient
for species 𝑚 and 𝑗. For turbulent applications, the turbulent mass diffusion coefficient
𝐷𝑡 = 𝜈𝑡/𝑆𝑐𝑡, is added to 𝐷𝑚. Finally, it should also be mentioned that the Redlich-Kwong
equation of state is used indirectly in the PISO algorithm to couple pressure, density and
temperature.
Finally, to arrive at the LES equations, where the large turbulence scales are resolved and
the subgrid scales are modelled, relevant quantities 𝑄 need to be filtered. In combustion
flows, a mass-weighted, Favre filtering, is used as follows:

̄𝜌�̃�(x) = ∫ 𝜌𝑄 (x∗) 𝐹 (x − x∗) dx∗ (4.8)

where 𝐹 is the LES filter and �̃� = 𝜌𝑄/ ̄𝜌. In this application, 𝐹 is chosen as a box filter,
where the cut-off size Δ is related to the size of the cell and is defined as Δ = 3

√
𝑉, where

𝑉 is the volume of the cell. Using this approach, the following quantities still need to be
modelled:

• Unresolved Reynolds stresses (𝑢𝑖𝑢𝑗 − �̃�𝑖�̃�𝑗), which require a turbulence model for
the subgrid scales.

• Unresolved species fluxes (𝑢𝑗𝑌𝑘 − �̃�𝑗
̃𝑌𝑘) and enthalpy fluxes (𝑢𝑗ℎt − �̃�𝑗ℎ̃t).

• Filtered laminar diffusion fluxes 𝒥𝑘
𝑗 , 𝒥ℎ

𝑗 .
• Filtered chemical reaction rate �̇�𝑘.

4.1.2. Subgrid stress modelling
For the purposes of this study, the one-equation viscosity model is chosen to resolve the
subgrid scale Reynolds stresses. This model was formulated by Yoshizawa et al. in 1985
[115] and Menon et al. in 1996 [116] and it employs a sub grid kinetic energy equation for
the turbulence viscosity modelling. The equation reads as follows, where the right hand
side terms correspond to production, dissipation and diffusion, respectively:

𝜕𝑘
𝜕𝑡

+ �̄�𝑖
𝜕𝑘
𝜕𝑥𝑖

= −𝜏𝑖𝑗
𝜕�̄�𝑖
𝜕𝑥𝑗

− 𝜀 + 𝜕
𝜕𝑥𝑖

( 𝑣𝑡
𝜎𝑘

𝜕𝑘
𝜕𝑥𝑖

) (4.9)

where the kinetic energy and the sub grid dissipation are represented by the following
equations:

𝑘 = 1
2

(𝑢𝑖𝑢𝑖 − �̄�𝑖�̄�𝑖) 𝜖 = 𝐶𝜖𝑘3/2

Δ
. (4.10)

Furthermore, the turbulent viscosity, 𝜈𝑡, is given as 𝜈𝑡 = 𝐶𝑘
√

𝑘Δ and the SGS stress tensor
is given by:

𝜏𝑖𝑗 = −2𝜈𝑡
̄𝑆𝑖𝑗 + 2

3
𝑘𝛿𝑖𝑗. (4.11)

In these equations there are three model constants, i.e. the viscosity constant 𝐶𝑘 = 0.05,
the SGS dissipation constant 𝐶𝜖 = 1 and the reciprocal SGS kinetic energy Prandtl number
𝜎𝑘 = 1, where their values are set as recommended by the authors of the model. Finally,

̄𝑆𝑖𝑗 is the velocity strain tensor, which can be calculated directly.
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4.1.3. Turbulent inlet boundary condition
In some of the simulations, turbulent fluctuations are also imposed on the inlet velocity
profile. To achieve this, the digital filter method developed by Klein et al. is used [117]. In
this method, a velocity field signal is superimposed on the inlet velocity profile based on a
statistical description.

The method starts with generating a turbulent velocity field from a white noise signal, 𝑟𝑚,
with zero mean (𝑟𝑚 = 0) and unity variance (𝑟𝑚𝑟𝑚 = 1), using the convolution operation.
This operation blends a white noise signal with predetermined filter coefficients to generate
a velocity field mimicking the statistical properties of turbulence.

𝑢𝑚 =
𝑁

∑
𝑛=−𝑁

𝑏𝑛𝑟𝑚+𝑛 (4.12)

Here, 𝑢𝑚 represents the generated turbulent velocity at point 𝑚, 𝑏𝑛 are the filter coefficients,
and 𝑁 signifies the convolution range, impacting the turbulence scale simulated. To
accurately represent turbulence, it is necessary that different points in the generated signal
are uncorrelated unless they coincide, necessitating 𝑟𝑚𝑟𝑛 = 0 for 𝑚 ≠ 𝑛. This ensures the
simulation’s randomness. The link between the filter coefficients and the autocorrelation of
the turbulent field is given by:

𝑢𝑚𝑢𝑚+𝑘
𝑢𝑚𝑢𝑚

=
∑𝑁

𝑗=−𝑁+𝑘 𝑏𝑗𝑏𝑗−𝑘

∑𝑁
𝑗=−𝑁 𝑏2

𝑗
(4.13)

This equation connects the filter coefficients with the turbulence’s spatial structure, allowing
the simulation to mimic realistic turbulence characteristics. The random variable’s points
𝑢𝑚 and 𝑢𝑚+𝑘 are interpolated between two grid points separated by a distance 𝑘Δ𝑥, where
Δ𝑥 represents the grid spacing. The filter coefficients are chosen to reflect the length scales
and essential correlation attributes, ensuring that 𝑅𝑢𝑢(∞) = 0 and 𝑅𝑢𝑢(0) = 1. To apply
this approach in three dimensions, the 1D filter coefficients are convolved in a manner
such that 𝑏𝑖𝑗𝑘 = 𝑏𝑖 ⋅ 𝑏𝑗 ⋅ 𝑏𝑘. The previous equation can then be iteratively solved using a
Newton’s method tailored for multidimensional problems.

4.1.4. Detailed chemistry model
The chemistry model used for this simulation is the SAGE detailed chemical kinetics solver,
following the procedure laid out by Senecal et al. [118], which solves a system of ODEs to
find out the reaction rates for each elementary reaction. According to Turns et al. [119],
the chemical reaction mechanism can be described as follows:

𝑁
∑
𝑚=1

𝜈′
𝑚,𝑖𝜒𝑚 ⇄

𝑁
∑
𝑚=1

𝜈′′
𝑚,𝑖𝜒𝑚 for 𝑖 = 1, 2, … , 𝐼 (4.14)

with 𝜈′
𝑚,𝑖 and 𝜈′′

𝑚,𝑖 being the stoichiometric coefficient for the reactants and the products,
respectively. Furthermore, 𝑚 represent the species and 𝑖 the reaction, 𝐼 is the number of
reactions and 𝜒𝑚 is the chemical symbol for the respective species. The production rate of
a certain species is described by:
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�̇�𝑚 =
𝐼

∑
𝑖=1

𝜈𝑚,𝑖𝑞𝑖 for 𝑚 = 1, 2, … (4.15)

where 𝑀 is the total number of species and 𝑣𝑚,𝑖 = 𝑣′′
𝑚,𝑖 − 𝑣′

𝑚,𝑖. Next, the rate-of-progress
parameter 𝑞𝑖 for reaction 𝑖 is given by:

𝑞𝑖 = 𝑘𝑖,𝑓

𝑁
∏
𝑚=1

[𝑋𝑚]𝜈
′
𝑚𝑖 − 𝑘𝑖,𝑟

𝑁
∏
𝑚=1

[𝑋𝑚]𝜈
′′
𝑚i (4.16)

where 𝑋𝑚 is the molar concentration of species m and 𝑘𝑖,𝑓 and 𝑘𝑖,𝑟 denote the forward and
reverse rate coefficients in reaction 𝑖. Furthermore, 𝑘𝑖,𝑓 is given by the Arrhenius equation:

𝑘𝑖,𝑓 = 𝐴𝑖𝑇 𝛽𝑖 exp (−𝐸𝑖
𝑅𝑇

) (4.17)

where 𝐴𝑖 is the pre-exponential factor, 𝛽𝑖 is the temperature exponent and 𝐸𝑖 is the
activation energy (in cal/mol). For the reverse rate coefficient, either an equivalent
formulation as the Arrhenius equation can be used or it can be expressed using the
equilibrium coefficient 𝐾𝑖,𝑐 in the following way: 𝑘𝑖,𝑟 = 𝑘𝑖,𝑓

𝐾𝑖,𝑐
. This in turn is evaluated

based on thermodynamic properties as follows:

𝐾𝑖,𝑐 = 𝐾𝑖,𝑝 (𝑃𝑎𝑡𝑚
𝑅𝑇

)
∑𝑀

𝑚−1 𝑣𝑚𝑖

with 𝐾𝑖,𝑝 = exp (Δ𝑆0
𝑖

𝑅
− Δ𝐻0

𝑖
𝑅𝑇

) (4.18)

In these equations, 𝑃𝑎𝑡𝑚 is the atmospheric pressure and 𝑇 is the temperature. Furthermore,
the change in entropy and enthalpy refers to the change that occurs when reactants are
transformed into products:

Δ𝑆0
𝑖

𝑅
=

𝑀
∑
𝑚=1

𝑣𝑚𝑖

𝑆0
𝑚

𝑅
and Δ𝐻0

𝑖
𝑅𝑇

=
𝑀

∑
𝑚=1

𝑣𝑚𝑖

𝐻0
𝑚

𝑅𝑇
(4.19)

Based on the above steps, the conservation equations for mass and energy can now be
solved across the computational mesh. These are:

𝑑 [𝑋𝑚]
𝑑𝑡

= �̇�𝑚

𝑑𝑇
𝑑𝑡

=
∑𝑚 (ℎ̄𝑚�̇�𝑚)

∑𝑚 ([𝑋𝑚] ̄𝑐𝑝,𝑚)

(4.20)

In these equations, �̇�𝑚 is based on Equation 4.15 and ℎ̄𝑚 and ̄𝑐𝑝.𝑚 are the molar specific
enthalpy and the molar specific heat at constant pressure. The equations are solved at each
time step and the concentration of the species is updated. The new temperature found
from the energy equation is then used to update the forward and reverse reaction rate
coefficients, repeating the process until convergence. The final temperature is then used to
update the cell temperature.
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4.1.5. Thickened flame model
The thickened flame model (TFM) complements the SAGE detailed chemistry solver and
it acts upon the flame front dynamics. As the computational mesh is generally not fine
enough to resolve the laminar flame thickness, the TFM model artificially thickens the
flame without changing the laminar flame speed to get rid of the need for subgrid scale
models. In CONVERGE, the TFM is implemented based on the description of Legier et al.
[120]. This model dynamically changes the flame front and, subsequently, the turbulence
chemistry interaction, by using the efficiency factor 𝐸 and a local thickening factor 𝐹, which
multiplies the original flame thickness (𝐹 ⋅ 𝛿𝑙). Furthermore, the diffusivity coefficient 𝐷
is also modified to 𝐸 ⋅ 𝐹 ⋅ 𝐷, the laminar flamespeed 𝑠𝐿 is converted to 𝐸 ⋅ 𝑠𝐿 and the
pre-exponential factor of the Arrhenius formula 𝐴 is now 𝐸 ⋅ 𝐴/𝐹. Using this reformulation,
the flame front is resolved without the use of filters, similar to a DNS, while the processes far
away from the flame front are not affected. As such, the equation for the scalar conservation
is reformulated as follows:

𝜕𝜌𝑌𝑖
𝜕𝑡

+
𝜕𝜌𝑌𝑖𝑢𝑗

𝜕𝑥𝑗
= 𝜕

𝜕𝑥𝑗
(𝜌 ⋅ 𝐸 ⋅ 𝐹 ⋅ 𝐷𝜕𝑌𝑚

𝜕𝑥𝑗
) + 𝐸

𝐹
�̇�𝑖 (4.21)

The thickening factor 𝐹 can be expressed as:

𝐹 = 1 + (𝐹𝑚𝑎𝑥 − 1)𝑆, (4.22)

where 𝐹𝑚𝑎𝑥 is the maximum scaling factor and 𝑆 is the flame sensor, which determines the
locality of the thickening operation. In these simulations, the number of grid points across
the flame is specified directly (𝑛𝑟𝑒𝑠 = 5), resulting in a maximum scaling factor defined as:

𝐹𝑚𝑎𝑥 = 𝑛𝑟𝑒𝑠Δ𝑥
𝛿𝑙

, (4.23)

where Δ𝑥 is the local grid spacing. An appropriate value for the flame sensor 𝑆 is determined
using Equation 4.24, based on the properties of H2. ∣�̇�𝑠𝑒𝑛𝑠∣ is the local reaction rate as
calculated by SAGE, Ω𝑠𝑒𝑛𝑠,𝑜(𝜙) is the maximum reaction rate in the premixed laminar
case for a given equivalence ratio based on a 1D simulation, and, finally, 𝛽 is a modelling
coefficient that imposes a sensor thickness.

𝑆 = max [min (𝛽
∣�̇�𝑠𝑒𝑛𝑠∣

Ω̇𝑠𝑒𝑛𝑠,0(𝜙)
− 1, 1) , 0] (4.24)

To further improve the sensor, the methodology described by Jaravel [121] is applied to
detect species gradient at the extremities of the flame. This approach introduces a passive
indicator function, Ψ̃, transported according to the following equation:

𝜕 ̄𝜌 ̃𝜓
𝜕𝑡

+
𝜕 ̄𝜌�̃�𝑗

̃𝜓
𝜕𝑥𝑖

= 𝜕
𝜕𝑥𝑖

(𝐹ΞΔ ̄𝜌�̃�𝜓
𝜕 ̃𝜓
𝜕𝑥𝑖

) + ΞΔ
𝐹

�̇�𝜓. (4.25)

In this equation, �̇�𝜓 is a relaxation source factor, taking values as prescribed by Equa-
tion 4.26. This in turn is based on two relaxation times, 𝜏0, taking on the value of the local
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time-step of the solver, and 𝜏1, which is defined as 𝜏1 = 𝛼1𝜏𝑐. Next, 𝜏𝑐 is defined by the
combustion time scale, as the ratio between the laminar flame thickness and the laminar
flame speed (𝜏𝑐 = 𝛿𝐿/𝑠𝐿). Finally, the parameter 𝛼1 changes based on the upstream/down-
stream sides of the flame, where the filtering is performed, thus taking different values
based on temperature of the unburnt/burnt mixture. Using this method, the flame sensor
𝑆 now is updated as 𝑆 = max[min( ̃𝜓, 1), 𝑆].

�̇�𝜓 =
⎧
{
⎨
{
⎩

− ̃𝜓
𝜏1

if 𝑆 < 0.05
𝜓0− ̃𝜓

𝜏0
if 𝑆 > 0.8

0 if 0.8 > 𝑆 > 0.05,

𝛼1 = {
𝛼1, cold if 𝑇 ≤ 𝑇𝑠

𝛼1, hot if 𝑇 > 𝑇𝑠
(4.26)

Also appearing in Equation 4.25 is the sub-grid scale wrinkling precursor ΞΔ, modelled
following the methodology of Charlette et al. [122]. The purpose of this variable is to
measure the loss in surface of the sub-grid flame that appears as a consequence of the
thickening process and then to compensate for this by increasing the turbulent flame speed.
The precursor is described by Equation 4.27, where ΓΔ is an efficiency function which
takes into account the strain effect caused by the subgrid turbulent scales. This in turn
is dependent on the the Reynolds number 𝑅𝑒Δ, the turbulent fluctuations 𝑢′

Δ and other
flame characteristics [123].

ΞΔ = (1 + min [Δ
𝛿𝑙

− 1, ΓΔ (Δ
𝛿𝑙

,
𝑢′

Δ
𝑠𝑙

, 𝑅𝑒Δ)
𝑢′

Δ
𝑠𝑙

])
𝛽

(4.27)

This wrinkling parameter is then used to determine the efficiency coefficient 𝐸 which
appears in the reformulated scalar conservation equation, Equation 4.21, by comparing its
value for a unthickened flame and a thickened flame:

𝐸 =
Ξ|𝛿=𝛿𝑙

Ξ|𝛿=𝐹𝛿𝑙

(4.28)

4.1.6. Laminar flame speed and flame thickness
To complement the thickened flame model, the laminar flamespeed and flame thickness also
need to be determined and tabulated to be consequently introduced in the sub-grid scale
wrinkling precursor and maximum scaling factor equations. This is achieved by running
1D simulations at a range of different inlet conditions, spanning different temperatures,
equivalence ratios and pressures, the results of which are interpolated by the TFM. According
to Turns [119], (𝑠2

𝐿 ∝ 𝛼�̇�/ [𝐻2]), where 𝛼 is the thermal diffusivity of the mixture, �̇� is the
reaction rate and [𝐻2] is the fuel concentration. Furthermore, the thermal diffusivity follows
the following proportions: 𝛼 ∝ 𝑇𝑢 ̄𝑇 3/2𝑃 −1, where ̄𝑇 is the mean temperature between the
unburnt and the burnt mixtures. Next, the fuel concentration and the reaction rate can
also be written as function of the temperature and the pressure as follows:

�̇� ∝ 𝑇 𝑛
𝑏 𝑃 𝑛 exp (−𝐸𝐴

𝑅𝑇𝑏
) [𝐹 ] ∝ 𝑃

𝑇𝑢
(4.29)
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After substituting, the laminar flame speed can be expressed as a function of the burnt and
unburnt mixtures temperatures and the pressure. The laminar flame thickness can then be
inferred from 𝑠𝐿 based on 𝛿𝑙 = 𝛼/2𝑠𝐿.

𝑠𝐿 ∝ ̄𝑇 0.375𝑇𝑢𝑇 −𝑛/2
𝑏 𝑃 (𝑛−2)/2 exp (−𝐸𝐴

𝑅𝑇𝑏
)

𝛿 ∝ ̄𝑇 0.375𝑇 𝑛/2
𝑏 𝑃 −𝑛/2 exp ( 𝐸𝐴

𝑅𝑇𝑏
)

(4.30)

For the purpose of this work, the flamespeed and the flame thickness table will be taken
as calculated by P. Rouco [19]. These preliminary results present interesting behaviours
of the two variables in question. Of particular interest is the influence of pressure on the
flame speed, i.e. it decreases the flame speed at low temperature, but then it substantially
increases it a higher temperatures, as a result of hydrogen diffusion. This is concerning
when it comes to the flashback phenomena observed in this study as a higher flame speed
means a higher flashback propensity of the flame. Furthermore, an increase in pressure
also means a smaller flame thickness, i.e. 𝛿𝐿 is 20 times smaller for 30 atm as compared to
1 atm. It should also be mentioned here that the values for the thickness and the speed
of the flame vary according to the chemical kinetics mechanism used. In this case, the
mechanism created by Li et al. [47] is used throughout all the simulations and as such, the
table does not need to be changed.

4.1.7. Spray Model

Figure 4.1: Spray breakup mechanisms inside a combustion chamber [124]

The subsequent section provides details the methodology of the spray model utilized for
introducing water into the combustion chamber, aiming to assess its effectiveness in curbing
the upstream propagation of the flame into the premixing tube. The process of injecting
liquid in the form of a spray into a gas flow is a complex phenomenon, encompassing
two-phase flows and various other physical mechanisms, as illustrated in Figure 4.1. After
the water is injected into the nozzle, the first mechanism that could take place is that of
cavitation, where sudden acceleration could lead to a static pressure drop, creating cavities
in the flow, which in turn affects the spray breakup. Next, the flow is fragmented into
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droplets as a result of gas-liquid instabilities in a mechanism known as primary breakup.
Then, a secondary breakup causes large droplets to turn into smaller ones as a result
of aerodynamic forces. Furthermore, in this stage, droplets may also collide, leading to
coalescence and dispersion. In addition to these phenomena, the spray also evaporates due
to the difference in pressure with respect to the ambient, it undergoes turbulent mixing
and then participates in the combustion process when it reaches the flame front. As
previously mentioned in Section 2.5.1, these processes are also highly influenced by the
design parameters of the spray, highlighting the need for adequate models which are able
to capture all of these phenomena.

As such, the modelling approach is based on the Eulerian-Lagrangian formulation. In this
formulation, the first phase of the flow is considered to be continuous and it is therefore
modelled using an Eulerian approach, where the flow properties are solved based on a
control volume approach. In the second phase of the flow, the Lagrangian approach is used
to describe the physics of the fluid droplets by tracking their individual motion, simulating
their environment and potential collisions with other particles. The description of the
different models used in the mathematical model of the spray as implemented in Converge
[125] and used in this study is show in Appendix C.

Figure 4.2: 2D represenation of the geometry of the reheat combustor

4.2. Computational setup
This section describes the setup of the various 3D LES simulations performed for the
generation of flashback data, as well as the spray analysis. The geometry and the mesh are
described, followed by the boundary and initial conditions. Then, an account of the spray
setup is given followed by the numerical solvers chosen for the simulations.

4.2.1. Geometrical setup
The geometry used is a simplified version of Ansaldo Energia’s GT36 reheat combustor,
as displayed in 2D in Figure 4.2. Furthermore, the geometry follows the same shape as in
the works of Aditya et al. [59], Kruljevic et al. [49] and P. Rouco [19]. The combustor is
composed of a mixing duct with dimensions 3L x 1L x 1.5L, followed by the combustion
chamber with dimensions 3L x 2L x 1.5L, where 𝐿 = 1 cm. Also, some of the inlet
parameters as well as the boundary conditions are visible in Figure 4.2. Their details shall
be provided in the subsequent sections.
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4.2.2. Computational mesh
In LES, the mesh choice significantly influences the precision of the outcomes. Using a
coarse mesh might degrade the simulation’s fidelity, possibly resulting in less accuracy
than what is achievable with Reynolds-Averaged Navier-Stokes (RANS) simulations under
comparable mesh conditions. The balance between computational efficiency and accuracy
often involves applying the Pope criterion to evaluate the mesh’s adequacy [126]. This
criterion mandates that at least 80% of the kinetic energy should be resolved by the mesh,
as shown in the formula:

𝑀(𝑥, 𝑡) = 𝑘𝑟(𝑥, 𝑡)
𝐾(𝑥, 𝑡) + 𝑘𝑟(𝑥, 𝑡)

(4.31)

Here, 𝐾 and 𝑘𝑟 denote the turbulent kinetic energy of the resolved motions and the energy
within the subgrid scales, respectively, with 𝑀 indicating the level of turbulence captured
by the mesh, all as functions of position and time. A value of 𝑀 lower than 0.2 is considered
indicative of sufficient accuracy [126].
The computational grid features a baseline mesh size of 0.4 mm, which is significantly larger
than the flame’s thickness under conditions of 20 atm. This setup includes level 3 embedding
at walls and leverages Automatic Mesh Refinement (AMR) based on subgrid-scale variations
in velocity and temperature. The maximum level of detail for refinement, denoted as 𝑠,
is capped at 3, yielding a new mesh size of Δ𝑥new = Δ𝑥base/2𝑠. The subgrid scalar field,
represented as 𝜙′, is calculated by subtracting the resolved field ̄𝜙 from the total scalar
field 𝜙, using the second derivative term from a Taylor series expansion [127]:

𝜙′ ≈ −𝛼[𝑘]
𝜕2 ̄𝜙
𝜕𝑥2

𝑘
(4.32)

This approach, initially applied to temperature and other scalar fields, is also extendable
to vector fields. Mesh refinement occurs when the computed values exceed predefined
thresholds and the total cell count remains under a set limit (for instance, 10 million cells
to ensure computational manageability), while coarsening is applied when these values fall
below 20% of the threshold.
Lastly, the TFM model also modifies the mesh by enforcing a minimum of 5 cells across the
flame, ensuring refined resolution near the flame position. Of note here is that, compared
to Kruljevic et al. [49], where a minimum value of 10 cells across the flame front is used,
the higher pressure simulation in this case allows for only half of that due to the thinner
flame front predicted. For illustration purposes, Figure 4.3 shows the mesh at an arbitrary
time step.

Figure 4.3: Computational mesh at an arbitrary time step where AMR is active.
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4.2.3. Boundary Conditions
Inlet
The inlet boundary conditions are imposed based on the parts preceding the reheat
combustion chamber. Following the case laid out by Aditya et al. [59], the mixture at the
inlet consists of the products of the first combustion stage, i.e. H2O and a mixture of air
and additional hydrogen. The velocity is uniformly set to 𝑢 = 200 m/s and the equivalence
ratio to 𝜙 = 0.35. The pressure BC is of the Neumann type and the mass fraction are set
as in Table 4.1.

Table 4.1: Species mass fractions at the inlet of the domain

Species Ar H2 H2O He N2 O2

Mass fraction 𝑌 0.01286 0.007855 0.05162 6.94E − 07 0.7496 0.1780

In distinction to the DNS simulation performed by Aditya et al. [59], the temperature at
the inlet is now no longer 1100 K. This comes as a result of the discussion of Section 2.4.3
where the dependence of the autoignition delay time with the temperature and pressure was
detailed. For the purpose of this work, to keep the flame at its design location, corresponding
to a delay time of approximately 0.15 ms, a temperature of 1180 K is chosen [19].
Turbulent velocity fluctuations can also be imposed at the inlet through the digital filter
method. For this, the turbulence intensity is set to 10 %, a common value for internal
aerodynamics, to simulate fluctuations in the order of 𝑢′ = 20𝑚/𝑠. The length scale is
set to 0.7 mm on the assumption of a fully developed turbulent pipe flow, 𝑙 = 0.038𝑑ℎ,
where 𝑑ℎ is the hydraulic diameter. Then, in the one-equation closure model, the turbulent
kinetic energy is determined as 𝑘 = 3/2(𝑈𝐼)2, where 𝑈 is the mean velocity and 𝐼 is
the turbulence intensity. Finally, the Navier-Stokes Characteristic Boundary Condition
(NSCBC) is also attributed to the inlet to reduce the reflection of acoustic disturbances.
NSCBC methodology is detailed in Appendix A for brevity.

Outlet
For the outlet, the physical boundary condition prescribed is a Dirichlet BC corresponding
to a pressure of 20 atm. Furthermore, the velocity is imposed as a Neumann BC and
backflow is not taken into account. Similarly to the inflow, NSCBC is used with 𝜎 = 0.25.

Walls
For the walls, a non-slip isothermal boundary condition is applied where the temperature
is set to 750 K. Furthermore, roughness is not considered and the law of the wall method is
to model the unresolved sub-grid scales. In the z-direction (see Figure 4.2), translational
periodic BCs are set. This choice was made to create a homogeneous direction which
facilitates the sampling of statistics and therefore decrease the computational time.

4.2.4. Initial Conditions
To initialize the simulation and obtain a steady case, the flow field in the domain is initialized
with a velocity of 200 m/s and a temperature of 1180K. Furthermore, the species are also
the same as for the inflow and the equivalence ratio is again set to 𝜙 = 0.35. The pressure
is also set to 20 atm and, following the same procedure as in [19], the flow is developed in
non-reacting conditions for the first millisecond, followed by activation of combustion with
a slowly increasing equivalence ratio over the next 0.8 ms, as proposed by [52] and [49].
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4.2.5. Numerical solvers
The Converge software [125] utilizes the Finite Volume Method (FVM) for solving the
conservation equations. This well-known method involves updating the discrete cells of the
domain based on the flux across the cell faces and contributions from internal sources.

Besides using the FVM method, the PISO algorithm (Pressure Implicit with Splitting of
Operators) [128] is also employed. This algorithm assumes an initial pressure distribution,
derived from a solution of the momentum equations at a previous time-step. Based on this,
velocity field is updated to satisfy mass conservation through the momentum equation, by
using the assumed initial pressure distribution. The velocity field is then updated again
and the loop continues until convergence.

Furthermore, the solver also employs the Rhie-Chow algorithm [129] to circumvent the
decoupling between pressure and velocity. Finally, to solve the set of discretized equations
for each iteration, the SOR (Successive Over-Relaxation) technique is used. The different
parts mentioned here involved in the numerical solver are detailed in Appendix B.

4.3. Data acquisition
As mentioned in Section 1.4, the first goal of this thesis is to use data from LES simulations of
the GT36 to predict the flashback event using machine learning methods. These simulations
output a large amount of data consisting of a number of variables sampled at every point
of the mesh and at every time step. As using all of this data is unrealistic, it has to be
reduced. As such, for the purposes of this work, 2D snapshots of the mid z-plane are saved
at a frequency of 1 MHz. These snapshots contain the data points at the non-uniform mesh
created by Converge’s automatic mesh refinement (AMR) technique. Thus, to simplify the
analysis and further reduce the size of the data, these snapshots are loaded into Tecplot.
There, the mesh is linearly interpolated onto a evenly spaced 601 by 201 mesh and the
number of variables is reduced. These new snapshots contain the data which is referred to
in the following sections.

4.4. Co-kurtosis based dimensionality reduction
Before the precursor identification algorithm is applied to the LES data, it is necessary to
reduce the number of variables to lessen the computational load required. This section
explains the methodology behind the co-kurtosis based dimensionality reduction technique
introduced by Jonnalagadda et al. [88], which is applied towards this purpose. As previously
mentioned in Section 3.2.2, the co-kurtosis PCA improves on the classical PCA by computing
the principal vectors using the fourth order statistical moment, i.e. the co-kurtosis tensor.
The benefit of this approach is that the vectors now point in the direction of the outliers of
a particular dataset (see Figure 4.4). Using this insight, it can be seen how this approach
may be useful in detecting anomalies or extreme events, as prior to these events, there
may be variables which contain outliers. For example, for an combustion dataset, fleeting
ignition kernels at a particular location may be indicative of an incoming autoignition event
[89].
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Figure 4.4: A Gaussian dataset with a few samples converted to outliers in different
locations. The first (solid line) and second (dashed line) PCA vectors are shown in red,

while the co-kurtosis PCA vectors are shown in blue [89].

To apply this algorithm, the principal vector of the fourth order moment must be computed
at every time-step for a given dataset containing different variables across a grid. As such,
at each time-step, thermo-chemical variables in a region near the autoignition zone are
used. The region differs from case to case and it will be shown later in Section 5.2.

The initial phase of the algorithm encompasses a data preprocessing stage. During this
stage, for a single time-step, the data from each feature is scaled by subtracting its mean
and then dividing by its absolute spatial maximum. For the next step, consider a feature
vector V of dimension 𝑁𝑓 with 𝑛𝑠 samples. The joint fourth order moment tensor can be
calculated as:

𝜏𝑖𝑗𝑘𝑙 = 1
𝑛𝑠

∑
𝑛𝑠

𝑣𝑖𝑣𝑗𝑣𝑘𝑣𝑙, 1 ≤ 𝑖, 𝑗, 𝑘, 𝑙 ≤ 𝑁𝑓 (4.33)

where 𝑣𝑖 ∈ V. Then, the tensor of interest, containing only the excess kurtosis is obtained
by subtracting the excess variance as follows:

[𝐶𝑦
4 ]

𝑖1𝑖2𝑖3𝑖4
= 𝔼[𝑦 ⊗ 𝑦 ⊗ 𝑦 ⊗ 𝑦] − 𝔼 [𝑦𝑖1

𝑦𝑖2
] − 𝔼 [𝑦𝑖3

𝑦𝑖4
] −

𝔼 [𝑦𝑖1
𝑦𝑖3

] 𝔼 [𝑦𝑖2
𝑦𝑖4

] − 𝔼 [𝑦𝑖1
𝑦𝑖4

] 𝔼 [𝑦𝑖2
𝑦𝑖3

]
(4.34)

where 1 ≤ 𝑖1 … 𝑖4 ≤ 𝑞 and 𝔼 is the expectation operator. The next step is reshaping the
cumulant tensor 𝐶𝑦

4 into a matrix 𝑀𝑦 which can be decomposed into principal vectors and
eigenvalues using singular value decomposition (SVD) [130, 131].

mat (𝐶𝑦
4 ) ≡ 𝑀𝑦 =

q

∑
𝑖=1

𝜅iai ⊗ vec (ai ⊗ ai ⊗ ai) (4.35)

where the vector 𝑎𝑖 are determined from the SVD of 𝑀𝑦. Here, the mat and vec denote
the matricising and vectorising operation of a tensor. With this the principal vectors are
obtained. An extra step can be made in this algorithm to find out the contribution of each
individual feature towards the co-kurtosis and quantify the change in this contribution over
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time. This is a featurization step where a feature moment metric 𝐹 𝑗,𝑛
𝑖 is defined for each

feature 𝑖 in a given domain 𝑗 and time-step 𝑛. 𝐹 𝑗,𝑛
𝑖 is computed as follows:

𝐹 𝑗,𝑛
𝑖 =

∑𝑁𝑓
𝑘=1 𝜆𝑘 ( ̂𝑒𝑖 ⋅ ̂𝑣𝑘)2

∑𝑁𝑓
𝑘=1 𝜆𝑘

(4.36)

Here, ̂𝑒𝑖 ⋅ ̂𝑣𝑘 corresponds to the 𝑖𝑡ℎ entry in the 𝑘𝑡ℎ vector ̂𝑣𝑘. By definition, the set of
vectors ̂𝑣𝑘 is orthonormal. Furthermore, the sum of all feature moment metric values of the
different variables is equal to 1 for a single time-step. Qualitatively, the FMMs indicate the
individual contribution of each variable towards the principal vectors. For the application
in this work, it is stipulated that the variables which present high values for the feature
moment metrics are the ones that have the most outliers and therefore the highest amount
of change just before the autoignition flashback. Thus, using these variables is likely to
create an unique path in the phase space which can be picked up by the modularity-based
clustering to create a reliable precursor.

4.5. Modularity-based clustering precursor identification
As mentioned in Section 3.3, this algorithm was first introduced by Schmid et al. [95,
96] and then further developed by Golyska and Doan [101]. This approach consists of
describing a complex system as a weighted graph in the phase space, with the aim of
identifying communities which could serve as precursor states leading to an extreme event.
The methodology of this algorithm is detailed in the following sections.

4.5.1. Data selection and phase space representation

Figure 4.5: Geometry of the GT36 at the mid z-plane showing the sampling locations for
the clustering-based algorithm

The first step of the algorithm consists in choosing the right data out of the available LES
simulations, where the sampling location and the different flow variables are of interest.
First, the sampling location for the desired time series is chosen according to the definition
of a flashback, i.e. when the flame is present in the mixing duct. This corresponds to the
step location E0 (x = 3.1 and y = 0 cm) shown in Figure 4.5, which is taken as a baseline
case to be later compared to off-centre locations 𝐸𝑖 (where i = 1, 2, 3) and 𝐶𝑈. The second



4.5. Modularity-based clustering precursor identification 58

part of this step consists in identifying the right flow variables which would best represent
the dynamics of the system and lead to the correct identification of a precursor to flashback.
This part is based on the dimensionality reduction technique presented in Section 5.2.

The time series of the chosen variables are then represented in the phase space, which allows
for an easy identification of the extreme events. An example is shown in Figure 4.6, where
a two-dimensional system (not related to the reheat combustion chamber) represented by
variables 𝑥1 and 𝑥2 is plotted.

Figure 4.6: An example of the evolution of a system represented in the phase space [92].

4.5.2. Tessellation
To compress the description of the system’s path, the phase space is subdivided into
smaller segments, with 𝑀 divisions along each axis, where the resulting volumes are called
hypercubes. The initial step involves normalizing the phase space across all dimensions,
simplifying the process of identifying which hypercubes contain specific trajectory points.
Following this, the trajectory’s time series in the phase space is examined. This analysis
converts the original data into hypercube indices. The outcome is a time series that maps
the system’s path, denoting the relevant hypercubes at each time interval. For efficiency, the
tessellation process utilizes sparse matrices. This approach ensures that only the non-empty
hypercubes are recorded in memory, with each assigned a distinct index. This enables the
accurate discretization of the system’s trajectory without any overlap or voids, as seen in
Figure 4.7.

At this stage of the algorithm, the extreme states of the system are also defined by marking
the hypercubes as extreme. Golyska [92] uses a broad definition based on how many
standard deviations a point in the time series is away from the mean. This is done for
any number of dimensions of the phase space and it allows for the algorithm to remain
the same when considering different systems presenting extreme events. In the case of a
reheat combustor, this is unfortunately not as applicable. As such, for the definition of
the flashback event, only the temperature dimension is considered at the step location,
where an extreme event is marked as such if the value surpasses a certain threshold. This
threshold was chosen as 1300 K based on observation of the temperature time series as it
was seen that at this point the gradient becomes sufficiently steep to consider flashback as
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inevitable. This value is close to the cross-over limit of 1350 K, but it provides an earlier
warning of the incoming flashback, without inducing any false positives.

Figure 4.7: The tesselation process of an example system’s trajectory. [92]

4.5.3. Transition probability matrix

Figure 4.8: Transformation of the tessellated space into a transition probability matrix
[92].

The next step of the algorithm is translating the tessellated data into a transition probability
matrix. The classic method calculates the elements of this matrix as follows:

𝑃𝑖𝑗 =
𝑚 (𝐵𝑖 ∩ ℱ1 (𝐵𝑗))

𝑚 (𝐵𝑖)
𝑖, 𝑗 = 1, … , 𝑁 (4.37)

where 𝑃𝑖,𝑗 denotes the probability of hypercube 𝐵𝑖 to transition to hypercube 𝐵𝑗, N denotes
the total number of hypercubes and ℱ1 is the temporal forward operator denoting the
state of the system at the following time step. Furthermore, 𝑚 (𝐵𝑖) indicates the number
of phase space points contained in hypercube 𝐵𝑖. The backwards method, as implemented
in Schmid et al. [95], can also be used for the probability transition matrix:
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𝑃𝑖𝑗 =
𝑚 (𝐵𝑗 ∩ ℱ−1 (𝐵𝑖))

𝑚 (𝐵𝑗)
𝑖, 𝑗 = 1, … , 𝑁 (4.38)

where now ℱ−1 is the temporal backstep operator, indicating the state of the system at the
preceding time step. The final result of this step is a sparse transition probability matrix 𝒫
of size 𝑀𝑛, where 𝑛 is the number of dimensions of the phase space. A visualization of 𝒫 is
shown in Figure 4.8, where it can be seen that the matrix is highly diagonal, indicating that
the trajectory lies in a given hypercube for multiple time steps at a time. The off-diagonal
non-zero terms represent transitions to other hypercubes.

4.5.4. Graph interpretation

Figure 4.9: Network representation of the tessellated phase space [92].

The transition probability matrix can subsequently be transformed in a weighted and
directed graph. In this graph, the nodes are the hypercubes of the tessellated trajectory
and the edges represent the transitions between one hypercube to another. Furthermore,
the edge weights represent the probabilities of transitioning. An example of how such a
graph looks is shown in Figure 4.9.

4.5.5. Modularity-based clustering
In this step of the algorithm, the obtained network is clustered based on a metric called
modularity. The Python Modularity Maximization library [132] is used, which implements
this method based on the works of Newman and Leicht [94, 133]. Furthermore, a change
involving the computational speed made by Golyska [92] is also kept here.



4.5. Modularity-based clustering precursor identification 61

Figure 4.10: Example of the final network obtained after the clustering process (left),
superimposed on the tessellated phase space (right) [92].

The algorithm works by maximizing modularity, which is a measure of the strength of
division into communities, defined as the difference between the fraction of edges within
communities and the expected fraction of such edges. The idea behind this parameter is that
a division is good when the number of edges between divided communities is smaller than
expected, and not just small. In essence, what distinguishes a division between communities
as interesting is the deviation from a random distribution in the expected number of edges.
The calculation of the expected number of edges is performed by creating a random network
that mirrors the degree sequence of the original network. This involves assigning each
node a degree 𝑘𝑖, conceptualized as a half-link. As a result, the aggregate of all these
half-links sums up to ∑ 𝑘𝑖 = 2𝑚, where 𝑚 represents the total count of edges within the
network. A given half-link is capable of connecting to any one of the 2𝑚−1 other half-links,
excluding a connection to itself. For another node 𝑗 with 𝑘𝑗 half-links, the probability of
connection to node 𝑖 is uniform, resulting in a connection probability of 𝑘𝑗

2𝑚−1 , which can
be approximated as 𝑘𝑗

2𝑚 in large networks. Hence, the chance of a connection between node
𝑖 and node 𝑗 can be expressed as 𝑘𝑖𝑘𝑗

2𝑚 . When considering the interaction between a node
pair 𝑖, 𝑗, modularity, as detailed in Equation 4.39, reflects the difference between the actual
adjacency 𝐴𝑖𝑗 and the expected connection 𝑘𝑖𝑘𝑗

2𝑚 , with 𝐴𝑖𝑗 being an adjacency matrix entry
that signifies the presence (1) or absence (0) of an edge between them. This treatment
precludes the possibility of multiple edges between the same pair of nodes. Aggregating this
calculation across all node pairs for a graph split into two communities, where 𝑛 denotes
the total number of vertices, gives us the modularity equation:

𝑄 = 1
2𝑚

∑
𝑖,𝑗

(𝐴𝑖𝑗 −
𝑘𝑖𝑘𝑗

2𝑚
) 𝛿𝑠𝑖,𝑠𝑗

(4.39)

In this formula, 𝑠𝑖 and 𝑠𝑗 represent the community affiliations of nodes 𝑖 and 𝑗 respectively,
with the modularity contribution coming solely from node pairs within the same community,
as indicated by the Kronecker delta function 𝛿𝑠𝑖,𝑠𝑗

.
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This equation can be modified to account for the directness of the graph:

𝑄 = 1
𝑚

∑
𝑖𝑗

(𝐴𝑖𝑗 −
𝑘𝑖𝑛

𝑖 𝑘𝑜𝑢𝑡
𝑗

𝑚
) 𝛿𝑠𝑖,𝑠𝑗

(4.40)

In this formula, 𝑘𝑖𝑛
𝑖 and 𝑘𝑜𝑢𝑡

𝑗 are the in- and out-degrees of the vertices. The probability of
an edge from vertex 𝑗 to vertex 𝑖 is 𝑘𝑖𝑛

𝑖 𝑘𝑜𝑢𝑡
𝑗

𝑚 . Unlike Equation 4.39, the factor of 2 is omitted
in the denominator due to the graph’s directness.
The method used in [94] reduces the challenge to partitioning the network into two
communities. For computational efficiency, Equation 4.40 is rephrased in vector form as:

𝑄 = 1
2𝑚

∑
𝑖𝑗

(𝐴𝑖𝑗 −
𝑘𝑖𝑛

𝑖 𝑘𝑜𝑢𝑡
𝑗

𝑚
) (𝑠𝑖𝑠𝑗 + 1) = 1

2𝑚
∑

𝑖𝑗
𝑠𝑖𝐵𝑖𝑗𝑠𝑗 = 1

2𝑚
s𝑇Bs

In this scenario, 𝑠𝑖 takes on a value of 1 or -1, reflecting the community to which the node
belongs, where 𝛿𝑠𝑖,𝑠𝑗

= 1
2(𝑠𝑖𝑠𝑗 + 1). The vector s contains the values of 𝑠𝑖, and B represents

the modularity matrix, with its components 𝐵𝑖𝑗 defined accordingly:

𝐵𝑖𝑗 = 𝐴𝑖𝑗 −
𝑘𝑖𝑛

𝑖 𝑘𝑜𝑢𝑡
𝑗

𝑚
The algorithm aims to maximize 𝑄 for a given matrix B. For directed graphs, where B is
asymmetric, symmetry is restored by adding its transpose:

𝑄 = 1
4𝑚

s𝑇(B + B𝑇)s

This is treated as an eigenvalue problem, where 𝑠 = ∑1 𝑎1𝑣1 is a linear combination of the
eigenvectors v1 of (B + B𝑇), and 𝑎1 = v𝑇

1 ⋅ s. The modularity can be rewritten in terms of
the eigenvalues 𝛽𝑖 and corresponding eigenvectors v1:

𝑄 = ∑
𝑖

𝑎𝑖v𝑇
1 (B + B𝑇) ∑

𝑗
𝑎𝑗v𝑗 = ∑

𝑖
𝛽𝑖(v𝑇

1 ⋅ s)2

The highest value of 𝑄 is reached when vector 𝑠 aligns with the eigenvector of the largest
eigenvalue. The closest solution is sought, given the constraint that 𝑠𝑖 = ±1. The
eigenvector’s signs define the nodes’ community affiliations, facilitating the division process.
The algorithm iteratively divides the network into two communities, stopping when no
further division increases overall modularity. The change in base modularity, rather than
modularity itself, is considered for each subdivision:

Δ𝑄 = 1
4𝑚

s𝑇(B(𝑔) + B(𝑔)𝑇)s

With:
𝐵(𝑔)

𝑖𝑗 = 𝐵𝑖𝑗 − 𝛿𝑖𝑗 ∑
𝑘∈𝑔

𝐵𝑖𝑘

where 𝑔 is the subgraph being considered. In this algorithm, the clustering runs iteratively.
The communities are found based on maximizing the modularity, the transition probability
matrix is deflated as in the following step, a new network is formed based on the new matrix
and clustering begins again. The process continues until either the maximum number of
iterations is surpassed or the number of communities decreases to a user-defined threshold.
An example of the clustering process is shown in Figure 4.10 where the final network
obtained is compared with the original one.
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4.5.6. Matrix deflation
In this step, a community affiliation matrix D is created, which connects the obtained
clusters from the previous step, to the nodes of the original graph. Using this matrix, the
original probability transition matrix is deflated, resulting in a new matrix P(1), which
describes the dynamics of the new network. This is the point of the algorithm in which the
iterative process starts, as explained in the previous section.

P(1) = DTPD (4.41)

The original probability transition matrix and the resulting deflated matrix are shown in
Figure 4.11.

Figure 4.11: Transformation of the transition probability matrix after the deflation step
[92].

4.5.7. Cluster classification
The last step of the algorithm consists of identifying the extreme clusters and the precursors
clusters. The extreme clusters are classified as such based on the tessellation step, where
the extreme hypercubes were marked, and the precursor clusters are defined as the clusters
which transition into extreme clusters, as indicated by the final transition probability
matrix. Any cluster which has a probability of transition into an extreme one is identified
as a precursor cluster, no matter the actual the probability value. A visualization of the
identification of extreme and precursor clusters is shown in Figure 4.12 and Figure 4.13.
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Figure 4.12: In this example, the extreme region of the phase space is shown in red across
the phase space, the tessellated phase space and the final network. [92]

Figure 4.13: The process of identifying the precursor clusters. The transitions to the
extreme clusters (red) are shown in orange, based on which the precursor clusters (orange)

are identified. [92]

4.5.8. Addition to the algorithm
One flaw of the original algorithm is that the condition set in the tessellation step that
identifies extreme clusters is not satisfied anymore as the network gets coarser. More
precisely, the clustering step is not restricted in grouping non-extreme nodes and extreme
nodes together, leading to clusters containing both types of nodes. This results in a
vague definition of extreme events where a precursor cluster does not transition into an
extreme event, even though it indicates the transition towards an extreme cluster. This
also influences the results by leading to erroneous statistics (false positives, false negatives,
etc.).

As such, a change was made to the clustering step of the algorithm, whereby, instead of
initializing the clustering process with a single community, the nodes of the network were
initialized into two distinct communities: an extreme community, containing the extreme
nodes, and a non-extreme one, containing the rest of the nodes. In this way, the distinction
is kept through the clustering process. On the next iteration of the algorithm, the newly
found normal and extreme clusters are identified and used to initialize the clustering process
again.
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Figure 4.14: Example clustered phase space
without the change

Figure 4.15: Example clustered phase space
with the change

Figure 4.14 and Figure 4.15 showcase a clustered phase space, with and without the change,
where the limit identifying extreme events lies at 𝑇 = 1400 K. It can be seen that on the
right hand side, the extreme clusters (identified by red number) do not contain non-extreme
nodes anymore, as clusters 0, 1, 12 and 19 did on the left hand side. In this way, the
precursor clusters are more precisely identified, leading to a reduced rate of false positives.
Furthermore, when the system enters an extreme cluster, it also transitions to an extreme
event, resulting in a correct rate of correct positives.

4.5.9. Post-processing
After the algorithm is finished, the results are post-processed to make a statistical analysis.
First, some properties are saved for each cluster:

• The list of nodes belonging to the cluster
• The nature of the cluster: normal, precursor or extreme
• Clusters which can transition to the considered cluster
• Clusters towards the considered cluster can transition
• Center of the cluster in the phase space
• Center of the cluster in the tessellated phase space
• Average time spent in the cluster before a transition happens
• Number of times the trajectory of the phase space enters the cluster (number of

instances)
• The percentage of time spent in the cluster from the entire time series

Using these properties, the following statistical measures can be calculated:
• Prediction time: defined as the average time spent in the precursor clusters.
• Rate of false negatives: defined as the ratio between the number of instances an

extreme event did not have a precursor and the number of extreme events, expressed
as a percentage.
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• Rate of correct positives: defined as the ratio between the number of instances an
extreme event did have a precursor and the number of extreme events, expressed as a
percentage.

• Rate of false positives: defined as the ratio between the number of instances a
precursor cluster did not lead to an extreme cluster and the number of times the
system entered a precursor cluster, expressed as a percentage.

Besides these metrics, it is possible to do a more detailed analysis of all the clusters in
the system. The probability of transitioning to an extreme event is saved not only for
precursor clusters, but for all the clusters in the system. For these clusters, the probability
is calculated as the product of the probabilities of transitioning to all the clusters found on
the path to an extreme cluster. For each cluster, there may be different paths leading to an
extreme event and as such, for the previous statistical measure, the path with the highest
probability is considered. Likewise, the minimum average time to an extreme cluster is also
computed by taking the sum of the average residence times on one particular path and
then choosing the path with the smallest time.

4.6. Robustness Analysis
This section presents the robustness tests which will be employed to analyze the performance
of the modularity-based clustering algorithm in non-ideal scenarios.

Sampling location
The first robustness test is based on varying the sampling location for the time series of the
features. In addition to the location E0, four additional points from the LES simulation
will be used to compile the data. These points can be seen in Figure 4.5. This test will be
a good indication of the performance of the algorithm when the sampling is not done at
the ideal location, where the first autoignition kernels emerge.

Future unseen flashbacks
The second robustness test employed for the modularity-based clustering algorithm investi-
gates the prediction performance when the algorithm is used in an online setting and with
less data. As the clustering algorithm has a significant computing time due to the large
complexity involved in converging the probability transition matrix, it is not possible for
the algorithm to perform the clustering process in real-time, i.e. recalculate the probability
transition matrix each time a new data point is added to the time series. As such, it is
interesting to determine whether or not the algorithm has enough robustness to predict the
behaviour of unseen data, based on previously seen time series.

For this purpose, the data containing the time series of the different features shall be split
into so called training sets and test sets. The algorithm then performs the clustering based
on the training data, resulting in a set of normal, extreme and precursor clusters, as well as
their probability transition matrix. The centroids of all of the clusters are then recorded.
These centroids are then used to classify the state of the test data. This shall be done
by computing the distance between the state of the new incoming data to the previously
identified clusters using the following formula:

𝜖 = √
𝑛

∑
𝑖

( ̃𝜙𝑖 − ̃𝜙𝑖,𝑐𝑙𝑢𝑠𝑡𝑒𝑟)2 (4.42)
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where ̃𝜙𝑖 is the current state of the incoming data, 𝑛 is the number of features and ̃𝜙𝑖,𝑐𝑙𝑢𝑠𝑡𝑒𝑟
represents the centroids of all the previously computed clusters. To properly account for the
influence of the different features, the states of the test data and the centroids of the clusters
are normalized using min-max normalization. Once the closest cluster has been identified,
the current state receives the labelling of that cluster. The precursor to the extreme event
is then found when the data is labeled to belong to a precursor cluster. In this way, it is
possible to achieve ”online” prediction and assess the robustness of the algorithm. Moreover,
this test is also a good indicator of the performance of the clustering-based method when
only shorter time series are available.

Features availability
The following test is composed of two different parts:

• Firstly, the available data is again limited, not through the length of the time series
or by not feeding it to the algorithm, but through the number of features. More
specifically, the number of features will be varied and some key features will be
removed from the available data to assess the prediction time. This way, it is possible
to investigate which features give the best indication of an incoming flashback and see
whether or not these are the same features indicated by the literature on autoignition.

• Secondly, this test will also look at a specific test case where the features will be
limited to pressure time series at the walls and the temperature at location E0.
Using pressure time series at the walls represent a step towards achieving true online
prediction as collecting this sort of data at a high sampling frequency is possible
by using pressure probes. The sampling locations are denoted by the yellow points
in Figure 4.5. Unfortunately, removing the temperature time series altogether is a
difficult task as the definition of the extreme event relies on it.

Fluctuating conditions
Generally, gas turbines can have either large or small fluctuations in their operating
conditions. For example, fluctuations in power output, vibrations and noise, increased
temperature at the compressor outlet and increased fuel consumption can induce a different
behaviour in the combustion chamber. As such, it is important to determine the robustness
of the precursor identification algorithm under these conditions. For this purpose a new
LES simulation will done based on the same setup, but with different inlet conditions.
Now, the digital filter method will be used to impose turbulent fluctuation at the inlet, as
described in Section 4.2.3 and a realistic velocity profile will also be used, as discussed in
Appendix D. Using the data generate by this new simulation, the same procedure will be
applied to find the prediction time for the autoignition flashback.

4.7. Spray design
In order to find a suitable spray configuration which successfully stops the flashback, the
design must focus on a few key parameters, while still adhering as much as possible to
certain limitations. As previously mentioned in Section 2.5.1, there are several parameters
which can be tuned. These parameters are the choice of atomizer, the injection location, the
diameter of the spray 𝑑0, the mass flow �̇�𝐿, the SMD, the angle of the cone, 𝛽, and finally
the thickness angle of the cone, 𝜏. These parameters, in turn, influence the injection velocity,
which can be considered as another critical design parameter. The swirl number is not
considered here due to the tendency of swirled flows to induce CIVB flashback and to focus
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on the effects created only by the autoignition flashback. In the following, each of these
parameters are considered independently, focusing on the procedure taken to maximize the
potential of the spray to stop the flashback. It should be mentioned that this procedure
does not represent a thorough sensitivity analysis as only a preliminary design is sought.

Before moving on to the design parameters, the liquid water spray properties are shown in
Table 4.2. Here, 𝜇𝐿, 𝜌𝐿, 𝜎 and 𝐶𝑝 are the viscosity, the density, the surface tension and
specific heat capacity of liquid water, respectively.

Table 4.2: Properties of liquid water

T [K] 𝜇 [Ns/m2] 𝜌 [kg/m3] 𝐶𝑝[ J/(kgK)] 𝜎[N/m]
300 8.276e − 04 995.210 4180.2 71.175e − 03

Injection velocity
In a spray for which the main purpose is the suppression of the flashback, the injection
velocity is one of the most important parameters. This is because it influences the response
time of the water spray. Depending on the location of the spray and the external angle,
the velocity necessary to stop the flashback (𝑉𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒) before it reaches the mixing duct
can be determined. For example, if the spray is injected at the inlet (𝑥 = 0, 𝑦 = 0 and
𝑧 = 0 cm) with a hollow cone configuration, the velocity can be determined as follows (see
Figure 4.16):

𝑉𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 = 1
𝑐𝑜𝑠(𝛽 − 𝜏)

Δ𝑥
𝑡𝑝𝑟𝑒𝑑

(4.43)

where Δ𝑥 is the distance the spray has to travel to the sampling location and 𝑡𝑝𝑟𝑒𝑑 is the
prediction time. Meanwhile, the actual injection velocity of the spray, 𝑉𝑖𝑛𝑗, is calculated as
follows:

𝑉𝑖𝑛𝑗 = 4�̇�𝐿
𝜋𝑑2

0𝜌𝐿
(4.44)

In reality, the velocity of the spray is influenced by a multitude of factors and it will not
equal 𝑉𝑖𝑛𝑗, but, nevertheless, the value of 𝑉𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 can be taken as a first hand estimate
for 𝑉𝑖𝑛𝑗. As such, following Equation 2.3, the water mass flow and the nozzle diameter are
tuned such that the 𝑉𝑖𝑛𝑗 ≈ 𝑉𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒. The other factors which influence the spray velocity
are the external angle and the thickness angle due to way in which they position the flow
relative to the reactant flow. Lastly, the SMD also plays an important role because, as
previously discussed, large particles carry higher momentum and are thus less influenced by
the drag of the surrounding flow. In this study, the influence of the SMD and the injector
geometry is explored by trial and error.
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Thickness angle External angle

Sampling location

Figure 4.16: Schematic of the spray geometry when the injector is located at the inlet.

Sauter Mean Diameter (SMD)
The Sauter Mean Diameter, besides its influence on the drag of the particles, plays an
important role in the particle’s ability to evaporate. The SMD dictates how long it takes
for the liquid particles to turn into gas and cool the surrounding flow by absorbing its heat.
Generally, in a water spray which is not focused on flashback suppression, the SMD should
not exceed a certain value beyond which the droplets do not have enough time to evaporate
as this leads to a lower efficiency. For this design, although, the main focus is on stopping
the flashback and as such this value will be merely used as a guideline. An estimation of
the SMD can be obtained based on the study of Estes and Mudawar [134]:

𝑑32 = 3.67𝑑0 [𝑊𝑒1/2
𝑑0

𝑅𝑒𝑑0
]

−0.259

𝑊𝑒𝑑0
= 𝜌a (2Δ𝑃/𝜌L) 𝑑0

𝜎
𝑅𝑒𝑑0

= 𝜌L (2Δ𝑃/𝜌f)
1/2 𝑑0

𝜇L

(4.45)

Atomization regime
In this study, the Rosin-Rammler (RR) particle distribution is used and the break-up phe-
nomena is neglected. As such, it is important to determine whether or not the atomization
regime of the spray fits this assumption. For this purpose, the guidelines laid out by Reitz
[135] are followed. Here, the author indicates that there are four atomization regimes which
are encountered sequentially as the injection velocity rises. In the Rayleigh Jet Breakup
Regime, droplets form due to axisymmetric surface oscillations caused by surface tension,
with droplet diameters larger than the jet. In the First Wind-Induced Breakup Regime,
surface tension is assisted by static pressure differences from jet and ambient gas velocities,
causing breakup several jet diameters from the nozzle and producing droplets roughly
the size of the jet. The Second Wind-Induced Breakup Regime features enhanced short
wavelength surface waves from increased relative velocity of the two-phase flow, leading to
droplet formation. Finally, in the Atomization Regime, small droplets form immediately
upon exiting the nozzle, effectively atomizing the jet. The four regimes are displayed in
Figure 4.17.
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Figure 4.17: Break-up regimes based on the Ohnesorge number and the Reynolds number
[135].

As such, a constraint of this design is to ensure that the spray is in the atomization regime.
For this purpose, the design parameters of the spray shall be tuned such that the values of
Oh and ReL fit this criteria. These numbers are calculated as follows:

ReL =
𝜌𝐿𝑉𝑖𝑛𝑗𝑑𝑜

𝜇𝐿

Oh = 𝜇𝐿

√𝜌𝐿𝜎𝑑0

(4.46)

Injector geometry
The remaining parameters not discussed yet are the diameter of the spray 𝑑0, the angle
of the cone 𝛽 and the thickness angle 𝜏. Similarly to the SMD, the influence of these
parameters shall be explored empirically. What is mainly sought here is that the spread of
the particles, as dictated by the two angles, is wide enough to cover the whole area of the
premixing duct, effectively stopping the flashback from advancing upstream.



5
Results

In this chapter, the results aimed at answering the research questions are presented and
discussed. Firstly, the LES simulation and the observed phenomena are discussed, where
emphasis is made on the flashback and autoignition precursors. Secondly, the dimensionality
reduction technique is applied and the results are discussed, resulting in a final choice for the
features to be used in the precursor algorithm. Then, the results from the modularity-based
clustering algorithm are discussed, along with the robustness tests detailed in Section 4.6.
Lastly, the use of water injection to suppress the flashback is discussed.

5.1. 3D LES simulation
The first part of this chapter consists of analyzing the high pressure 3D LES simulation of the
simplified GT36 combustor. For this simulation, the case setup is described in Section 4.2,
with the exception of using the digital filter method to impose turbulent fluctuations at the
inlet. This choice was made to simplify the analysis and for this simulation to serve as a
first demonstrator for the modularity-based clustering precursor identification algorithm.
Later on, a realistic case where turbulent fluctuation are super-imposed at the inlet along
with a fully-developed pipe flow velocity profile is also put to the test. As a summary, the
most important conditions for this simulation are as follows:

• Pressure BC at the outlet: 𝑃 = 20 atm
• Inlet velocity: 𝑉 = 200 m/s
• Inlet temperature: 𝑇 = 1180 K
• Equivalence ratio: 𝜙 = 0.35
• Turbulence intensity at the inlet: 𝐼 = 10%

The simulation has a base grid with a Δ𝑥 = 0.4 mm, 10 million cells in total when
AMR is activated and at a minimum 5 cells across the thin flame front by using the
TFM model. In addition, to verify the adequacy of the simulation, Pope’s criteria is
shown in Figure 5.1, which corresponds to a time-step where the flame is located in the
combustor. The calculation was done using Equation 4.31, where 𝐾(𝑥, 𝑡) was calculated as
𝐾 = 1

2(�̃�2 + ̃𝑣2 + �̃�2), with �̃�, ̃𝑣, �̃� being the time-averaged RMS values of the fluctuations
of the velocity components. It can be seen how almost the entire domain is below the 0.2
threshold, which is generally considered as acceptable for LES. The only regions which
come close to this value are the IRZs, where the velocity and the sub-grid scale velocities
are closer to 0, making the ratio of turbulent kinetic energies less precise.

71
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Figure 5.1: Pope’s criterion at an arbitrary time step.

This simulation is similar to the cases analyzed by P. Rouco [19] and Kruljevic et al. [49],
at 20 atm and 1 atm, respectively. Their likeness can be verified by inspecting Figure 5.2.
The simulation exhibits the same characteristics, showing a central divergence zone (CDZ),
formed due to the expansion of the gas and represented by the divergence of the streamlines.
Furthermore, the outer recirculation zones (ORZ) are also present, which form due to the
sudden expansion of the combustion chamber and the consequent large vortical structures
which appear in the corners. In between these regions, the shear layer is also found.

Figure 5.2: Flame contour plot for two positions of the flame. The figure depicts the
autoignition and flame propagation zones in the two scenarios, as well as the central

divergence zone (CDZ) and the outer recirculation zones (ORZ).

Also seen in Figure 5.2 are the two distinct mechanisms which sustain the flame: the
deflagration flame which propagates and stabilizes at the corners and the other, the self-
sustaining autoignition process in the central area of the burner. The propagation of the
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flame is driven by the creation of recirculation zones, where the balance between heat loss
at the walls and the heat produced by burning the reactants aided by the influx of energy
coming from the high temperature burnt gasses, keeps the flame at a stable position. This
ORZ is isolated from the instabilities occurring in the autoignition zone due to its position.
Meanwhile, at the central part of the flame, autoignition is the dominant regime, driven
by the high temperature of the reactants. This regime does not appear in the ORZ due
to the heat of the reactants being lost to the walls. It does however present significant
fluctuations as explained in the following section.

5.1.1. Flashback in Anslado Energia GT36 reheat combustor

Figure 5.3: Contour of temperature [K] during a typical flashback event (top to bottom),
where the white lines represent pressure [Pa] isolines.

In this simulation, combustion is set to start at 1 ms, after the inert flow is fully developed
in the combustion chamber. Shortly after, the flow ignites through the autoignition process
and the base of the flame settles at the expansion step. This is the design location of the



5.1. 3D LES simulation 74

flame as calculated by the balance between the autoignition delay time and the flow-through
time. The autoignition is accompanied by a pressure wave generated by the heat release,
which expands the gases in its vicinity. This pressure waves then travels both downstream
and upstream of the flame location, reflecting at the walls of the combustion chamber. The
reflected pressure waves then form a constructive interference pattern, converging at the
centerline and sending these pressure waves periodically upstream. This behaviour leads
to a positive temperature fluctuation due to compressive heating (Figure 5.3, b). The
temperature then rises, eventually resulting in an early autoignition event, accompanied by
a pressure wave which travels upstream, imposing an unfavourable pressure gradient on
the incoming flow, creating the so-called piston effect. The flow is then heated through
compression, allowing for autoignition in the rest of the mixing duct (Figure 5.3, c). As
seen from (Figure 5.3, d), the boundary layer is the most susceptible in this case and flame
propagation also appears, resulting in a boundary layer flashback. The flame travels almost
all the way to the inlet, corresponding to the point where the residence time matches the
new ignition delay found under the significantly higher pressures and temperatures. Once
the pressure wave reaches the inlet, the piston effect ceases, resulting in a relaxation phase,
where the temperature and the pressure return to normal operating conditions. The flame
is then flushed back, this time further downstream than the original location (Figure 5.3, a).
Nevertheless, ignition kernels quickly start to appear again and the process repeats itself.

In this case, autoignition, the predominant regime of flame propagation for the GT36, is
highly sensitive to temperature fluctuations. As previously mentioned, the autoignition
delay time has a strong dependence on temperature, especially near the cross-over point.
As the reactants’ inlet temperature is 1180 K, it only takes a relatively small increase
in temperature such that the flame changes its location. Furthermore, the cross-over
temperature, which is approximately 1350 K, is also easily reached once ignition kernels
start to appear. This temperature is in fact the temperature found slightly upstream of
the step location, just before the flow fully autoignites in the whole premixing tube. Also
interesting to mention here is that the pressure wave has a large amplitude, reaching 26.5
atm at the inlet, and it travels at nearly 650 m/s, which is the speed of sound in medium
formed by the reactants. This creates a powerful piston effect, slowing the incoming flow
more than half of its initial velocity, i.e. 100 m/s. Furthermore, this phenomena is also
negatively impacted by larger equivalence ratios and inlet bulk velocities. Whereas a higher
value for the inlet bulk velocity generally results in an increased resistance to flashback, in
this case, it leads to more compressive heating, allowing for easier autoignition. Similarly,
the equivalence ratio was found to generate stronger pressure waves for values above 𝜙 = 0.2
[58].

The boundary layer flashback can also prove detrimental in this scenario by aiding the
upstream movement of the flame through an increase of the temperature near the wall.
This type of flashback occurs when the balance between the turbulent burning velocity and
the local flow velocity near the wall shifts in favour of the propagating flame. This can
happen for a multitude of reasons such as fluctuation in the turbulent burning velocities
and vortices leading to the separation of the boundary layer. Furthermore, in the case of
hydrogen, this phenomena is more prone to appear due to the small quenching distance
(the distance from a wall at which the flame is extinguished) of only 0.64 mm. According to
Hoferichter [30], the turbulent flame speed, velocity fluctuations and other parameters such
as the quenching distance are a good indicator of the propensity of the flow for boundary
layer flashback. In this simulation, the boundary layer flashback is aided by the autoignition
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in the mixing duct through the resulting heating of the ambient flow and the smaller
velocity present due to the piston effect. Nevertheless, predicting the appearance of BL
flashback is not of interest in this study, as this phenomena happens only as a result of the
autoignition process. This being said, to fully suppress any flame propagation within the
mixing duct, this type of flashback must also be suppressed.

5.1.2. Autoignition precursors

Figure 5.4: Species mass fractions over the course of a typical flashback event taken at the
sampling location E0 (see Figure 4.5)

A complementary analysis to the one shown in Section 2.4.3 can be performed here based
only on the LES simulation data to find what flow variables are a good indicator of flashback.
In particular, scalars of interest are plotted at the intersection of the centerline axis and the
step plane over the course of a typical flashback event (see Figure 5.4). Key moments of this
figure happen around 𝑡 = 2.14 ms, where the flame is flushed downstream of the considered
point and 𝑡 = 2.22 ms which approximates the time when the cross-over temperature (T =
1350 K) is surpassed and autoignition happens almost instantly in the whole premixing
duct. From the figure, it is clear that H2O2, HO2 and H2O present a significant increase
during the relaxation period before the following flashback, where H2O2 and HO2 follow a
similar pattern. Furthermore, although not as visible, H, O and OH also present a coupled
increase, as evident when the natural logarithm is plotted.
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As such, the following analysis can be split into the chemical kinetics below and above
cross-over, which Trevino [136] identified as a thermal runway and branched-chain explosion,
respectively. The most important reactions below cross-over are shown in Equation 5.1 [137],
while the ones which are most important above cross-over are displayed in Equation 5.2
[138].

H + O2 + M ⇄ HO2 + M (𝑅9)
HO2 + HO2 ⇄ H2O2 + O2 (𝑅14)

H2O2 + M ⇄ OH + OH + M (𝑅15)
H2O2 + H ⇄ H2 + HO2 (𝑅17)

(5.1)

O2 + H ⇄ O + OH (𝑅1)
O + H2 ⇄ H + OH (𝑅2)

H2 + OH ⇄ H2O + H (𝑅3)
H + O2 + M ⇄ HO2 + M (𝑅9)

HO2 + H ⇄ H2 + O2 (𝑅10)

(5.2)

Central to the discussion are radicals, specifically focusing on the chain-branching step
R1, H + O2 → OH + O, and the chain-termination step R9, H + O2 + M → HO2 + M.
Both steps involve the same reactants, yet the latter requires an additional third body, M.
The branching step’s rate escalates markedly with an increase in temperature, whereas the
termination rate remains relatively unchanged with temperature variations. This indicates
that at a certain elevated temperature, the branching rate surpasses the termination rate.
Conversely, at temperatures below this threshold, the branching rate is markedly lower
than the termination rate. This specific temperature, where the rates of both reactions
intersect, is in fact the crossover temperature. Its significance lies in its role in dictating
autoignition chemistry; above this temperature, radical concentrations during autoignition
escalate substantially, while below it, the termination process keeps these concentrations
minimal [138]. Nevertheless, autoignition below cross-over is enabled by an alternative
branched-chain path. This consists of the formation of H2O2 from R14 and the subsequent
formation of OH from H2O2 + M ⇄ OH + OH + M (R15). Furthermore, to a smaller
extent, autoignition is also helped by the creation of H radicals through the reverse of
reaction R17 [137]. This explanation proves satisfactory when tracking the mass fraction
of Figure 5.4, but, this being said, it is possible that there are other reactions involved
in the autoignition process below the cross-over temperature. While it is clear that the
cross-over temperature is reached through the means of exothermic reactions, aided by the
availability of H radicals, there is no single species which could be considered as a precursor
for flashback. As such, different combinations of the species HO2, H2O2, H, O, OH shall be
investigated, where a larger number of species is preferred.
It should also be mentioned here that thermo-diffusive instabilities may also influence
the autoignition process. These instabilities hinder the autoignition process due to the
preferential diffusion of hydrogen towards the flame front in wrinkled flames, and at the
same time it facilitates it through the expansion of the flame attributed to the hydrogen
diffusion, which in turn increases the temperature near the autoignition region. However,
as autoignition seems to appear relatively far away from the flame front, this appears
to be of little relevance for this simulation. Nevertheless, for different initial conditions



5.2. Dimensionality reduction 77

(i.e. 𝜙 ≈ 0.15), the autoignition process was also observed to appear closer to the flame
front and as such, in these cases importance may also be attributed to flow variables that
influence the wrinkling process.

5.2. Dimensionality reduction
Using this first base simulation, it was seen that there are several scalars which may be of
interest for the precursor identification algorithm, as indicated in Section 5.1.2. Nevertheless,
the LES simulation outputs many different variables which may also be used. To avoid
the curse of dimensionality in the modularity-based clustering, it is thus needed to trim
the number of variables to a manageable number. This section shows the results of the
dimensionality reduction procedure, following the methodology laid out in Section 4.4.

Before this step, some of the variables can already be eliminated based on either insight
into the physical phenomena or their lack of practicability. Firstly, only variables which
are inherent to the thermo-chemical and physical state of the system should be considered,
as these are the variables that can potentially be measured in a real life. This excludes
variables that pertain to the LES model, such as the magnitude of the turbulent velocity,
sub-grid scale velocities and sub-grid scale kinetic energy and dissipation rate.

Secondly, the velocities in the transversal axes with respect to the direction of the flow
and the vorticity vector can also be excluded. These variables, although an indicator of
the turbulent mixing present in the flow, can be disregarded because the consequence of
this mixing can be taken directly in the form of the mass fractions of the different species.
Furthermore, due to their large variation over the short period of time in between two
autoignition events, these variables do not constitute a solid basis for the co-kurtosis analysis
as the distribution of the samples also varies significantly within the region of interest.
Lastly, these variables would also not form a strong basis for the clustering procedure as
they can vary significantly from one flashback to the other in a non coherent fashion which
would not assist the clustering algorithm in finding a precursor to the autoignition event.

Third and lastly, quantities which are averaged over space or time such RMS or mean
values should also be disregarded. This is due to the fact that the phenomena of interest is
inherently dynamic, happening over a very small time period. If the fluctuations in the
variables of interest are averaged out then the modularity-based clustering would find less
differences between the different states in the system and would thus have a lower chance
of finding a precursor. The remaining variables to consider are thus as follows:

• Temperature (𝑇)
• Density (𝜌)
• Pressure (𝑃)
• Axial velocity (𝑉𝑥)
• Mass fractions of the species: OH, O, H, O2, H2, H2O, H2O2, HO2
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Figure 5.5: 2D geometry showcasing the co-kurtosis sampling block

The next step in the dimensionality reduction procedure consists of applying the co-kurtosis
algorithm. Towards this purpose, the block shown in red in Figure 5.5 is sampled at every
time step for the variables mentioned above. This block consists of a grid of 21 x 21
sampled from the Tecplot 601 x 201 data obtained from the post-processing of the LES.
This results in 441 samples over a region of 2.1 x 2.1 mm2, ensuring a region of interest
which contains enough samples to be statistically significant, but at the same time, focusing
on the autoignition region, such that there are no data points coming from regions where
there is already a flame.

5.2.1. Kurtosis
Before moving on to the co-kurtosis, it is also interesting to calculate the kurtosis of
the dataset. Kurtosis is also calculated on the same domain for each time step using
Equation 5.3, where 𝑛 denotes the number of samples, 𝑠 is the standard deviation and
𝑋𝑎𝑣𝑔 is the mean.

𝐾 = 𝑛(𝑛 + 1)
(𝑛 − 1)(𝑛 − 2)(𝑛 − 3)

∑𝑛
𝑖=1 (𝑋𝑖 − 𝑋avg )4

𝑠4 − 3(𝑛 − 1)2

(𝑛 − 2)(𝑛 − 3)
(5.3)

The resulting value from this formula denotes the excess kurtosis, meaning that distributions
with 𝐾 > 0 are leptokurtic, having a fatter tail or a significant amount of outliers. The
result is shown over the course of a typical flashback event and for the period shortly after
it in Figure 5.6, where the evolution of features (𝜙) are plotted alongside the evolution of
the kurtosis. The results are divided into three different graphs, grouped by the features
which show similar behaviour in the kurtosis. The features themselves are shown scaled by
their maximum such that they can be plotted together. The kurtosis values should give a
good indication of what features tend to have outliers at the same time, thus allowing for a
better understanding of the co-kurtosis analysis.
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Figure 5.6: Variables of interest and their kurtosis values during a typical flashback event.

Regarding the features, it can be seen how the pressure, the temperature and the mass
fractions of several species slowly increase, culminating in a exponential increase right
before the flashback event. Then, for the period after autoignition, it can be seen how
the flashback event, accompanied by the large magnitude pressure wave, creates a highly
unstable and fast varying state for 𝑇, 𝑃, 𝜌 and 𝑉𝑥. Meanwhile, the behaviour of the mass
fractions is almost uniform as now the autoignition front has moved upstream.

For the kurtosis values, firstly, the temperature, the pressure, density and velocity in the
x-direction generally have low values of kurtosis, with rare exceptions in which 𝐾 > 0,
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out of which, the most significant exceptions occur for temperature. This is expected as
all of these variables should generally not vary significantly within the region of interest
in a stable state. This also holds true for the period after the flashback. Here, although
the features have a significant temporal variation, the spatial variation is limited within
the region of interest. Secondly, the kurtosis for the mass fractions of OH, H and O show
extremely high valued peaks of kurtosis for distinct times across the time series. This is
indicative of reactions occurring below the cross-over temperature which happen locally in
the region of interest, or of the propagation of an ignition kernel which happened outside
this region. The next set consists of the mass fractions of O2, H2, H2O, H2O2 and HO2.
Here, most of the mass fractions have values close to 0, with the exception of H2O2 and
HO2, out of which HO2 has more peaks of high kurtosis. It should be noted that the
activity of H2O2 and HO2 is closely aligned with that of OH, O and H, but the peaks of
the former are generally less pronounced. Most interesting, the period after the flashback
shows almost no values of 𝐾 > 0 for any of the species. This is already promising with
regards to the use of co-kurtosis because there is a clear distinct behaviour between the
two periods. This further confirms the intuition that kurtosis and co-kurtosis can capture
the activity of species before an autoignition event.
The behaviour of the kurtosis of the mass fraction of the different species can be further
explained by considering Figure 5.7, Figure 5.8 and Figure 5.9. These figures show the
evolution of the distributions of H2, OH and H2O over 12 time-steps (𝑡 = 2.170 − 2.181
ms) between two peaks of high kurtosis for OH and H2O. These species have been chosen
based on their position in the reaction chain, such that reactants, intermediate species and
products are all represented. Any of the other species which fit these categories could have
been chosen instead, as their behaviour is similar. In general, the intermediate species
which appear in the reaction chain have a higher predisposition of showing outliers.
Starting with the histograms of OH, one can link the distributions at 𝑡 = 2.172 and
𝑡 = 2.180 ms with peaks shown in the kurtosis time-series. On one hand, these distributions
are rather uniform due to the large peak containing numerous samples in a small range of
values. Furthermore, the presence of outliers at these two time-steps can also be observed
far away from the mean. Putting these together, the distribution formed resembles a
fat-tailed distribution which is bound to show high values of kurtosis. It is interesting to
note that there are other time-steps, such as 𝑡 = 2.170 and 𝑡 = 2.177 ms, which have a
distribution of this form, without presenting such high values for the kurtosis. This is due
to the mean of the distribution being closer to the outliers. This brings into perspective
the way kurtosis is calculated. Being a fourth-order moment, the distance from the mean
is amplified significantly. Meanwhile, the distributions of H2O and H2 better resemble a
Gaussian distribution, and, as such, they do not present high values of kurtosis.
There is another important distinction to be made regarding the value of kurtosis. It
may not necessarily be attributed to the apparition of ignition kernels. Considering the
histograms of the mass fraction of OH at 𝑡 = 2.172 and 𝑡 = 2.180 ms, it can be seen that
the first has the outliers to the left of peak, while the second has the outliers to the right.
Relating the distributions to the contour plot at those time-steps, as shown in Figure 5.10,
the reason for this difference in behaviour becomes evident. At 𝑡 = 2.172 ms, the sampling
region, denoted by the black borders, contains outliers at a lower value than the rest of the
region, due to the incomplete propagation of OH molecules from an autoignition kernel
placed upstream. Meanwhile, at 𝑡 = 2.180 ms, the sampling region indeed captures the
apparition of an ignition kernel located slightly downstream. This means that not every
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kurtosis peak indicates the apparition of an ignition kernel. Furthermore, depending on
where the sampling region is located, the time-steps at which high kurtosis values appear
will change significantly. Nevertheless, even though it is not possible to tell exactly what
is the underlying phenomena that triggers high kurtosis values without closely examining
all of the time-steps, the important part is that kurtosis can indicate an evolving field.
Thus it should be a good indicator for which values present the highest activity before the
flashback.

Shifting the discussion to the actual evolution of the distributions in time, certain correlations
can be observed between the reactants, the products and the intermediate species. One
can see that the mass fraction of H2 decreases between 𝑡 = 2.170 − 2.181 ms and the
distribution shifts from having the peak more towards the right, to having the peak towards
the left. This indicates that more and more H2 is being consumed, allowing for intermediate
species to be formed and for the autoignition kernel to appear at 𝑡 = 2.180 ms. In contrast,
the mass fraction of H2O has its peak shifted from the left to the right. This indicates
an increased rate in the formation of products from the reactions under the cross-over
temperature, facilitating autoignition by releasing heat. As previously mentioned, the
distributions of H2O and H2 have a more Gaussian form. This is likely due to their slower
spread as a result of autoignition. For example, while for OH, the region of interest is fully
covered with the higher mass fraction OH in just 3 time-steps, for H2O, this takes over 8
time-steps, resulting in a more uniform spread in the distribution.

Figure 5.7: Histograms showing the evolution of the distribution of H2 mass fraction in
the sampling region after the apparition of an ignition kernel. Red line is the mean.
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Figure 5.8: Histograms showing the evolution of the distribution of OH mass fraction in
the sampling region after the apparition of an ignition kernel. Red line is the mean.

Figure 5.9: Sequence of histograms showing the evolution of the distribution of H2O mass
fraction in the sampling region after the apparition of an ignition kernel. Red line is the

mean.
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Figure 5.10: Contour plot showing the mass fraction of OH in and around the sampling
region (shown with the black edge box) at 𝑡 = 2.172 and 𝑡 = 2.180 ms.

5.2.2. Co-Kurtosis PCA

Figure 5.11: Feature moment metrics of T and HO2 taken individually over the course of a
typical flashback event.

Co-kurtosis PCA has proven to be useful for both dimensionality reduction of combustion
datasets and for detecting ignition kernels [88] [89]. While kurtosis was able to identify
important changes in the individual features which make up the system, the idea behind
using co-kurtosis is to build on this by identifying the relationship between these features
and assess which ones are the most important. This would effectively allow for a reduction in
the number of useful features, making the use of the modularity-based clustering algorithm
more viable. As previously explained in Section 4.4, for a given time step and a given
physical domain, the data is first scaled and then the co-kurtosis tensor is computed. The
co-kurtosis tensor indicates how much correlation is there between the apparition of outliers
in one variable with respect to the rest. The next step in the procedure is to unfold the
co-kurtosis tensor into matrix and then perform the singular value decomposition (SVD)
operation to obtain the principal vectors and the principal values, which point in the
direction of outlier co-occurence. Finally, the last step is computing the feature moment
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metrics (FMMs) for all of the features of the dataset. One can interpret the FMMs as the
individual contribution of each feature towards the principal vectors.. This indicates that
usually, the feature with a dominating presence of outliers is also likely to have a higher
FMM value. This may although not be the case. For example, given two distributions of
features X and Y, even if X individually does not always exhibit outliers (low kurtosis),
it may still have a high FMM value if the outliers of X, when they occur, align with the
principal direction of co-occurrence captured by the principal vector.
To better understand the way in which the co-kurtosis tensor and the feature moment
metrics are related, one can consider Figure 5.11. Here, only the temperature and the mass
fraction of HO2 are taken into consideration. The figure shows the FMMs over the period
of a typical flashback event. Firstly, it can be seen that the FMM of HO2 is higher for
a greater portion of the time-series. Based on the results shown in the kurtosis analysis,
this is expected, as 𝑌HO2

shows more outliers and higher 𝐾 values. Based on the FMMs
presented in this time-series, specific time-steps are investigated as shown in Figure 5.12.
Here, the scatter plots of the two variables, as well as the principal vectors coming from
the Co-Kurtosis PCA analysis and from a simple PCA analysis are shown. The reason for
which only two variables are taken in this initial analysis is that it makes visualizing the
scatter plot and the principal vectors possible.

Figure 5.12: Scatter plots of 𝑇 and HO2 showing the PCA and co-kurtosis PCA principal
vectors at different time-steps.

The time-steps chosen for this figure correspond to times when the FMM is higher for 𝑌HO2
(𝑡 = 2.172 ms), the FMM is approximately equal between the two variables (𝑡 = 2.203 ms)
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and to when the FMM is higher for 𝑇 (𝑡 = 2.174 ms). As can be seen, the first principal
vector resulting from co-kurtosis PCA points towards the direction of the outliers in all
of these cases. Furthermore, it can also be seen how the FMMs are able to capture the
contribution of the outliers of each individual feature towards the principal vectors, as
reflected by their higher values for each particular case. Lastly, it is interesting to note how,
for the case at 𝑡 = 2.203 ms, the spread of the outliers makes it such that the principal vector
lies in between the two variables. The figure also provides a comparative visualization of
PCA and co-kurtosis PCA, with the principal vectors indicating the direction of maximum
variance in the multivariate outlier pattern. Here, the vectors from co-kurtosis PCA diverge
from standard PCA, emphasizing the importance of outlier values and their co-occurrence,
rather than the average spread of data.
Finally, the evolution of the FMMs during the period prior to the flashback event is shown
in Figure 5.13. The FMM values are again high for the intermediate species OH, H and O.
This is in line with the expectations created by the kurtosis analysis as it was seen that
these species have a high level of activity and a tendency to present outliers. Interestingly,
𝜌, 𝑃 and 𝑉𝑥 also present high values for several time-steps. This suggests that when the
intermediate species do not present high values, it is the outliers of these features which
make the main contribution towards the principal vector, driving the pattern of outlier
co-occurrence. Finally, as expected, because the outliers of HO2 and H2O2 tend to occur
at the same time as the ones from the other intermediate species, but have lower 𝐾 values,
these two species present higher FMM values for a smaller amount of time-steps. However,
unexpectedly, the FMMs of the reactant H2 and the product H2O follows the trend of HO2
and H2O2. This suggests that the distributions of these features is linked to each other.
From a physical perspective, the feature moment metrics confirm the physical intuition
given by the observed flashback mechanism. The effect of the pressure waves that converge
at the centerline and move upstream is reflected in both the change in the pressure FMM
and in the FMM of the streamwise velocity. The early ignition kernels resulting from these
pressure waves, that appear in the mixing tube give rise to the change in the intermediate
species. The effect of which can also be reflected in the FMMs. In fact, the FMM time
series suggests that there is seesaw effect between the two groups. While the FMM of the
intermediate species is high, the opposite is true for 𝑃, 𝑉𝑥 and 𝜌. This further highlights the
correct interpretation of physical mechanism by the FMMs. There are however two distinct
moments where the H2O, H2, O2, H2O2 and HO2 group also has a significant contribution
to the FMM. From a physical perspective, this could be attributed to the different chemical
timescales of the reactions and their spread across the sampling region.
With these points in mind, the choice of the features that shall be used in the modularity-
based clustering algorithm can be made. As previously mentioned, the way in which the
features are chosen is based on whether or not they have high FMM values. This criteria
is chosen based on the interpretation that high FMM values suggest an increased level of
activity prior to a flashback event and/or a high dependency of other variables on this
feature. Firstly, since the OH, H and O group all present an almost identical behavior,
their behaviour should be captured by only one of them. For this reason, only OH is taken
from this group. Secondly, from the H2O, H2, O2 H2O2 and HO2 group, the mass fraction
of HO2 is taken. This is because, although it does not show the highest peaks, it is more
consistent, having higher values for a larger portion of the time-series. Finally, all of the
features from the remaining group are taken. This is because, with the exception of 𝑇,
all of them present high FMM values, and, unlike OH, H and O, they are fundamentally
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different quantities. As such, it is thought that their different behaviours would benefit the
clustering algorithm more than taking H and O for example. The reason for which 𝑇 is
taken is because it is fundamental to the definition of the extreme event in the precursor
identification procedure. The final set of features consists of 𝑇, 𝜌, 𝑃, 𝑉𝑥, HO2 and OH.

Figure 5.13: Evolution of the normalized variables of interest and of their respective
FMMs during a typical flashback event.

5.2.3. Sensitivity to the sampling time and sampling region
To assess the influence of the sampling region and of the sampling time on the outcome of the
co-kurtosis analysis, several tests were conducted. For the influence of the sampling region,
the same analysis was done with 2 larger regions. The first one spanned from 𝑥 ∈ [2, 2.8]
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cm and 𝑦 ∈ [−0.4, 0.4] cm, resulting in 6400 samples for each time step. The second one
stretched from 𝑥 ∈ [1.2, 2.8] cm and 𝑦 ∈ [−0.4, 0.4] cm, resulting in 13041 samples. It
was found that there are not significant differences in the outcome of the analysis with
respect to the smaller sized region spanning from 𝑥 ∈ [3, 3.2] cm and 𝑦 ∈ [−0.1, 0.1] cm.
To support this conclusion, one can consider the 𝐾 values and the FMM values shown in
Figure 5.14 for the same period before a flashback event. Here, it can be seen that the
kurtosis is similar to before for all of the considered values. The only difference comes in
the number of peaks that appear across the time-series.

Figure 5.14: FMMs and 𝐾 for the 𝑥 ∈ [1.2, 2.8] cm and 𝑦 ∈ [−0.4, 0.4] cm region over the
period prior to a flashback event.
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With regards to the FMMs, the differences in the number of peaks from the kurtosis
analysis is reflected in a more constant high FMM value for OH, H and O. Furthermore, 𝑃,
𝜌 and H2O show a decreased activity. These changes can all be explained by the increased
number of samples of this region. Because it spans a larger area, the distributions of the
features have a lot more variation within them. As such, to be able to detect for example
the apparition of an ignition kernel, there is not enough uniformity across the sampling
region to make the higher 𝑌OH values stand out. In conclusion, even though the features
chosen would have not been changed, the smaller region may perhaps be better than these
larger regions as it provides more points of reference that indicate an increased amount
of activity for the features. Its smaller size allows for more uniformity which allows for a
better detection of outliers when they do appear.
Regarding the sampling time, an additional test that was done was using the original
sampling region and a 𝑑𝑡 = 10−7 s instead of the original 𝑑𝑡 = 10−6 s. It should be
mentioned that another LES simulation was used for this test (hence the different time).
The intuition behind this was that the lower time step would perhaps allow for a more
accurate detection of the progression of ignition kernels and consequently the outliers.
As such, it should be seen if the feature selection is influenced by this. By inspecting
Figure 5.15, it can be seen that this is true up to a certain extent. For example, the 𝐾
values of H, O and OH now have a smoother progression from one time-step to the other,
instead of shortly peaking for one time-step and then returning to a small value in the rest
of the time. Furthermore, the 𝐾 values do not exhibit such large values as before, this is
likely not a consequence of the smaller sampling time, but rather from the autoignition
phenomena itself. The same sort of smoother progression can also be observed for the other
set of species.
With regards to the feature moment metric values, 𝑉𝑥 seems to be more dominant. This
is due to stronger pressure waves before this autoignition event, which in turn induce a
stronger variation in 𝑉𝑥. In addition, from the features of the last set, consisting of H2O, H2,
O2, H2O2 and HO2, only the last two present high FMM values in this test. Nevertheless,
the choice of features again does not change in this scenario. The only feature that could
be disregarded is HO2 in favour of H2O2 as now the latter shows more activity. Even so,
due to their similar behaviour, the results is not likely to change significantly. It should
although be mentioned that is highly unpractical to use such a small time-step for this
analysis as acquiring snapshots for a longer time-series would result in very high memory
requirements.
To conclude this section, it was seen that the feature moment metrics can serve to accurately
identify features of high activity prior to the flashback event. Furthermore, they are robust
to the size of the sampling region and the sampling time. Nevertheless, applying kurtosis
and co-kurtosis PCA is highly linked to the phenomena of interest. For this case, where
the flame is fluctuating, selecting a region of interest close to the autoignition region is a
requirement that should be met. Furthermore, high kurtosis values in intermediate species
can not be interpreted only as ignition kernels, as their propagation through the region of
interest can also trigger such values. In addition, it was seen that the kurtosis and FMM
values can vary in magnitude at different time-steps when the sampling region and the
sampling times are changed. Although it was seen that this did not influence the choice
of features, as the features which were most active throughout the time-series remained
the same, one should be careful about drawing conclusions about certain time-steps based
solely on the statistical analysis.
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Figure 5.15: FMMs and 𝐾 for a sampling time of 𝑑𝑡 = 10−7 over the period prior to a
flashback event.

5.3. Precursor identification
In this section, the features retained from the dimensionality reduction analysis, namely 𝑇,
𝜌, 𝑃, 𝑉𝑥, HO2 and OH, are used in the application of the precursor identification technique.
The modularity-based clustering technique, whose methodology is detailed in Section 4.5,
describes the multi-dimensional phase space of a system as a weighted and directed graph.
This graph is then ultimately clustered with the aim of finding communities which act as a
precursor state prior to an extreme event. For the first part of this section, the individual
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steps of this algorithm, as applied to the autoignition event in the reheat combustor, are
shown. For the next part, the results are discussed in depth and the robustness tests of
Section 4.6 are applied to the system.

One of the robustness tests applied to the system consists in varying the number of features
used. As such, as it shall be seen shortly, different combinations of the features identified
earlier are tested using the clustering algorithm. For the illustration of the following
results, the combination of features which yielded the highest prediction time is used. This
retains the follows variables: 𝑇, 𝑉𝑥, 𝑃, 𝜌, OH. Furthermore, in all of these combinations,
because the variations of 𝑌OH and 𝑌HO2

can be better captured in the tessellation space
by using the natural logarithm function, these are transformed to 𝑙𝑛(𝑌OH) and 𝑙𝑛(𝑌HO2

).
Proceeding with the results, even though all of the aforementioned features are used, the
graphs depicting the different steps in the algorithm contain only two features (𝑇 and 𝑃)
for visualization reasons. Lastly, the time-series used has 2500 time-steps, over the course
of which, 8 flashback events take place.

To begin, the phase space of this time-series is shown in Figure 5.16. After min-max
normalization, this phase space is then tessellated as shown in Figure 5.17. Here, using the
definition of a flashback, i.e. 𝑇 > 1300 K, the extreme sections are also saved separately to
initialize the clustering algorithm with two different communities, an extreme one and a
non-extreme one, as explained in Section 4.5.8. This results in a time-series of the section’s
indices. The choice of the number of tessellation sections as 𝑀 = 20 is based on a trade-off
between computational speed and how accurate the phase space trajectory is represented
by the tessellated phase space. Similarly to the analysis done by Golyska [92], it was
found that with a low number of tessellation sections, the dynamics of the system are not
preserved in enough detail to find any meaningful distinction between the normal clusters
and the precursor ones. Conversely, for a large number of sections, the computational cost
increases significantly (as the system scales with 𝑀𝑁𝑓 , where 𝑁𝑓 is the number of features).
In addition, no improvement was found towards the prediction time.

Figure 5.16: Projected evolution in the 𝑇-𝑃
phase space of the features sampled at

location E0 (right). The red line indicate the
definition of a flashback, i.e. 𝑇 > 1300 K.

Figure 5.17: The tessellated phase space
with 𝑀 = 20 tessellation sections in each

dimension.
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In the next step, the algorithm begins the loop where the system is transformed into
a transition probability matrix, followed by a graph, which is then clustered using the
modularity-based approach. The reduced graph is then transformed back into a transition
probability matrix and the loop continues. At the end of the loop, the transition probability
matrix and the reduced graph determine the final state of the system, as shown in Figure 5.18
and Figure 5.19, respectively. The loop continues until either the maximum number of
iterations is reached or until the number of clusters falls below a set minimum. The
maximum number of iterations was set to 5 as it was observed that the system does not
change anymore after this point and the minimum number of clusters was set to 20 to
retain an accurate representation of the dynamics of the system.

Figure 5.18: The weighted and directed
graph at the end of the clustering loop.

Figure 5.19: The transition probability
matrix at the end of the clustering loop.

The resulting clusters identified are shown in both the phase space and the tessellated
phase space in Figure 5.20. The algorithm finds 43 clusters, out of which 7 are normal
clusters, 7 are precursor clusters and the rest are extreme. The precursor clusters identified
are 0, 1, 2, 5, 8, 9, 10 and 18. The clustered phase space already gives a good idea of the
capabilities of this algorithm. With the naked eye, it would not be possible to tell which
are the paths leading to the extreme event.
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Figure 5.20: The trajectory of the system in the 𝑇 − 𝑃 space (left) and tessellated 𝑇 − 𝑃
space (right) showing the final clusters obtained. The clusters are denoted by their number,

placed at the centroid of each cluster. The color of the cluster’s index shows its
extreme/non-extreme state.

From the transition probability matrix, it is also possible to calculate some statistics
regarding the final state of the system. Firstly, for the discussed combination of features,
the mean time between the moment the combustor enters the precursor clusters until it
reaches the extreme clusters can be calculated as 𝑡𝑝𝑟𝑒𝑑 = 32.13 𝜇s. Although this prediction
time may seem small, it actually corresponds to a temperature of 1208 K at location E0.
This is a very small departure from the inlet temperature of 1180 K. In addition, the
flashback phenomena is very fast due to the strongly unstable nature of the combustor.
On average the time between two flashbacks, i.e. when the combustor is in a ”normal”
operating state, is only 60 𝜇s. This translate to a prediction time equal to over 50 % of the
”stable” time. In addition, the components of the confusion matrix (number of false positive,
false negatives, correct positives and correct negatives) can also be calculated. Firstly, due
to the construction of the precursor clusters, where each one is defined as directly preceding
an extreme cluster, the false negative rate is always 0%. Secondly, for this case, the false
positive rate is also 0%, meaning that each time the system enters a precursor cluster, it
does not turn back to a normal state and an extreme event follows. Lastly, due to the
change applied to the clustering algorithm, whereby the extreme clusters can not contain
non-extreme states, the true positive rate is 100%. To conclude this part, the temperature
evolution sampled at location E0 is also shown in Figure 5.21. Here, the background color
indicates the type of cluster in which the combustor is in (blue: normal, orange: precursor
and red: extreme). This is where it can be clearly seen that the algorithm identifies a
precursor state ahead of the large increase in temperature denoting the flashback event.
This shows that it could potentially be used as an early warning system for this type of
event. Furthermore, it is clear from this figure that the algorithm clusters the system based
on its trajectory rather than the position of the points in the phase space.
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Figure 5.21: Temperature evolution during the first 3 flashback events when using [𝑇, 𝑉𝑥,
𝑃, 𝜌, HO2] for clustering. Background color indicates the type of cluster the combustor is

in (blue: normal; orange: precursor; red: extreme)

5.3.1. Robustness analysis
To better understand the overall performance of the modularity-based clustering algorithm„
it has been put through several robustness tests. These tests are detailed in Section 4.6.

Features availability
The first test performed consists in limiting the number of features available to the
clustering procedure. One particular combinations of features, the one which yielded the
best prediction time has already been detailed in the previous section. As such, from the 6
features identified in the dimensionality reduction analysis, namely 𝑇, 𝜌, 𝑃, 𝑉𝑥, HO2 and
OH, combinations of 4, 5 and 6 are taken. The results are reported in Table 5.1. The
prediction time ranges from 8.38 𝜇s to 32.1 𝜇s, which corresponds to 14% to 53.5% of
the 60 𝜇s ”stable” time between two flashbacks. Given the time scale of the flashback
event, this results is again promising. Furthermore, it can be seen that when only four
features are used, the prediction time seems to generally decrease. This is expected as the
clustering algorithm has fewer features available to differentiate between the normal and
precursor states. This however is in contrast with the prediction time seen when using
five features. Generally, this time is higher than the time found when using all of the six
features 𝑡𝑝𝑟𝑒𝑑 = 15.7 𝜇s. This could be attributed to the limited amount of data available
for the clustering algorithm which only contains 8 flashback events and, due to the nature
of the phenomena, less time spent in the normal state with respect to the extreme states.
This may lead to a not fully converged probability transition matrix used in the graph
representation, due to the smaller amount of points per tessellation hypercube. In turn,
this ultimately leads to a decreased performance in the clustering procedure. As such, a
balance has to be struck between the number of features and the length of time-series of
the available dataset.
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Table 5.1: Prediction time (𝑡𝑝𝑟𝑒𝑑) and false positives (FP) for different combinations of the
important features. Sampling location E0 (𝑥 = 3.1 and 𝑦 = 0.0 cm in the mid-𝑧 plane).

FP reported as number of events.

Features used 𝑡𝑝𝑟𝑒𝑑 [𝜇s] FP
𝑇, 𝑉𝑥, 𝑃, 𝜌, HO2, OH 15.7 0
𝑇, 𝑉𝑥, 𝑃, 𝜌, HO2 32.1 0
𝑇, 𝑉𝑥, 𝑃, HO2, OH 16.0 0
𝑇, 𝑉𝑥, 𝑃, 𝜌, OH 20.9 0
𝑇, 𝑉𝑥, 𝜌, HO2, OH 17.1 0
𝑇, 𝑃, 𝜌, HO2, OH 14.1 1
𝑇, 𝑉𝑥, 𝑃, HO2 15.8 0
𝑇, 𝑉𝑥, 𝑃, 𝜌 18.1 0
𝑇, 𝑉𝑥, 𝑃, OH 24.5 0
𝑇, 𝑉𝑥, 𝜌, HO2 12.6 0
𝑇, 𝑉𝑥, HO2, OH 12.5 0
𝑇, 𝑉𝑥, 𝜌, OH 15.0 0
𝑇, 𝑃, 𝜌, HO2 18.6 1
𝑇, 𝑃, HO2, OH 11.1 1
𝑇, 𝑃, 𝜌, OH 13.1 1
𝑇, 𝜌, HO2, OH 8.38 0

Also interesting to note here is that some of the combinations to present 1 false positive
(FP) event. For a clustering algorithm, this is expected, as the precursor states and the
normal states are usually very close to each other in the phase space, and thus, hard to tell
apart. Nevertheless, the resulting false positive rate is relatively small for these cases at
only 12.5%. It was observed that these false positives occur at the moment the flame front
is flushed back in to the combustion chamber, past the sampling point. This is likely due to
similarity of some features at that moment to the moments right before the flashback. As
such, one possible improvement would be to use the gradients of some of these problematic
features in the clustering process. This would be beneficial as now the algorithm could
clearly distinguish between the time when the flame front is flushed out (and most of
the variables decrease in magnitude) and when a flashback is about to happen (and the
variables increase in magnitude).

Sampling location
The next test was to investigate the importance of the sampling location with regards to
the prediction time. For this purpose, the time-series were sampled at several different
locations, as shown in Figure 4.5. These locations correspond to three points at the same 𝑥
position as E0, but offset from the centerline (Ei), and a location placed in the mixing tube
(CU). Again, the combination of features which previously yielded the best results is taken.
It can be seen that, overall, the prediction times are slightly smaller. This is expected
as these location are further away from the autoignition zone, and thus the precursor
information has a larger lag. This ultimately results in a smaller prediction time. With
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regards to the CU location, a larger decrease in the prediction time is observed. Although
the same ignition kernels appear around the location, resulting in visible changes in most
of the variables, the main ignition kernel which starts the flashback happens further away.
This results in larger delay in the propagation of the flame and consequently the increase
in temperature.

Table 5.2: 𝑡𝑝𝑟𝑒𝑑 and FP for the [𝑇 , 𝑝, 𝑢, 𝜌, HO2] case sampled at different locations. FP
reported as number of events.

Location [cm] 𝑡𝑝𝑟𝑒𝑑 [𝜇𝑠] FP
E0: x = 3.1; y = 0.0 32.1 0
E1: x = 3.1; y = 0.1 20.6 2
E2: x = 3.1; y = 0.2 32.0 1
E3: x = 3.1; y = 0.3 20.4 0
CU: x = 2.0; y = 0.0 13.9 0

Data availability
This section is concerned with investigating the robustness of the algorithm with respect to
the length of the time-series. As previously explained in Section 4.6, this also consists of
a first step in using the algorithm in an online setting. As it is not possible to aggregate
information and change the clusters in real time due to the computation time required, this
test assess the performance on unseen data, based on clusters computed on previously seen
time-series. For this, the new points will be categorized as normal, precursor or extreme
based on their distance to the closest cluster from the previously computed group. Then,
the prediction time is calculated in the same way as before.

As such, the first 1.1 ms (1100 time-steps) out of the available 2.5 ms (2500 time-steps)
are used in the clustering process with the features 𝑇, 𝜌, 𝑃, 𝑉𝑥 and OH. The clustering
in this case still performs relatively well with a prediction time of 14 𝜇s. The resulting
time-series of temperature with the background color indicating the type of cluster is shown
in Figure 5.22. It should be noted that the prediction time in this case, and in all of the
other cases, is affected by the first flashback event. As previously discussed, this flashback
event happens very soon after the autoignition event present in the combustion chamber
which locates the flame front at the step location. This happens at approximately 1.6 ms,
and, as it can be seen from the figure, the ”stable” time is very short. This also results
in a small prediction time which brings the average down. This is especially noticeable in
this case since there are only 3 precursor clusters. To be exact, the system is in the first
precursor 9 𝜇s, 6 𝜇s in the second and 27 𝜇s in the third.
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Figure 5.22: Time-series of 𝑇 when the clustering algorithm uses only 1100 time-steps.

Using the centroids of the clusters computed here, the clusters of the remaining time-series
containing the unseen flashback events are now determined. The average prediction time in
this case is 23.6 𝜇s, which represents a decrease of 26% with respect to the baseline case.
This indicates that the algorithm is still able to identify reliable precursor based on a short
time-series and when using previously unseen data. The time-series of 𝑇 corresponding to
this test is shown in Figure 5.23. It should be noted that although each flashback event is
different, the algorithm is still able to find a precursor that is general enough to be applied
to all of these events.

Figure 5.23: Time-series of 𝑇 for the five remaining flashbacks events.

Precursor based on pressure time series
Once again, with this approach, the idea is to move closer to the prediction in an online
scenario. As such, the performance of the modularity-based clustering algorithm is assessed
using measurable quantities. Specifically, the temperature at location E0 (retained for
the definition of the extreme event) and five wall pressure measurements in the locations
highlighted with yellow in Figure 4.5 are used. The same methodology is applied as before
and the average precursor time is now 23.75 𝜇s. This implies a 25% decrease with respect
to the best case in Table 5.1. This reduction in prediction time is expected as now the
clustering algorithm has less information available to segregate the clusters. This highlights
the importance of the features found in the previous section and through the co-kurtosis
PCA analysis in the flashback mechanism observed in this reheat combustor. Furthermore,
by inspecting Figure 5.24, it can be seen that the length of the precursor clusters is not
as consistent as before. This is likely due to the highly fluctuating nature of the pressure
waves. Generally, because of the relaxation phase of the previous flashback (i.e. when
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the flame front is being flushed out of the mixing tube), the pressure is decreasing right
before a flashback, with the occasional increase due to the heat release of ignition kernels.
This introduces a fluctuation which makes it hard for the clustering algorithm to find a
reliable precursor. Nevertheless, the order of the prediction time remains similar as in the
previous best precursor, indicating that the clustering algorithm is still able to identify
specific combinations of pressure signals which indicate an incoming flashback.

Figure 5.24: Time-series of 𝑇 sampled at location E0 for the clustering based on pressure
measurements.

5.3.2. Fluctuating conditions
To further assess the capabilities of the modularity-based clustering algorithm the data is
now obtained from a new LES simulation. The change made to this simulation are two-
fold. Firstly, the digital filter method (see Section 4.1.3) is used to superimpose turbulent
fluctuations at the inlet as detailed in Section 4.2.3. Secondly, an inlet velocity profile
approximating a fully-developed channel flow is also imposed at the inlet, as detailed in
Appendix D. This is a more realistic scenario as compared to the previous simulation,
which better represents real-world conditions, thus allowing for a fair assessment of the
algorithm. Furthermore, it will be interesting to see whether or not the clustering algorithm
performs as well when the state of the system is changing constantly, as a result of the
turbulent fluctuations.

Sampling location

Autoignition zone

Figure 5.25: Contour plot of the temperature showing the upstream location of the
autoignition event.

Firstly, it should be mentioned that the autoignition phenomena has a slightly different
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behaviour with respect to the previous simulation. Now, the autoignition event which
triggers the flashback is located more upstream, as shown in Figure 5.25. This could be
attributed to the heat released through turbulent dissipation and the effects of strain on
the reaction rates. After this autoignition event, the mixture in the mixing duct is ignited
and, eventually, the flame front is flushed out in the combustion chamber and the cycle
continues.

In order to capture this more upstream position of the autoignition kernels, the sampling
location is moved to 𝑥 = 1.86 and 𝑦 = 0 cm on the mid z-plane. After running the
simulation long enough to capture six flashback events, the same procedure as before is
applied, where the features taken are again 𝑇, 𝑉𝑥, 𝑃, 𝜌 and OH. The resulting prediction
time is 𝑡𝑝𝑟𝑒𝑑 = 3.417 𝜇s and the number of false positives is 0. The temperature time-series
with the background color indicating the type of cluster is shown for the first three flashback
events in Figure 5.26. As seen, the clustering algorithm also performs well in this scenario.

Figure 5.26: Time-series of 𝑇 sampled at 𝑥 = 1.86 and 𝑦 = 0 cm for the clustering based
on LES simulation with fluctuating velocity at the inlet.

Figure 5.27: Trajectory of the system in the 𝑇 − 𝑉𝑥 space showing the final clusters
obtained.
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Furthermore, it is also interesting to highlight the trajectory of the system in the phase
space, as shown through the features 𝑇 and 𝑉𝑥. Here, the precursor clusters are 1, 3, 14
and 44. It can be seen that, although the features present highly fluctuating values, the
algorithm is still able to identify a set of clusters that accurately capture the precursor
to the flashback event. This simulation also present more data points in the non-extreme
category, thus further highlighting the ability of the algorithm at segregating these states.

5.3.3. Analysis of the features selected
In this section, the features chosen through the dimensionality reduction procedure are
compared to different combinations of the remaining features in their performance in the
precursor algorithm. The purpose of this comparison is to assess whether the features
selected through co-kurtosis PCA are indeed the best fit for the modularity-based clustering
algorithm. As a reminder, the features from the LES considered initially are as follows:

• 𝑇, 𝑃, 𝜌 and 𝑉𝑥

• Mass fractions of H, O, OH, O2, H2, H2O, HO2 and H2O2

and the features selected through the dimensionality reduction procedure are: 𝑇, 𝑉𝑥, 𝑃, 𝜌,
OH and HO2.

For this purpose, a set of combinations containing 𝑇, 𝑉𝑥, 𝑃, 𝜌 and logarithm of one of the
mass fractions of the species is tested, as shown in Table 5.3. The first four features, 𝑇, 𝑉𝑥,
𝑃, 𝜌, are kept in this test as it is assumed that they are essential for the precursor algorithm
due to their distinct behaviour in the phase space. Furthermore, by keeping these features,
it allows for a fair comparison between all the other species. This makes it possible to
assess the whether species chosen through co-kurtosis PCA (OH, HO2) are indeed the best
fit. As previously mentioned, these species were chosen based on their activity, as indicated
by their changing state and the apparition of outliers. Nevertheless, even though these
species show the highest activity, it is interesting to see whether or not the other species
are also able to segregate the normal and precursor states in the phase space.

Considering the first three rows of Table 5.3, where the features OH, H and O are tested,
it can be seen that they all have similarly high prediction times. This is expected as the
co-kurtosis analysis indicates that they all have a similar level of activity. For the next
five rows in the table, corresponding to the other set of species, it can be seen that the
prediction time is again relatively high. For HO2, H2O2 and H2O this is expected all of
these species have a high level of activity, but, contrary to expectations, O2 also has a high
prediction time despite the low FMM. Interestingly, looking back at Figure 5.13, this is
the only species that does not present a high FMM value when the sampling region spans
from 𝑥 ∈ [3, 3.2] and 𝑦 ∈ [−0.1, 0.1] cm. This is indicative of its distinct behaviour with
respect to the other species and perhaps the reason why using this mass fraction can also
be beneficial at segregating the states in the phase space.

Nevertheless, the test done here to verify the performance of the features chosen with
respect to the remaining features is not extensive enough to draw any further conclusions.
To achieve this, all of the other combinations would need to be tested, requiring a large
amount of time. Nonetheless, the dimensionality reduction technique achieves its purpose
successfully, avoiding a large computation time when keeping many features, while still
providing the features among which the highest prediction time from all of the combinations
tested was found.
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Table 5.3: Prediction time (𝑡𝑝𝑟𝑒𝑑) and false positives (FP) for combinations containing 𝑇,
𝑉𝑥, 𝑃, 𝜌 and one species. Sampling location E0 (𝑥 = 3.1 and 𝑦 = 0.0 cm in the mid-𝑧

plane). FP reported as number of events.

Features used 𝑡𝑝𝑟𝑒𝑑 [𝜇s] FP
𝑇, 𝑉𝑥, 𝑃, 𝜌, OH 20.9 0
𝑇, 𝑉𝑥, 𝑃, 𝜌, H 22.6 0
𝑇, 𝑉𝑥, 𝑃, 𝜌, O 20.4 0
𝑇, 𝑉𝑥, 𝑃, 𝜌, O2 28.4 0
𝑇, 𝑉𝑥, 𝑃, 𝜌, H2 18.4 0
𝑇, 𝑉𝑥, 𝑃, 𝜌, H2O 19.5 0
𝑇, 𝑉𝑥, 𝑃, 𝜌, HO2 32.1 0
𝑇, 𝑉𝑥, 𝑃, 𝜌, H2O2 22.1 0

5.4. Flashback suppression
In this section, the results of the flashback suppression part of this study are presented
and discussed. To reiterate, the goal here is to assess to which extent can a flashback be
suppressed by injecting water at the moment the precursor algorithm indicates its approach.
For this purpose a new LES simulation was done with the same settings as indicated by
Section 4.2, where the use of a fully developed inlet velocity profile and the digital filter
method for turbulent fluctuations at the inlet is omitted. In this new simulation, the state
was saved prior to the apparition of the flashbacks and subsequent simulations which include
the water spray are started from these states. By limiting the time in which the simulation
is developing, it is ensured that the prediction time found from the dry simulation (without
spray) corresponds to the apparition of the flashback in the wet simulations (with spray).

Figure 5.28: Time-series of 𝑇 sampled at 𝑥 = 3 and 𝑦 = 0 cm where the background color
indicates the type of cluster (blue: normal, orange: precursor, red: extreme).

This simulation ran long enough to capture five flashback events. Sampled at 𝑥 = 3 and
𝑦 = 0 cm, on the mid z-plane, with a time-step of 𝑑𝑡 = 10−6 s, the data was acquired and
the modularity-based clustering algorithm was applied in the same way as before. For the
features 𝑇, 𝑉𝑥, 𝑃, 𝜌, HO2, the average prediction time is 35.2 𝜇𝑠. The resulting temperature
time-series, where the background color indicates the type of cluster the system resides in,
is shown in Figure 5.28. As such, using this simulation, the 2𝑛𝑑 flashback in this time-series
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is picked for the water spray simulation. This flashback happens at 𝑡 = 2.516 ms and the
prediction time is 𝑡𝑝𝑟𝑒𝑑 = 56 𝜇s, resulting in the water injection taking place at 𝑡 = 2.46
ms.

As such, the methodology laid out in Section 4.7 is followed in order to reach a preliminary
spray design. As this process is mostly empirical, the most important simulations which
led to the preliminary design are showed here chronologically. Furthermore, the design
parameters are showed and discussed, along with the theoretical values for the SMD which
ensure complete evaporation and the check regarding the atomization regime.

5.4.1. Inlet sprays
Case I
The first spray design attempts to locate the injector at the inlet, positioned halfway
between the walls and the periodic boundaries at 𝑥 = 0, 𝑦 = 0 and 𝑧 = 0 cm. The
design procedure starts with calculating the value of the response velocity as explained in
Section 4.7. This value is equal to 𝑉𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 = 653 m/s, as shown in Table 5.4. Then, the
injection velocity is made approximately equal to the response velocity by adjusting the
water mass flow and the diameter of the nozzle. The external angle and the thickness angle
take usual values, following the results of P. Rouco [19]. In addition, the SMD is set to the
value indicated by Equation 4.45. Lastly, the evaporation efficiency is calculated as shown
in Equation 5.4 and reported in the table. This efficiency denotes the excess of liquid water
that reaches the outlet of the combustor. It should be noted that this efficiency is based
on the liquid water mass flow at the outlet shortly after the spray reaches the outlet, at
𝑡 = 2.81 ms. As such, after the initial large heat release coming from the flashback subsides,
the evaporation efficiency is likely to decrease until the next flashback appears. This is
the same behaviour that occurs in the study of P. Rouco [19]. Nevertheless, in this study,
the water spray is not used continuously, as it is activated only at the moment a flashback
appears and then deactivated after the flashback has been suppressed. This means that
calculating the efficiency as previously described is the best approach because the average
efficiency over time is not of interest. This approach is used throughout the following cases.
With regards to the actual value of the efficiency, 𝜂𝑒 = 99.3%, it can be seen that the water
almost completely evaporates. This is expected as the SMD value is tuned for this purpose.

𝜂𝑒 = 1 −
�̇�H2O(L),outlet

�̇�H2O,injector
(5.4)

Also reported Table 5.4 are the values of ReL and Oh which indicate that the spray does
reside in the atomization regime (see Figure 4.17) and the use of the Rosin-Ramler (RR)
distribution is indeed justified. As the injection velocity is very large, it is expected that all
of the following cases reside in the atomization regime.

Figure 5.29 shows the contour plot of 𝑇 showcasing the influence of the spray on the
flashback. Firstly, it should be noted that, even though the flashback does happen at the
expected time, it also appears slightly more upstream. Secondly, it can be seen that the
values for the cone angles and the injection velocity are not reflected in the actual behaviour
of the spray due to the influence of the surrounding flow. Lastly, it can be seen that the
water spray does not manage to stop the flashback, as the flame simply moves around the
cooler region. It is expected that the main culprit in the poor spread of the water spray is
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the small SMD, as the smaller particles carry less momentum are thus less able to overcome
the surrounding flow.

Table 5.4: Design parameters for the first iteration of the inlet spray

Parameter Value Units Parameter Value Units
𝑑0 0.16 mm ReL 1.25e5 -
�̇�𝐿 0.013 𝑘𝑔/𝑠 Oh 7.7e-3 -

SMD 4.73e-6 m
𝛽 57 deg
𝜏 17 deg SMD [134] 4.73e-6 m

𝑉𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 653 𝑚/𝑠 𝜂𝑒 99.3% -
𝑉𝑖𝑛𝑗 652 𝑚/𝑠

Figure 5.29: Contour plots of 𝑇 showcasing the influence of the spray on the flashback for
the first iteration of the inlet spray

Case II
The next iteration of the inlet spray design followed based on the observation that the spray
did not spread as expected. As such, to counteract this, the SMD is increased, allowing for
the water droplets to keep their momentum for longer and reach the walls of the premixing
duct. Even though this might decrease the evaporation efficiency, it is deemed reasonable
as the focus of this spray is on stopping the flashback. The design parameters are shown
in Table 5.5. The only change with respect to the previous case is in the SMD, where
the value has now increased to 2e-5 m. The values of ReL and Oh are the same as before,
corresponding to the correct atomization regime. Surprisingly, the evaporation efficiency is
slightly higher than before, at 99.4%. This is likely due to the better spread of the droplets,
which capture more of the heat coming from the flashback, as shown in Figure 5.30.
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Table 5.5: Design parameters for the second iteration of the inlet spray

Parameter Value Units Parameter Value Units
𝑑0 0.16 mm ReL 1.25e5 -
�̇�𝐿 0.013 𝑘𝑔/𝑠 Oh 7.7e-3 -

SMD 2e-5 m
𝛽 57 deg
𝜏 17 deg SMD[134] 4.73e-6 m

𝑉𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 653 𝑚/𝑠 𝜂𝑒 99.4% -
𝑉𝑖𝑛𝑗 652 𝑚/𝑠

Once again, as seen in Figure 5.30, the water spray is not able to stop the flashback from
propagating in the mixing duct. While the spread is better, with the spray reaching the
walls in the mid-z plane, it is not fast enough to cover the whole 𝑦𝑧 plane. Thus, the flame
simply moves past the water spray in the z-axis.

Figure 5.30: Contour plots of 𝑇 showcasing the influence of the spray on the flashback for
the second iteration of the inlet spray

5.4.2. Wall spray
Based on the poor performance of the inlet spray in covering the mixing duct, the next
iteration of the design attempts to place the three sprays at the walls. These are shown in
Figure 5.31. Here, the sprays are located at 𝑥 = 1.8 cm and oriented upstream. It should
be mentioned that these choice are based on a previous iteration of the wall spray setup, not
shown here for brevity. The idea behind this placement is that, given the smaller distance
they need to cover, these spray could cover the whole 𝑥𝑦 plane faster than the inlet spray.
Furthermore, they are oriented upstream in order to account for the incoming reactant flow
and thus redirect the water to have a somewhat perpendicular path to this flow.
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Figure 5.31: Configuration of the wall spray setup.

The design parameters for these sprays are shown in Table 5.6. Most of the parameters are
the same, with the mass flow of water now split between the three nozzles. With a diameter
of 𝑑0 = 0.18 mm, this now again results in the injection velocity being approximately equal
to the response velocity. The SMD is kept at 2𝑒 − 5, such that the particles better retain
their momentum.

Table 5.6: Design parameters for the wall spray setup

Parameter Value Units Parameter Value Units
𝑑0 0.16 mm ReL 1.11e5 -

�̇�𝐿 (per nozzle) 0.0043 𝑘𝑔/𝑠 Oh 7.33e-3 -
SMD 2e-5 m

𝛽 57 deg
𝜏 17 deg SMD[134] 5.7e-6 m

𝑉𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 178 𝑚/𝑠
𝑉𝑖𝑛𝑗 171 𝑚/𝑠

By inspecting Figure 5.32, it can be seen that a higher injection velocity would have perhaps
been useful since the sprays are now in a cross-flow configuration and they do not reach
the walls of the mixing duct. But, nevertheless, this is not the main reason for which this
configuration does not stop the flashback. As it can be seen, the flashback now appears
upstream of the spray. This can be attributed to aerodynamic blockage. In this setup, the
incoming reactant flow is blocked by the formation of the spray, forcing it to go around the
cone. This results in a longer residence time and a more compressed reactant flow, which,
together, ultimately lead to an earlier autoignition of the flow.
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Figure 5.32: Contour plots of 𝑇 showcasing the influence of the spray on the flashback for
the wall spray setup

5.4.3. Multiple inlet sprays

Figure 5.33: Configuration with multiple sprays at the inlet

The next iteration in the design builds upon the inlet spray setup by using six sprays
instead of one, arranged symmetrically at the inlet as shown in Figure 5.33. The injector
coordinates for these six nozzle are shown in Table 5.7. The idea behind this setup is that
using multiple sprays allows for a faster coverage of the mixing duct.

Table 5.7: Coordinates of the injection locations for the multiple inlet sprays setup

Nozzle N1 N2 N3 N4 N5 N6
x [cm] 0 0 0 0 0 0
y [cm] 0.25 0.25 0.25 -0.25 -0.25 -0.25
z [cm] 0.375 0 -0.375 0.375 0 0.375
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Case I

Table 5.8: Design parameters for the first iteration of the multiple inlet sprays
configuration

Parameter Value Units Parameter Value Units
𝑑0 0.15 mm ReL 1.33e5 -

�̇�𝐿 (per nozzle) 0.013 𝑘𝑔/𝑠 Oh 8.02e-3 -
SMD 2e-5 m

𝛽 55 deg
𝜏 20 deg SMD[134] 4.25e-6 m

𝑉𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 610 𝑚/𝑠 𝜂𝑒 30.5% -
𝑉𝑖𝑛𝑗 739 𝑚/𝑠

Figure 5.34: Contour plots of 𝑇 showcasing the influence of the spray on the flashback for
the multiple inlet spray setup (first iteration).

The design parameters for the first attempt at this configuration are shown in Table 5.8.
Here, a notable change is in the injection velocity, which was increased with respect to the
response velocity to account for the effect of the surrounding flow. The rest of parameters
are similar to the second iteration of the inlet spray cases, where the external angle was
slightly decreased and the thickness angle slightly increased due to the closer positioning of
the sprays to the walls. Furthermore, the mass flow of water was increased by 6 times, as
each nozzle has the same mass flow as in Table 5.5.

As seen in Figure 5.34, the water spray is indeed now able to fully suppress the flashback,
managing to completely push the flame out of the mixing duct at 𝑡 = 2.59 ms. This results
in only 74 𝜇s where the flame still resides in the mixing duct. Unfortunately, the spray
velocity, which can be approximated at 330 m/s, is still not high enough such that the
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water completely covers the full length of the mixing duct before the flashback appears.
One weak point of this setup is the poor evaporation efficiency of only 30.5%.

Case II

Table 5.9: Design parameters for the second iteration of the multiple inlet sprays
configuration

Parameter Value Units Parameter Value Units
𝑑0 0.1 mm ReL 0.92e5 -

�̇�𝐿 (per nozzle) 0.006 𝑘𝑔/𝑠 Oh 9.8e-3 -
SMD 2e-5 m

𝛽 55 deg
𝜏 20 deg SMD[134] 3.26e-6 m

𝑉𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 610 𝑚/𝑠 𝜂𝑒 96.3% -
𝑉𝑖𝑛𝑗 767 𝑚/𝑠

Figure 5.35: Contour plots of 𝑇 showcasing the influence of the spray on the flashback for
the multiple inlet spray setup (second iteration).

The final setup tested in this study builds upon the previous case by improving on the
poor evaporation efficiency. To achieve this, the mass flow of water is now reduced to
�̇�𝐿 = 0.006 kg/s per nozzle. In addition, to keep the same injection velocity as before, the
diameter of the nozzle is decreased to 𝑑0 = 0.1 mm. As seen from Figure 5.35, the water
sprays are still able to stop the flashback successfully and push the flame out of the mixing
duct in a similar time frame as in the previous case, despite the lower mass flow. Although,
in this simulation, the evaporation efficiency is now 𝜂𝑒 = 96.3%, indicating that almost all
of the water is evaporated successfully.
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In conclusion, by employing this empirical approach, a satisfactory spray design was found
which is able to successfully suppress the flashback. This design is although only preliminary
and can be improved upon. For example, the injection velocity could be increased further
such that the water spray covers a larger area of the mixing duct before the flashback
appears. This is although not trivial, as it was seen that increasing the mass flow of water
leads to a poor evaporation efficiency. The other option, which is to decrease the nozzle
diameter, is also eventually restricted, as a dimension of 𝑑0 = 0.1 mm already approaches
the limit where the nozzle is likely to be subjected to blockage due to foreign particles [70].
Furthermore, an in-depth optimization of 𝑑0, �̇�𝐿, SMD, 𝛽, 𝜏 could also be performed given
enough computational resources.



6
Conclusion and Recommendations

6.1. Conclusion
This study addresses a part of the challenges related to climate change by studying hydrogen
combustion. More specifically, the flow inside a simplified version of Ansaldo Energia’s
GT36 reheat combustor is studied using LES simulation at high pressure (20 bar), where
the autoignition flashback observed is of particular interest. The goal of this study is
to explore the prediction and suppression of this flashback event. For the first part, the
prediction of this flashback event is sought to be achieved using a machine learning method,
while for the second part, the flashback suppression, a water spray is introduced in the LES
simulations.
In the LES simulation, lean, premixed and high-pressure conditions are used, revealing an
unsteady behaviour in the flame dynamics. Pertaining to the models employed, of note are
the use of the Thickened Flame Model (TFM), NSCBC boundaries and the SAGE detailed
chemistry solver. It was found that the initial autoignition event triggers high amplitude
pressure waves, which reflect of the combustor walls and converge at the centerline of the
premixing duct. These pressure waves result in heat release due to compressive heating
effects, which accelerate the chemical kinetics, triggering an early autoignition event in
the premixing duct. After the flame front is flushed back out into the combustor, this
phenomena repeats itself. Next, the behaviour of the species prior to the autoignition
events are investigated, where the reactions below and above the cross-over temperature
are highlighted.
Towards this purpose, several machine learning methods are explored in the literature
review and the modularity-based clustering technique first introduced by Schmid et al. [95]
and then further developed in this study and by Golyska and Doan [101] is selected due
to its demonstrated potential and its insensitivity to the physical phenomena addressed.
Before applying the algorithm, the dimensions of the system are reduced using co-kurtosis
PCA [88]. This method, by measuring the joint occurrence of outliers in the flow variables,
indicates which are the most important variables that introduce a lasting change in the
system and are potentially useful in finding a precursor to the flashback event. By applying
the method and, at the same time, calculating the kurtosis of each individual feature, it
was found the most important features of the flow field are 𝑇, 𝜌, 𝑃, 𝑉𝑥, 𝑌HO2

and 𝑌OH.
Furthermore, the importance of these features remained the same when the sampling time
and the sampling region of the co-kurtosis PCA method were varied.
After performing dimensionality reduction using co-kurtosis PCA, the time-series of the
emergent features of the flow field ( 𝑇, 𝜌, 𝑃, 𝑉𝑥, 𝑌HO2

and 𝑌OH) are used in the prediction
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method. This algorithm tessellates the phase space of the system and then transforms it into
a graph, thus retaining the information about the dynamics of the system. Then, it clusters
this network using modularity, a metric which indicates how different the connections
of particular node are from what is expected in a graph with the same nodes but with
randomly distributed edges and weights. This method proves effective in finding precursors
to the flashback event, resulting in an average prediction time for the 8 flashback events of
𝑡𝑝𝑟𝑒𝑑 = 32.13 𝜇s, which is over 50% of the stable time, or the time in which the combustor
is in the normal operating state. Furthermore, the algorithm performs very well in the
number of false positives, and, due a change made to the algorithm in this study, the
number of true positives is increased to 100%.

The modularity-based clustering algorithm is also put through a robustness analysis
involving several tests. Firstly, by testing different combinations of 4, 5 and 6 features, it
was found that the algorithm generally performs better when five features are used instead
of four. However, when using all of the six features, the prediction time deteriorates. This
is attributed to the lack of complete convergence of the eigenvalue problem encountered
in the transition probability matrix, which could be solved by using longer time-series.
The second robustness test was regarding the sampling location for these time-series. This
location was varied, taking data points further away from the autoignition zone, and it
was found that the prediction time slightly decreases. This is expected as the information
from the features only arrives later at the sampling location. Furthermore, in the third
robustness test, the potential of the algorithm in online prediction was explored. Here, the
algorithm identified the precursor clusters based on only three flashback events and the
remaining data points were classified into either normal, precursor or extreme based on
their proximity in the phase space to these clusters. Using this method, the prediction
time for the remaining five flashbacks was 23.6 𝜇s, which represents a decrease of 26%
with respect to the baseline case. The fourth test also explored online prediction by using
only the temperature time-series and five pressure time-series sampled at the wall of the
combustor, to mimic a set of pressure probes. In this case, the prediction time was 23.75
𝜇s. This decrease was attributed to the lack of information from the other features and the
fluctuating nature of the pressure time-series. Finally, the last robustness test employed
was the application of the precursor algorithm to a new LES simulation, in which turbulent
fluctuations are imposed at the inlet along with a fully-developed channel flow velocity
profile. The aim here was to test the algorithm in a more realistic scenario, which better
approximates conditions found in a real combustor. The prediction time in this case is was
𝑡𝑝𝑟𝑒𝑑 = 34.2 𝜇s, indicating that although the features present highly fluctuating values, the
algorithm is still able to accurately identify the precursor to the flashback event.

In the second part of this study, the aim was to find a preliminary spray design which is
able to stop the flashback from entering the mixing duct. Here, the water is injected at the
moment an incoming flashback is detected by the precursor algorithm. As such, taking one
of the flashback events and its afferent prediction time, a mostly empirical design procedure
was followed. Here, the injection velocity of the spray (influenced by the diameter of the
nozzle and the mass flow) was made approximately equal to the response velocity desired
(i.e. the velocity needed for the spray to reach the sampling point in the given prediction
time). Furthermore, the Sauter Mean Diameter (SMD) was initially taken as indicated
by experimental studies to ensure a complete evaporation of the droplets. In addition,
by checking whether or not the spray is in the atomization regime, the assumption that
break-up phenomena can be neglected was verified. Lastly, the influence of the angle of the
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cone and the thickness angle were explored empirically.

The first attempts for the design of the spray placed it at the inlet of the mixing tube. Here,
it was found that using a higher SMD than indicated by experimental studies improves the
spread of the spray due to the higher momentum of the particles, which allows them to better
retain their trajectory. In addition, the higher SMD actually improves the evaporation
efficiency for this particular case. This is because the larger spread also allows for the
spray to capture more of the heat resulting from the flashback. Nevertheless, this initial
design was not successful in stopping the flashback as the single spray is not able to spread
throughout the whole mixing tube, in all three dimensions. In the next attempts, three
spray were placed at the walls of the combustion chamber, near the autoignition zone. In
this case, it was found that the spray is not able to stop the flashback, as it now appears
upstream of the injection location. This was attributed to aerodynamic blockage, where the
incoming reactant flow is blocked by the formation of the spray, forcing it to go around the
cone. This results in a longer residence time and compression on the reactant flow, leading
to an early autoignition event. In the next iterations of the spray, six injectors are placed
at the inlet, arranged symmetrically. Here, the external angle was decreased, the thickness
angle was increased and the injection velocity was increased based on the observation that
the velocity of the spray quickly decreases when encountering the surrounding flow. Using
this design, the flashback is successfully suppressed while still achieving an evaporation
efficiency of 96.3%.

6.2. Recommendations
This study has delved deeper into the problem of predicting and suppressing the appearance
of an autoignition flashback event in a reheat combustor. It has looked at the importance of
the features both from a physical perspective and through the co-kurtosis PCA dimensional-
ity reduction technique and then used the most important features in the modularity-based
clustering algorithm to successfully predict the flashback event. Lastly, a preliminary spray
design was found which was able to stop the propagation of the flashback in the mixing
duct. Nevertheless, there are several topics which still need to be addressed further. These
are discussed in the following recommendations for future work.

To begin, the modularity-based clustering algorithm could benefit from even more tests in
the application of predicting autoignition events in reacting flow. Firstly, the performance
of the algorithm should be assessed for the flashback that is bound to appear after the
previous flashback has been suppressed with water and the spray has been stopped. This
should give a better indication of how much does the state inside the combustor change
and of how this combined system can be used repeatedly. Secondly, beyond the addition of
turbulent fluctuations and a velocity profile, the LES model, and thus the real-life similitude,
could be improved by considering an imperfect mixing of the reactants. Here, commonly
used mixing methods from gas turbines could be used such as the ones that make use of
swirled flows. Beyond testing the precursor algorithm on this setup, the behaviour of the
boundary layer flashback would be interesting to analyze, as the reactants should be poorly
mixed in that region and thus its effect should be weaker.

Furthermore, it was seen that the conditions for the LES simulation resulted in highly
unstable combustion dynamics. It could perhaps be interesting the assess the performance
of the precursor algorithm in a case where the combustion is more stable and the flashback
happens more rarely. The idea behind this is that in a real gas turbine, the desired operation
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would of course not contain these oscillation and perhaps this kind of a system would be
used as a fail-safe. Thus, the aforementioned conditions would better approximate this
kind of behaviour. Lastly, the use of this algorithm in an online setting should be further
explored. Here, sensors that can measure the activity inside a combustor should be explored
in order to determine what other features might be measurable at a high sampling rate.
Particularly, sensors that detect heat release, pressure fluctuations, luminescence, and the
presence of ions and electrons may offer valuable data for this purpose.

For the second part of this study, the first recommendation that could be made is to
perform an optimization for the spray design in which the evaporation efficiency, the
thermal efficiency and other performance metrics are taken into account, as well as how
fast flashback is suppressed. Secondly, increasing the injection velocity to minimize the
response time should also be further assessed. Here, it is important to strike a balance
between the diameter of the nozzle and the mass flow of water, as the first can not be
decreased indefinitely, while increasing the second reduces the evaporation efficiency.

Lastly, the response time of such an online system should be investigated. This system
includes a chain of several electronic components and most importantly, a mechanical
one, in the form of the valve used for the water spray. Given the small time scale of the
flashback phenomena, it is important to assess how fast all of the involved components can
communicate with each other to activate the water spray.
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A
Navier-Stokes Characteristic Boundary

Conditions

The NSCBC is based on the eigenanalysis of the Euler equations and they have the intention
of purposefully allowing for the pressure waves which are close to the pressure far upstream
or downstream the domain to pass through, while reflecting the rest. In the Converge
solver, these boundary conditions are implemented following the research of Thompson
[139, 140] and Poinsot and Lele [141].

The three-dimensional Euler equations are characterized by five distinct real eigenvalues,
reflecting different wave types at the boundaries:

𝜆1 = 𝑢,
𝜆2 = 𝑢,
𝜆3 = 𝑢,
𝜆4 = 𝑢 − 𝑐,
𝜆5 = 𝑢 + 𝑐,

(A.1)

where the first three eigenvalues (𝜆1, 𝜆2, and 𝜆3) correspond to entropy and vorticity waves,
and the remaining two (𝜆4 and 𝜆5) to acoustic waves. The propagation speed and direction
of these waves are represented by 𝜆 and 𝑑𝑛

𝑑𝑡 = 𝜆, respectively.

At the inlet, where the flow is subsonic, the situation yields four positive and one negative
eigenvalue, leading to four incoming and one outgoing wave. This configuration requires
setting four variables via physical boundary conditions and one via a numerical boundary
condition (BC).

Conversely, at the outlet, the presence of four negative and one positive eigenvalue indicates
four outgoing waves and one incoming wave, with numerical BCs specifying four variables
and the physical condition determining the fifth.

For updating velocity, density, and pressure each iteration, the correction-based Non-
Reflecting Subsonic Outflow Boundary Conditions (NSCBC) approach utilizes the Local
One-Dimensional Inviscid (LODI) formulation. If 𝑈 = (𝜌, 𝑝, 𝑢, 𝑣, 𝑤) represents the state
vector, the time derivative of the residual 𝑅 is expressed as:

𝜕𝑈
𝜕𝑡

= −𝑅. (A.2)
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The residual predicted at the end of the PISO iteration, 𝑈𝑛+1,𝑃, is calculated as:

𝑅𝑃 = −𝑈𝑛+1,𝑃 − 𝑈𝑛

𝑑𝑡
(A.3)

The correction-based strategy adjusts the incoming waves into corrected waves that match
the desired boundary conditions, represented by 𝐶. The residual 𝑅 is split into 𝑅 = 𝑀𝐿,
where 𝐿 stands for the wave amplitude vector and 𝑀 denotes a matrix system detailed in
[141]:

𝑈𝑛+1,𝐶 = 𝑈𝑛 − 𝑑𝑡(𝑅𝑃 − 𝑅𝑖𝑛,𝑃
𝐵𝐶 + 𝑅𝑖𝑛,𝐶

𝐵𝐶 ), (A.4)

Utilizing 𝑅𝑖𝑛,𝑃
𝐵𝐶 = 𝑀𝐿𝑖𝑛 and 𝑅𝑖𝑛,𝐶

𝐵𝐶 = 𝑀𝐿𝑖𝑛,𝐶. For the inlet, where four incoming waves
are present, 𝐿𝑖𝑛 = (0, 𝐿2, 𝐿3, 𝐿4, 𝐿5) and 𝐿𝑖𝑛,𝐶 = (0, 𝐿𝐶

2 , 𝐿𝐶
3 , 𝐿𝐶

4 , 𝐿𝐶
5 ). For the outlet,

𝐿𝑖𝑛 = (𝐿1, 0, 0, 0, 0) and 𝐿𝑖𝑛𝐶 = (𝐿𝐶
1 , 0, 0, 0, 0). Inlet corrected wave amplitudes 𝐿𝐶

𝑖 are
calculated using:

𝜕𝑢
𝜕𝑡

= − 1
2𝜌𝑐

𝐿𝐶
5 = −𝐾 (𝑢 − 𝑢∞) (A.5)

𝜕𝑣
𝜕𝑡

= −𝐿𝐶
3 = −𝐾 (𝑣 − 𝑣∞) (A.6)

𝜕𝑤
𝜕𝑡

= −𝐿𝐶
4 = −𝐾 (𝑤 − 𝑤∞) (A.7)

𝜕𝑇
𝜕𝑡

= − 𝑇
𝜌𝑐2 𝐿𝐶

2 = −𝐾 (𝑇 − 𝑇∞) (A.8)

Here, 𝑢∞, 𝑣∞, 𝑤∞, and 𝑇∞ are far-field quantities imposed by Dirichlet values. Meanwhile,
for the outflow:

𝐿1 = 𝐾 (𝑝 − 𝑝∞) , (A.9)

where 𝑝∞ is the far-field pressure. The 𝐿𝐶
𝑖 is calculated as:

𝜕𝑝
𝜕𝑡

= −1
2

𝐿𝐶
1 = −𝐾 (𝑝 − 𝑝∞) (A.10)

Far-field values are relaxed using the relaxation constant 𝐾:

𝐾 = 𝜎 (1 − 𝑀2) 𝑐
𝐿

(A.11)

Here, 𝑀 is the Mach, 𝜎 is the tuning parameter, and 𝐿 is the characteristic length, taken as
0.06 m. The value of 𝐾 is critical in obtaining an appropriate solution from this model, and
thus the tuning parameter should be chosen carefully. High 𝜎 values can lead to instability
or simulation divergence due to large wave amplitude, deviating velocity from the target.
Low 𝜎 values cause a nearly non-reflecting boundary, but the mean solution drifts away
due to viscous and transverse terms in the Navier-Stokes equations. An optimal 𝜎 should
impose a nearly non-reflecting behavior while eliminating drift. In this work, the a value of
𝜎 = 0.25 is used, as suggested by Ruby et al. [142].



B
Numerical solvers

Numerical schemes
The approach used for solving the conservation equations in the Converge software [125]
is the Finite Volume Methods (FVM) approach. This method involves partitioning the
computational space into discrete cells, where the central point of each cell holds the values
of various transported entities. These central values are then updated based on the flux
across the cell faces and any contributions from internal sources. When considering the
transport of a scalar quantity 𝜙, and applying the Green-Gauss theorem, the process can
be represented as follows:

𝜕𝜙
𝜕𝑡

+ 𝜕𝑢𝜙
𝜕𝑥

= 0 ⟶ 𝜕𝜙
𝜕𝑡

+ 1
𝑉

∫
S

𝑢 ⋅ 𝑛𝜙 𝑑𝑆 = 0 (B.1)

Here, 𝑉 denotes the volume of the cell, 𝑛 represents the surface normal, and 𝑆 indicates
the surface area. Then, Equation B.1 is discretized by accounting for the cumulative flux
across all faces, as shown:

𝜕𝜙
𝜕𝑡

+ 1
𝑉

∑
𝑖

𝑢𝑓,𝑖𝜙𝑓,𝑖𝑆𝑖 = 0 (B.2)

To determine the face values of velocity 𝑢𝑓,𝑖 and the transported quantity 𝜙𝑓,𝑖, extrapolation
from adjacent cells is essential. Two primary methods are considered: up-winding from
the upstream cell, which enhances stability at the expense of numerical viscosity, and the
central difference scheme, which, while more precise, is prone to instability. The Converge
solver additionally enables a hybrid approach, blending these two methods. The formula
for this blend is given by:

𝜙𝑓,𝑖− 1
2

= (1 − 𝛽)𝜙𝑓,𝑖−1 + 𝛽1
2

(𝜙𝑓,𝑖−1 + 𝜙𝑓,𝑖) (B.3)

In this expression, 𝛽 regulates the balance between upwinding and central difference. Given
hydrogen’s high diffusivity and propensity for flashback, minimizing the use of upwind
schemes is advisable. In this context, 𝛽 is set to 1 for all transported entities, with the
exception of turbulence, where a fully upwind approach is preferred. This decision stems
from the fact that central differences preserve strong gradients, thereby enhancing turbulence
dissipation. To maintain numerical stability, step limiters are employed, switching to first-
order upwind when the monotonicity threshold is not met at the faces. For temporal
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derivative discretization, an implicit first-order Euler scheme is chosen, balancing stability
and precision while ensuring the conservation of all quantities, including passive ones.

PISO algorithm
The PISO (Pressure Implicit with Splitting of Operators) strategy, initially presented by Issa
in 1986 [128], represents an approach for resolving transport equations, which emphasizes
the correlation between pressure and velocity. This algorithm enhances computational
efficiency through the reduction of iterative steps and the utilization of larger time-steps.
The PISO algorithm initiates by hypothesizing an initial pressure distribution, derived
from a preliminary resolution of the momentum equations. Subsequently, an iterative
refinement process is employed, involving the generation of a revised pressure equation
and its incorporation into the momentum equations. This iterative sequence continues
until the solutions converge within a predefined tolerance threshold. Subsequently, the
remaining transport equations are addressed. The PISO algorithm’s versatility is evident
in its applicability to both incompressible and steady-state scenarios, demonstrating robust
stability even when subjected to algorithmic modifications.

The algorithm’s execution can be delineated in the following stages, where each additional
superscript ∗ denotes a higher level of temporal accuracy:

• Predictor Step: Here, the momentum equation is resolved in a semi-implicit manner.
The equation, encapsulating diffusion, convection, and source elements, is expressed
as follows, with 𝐻∗ denoting these collective terms. Intermediate field values during
the iterative process are indicated by superscript ∗, while previous field values bear
the superscript 𝑛:

𝜌𝑛𝑢∗
𝑖

𝑑𝑡
− 𝜌𝑛𝑢𝑛

𝑖
𝑑𝑡

= −𝜕𝑃 𝑛

𝜕𝑥𝑖
+ 𝐻⋆

𝑖 (B.4)

• First Correction: This stage involves updating the velocity field 𝑢∗ to satisfy the
mass conservation. To achieve this, the momentum equation is then reformulated as,
based on the adjusted pressure 𝑝⋆:

𝜌⋆𝑢⋆⋆
𝑖

𝑑𝑡
− 𝜌𝑛𝑢𝑛

𝑖
𝑑𝑡

= −𝜕𝑃 ⋆

𝜕𝑥𝑖
+ 𝐻⋆

𝑖 (B.5)

• New Pressure Equation Derivation: By contrasting the initial and corrected mo-
mentum equations and integrating mass conservation principles, a new pressure
formulation emerges. Here, 𝜌⋆ is related to pressure as 𝜌⋆ = 𝑃 ⋆/ (𝑍𝑛𝑅𝑛𝑇 𝑛), where
Z denotes the compressibility factor, assuming unity for ideal gases. The variable 𝑆
represents various source terms. The resultant pressure equation is:

𝜕2

𝜕𝑥𝑖𝜕𝑥𝑖
(𝑃 ⋆ − 𝑃 𝑛) − (𝑃 ⋆ − 𝑃 𝑛) 𝜙𝑛

𝑑𝑡2 = (𝜕𝜌𝑛𝑢⋆
𝑖

𝜕𝑥𝑖
− 𝑆) 1

𝑑𝑡
(B.6)

• Second Correction: This involves a further refinement of the velocity field 𝑢⋆⋆
𝑖 and

pressure 𝑝⋆, similarly to the previous step. The momentum equation at this stage is
simplified to:

𝜌⋆⋆𝑢⋆⋆⋆
𝑖

𝑑𝑡
− 𝜌𝑛𝑢𝑛

𝑖
𝑑𝑡

= −𝜕𝑃 ⋆⋆

𝜕𝑥𝑖
+ 𝐻⋆

𝑖 (B.7)
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• Pressure Equation Update: The final stage involves manipulating the second correc-
tion equation to facilitate the computation of the pressure field 𝑝∗, using the known
right-hand side values. The updated velocity 𝑢⋆⋆

𝑖 is then determined using Equation
B.7. While the iterative process can be extended, a satisfactory accuracy is usually
achieved within two iterations.

To improve accuracy, the algorithm also incorporates correction equations for temperature
and other transported quantities. Although increasing the number of iterations can improve
precision, the discretization of original momentum and transport equations inherently
introduces errors of the order 𝑂 (𝛿𝑡3) and 𝑂 (𝛿𝑡2) for second and first order schemes,
respectively. Therefore, extending the correction resolution beyond two iterations is often
unnecessary.
In this specific instance, the PISO algorithm has been implemented with a convergence
criterion multiplier set at 20.0, pertaining to the minimum improvement required in residual
values per PISO loop iteration. The algorithm stipulates a minimum of two corrections and
a maximum of nine, with a tolerance threshold defined at Ψ𝑡𝑜𝑙 = 10−4. The tolerance for
each transport equation is computed as follows, where Ψ⋆ represents the current correction,
and Ψ𝑡−1 denotes the preceding correction value:

∣Ψ−Ψ𝑡−1∣
|Ψ∗|

< Ψ𝑡𝑜𝑙 (B.8)

Rhie-Chow Algorithm
Another important algorithm involved in solving the system of equations is the Rhie-Chow
interpolation algorithm [129]. Because all of the transported quantities are placed in the
center of the cells, undesirable fluctuations can happen due to the decopuling between
pressure and velocity. To account for this, the velocity in the correction steps is now
calculated using the spatial pressure gradients across multiple neighbouring cells:

𝑢∗
𝑖+1/2 =

𝑢∗
𝑖 + 𝑢∗

𝑖+1
2

− 𝑑𝑡
𝜌

(
𝑃𝑖+1 − 𝑃𝑖

𝑑𝑥
) + 𝑑𝑡

2𝜌
(

𝑃𝑖+1 − 𝑃𝑖−1
2𝑑𝑥

+
𝑃𝑖+2 − 𝑃𝑖

2𝑑𝑥
) (B.9)

Linear solver
The terminal phase in the computational process involves resolving the entire set of
discretized equations for each iteration. This task is accomplished using the SOR (Successive
Over-Relaxation) technique, a method noted for its effectiveness in scenarios involving
transient, compressible dynamics. The linear equation set is articulated in the matrix form
𝐴𝑥 = 𝑏, with the iterative solution process commencing from an initial estimate denoted by
𝑥0. Following each iteration, the algorithm calculates the residual, ensuring its compliance
with predefined limits:

𝑟𝑛 = |𝐴𝑥𝑛 − 𝑏|2

|𝑏|2
(B.10)

A critical aspect of the SOR method is the introduction of a relaxation factor, 𝜔, which
significantly hastens the convergence of the residuals. Iterative procedures often necessitate
the application of under-relaxation, linking the subsequent iteration to its predecessor
augmented by a proportionally scaled correction. Thus, the ensuing iteration 𝜙⋆⋆ is derived
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from the previous iteration 𝜙⋆, supplemented by the correction, expressed as 𝜙⋆⋆ = 𝜙⋆+𝜔Δ𝜙.
The system is then redefined, leading to the following equation:

𝑥𝑘+1
𝑖 = (1 − 𝜔)𝑥𝑘

𝑖 + 𝜔
𝑎𝑖𝑖

(𝑏𝑖 − ∑
𝑗<𝑖

𝑎𝑖𝑗𝑥𝑘+1
𝑗 − ∑

𝑗>𝑖
𝑎𝑖𝑗𝑥𝑘

𝑗 ) (B.11)



C
Spray model

C.1. Injection size distribution
The injection size distribution chosen for the spray model is the Rosin-Rammler distribution.
The selection of this model is based on computational efficiency grounds, as choosing this
non-uniform distribution justifies neglecting the break-up and coalescence phenomena, thus
simplifying the model. The cumulative probability distribution function is given by:

𝑝(𝑟) = 1 − exp(𝜁𝐶𝑅𝑅) for 0 < 𝜁 < 𝜁𝑚𝑎𝑥, (C.1)

where 𝜁 = 𝑟/ ̃𝑟, 𝜁𝑚𝑎𝑥 = ln 1000
1

𝐶𝑅𝑅 and the upper limit of the radius is imposed using the
empirical constant 𝐶𝑅𝑅. Furthermore,

̄𝑟 = Γ (1 − 1
𝐶𝑅𝑅

) 𝑟Sauter, (C.2)

where 𝑟Sauter is the Sauter radius and Γ is the Gamma function, resulting in a drop radius
given by 𝑟 = ̄𝑟𝜁.

Particle motion
Understanding the path of droplets in the disperse phase is crucial for employing the
Lagrangian approach to solve spray dynamics. Initially given momentum at injection, the
droplets interact with the gas flow, experiencing forces such as gravity or drag. The particle
kinematic evolution, based on Newton’s second law, can be expressed as:

𝑚𝑑
𝑑𝑐𝑖
𝑑𝑡

= 𝐹𝑑,𝑖 (C.3)

If pressure gradients and body forces are omitted, a simplified definition is given where the
acceleration of droplets now primarily depends on the drag force. The mass of a droplet
is expressed in terms of the liquid’s density, 𝜌𝑙, and its volume, given by 𝑚𝑑 = 4

3𝜋𝜌𝑙𝑟3.
The velocity difference between the droplet and the gas is denoted by 𝑈𝑖, calculated
as 𝑈𝑖 = 𝑢𝑖 + 𝑢′

𝑖 − 𝑐𝑖, with 𝑢𝑖, 𝑢′
𝑖, and 𝑐𝑖 representing the local mean velocity, velocity

fluctuations, and the velocity of the droplet, respectively. The standard expression for the
drag force exerted on the droplet is:

𝐹drag,𝑖 = 𝐶𝐷𝐴𝑓
𝜌𝑔|𝑈𝑖|

2
𝑈𝑖 (C.4)
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Upon substituting the aforementioned relationships and reorganizing the variables, we
derive the final formula for the evolution of the droplet’s velocity. The equation incorporates
the drag coefficient 𝐶𝐷, the density of the gas phase 𝜌𝑔, and the droplet’s radius 𝑟. Given
that the size of the droplet changes over time, primarily due to evaporation, an additional
equation is required to describe the changing radius:

𝑑𝑐𝑖
𝑑𝑡

= 3
8

𝜌𝑔

𝜌𝑙
𝐶𝐷

|𝑈𝑖|
𝑟

𝑈𝑖 (C.5)

The drag coefficient is the final parameter to be defined. While there is an elaborate
model for dynamic drag that accounts for changes in the shape of the droplet, a simpler
model assuming a spherical droplet shape is utilized for simplicity. The Schiller-Neumann
equation is used to estimate 𝐶𝐷 based on the Reynolds number for the droplet and gas
flow:

𝐶𝐷 = {
24

Re𝑑
(1 + 1

6Re2/3
𝑑 ) Re𝑑 ≤ 1000

0.424 Re𝑑 > 1000
(C.6)

The Reynolds number, Re𝑑, is calculated considering the diameter of the droplet, the
relative velocity between the droplet and the gas, and the kinematic viscosity of the gas.
Note that the calculated drag might be underestimated since droplets, which tend to assume
a disk shape in high Weber number flows, exhibit a higher 𝐶𝐷 compared to spheres. To
address this discrepancy, a correction to the drag coefficient, as proposed by Liu et al., is
applied:

𝐶𝐷 = 𝐶𝐷,sphere(1 + 2.632𝑦) (C.7)

Here, y is the drop distorsion, ranging from 0 to 1, where 0 implies no distortion and 1
implies maximum distortion. For under-damped flows, the function reads as:

𝑦(𝑡) = 𝑊𝑒𝑐 + 𝑒− 𝑡
𝑡𝑑 [(𝑦(0) − 𝑊𝑒𝑐) cos(𝜔𝑡) + 1

𝜔
(𝑑𝑦

𝑑𝑡
(0) + 𝑦(0) − 𝑊𝑒𝑐

𝑡𝑑
) sin(𝜔𝑡)] (C.8)

where:

𝑊𝑒𝑔 =
𝜌𝑔𝑢2

𝑟𝑒𝑙𝑟𝑜

𝜎

𝑊𝑒𝑐 = 𝐶𝐹
𝐶𝑘𝐶𝑏

𝑊𝑒𝑔

1
𝑡𝑑

= 𝐶𝑑
2

𝜇𝑙
𝜌𝑙𝑟2

𝑜

𝜔2 = 𝐶𝑘
𝜎

𝜌𝑙𝑟3
𝑜

− 1
𝑡2
𝑑

(C.9)

and 𝐶𝑘 = 8, 𝐶𝐹 = 1/3 and 𝐶𝑏 = 1/2 are model constants set to match the results of Lamb,
1945 [143]. Furthermore, 𝜔 is the oscillation frequency, 𝑊𝑒𝑔 is the droplet Weber number,
𝑢𝑟𝑒𝑙 is the relative velocity of the droplet, 𝜎 is the droplet surface tension, 𝜇𝑙 is the viscosity
of the droplet and finally 𝑟0 is the undisturbed droplet radius.
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C.2. Turbulent dispersion
Turbulence plays a crucial role in affecting droplet movement, leading to difficulties in
predicting how particles spread out. Due to drag forces, droplets slow down, with their
momentum being passed on to the surrounding fluid at smaller scales. In Large Eddy
Simulation (LES) studies, estimating the velocity at these smaller scales is critical, and can
be approximated using a basic expansion method:

𝑢sg,𝑖 = 𝐶les
𝑑2

24
𝜕2�̄�𝑖
𝜕𝑥2 (C.10)

Here, 𝑑 is the effective cell dimension, derived as 𝑑 = 3√𝑉cell, where 𝑉cell is the volume
of the computational cell, �̄�𝑖 denotes the average velocity in the simulation, and 𝐶les is a
predetermined constant. The fluctuating parts of the velocity, �̄�′

𝑖, are sampled periodically
based on the turbulence’s characteristic time 𝑡𝑑, which is the lesser of two times: the time
it takes for a droplet to move through an eddy and the time for the eddy to break apart:

𝑡𝑑 = min (
𝑘sg

𝜀sg
, 𝑐𝑝𝑠

𝑘3/2
sg

𝜀sg

1
∣𝑢𝑖 + 𝑢′

𝑖 − 𝑢dg,𝑖∣
) (C.11)

Here, 𝑐𝑝𝑠 is an empirical constant, and 𝑘sg and 𝜀sg represent the subgrid turbulent kinetic
energy and its dissipation rate, respectively, which are calculated from the subgrid velocities
and cell size:

𝑘sg = 1
2

𝑢2
sg,𝑖 (C.12)

𝜀sg = 𝑘3/2
sg

𝑑
(C.13)

C.3. Droplet-wall interaction
Despite the short life of droplets before they evaporate, understanding how they impact
surfaces is important. This model draws from the work by Naber and Reitz [144] and
Gonzalez et al. [145], concentrating on the angled collision of liquid jets against a wall. It
adopts a three-dimensional empirical approach, upholding the conservation of mass and
momentum. According to the model, the velocity component parallel to the wall does not
change, but the perpendicular velocity is critical for determining the impact’s outcome. The
impact behavior is classified into two regimes based on the Weber number at the moment
of impact:

𝑊𝑒𝑖 = 𝜌𝑙𝑉 2
𝑛 𝑑0
𝜎

(C.14)

Here, 𝑉𝑛 is the velocity perpendicular to the surface. If 𝑊𝑒𝑖 < 80, the droplet bounces
back elastically, with the outgoing normal velocity calculated as:

𝑉𝑛,𝑜 = 𝑉𝑛,𝑖√
𝑊𝑒𝑜
𝑊𝑒𝑖

(C.15)
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The Weber number for the departing droplet (𝑊𝑒𝑜) is determined by the following formula:

𝑊𝑒𝑜 = 0.678𝑊𝑒𝑖 exp (−0.04415𝑊𝑒𝑖) (C.16)

This empirical formula is based on findings by Wachters and Westerling (1966) [146]. For
𝑊𝑒𝑖 > 80, the model applies a jet scenario, where the droplet spreads out tangentially to
the surface as a liquid sheet. The thickness of the sheet resulting from the jet’s impact is
described by:

ℎ(𝜓) = ℎ𝜋𝑒𝛽(1−𝜓/𝜋) (C.17)

In this context, ℎ𝜋 is the sheet’s height when the droplet impacts the wall at a right angle.
The sheet’s thickness varies with the impingement angle 𝛼, a parameter 𝛽, and the angle
at which the droplet exits the surface. The equations for these parameters are as follows:

sin 𝛼 = (𝑒𝛽 + 1
𝑒𝛽 − 1

) 1
1 + (𝜋/𝛽)2 𝜓 = 𝜋

𝛽
ln [1 − 𝑛 (1 − 𝑒−𝛽)] (C.18)

Here, 𝑛 represents a randomly chosen number between 0 and 1.

C.4. Droplet evaporation
The representation of the variation in radius of injected droplets plays a pivotal role in
constructing a comprehensive mathematical model for sprays. Ultimately, it dictates
absorbed heat by the droplets both for changing their temperature and changing their
phase from liquid to gaseous, influencing the temperature in the rest of the flow and in the
flame. Droplet evaporation hinges on the interplay between convective mass transfer and
diffusion effects, described by the non-dimensional Sherwood number 𝑆ℎ𝐷. The evolution of
droplet radius follows Equation C.19, a function dependent on liquid-air mass diffusivity 𝐷,
gas-liquid density ratio 𝜌𝑔/𝜌𝑙, a mass transfer coefficient scaling factor 𝛼spray, and Sherwood
number 𝑆ℎ𝐷 [147, 148]:

𝑑𝑟0
𝑑𝑡

= −
𝛼spray𝜌𝑔𝐷

2𝜌𝑙𝑟0
𝐵𝑑𝑆ℎ𝑑 (C.19)

This expression involves the Spalding mass transfer number 𝐵𝑑, representing the normalized
ratio of water vapor mass fraction 𝑌 ∗

1 to overall vapor mass fraction 𝑌1. Frossling (1938)
[148] establishes the correlation for 𝑆ℎ𝑑 incorporating Reynolds and Schmidt numbers under
assumptions of spherical droplets, steady evaporation, and saturation vapor concentration.
Accounting for the Spalding number, the correlation for 𝑆ℎ𝑑 is:

𝑆ℎ𝑑 = (2.0 + 0.6𝑅𝑒1/2
𝑑 𝑆𝑐1/3) ln (1 + 𝐵𝑑)

𝐵𝑑
(C.20)

To accurately determine 𝑅𝑒 and 𝑆𝑐, a valid interpolation temperature for diffusivity
coefficient 𝐷 and gas viscosity 𝜇 is needed. Amsden et al. (1989) [147] propose ̂𝑇 =
(𝑇gas − 2𝑇𝑑) /3. Reynolds number considers turbulence fluctuations for each droplet in the
gas flow, utilizing droplet diameter 𝑑 as the length scale. The Schmidt number involves
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model constants 𝐷0 and 𝑛0 determined experimentally:

𝑅𝑒𝑑 =
𝜌gas |𝑢𝑖 + 𝑢′

𝑖 − 𝑣′
𝑖| 𝑑

𝜇air
(C.21)

𝑆𝑐 = 𝜇air

1.293𝐷0( ̂𝑇 /273)𝑛0−1
(C.22)

After modeling droplet size evolution, thermal heat transfer to the droplet must be consid-
ered. The energy balance equation describes the temperature rate evolution, with 𝑐𝑙 as the
liquid specific heat and 𝑄𝑑 as the heat conduction rate:

𝜌𝑑
4
3

𝜋𝑟3𝑐ℓ
𝑑𝑇𝑑
𝑑𝑡

− 𝜌𝑑4𝜋𝑟2𝑅𝐿𝑉 = 4𝜋𝑟2𝑄𝑑 (C.23)

The heat transfer rate is modeled using the Ranz-Marshall correlation [149], assuming
only conduction is significant. It is expressed as a function of interpolation temperature ̂𝑇,
droplet radius, Nusselt number, and a modeling constant 𝐾gas:

𝑄𝑑 =
𝐾gas (𝑇 − 𝑇𝑑)

2𝑟
Nu𝑑 𝐾gas( ̂𝑇 ) = 𝐾1 ̂𝑇 3/2

̂𝑇 + 𝐾2
(C.24)

Finally, the Nusselt number is determined using a correlation analogous to the Sherwood
number, replacing the Schmidt number with the Prandtl number:

Nu𝑑 = (2.0 + 0.6𝑅𝑒1/2
𝑑 Pr1/3

𝑑 ) ln (1 + 𝐵𝑑)
𝐵𝑑

Pr𝑑 =
𝜇gas( ̂𝑇 )𝑐𝑝( ̂𝑇 )

𝐾gas( ̂𝑇 )
(C.25)

For droplets smaller than a specified size, a simplified model assumes uniform temperature.
For larger droplets, a more comprehensive modeling is performed following Abramzon
and Sirignano (1989) [150], accounting for spherically symmetric temperature distribu-
tion and potential recirculation effects. The modified Equation 2.52 incorporates partial
differentiation:

𝜌𝑐𝑝
𝜕𝑇
𝜕𝑡

= 1
𝑟2

𝜕
𝜕𝑟

(𝑘eff𝑟2 𝜕𝑇
𝜕𝑟

)

𝑘eff
𝜕𝑇
𝜕𝑟

∣
𝑟=𝑅𝑑

= ℎ (𝑇𝑔 − 𝑇 (𝑅𝑑, 𝑡)) + 𝜌𝐿𝑣
𝑑𝑅𝑑
𝑑𝑡

(C.26)

Here, 𝑟 is the distance from the center, ℎ is the droplet-gas convection coefficient, 𝑇𝑔 is
the gas temperature, 𝑅𝑑(𝑡) is the radius of the droplet, 𝑐𝑝 is the droplet specific heat, 𝐿 is
the specific heat of evaporation, 𝑘 is the droplet thermal conductivity, and 𝑇 (𝑅𝑑, 𝑡) is the
surface temperature. If recirculation effects are considered, the new thermal conductivity
𝑘eff = 𝜒𝑘 is used instead of 𝑘, where 𝜒 is expressed as:

𝜒 = 1.86 = 0.86 tanh (2.225log 10 (0.03333𝑃𝑒𝑑)) (C.27)

Here, 𝑃𝑒𝑑 represents the Peclet number of the droplet.
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C.5. Collision model
The NTC method, introduced by Schmidt and Rutland [151], is the chosen strategy for
modeling collisions, based on randomly selecting pairs of droplet parcels within each
computational cell. Initially, these parcels are grouped by their cell, and from these groups,
pairs are randomly chosen for potential collision analysis. The estimated number of collisions
within a given time interval Δ𝑡 is calculated by summing the collision probabilities for all
selected pairs:

𝑀coll = 1
2

𝑁
∑
𝑖=1

𝑁
∑
𝑗=1

𝑉𝑖,𝑗𝜎𝑖,𝑗Δ𝑡
𝑉total

(C.28)

In this equation, 𝑁 is the number of droplets involved, and 𝜎𝑖,𝑗 = 𝜋(𝑟𝑖 + 𝑟𝑗)2 calculates
the collision cross-sectional area. To better manage collision probability, a factor 𝑞𝑉 𝜎 is
applied, where 𝑞 indicates the number of droplets per cell and 𝑁𝑝 the parcels in each cell.
Thus, the refined formula for collision counts becomes:

𝑀coll =
√𝑀𝑐𝑎𝑛𝑑

∑
𝑖=1

𝑞𝑖

√𝑀𝑐𝑎𝑛𝑑

∑
𝑗=1

𝑞𝑗𝑉𝑖,𝑗𝜎𝑖,𝑗

(𝑞𝑉 𝜎)𝑚𝑎𝑥
𝑀𝑐𝑎𝑛𝑑 =

𝑁2
𝑝 (𝑞𝑉 𝜎)𝑚𝑎𝑥Δ𝑡

2𝑉total
(C.29)

By simulating a fraction of the parcel population, this method enhances speed without
sacrificing significant accuracy. It also helps in pinpointing pairs of parcels that are likely
to collide. A collision is confirmed between parcels 𝑖 and 𝑗 if:

𝑟 <
𝑞𝑔𝑉𝑖,𝑗𝜎𝑖,𝑗

(𝑞𝑉 𝜎)𝑚𝑎𝑥
(C.30)

where 𝑟 is a random factor between 0 and 1, and 𝑞𝑔 reflects the droplet count in the path
of the colliding pairs. Upon meeting this condition, a collision occurs. The nature of the
collision—whether it leads to simple contact, merging, stretching, or bouncing back—is
determined by the model from Post and Abraham [152], which relies on the Weber number
to categorize the interaction. Further, for complex interactions, additional guidelines
by Ashgriz and Poo [153] and Hou [154] are consulted to discern between coalescence,
stretching, or separation.



D
Inlet velocity profile

The mean velocity profile for fully developed turbulent pipe flow is computed based on the
studies of McKeon et al. [155][156], where velocity values are derived based on measurements
taken with a Pitot probe. Using this experiment, the velocity profile is determined in
relation with 𝑦+ for multiple regions based on their proximity to the wall. For high Renyolds
number, the authors indicate that an inner-layer scaling is given by:

𝑈 = 𝑓 ′ (𝑦, 𝑢𝑖, 𝜈, 𝑅) (D.1)

and an outer-layer scaling by:

𝑈𝑐 − 𝑈 = 𝑔′ (𝑦, 𝑢0, 𝜈, 𝑅) (D.2)

where 𝑈 is the mean velocity, 𝑈𝑐 is the centerline velocity and 𝑓 and 𝑔 denote functional
dependencies. Furthermore, 𝑢𝑖 and 𝑢0 can be taken as 𝑢𝜏, which is computed as:

𝑢𝜏 = √
𝜏𝑤
𝜌𝑎

(D.3)

where 𝜏𝑤 is the wall shear stress computed as:

𝜏𝑤 = 𝜆
8

𝜌𝑎𝑈2
𝑏 (D.4)

Here, 𝑈𝑏 is the bulk velocity of the inlet flow, which is equal to 200 𝑚/𝑠 in order to be
consistent with the uniform velocity profile case. Furthermore, for these equation, the
ambient density 𝜌𝑎 = 5.38 𝑘𝑔/𝑚3 and the kinematic viscosity 𝜈 = 8.77𝑒 − 6 𝑚2/𝑠 are
taken from the LES simulation. Finally, this leads to the equation for 𝑦+:

𝑦+ = 𝑦 ⋅ 𝑢𝜏
𝜈

(D.5)

Thus, the regions presented by the authors consist of a power law and a logarithmic law for
the inner layer and a another logarithmic law for the outer layer. These are:

𝑈+ = 8.48𝑦+0.142 0 < 𝑦+ < 300 (D.6)
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𝑈+ = 1
0.385

𝑙𝑛(𝑦+) + 4.15 300 < 𝑦+ < 600 (D.7)

𝑈 = 𝑈𝑐( 1
0.421

𝑙𝑛(𝑦
𝑟

) + 1.2) ⋅ 𝑢𝜏 600 < 𝑦+ < ℎ/2 (D.8)

where 𝑈𝑐 is the centerline velocity and 𝑅+ = ℎ⋅𝑢𝜏
𝜈 . Furthermore, for the first two, the

actual velocity is calculated as 𝑈 = 𝑈+ ⋅ 𝑢𝜏. Finally, to complete the picture, the friction
factor is determined as:

1√
𝜆

= 1.884 ⋅ 𝑙𝑜𝑔(𝑅𝑒𝐷 ⋅
√

𝜆) − 0.331 (D.9)

where the diameter based Reynolds number is calculated as follows:

𝑅𝑒 =
̄𝑈 ⋅ 𝐷
𝜈

(D.10)

The resulting velocity profile is shown in Figure D.1. Lastly, it should be mentioned that
the centerline velocity was adjusted to 𝑈 = 223 𝑚/𝑠, such that the bulk velocity calculated
by integrating the velocity field is equal to 𝑈𝑏 = 200 𝑚/𝑠.

Figure D.1: Mean velocity profile for a fully developed pipe flow under the conditions of
the LES simulation
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