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Summary

Developers strategically reuse code to expedite project development and lower mainte-
nance costs. With the advent of software supply chains, integrating open-source libraries
into projects has transitioned from a cumbersome, manual task to an automated, stream-
lined process. However, this ease of integration has downsides; adding just one library
can typically bring in multiple others, each following different coding standards and main-
tenance protocols. This layer of complexity significantly impedes the effective monitor-
ing and evaluation of security vulnerabilities and breaking changes stemming from these
external libraries in software projects. To mitigate these challenges, developers use var-
ious tools to oversee and react to software supply chain activities. However, these tools
frequently result in a high rate of false positives and are often not insightful, primarily
because they rely on metadata from build manifests.

This thesis proposes call-based reachability analysis to enhance comprehension and
precision by treating source code as first-class citizens in software supply chain analy-
sis. Initially, we generate function call graphs for package releases, forming a call-based
dependency network. We then compare such networks with manifest inferred networks
to understand better their similarities and differences in approximating package relation-
ships. The next phase of the thesis explores third-party library updates. Here, we examine
the extent to which project test suites cover third-party functionality, followed by apply-
ing code-based reachability analysis to augment code areas lacking test coverage. Finally,
we investigate the reuse of imported third-party library code in software projects, provid-
ing insights for developers and organizations to benchmark and question their reliance on
imported third-party code over first-party code.

Our results demonstrate that reachability analysis based on build manifest inferred
networks often tends to overestimate transitive package relationships compared to call-
based networks, overlooking the specific usage patterns of third-party libraries in projects.
Software projects typically utilize only a portion of the functionalities from a third-party
library, a pattern that also extends to dependent third-party libraries. Tools relying on
manifest-inferred data incorrectly infer that projects use all functionalities of imported
third-party libraries. This results in false alarms when identifying software supply chain
issues like security vulnerabilities. Similarly, tools that automate third-party library up-
dates also assume that project test suites can detect regressions effectively. Project tests
often fail to cover all functionalities from a third-party library, leading to approved up-
dates where changes are unchecked. Finally, while most projects are aware of importing
a large number of third-party libraries, we observe that the reuse of imported libraries
remains relatively low, raising critical questions about how organizations should strategi-
cally balance third-party versus first-party code, especially in light of the risks inherent in
software supply chains.
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Samenvatting

Ontwikkelaars hergebruiken code om de ontwikkeling van projecten te versnellen en de
onderhoudskosten te verlagen. Met de komst van software supply chains is het integreren
van open-source bibliotheken in projecten overgegaan van een omslachtige, handmatige
taak naar een geautomatiseerd, gestroomlijnd proces. Deze gemakkelijke integratie heeft
echter nadelen; het toevoegen van slechts één bibliotheek kan typisch andere bibliotheken
met zich meebrengen, elk met verschillende coderingsstandaarden en onderhoudsproto-
collen. Deze extra laag van complexiteit belemmert de effectieve monitoring en evaluatie
van veiligheidsrisico’s en significante veranderingen die voortkomen uit deze externe bi-
bliotheken in softwareprojecten. Om deze uitdagingen het hoofd te bieden, gebruiken
ontwikkelaars verschillende hulpmiddelen om toezicht te houden en te reageren op ac-
tiviteiten binnen software supply chains. Echter, deze hulpmiddelen geven vaak valse
positieven en zijn niet inzichtelijk, voornamelijk omdat ze vertrouwen op metadata uit
build-manifesten.

In dit proefschrift introduceren we een methode gebaseerd op call-based reachability
analysis om het inzicht en de precisie te verbeteren door broncode te behandelen als een
essentieel onderdeel in de analyse van software supply chains. We beginnen met het ge-
nereren van grafieken van functieaanroepen voor pakketreleases, waarmee we een net-
werk van athankelijkheden vormen gebaseerd op het aanroepen. Vervolgens vergelijken
we deze netwerken met de netwerken die zijn afgeleid uit manifesten om hun overeen-
komsten en verschillen in het benaderen van pakketrelaties beter te begrijpen. Daarna
kijken we naar updates van third-party bibliotheken en onderzoeken we in hoeverre de
testpakketten van projecten deze externe functionaliteiten dekken. We passen call-based
reachability analysis toe om de dekking van delen van de code die niet goed getest zijn te
verbeteren. Tot slot bestuderen we het hergebruik van geimporteerde code uit third-party
bibliotheken, waarmee we ontwikkelaars en organisaties inzichten bieden om te bepalen
hoe afthankelijk ze willen zijn van hun eigen code versus externe code.

Onze resultaten tonen aan dat de huidige methoden voor het analyseren van athanke-
lijkheden vaak te veel nadruk leggen op indirecte relaties tussen pakketten, zonder ade-
quaat te kijken naar hoe bibliotheken werkelijk gebruikt worden in projecten. Projecten
gebruiken doorgaans slechts een deel van de functionaliteiten uit een third-party biblio-
theek, maar tools die alleen naar de manifesten kijken gaan er ten onrechte vanuit dat alle
functionaliteiten worden gebruikt. Dit kan leiden tot onnodige waarschuwingen bij het
identificeren van problemen zoals veiligheidsrisico’s. Deze tools gaan er ook vaak ten on-
rechte vanuit dat testpakketten van projecten in staat zijn regressies te detecteren. Tests
falen vaak om alle functionaliteiten van een third-party bibliotheek te dekken, wat resul-
teert in de goedkeuring van updates waarvan de wijzigingen niet worden gecontroleerd.
Hoewel de meeste projecten een groot aantal third-party bibliotheken importeren, blijkt
uit ons onderzoek dat het werkelijke hergebruik van geimporteerde code beperkt is. Dit
roept vragen op over hoe organisaties een evenwicht kunnen vinden tussen het gebruik
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van eigen code en third-party code, vooral in het licht van de risico’s die gepaard gaan
met software supply chains.
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Introduction



2 1 Introduction

oftware reuse has become a central theme in software engineering due to its potential

to drive efficiencies in time and cost in software development. The practice involves
leveraging existing components, such as libraries, frameworks, and design patterns, to re-
duce the need to build software from scratch. The emergence of software supply chains,
which are processes and tools for managing and integrating software components from
various sources, has streamlined and scaled the reuse of open-source libraries (also known
as packages) across development projects. In turn, this has given birth to vibrant com-
munities that encourage low entry barriers for publication, fostering the development of
reusable libraries that others can effortlessly integrate and build upon. As of June 2023,*
JavaScript’s npm registry serves over 3.2 million packages to its users, being the most
prominent community, followed by Java’s Maven Central, with over 500,000 reusable li-
braries.

Libraries from software supply chains do not exist in isolation; they often rely on
other libraries to function. An intriguing, often overlooked characteristic is that directly
importing a few libraries in a development project can unintentionally result in pulling
in hundreds of additional libraries. Network analyses of repositories hosting reusable li-
braries shed light on this characteristic, revealing that a small set of libraries are implicitly
dependent on a large number of other libraries, hinting at the scale-free nature of these
systems [1, 2]. Removing the left-pad package from NPM, a seemingly minor library,
was a stark example of this intricate interdependency [3]. Its removal rendered popular
packages, powering enterprise websites and applications like React and Babel, unusable,
echoing its hidden importance in software supply chains. This incident highlights one of
the critical challenges in managing open-source libraries: the risk of unexpected breaking
changes, performance bugs, and security vulnerabilities in indirectly imported libraries,
often referred to as transitive dependencies.

The decentralized nature of software supply chains and the lack of uniform develop-
ment and testing standards make coordinating and managing library incidents a formidable
task. Developers have direct control only over the libraries they import, leaving poten-
tial issues in indirectly imported libraries largely outside their immediate control. There-
fore, the need for continuous monitoring and understanding of software supply chain
changes becomes critical for developers and organizations, specifically the ability to pri-
oritize based on the context of reused libraries in their projects. Researchers [1, 4-7] have
addressed this by developing techniques and conducting empirical studies on software
supply chains utilizing metadata descriptors in open-source projects and libraries. Meta-
data descriptors, often manifesting as build-instructions, contain information necessary
for building projects and detailing imported libraries and their version constraints. By
emulating the resolution process of package managers, researchers [1, 8] can construct
both graphs of individual libraries and networks of repositories that host them, providing
enhanced visibility and enabling wide-reaching impact and reachability analysis. Many
state-of-the-art tools also base on this technique; two notable tools are Dependabot, an
open-source tool, and Snyk, a commercial tool.

Despite their usefulness, techniques based on metadata descriptors provide a surface-
level understanding of software supply chains, signifying how libraries declare a depen-
dence on each other without giving insight into how the source code incorporates them.

'http://www.modulecounts.com



1.1 Background and Context 3

Projects do not reuse libraries uniformly, but individual goals and needs dictate the degree
of library functionality they reuse. This variance in library usage introduces the likelihood
of false positives in analyses when treating the use of libraries uniformly across projects.
A simple example of this would be a project declaring dependence on a library and includ-
ing an unused import statement from that library in the source code. A metadata-based
technique would erroneously flag this library as being used in the project.

In this thesis, we aim to advance beyond current metadata-based techniques toward
code-based ones. We develop techniques and empirically analyze software supply chains
at the granularity of functions and the invocations between them, providing an approxima-
tion for reasoning about the reuse of library functionality. Traditionally, program analysis
computes approximations of functions and their invocations at the project scope. We seek
to build representations of function calls at the scope of package repositories. Given their
scale and temporal properties, we initially focus on devising a technique that generates
call graphs of individual library releases, which we then stitch into a network given a
timestamp t. Using this technique, we conduct an empirical study comparing call-based
dependency networks with traditional metadata-based networks to understand their sim-
ilarities, differences, and cost trade-offs.

After analyzing package repositories of software supply chains, we shift our attention
to the consumers of these supply chains. Initially, we assess how effectively library up-
dating tools, such as Dependabot, can assist projects in avoiding semantically breaking
changes. As Dependabot relies on the test suites of projects, we construct a complemen-
tary change impact analysis to uncover coverage gaps of reused library functionality in
projects. Lastly, we delve into understanding how projects effectively reuse third-party
libraries to comprehend better the trade-offs between using third-party code in place of
first-party code.

1.1 Background and Context

In this section, we delve into the underlying fundamentals of software supply chain mod-
eling techniques and the application of static analysis within this context.

1.1.1 Understanding Software Supply Chains

Converting information between different well-known formats, accessing external stor-
age, manipulating information such as numbers, locations, and dates, or integrating with
popular online services are essential operations developers must address in software proj-
ects. Unlike the standard library of programming languages, these essential operations
evolve in response to technological progress (e.g., the shift from XML to JSON) or to cater
to specific user communities (e.g., interfaces to Twitter API or Amazon AWS SDK).

In the face of these evolving demands, modern programming languages such as Java,
JavaScript, C#, and Rust host public distribution channels. These dynamic repositories
empower developers and organizations to contribute and continually maintain these es-
sential operations as reusable libraries (known as packages). Social coding platforms such
as GITHUB and GITLAB are critical infrastructures for these distribution channels. These
platforms provide a medium for external code contributions to be accepted, scrutinized,
and seamlessly integrated into reusable libraries. Maintainers also adopt DevOps practices,
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[package]
» name = ”"my_rust_project”
; version = 70.1.0”
edition = 72021”

[dependencies]

serde = ”7%1.0”
s serde_json = ”>=1.0, <2.0”
) tokio = { version = ”*1.0”, features = [”full”] }
) reqwest = 70.10.10”

Figure 1.1: Build Manifest of a Rust Project

including continuous integration, the automatic building and testing of new code changes,
and continuous delivery to ensure frequent and regular publishing of new library releases
to the distribution channels.

These stages, from contribution to distribution, collectively form a system we recog-
nize as the software supply chain. This chain ensures the efficient flow of enhancements
and updates to existing libraries and the introduction of new, in-demand functionalities
through new libraries to developers and organizations that make use of them.

In practice, developers engage with the software supply chain through the manifest
descriptors of build systems. Figure 1.1 exemplifies a simple build manifest for a Rust proj-
ect. Here, the package section ([package]) establishes the name and version of the project,
serving as its identifier for publishing to a distribution channel. Conversely, the dependen-
cies section ([dependenices]) enumerates the libraries a project reuses in the source code,
accompanied by compatibility constraints (e.g., >=1.0, <2.0). When a build system pro-
cesses the dependency section of a manifest, it resolves the compatibility constraints and
subsequently makes the libraries available in a developer’s workspace. The compatibility
constraints further enable projects to take advantage of new enhancements and security
fixes by automatically updating them to the latest compatible version. However, unlike
DevOps environments, where code changes undergo validation, library updates in build
systems are applied immediately without similar checks, such as running integration tests.
This unverified immediate application of updates introduces potential risks, as breaking
changes could be inadvertently incorporated into projects.

As shown in Figure 1.1, our example project utilizes four reusable libraries: serde,
serde_json, tokio, and reqwest. These libraries, in turn, also build upon other pre-existing
libraries from the distribution, forming what we refer to as dependencies. While the proj-
ect explicitly relies on these four libraries, it also implicitly incorporates an additional 133
libraries necessary for its successful compilation. These 133 libraries, like the four declared
libraries, also originate from open-source maintainers with diverse development and test
conventions and varying release frequencies. Moreover, the tendency to import a large
number of libraries is common in projects, as distribution channels often encourage the
publication of specialized and modular libraries. This strategy, designed to foster simplic-
ity and manageability, helps developers create complex systems by integrating diverse,
task-specific libraries as cohesive building blocks. Illustrating the scale of this practice,
JavaScript’s npm registry, as the most prominent community, serves over 3.2 million pack-
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my_rust_project v0.1.0
|-- reqwest v0.10.10

5| |-- base64 v0.13.1

|-- bytes v0.5.6
|-- futures-util v0.3.28
|-- http v0.2.9
|-- http-body v0.3.1
|-- hyper v0.13.10
| |-- bytes v0.5.6
| | -- futures-channel v0.3.28
| |-- futures-core v0.3.28
| |-- tokio v0.2.25
| |-- tower-service v0.3.2
| |-- want v@0.3.0
|-- hyper-tls v0.4.3
-- tokio v1.28.2
|-- bytes v1.4.0
|-- libc v0.2.144
|-- mio v0.8.6
|-- signal-hook-registry vi1.4.1
|-- socket2 v0.4.9

2| |-- tokio-macros v2.1.0 (proc-macro)

3 |-- serde v1.0.163

|-- serde_json v1.0.96

Figure 1.2: Truncated dependency tree of a Rust project

ages to its users as of June 2023. Java’s Maven Central follows next, offering over 500,000
reusable libraries.?

Figure 1.2 visualizes a truncated version of the project’s dependency tree. Examining
this tree, we can observe both explicit and implicit relationships of packages the project
imports. For example, the project has a transitive dependency on bytes v@.5.6 through
hyper v0.13.10 and reqwest v0.10.10. Interestingly, the bytes package makes multiple
appearances, one under tokio v1.28.2. This recurrence is a strategy to circumvent con-
flicts when no single major version of bytes fulfills the requirements of all packages. This
strategy empowers developers and organizations to scale their reuse of libraries, enabling
them to leverage any available library without worrying about compatibility conflicts.

1.1.2 Network Analysis of Software Supply Chains
Contrary to the exploration and analysis of individual software systems, the backbone of
analyzing software supply chains is rooted in network analysis. Network analysis is a
statistical and graph theory method to investigate social structures using networks and
graph theory [9]. It involves characterizing and modeling a network to identify patterns,
connections, and critical nodes or influential points. This method provides the tools to
quantitatively measure and visualize the complexity of the relationships and interactions
among software packages.

Software supply chains represent an intricate, continuously evolving socio-technical

*http://www.modulecounts.com
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Figure 1.3: Network of a simplified software supply chain at timestamp ¢ and ¢’

network, encapsulating relationships between libraries and among the diverse community
of open-source developers. Network analysis is instrumental in capturing these relation-
ships and effectively tracking changes propagating upstream (i.e., dependencies of a proj-
ect) and downstream (i.e., dependents of a project) within a network, providing a holistic
perspective of the supply chain and individual libraries. Examples of upstream applica-
tions are detecting known vulnerabilities, license violations, and breaking changes. On
the other hand, downstream applications have received more significant attention among
the research community, with analyses focusing on trend analysis, risk assessment, and
stability. Examples of these applications include identifying highly popular or dormant
libraries with extensive dependencies within the network (i.e., finding the central nodes
of a software supply chain).

Given a distribution with five published packages — reqwest, regex, serde, tokio, and
rand — the typical method to infer a network, also known as a package dependency net-
work (PDN), involves parsing all dependencies and determining their constraints based
on the build manifests from the distribution. The left-hand side of Figure 1.3 presents the
inferred network of this distribution. We observe that the network forms a single compo-
nent, with reqwest depending on each of the other packages, either directly or indirectly.
All packages except serde and rand have dependencies, while all except reqwest have
dependents.

Consequently, in the event of a vulnerability or severe bug in any package, reqwest
would be affected due to its reachability to all packages. For instance, if rand were to have a
vulnerability, it would impact tokio and reqwest, affecting 50% of all packages. However,
if reqwest had a vulnerability or a severe issue, it would not affect any other package
in the distribution. This inference represents an essential aspect of impact analysis or
reachability analysis, where we assess the number of packages impacted by a change in
a distant package either in a downstream or upstream direction. It is also a measure of
network stability; if a package with multiple dependents, such as tokio, becomes unstable,
it would become a single point of failure in the supply chain.

At the timestamp marked as ¢’ in the right-hand side of Figure 1.3, we find that tokio
releases a new version, introducing a new package into the distribution: tinyrand. Once
we re-infer the network, we suddenly have two distinct components. This change comes
as tokio replaces rand with tinyrand, thus isolating rand in the network. The network
structure can evolve rapidly due to some packages’ high frequency of releases. Thus, con-
tinuous monitoring of these changes, understanding their implications, and evaluating
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their impact on network stability is crucial to identifying emerging trends and measuring
the stability of the software supply chain.

1.2 The Need for Source Code-Focused Representations

Given the increasing dependence on third-party libraries in software projects, developers
and organizations find it essential to have tooling that can monitor, optimize, and manage
their reuse of libraries from the software supply chains. Consider, for example, the simple
Rust project with its 135 imported libraries in Section 1.1.1. Monitoring and keeping these
libraries up-to-date manually is a tedious and costly task in software development.

While the build system can assist projects by automatically updating to the latest com-
patible version of explicitly and implicitly reused libraries, the process is rarely seamless,
as highlighted in Figure 1.4. Despite guidelines like the semantic versioning scheme [10]
that assist library maintainers in orderly versioning code changes, breaking changes be-
tween supposedly compatible versions is prevalent [11]. In response, developers often
resort to version pinning (i.e., disabling updates) or deploy tools such as Dependabot or
Renovate. These tools emulate a DevOps experience for library updates, using continu-
ous integration as a prerequisite for approving a library update. While these mitigation
techniques offer stability, they also have associated problems. Avoiding updates through
version pinning for an extended period incurs technical debt, making migrations to newer
versions challenging, mainly if a security vulnerability arises. In addition, continuous in-
tegration testing may inadvertently approve updates, as developers may not necessarily
write tests for the libraries they use.

Software supply chains are becoming a popular target for malicious activities, includ-
ing tactics such as taking over maintenance of popular packages to hide malicious content
like a Bitcoin wallet stealer inside the source code [12], typosquatting where malicious
packages have similar names to popular packages (e.g., urllib instead of urllib3) [13],
and attack vectors like poor input sanitization in packages. Despite using reachability anal-
ysis in security monitoring tools such as OWASP Dependency Checker, GitHub Security,
and Snyk, many alerts, as shown in Figure 1.5, are false alarms.

davidhartley commented on Feb 6

Updating to version 0.2.0 has broken the login flow for our existing project. In debugging, it looks like it
gets to the step where it should launch AuthorizationManagementActivity but nothing happens. | don't
see any errors or any additional info in the logs to help troubleshoot.

This is the line in AuthorizationService where it trails off:
this.mContext.startActivity (AuthorizationManagementActivity.createStartintent(this.mContext, request,
authintent, completedintent, canceledintent));

The last log message is "Warming up browser instance for auth request" but nothing actually appears
to happen in the app.

Figure 1.4: Update failure in okta/okta-sdk-appauth-android, #81
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A\ We found a potential security vulnerability in one of your dependencies.

The electron dependency defined in package. json has a known critical severity security
vulnerability in version range >= 1.6.0,< 1.6.16 and should be updated.

Only the owner of this repository can see this message.
Learn more about vulnerability alerts

Figure 1.5: False Alarm of Security Vulnerability

Without knowing how packages reuse libraries, developers have a limited understand-
ing of how vulnerabilities or changes in imported libraries affect their code. Increasingly,
package repository workgroups such as the Rust Ecosystem WG [14] are also calling for
a more comprehensive network analysis of package repositories to support code-centric
analysis for more effective identification of critical yet unstable packages [15, 16]. One
such example is the Libz Blitz [17] initiative, where community members contribute to
poorly maintained yet critical packages in CRATES.10 to stabilize highly reused code in the
distribution.

1.3 Research Goals and Questions

As software projects increasingly leverage software supply chains to maximize opportuni-
ties for code reuse and reduce development costs, the need for enhanced comprehension,
evaluation, and management of these chains, ensuring minimized disruptions and stability
in the supply chain, also grows. Existing methodologies and tools, which lean heavily on
data derived from build manifests, often result in developers having to sift through false
alarms. This issue further complicates the process of pinpointing supply chain-related
problems in their use of libraries and source code, introducing costly maintenance bur-
dens. To meet these challenges, we introduce research questions focused on exploring the
efficacy and application of program analysis techniques within software supply chains:

RQ 1 How feasible is code-based reachability analysis in practice?

Here, we evaluate the practicality of developing a code-based model for conducting
reachability analysis within package repositories. Our primary objectives include assess-
ing the feasibility of generating a code-based representation for each release in a package
repository and its associated computation time.

RQ 2 How does code-based reachability analysis complement tests in third-party library
updates?

Building on RQ1, this research question explores how reachability analysis comple-
ments project test suites during third-party library updates, an essential software supply
chain task. We will assess project test suites’ effectiveness in identifying regression-like
changes in these libraries. The focus is on how reachability analysis might address cov-
erage gaps, particularly in detecting changed third-party functionality that project test
suites might miss.
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RQ 3 How do software projects reuse imported third-party libraries?

In contrast to the previous research questions, RQ3 uses code-based reachability to
quantify code reuse. The aim is to analyze third-party code adoption and utilization
within open-source projects empirically. The objective is to provide insights that assist
developers and organizations in balancing third-party library code use with in-house de-
velopment, considering the maintenance and security implications of relying on software
supply chains.

This thesis applies code-based reachability analysis to address software supply chain
problems, focusing on enhancing the safety of third-party library updates and under-
standing code reuse of third-party libraries.

1.4 Research Methodology

The principal methodological approach of this thesis is Design Science Research (DSR), a
discipline within information sciences that focuses on creating and refining artifacts aimed
at enhancing their performance and efficacy [18, 19]. In RQ1 and RQ2, we address two
technical problems by developing artifacts for 1) detecting software supply chain issues
(e.g., security vulnerabilities) in third-party libraries and 2) safely updating third-party
libraries in projects. We establish three efficacy requirements to evaluate our solution:

1. Scalability: The analysis must handle the vast scope of package distributions, rang-
ing from tens of thousands to over a million, with timely execution.

2. Coverage: The approach should include all necessary packages to ensure compre-
hensive analysis and prevent incomplete assessments.

3. Accuracy: It is critical to accurately infer relationships between packages to iden-
tify potential vulnerabilities and secure updates effectively.

These requirements guide our iterative process and evaluation, particularly empha-
sized in Chapters 2 and 4, where DSR principles are actively applied to develop and refine
the respective artifacts. We also generate a large corpus of code-based representations of
package releases as a result of developing and evaluating methods for code-based reach-
ability analysis. This data facilitates the study of code reuse patterns and trends in third-
party libraries within software projects. Therefore, in Chapter 3 and 5, we use Case Study
Research (CSR) as our supplementary methodological framework. We utilize empirical

Table 1.1: Overview of Research Methodology per Chapter

Artefact/Study Chapter DSR CSR
PrAzi for call-based dependency networks 2 v
Comparative network analysis study of CRATES.10 3 v
UprPDATERA for static update checking 4 v

Code Reuse patterns in Java 5 v
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Table 1.2: Overview of Replication Packages per Chapter

Package Chapter Zenodo DOI

PrAzI v1.0 tool & dataset 2 10.5281/zenodo.8152060 [22]
PrRAzI v2.0 tool & dataset 2,3 10.5281/zenodo.4478981 [23]
UPPDATERA tool, infrastructure & dataset 4 10.5281/zenodo.4479015 [24]
Code Reuse Notebooks & Dataset 5 10.5281/zenodo.7874912 [25]

methods [20, 21] to gain insights into patterns and trends of third-party library code reuse,
focusing on function call and dispatch types and on import and reuse patterns of lines of
code.

The synthesis of DSR and CSR in this thesis not only addresses the specific technical
challenges posed in each research question but also contributes to a broader understanding
of software supply chain dynamics. Table 1.1 provides a comprehensive overview of our
research methodology, organized by chapter.

All tools, datasets, and infrastructure used in the research are publicly available, except
for specific industry-based tools where confidentiality is necessary. Research implementa-
tions are accessible on GiTHUB, and we offer replication packages for each tool and study
on Zenodo. Table 1.2 shows an overview of replication packages for relevant chapters.

1.5 Research Outline

This thesis is a compilation of various independent articles. These articles have been
modified, and in some instances split, to form a unified thesis. However, we have pre-
served their fundamental structure to facilitate straightforward correspondence between
the chapters and their papers. Table 1.3 connects each research question to relevant chap-
ters. In the remainder of this section, we detail these chapters:

Chapter 2 introduces a novel approach called PrAz1, which integrates build manifests
with call graphs to create a call-based dependency network applied to the CRATES.10 repos-
itory. Through large-scale compilation, PRAzZI produces a call-based dependency network
(CDN) that encapsulates 90% of all compilable packages, making it a viable option for con-
ducting large-scale empirical studies of package distributions. A comparative evaluation

Table 1.3: Overview of Research Questions and corresponding Chapters

RQ Research Question Chapter
1 How feasible is code-based reachability analysis in prac- 2,3, 4
tice?
2 How does code-based reachability analysis complement 4
tests in third-party library updates?
3  How do software projects reuse imported third-party li- 5

braries?
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shows the CDN to be 3.3 times more precise than a package-based dependency network
(PDN) in reachability analysis. The accuracy of the call-graph generator in resolving lan-
guage features, however, can affect the overall accuracy of the network in specific use
cases. A CDN further enables new fine-grained applications, such as tracking code bloat
and monitoring deprecation, which is not possible with metadata-based networks.

Chapter 3 explores the structure and evolution of CRATEs.10 by examining the simi-
larities and differences between metadata, compile-validated metadata, and call-based net-
works in a large-scale empirical study. While the three networks have similar efficacy for
direct dependency analyses, significant disparities emerge in transitive dependency analy-
ses. Here, the advantage of call-based networks becomes clear: they offer a more detailed,
code-centric analysis that captures the actual usage context of package dependencies.

Chapter 4 examines the reliability of test suites in automated dependency update ser-
vices, such as Dependabot, using 521 well-tested Java projects as a case study. The study
finds that tests cover only 58% of direct and 20% of transitive dependency calls and detect
only 47% of direct and 35% of indirect faults on average in over 1.1 million artificial updates
with simple faults. A proposed change impact analysis tool enhances the detection rate
to 74% for direct and 64% for transitive dependency faults, nearly doubling the detection
efficacy of traditional test suites. In a study of 22 real-world dependency updates, we find
static analysis complements test suites due to a lack of test coverage. The research un-
derscores the need for better test practices around third-party library reuse, emphasizing
the risks of relying solely on project tests for compatibility checks in automated depen-
dency updates. The chapter concludes by advocating for adopting hybrid techniques that
combine static and dynamic analyses to address gaps in test coverage and enhance the
reliability of dependency updates.

Chapter 5 studies the usage of third-party libraries in 176 Java projects from the
Census-II dataset across 3,182 releases. It reveals that despite third-party libraries ac-
counting for 87% of the projects’ code, only 12-38% of this external code is reused. Most
third-party code remains untouched in projects, indicating potentially high operational
and maintainability risks. Notably, this trend of low reuse stays relatively stable over
time, despite a modest increase in third-party code usage overall. These findings empha-
size the need for more detailed evaluations of dependency usage in software development
to mitigate unnecessary risks and provide a baseline to evaluate how projects reuse code
from third-party libraries.

1.6 Origin of Chapters

All chapters of this thesis, except for Chapter 5 currently under submission, have been
published in peer-reviewed journals and conferences. Chapter 2 includes an additional
extensive manual evaluation that has not been peer-reviewed. Each chapter in this thesis
is self-contained, comprising its background, related work, and implications sections.

« Chapter 2 was published in the paper Prdzi: from package-based to call-based depen-
dency networks by Joseph Hejderup, Moritz Beller, Konstantinos Triantafyllou, and
Georgios Gousios at the Empirical Software Engineering (EMSE) journal in 2022.
This chapter also contains content from the paper Software Ecosystem Call Graph
for Dependency Management by Joseph Hejderup, Arie van Deursen, and Georgios
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Gousios at the International Conference on Software Engineering (ICSE) 2018 The
New Ideas and Emerging Results (NIER) track.

Chapter 3 was published in the paper Prdzi: from package-based to call-based depen-
dency networks by Joseph Hejderup, Moritz Beller, Konstantinos Triantafyllou, and
Georgios Gousios at the Empirical Software Engineering (EMSE) journal in 2022.

Chapter 4 was published in the paper Can we trust tests to automate dependency
updates? A case study of Java Projects by Joseph Hejderup and Georgios Gousios at
The Journal of Systems & Software (JSS) in 2022.

Chapter 5 is under submission in the paper Evaluating the Impact of Third-Party Li-
brary Reuse in Java Projects: An Empirical Study by Joseph Hejderup, Anand Sawant,
Henrik Plate and Georgios Gousios at The Journal of Systems & Software (JSS) in
2023.
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Prazi: From Package-based to
Precise Call-based Dependency
Network Analyses

This chapter presents PrRAzI, an approach that integrates manifest data with package call
graphs, creating a nuanced, function-level dependency network. Unlike previous studies,
PrAzr analyzes actual usage of dependencies in source code, offering a more accurate represen-
tation. We implemented PRAzT on CRATES.IO, a repository requiring large-scale compilation,
yielding a call-based dependency network that encapsulates 90% of all compilable packages
(70% of indexed packages). Our manual examination of discrepancies between metadata and
call-based dependency networks revealed potential improvements in 133 cases out of 381 pack-
age relationships. Furthermore, our reachability analysis focusing on security and deprecated
functions demonstrated that a call-based representation is 3.3 times more precise than a PDN-
based representation. These findings underscore the feasibility of implementing a CDN for a
package repository and the benefits of function-based representation while highlighting the
need to carefully consider how a call-graph generator treats language features.

Modern programming languages like Java, JavaScript, and Rust promote software reuse
by maintaining extensive, rapidly evolving repositories of highly interdependent packages
or reusable libraries. Typically, researchers parse build manifest data to infer a package
dependency network, which helps answer pivotal questions like “How many packages de-
pend on packages with known security issues?” or “What are the most used packages?”.
Nevertheless, these studies often overlook a critical aspect: the necessity of examining the
actual usage of these dependencies in the source code beyond manifest-inferred relation-
ships.

In this chapter, we introduce PRAZI, a method that combines build manifest data with
call graphs of packages, enabling us to infer a more fine-grained dependency network at
the function level. We chose to implement PrAz1 for CRATEs.10 for two main reasons. Un-
like repositories like MAVEN CENTRAL, which host analyzable binaries, CRATES.10 requires
large-scale compilation of all its releases to produce the binaries necessary for call graph
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generation. Furthermore, the approximations provided by program analysis techniques
can erroneously add or exclude edges between packages.

Our primary goal is to evaluate the feasibility of inferring call-based dependency net-
works and the time to construct one, thereby assessing their practicality as a possible
alternative or supplement to metadata-based networks. The inability to compile and build
a call graph for the majority of CRATEs.10 releases could lead to an incomplete represen-
tation, rendering it impractical for large-scale empirical studies or analyses. Creating a
ground truth for a real-world package repository is unfeasible; hence, we devise an evalu-
ation strategy that establishes a partial ground truth by manually examining discrepancies
between metadata-based and call-based dependency networks. These discrepancies shed
light on the accuracy of either network in correctly inferring relationships between pack-
ages.

Our work indicates that our Call-based Dependency Network (CDN) encompasses 90%
of all compilable packages, nearly encapsulating the entire CRATES.10 repository. We man-
ually established a ground truth for 381 package relationships by constructing a corre-
sponding metadata-based network for comparison. In 133 of these cases, we found that a
CDN could provide improvements. We also determined that conventional call graph gen-
erators may not fully support language-specific features, such as uninstantiated generics
or conditionally-compiled functions, necessary for sound inferences or specialized use
cases of CDNs. Finally, we conducted a comparative evaluation of reachability analyses
focused on security scanning for known vulnerabilities. This analysis revealed that, when
it comes to security vulnerabilities, the precision of reachability is 3.3 times higher when
using a CDN-based representation compared to a PDN-based representation.

Our findings suggest that implementing a CDN for a package repository is feasible,
with our CDN nearly fully representing CRATES.I0. However, it is crucial to consider
how accurately a call-graph generator handles language features, as this could impact the
approximation of package relationships. A function-based representation brings several
benefits, notably improving the precision of reachability analysis for existing use cases like
security and offering new insights into language-based mechanisms such as deprecated
methods.

2.1 Background
2.1.1 Related Work

Analyzing package repositories from a network perspective has become an important re-
search area in light of numerous incidents such as the removal of the left-pad package in
~NPM and recent moves to emulate such problems on package dependency networks [1, 26—
28]. The aftermath of the left-pad incident [3] in 2016 raised questions on how the re-
moval of a single 11 LOC package downloaded over 575,000 times could break the build
for large groups of seemingly unrelated packages in NPm. To understand how certain pack-
ages exhibit such a large degree of influence in package repositories, Kikas et. al., [1]’s net-
work analysis of three package repositories—NPM, CRATES.10, and RubyGems—uncovered
that package repositories have scale-free network properties [29]. As a result of a large
number of end-user applications depending on a popular set of packages (such as the ba-
bel compiler), these popular yet distinct packages become hubs in package dependency
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networks. Packages that act as hubs are not isolated packages; they also depend on small
and common utility packages such as left-pad that appear as transitive dependencies for
end-users. By reversing the direction of package dependency networks, Kikas et. al., [1]
identify that utility packages are highly central in package dependency networks with the
power to affect more than 30% of all packages in the studied repositories.

In a comprehensive study of the evolution of package repositories, Decan et. al., [27]
observe that three out of seven studied repositories have superlinear growth of transi-
tive relationships, forming and strengthening new network hubs over time. Half of the
packages in CRATEs.1I0, NPM, and, NuGet had in 2017 at least 41, 21, and 27 transitive de-
pendencies, nearly two times more than their respective number in 2015. Although Decan
et. al, [27] finds that the number of dependencies a developer declares in an application
remains stable over time, the increasing number of transitive relationships in package
repositories is still an active phenomenon after the left-pad incident. Apart from under-
standing the structure and evolution of package repositories, researchers have also studied
known security vulnerabilities [7, 30], maintainability [28, 31, 32], software reuse [5, 33],
and more recently breaking changes [34, 35] from a network perspective. Zimmermann et.
al., [7] report that 40% of npMm include a package with a known vulnerability, suggesting
that NpMm forms a large attack surface for hackers to exploit. Despite developer awareness
on using trivial and simple packages after the left-pad incident, Abdalkareem et. al., [33]
still find a prevalent number of applications depending on trivial packages: 10% of NPM
and 6% of PyPI applications on GITHUB depends on at least one package with less than 35
LOC.

Network analysis of packages commonly makes use of metadata from package mani-
fests to calculate the impact and severity of measured variables. Ponta et. al, [36]’s work
on building a security dependency checker using call graphs highlights the limitations of
using metadata and the importance of studying package dependencies with a contextual
lens. Typically, a subset of an API is vulnerable—not the entire package—and how clients
interact with APT’s is also highly contextual. Zapata et. al., [37] observed through manual
analysis that 75% of 60 warned JavaScript projects did not invoke the vulnerability. As
an alternative to vulnerability detection through call graphs, Chinthanet et. al., [38] ex-
plores the idea of building hierarchical structures of applications and their dependencies
for Node.js. To pitch for code-centric instead of metadata-based representations of pack-
age repositories, Hejderup et. al, [39] propose dependency networks based on function
calls which we concretize in this work.

By embedding function call relationships into package dependency networks, we aim
to also bridge the gap between API and package repository research. Notably, PrAz1 could
resolve the limitation of studying immediate API calls to include chains of API calls (i.e.,
transitive calls) such as in [40]’s work on determining the ripple effects on deprecated APIs
in the Smalltalk ecosystem. Similarly, combining qualitative studies such as looking into
deprecation [41, 42], breakages [11, 16, 43], and migration patterns [44, 45] with network
analyses could provide an additional empirical dimension in such studies. In support of
this, Zhang et. al., [46]’s need-finding study calls for tooling that supports API designers
with data-driven recommendations, for example, on when to deprecate an APL
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Figure 2.1: Different granularities of dependency networks.

2.1.2 Rust Programming Language

Rust is a relatively new (first stable release 1.0 in 2015)" systems programming language
that aims to combine the speed of C with the memory safety guarantees of a garbage-
collected language such as Java. Rust is also unique because its package management
system (CARGO) was designed from the ground-up to be part of the language environ-
ment [47]. CARGO not only manages dependencies but prescribes a build process and a
standardized repository layout which helps facilitate the creation of automated large-scale
analyses such as PrRAz1. Every CARGO package contains a file called Cargo. toml, specifying
dependencies on external packages. Moreover, with CRATEs.I0, there is one central place
where all Rust packages (so-called “crates”) live. As of 13 August 2020, CRATEs.IO is the
fifth most fast-growing package repository hosting over 44,745 packages and averaging
60 new packages per day.?

2.1.3 Call-based Dependency Networks

We distinguish two kinds of dependency networks, shown in Figure 2.1: i) coarse-grained
Package-based Dependency Networks shown in Figure 2.1a, similar to what dependency
resolution tools (e.g., CARGO or MAVEN) build internally or what researchers have used in
the past, and ii) fine-grained Call-based Dependency Networks shown in Figure 2.1b, which
we advocate in this paper.

'https://blog.rust-lang.org/2015/05/15/Rust-1.0.html
*http://www.modulecounts.com/
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Figure 2.1a models an example of an end user application App, which directly depends
onLib1 and transitively depends on Lib2. In such a PDN, each node represents a versioned
package. An edge connecting two nodes denotes that one package imports the other, for
example App 1.0 depends on Lib1 3.2.

Figure 2.1b consists of three individual call graphs for App, Lib1, and Lib2. Each of
these call graphs approximate internal function calls in a single package. Every node
represents a function by its name. The edges approximate the calling relationship between
functions, e.g., from main() to foo() within App in Figure 2.1b. However, the function
identifiers bear no version, nor do they have globally unique identifiers (e.g., there are
two intern() functions in Figure 2.1b). We merge these two graph representations to
produce a CDN:

Definition 1. A Call-based Dependency Network (CDN) is a directed graph G = (V,E)
where:

1. V is a set of versioned functions. Each v € V is a tuple (id,ver), where id is a unique
function identifier and ver is a float value depicting the version of the package in which
id resides.

2. E is a set of edges that connect functions. Each {(v{,v,) € E represents a function call
from vy to vs.

Applying the above definitions, the function used() in Figure 2.1b becomes a node
with the fully qualified identifier (Lib2: :used, 0.2) € V. The dependency between App
and Lib1 is represented as ({(App::foo, 0.1),(Lib1::bar, 3.2)) €E.

CDNss offer a white-box view of the more coarse-grained PDNs. In particular, we can
see that unused() is never called. If unused() was affected by a vulnerability, we can
deduce from Figure 2.1b that we should not issue a security warning for App, since it does
not use the affected functionality. In contrast to the CDN, the PDN in Figure 2.1 by its
nature cannot provide such a fine-grained precision level.

2.2 PrRAz1: Generating CDNs from Package Repositories
In this section, we describe a generic approach, PRAzI, to systematically construct CDNs
for package repositories. PRAzI can be applied to any programming environment that
features i) a way of expressing dependency information between packages, and ii) tooling
to generate call graphs for a package.

PRrAzI constructs a CDN in a two-phase process illustrated in Figure 4.1. In the first
phase, Call Graph Generation (step [1], [2], and [3]), PRAz1 generates a static dataset of an-
notated call graphs from packages in a repository. In the second phase, Temporal Network
Generation (step [4]and [5]), PRAz1 first generates an intermediate package dependency net-
work by resolving dependencies between packages at a user-provided timestamp ¢, and
then unifies the call graphs of resolved packages into one temporal call-based network,
the CDN;.

2.2.1 Call Graph Generation
Local Mirror Package managers keep an updatable index of package repositories to
lookup available packages and their versions. PRAzI uses such indices to extract and down-
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Figure 2.2: Generic approach to generate CDNs from package repositories

load available packages in step|1|in order to create local mirrors of repositories (i.e., clones
of repositories). A minimal local mirror needs to contain the manifest and publication (or
creation) timestamp for each version of a package.

Package Call Graphs A call graph is a data representation of relationships between
functions in a program and serves as a high-level approximation of its runtime behav-
ior [48, 49]. From a static analysis perspective, a call graph is useful for investigating and
understanding interprocedural communication between code elements (i.e., how functions
exchange information). In PRAZI, we view a call graph as a partial graph of a resulting CDN.
We increase the scope of a call graph from a single package (i.e., program) to a package
and its dependencies. We denote inter-package function relationships as the actual spe-
cific code resources that packages use between each other (i.e., a dependency relationship
at the function granularity) and are first-class citizens in CDN analyses. The call from
Lib1::bar to Lib2: :used in|2|exemplifies an inter-package function relationship. PrRAzZ1
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requires nodes in call graphs to have function identifiers with fully resolved return types
and arguments.

In the presence of dynamic features, such as virtual dispatch or reflection, there are im-
plications to the precision and soundness of call graphs that indirectly also affect generated
CDN . Theoretically, it is impossible to have both a precise and sound call graph of a pro-
gram. Thus, PRAZI uses soundy call graph algorithms that follow a best-effort approach for
the resolution of most language features [50]. Precise yet unsound call graph algorithms
could miss actual inter-package function calls, making certain dependency analyses (e.g.,
security) of CDNs incomplete. Examples of soundy call graph algorithms for typed lan-
guages include subclasses of Class Hierarchy Analysis (CHA) [51, 52] and Points-to anal-
yses [53-55] such as k-CFA [56]. In the case of untyped languages such as Python or
JavaScript, a middle-ground is hybrid approaches combining both dynamic analysis and
static analysis such as Alimadadi et. al., [57]’s Tochal or Salis et. al, [58]’s PyCG.

Annotating Call Graphs To prepare call graphs for unification, we need to rewrite
function identifiers in each package call graph so that they are globally unique. Without
annotating function identifiers, inconsistencies can arise from packages that have identi-
cal namespaces and multiple versions of the same package in a dependency tree. PrAz1
solves these issues by annotating the function names, return types, and argument types
in function signatures with three components: i) repository name, ii) package name, and
iii) static or dynamic (i.e., constraint) package version.

For each function signature in a call graph of a package version, PRAzI maps each type
identifier found in the signature to the package that declares it. There are three potential
mappings of a type identifier to a package that do not reside in the standard library of the
language:

« Local, resulting in an annotated qualifier with the repository name, and its package
name and version as exemplified in io: :crates::Lib1v1.5: :bar.

« Dependency with a static version, resulting in an annotated qualifier with the
repository name, and the name and version of the dependency.

« Dependency with a dynamic version, resulting in an annotated qualifier with
the repository name and name of the dependency. However the version is missing
as exemplified in io: :crates: :Lib2<?>: :used in [3]

The first two mappings denote a resolved type annotation, and the last one is an unre-
solved type annotation. Function identifiers with unresolved type annotations have their
dynamic versions resolved to a specific version at dependency resolution time (i.e., at the
Temporal Network Generation phase). Finally, PrAz1 splits the annotated call graph into
two sections, one immutable section containing resolved function signatures, and another
section containing unresolved function signatures. The annotated call graphs are then
stored in a dataset. The final dataset should contain all downloaded packages that include
creation timestamp, manifest file, and annotated call graph with global identifiers.
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Figure 2.3: Retro-active dependency resolution

2.2.2 Temporal Network Generation
Retro-active Dependency Resolution To study the evolution of the relationships be-
tween packages in a repository, we perform retroactive dependency resolution [4| that
generates a concrete dependency network valid at a given timestamp ¢. The use of dy-
namic versions in package manifests complicates network generation of package reposi-
tories. During resolution time of package dependencies, a dynamic version instructs the
dependency resolver to fetch the most recent version within its allowed version boundary,
making the relationship between packages contemporary. Package A depending on the
dynamic version 1.« of package B that satisfies any version with a leading 1. (e.g., 1.0,1.8,
or 1.20.2) in Figure 2.3a exemplifies a dynamic version. Given that Package B releases ver-
sion 1.1 at ¢; and 1.2 at t, (#; < t) in Figure 2.3b. At t, where t; < t < 5, a dependency
resolver will select version 1.1. However, at t > t,, it will select version 1.2, highlighting
the temporal changes in package relationships.

Given a timestamp ¢, PRAzI creates a subset mirror; of our local mirror (ie., copy
of the CRATES.10 index) containing packages and versions with a creation timestamp f,
satisfying t. < t. Then, for each package version manifest file in mirror;, we resolve its
dependencies using a dependency resolver. Dependency resolvers are usually integrated
into package managers and are available as independent libraries.

Call Graph Unification The unification is a two-phase process. In the first phase, we
build a resolved dependency tree for each package version in mirror; and then perform
a level-order traversal of each tree to merge call graphs of child nodes with their parent
nodes. The output is a unified call graph of statically dispatched function calls for each
package version in mirror;. In the merge phase of a parent and a child call graph, we com-
plete the unresolved function identifiers in the parent call graph with the resolved version
available in the child node. The function io: :crates::Lib2v0.2: :used in|5]| replaces the
unresolved function io::crates: :Lib2<?>: :used in 3| with v0.2.
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In the second phase, we need to deal with dynamically dispatched functions and lo-
calize call targets across package boundaries. To illustrate this process, we introduce the
following scenario: Package A depends on package B and package C. Both B and C depend
on the library serde. Furthermore, B has a class Foo that implements the function se-
rialize() in the Serialize interface of serde. C has a function called bar() that takes
a Serialize-like object as an argument and invokes the dynamically-dispatched serial-
ize() call on the object.

Before merging the call graphs (i.e. first phase), bar() is only aware of call targets that
are within C. In this example, there are no call targets available (i.e., there is no function
implementing serialize() in C). Thus, in the second phase, we search for other compat-
ible function implementations across packages that are available after merging their call
graphs. Here, we would create a call target from bar() in C to the serialize() implemen-
tation in Foo in B. It is possible that A may never pass an object of Foo from B to function
foo() in C in practice. However, the second phase is necessary to ensure that dynamically
dispatched functions remain sound after merging all call graphs together.

After constructing a package-level call graph for each package version in mirror;, we
merge all partial call graphs into a single CDN. The process consists of aggregating all
package-level call graphs and then merging them to remove duplicate nodes and edges.
The result is a CDN corresponding to the package repository at the given timestamp t.

2.3 Implementing PrAz1 for CRATES.I0

We implement PrAz1 for CRATEs.I0, the official package repository for Rust. Unlike main-
stream package repositories such as MAVEN CENTRAL, PyPl, NpM, and NuGet, CRATES.1I0
does not host pre-built binaries but the source code of its packages. To generate call graphs
for Rust packages, we need to first perform a large-scale compilation of CraTEs.10 and
then extract call graphs from generated binaries. Attempting to reproduce the build of
a piece of software is known to be challenging [59], Tufano et. al., [60]’s compilation of
219,395 Apache snapshots yielded a success rate of 38%, and Martins et. al., [61]’s compila-
tion of 353,709 Github Java projects yielded a success rate of 56%. An overall low success
rate could potentially endanger representative studies of CRATES.10.

In the remainder of this section, we describe key implementation choices and results
from our large-scale compilation of CRATEs.I0.

2.3.1 Creating a local mirror
We clone two snapshots of the official git-based index of CRATEs.10% one from the 16th of
February 2018 at revision b76c5ac, containing 13,991 packages and 79,724 releases, and
another from the 14th of February 2020 at revision 6c550¢8, containing 35,896 packages
and 208,023 releases. By validating the dependency specifications in the index for incor-
rect names or dependency constraints, we can avoid building broken releases, thus saving
resources.

In the newer revision, we identified 1,506 releases from 201 packages with dependen-
cies that did not match existing packages and 5,667 releases from 4,427 packages with
dependencies featuring unsolvable constraints (i.e., no available versions were satisfying

Shttps://github.com/rust-lang/crates.io-index
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Table 2.1: LLVM call graphs and Rust call mechanisms.

Call Mechanism Support

Standard function definition [64]

Generic function definition [64]

External function definition (e.g., FFI) [64]

Standard method call (e.g., Foo: :m();) [65]

Standard method call with receiver (e.g., Foo.m();) [66]
Statically dispatched method call (+/- receiver) [67]
Dynamically dispatched method call (+/- receiver) [67]
Macros (e.g., print! (”hello”);) [68]

XX NN XxSN

the constraints). The older revision found that 477 releases had dependencies with unsolv-
able constraints.

The documentation hosting service for CRATEs.10, Docs. rs,* provides Rust users API
documentation for every published package release. In addition to automatically generat-
ing documentation for package releases, Docs. rs also documents the build log and compile
status publicly. We create a web scraper that extracts the build status on Docs. rs for each
release in our dataset. In total, we found that 43,893 indexed releases of the newer revi-
sion belonging to 10,154 packages have build failures, amounting to 20% of CRATES.10. In
addition to the CRATES.10 index, we use Docs. rs as externally validated metadata source
in our study.

After subtracting build failures and invalid dependency specifications, our final in-
dex of the newer revision amounts to 156,484 releases from 29,480 packages and the
old revision amounts to 72,947 releases from 12307. Lastly, we use the official API at
https://crates.io/api/v1/crates to download all packages and their creation times-
tamp (not available in the index).

2.3.2 Choosing a Call Graph Generator
There are two approaches for constructing a call graph from a Rust program, the higher-
level LLVM analysis,” and the lower-level MIR analysis [62]. Rust functions and its calls
are either of monomorphized (i.e., static dispatch) or virtualized (i.e., dynamic dispatch)
nature. From the documentation® and a comprehensive benchmark [63], we can learn
that there are two monomorphized features, macros’ and generic functions, and two
virtualized features, trait Objects,® and function pointers,” that dispatch functions in
Rust.

As part of the compilation process for Rust programs, we can use the optionally gener-
ated LLVM Intermediate Representations (IRs)* to construct call graphs. We can achieve

*https://github.com/rust-lang/docs.rs

*https://1lvm.org/docs/Passes.html
*https://doc.rust-lang.org/book/ch@3-03-how-functions-work.html
"https://doc.rust-lang.org/stable/reference/macros.html#trait-objects
*https://doc.rust-lang.org/stable/reference/types.html
*https://doc.rust-lang.org/book/ch19-05-advanced-functions-and-closures.html
®https://doc.rust-lang.org/rustc/command-1ine-arguments.html
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Table 2.2: Build statistics for revision b76c5ac

Build Round #Releases  #Packages Time (hrs)
CRATES.I0 index 72,947 12,307 —
1. Rustc stable 40,366 (55%) 9,376 (76%) 33.8
2. Rustc nightly +4,972 (+7%) +976 (+8%) +13.5
3. Cargo.toml fixes +2,644 (+4%) +244 (+2%) +5.8
4. Native dependencies  +1,862 (+3%) +235 (+2%) +16.5
) 49,844 (69%) 10,831 (88%) 69.6

this using the LLVM call graph generator'’ or cargo-call-stack [69]. Given that the
LLVM call graph generator is a convenient tool for generating call graphs in Rust and
other languages such as Swift, we assess its potential by considering all possible ways to
invoke functions in [70]. We then create examples involving a specific function call or def-
inition and generate a call graph to represent these cases. After examining the generated
call graph, we record the support of each feature in Table 2.1. The analysis reveals that
the LLVM call graph generator cannot infer non-static dispatch calls or macro invocations.
Moreover, it can only infer generic function definitions if their instantiations exist. Due
to the absence of Rust-specific type information in LLVM IRs,*? call graph generators can
only resolve monomorphic features and are unable to provide the complete type informa-
tion needed in PrRAz1. By analyzing at the Mid-level Intermediate Representation (MIR)
level rather than the LLVM level, rust-callgraphs® offers a more feature-complete call
graph by implementing a Class Hierarchy Analysis (CHA) algorithm and is our preferred
tool for building CDNs. In addition to monomorphic features, it can resolve function
calls dispatched through Trait Objects, making it a sounder choice over LLVM-based
call graph generators. Although rust-callgraphs does not support function pointers,
this is a negligible trade-off, as the documentation* states that function pointers are
primarily helpful for calling C code from Rust.

For annotating call graphs, the metadata in call graph nodes contains package informa-
tion and access identifiers. Moreover, the complementary type hierarchy output contains
complete type information for creating resolved function identifiers. We also keep the
edge metadata that includes dispatch information (i.e., static, dynamic, or macro) in the
annotated call graphs.

2.3.3 Large-Scale Compilation of CRATESs.10

Here, we present build statistics from two revisions, we use the old revision for evaluation
in Chapter 2, and the newer revision for Chapter 3.
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Table 2.3: Build statistics for revision 6¢550c8

Build #Releases #Packages Time (hrs)
CRATES.I0 index 208,023 35,896 —
Docs. rs 156,484 (-24.78%) 29,480 (-17.87%) —
rust-callgraphs 142,301(-9.06%) 23,767 (-19.38%) 10 days

Compilation of revision b76c5ac

We perform the build step in several compilation rounds to achieve maximum complete-
ness. We first use a stable version of the compiler, and then iteratively analyze compilation
logs to tackle the common failure reasons. The compilation itself ran for three days. Ta-
ble 2.3 shows the number of successful compilations along with the total time for each
compilation round. In the first round, we successfully compile 51% of our set using the
rustc stable 1.22.1 (2017-11-22) compiler. Unfortunately, a Rust package’s build
manifest does not specify the compatible compiler versions; a package may use unstable
features from a nightly compiler release, which are not backwards compatible with the
stable compiler. By swapping the stable compiler version for the nightly version rustc
1.24.0-nightly (2017-12-06), we compile an additional 4,972 package version releases.
Analysis of the remaining compilation errors reveals that a large number of builds fail
due to missing path-based dependencies. These dependencies are incorrectly pointing the
download source of a dependency to a local directory instead of CraTEs.10. To resolve
this, we use CARGO’s internal dependency source rewrite feature in and compile 2,644
additional package versions. Finally, we observe that several package releases are using
native library dependencies which are not installed on Ubuntu 16.04; with them installed,
we compile an extra 1,862 package releases.

Despite our best efforts, we could not compile 23,063 (31%) package releases. To under-
stand why they fail to compile, we analyze the compiler errors and classify them into five
categories in Table 2.4. The majority seem to relate to actual programming faults in the
packages, in particular the Rust type checker (e.g., E0277, E0599, EQ425), syntactical errors
and invalid specifications for conditional compilation. A common reason for these error
messages is the improper use of Traits. Overall, we can compile 69% of total releases and
at least one release for 88% of packages, roughly double the ratio of previous attempts [60].

Compilation of revision 6c550c8

Some Rust packages depend on external system libraries such as libavcodec or libxml2
to successfully compile. Knowing which external libraries to install for compiling such
packages is a manual and tedious process. Luckily, the Rust infrastructure team main-
tains a Docker image, rust-lang/crates-build-env, that bootstraps a Rust build envi-
ronment pre-installed with community curated systems libraries, increasing the chances

http://11lvm.org/doxygen/CallGraph_8h_source.html
https://github.com/rust-lang/rust/issues/59412
Bhttps://github.com/ktrianta/rust-callgraphs
https://rust-lang.github.io/unsafe-code-guidelines/layout/function-pointers.html
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Table 2.4: Build failure reasons for package versions that did not build after installing native dependencies.

Failure reason #Builds
Compile error w. error code 13,509 (58%)
Compile error wo. error code, of which 7,272 (31%)
... code parsing errors 1,486
... conditional compilation errors 1,058
... dependency resolution errors 719
... type checking errors 278
... other errors 3,711
Custom build script failure 2,127 (9%)
Missing system dependencies 137 (< 1%)
Miscellaneous errors 18 (< 1%)
by 23,063

for successful compilations. We use Rustwide, an API for spawning Rust build containers,
and configure it to use rustc 1.42.0-nightly compiler together with rust-callgraphs’s
compiler plugin. After compilation, we use the analyzer component in rust-callgraphs
to generate and store the call graphs in our dataset.

We set up a compilation pipeline on four build servers running 34 docker containers
to compile packages and build call graphs. It took 10 days to complete it. Table 2.3 shows
the compilation results in comparison with index entries and Docs. rs results. Overall, our
call graph corpus (CG Corpus) has a call graph for 90% of all compilable versions (70% of
all indexed versions) and at least one version for 80% of all packages built by Docs. rs. The
high success rate showcases the practical feasibility of PrAz1 for CRATES.10.

Dependency Resolution For each CARGo.TOML manifest in our downloaded dataset,
we extract dependencies intended for source code use. These include library dependencies
(i.e., [dependencies]), platform-specific dependencies (i.e., [target]), and also enabled
optional dependencies in [features]. Both Kikas et. al, [1] and Decan et. al., [27] do not
take into account both enabled optional dependencies and platform-specific dependencies,
considering only library dependencies when analyzing CRATEs.I0.

The Carco.ToML manifest supports specifications of dependencies using the semver
schema [10]. A version is a three-part version number: major version, minor version, and
patch version. An example of a version is 1.0.0. An increase in the major number denotes
incompatible changes, an increase in the minor number denotes backward-compatible
changes, and an increase in the patch number denotes small bug fixes. With the support
of range operators (i.e., dynamic version) in dependency specifications such as caret (e.g.,
A1.0.0), tilde (i.e., ~ 1.0.0), wildcard (e.g., 1.«), and ranges (e.g., > 1.0.0. <= 2.0.0), the depen-
dency resolver in CARGO will attempt to resolve the latest version satisfying the constraint.
When multiple constraints of the same dependency appear in the dependency tree, CARGO
first attempts to find the most recent version satisfying all constraints. For example, for
the two constraints, log 0.4." and log 0.4.4, the dependency resolver will resolve log 0.4.4.
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However, for example, if the resolver has to resolve log 0.4.* and log 0.5.%, there is no single
compatible version that matches both constraints. Instead, the resolver will include two
versions of the same dependency (e.g., log 0.4.4 and log 0.5.5) through name mangling
to avoid conflicts [47]. The resolution strategy of having multiple versions of the same
dependency is similar to NpM."

2.4 Evaluation
This section evaluates a CDN instance of CRATES.I0 by comparing its performance against
a traditional PDN. The benchmark focuses on structural variations, mainly where edges
between packages differ, and performs a reachability analysis for known vulnerabilities.
Additionally, we present applications that enable impact analysis of code structures, a task
previously unfeasible with PDNGs.

We evaluate a CDN instance based on the LLVM call graph generator using a CDN built
from revision b76c5ac. We apply the same evaluation methodology for CDNs generated
with rust-callgraphs in Chapter 3 using revision 6c550c8.

2.4.1 Structural Comparison

The main objective of a CDN, and PRAz1 overall, is to offer a code understanding of depen-
dency relationships between software components than what a traditional PDN provides.
A direct comparison is impractical because of the distinct abstraction levels of both net-
works. However, by “uplifting” the CDN, we can approximate a PDN called PCDN (a
subset of PDN), which serves as a more precise version of the original PDN. Our compar-
ison lies between this newly formed PCDN and the original PDN. We construct PCDN by
including a package dependency (A,B) in its edge set if there is even a single function call
from package A to package B in the CDN. Through this process, we intentionally diminish
CDN’s precision, thereby defining an absolute lower limit for CDN enhancements.

As Section 2.3.2 outlines, the call graph generation process in PrRAz1 could potentially
omit function calls across packages in the CDN. This omission could lead to missed de-
pendency relationships in the PCDN. Hence, our evaluation primarily quantifies the dis-
parities between the PDN and PCDN and qualitatively explores the underlying reasons.
In order to maintain a fair comparison, we eliminate from the PDN any packages that we
could not compile, as these would not appear in the PCDN. We extract a subset of depen-
dency relationships in the PDN but are absent in the PCDN. We carry out a manual code
review for each of these dependencies to ascertain whether its absence in the PCDN is
appropriate or a misstep. The following outlines the protocol for the manual code review:

1. Evidence of import statements: Without the presence of import statements (i.e.,
extern crate dependency;) in the source code, the library is never used in code.

2. Spot uses of imported code entities: Look for uses of imported code entites
within in the spotted module. If there are no function calls but uses of struct and
traits, this constitues a data-dependency. If there is a macro invocation resembling
a function call requires inspection of the defined macro. A macro performs code

Phttp://npm.github.io/npm-1like-im-5/npm3/dependency-resolution.html
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Table 2.5: Manual inspection and classification of 381 different dependency relationships between the PDN and
the PCDN.

Categorization #Samples
i) Dependencies absent in PCDN (and should be) 133 (35%)
... unused or no import statements 73
... invoked in non-library portion of a package (e.g., in bin) 53
... invoked in test code but not part of the library 7
ii) Dependencies absent in PCDN (but should not be) 248 (65%)
ii.1) Call graph generator 114 (46%)
... call inside a generic function 72
... dynamic function call 12
... missing generic definition 8
... C method invocations 22
ii.2) Type-only dependencies 50 (20%)
... imported Trait or Struct, no function call 50
ii.3) Preprocessor 84 (34%)
... part of functions with conditional compilation 58
... use of macro functionality 26
by 381

generation at compile time which may or may not be function calls. If there is a
normal function call, evaluate whether this uses a conditional feature. Such calls
are considered as conditionally-compiled.

3. Localize the scope of identified import statements: Identify which portion of
the source code imported code entities such as structs, traits, or functions are used.
Certain entities may exclusively be used in tests or example code which is out of
scope.

The PCDN contains 42,827 nodes and 110,762 edges. The PDN contains the same
number of nodes but has 129,535 edges. A set difference on the edges of the two networks
shows that 18,042 edges (i.e., 14%) are not present in the PCDN. Qualitative evaluation
of all 18,042 different edges is practically infeasible, as it relies on manual work. Instead,
we select a statistically representative subset of its edges using Cochran’s sample size for-
mula [71]. From a homogeneous set of edges, at a 95% confidence level with a confidence
level interval of 5%, we need a sample of n = 381 edges to be statistically significant. In
Table 2.5, we break down the results into dependencies that i) should be and are absent in
the PCDN and ii) should be present in the PCDN , but are not.

Our PCDN identified several instances (35%) with our PCDN where a conventional
PDN might have falsely alerted developers. We resolve two shortcomings—i) unused or
nonexistent dependency import statements and ii) dependency usage awareness beyond
library code—to present notable precision benefits of the CDN at its fine-grained level.
However, we observed that the PCDN initially misses a substantial number of dependen-
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cies. While missing 65% of dependency relationships may seem discouraging for PrRAZ1
initially, we categorized these errors manually and evaluated their practical trade-offs.

We attribute almost half of the missed dependency relationships (46%) to potential
shortcomings of the call graph generator, particularly dynamically dispatched calls (12%).
Only some of these limitations necessarily contribute to unsoundness, especially the ab-
sence of calls related to generics in Rust. Generics in Rust—parametric polymorphism in
type theory—offer a mechanism for creating generic code or templates. If there are no
specific instantiations of the generic type defining the function, the compiler does not
generate any concrete functions, hence, no calls. Similarly, calls to wrapper packages
of C-libraries are transformed into C-function calls, implying that the call targets the C
library directly rather than the package. The remaining cases are potential areas for fu-
ture improvements to PRAz1. About one-fifth of the missed cases involve data-type-only
dependencies that a call graph cannot capture, such as importing a struct from another
package. Call graphs partially expose this information in the argument and return types
of functions.

A further third of the missed dependencies stem from the conditional compilation of
packages: a function is only included in the compilation if the appropriate feature toggles
are on. We can address this issue by rerunning the call graph generation process for each
possible feature toggle combination.

Depending on the CDN’s end use, these limitations might be manageable trade-offs.
For instance, use cases only concerned with instantiated types (e.g., what functions a pack-
age reuses from another) might find excluding generics and C-library wrappers acceptable.
In such a scenario, the PCDN approximates package relationships adequately. Conversely,
strict security use cases, preferring to minimize false negatives, even at the expense of false
positives, would need to consider calls from generic functions (even if unused).

To validate the broad applicability of these findings, the first two authors conducted an
inter-rater reliability study, cross-validating 20 randomly selected pairs of dependencies.
After independently assessing and comparing the results, both raters concurred that 19

. . 19 C
ratings of the main rater were accurate (p, = i 0.95). The a priori likelihood of random

. . . , -p. _ 0.95-0.5

agreement is p. = 0.5. This results in a Cohen’s «k of ‘DI—O ; = os
iy 0.

nearly perfect agreement[73]. This strengthens our trust in the accuracy and generaliz-

ability of our manual inspection.

= 0.9[72], indicating

2.4.2 Reachability Analysis
We perform two examples of reachability analysis using the CDN structure, one focusing
on security scanning, and a novel one centered on the deprecation study.

Security Scanning
Dependency networks often facilitate examining the spread of security vulnerabilities [1,
6, 30]. Companies like BLackDuck [74], TiDELIFT [75], and GITHUB proactively help
projects identify their exposure to publicly disclosed vulnerabilities in their dependencies
using reachability analysis.

Our study seeks to evaluate whether a call-based representation of a repository could
yield higher precision in the security vulnerability propagation case. We also aim to assess
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the potential severity of soundness issues in real-world testing. To this end, we analyze
nine security advisories from Rust’s security advisory database, RUSTSEC [76], and their
effects on other packages using our CDN and PDN.

In Table 2.6, we present a detailed review of the advisories we considered, along with
the number of impacted package versions per network, represented as PDN and PCDN
in the table. For each advisory, the table displays the count of packages impacted in each
network (PDN and @1) the number of manually selected cases, and each network’s
precision, recall, and accuracy metrics. Three advisories from our initial set of nine were
not analyzed due to operating system specificity, build failures, and advisory relevance.
Moreover, we excluded two of the six remaining advisories: cookie, due to its lack of
callers, and smallvec, because its vulnerability appears in a generic function.

The total number of packages in the PDN and PCDN columns sum up to 8,016 and 649,
respectively. In other words, these represent the total counts of packages that the PDN
and PCDN flagged as affected by the security advisories. Using the same review protocol
defined in Section 2.4.1, we manually curated a ground truth by randomly selecting 482
cases. Please note that the number of cases manually reviewed varies for each advisory,
based on the impact scope of the vulnerability, and the balance between diversity of cases
and feasibility of manual review.

We established the accuracy of the two networks against this manually curated ground
truth. For each security advisory, we identified the direct dependents of the vulnerable
package and investigated whether a function call existed from a dependent to any function
of the vulnerable package. We then compared the PDN and the CDN (converted to a PCDN,
as in Section 2.4.1) against this ground truth, resulting in a confusion matrix that allowed
us to derive precision, recall, and accuracy values:

1. True Positive (TP): A package correctly flagged as vulnerable when a vulnerable func-
tion call exists.

2. False Positive (FP): A package incorrectly flagged as vulnerable when no invocation
of a vulnerable function occurs.

3. False Negative (FN): A package incorrectly flagged as not vulnerable when at least
one call to a vulnerable function is present.

4. True Negatives (TN): All other cases where a package is correctly identified as not
vulnerable.

Finally, we used standard binary classification metrics (precision, recall, and accuracy)
to compare the performance of each network. Table 2.6 reveals that the PCDN flags 83%
fewer packages as affected compared to the PDN, which indicates significantly reduced
false positives in the PCDN. This increased precision is consistent across all studied ad-
visories, as highlighted by the perfect precision score of 1 for the PCDN. In contrast, the
PDN had a varied precision across advisories, showing more false positives.

However, this precision gain comes with a caveat. While the recall of the PDN re-
mained perfect, the PCDN’s recall dipped for a few advisories, indicating a higher false
negative rate. Despite this, our analysis shows that a substantial percentage of affected
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packages flagged by the PDN turned out to be false positives, demonstrating the precision
advantage of our PCDN. If we took the additional step of including the entire transitive
closure in our analysis, the advantage of our PCDN would likely become even more pro-
nounced. However, we avoided undertaking this step due to the substantial manual effort.

Regarding overall accuracy, our PCDN outperforms the PDN by a factor of three, even
with its slightly lower recall. This improvement in accuracy underscores the potential
benefits of using CDNs over traditional PDNs. Our analysis reveals that even with sub-
optimal tools in real-world scenarios, CDNs can offer significant precision advantages,
making them valuable in identifying and addressing security vulnerabilities.

Deprecation Impact Analysis

As packages evolve, their public API often changes to introduce new features or improve-
ments, leading to some functions becoming obsolete. Many programming languages have
mechanisms to mark such functions as deprecated, either through API documentation (e.g.,
Python) or as a language feature (e.g., Java). Although annotating functions as deprecated
is common practice among developers, the removal of deprecated code poses a greater
challenge. Sawant et. al., report that API producers are generally hesitant to remove dep-
recated features from their APIs and often lack a formal protocol for their removal [77].
This is primarily because developers can’t fully anticipate the impact of such cleanups.

By linking dependent functions, our method PrAz1 allows us to analyze the impact
of changes at the package distribution level. Using a PrRAz1 CDN, developers can esti-
mate the impact of removing deprecated functions on their API clients, both directly and
transitively. To illustrate this, we calculate the impact of function deprecation within the
CRATES.10 ecosystem.

In Rust, functions marked for deprecation are annotated with a #[deprecated] at-
tribute. The Rust compiler will stop the compilation process if a program links to a depre-
cated function, unless a #[allow(deprecated)] attribute is specified. We identified depre-
cated functions by extracting function signatures that were prefixed with a #[deprecated]
attribute. We found 721 deprecated function signatures from 190 package versions in 43
unique packages. We considered only deprecated functions and their callers, i.e., func-
tions that directly call the deprecated functions. Of the 190 package versions, only 42
versions had callers, which reduced our search space to 43 deprecated functions. We then
manually matched these deprecated functions to our CDN and found 24 deprecated func-
tions. The rest were not included due to reasons identified in Table 2.5. Our reachability
analysis revealed that 13 of these 24 deprecated functions were called by other packages,
which affected a total of 163 package versions, both directly and indirectly. This equates

to = _ 0.38% of the PCDN.
42,827

Table 2.7 presents a summary of our results. In the first column, we list the depre-
cated functions that belong to specific package versions in an encoded format. For exam-
ple, textttplatform_{window/display} represents the two functions platform_window and
platform_display. We found that, on average, 48% of the dependents in the PCDN sub-
graph of each respective package version call the deprecated functions either directly or
indirectly. In other words, nearly half of their callers would break if the deprecated func-
tion were removed. This kind of information can provide library maintainers with crucial
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insights into whether it is safe to remove a deprecated function, especially when many
transitive consumers might be unknowingly using it due to a transitive call chain.
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Table 2.7: All called deprecated functions.

Function Package PCDN #Affected by Dep. Fn.s
OwnedKVList::{new/id/root} slog:::1.7.1 93 63
platform_{window/display} winit::0.7.6 91 50
platform_{window/display} winit::0.9.0 31 16
platform_{window/display} winit::0.8.3 44 14
platform_{window/display} winit::0.6.4 36 12
get_formats_list, get_name <cpal::0.4.6 16 8
b 13 6 311 163
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2.5 Threats To Validity

In the case of security analysis, PRAZI’s effectiveness crucially hinges on its ability to en-
sure the absence of false negatives — a core measure of soundness. The potential risk of
this threat hinges on the soundness of the call graph generator used, an aspect that lies
beyond the purview of this paper. Our initial Rust implementation guarantees soundness
for statically dispatched method calls, while other calls are deemed “soundy” [50].

Alongside security warnings, meta-warnings attached to a program can encompass ad-
visories on bugs, performance, and deprecation. Various advisory databases cater to these
warnings, such as RUSTSEC’s security advisories and those pertaining to performance and
semantic bugs [78, 79]. The quest for high precision is desirable in many instances, even if
it means missing rare cases—an acceptable trade-off for many projects. Livshits et. al., ar-
gues that this balance—sacrificing soundness for precision—is not just standard practice in
static analysis tools like Fortify [80]. However, it is essential for their practical utility [50].

Furthermore, our evaluation of the discrepancies between the PDN and PCDN is not
comprehensive. It is a snapshot, limited in scope, and does not account for the entire pack-
age repository. Also, we do not evaluate identical dependency edges in both networks,
which could manifest as false positives. To mitigate these threats, we employ statistical
sampling, serving as a representative picture of the variations between the two networks.
While not exhaustive, this approach rapidly pinpoints areas for improvement within the
implemented approach and assesses the effectiveness of the call graph generator for de-
pendency analysis.

2.6 Conclusions

In this chapter, we introduced PRrAzi, a strategy combining manifest data with package
call graphs to create an enriched dependency network at the function level. Specifically,
PrAzI was implemented for CRATES.10 due to its unique challenges, including a need for
large-scale repository compilation and the potential inaccuracies introduced by program
analysis approximations.

Our preliminary evaluation objective was to evaluate the representational accuracy of
call-based dependency networks for package repositories. Our CDN encompassed 90% of
all compilable packages, almost entirely covering the CRATES.I0 repository. Furthermore,
our manual inspection of 381 package relationships revealed potential areas of improve-
ment when using a call-based dependency network. Notably, a comparative evaluation
of reachability analyses, focusing mainly on security scanning of known vulnerabilities,
revealed that the precision of a CDN is 3.3 times greater than a PDN-based representation.
However, the call-graph generator’s accuracy in handling language features is an essen-
tial determinant of package relationship approximations. Misinterpreting these features
could lead to erroneous addition or removal of dependencies, significantly impacting the
dependency network’s accuracy. The utility of such a network is also highly dependent
on its specific application.

In summary, our research shows that implementing a CDN for a package repository
is feasible and beneficial, as demonstrated through our work with CraTEs.10. It provides
enhanced precision for use cases such as security in reachability analyses and can offer
new insights into language-based mechanisms like deprecated methods. Future research
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could enrich code-based representations of package repositories by considering references
of data types between packages, as call graphs capture these only partially.
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An Empirical Study Into the
Structure and Evolution of Rust’s
Crates.io

This chapter analyzes the structure and evolution of CRATEs.I0, the package repository for
the Rust programming language. We evaluate three types of networks - metadata, compile-
validated, and call-based - to assess their accuracy and reliability in various dependency tasks.
Additionally, we study the evolution and impact of API reuse and dependency configuration
bloat. Our investigation centers around three core questions related to CRATES.IO’ network
characteristics, its evolution, and the reliability of dependency networks. Our findings shed
light on the trade-offs of these networks when conducting large-scale analysis of package
repositories. We conclude by emphasizing the importance of static analysis in exploring tran-
sitive relations of package repositories.

Understanding package repositories’ structure, evolution, and software reuse patterns
can generate holistic yet crucial insights into a software supply chain by learning how
packages reuse each other at the manifest and source code levels. This chapter delves into
these dynamics by empirically conducting a study using three distinct types of package-
based networks: metadata, compile-validated metadata, and call-based networks. Our
primary objective is to compare the similarities and differences when utilizing these net-
works for various dependency tasks, such as counting the number of direct and transitive
dependencies and performing reachability analysis. Understanding these differences and
similarities offers valuable insights and trade-offs for researchers and practitioners aiming
to conduct extensive studies of package distributions.

We also perform repository-wide code analysis of CRATES.I0 by conducting impact
analyses of critical APIs and studying the evolution and effects of bloating in dependency
configurations. To structure our research, we have formulated three core research ques-
tions:

RQ 1 What are the network characteristics of CRATES.I0?
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RQ 2 How does CRATES.IO evolve?

RQ 3 How reliable are dependency networks?

In RQ1, we discovered that a function in CRATES.10 typically has one static, one macro
call, and a vtable with nine function targets. The CRATEs.10 network exhibits a scale-free
property, with some functions acting as connectivity hubs. In RQ2, we detected a trend of
increasing transitive package dependencies without a corresponding growth in declared
dependencies. Notably, despite a surge in direct and indirect API calls, approximately 60%
of resolved transitive dependencies remain uncalled. Further, 28% of packages contain a
function found in their dependencies, contributing to bloat between 1 and 10%. Most pack-
ages showed negligible to no reachability, while a minor fraction displayed high reacha-
bility. For RQ3, our study indicates that call-based dependency networks offer greater
precision than their metadata-based counterparts, though data-only dependencies may
compromise their accuracy.

3.1 Selecting a time window for dependency resolution

Instead of using a single fixed version at all times, version constraints allow developers to
use a time-constrained version that updates itself at new compilations. Nearly all depen-
dencies in CRATES.10 specify a dynamic version constraint—only 2.92% of all dependency
specifications in CRATES.IO use a single (immutable) version [81]. Before studying the evo-
lution and structure of CRATES.10, we first decide the number of time points and a time
window between each time point. Although popular studies such as Kikas et. al., [1] and
Decan et. al, [27] use a time window of one year to study structural changes, we, instead,
determine a time window based on the frequency of structural changes in CRATEs.IO.

After resolving the dependency tree of a set of packages in CRATES.10 at a time ¢, we
then re-resolve it using six different time points (i.e., one day, one week, one month, three
months, six months, and one year) to find a time window where a large fraction of them
have a changed dependency tree. We perform this using a set of packages having at least
one non-optional dependency at the beginning of 2017 (5,252 package releases), 2018 (9,716
package releases), and 2019 (16,098 package releases).

® 2019 @ 2018 2017
100% T

5% + 67.74%

50% =

25% -

Packages with changed dependency resoluton

o L. . . .
0% -+ T T T
0 100 200 300
Elapsed Time (days)

Figure 3.1: Retroactive resolution of dependencies over a time period of one year in 2017, 2018, and 2019
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Figure 3.1 shows the fraction of packages with a changed dependency tree (i.e., a tree
with at least one different version) over time. We observe a logarithmic trendline for each
year group; a high increase of packages with changed dependency between time points
before three months, and then it levels out. After one month, we already find that 40%
of all packages have a changed dependency tree due to new releases of 148 packages in
2017, 190 packages in 2018, and 240 packages in 2019. In all year groups, we find that
the dependence on libc triggers a new version resolution for most packages, followed by
other popular packages such as quote, serde, and syn. A manual inspection of the release
log for libc" and serde?, suggests a frequency of at least two releases per month.

Finally, we also observe that 26% of all packages in 2017 have an identical dependency
tree after one year. Among those unchanged packages, nearly all of them (2017: 83%, 2018:
93%, 2019: 90%) are outdated packages. With outdated, we mean that no recent releases
for those packages in more than one year. Although packages may be outdated, they still
could use flexible version constraints. In roughly one-third (2017: 31%, 2018: 34% 2019:
40%) of all dependency constraints, the dependencies are outdated packages (i.e., there are
no recent releases). In the remaining cases (i.e., where more recent versions exist), the
version constraints cover old releases (e.g., depending on serde 2.x when 4.x exists), and
less than 1% are fixed versions. For example, xml-attributes-derive::0.1.0° depends
on older versions of syn, quote, and proc-macro2, and trie-root::0.11.0* depends on an
old version of hash-db.

Given these observations, we select a time window of one month and thus perform
dependency resolution every month per year.

3.2 Research Questions

RQ1: What are the network characteristics of CRATES.10?

We characterize the calling relationship between packages in CRATEs.10, and then iden-
tify various influential packages featuring a high number of callers and callees within the
networks. Specifically, we describe our data corpus and the degree distribution to gain
an overall understanding of the direct relationship between functions for a large package
repository such as CRATES.IO.

RQ2: How does CRATES.IO evolve?

The frequent number of new package releases and the adoption of semver range operators
in dependency specifications make the relationship between packages highly temporal in
CrATES.I0. We capture these dynamics using both a package-level perspective and the
more fine-grained, function-level perspective. In comparison to previous studies [1, 27],
we use three different sources, namely metadata, compile-validated metadata, and control-
flow data, to understand their differences and similarities for package-based dependency
analysis.

'https://crates.io/crates/libc/versions
*https://crates.io/crates/serde/versions
*https://docs.rs/crate/xml-attributes-derive/0.1.0/source/Cargo.toml
*https://docs.rs/crate/trie-root/0.11.0/source/Cargo.toml
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As all our snapshots deviate from a normal distribution according to Shapiro-Wilk
(p < 0.01 < @), we use the non-parametric Spearman correlation (p) coefficient for correla-
tion analysis. Using Hopkins’s guidelines [82], we interpret 0 < |p| < 0.3 as no, 0.3 < |p| < 0.5
as a weak, 0.5 < |p| < 0.7 as a moderate, and 0.7 < |p| < 1 as strong correlation We answer
the following sub-RQs using a package-level and call-level perspective:

RQ2.1: How do package dependencies and dependents evolve?
RQ2.2: How does the use of external APIs in packages evolve?
RQ2.3: How prevalent is function bloat in package dependencies?
RQ2.4: How fragile is CRATES.10 to function-level changes?

For deciding on reasonable time points for evolution studies of package repositories,
we include a guideline with analysis in Section 3.1.

RQ3: How reliable are dependency networks?

A dependency network approximates how packages use each other in a repository.
Both metadata-based networks and call-based networks have trade-offs and limitations
that affect how reliable they estimate actual package relationships. To understand how
accurate these networks are in practice, we perform a manual analysis of 34 random cases
where a metadata-based and call-based dependency network infers relationships differ-
ently. The cases involve both direct and transitive package relationships.

3.3 RQ1: Descriptive Analysis

3.3.1 Summary of Datasets

Before investigating the calling relationship among packages in CRATES.10, we first de-
scribe our datasets of generated call graphs (i.e., CG Corpus) and our largest CDN dated
February 2020 in Table 3.1. After removing all function calls to the standard libraries of
Rust, the call graph corpus has over 121 million functions and 327 million function calls
from 142,301 compiled releases. When merging call graphs into a CDN, we generate a
compact representation with over 44 million functions and 216 million function calls, a
sizeable reduction of 2.5 and 1.5 times of the CG Corpus (i.e., functions and calls), respec-
tively.

Table 3.1 also breaks down function calls into their dispatch type, namely macro, static,
and dynamic calls. Notably, nearly 80% of all edges in the CG Corpus are of a dynamic
dispatch type, followed by static dispatch (18%) and macro invocations (2%). The high
number of dynamically dispatched calls in the network indicates that CRATES.10 has a large
pool of possible target implementations to virtual functions—not necessarily magnitude
more function calls than statically dispatched calls. When comparing the access modifiers
between functions, we can see that 40% of all functions inside CRATES.IO are publicly
consumable. Also, we can see that calling functions in external packages is widespread
in CrATESs.10; half of all the function calls invoke a function from an external package
(i.e., inter-package call). Unlike the other two dispatch forms, 91% of all macro dispatched
calls exclusively target macros defined in external packages. Overall, the high number of
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Table 3.1: Summary of Datasets

| CG Corpus | CDN Feb’20

Functions | 121,825,729 | 44,190,643
... public access 46,236,696 20,157,155
... private access 75,589,033 24,033,488
Call edges | 327,535,934 | 216,239,360
Intra-Package Calls 169,579,315 102,136,956
... macro invocation 693,148 356,329
... static dispatch 28,570,266 20,650,000
... dynamic dispatch | 140,315,901 83,130,627
Inter-Package Calls 157,956,619 114,102,404
... macro invocation 7,183,797 2,178,547
... static dispatch 29,650,173 13,319,367
... dynamic dispatch | 121,122, 649 98,604,490
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Figure 3.2: Degree distribution of all function calls

declared public functions and the large degree of inter-package calls indicate that code
reuse in the form of functions between packages is a prevalent practice in CRATES.IO.

Function reuse is prevalent; 40% of functions are public and 49% of call edges target a
dependency.

Function Call Distribution

Figure 3.2 presents the degree distribution for all function calls grouped by their dispatch
type, and Figure 3.3 is a narrowed-down version looking at only inter-package function
calls. The out-degree of a function is the number of function calls to other unique func-
tions (i.e., number of caller-callee relationships). The in-degree of a function is the number
of callers to a function across CRATEs.IO (i.e., number of callee-caller relationships). Given
a function a() in a package, the out-degree looks at what calls a() makes. The in-degree
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Figure 3.3: Degree distribution of inter-package function calls

Table 3.2: The top 5 functions with most statically-dispatched calls

Outdegree Indegree
Package Function # | Package Function #
epoxy load_with 1,625 | serde missing_field 264,281
sv-parser-syntaxtree next, into_iter 1,243 | log max_level 162,747
python-syntax __reduce 821 | wvcell set 125,287
rustpython-parser __reduce 720 | serde_json from_str 73,171
mallumo-gls load_with 712 | futures and_then 65,043

looks at which functions in CRATEs.10 call a(). As mentioned earlier, inter-package calls
are only function calls between packages (i.e., pruning all internal calls). The out-degree
distribution for dynamic dispatch represents the number of possible target functions in
a virtual method table,’ and, for static- and macro dispatch, the number of function calls.
The in-degree distribution presents the aggregated number of callers for a function (i.e.,
callee) and implementations of virtual functions for dynamic dispatch, respectively. Over-
all, we can observe a long tail for both the in-degree and the out-degree of each dispatch
mechanism, suggesting that the CRATES.10 CDN is a scale-free network with the presence
of a few nodes that are highly connected to other nodes in the network (i.e., hubs). Finally,
Tables 3.2 to 3.4 describe the top 5 functions with the highest in-degree and out-degree
calls per dispatch type. The top 5 list is an aggregation of functions per package. For exam-
ple, the serde package in Table 3.3 has over 300 serialization functions with an in-degree
similar to 264,281. Thus, we present the top 5 functions as the top most called function(s)
per package. In the following, we describe key results for each of the three dispatch forms.

Static dispatch The median out-degree for statically dispatched function call is 1 call
(mean: 2.25) in both cases and at the 99th percentile being 15 calls (13 calls for inter-
package calls). When comparing the out-degree between statically dispatched calls in
Figure 3.2 and Figure 3.3, we can notice that there are 1865 functions (0.012%) that call
more than 100 other internal functions in Figure 3.2. The highest number of calls made

*https://alschwalm.com/blog/static/2017/03/07/exploring-dynamic-dispatch-in-rust/
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Table 3.3: The top 5 functions with most dynamically-dispatched calls

Outdegree Indegree
Package Function # | Package Function #
hyperbuild match_trie 15,460 | serde deserialize_any 307,976
heim-common to_base, from_base 6,597 | serde_json from_str 268,887
uom to_base, from_base 6,045 | serde_urlencoded deserialize_identifier 59,737
fpa I1F7, I2F6 3,966 | yup-oauth2 token 42,737
rtdlib deserialize 2,470 | cpp_core cast_into 28,278

by a single function in both plots is to 1625 local functions and 116 external functions,
respectively. The relatively high number of internal function calls among the outliers
seems un-realistic at a first glance. Upon manual inspection of the source code of the
only two packages having functions with an out-degree greater than 1000 (see Table 3.2),
namely epoxy® and sv-parser-syntaxtree’, we identify that this is the result of generic
instantiations for creating bindings to the 1ibepoxy (an OpenGL function pointer manager)
and tokens for parsing SystemVerilog files.

The median in-degree for statically dispatched function calls are 1 (mean: 3.6) and the
99th quantile is 24. When omitting all internal calls and considering only inter-package
calls, the median is 2 (mean: 24) and the 99th quantile is 208. There are three functions
having over 100,000 external calls in Table 3.2, serde for serialization, log for logging,
and vcell for memory management. While the first two are the most downloaded and
depended upon packages in CRATES.10, vcell stands out for only having nearly 300 de-
pendent packages. After inspection of the source code of those packages for the specific
set call, we could identify extensive implementations of low-level drivers to interface var-
ious microcontrollers such as the Cortex-M and STM32 series.

Dynamic dispatch We use vtable to refer to all implementations of a virtual function
of a Trait object. In practice, each Trait object points to compatible Trait Implementations
(having a vtable with function and other member implementations). The median number
of function targets function vtable is 9 (mean: 42 (all), 32 (inter-package)) for both all
function targets and only inter-package function targets. The main deviation is at the 99th
percentile, the outdegree for all function targets is 800 for all targets, two times higher than
when only considering inter-package function targets. The highest out-degree function in
Table 3.3 is match_trie in the package hyperbuild v@.0.10, a HTML minification library,
having a vtable with 15,460 function targets. The function takes as an argument a trie:
&dyn ITrieNode<V> Trait, invoking get_child and get_value of the Trait ITrieNode. The
Trait is implemented for all forms of HTML entities, explaining this high outdegree value.
In total, there are 38,352 (< 0.94%) functions that populate a vtable with more than 1000
function targets. Similarly, we can observe 11,906 (< 0.36%) inter-package function calls
with over 1000 function targets.

The median in-degree for implementing a virtual (i.e. trait) function is 3 (mean: 53) and
the 99th percentile is 608. When only considering inter-package relationships, the median

‘https://docs.rs/crate/epoxy/0.1.0/source/
"https://docs.rs/crate/sv-parser-syntaxtree/0.6.0/source/
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Table 3.4: The top 5 functions with most macro-dispatched calls

Outdegree Indegree
Package Function # | Package Function #
item path_segment 19 | log log! 205,810
fungi-lang fgi_module 18 | bitflags __impl_bitflags! 77,848
syn path_segment 17 | lazy_static __lazy_static_internal! 64,161
device_tree_source parse_data 17 | trackable track! 47,648
npy map 17 | serde forward_to_deserialize_any_method 43,063

is 3 (mean: 64) and the 99th percentile is 875. As shown in Table 3.3, the most commonly
implemented trait function stems from serializer packages such as deserialize_any in
serde, from_str in serde_json and deserialize_identifier in toml. In addition to seri-
alization functions, we can also observe that 42,737 functions implement the trait function
token in yup-oauth? for user authentication with OAuth 2.0.

Macro dispatch When comparing the out-degree for both all and inter-package
calls, we can observe a similar trend between them: the median is 1 (mean: 1.7) and
the 99th quantile is 6, suggesting that macro-dispatched calls are largely inter-package
calls. This resonates with our observations for macro-dispatched calls in Table 3.1.
Looking at functions calling the most number of macros in Table 3.4, we can observe
that the outdegree generally is relatively low in comparison to the other two dispatch
types. The function path_segement in item makes in total 19 macro calls, the highest in
CraTEes.10. The median in-degree is 7 (mean: 146) and the 99th quantile is 1427. When
only considering inter-package calls, the median is 12 (mean: 391) and the 99th quantile is
6433. We can observe comparable numbers to the in-degree with the other two dispatch
types in Table 3.4. With over 200,000 functions in CRATES.IO calling log!, it is the most
called macro followed by __impl_bitflags! and __lazy_static_internal!. Generally,
we can observe that the top most called macros belong to popular packages in CRATES.1I0
that are known to simplify logging (log), generate bit flag structures (bitflags), and
wrapping error messages (quick-error).

The median function in CRATES.I0 makes one static call, one macro call and has a vtable
with nine function targets. The median function is also dependent upon by one static
call, one macro call, and implemented by three functions.

CRATES.IO is a scale-free network, indicating the presence of a handful of functions or
hubs that are highly connected to other functions in the repository
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Figure 3.4: The evolution of package dependencies on two metadata-based networks, CRATEs.10 and Docs.rs,
and one call-based network, PRAZI.

3.4 RQ2: Evolution

3.4.1 RQ2.1: How do package dependencies and dependents evolve?
Figures 3.4 and 3.5 present the number of direct and transitive package relationships split
by network type over time. Each sub-plot also features line plots showing the mean with
a circle for each snapshot. By using three different network representations, we can un-
derstand and contrast the differences between the three approximations of dependency
relationships.

Direct dependencies Direct dependencies refer to the dependencies that a developer
specifies in a package manifest. For each network group in Figure 3.4a, we see a marginal
growth in the median number of direct dependencies over time. The median number of
dependencies for a package grew from two to three between 2015-2020 for the CRATES.10
index network as an example. The median is also similar in the other two networks.
Although there are notable differences in the overall spread in the formative years of
CRATES.I0, the growth curve is relatively comparable between the networks. The correla-
tion between the number of direct dependencies between the three networks (normalized)
yields a significantly strong p = 0.89 between 2017 and 2020 (2015-2017: p = 0.71), indicat-
ing that the networks approximate each other.

When comparing the mean between the CDN and the CraTEs.10 index network, we
find the average package call at least one function in 78.8%® of its direct dependencies. As

fafter normalizing the networks (i.e., inner join of common packages in all three networks)
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the CrATESs.10 index network has a higher overall spread than the Docs. rs network, and
the Docs. rs network has a higher overall spread than the CDN, we can derive that the
CRATES.10 network represents an upper-bound and the CDN a lower-bound on the number
of direct dependencies. With 75% of all packages having less than six direct dependencies,
the results are overall similar to the findings of Decan et. al., [27] and Kikas et. al, [1].

Package maintainers use 2 to 3 direct dependencies and are unlikely to increase their use
over time. The three networks have comparable results.

Transitive dependencies Transitive dependencies represent the indirect dependencies
of a package after resolving its specified dependencies. In comparison to the direct depen-
dencies, in Figure 3.4b, we can observe an initial superlinear growth, followed by a period
of stabilization (since 2018) for the three networks. The median number of transitive de-
pendencies in 2015 is 5 for the CRATES.10 index network and 1 for the other two networks.
The median number of transitive dependencies grew with a delta of 5 additional packages
for the CDN, 9 for the Docs. rs network, and 12 for the CRATES.10 index network in five
years. While we can find a similar continuing growth trend to Figure 3.4a, we observe
higher degrees of dispersions between the CDN and the other two networks. The third-
quartile in nearly all CDN snapshots is the same or below the median of the other two
networks. Thus, half the packages in the CRATES.10 index network and Docs. rs network
report a higher number of transitive dependencies than 75% of packages in the CDN. When
normalizing the networks and comparing the mean between the CDN and the CRATES.10
index network in 2020, we find the average package call at-last one function in 40%° of
all resolved transitive dependencies. The discrepancy indicates substantial differences be-
tween call-based and metadata-based networks in network analyses; CDNs will overall
report a notably lower number of transitive dependencies than the metadata-based ones.

Finally, the correlation between the number of transitive dependencies between the
three networks (normalized) is generally strong, with an average p = 0.84 between 2017
and 2020 (2015-2017: p = 0.70). In other words, the more resolved transitive dependencies
a package has, the more transitive dependencies it will call (and vice versa). However,
we identify a moderate average correlation p = 0.62 between the number of direct depen-
dencies (i.e., either metadata-based or call-based) and the number of call-based transitive
dependencies in 2017-2020. In 2015-2017, we observe a general weaker correlation, with
p = 0.47. Thus, two packages with the same number of direct dependencies are likely to
have different number of transitive dependencies.

The average dependency tree of resolved packages has nearly grown thrice (5 to 17 tran-
sitive dependencies) in 5 years. Substantial differences exist between the networks; pack-
ages are not calling 60% of their resolved transitive dependencies.

Direct dependents In addition to dependencies, dependents measure the number of
consumers a package has. In the context of this study, we consider a consumer as an

°See footnote 22
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Figure 3.5: The evolution of package dependents on two metadata-based networks, CRATES.10 and Docs. rs, and
one call-based network, PrRAzI.

internal consumer (i.e., a package making use of another package within CraTEs.10). Fig-
ure 3.5a presents the number of dependents over time. Irrespective of the network, we
can see that the median number of consumers per package remains unchanged at one
over time. Similarly, we can also find the interquartile ranges of the networks to be iden-
tical from June 2017 and onwards. In that period, the top 25% packages have at least three
or more consumers. The correlation between the number of direct dependents for the
three networks (normalized) yields a strong p = 0.81 between 2017 and 2020 (2015-2017:
p = 0.75), indicating (similar to direct dependencies) that the networks closely approximate
each other.

When comparing the mean over time, we see a steady growth of the number of direct
dependents for all three networks. The growth pattern is a result of a few commonly used
packages (e.g., serde and log) having the largest share of consumers in CRATES.IO (see
also Figure 3.3). The outliers in the boxplot represents the top-most used packages for
each network. Here, we can observe notable differences in the range and number of out-
liers between the networks. The number of top dependent packages in June 2018 is 651 for
the CDN, 1245 for the Docs. rs network, and 1680 for the CRATES.10 index network. There
are 2.5x more top-dependent packages for CRATES.10 than in the CDN. When comparing
the top-most dependent packages in each network, the most consumed package has 566
dependents in CDN, 1735 in the Docs. rs network, and 2305 in the CRATES.1I0 index net-
work. Although the gap between the outliers in the networks reduces over time (i.e., from
2.5x to 1.8x in 2020), there are notable differences between the networks when analyzing
the top-most dependent packages in CRATEs.I0.

Overall, the results are similar to the findings of both Decan et. al, [27] and Kikas et.
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al., [1], suggesting that an average CRATES.IO package has a relatively constant and low de-
gree of consumers in general. While the networks seem comparable and interchangeable
at large, there is a notable discrepancy between the outliers (i.e., topmost used packages
in CRATES.I0) in metadata-based networks and call-based networks in earlier snapshots,
potentially yielding differences in network analyses of top dependent packages.

The average number of consumers of a package remains at one over time. Similar to
direct dependencies, the networks approximate each other (except for top-dependent
packages).

Total dependents Figure 3.5b shows the total number of dependents per package. The
total number of dependents include both direct and transitive dependents. We omit both
June and December 2015 as these snapshots only have 19 and 47 transitive dependents
in the CDN, respectively. Except for June 2016, the median number of total dependents
remains constant at two for the three networks. Thus, in addition to the one median
direct consumer in Figure 3.5a, packages also have one median transitive consumer. When
looking at the top 25% consumed packages, the number of total dependents ranges from
8 or more consumers for the CRATES.1I0 index network and 7 or more consumers for the
remaining networks. There is also a slight increase in the overall range at two occurrences
for the CDN (Feb’17, Dec’19) and one occurrence for the Docs.rs network (Dec’17) and
the CraTEs.10 index network (Dec’19). When comparing the mean and outliers between
the networks, we find a similar growth pattern and gap to Figure 3.5a.

Similar to transitive dependencies, we also find a general strong correlation between
the number of transitive dependents between the three networks (normalized) (p = 0.77),
and also a moderate correlation between the number of direct dependents and transitive
dependents (p = 0.54).

Overall, we see that the total number of dependents remains stable over time with
a few cases of gradual increase. Moreover, we see that the distributions of dependents
are generally much lower in comparison to the transitive dependency relationships in
Figure 3.4b. Thus, the results indicate that an average package in CRATESs.10 has a handful
stable number of consumers.

The average package also has one transitive consumer that remains unchanged over time.
Similar to direct top-most dependent packages; indirect consumers are using them to a
much higher degree than previously.

3.4.2 RQ2.2: How does the use of external APIs in packages evolve?
Figure 3.6 describes the evolution of the number of direct and transitive inter-package (i.e.,
API) calls per package for dependencies on the left-hand side and dependents on the right-
hand side. When looking at the number of calls to dependencies over time, we make two
major observations. First, the number of direct and transitive calls to dependencies has an
initial superlinear growth, followed by a period where the growth slows down from De-
cember 2018 and onwards. From December 2016 to December 2019, the number of direct
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Figure 3.6: The evolution of the number of functions calls to dependencies and dependents

calls grew from 21 (transitive: 24 ) to 70 (transitive: 116), a three-fold increase in three
years. On average, we also see a growth of 6.6 new function calls to direct dependencies
and 12.2 new indirect calls to transitive dependencies every six months. Second, we can
see that the median number of transitive calls overtakes the median number of direct calls
in December 2018. Our findings unveil that the amount of calls to indirect APIs are com-
parable in numbers to calls of direct APIs. Recent snapshots further indicate that packages
invoke more indirect APIs than direct APIs. The transitive median API calls in December
2019 is 1.6x larger than the median direct API calls.

The average API usage of transitive dependencies is both greater and comparative to
direct dependencies in recent years.

Similar to the total dependents in Figure 3.4d, we also omit the two snapshots in 2015
due to an insignificant number of transitive dependents. Generally, we can observe a
continuous growth of the number of direct and transitive consumers of package APIs
over time. The median number of consumer grew from 25 callers in 2015 to 38 callers in
2020, an average growth of 1.6 new functions per year. The median of indirect consumers
is larger than that of direct consumers, growing from 55 callers in 2015 to 124 callers in
2020, an average of 8.75 new functions every six months. When comparing the growth
pattern between direct and transitive dependents, the gap between the median of direct
dependents and transitive dependents expands over time. Moreover, we also find that the
interquartile ranges and overall range is greater for transitive dependents than for direct
dependents in all snapshots. A package with transitive dependents is likely to have more




50 3 An Empirical Study Into the Structure and Evolution of Rust’s Crates.io

indirect callers than direct callers of their APIs. Notably, the median number of transitive
dependent callers (median: 114) is three times larger than the median of direct dependent
callers (median: 38) in 2020. When also taking into account the findings of transitive
dependency callers, our results strongly indicate that indirect users of library APIs is both
highly prevalent in CRATEs.1I0, and comparable to direct users of library APIs. Despite the
largely unchanged number of direct and total dependents (See Figure 3.5) over time, we
see indications that developers are increasingly using more APIs over time.

Packages with transitive consumers have three times more API callers stemming from
indirect consumers than direct consumers.

Below, we summarize the two perspectives of package relationships using both the
metadata-based results with function-based results:

Dependencies: Packages depend on an increasing number of transitive dependencies
over time. Package maintainers, however, are not declaring more dependencies. Al-
though there is an increase of new direct and indirect API calls to dependencies over
time, roughly 60% of all resolved transitive dependencies are not called.

Dependents: The number of total dependents, one direct and one transitive consumer,
remains constant over time. However, consumers have a growing number of callers
over time. For packages with transitive consumers, there is a higher number of calls
stemming from indirect callers than direct callers.

3.4.3 RQ2.3: How prevalent is function bloat in package dependen-
cies?

Packages depending on a growing number of external packages are also likely to introduce
dependency conflicts. Conflicts arise when a dependency resolver is unable to eliminate
the co-existence of a package in a dependency tree due to version incompatibility. For
example, a resolver may arrive that there is no overlapping version when two packages in
a dependency tree depend on package A where the former specifies a version constraint 1.«
and the latter 2.». Rust’s CARGO package manager avoids such conflicts by allowing mul-
tiple versions of the same package to co-exist in a dependency tree using name mangling
techniques [47]. A potential drawback of this strategy is the risk of bloating binaries due
to multiple copies of identical yet obfuscated functions.

As a proxy for function bloat in binaries, we calculate the percentage of co-existing
functions for all public functions in CRATES.10. We denote a co-existing function as mul-
tiple copies of identical function identifiers loaded from different versions of the same
package. It is important to note that the measure is an estimation and does not guarantee
the semantic equivalence of functions. Before measuring the percentage of co-existing
functions, we first inspect the presence of co-existing functions in all CRATEs.10 pack-
ages. On average, we find packages having at least one co-existing function to be 5.4% of
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Figure 3.7: Percentage of co-existing functions (i.e., bloat) in CRATEs.1I0 packages

CRATES.10 in Dec 2015-Dec 2017 and 28% of CRATES.IO in Jun 2018-Feb 2020. There are no
packages with co-existing functions in June 2015. Largely non-existent in the formative
years of CRATEs.I0, we find that function co-existing among dependencies is relatively
prevalent in recent years.

Among packages having co-existing functions, Figure 3.7 breaks down the percentage
of co-existing functions in dependencies of packages over time. We can observe that the
median fluctuates between 0.3% and 1.6% over time, indicating a constant yet insignificant
amount of function co-existence in packages. 75% of all packages range between 1 to
10% co-existing functions in their dependencies, suggesting that a majority of packages
have a small amount of possible bloat in their binaries. Thus, bloating of binaries from
co-existing dependency functions are highly unlikely for packages with at least one co-
existing function in CRATES.IO.

Finally, we find a small minority (i.e., outliers) of packages with a high degree of pos-
sible function bloat between December 2018 and February 2020. The package reporting
the highest bloat of this time frame is downward with 67% bloat. However, it is an invalid
outlier as it has a circular dependence on itself.? Thereby, the two packages with highest
bloat is const-c-str-impl and mpris with 43% and 46% bloat, respectively. Upon man-
ual inspection of their respective dependency tree, we identify that the packages have a
dependence on multiple versions of proc_macro, quote, syn, and unicode_xid, common
libraries for creating procedural macros. For example, mpris indirectly uses four different
versions of syn and quote.'’. We also make similar observations in three other outliers:
js-object (33%), js-intern-proc-macro (41%), and mockers_derive (43%). Further in-
vestigation could perhaps reveal whether the combination of certain procedural macros

https://crates.io/crates/downwards
https://docs.rs/crate/mpris/2.0.0-rc2/source/Cargo.lock
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Figure 3.8: Distribution of Package Reachability

Table 3.5: Most central APIs in the largest component in Dec 2015, Dec 2017, and Feb 2020

Dec 2015 (size: 534) Dec 2017 (size: 6,004) Feb 2020 (size: 24,857)

Package Function Reach | Package Function Reach | Package Function Reach
pkg-config::0.3.6  find_library 10% | log::0.3.8 __log 16% | log:0.4.10 max_level 30%
gt 3.20 Build: :new 6% | libc::0.2.34 memchr 12% | serde::1.0.104 next_element 24%
libe::0.2.1 memchr 6% | lazy_static::0.2.11 get 11% | bitflags::1.2.1 __fn_bitflags 23%
log::0.3.4 __static_max_level 6% | bitflags::1.0.1 __fn_bitflags 8% | lazy_static::1.4.0 get 21%
bitflags::0.3.3 bitflags 3% | unicode-width::0.1.4 width 8% | libc::0.2.66 sysconf 18%
3.20 Build::compile 3% | serde:1.0.24 deserialize 6.3% | libci:0.2.66 isatty 18%
log::0.3.4 log: :macros log 6% | lazy_static::0.2.11 lazy_static 5.95% | memchr::2.3.2 memchr 18%
::0.3.20 compile_library 4% | byteorder:1.2.1 write_u32 5.1% | itoa::0.4.5 Buffer::new 17.5%
time::0.1.34 precise_time_ns 2.5% | libc:0.2.34 localtime_r 5% | ryu:1.0.2 Buffer::format_finite 17%
libe::0.2.1 sysconf 2.5% | time::0.1.38 num_seconds 4.1% | serde_json::1.0.48 from_str 10%

libraries are highly likely to always result in bloated dependency tree configurations.

28% of all packages in CRATES.IO have a co-existing function in their dependencies.
Among those packages, between 1-10% of imported functions from dependencies are
bloated.

3.4.4 RQ2.4: How fragile is CRATES.10 to function-level changes?
Our goal is to identify packages that indirectly reach most of CRATEs.10 and understand
the differences and similarities in using different networks for impact analyses of package
repositories. We use the local reaching centrality [83] to measure the reach of individual
packages in the CDN, compile-validated metadata (i.e., Docs.rs), and regular metadata
(CratEs.10) networks. With reach, we measure the fraction of CRATEs.10 packages that
depend on a particular package (i.e., its transitive dependents).

Figure 3.8 presents the evolution of the reach of each package per network. When
comparing the third-quartile between the snapshots, we can observe a gradual decrease
in reachability over time. The decrease is a result of new packages being added to the
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network and at the same time not being widely used by other packages. The top 25% of
the distribution of the CRATES.10 index network has a ten-fold decrease of 0.07% in June
2015 to 0.008% in June 2019. Both the CDN and Docs. rs distribution also follow a similar
pattern. In comparison to recent years, the higher reach of packages in the formative years
reflects the small network size. In the remaining 75% of packages, they have no or limited
reach of CRATEs.IO irrespective of network choice, indicating that a majority of packages
do not exhibit any influence in CraTEs.10. However, we can observe that the range and
number of outliers expand over time, indicating that there is an increasing number of
packages that exhibit a degree of influence in CRATEs.10. The number of outliers with
greater than 10% reachability grew from 19 (Docs. rs/CDN: 3) to 92 (Docs. rs: 80, CDN: 66)
packages as an example.

For each snapshot, we can see that the top-most outlier and the number of outliers
is lower than that of the metadata-based network in each network. The most reachable
package in June 2019 reaches 65% in the CRATES.I0 index network, 61% in the Docs.rs
network, and 47% in the CDN network.

Upon inspection of the top 10 highest reaching outliers in each network, we see that a
similar set of packages such as libc, log, lazy_static, and bitflags remains prominent
over time across the networks. These packages are also among the most directly called
packages in Section 3.3.1. libc, one of the most downloaded packages in CRATEs.I0, is the
package exhibiting the highest all-time influence in CraTEs.10. There are also packages in
decline: rustc-serialize, a serializer package, decreased in reach from its peak of 17% in
2016 to 2% in 2020. A potential explanation for its decline could be the adoption of serde,
arivaling serializer package, that grew its reach from 6% in 2016 to 42% in 2020.

We derive the ten most influential APIs by measuring the local reach centrality on
functions of the CDN for 2015, 2017, and 2020 in Table 3.5.* Although libc exhibit the
highest reach at the package-level, functions in log or serde exhibit higher influence than
individual functions in libc. Moreover, we can see that libc, log, and bitflags have
remained important since the inception of CRATEs.10. However, we can observe that the
most called function changes over time. For example, log reports three distinctly different
API functions. A possible explanation could be that new features or best practices over
time change the use of APIs. Finally, we can also see a new fast-growing entrant in 2020:
serde is second to log.

A large majority of packages in CRATES.I0 have no or limited reachability; a handful of
packages are reachable from 47% of CrATES.10, and single functions are reachable from
30% of CRATEs.IO.

3.5 RQ3: Reliability

We identify two occurrences with significant differences between the studied networks,
namely transitive dependencies and outliers in the top-most dependent packages in RQ2.1.
These differences have practical implications on dependency analysis use cases. For ex-
ample, security-based dependency analysis such as cargo-audit would generally favor
soundness over precision. Failing to account for an actual dependency relationship could

’due to presentation reasons, we showcase for only three years
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lead to vulnerabilities being undetected. On the other hand, automated dependency updat-
ing such as GITHUB’s Dependabot would favor precision over soundness. False-positive
updates steal valuable time from developers [84, 85]. Thus, our goal in RQ3 is to obtain
an understanding of how accurate and reliable metadata-based and call-based networks
are in estimating actual relationships between packages.

Selection As packages can have many transitive dependencies and have complex use
cases, manually mapping out how packages use each other in a dependency tree is a te-
dious and error-prone task. Attempting to scale the analysis to the entire CRATES.IO is
also impractical. Thus, we sample dependency relationships in packages where both the
metadata-based networks and the call-based networks report differently (e.g., between a
package and a dependency, the metadata-network reports an edge between them, and the
call-based network does not). We can then focus our manual investigation on whether
call-based networks are missing function calls due to limitations with static analysis or
whether metadata-based networks over-approximate unused dependencies. Moreover, an-
alyzing a narrow set of direct and transitive dependencies further reduces the overhead of
manually tracking uses of code elements across packages and their dependencies.

In the span of five workdays, we randomly sampled and reviewed 34 cases, 7 cases
involving direct relationships, and 27 cases involving transitive relationships.

Review Protocol We initiate the review by first finding import statements of the direct
library for the package under analysis and then track successive uses of imported items
in variable assignments and definitions such as functions (e.g., return type) and trait im-
plementations. After mapping out all use scenarios that trace back to the original set of
import statements, we later can conclude whether a package reuses code from a depen-
dency. The procedures for direct and transitive dependencies are slightly different. For
direct dependencies, we investigate the entire package for any sign of reuse. For transi-
tive dependencies, we inspect the context of how a package reuses its direct dependency,
and whether the specific reuse of the direct dependency leads to reuse of the transitive
dependency. Given the following example: Package Foo depends on Bar, and Bar depends
on Baz. Foo also reuses Bar, and Bar also reuses Baz. A function bar() in Bar calls baz()
in Baz and foo() in Bar does not rely on external code. If Foo only calls foo(), then Foo
only reuses Bar and not Baz despite Bar reusing Baz. If Foo would call bar(), then there
is an indirect reuse of the transitive dependency Baz. A step-by-step review protocol is
available in the replication package.

Manual Analysis Table 3.6 tabulates the reasons for misclassification split by network
and number of use cases. Overall, the metadata-based network over-approximates the
dependency usage in 80% of the analyzed cases. Among direct dependencies where the
metadata-based networks over-approximate, we identify seven instances where a pack-
age did not import any item from the dependency relationship under analysis. Moreover,
metadata-based networks cannot distinguish dependency usage in non-runtime or con-
ditionally compiled sections of the source code. We found two cases; one case where a
developer uses a runtime dependency solely in test code and one conditional compilation
case where a dependency code runs only on Windows environments.
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Table 3.6: Manual inspection and classification of 34 dependency relationships between PrAz1 and the CRATES.10
index network.

Categorization #Samples
i) Over-approximation in metadata-based networks 27
.. no import statements 3
... import statement and no usage 4
..resides in a #[cfg(...)] block 1
... derive macro libraries 2
.. test dependency 1
.. non-reachable transitive dependency 16
ii) Under-approximation in PRAZI 7
.. importing a constant 1
.. importing data type and usage 1
.. importing data type in definitions 4
.. handling C-function call 1
) 34

While Carco has labels for build, test, optional, and platform-specific dependencies
in the manifest file, derive macro dependencies are not distinguishable from runtime de-
pendencies. A derive macro library performs code-generation at compile time. However,
such libraries do not provide runtime functionality and are closer to the role of being a
build dependency. We identify two such libraries, cfg-if and thiserror. Including such
dependencies influences the count of runtime dependencies; for example, depending on
the widely popular serde_derive® library would incorrectly add six dependencies to the
total count of runtime dependencies. Without no specific metadata label or heuristic, a
call-based dependency network avoids including such libraries.

The most prominent case with over-approximation by metadata-based networks are
non-reachable transitive dependencies. The context of how a package uses its direct de-
pendencies plays a central role in whether a package indirectly uses its transitive depen-
dencies. As an example, the package selfish uses nom v3.2.1 that then depends on regex
0.2.11. nom is a parser library and exports a set of regex parsers that uses the regex li-
brary. Although selfish enables the regex feature in nom, it does not import any of the
regex parsers in nom, effectively making the regex library unused.

In the four cases where a developer imports type definitions from dependencies for
use in function declarations. One such example is the case of importing c_int in libc for
function declarations in whereami v1.1.1. Although a call graph does not track data refer-
ences, we could still mitigate this by tracking the type declarations in argument and return
types of functions in the call graph. PrAz1 embeds full type qualifiers including package
information in functions belonging to call-based dependency networks (See Section 2.2.1).

Finally, we identify one instance where the call graph generator could not resolve a
call from subprocess v@.1.0 to the libc function pipe(). Although there is a pipe call

Bhttps://docs.rs/crate/serde_derive/1.0.106/source/Cargo.lock
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without clear identifiers in the call graph, it is not via the libc library. Thus, there are
possible limitations with handling cross-language calls.

A call-based dependency network is more precise than a metadata-based network. Data-
only dependencies could affect its soundness.

3.6 Discussion

We center our discussion on two key aspects; differences and similarities between using
three different networks for network analyses and studying function relationships on a
network level.

3.6.1 Strengths and Weaknesses between Metadata and Call-based
Networks
As package repositories do not test whether a package can build or not, developers can
by mistake or unknowingly publish broken versions to CRATEs.10. By verifying the build
of package releases, the Docs.rs network excludes package releases that do not have a
successful build record. When comparing the results of the network analyses in Figure 3.4
with CraTEs.10 index network, overall, we find them to have comparable results except
in the formative years of CRATES.1I0. The diverging results in the initial years show that a
large number of releases are not reproducible and consumable, stressing the importance of
performing additional validation besides the correctness of packages manifests. Thereby,
we urge researchers to minimally validate package manifests with external information
such as publically available build and test data for network studies of package repositories.

When comparing the network analysis results in Figure 3.4, we find notable similarities
and differences between metadata-based and call-based networks for CRATEs.10. Except
for the formative years of CRATEs.I0, the distributions of recent snapshots for direct depen-
dencies, direct dependents, and total dependents are mostly similar between the networks.
Thus, a network inferred from CRATES.10 metadata closely approximates the presence of
function reuse relationships between packages without needing to construct and verify
with call graphs. Recent snapshots of CRATES.10 further indicate that recent package re-
leases are highly likely to be reproducible and compile as well. On the other hand, there
are also significant differences between the networks, specifically for transitive dependen-
cies and outliers in dependent distributions. By taking into account that a developer does
not make use of all APIs available in a package, we identify a two-fold difference between
call-based and metadata-based networks. These differences also manifest among the most
popular dependent packages (i.e., outliers)—despite the networks reporting similar results
for the average dependent package.

Based on these similarities and differences, we conduct a manual analysis to under-
stand which network has a more accurate representation of package repositories. Our in-
vestigation indicates that call-based dependency networks are more precise than metadata-
based networks; the prominent finding is that the number of transitive dependencies a
package uses is highly contextual and moderately correlates with the number of declared
dependencies. From a statistical viewpoint, we identify a strong correlation between the
number of dependencies derived from a metadata-based network and the number of called
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dependencies. In other words, the more resolved transitive dependencies a package has,
the more transitive dependencies it will call. On the other hand, we only observe a mod-
erate correlation between declared (direct) dependencies and called transitive dependen-
cies, indicating that the number of called transitive dependencies potentially varies for the
same number of direct dependencies. Based on our studied use cases, we find examples
of packages only importing non-core functionality from libraries or specific modules of
packages that use individual libraries by themselves. Despite limitations with data-only
dependencies, we argue that calculating the number of transitive dependencies should not
be generalized to the sum of all resolved dependencies. In line with previous work on the
fine-grained analysis of known security vulnerabilities, we also argue both researchers and
practitioners interested in understanding how developers or programs use dependencies
should account for its context—not the number of compiled dependencies.

As a summary, we make the following recommendations based on the trade-offs and
costs for constructing a call-based dependency network:

+ Direct dependencies: Given the relative proximity of results between a metadata-
based and call-based network, a metadata-based network is sufficient for use cases
involving direct dependencies if precision is not crucial. The cost of building a call-
based dependency network would be overly expensive.

« Transitive dependencies: Where transitive dependencies are central in any analy-
sis, we recommend call-based dependency networks over metadata-based networks.

« Data-dependencies: Where data references are crucial to track or studying data-
centric packages in CRATEs.10, we recommend metadata-based dependency net-
works or use additional (cheap) static analysis to identify data dependencies. Al-
though metadata-based networks are imprecise, they will not miss such relation-
ships.

3.6.2 Transitive API Usage
For studying the evolution, impact, and the decision-making of deprecation [40, 77] and
refactorings [86] of library APIs, datasets such as fine-GRAPE [87] provide valuable in-
sights into how a large number of clients in the wild make use of a few popular libraries.
These datasets extract API usage by mining direct invocation of library APIs (i.e., a client
calling a public API function). By analyzing the use of APIs in transitive dependencies
of clients (i.e., indirect API use) in addition to direct dependencies, we find that there are
more calls to transitive dependencies than direct dependencies in recent years. Thus, the
transitive relationship where either an intermediate client or library relays a call between a
client and a library could potentially present new confounding variables and implications
to the evolution and decision-making of APIs. Although developers do not have control of
transitive package dependencies, they have the same execution rights and follow the same
laws of software evolution [88] as direct dependencies. Thus, API decisions in transitive
dependencies can equally impact clients as direct dependencies.

As package managers allow the same dependency (albeit different versions of them) to
co-exist in a client, our results in RQ2.4 show growing signs that more and more copies
of the same function identifier from multiple versions exist in a client. In cases where
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such a function is dependent on the environment (e.g., a specific implementation of an
OpenSSL library), there is a potential risk for introducing unexpected incompatibilities.
Such problems that arise from the use of transitive dependencies can directly influence
the decision-making of APIs. For example, a user in PR #20 of IDnow SDK,** an identity
verification framework, is persuading the maintainers to drop dependence on Sentry, an
application monitoring platform, due to the user having problems with Sentry as several
versions of that dependency exist in its application.

Given the increasing growth of indirect API calls and a slight increase of multi-
ple copies of the same function identifier appearing in clients, we call for researchers
to also account for the dynamics of dependency management—particularly transitive
dependencies—when studying the evolution and decision-making around APIs.

3.7 Threats to Validity

In this section, we discuss limitations and threats that can affect the validity of our study
and show how we mitigated them.

3.7.1 Internal validity

For CDN:ss to closely mirror actual package reuse in CRATES.I0, we only consider packages
specified under the #[dependencies] section and optionally-enabled packages as these
are consumable in the source code. As packages in #[dependencies] are also available
in the test portion of packages, developers could potentially specify packages for testing
purposes that do not attribute towards package reuse. We mitigate the risk of inferring test
specific calls by restricting the build of packages to compilation without further execution
steps such as tests.

The rust-callgraphs generator can resolve function invocations that involve static
and dynamic dispatch except for function pointer types. Although the documentation®®
states that function pointers have a specific and limited purpose, we acknowledge that
we cannot make any claims around the completeness of generated CDNs due to the gen-
eral absence of ground truth for package repositories. When limiting the scope to the
features that the call graph generator supports, the generated CDNs represent an over-
approximation of function calls in CRATEs.10. It is an over-approximation as function
targets in dynamic dispatch may never be called by the end-user in practice (i.e., it is inex-
act). Using additional analysis such as dynamic analysis to remove all unlikely function
targets is error-prone and could result in unsound inferences. Thus, we avoid considering
both static (i.e., exact) and dynamic (i.e., inexact) function calls as the same. Instead, we
view the results of dynamically dispatched calls from the perspective of virtual method
tables (i.e., its concrete representation during runtime).

Real-world constraints such as non-updated caches of the repository index, user-
defined dependency patches, and deviating semver specifications could influence the ac-
tual version resolution of package dependencies. The selection of packages and their
versions for creating snapshots has additional implications on the representativeness of
CrATEs.IO and its users. To mitigate the risk of making incoherent versions resolutions,

“https://github.com/idnow/de.idnow.ios.sdk/issues/20
https://doc.rust-lang.org/book/first-edition/trait-objects.html
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we use the exact resolver component implemented in CARGO, ensuring the same treatment
of version constraints.

Kikas et. al, [1] report the highest package reach to be up to 30% in 2015 while our
CRATES.10 metadata network report over 60%, nearly twice the number. The difference
lies in the selection of packages when creating the networks: Kikas et. al, [1] build a
dependency tree for all available versions of a package valid at timestamp ¢t and we build
a tree for the single most recent version of a package at a timestamp t. As there is no
consensus on best practices for which packages and releases to include in a network, we
take a conservative approach that avoids including dormant and unused releases. For
example, we argue that it is rare that a user today would declare a dependence on version
dating back to 2017 when newer versions from 2019 exist. Kikas et. al, [1] would include
such versions.

3.7.2 External and reliability validity

We acknowledge that the results of network analysis are not generalizable to other pack-
age repositories and only explain properties of CRATES.10. Due to differences in com-
munity values [16] and reuse practices of packages, we expect network analyses to yield
different results. However, based on Decan et. al,’s [4] comparison of seven package
repositories, we believe certain repositories, for example, NpM and NUGET may share some
similarities with CRATES.10 than with CRAN and CPAN.

The PrAz1 approach to constructing a CDN is general applicability as long as the pro-
gramming language has a resolver for package dependencies and a call graph generator.
However, the soundness of generated CDNs may vary depending on the programming lan-
guage. For example, CDNs generated for Java are more accurate and practical than CDNs
for Python due to limited call graph support. Therefore, evaluating trade-offs in terms of
precision and recall plays an important role in whether a study scenario is suitable for
CDN analysis.

3.8 Future work

Our work opens an array of opportunities for future work in data-driven analysis of pack-
age repositories, both for researchers and tool builders.

3.8.1 Enabling data-driven insights into code reuse with network
analysis

As functions are not the only form of achieving code reuse, we aim to explore how we can
model reuse of interfaces, generics, class hierarchies, and wrapper classes as networks.
In a similar spirit to enabling data-driven insights of APIs, language designers can use
data-driven models to understand patterns and adoption of certain code reuse practices.
As Rust advocates developers to prefer using generics over trait objects and limit the use
of unsafe code constructs, language designers can verify such premises with feedback
through network- and data-driven analyses of package repositories.

Following Zhang et. al.’s [15] need-finding study on data-driven API design, we are
investigating possibilities to mine program contexts and error-inducing patterns using
PRrAZI to extract API usage patterns beyond syntactic features and frequencies. Insights
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into involved API usage patterns can help library maintainers to make changes echoing
improvements that simplify code reuse and strengthening the stability of a package repos-
itory.

3.8.2 Modeling socio-technical risks of package abandonment
Package repositories are successful in attracting developers to release new packages. How-
ever, they are less successful in keeping these packages maintained on a long-term per-
spective. As a result of developers abandoning packages due to shifting priorities, un-
maintained packages are increasingly jeopardizing the security and stability of package
repositories. Notably, the event-stream incident [12] is emerging as a textbook example
of how the abandonment of a package turned itself into a bitcoin stealing apparatus af-
fecting thousands of users. While survival analysis of packages can yield insights into
the stages of abandonment [31], understanding the social-technical motives behind de-
veloper abandonment could potentially help develop a risk control model that package
repository owners can exercise. As an example, when a package repository recognizes
the slowdown of development activities of popular yet central packages, they could ex-
plore incentives such as monetary support, developer assistant in resolving long-running
bug reports, or discuss possible handover to a network of trustful developers. We are ex-
ploring both quantitative and qualitative strategies on how to model and mitigate risks
around package abandonment using PRAZI.

3.9 Conclusions

In this chapter, we have comprehensively analyzed the structure, evolution, and software
reuse patterns in package repositories, using CRATES.1I0 as our case study object. This anal-
ysis involved exploring metadata, compile-validated metadata, and call-based networks,
helping us better understand the accuracy and reliability of these networks in executing
various dependency tasks.

Despite the increased number of imported transitive dependencies, including the in-
crease of API calls to direct and indirect dependencies, we find that packages do not invoke
60% of their transitive dependencies. When comparing the three networks approximating
CraTEs.1I0, we find that networks approximate each other and are interchangeable for
analysis relating to direct dependencies. However, we identify substantial differences in
analysis involving transitive dependencies where the context of how a package uses its
dependencies influences which transitive dependencies it calls.

By utilizing a CDN, we can conduct a detailed code-centric analysis of package repos-
itories, tracking code bloat, monitoring deprecation, and studying dispatch types such as
monomorphic and polymorphic call sites. Comparing the three networks reveals that
CDNs can potentially cut down on false positives in dependency checkers like Rust’s
cargo-audit and GITHUB’s Dependabot, especially when it comes to analysis tasks involv-
ing transitive package relationships. Here, we establish that networks that do not infer
from source code significantly overstate package relationships.
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Can We Trust Tests to Automate
Dependency Updates? A Case
Study of Java Projects

Automated dependency update services, such as Dependabot, are increasingly popular, but
developers find them unreliable due to their heavy reliance on test coverage to detect conflicts.
We analyzed the test coverage of direct and indirect dependency uses in 521 well-tested Java
projects to investigate this issue. Our study reveals that tests cover 58% of direct and 20% of
transitive dependency calls. Further, we created over 1.1 million artificial updates with simple
faults across 262 projects, assessing the effectiveness of test suites in detecting dependency-
related semantic faults. The results show that tests only detect 47% of direct and 35% of indirect
faults on average. To improve this, we explored the use of change impact analysis to reduce
false negatives. Our tool unveiled 74% of faults in direct dependencies and 64% in transitive
dependencies, nearly doubling the detection rate of conventional test suites. We then applied
our tool to 22 real-world dependency updates, identifying three cases of semantic conflict and
five unused dependencies. These findings suggest integrating static and dynamic analysis in
future dependency updating systems for more reliable results.

Modern package managers facilitate reuse of open source software libraries by en-
abling applications to declare them as versioned dependencies. Crucially, when a new
version of a dependency is made available, package managers will automatically make it
available to the client application. This mechanism helps projects stay up-to-date with
upstream developments, such as performance improvements or bug fixes, with minimal
fuss. Typically, package managers implement a set of interval operators (dependency ver-
sion ranges) on top of the SemVer protocol [89] that developers use to declare update
constraints. For example, a dependency declared with the range >= 1.0.0 < 1.5.0 restricts
updates to backward-compatible changes up to 1.5.0. On the other hand, >= 1.0.0 wel-
comes automatic updates of all new version releases starting from 1.0.0. Given a new
library release with version 1.5.0, the latter constraint will allow an update but the former
will not.




62 4 Can We Trust Tests to Automate Dependency Updates? A Case Study of Java Projects

In practice, most package managers use a liberally interpreted version of the SemVer
protocol with no vetting, allowing library maintainers to release new changes based on
their self-interpretation of backward compatibility [16, 89]. As a consequence, client pro-
grams may unexpectedly discover regression-inducing changes, such as bugs or semantic
changes that break code contracts. Discovering, debugging and resolving such issues, as
exemplified in Figure 1.4, remains a challenging task for development teams [16]. In fact,
unexpected regressions are one of the main reasons that deter developers from upgrading
dependencies to new versions [6].

Developers can mitigate the risk of integration errors by either using restrictive strate-
gies, such as version locking, or permissive strategies involving dependency update tooling.
Version locking effectively makes the dependency tree of client programs immutable and
disables automated updates. This strategy offers maximum stability but is prone to incur-
ring technical debt due to outdated dependencies. Moreover, developers need to manually
discover and apply security hotfixes. On the other hand, dependency update checkers an-
alyze version compatibility before deciding to update. There are two main techniques for
deciding version compatibility, breaking change detection [34, 90, 91] and regression test-
ing [92, 93]. Detecting potential breaking changes (i.e., backward API incompatibilities)
prevents client programs from updating to versions that will result in compile failures. A
major shortcoming of this technique is that it depends on the compilation and the existence
of a static type system; many of today’s most popular languages are dynamically typed. A
more popular option among developers is the use of services providing automated depen-
dency updating, such as greenkeeper.io [94], Dependabot [95], and renovate [96], that
use project test suites to detect regression changes on every new update.

The effectiveness of such services depends highly on the quality of end-users test
suites [97]. Poor test coverage of dependency usage in client code can lead to missing
update-induced regressions. Recent studies [98, 99] suggest that high statement coverage
in test suites does not guarantee to find regressions in code changes. Failing to detect
regressions stemming from updates can have dire consequences for client programs: for
example, users dependent on NPM’s event-stream package did not notice a malicious main-
tainer planting a hidden backdoor for stealing bitcoin wallets inside the library’s source
code [12]. Moreover, a recent qualitative study [84] also revealed that developers are gen-
erally suspicious of automatically updating their dependencies. One of the prime reasons
is that developers perceive their tests as unreliable.

To mitigate the risks of undetected regression changes, this chapter proposes the use
of static change impact analysis for dependency updates, referred to as UPPDATERA. By
statically identifying changed functions and approximating call-relationships between an
application and its dependencies, change impact analysis can fill in gaps where test suites
have limited coverage or cannot reach.

In this chapter, we set out to empirically understand how reliable developer tests are
in automated dependency updating by addressing the following research questions:

« RQ1: Do tests cover uses of third-party libraries in projects?

« RQ2: How effective are project test suites and change impact analysis in detecting
semantic changes in third-party library updates?
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« RQ3: How useful is static analysis in complementing tests for compatibility checking
of new library versions?

This work examines the prevalence of tests in projects exercising dependencies and
measures the coverage of these tests. The study uses systematic mutation of dependency
usage in multiple projects to determine the adequacy of test suites and change impact anal-
ysis in detecting artificial updates with simple faults. We evaluate the performance of test
suites and UpPDATERA on multiple pull requests that update dependencies to understand
the strengths and weaknesses of static analysis as a complement to tests.

The findings of this work indicate significant gaps in test coverage of function calls
in projects that use library dependencies. While static analysis shows a higher degree of
effectiveness in covering these gaps, it is prone to false positives due to difficulties evaluat-
ing over-approximated execution paths. These results underscore the risks of automated
dependency updating and suggest that tool creators should consider incorporating hybrid
workflows to cover gaps in regression testing with static analysis and assist developers in
prioritizing testing efforts.

This chapter contributes to the ongoing discourse around automated dependency up-
dating. It puts forward empirical evidence to advocate for a more considered approach to
dependency updating that balances automated tooling with human oversight and exper-
tise.

4.1 Background
4.1.1 Package Managers

Package managers such as Java’s MAVEN, JavaScript’s NPM, or Rust’s CARGO provide tool-
ing to simplify the complexities of maintaining, distributing, and importing external third-
party software libraries in development projects. As a community service to its users, pack-
age managers also host a public Online Package Repository (OPR) where developers can
freely contribute with new packages (e.g., a database driver) or build upon existing pack-
ages (e.g., use a parser library to build a JSON parser). This helps package manager users
to reduce development efforts by benefitting from existing functionality in their language
environments. In a nutshell, a package is a distributable, versioned software library.

Because of the relative ease of building packages on top of each other, OPRs today
grow quickly and become evermore inter-dependent [1, 100]. As a consequence, pack-
age manager users experience a dynamic growth of new hidden dependency imports in
their projects and frequent dependency updates that increase the risk of build failures due
to breaking backward compatibility [2, 4, 16, 30]. The risk of breaking backward com-
patibility varies between OPRs: NPm and MAVEN CENTRAL move the burden of checking
incompatible changes on its users while R/CRAN minimize this risk by requiring a mu-
tual change-cost negotiation between library maintainers and their users [16]. Users of
OPRs, such as NPM or MAVEN, either uses additional tooling or disable dependency updates
through version-locking as a protective measure. Version-locking dependencies guarantee
a stable build environment. Additional tooling provides an extra layer control by scanning
dependencies for vulnerabilities [30], freshness [101] or update compatibility [34, 91].
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package client {
import p2.B;
class Main {
void int main {B.b(); B.z();}
}
}
package p2 {
import p1.A;

class B {
int b() {
int y = 1;

if A.v(y){y+2;3}
int x = A.a();
if x > 0 {return 0;}
return x + y;
}
// ...
= bool z() {return false;}
+ bool z() {return make_false();}

//. ..
+ bool make_false() {return false;}
}
}
package pl1 {
class A {
/...
= int a() {return 0;}
iz int a() {return 1;}
/...
= bool v(int a) {a > @ ? true : false}
1 bool v(int a) {a == @ ? true : false}
}
}

Example 4.1: Changes in dependencies that break client semantics

4.1.2 Safe Backward Compatible Updates
Update checkers such as cargo-crusador [102], JAPICC [103], and dont-break [104] typ-
ically determine backward compatibility by ensuring that the new version is consistent
with the public API contract of the old version. Removals or changes in method signatures,
access modifiers, and types (e.g., classes and interfaces) are examples of inconsistencies
that can lead to compile failures in client code [11, 105].

Checking dependency updates for API inconsistencies is a necessary precondition to
a safe update, but not a sufficient one. From Example 4.1, we consider an additional class
of changes, semantic changes, that are API-compatible (i.e., respects the public API con-
tract) but introduces incompatible behavior (i.e., regression changes) for clients after de-
pendency updates. The code example illustrates a client that depends on p2 which in turn
depends on p1. There are two changes that are not semantic preserving in p1: a() returns
1 instead of 0 (line 27-28) and v(int a) compares variable a with a different comparison
operator (line 30-31). On the other hand, the change in p2 is semantic preserving: z() still
returns false despite replacing it with a method call to make_false (line 18-21). Given a
scenario in which client automatically updates to the next release of p1, and p1 updates
to the next release of p2. The changes made in p1 will indirectly impact the behavior of
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client despite seeming hidden and distant. The change in a() of p1 results in b() to match
the if statement on line 14 and return 0 instead of doing an addition of x and y in p2 (line
15). This further propagates to the client where b() is called. Similarly, the change in
v() flips the condition to false instead of true in p2 which result in skipping y+2 at line
12. These two code changes illustrate how the client behavior or the execution flow is not
honored after updating to a newer version.

Unlike breaking API contracts, semantic changes are not inherently bad: the refactor-
ing of z() in p2 introduces a new execution path (e.g., new behavior) to make_false which
continues to return false after the change. Source code changes that preserve the same
behavior before and after an update are semantic backward compatible changes. Decid-
ing semantic backward compatibility is also a contextual problem: Given another client,
client?2 that use the same dependency p2 as client but don’t call b() and z() (line 4). The
same update we illustrate for client is semantic backward compatible for client2 as it
functions the same way before and after the update.

Following the observations in Example 4.1, we denote a semantic backward compatible
update or safe update as the following: We denote Liby, Liby € Library as two versions of
the same library and a client C with dependency tree as T¢ = (V,E) where V is a set of
resolved versioned libraries used by C, and E is the directed dependence between them.
Let PDGy¢ represent a sound program-dependence graph [106] of T connecting data and
control dependencies between program statements in both client and dependency code.
The transition [Lib; — Lib,] ¢ represents replacing Lib; with Lib, in client C. We arrive
at the following definition of a safe update:

Definition 4.1.1. Given that Lib; € T¢ and a request by a package manager to perform
[Liby — Liby]c, let D = Liby \ Liby be a source code diff mapping between Lib; and Lib,,
and function f : D — Y determine semantic compatibility for diff d; € D in client C where
Y € {true, false}, an automatic update (or safe update) can only be made if and only if
vd; € D, f(d) A f(dy)...A f(d,) = true where i varies from 1 to n and n is the cardinality of
set D.

4.2 Research Questions

The goal of this paper is to understand how reliable test suites are as a means to evaluate
the compatibility of updated library versions in projects. To that end, we study a large
number of test suites from Maven-based Java projects that depend on external libraries.

Bogart et. al, [16] report that developers create strategies to select high-quality li-
braries based on signals such as active contributors, project history, and personal trust
in project maintainers to reduce the exposure of unwanted changes. Thus, in our first
research question, we investigate whether testing of third-party libraries is prevalent and
a strategy to minimize the risk of breaking changes:

RQ1: Do test suites cover the uses of third-party libraries in projects?

Mirhosseini et. al.’s [84] qualitative study suggests that developers have trust issues
with automated updates and perceive tests as unreliable. A compelling complement to
evaluate the effect of dependency changes is the use of change impact analysis. We set
to measure how capable both test suites and change impact analysis can catch simple
semantic faults in both direct and indirect uses of third-party libraries:
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Figure 4.1: Overview of our study infrastructure

RQ2: How effective are project test suites and change impact analysis in detecting
semantic changes in third-party library updates?

While static analysis can yield higher coverage, it is also more prone to false positives
by classifying safe updates as unsafe. To understand the strengths and weaknesses of
static analysis in a practical environment, we ask:

RQ3: How useful is static analysis in complementing tests for compatibility checking
of new library versions?

We extract a set of real-world update cases from pull requests generated by the popular
service Dependabot and manually investigate the correctness of each pull request. Then,
we analyze each pull request using change impact analysis to compare the results with the
test suite and our ground truth.

4.3 Research Method

We follow the study design depicted in Figure 4.1 to evaluate the reliability of test suites
for automated dependency updating and the potential of using static analysis. First, we
select Java repositories with high-quality assurance badges and at-least one test class from
GrtHuUB [1] Then, we build each repository to infer a complete dependency tree of the
project along with its source- and test classes in [2]. Second, we feed the source classes
together with the dependencies of a project to the call extractor and statically extract all
its direct and indirect uses of third-party libraries [3] Third, we use instrumentation to
learn all invocations from a project to its dependencies via its test suite [4]. Then, we use
the information from the previous step to calculate the dependency coverage of a project.
Fourth, we generate mutations of dependencies by inserting simple faults (See Table 4.1)
in dependency functions executed by tests. Here, we use dynamic call paths (from [4]) to
identify such functions [5] We can then run both the test suite and the change impact
analysis to measure the detection score [6] Finally, we harvest Dependabot pull requests
in a real-time fashion and then manually evaluate how both test suites and change impact
analysis perform in practice [7].
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4.3.1 Identifying Usages of Third-Party Libraries

We refer to the use of third-party libraries as using functionality from externally-developed
libraries in software projects. Specifically, we focus on functionality exposed as functions
in libraries as they are among the most widespread forms to achieve code reuse. Thus, we
consider a function call from a project to a library dependency as third-party library use.
As projects depend on an ordered tree of library dependencies, there are both implicit and
explicit third-party uses. An explicit use is a direct function call between a project and one
of its declared libraries. On the other hand, implicit use is when a function in a project
transitively calls underlying libraries in a dependency tree. Given the following example
scenario: project A depends on library B, and library B depends on library C. If there is a
function call path between a function a() in A to a function c() in C via called functions
in B, project A is implicitly using functionality in library C.

To identify explicit use of third-party libraries, we statically extract all function calls to
functions that are neither part of the project under analysis or the Java standard library. By
deduction, all such method invocations represent calls to third-party libraries. For implicit
use of third-party libraries, we statically derive call graphs capturing call paths between
a project and its dependency tree, similar to Ponta et al [36]. Finally, we prune function
and call sequences belonging to the Java standard library to derive a graph representing
interactions between a project and its transitive dependencies.

To measure dependency coverage in a project in RQ1, we use instrumentation to
record all project invocations to third-party libraries during test suite execution. Us-
ing the recorded set, we calculate the proportion of statically inferred functions cov-
ered by the test recorded set of function as dependency coverage (Recorded functions c
Declared functions):

Recorded functions

C =
O%ep = Declared functions
Effectively, dependency coverage is function coverage [107], but only restricted to de-
pendency calls.

4.3.2 Heuristics for Static Impact Analysis
The central task of automated dependency updating is to facilitate the continuous integra-
tion of new compatible library versions with minimal developer intervention. Unlike static
analysis that may contain false warnings [108], automated updating suffers instead from
false negatives. A faulty update has a potentially high maintenance penalty if merged into
the project and could cascade into breaking the build of externally depending projects.
As a step towards reducing false negatives, we are investigating change impact anal-
ysis as a means to potentially reduce coverage gaps where tests are not able to reach in
dependencies. Change impact analysis estimates the reach and fraction of affected execu-
tion paths in a program given a set of code changes [109]. While there are advancements
towards inference of semantic changes in static analysis such as data flow analysis with
equivalence relations [110] and mining techniques [45], precise static interpretation of se-
mantic changes such as faulty updates is an undecidable problem [111]. Moreover, most of
these techniques only analyze method bodies, and thus not practical for inter-procedural
analysis of projects and their dependencies.
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Table 4.1: Mutation operators (based on Papadakis et al [114])

Names Description Example

ABS Absolute Value Insertion v —> abs(v) | —abs(v) | 0

AOR Arithmetic Operator Replacement xopy+—x+y|x%y|x/y
LCR Logical Connector Replacement xopyr——x||y|x&&y|xXy
ROR Relational Operator Replacement xopyr—x>y|x!=y|x>=y
UOI Unary Operator Insertion V> vty Ly

Without possibilities to precisely determine if an update is faulty or not, we approxi-
mate a faulty update (or semantic change) as a change to the execution flow of a project.
We use control flow graphs (CFGs) [112] to represent all possible execution paths of func-
tions. There are two types of statements in CFG terminology that affect the execution flow
of a program, namely control and write statements [113]. A change to a write statement
can affect the program state (i.e., assign a value to a variable). A change to a control state-
ment changes the program counter (i.e., determine which statement to be executed next).
By reading the program state, changes to the two other statements passively impacts read
statements. Thus, we derive the following heuristics to classify unsafe updates:

Definition 4.3.1. Given a diff mapping D = Lib; \ Lib, between code entities in Lib; and
Lib,, we consider a code change as not semantic preserving if and only if d; € D has a source
location with a reachable control flow path to client C and maps to the following potential
actions in a CFG:

1. d; translates to change in the expression of write or read statements (data-flow
change)

2. d; translates to moving a statement from position x to y (control-flow change)

3. d; translates to removing or expanding with new control flow paths (control-flow
change)

4. d; translates to changes in branch conditions (control-flow change)

The definition is an over-approximation; code changes such as refactoring would result
in being classified as an unsafe update if and only if affected functions are reachable. As
services such as Dependabot present only the outcome of test results and a changelog
between the old and new version of a library, change impact analysis instead precisely
pinpoint affected execution paths in an update. Such information help project maintainers
prioritize testing efforts or determine the potential risk of the update.

4.3.3 Creating Unsafe Updates in Project Dependencies

For seamless integration, it is important for automated dependency updating to detect
incompatibilities that arise when updating a library dependency. By using mutation anal-
ysis to seed artificial faults in all uses of third-party libraries in a project, we can derive
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an adequacy test of detecting incompatibilities in automated dependency updates. We
first dynamically extract a set of called third-party functions in a project and then ap-
ply mutation operators defined in Table 4.1 to construct a set of artificial updates that are
false negatives. As static analysis can over-approximate execution paths (i.e., risk creating
false-positive cases), we resort to dynamic analysis to ensure mutations of truly invoked
functions. For the selection of mutation operators, we choose operators common in mu-
tation testing studies [114, 115] that focus on simple logical flaws and exclude mutation
operators with a limited effect such as deleting statements [115].

In comparison to using actual update cases, the mutation setup provides a systematic
way to introduce simple faults in all uses of third-party libraries in a project to measure
the effectiveness of detecting faulty updates. Manually curating false-negative cases of
dependency updates limits to specific project-library pairs and may not generalize to other
projects that use the same library. Moreover, finding such pairs for all libraries in a project
to create an overall assessment may not be possible in most projects.

For RQ2, we denote mutation detection score for dependencies (an adaption of muta-
tion score [116]) as a tool’s ability to detect a mutated reachable dependency function as
(mutants):

Detected mutants
All mutants

Detection Score =

4.3.4 Manual Analysis of Pull Requests

As the artificially created updates address only false negatives, we also need to understand
how static analysis performs in practice. Thus, we manually analyze the applicability of
static analysis using pull requests through a lightweight code review. Due to the absence
of established ground truth or a benchmark, we resort to manually creating a ground
truth of libraries under update. As understanding the use context of a project-library is
challenging, we also, attempt to corroborate our findings by posting our assessment as
pull request comments. Below, we define our setup for the manual analysis:

Selection criteria We select pull requests generated from the popular service Depend-
abot on GITHUB that supports automated updates of Java projects using the Maven-build
system. To select significant and high impactful projects and increase the chance for a
response by a project maintainer, we harvest newly created pull requests using GHToR-
RENT’s event stream [117] and adopt the following filter criteria: (1) high stargazer, watch-
ers or forks count indicate popularity, (2) no passive users indicate projects that assign re-
viewers and frequently merge Dependabot-pull requests, (3) dependency type indicates that
we only consider MAVEN compile and runtime dependencies, and (4) project buildability
indicates that we can compile the project out of the box.

Code review protocol After a pull request meets the selection criteria, we first inspect
the diff in the pull request to identify the old and the new version number of the library
under update. Then, we download the source jar of the old and new version from Maven
Central and use a diffing tool to localize the set of changes. By reviewing the change loca-
tion, consulting the changelog, inspecting the tests of the library, we classify the nature
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of a change as refactoring, structural (i.e., breaking change), or behavioral (i.e., semantic
change). Next, we check out the project at the commit described in the pull request and
manually localize uses of the library by first performing keyword search of import state-
ments leading to the library under update. Then, we track the data- and control-flow of
imported items (e.g., object instantiations, function invocations, and interface implementa-
tions) to map out how the project uses the library under update. If the library under update
is a transitive dependency, we first trace how the project uses its direct dependency and
then how the used subset of the direct dependency uses the transitive dependency. After
mapping out uses of the library under analysis, we can then establish whether a project
directly or indirectly uses any of the changed classes and function signatures identified
in the diff and whether those changes make the update safe or not. If the changes do not
alter the logic (e.g., refactorings) of the project, we consider the update safe. Refactorings
are in some cases highly contextual and can yield different outcomes as exemplified in the
following: the changed function foo(x) adds a new IF-statement with the condition x >
50 that breaks the original functionality. Project A uses foo(x) indirectly, and through the
manual analysis (including inspection of its tests), we can establish that the threshold is
x < 20 in all cases, and thus the update is safe to make. On the other hand, project B has a
public function bar(x) that passes x in a function call to foo(x). Here, we cannot assume
anything around x as users of B could call bar(x) with any x. In this case, we consider the
update unsafe.

After manually evaluating pull requests, we classify them using one of three categories:

« Safe: the update is safe to perform and will not negatively impact the functionality
of the project.

« Unsafe: the update is risky and could lead to potential unexpected runtime changes.

« Unused: the update of an unused dependency (i.e., it is only declared in the project
but not used).

Based on the outcome of the update tooling, we compare it with the classification
above and consider the following:

« False Negative (FN) when classifying an unsafe update as safe.

« False Positive (FP) when classifying a safe update as unsafe or falsely updating an
unused dependency.

« True Positive (TP) when both our manual classification and update tooling has the
same conclusion.

« True Negative (TN) when not creating an update for an unused dependency.

4.3.5 Dataset Construction

We sample 1,823 repositories from GrTHUB that have Java as the primary language, MAVEN
as the primary build system, and have at-least a high-quality assurance badge (i.e., TRAVIS
CI, CodeClimate, coveralls, and CodeCov) as a signal for having tests [118]. Services such
as Dependabot can update dependencies in projects as long as there is a valid pom.xml
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Table 4.2: Descriptive Statistics for 521 GITHUB projects (each variable aggregated per project)

Variable Unit  Qpgs Mean Median Qo95 Histogram
Project Methods count 20 668 210.5 2320.5
Test Coverage (function calls) % 7 72 64 97
Direct Dependencies count 1 10 7 31
Transitive Dependencies count 1 31 16 105

file. Next, we build and then dry-run projects on both the instrumentation and mutation
pipeline to eliminate incompatible projects. In total, there are 818 repositories that com-
pile to Java 8 bytecode and have at least one compiled test class. Out of the 818 built
projects, 521 projects successfully run the instrumentation pipeline, and a subset of 262
projects are compatible with the mutation pipeline. The number of projects in the muta-
tion pipeline is nearly double the ratio of a recent previous study [119]. Table 4.2 presents
descriptive statistics on four aggregated variables for projects belonging to the instrumen-
tation pipeline. The median number of declared methods is 210 (mean: 668) with a heavily
positive skewed distribution. 75% of all projects in our sample cluster around 588 or less
declared methods with 36 projects having more than 1400 methods. The largest project
is oracle/oci-java-sdk with 22,264 methods. As per Section 4.3.1, we measure test cov-
erage of all function calls made in a project. We can observe that the test coverage is
generally high: half of the projects have coverage of 67% or more. For the number of de-
pendencies, we can observe that the distribution does not drastically change: the median
changes from 7 to 16, indicating a small expansion of transitive dependencies. Overall,
our dataset represents mid-sized projects that use a significant number of dependencies
with varying test coverage.

4.3.6 Implementation
We discuss the implementation of UPPDATERA, a tooling for performing change impact
analysis of library dependencies in MAVEN, and our pipeline to run our experiments. We
have open-sourced the tooling and docker images for automation and reproducibility of
our study (see Section 4.5.3).

UPPDATERA

Given a request to update a dependency to a new version in a pom.xml file, UPPDATERA
first performs AST differencing of the current and new version of the dependency to iden-
tify a list of functions with potential behavioral changes using SpoonLabs/GumTree [120].
Then, UPPDATERA computes a call graph inferring all control-flow paths between client
and dependency functions following Ponta et. al., [36] approach for call graph construc-
tion (using WALA). Finally, UPPDATERA performs a reachability analysis using the list
of possible behavioral changes on the call graph to find reachable paths to the client
code. Figure 4.2 demonstrates an example of using UpPDATERA for updating the library
io.reactivex:rxjava from version 1.3.4 to 1.3.8 in opentracing-contrib/java-rxjava.
The report features a call stack to the changed function along with a set of AST diffs. In this
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Bumps io.reactivex:rxjava from 1.3.4 to 1.3.8. This update introduces changes in 17 existing
functions: 1 of those functions are called by 1 function(s) in this project and has the risk of
creating potential regression errors.

Below are project functions that will be impacted after the update:

Ml io.opentracing.rxjava.TracingSubscriber onError() - 1 reachable dep function(s)

v Sample Affected Path(s)

io.opentracing.rxjava.TracingSubscriber.onError
at: io.opentracing.rxjava.TracingActionSubscriber.onError
at: rx.plugins.RxJavaHooks$1l.call
at: rx.plugins.RxJavaPlugins.getErrorHandler
at: rx.plugins.RxJavaPlugins.getPluginImplementationViaProperty

v Changed Dependency Function(s)
= |nsert Try-Block in If-Statement (L300)
= Move ForEach-Loop in If-Statement (L287) to Try-Block (L301)

Figure 4.2: Example of updating rxjava from 1.3.4 to 1.3.8 in the project opentracing-contrib/java-rxjava

particular case, the onError() function in the class TracingSubscriber transitively calls
getPluginImplementationViaProperty() in the dependency class RxJavaPlugins. The ad-
dition of a try-catch block in the function takes care of unhandled exceptions which may
have been handled by clients in previous versions (i.e., potential regression change)

In the following, we motivate our implementation choices for a change impact analysis
tool designated for updating library dependencies.

Diffing UPPDATERA performs source code differencing at the abstract syntax tree (AST)
level of both the current and the new version of a dependency to identify functions with
code changes. AST differencing algorithms [120, 121] produce fine-grained and accu-
rate information about the type and structure of source code changes. Following Defi-
nition 4.3.1, we capture AST transformations at the statement level and map the following
as regression changes:

« Any method-level move operation mirrors moving a statement from line x to y.
« deletion, update or insertion of Expression ASTs mirrors data-flow changes.

« deletion, update or insertion of control struct ASTs such as IF, While, FOR mirrors
control-flow changes.

« deletion, update or insertion of Call-Expression ASTs represents changes mirrors control-
flow changes.
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As an alternative to AST differencing, we could consider bytecode differencing. Byte-
code (e.g., LLVM’s IR or JVM code) differencing compute edit scripts at the instruction
level. Although this technique offers a fine-grained and a compelling alternative to AST
differencing, instruction-level changes can be difficult to understand for developers not
familiar with low-level details.

Call Graph Construction UPPDATERA constructs a call graph capturing inter-procedural
control-flow paths between client and dependency functions. Each node in the call graph
represents a fully resolved function identifier and should be identical to the identifiers in
the changeset of the Diffing phase.

We advocate the use of call graph algorithms that are both soundy [50] and scalable
for analyzing projects in the wild as a general guideline. The call graph algorithm should
support and resolve as many language features as possible. Limited support of language
features could potentially leave gaps in the coverage of projects making use of unsup-
ported features. Similar to static analyses of security applications, achieving high recall is
more crucial than precision to avoid recommending faulty updates.

As recent studies [1, 4] suggest that irrespective of the OPR, the majority of packages
have a small number of direct dependencies, but a high and growing number of transitive
dependencies. For example, 50% of all packages in CRATES.I0 have a dependency tree
depth of at least 6 [4]. Therefore, performing static analysis at the boundary of a project
and its dependency tree can become computationally expensive and impractical in DevOps
environments. Moreover, as UPPDATERA can expect to analyze any compatible project in
the wild, the algorithm should be scalable to cater large projects and cheap to construct
to cut down computation time.

Finally, a potential trade-off of using call graphs instead of CFGs is the loss of analysis
precision due to the absence of data-flow paths in the graph. However, taking into account
program features such as aliases, arrays, structs, and class objects in dataflow analysis
adds additional complexity and scalability problems when moving the analysis boundary
to include project dependencies. Supporting such analysis adds extra precision but may
not yield extra actionability.

Reachability Analysis For each changed function identified in the Diffing phase, Up-
PDATERA performs a reachability analysis on the call graph to detect paths connecting
changed dependency functions to functions in the analyzed project. If UPPDATERA finds
such paths, it marks the update as potentially unsafe. If no such paths are found, Upp-
DATERA marks it as a potential safe update and recommends the update to the package
manager. Finally, UPPDATERA also reports the impacted paths between dependencies and
project functions, to inform developers of the program paths that need to be inspected in
response to an update in a dependency.

Experimental Pipeline

To implement our methodology, we first develop a call extractor that records complete
call sequences between a project and its library dependencies. The implementation builds
on instrumenting library classes using ASM [122] and the Maven Dependency Plugin. To
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infer function calls to libraries from a project (RQ1), we use ASM to statically extract call
sites for direct dependencies. We generate call graphs using WALA [123] configured for
the CHA algorithm for transitive dependencies. Following Reif et. al., [124]’s comprehen-
sive benchmark of call graph algorithms for Java, we find that the CHA algorithm supports
the most language features and has a lower runtime in comparison to more precise points-
to analysis algorithms such as 0-1-CFA or N-CFA.

For RQ2, we implement the update emulation pipeline (i.e. mutation analysis) on top
of PITest [125], a popular in-memory-based mutation testing framework that works with
the popular test runners JUNIT and TESTNG by limiting mutations to library functions
identified from the call extractor. We exclude the use of experimental mutation opera-
tors that cannot guarantee non-equivalent mutations. For each mutated class, we use
Procyon [126] to decompile into a source file for AST diffing in the case of UPPDATERA.

4.4 Results

Here, we report the results of our research questions.

4.4.1 RQ1: Dependency coverage

Figure 4.3 presents a violin plot of dependency coverage on the left-hand side, and depen-
dency coverage including transitive dependencies on the right-hand side. Overall, 13%
(67/521) projects have less than 10% coverage, suggesting at large that a majority of proj-
ects have some tests exercising at least one dependency use. We observe that the median
coverage is 58% (mean: 55%): half of the GITHUB projects miss coverage of more or at least
42% of all dependency function calls. In practice, there is a risk that automated dependency
updating may not have tests that exercise changes in dependencies.

The right-hand side of Figure 4.3 shows the dependency coverage taking into account
reachable paths to transitive dependencies in projects. The distribution has a bimodal
shape with two peaks at, 9%, and at 52%, suggesting two classes of projects. In the first
class, half of the projects have a median dependency coverage of 21% (mean: 26%), indi-
cating that project test suites at large do not exercise dependencies in depth. This is not
surprising: an ergonomic factor of third-party libraries is that they are well-tested and
should in principle not need extra tests [127]. In the second class, we can observe that
projects have tests that exercise dependencies in-depth, suggesting the presence of proj-
ects with adequate test suites. As mentioned in Section 4.3.1, these results are indicative as
we compare against statically inferred call paths, which, being over-approximating, may
not be representative of actual calls.

Findings from RQ1: Half of the 521 projects exercise less than 60% of all direct dependency
calls from their tests; this drops to 20% if paths to transitive dependencies are considered.

4.4.2 RQ2: Detecting Simple faults in Dependencies

Our benchmark generated in total 1,122,420 artificial updates for 311 MAVEN modules
belonging to 262 GITHUB projects. Figure 4.4 shows a violin plot of the mutation detection
score for both direct and transitive dependencies, split by project test suites on the left-
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hand side and UPPDATERA on the right-hand side. The median detection rate score is 51%
(mean: 47%) for direct dependencies and 36% (mean: 35%) for transitive dependencies. We
can observe that 25% of the projects have a high test suite effectiveness greater or equal
to 80% for direct dependencies. When looking at transitive dependencies, the median of
direct dependencies and the third-quantile of transitive dependencies are similar, showing
that only one-fourth of the test suites remain effective in detecting faults in transitive
dependencies. Moreover, we can also see more dispersion in effectiveness among direct
dependencies than transitive dependencies, half of the projects have a detection score
raging between 16 to 54% for transitive dependencies. Overall, the results indicate that
tests are effective for a limited number of cases and dependencies. At large, however, a
small minority of projects have test suites that can comprehensively detect faulty updates.

On the other hand, UpPDATERA, has a median detection score of 97% (mean: 74%) for
direct dependencies and 88% (mean: 64%) for transitive dependencies. Generally, we see
that static analysis is highly effective in detecting simple faults with a slightly decreased
effectiveness for transitive dependencies. Half of the projects with a low detection score (<
50%) using tests now have detection score greater than 80%. In the lower half of the median
for both direct and transitive dependencies, we see large variations between the projects.
As change impact analysis is largely a generic technique, we manually investigate why
UpPPDATERA was unable to detect changes in 76 modules having a low detection score
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of less than or equal to 39% and 22% for direct and transitive dependencies, respectively.
We perform a manual investigation using the following protocol: (1) back-track from the
dynamic call trace to test suite, (2) identity potential tests cases that invoke the path in
the call trace, and (3) investigate both the test case setup and source code in-depth to
understand how UpPPDATERA could miss the regression change in the update.

In total, we identified four potential reasons for UPPDATERA to miss faulty up-
dates: 29 cases involving code generation, 26 cases involving class loading, 19 cases
involving instrumentation, and 2 cases of instantiations of generic methods. Dynamic
class loading along with code generation makes use of Java’s Reflection API such as
Class.forName(”DynClass”);. A majority of the inspected cases stem from libraries such
a FasterXML Jackson-databind, Jersey REST framework, Spring framework, JAI ImagelO,
Hibernate Validator, and Google Guice. Reflection is useful in cases such as the creation
of data bindings (jackson-databind), data validation (hibernate or guice) or generation of
HTTP endpoints from annotated user methods (jersey or spring framework). Resolving
cases involving reflection is a known limitation of static analysis [124].

Although we do not instrument JUNIT and MAVEN (which we use to power our setup),
projects can bypass our exclusion filter by putting those libraries under a different names-
pace, a practice known as class shading. We identify several instances of bypassing the
filter, an effect we cannot easily control. Finally, in two cases, generic methods defined
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Table 4.3: Results of running UPPDATERA on 22 Dependabot pull requests

Pull Request U_});i;:e Class Confirm ST‘:isti UPPDATERA Rujr;etsi:xle U;ii’:;r:.?
spotify/dbeam#189 Patch S v FP FP 3.11 2.31
airsonic/airsonic#1622 Minor S v TP FP 77 7.5
bitrich-info/xchange-stream#570 Patch S v TP FP 2.78 1.93
CROSSINGTUD/CryptoAnalysis#245 Major S v TP FP 12 2.6
dbmdz/imageio-jnr#84 Patch S v TP FP - 0.7
dnsimple/dnsimple-java#23 Minor S v TP TP 2 11
smallrye/smallrye-config#289 Patch S v TP TP 1.1 0.6
dropwizard/metrics#1567 Patch S v TP TP 2.6 8.73
s4u/pgpverify-maven-plugin#96 Minor S v TP TP 4 1.2
JanusGraph/ janusgraph#2094 Minor N v Fp TN 365 33
UniversalMediaServer/UniversalMediaServer#1989  Major U v - TP 11 8.3
premium-minds/pm-wicket-utils#71 Patch N v FP TN 1.56 0.51
UniversalMediaServer/UniversalMediaServer#1987  Minor N v FP TN 11 7.7
CSUC/wos-times-cited-service#36 Patch S X TP FP 0.55 0.5
Grundlefleck/ASM-NonClassloadingExtensions#25 Major S X TP FP 4 0.5
RohanNagar/lightning#211 Major U X TP TP 2 7.8
zalando/riptide#932 Minor U X TP 7.5 20.5
pinterest/secor#1273 Patch S X TP TP 390 13.5
michael-simons/neo4j-migrations#60 Patch S X TP TP 3.45 0.8
zaproxy/crawljax#115 Minor U X TP 17.35 1.3
hub4j/github-api#793 Minor S X TP TP 1.3 4
zalando/logbook#750 Patch S X TP TP 6.1 18.38

in user projects were only instantiated in tests but not in the project source code. Gen-
erally, call graph generators do not resolve generic methods unless there is a concrete
instantiation of it.

Findings from RQ2: Project tests are effective in a limited number of cases but not at
large. UPPDATERA can detect twice as many faulty artificial updates as opposed to project
test suites. Libraries making use of Java’s reflection API could affect its applicability.

4.4.3 RQ3: Change Impact Analysis in Practice

We conducted our online monitoring for two weeks between 13-27 Apr 2020 evaluating
in total 22 Dependabot pull requests. On average, we harvested around 350 pull requests
per day between Mondays and Wednesdays, 150 pull requests per day between Thursday
and Fridays, 50 pull requests per day on the weekends. While the number of pull requests
may seem high, a majority of them were updates of MAVEN plugins or test dependencies,
uncompilable, or superseding previous pull requests. Thus, we posted on average two pull
requests per day taking anywhere between one to four hours to manually evaluate pull
requests and post our findings as comments.

Table 4.3 presents the analyzed pull requests along with the update type, ground truth
class (i.e., Class column), external confirmation (i.e., Confirm column), results from the
tooling, and execution times (in minutes). In total, our ground truth consists of 15 pull
requests where the update is safe (i.e., S class), three pull requests where the dependency
under update is unused and only declared (i.e., N class), and four pull requests where the
updates that are unsafe (i.e., U class). The test suites of the analyzed pull requests clas-
sified 15 update as true positives(TP), four update cases as false positives (FP), and three
update cases as false negatives (FN). UPPDATERA classified 12 update cases as true posi-
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tives (TP), seven cases as false positives (FP), three cases as true negatives (TN). There are
12 cases where the two techniques report differently as highlighted by the colors in Ta-
ble 4.3. Most notable are false positives; UPPDATERA incorrectly reports six updates (high-
lighted yellow in the table) as unsafe that test suites can detect as safe. In those cases, the
heuristics failed to account for refactorings or falsely derived call paths due to dynamic
dispatch. In four cases, UPPDATERA could not detect that the changes were refactorings
(i-e., semantic-preserving changes). One such example is a confirmed minor update of
the Apache commons-1lang3 library refactoring array length and null checks into a new
function. In the two remaining cases, all reachable call paths were over-approximations.
The update of org.eclipse.emf.common in one project included changes to List structures
implementing methods of Java’s List Interface (such as addA11()), resulting in unrelated
interface calls being linked to it. This is a limitation of the CHA algorithm as it links inter-
face calls to all available implementations. In three confirmed N-cases (highlighted blue
in the table) where tests would falsely pass the updates, UpPPDATERA correctly identified
no use of the dependency under update in the projects. The project maintainers in two of
the reported cases have started refactoring work to remove those identified dependencies.

UPPDATERA was able to complement test suites in three false-negative cases (high-
lighted red in the table). In our confirmed case of an unsafe update, UPPDATERA identi-
fied the Apache commons-1ang3 library to break the application logic of a project due to
changes in calculating string edits using the Jaro-Winkler distance. Generally, we can
observe that solely using static analysis may risk falsely classifying safe updates as unsafe.
Finally, we also make a comparison of execution times between running tests and Upp-
DATERA. The results reveals that UpPDATERA has faster or comparable times in 16 out of 22
cases, suggesting that change impact analysis can be a viable option to complement tests
in CI environments.

Findings from RQ3: Semantically equivalent changes (refactorings) and over-
approximated function calls are the main sources of false positives in UPPDATERA. However,
UpPDATERA helped project maintainers identify risky updates and unused dependencies.

4.5 Discussion
4.5.1 Evaluating Library Updates

Updating to a new version of a third-party library is not a trivial task, and for good reasons:
interface refactorings induce additional maintenance burden and integrating untested be-
havior can jeopardize project stability. Services such as Dependabot advocate a modest up-
date strategy focusing on project compatibility: only update if the tests pass with the new
library version. Effectively, developer-written tests act as the first-line defense against
library updates introducing regression changes.

A key insight in our work is that automated dependency updates are not reliable. Our
results strongly suggest that existing developer-written tests lack specifications that ex-
ercise dependencies in depth. This finding is in line with the work by Mirhosseini et.
al., [84], where developers report being suspicious of integrating automated updates due
to fear of breakage. When selecting to adopt a third-party library, Bogart et. al.,, re-
port that developers look at aspects such as reputation, code quality standards and active
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maintenance to build up trust [16]. Perceived high-quality libraries can eliminate the
need for extensive testing. In our case, we found evidence against this practice. The mi-
nor backward-compatible update of org.apache.commons: commons-1lang3, a high-quality
library, had changes that would break the application logic in one project if the pull re-
quest was merged in our manual analysis. In addition, the practice of testing third-party
libraries is not common among popular testing books [107, 128, 129], very few research
papers suggest testing of third-party libraries [130, 131]. When unit testing involves mock-
ing, it often results in third-party libraries not being thoroughly exercised.

Directing testing efforts to dependencies would be a potential solution to the problem.
Therefore, we recommend practitioners to use automated updating services cautiously
and complement with tests for critical library dependencies. For tool creators in the do-
main, we argue for increased transparency in automated updating. With a small minority
of projects having both coverage and tests capable of detecting simple regressions, pull
requests could feature a confidence score on how well it is able to test new changes in a
library under update. As a first step, tool creators can make use of our study setup to mea-
sure both coverage and quality of tests as an indication of confidence. A confidence score
could also help reduce false negatives: if no tests are exercising a changed functionality
of a dependency under update, Dependabot could avoid recommending it.

4.5.2 Strengths and Weaknesses of Static Analysis

Without needing to maintain additional dependency-specific tests, static analysis can be
effective in deterring updates with potential regression changes. For a large number of
projects with limited test quality, change impact analysis can fill the gap where tests are
unable to reach and would be a compelling option for tool creators to consider. For a
minority of projects, however, we identify certain third-party libraries that impede the
overall analysis accuracy. Libraries heavily relying on code generation such as the Spring
framework makes use of the Java Reflection API that are known to be statically difficult
to analyze [132], could miss critical execution paths in projects that make use of them.
Moreover, by linking interface calls to all its implementations, call graphs contain over-
approximated call paths. We could observe non-existing interface calls from functions in
the unused dependency to classes implementing the interface in the project during the
manual analysis. As Ponta et. al., [36] approach base on building a call graph with the
project and its dependencies together, we make preliminary observations that projects
having library dependencies with several common interfaces between them are likely to
have many unrelated function calls. Exploring improvements such as using type hints
with data flow analysis could potentially eliminate such function calls. Overall, we argue
that static analysis is a useful complement in use cases where tests lack coverage. By also
revealing and presenting gaps and quality issues in test suites, static analysis can help
developers in prioritizing testing efforts of dependencies.

4.5.3 Threats to Validity

Sampling random projects from GITHUB pose threats to our results: tests or dependencies
in projects may not exercise production classes. To mitigate this risk, we configure our
call extractor to only record call paths originating from the project source code. Call paths
that do not traverse via project source code are excluded (e.g., test class directly calling a
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dependency).

The use of mutation analysis to emulate source code changes in dependency functions
has several potential threats to validity. First, we acknowledge that the applied mutation
operators do not substitute actual regression changes in library updates. Our objective is
to exercise all uses of libraries in a project by injecting simple faults to uncover potential
coverage gaps in updating tools. Using real-world cases for this purpose would be chal-
lenging and potentially adding hidden uncontrolled factors. Second, our ground truth in
RQ2 represents reachable call paths inferred from running project tests, making it a sub-
set of all possible executions and is a limitation of the benchmark. A potential avenue to
explore is the use of test generation techniques such as EvoSuite [133] to discover new call
paths. However, EvoSuite generates tests at the class level without considering its interac-
tion with other classes or dependencies, generating artificial tests that may not represent
valid use cases.

The false-positive rate in RQ3 is indicative and not representative. Without domain
knowledge of the interplay between a project and a dependency, the code reviews may
state incorrect or incomplete information. To mitigate this risk, we post our code review
assessment in the update for the project maintainer to react in case of incorrect analysis.
Finally, for the reproducibility of our study, we have made the source code,* the experimen-
tal pipeline,” and our data publicly available [24]. Specifically, we include the examined
projects, applied mutation changes, and their dynamic and static call graph.

4.6 Related Work

Updating library dependencies in projects To assist developers with updating de-
pendencies in projects, researchers have studied practices around updating dependen-
cies [6, 11, 16, 81, 84, 105] and proposed tools leveraging both static- and dynamic analy-
sis [34, 91, 134]. Kula et al. [6] empirical study of 2,700 library dependencies in 4,600 Java
project found that 81.5% remain outdated, even with security problems. The study found
that factors such as uncertainties around estimating refactoring efforts and other task pri-
orities as reasons for developers to not update dependencies. To address the update fatigue
for developers, automated dependency updaters such as Dependabot and greenkeeper.io
actively reminds and suggests dependency updates to developers through the use of pull
requests. A study by Mirhosseini et al. [84] found that pull requests encourage developers
to update dependencies more frequently but the frequency of updates and lack of convinc-
ing arguments defer them from updating. On similar lines, the work of Bogart et al. [16]
also suggests that developers perceive the use of monitoring tools to have a high signal-
to-noise ratio than giving actionable insights. Finally, the empirical work of Dietrich et
al. [105] suggests that 75% of emulated library updates in the Qualitas dataset has break-
ing changes. However, only a few updates resulted in an error, motivating the need for
contextual analysis.

Recently researchers have started to explore the use of static- and dynamic analysis to
identify library updates with breaking changes, saving developers time, and review efforts
of library updates. NoRegrets [34, 134] is a tool that detects breaking changes in test suites

'https://github.com/jhejderup/uppdatera
*https://github.com/jhejderup/uppdatera-pipeline
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of dependent NPM packages before releasing an update of the library. Although helpful in
minimizing the chances of breaking changes for clients, the identified subset of clients may
not be representative of other clients. Similarly, Foo et al. [91] describes a static approach
using simple diffing and querying Veracode’s SGL [135] graph to find clients affected by
breaking changes. In contrast to this approach, UPPDATERA analyzes at the project level
(e.g., does not search for affected clients), targets diff with data- and control flow changes
(i.e., not only interface changes), and includes a benchmark to compare updating tools.

Change Impact Analysis Change Impact analysis is a widely studied problem in pro-
gram analysis research [136, 137]. Propagation of changes in package repositories have
become an important research area in light of incidents such as the left-pad incident, and
recent moves to emulate these problems on package-based networks [1, 5]. Several tech-
niques [138-142] use call graphs as an intermediate representation for change impact
analysis. Alternative techniques to call graphs are static and dynamic slicing [109, 143],
profiling [144, 145] and execution traces [146]. Due to cost-precision trade-offs, several
proposed approaches use a combination of these techniques. One such example is Ali-
madadi et al’s work on Tochal, that leverages both runtime data and call graphs to more
accurately represent changes to dynamic features such as the DOM. For a comprehensive
overview of impact analysis techniques and change estimations, we refer the reader to
Li et al’s [136] survey on code-based change impact analysis techniques

An application of change impact analysis is regression test selection techniques [147]
(RTS) such as class-based STARTS [148, 149] and probabilistic test selection [150] that find
relevant tests for evaluating new code changes. We found in our evaluation that test suites
have limited coverage of dependencies, thus RTS may not be able to find tests relevant for
changes in dependencies or have enough test data to build a prediction model for average
GITHUB projects. Finally, Danglot et al. [151] and Da Silva et al. [152] investigate the
use of search-based methods such as test amplification and automated test generation for
detecting semantically conflicting changes. Although search-based methods are effective
in reducing false positives and to some degree eliminating false negatives present in static
analysis, they are limiting for integration test scenarios such as automated dependency
updating. Da Silva et al. [152] found that automated test generation such as EvoSuite [133]
have difficulties in generating effective tests for complex objects with internal or external
dependencies.

4.7 Conclusions and future work

In this chapter, we delve into the empirical investigation of test suite reliability in the con-
text of automating dependency updates. As developers increasingly rely on services that
automate dependency updates, it is critical to determine how much project tests cover
utilized functionality in library dependencies, their effectiveness in detecting simple re-
gressions, and their performance in real-world scenarios. Furthermore, given the call for
more conservative techniques in recent research, we also explore change impact analysis’s
role in minimizing false negatives.

Our analysis reveals that half of the 521 well-tested projects we investigated cover less
than 60% of their function calls to direct dependencies with their tests. When looking at
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call paths to transitive dependencies, coverage dwindles to a mere 20%. Furthermore, by
simulating simple faults in library dependencies across 262 projects, we found that only
one-fourth of the projects can detect 80% or more faults in functions of direct libraries. For
transitive dependencies, this number plummets to one-eighth.

However, change impact analysis can detect 80% of potentially breaking changes in
both direct and transitive dependencies, showing double the efficacy of using test suites.
While change impact analysis shows promise in flagging faulty updates, our manual in-
vestigation of its potential to complement tests in 22 Dependabot pull requests reveals
both advantages and drawbacks. The analysis could prevent unsafe updates in three cases
where tests were unsuccessful and detected unused libraries in two instances. Nonetheless,
the approach had a higher false-positive rate due to its relative imprecision than tests.

These findings underscore the need for developers who utilize automated dependency
updating to be mindful of the risks of relying on project tests for compatibility checking.
Updates can incrementally introduce unintended functionality without sufficient coverage
or adequate tests for all usages of library dependencies. Given that services like Depend-
abot do not explicitly communicate the risks associated with updating dependencies, we
recommend that tool creators incorporate reliability measurements like scoring test suites
in pull requests. Moreover, given our exploration of change impact analysis, we advocate
for tool creators to consider combining dynamic and static analysis to establish verifica-
tion techniques independent of users’ test suites.

We recommend that researchers and practitioners establish best practices for updating
third-party libraries. An initial step in this direction is to understand how developers direct
testing efforts toward dependencies and their strategies around them. Furthermore, tool
makers should investigate hybrid workflows through data-driven methods for efficient
update checking by combining dynamic and static analysis.
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Evaluating the Impact of
Third-Party Library Reuse in Java
Projects: An Empirical Study

The use of open-source libraries is common in the software industry; however, reliance on
external code introduces operational and security risks, some even present with large shares
of unused imported libraries, such as deserialization gadgets, malicious contributions, and
supply chain attacks. To minimize risks and address regulations, organizations implement
rigorous policies, like producing software bills of materials, meeting test coverage targets,
or defining quality criteria for open source. To better understand how projects utilize these
libraries, we conduct an empirical study involving 3,182 releases from 176 Java projects in the
Census-II dataset, representing widely used libraries in production applications. Our results
show that, in these projects, 87% of lines of code stem from third-party libraries, but they do
not use all of the imported code. Our reachability analysis uncovers that a range between
12-38% of external lines of code is reused within these libraries. Over time, these numbers
steadily increase, signifying tighter reuse. However, we find that the reuse largely remains
stable between consecutive versions. The high degree of unused third-party code shed light
on the operational and maintainability risks associated with third-party code imports and
emphasize the necessity for a more fine-grained evaluation of dependency usage in software
development.

In typical software development projects, developers strive to avoid rewriting code that
has already been written in the past. Encouraging modularity and promoting the sharing
of functionality is the norm, especially since the advent of the open-source software (OSS)
movement. The concept of code reuse refers to employing pre-built components, such as
reusable collections of functions or data types, in both source or binary form, that are easily
importable in projects [153, 154]. The practice of reusing open-source components can be
studied in various levels of granularity, starting from the application level (for example,
using a ready-made webserver), to the library level (for instance, using a released open-
source library), down to the more detailed aspect of fine-grained code-based reuse.
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Importing and using third-party libraries incurs operational and maintenance chal-
lenges. Library developers often build third-party libraries on top of existing third-party
libraries, effectively creating a network of dependencies between libraries [1, 8, 155]. For
example, importing a single npm library in a JavaScript project can pull in an average of
80 other npm libraries, [7] each with its own set of release cycles, development standards,
and testing practices [16]. These differences among imported libraries complicate devel-
opers’ efforts to address vulnerabilities effectively [7, 30] and detect semantically breaking
changes when updating libraries [156, 157].

In response to these challenges, organizations, including government agencies, are in-
creasingly mandating more responsible reuse of third-party libraries [158, 159]. Tools such
as Software Bill of Materials (SBOM), dependency vulnerability scanners and license com-
pliance checkers are increasingly being used, by OSS third-party library users to safeguard
their products. On the development front, practices such as higher test coverage[160],
mapping potential attack surfaces, code security analysis and reproducible builds from
source to binary[161], are being promoted to ensure that the produced components are of
high quality.

A common characteristic of most of the approaches described above is that they work
at the library or component level. However, reuse does not happen at the library level, but
at the code level: functions in the client project interact with APIs in the imported library
and, transitively, in its dependencies. Thus, a disconnect arises between what tools (and
developers) perceive as reuse and what the actual code reuse really is. Gaining insight into
the degree of reuse at the code level is crucial for decision making and risk management,
as it can help inform policies such as attack surface monitoring, insourcing of compo-
nents with very low reuse ratio or updating to newer versions in response to vulnerability
disclosures.

Toward this end, we conduct a study on library reuse at the code level. Our high-
level goal is to establish code reuse baselines: learning code reuse ratios from high-quality
OSS components used in enterprise applications to inform decision-making. To guide our
investigation, we formulate a set of research questions, presented below:

RQ1 How much third-party code do projects import?
RQ2 How much of the imported third-party code do projects reuse?

To study how projects reuse code in third-party libraries, we create a dataset by start-
ing from Census-II [162] and iteratively removing cases that might skew our analysis.
The dataset comprises libraries frequently used in production applications. To study RQ1,
we analyze the dependency tree of each release in terms of lines of imported code. Our
analysis is longitudinal: we study averages in six-month intervals and changes between
subsequent major and minor versions of those libraries. To study RQ2, we construct call
graphs for each analyzed library version to quantify the degree of reuse of third-party li-
braries We compute upper and lower bounds for our results, to cope with imprecision of
our program analysis technique.

Our main finding is that while library-based reuse computations indicate that, on av-
erage 87% of the code in an application is being imported, the actual reuse is in the range
of 12% to 38%. Moreover, those numbers remains largely at the same level in the last ten
years, effectively constituting code reuse invariants.



5.1 Background 85

Our work makes the following contributions:

+ A method for identifying library reuse using program analysis, including thorough
analysis of its limitations.

« A dataset on code reuse for client applications and libraries written in the Java pro-
gramming languages.

« Baselines that can be used to evaluate code reuse in real projects.

5.1 Background
5.1.1 Software Reuse

The concept of software reuse dates back to the early days of software engineering [163]
and generally signifies the reuse of design patterns, source code, or packaged components
such as libraries or frameworks to increase developer productivity and software quality at
reduced efforts and costs.

The open-source movement contributed significantly to producing reusable software
components in the last two decades. Package managers have greatly facilitated their con-
sumption, which exists for most programming languages, and automate the identifica-
tion, resolution, and download of third-party components (called dependencies) based on
declarative manifest files. For example, in the case of Maven, the most prominent pack-
age manager for Java, developers specify (direct) dependencies in pom.xml files. Maven
takes care of locating those dependencies in package repositories, recursively resolving
their dependencies (indirect ones for the development project at hand) and any potential
version conflicts, and downloading a consolidated set of Java archives (JARs) to the local
development environment.

Although software reuse significantly accelerates the development process, it also in-
troduces risks that potentially manifest during later phases of the software lifecycle. An
example of such a risk is the discovery and fixing of functional bugs in an imported third-
party library that is no longer maintained by its community; hence, the need to receive
updates can result in significant development costs down the line.

5.1.2 Program Analysis
Program analysis refers to the set of techniques that are used to prove whether programs
satisfy specific properties. Static analyses perform analysis without executing the code,
whereas dynamic analysis techniques focus on the runtime behavior of programs. A form
of static analysis we use in this work is the representation of a program using call graphs,
graphs whose nodes represent program functions and edges represent calling relation-
ships [48]. Being a static analysis technique, call graphs offer approximations of the pro-
gram’s runtime behavior. Specifically, they may be missing some function calls (e.g.,due to
the use of dynamic code loading) or they may include function calls that may not happen
in practice (e.g.,due to runtime configuration restricting parts of specific functionality).
Generating precise call graphs is computationally expensive. In realistic program anal-
ysis scenarios, an analyzed client program under development uses code from multiple
third-party libraries. As the client code changes much faster than its library dependen-
cies, the analysis might be sped up if each dependency is only analyzed once, the analysis
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results of third-party libraries are cached and composed on request with the client pro-
gram. In our work, we use the idea of callgraph stitching, first proposed by Keshani [164],
to scale our analysis to thousands of call graphs.

5.1.3 Related Work

Existing works use and combine various program analysis techniques in the context of
Java/Maven dependency management in order to study software reuse and address the
above-mentioned risks.

Reuse metrics. The use of call graphs to establish reuse metrics is mentioned by
Norman[165], based on which Bieman[154] defines various properties and metrics for
software reuse in object-oriented programming languages. Using his terminology, we
study direct and indirect verbatim public reuse, i.e., the direct or indirect consumption of
servers (software entities of a library) produced externally (public), and which have not
been modified (verbatim). Some metrics proposed by Bieman[154] and Devanbu et. al.,
[153], however, investigate the frequency of reuse, e.g., the number of paths to indirect
servers. At the same time, we are solely interested in whether a library component is
called (at least once) or not.

API use. Many studies investigate API use and its evolution across releases of both
libraries and their clients, e.g., to carve out libraries’ core API [166, 167], to discover the
introduction of breaking changes [11], or to understand clients’ update lag [87, 168] or
their use of deprecated APIs [169]. Compared to these works, we look at a client’s direct
use of a library’s public AP, typically declared as a direct dependency, and investigate
indirect code reuse in transitive dependencies.

Software Bloat. Automated dependency management results lead to software bloat,
i.e.,, the accumulation of functionality and code not used by given downstream projects.
Soto-Valero et. al., [170] studies 9,639 artifacts hosted on Maven and finds that 75.1% of
their dependencies are bloated, i.e.,, none of their types are used directly or indirectly by
the classes of the artifact. Moreover, in another study[171] the same year, the number
of bloated dependencies grows over time, particularly for transitive dependencies. Both
works focus on establishing the number of unused classes found in third-party libraries. In
contrast, we aim to understand the amount of reuse made by the projects at the granularity
of LOCs and functions.

Dependency networks. Package repositories like PyPI for Python or Maven host
hundreds of thousands of packages with millions of versions. Empirical studies like [1, 27,
30, 172] describe properties of such package dependency networks, e.g.,, the number of
direct or transitive package dependencies, study their evolution and compare them across
ecosystems. Hejderup et. al., [155] performs a large-scale analysis of the Rust ecosystem to
compute call-based dependency networks to study trends and insights of the ecosystem
on a function level, thereby acknowledging that networks built on manifest data only
represent a coarse-granular view on reuse. In contrast to those works, we focus on a
small subset of libraries that are reportedly the most-used Java open-source libraries in
production applications at thousands of companies [162], thereby ignoring a long tail of
packages of little relevance to the broader community.

Security. Plate et. al, [173] uses runtime traces to assess whether known-vulnerable
methods in project dependencies are reachable in the context of given projects. Ponta et.
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al., [174] extends this approach and determines vulnerable methods’ reachability through
static and dynamic techniques. They demonstrate the complementarity of those tech-
niques, as 11.7% of reachable vulnerable methods are only discovered through their com-
bination. Those works, however, do not investigate code reuse in general terms, indepen-
dent of security vulnerabilities. Ohm et. al, [175] provides an overview of various attack
vectors aiming to infect open-source projects, which motivates the internalization and
removal of dependencies for risk reduction.

5.2 Research Method

We follow the research approach outlined in Figure 5.1 to examine how popular Java proj-
ects reuse third-party libraries. Initially, we select Java-based projects from the Linux
Foundation Census-II dataset [162], which contains libraries used in production applica-
tions. For each package, we retrieve information about all releases using the Maven Search
APT* [1]. Then, we download the associated POM (dependency descriptor) and JAR (com-
piled code) files for each release [2] Using Maven, we build each POM file’s dependency
tree and extract package identifiers of resolved third-party libraries. We recursively repeat
step [2] for each third-party library until no new library versions can be obtained.

The previous steps generate a set of library versions to perform analysis on, at the
package level. However, answering all our RQs requires precise identification of the code
that is reused. For this reason, we build call graphs for each individual release |3| and
then stitch those callgraphs together to compose a global callgraph for each release [4]
On top of those global callgraphs, we perform reachability analysis to track code reuse by
third-party libraries 5]

In the following sections, we describe each analysis step in detail.

5.2.1 Analyzing Code Reuse in Third Party Libraries

Our unit of analysis is a library released with a version in an open source package reposi-
tory. We consider that a client application (or another library) reuses the library if there
is a function call from the client into the library; this omits reuse cases where a client

'https://search.maven.org/solrsearch
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Figure 5.2: Example: Project depending on Lib A and Lib B

only uses a data type exposed by the library. In such cases, reuse can be both implicit and
explicit, as projects can have direct and transitive library dependencies. The term explicit
reuse refers to function calls to first level library dependencies (typically declared in de-
pendency descriptor files); while implicit reuse refers to function invocations in transitive
dependencies. Implicit reuse arises when a client calls a function in a direct dependency
which then calls a function in a transitive one. In Figure 5.2, we find that the project
explicitly uses functionality from the Lib A by calling the a1() and implicitly uses Lib B
by calling the b1() via the a1().

In RQ1 and RQ2, we study reuse both from a static and an evolutionary perspective.
Initially, we analyze the distribution of imported code across all releases in our dataset.
To study evolution, we consider two cases: i) evolution of reuse over time in six-month in-
tervals, and ii) evolution of reuse across library versions. The time-based analysis exposes
aggregate reuse trends at the ecosystem level, while the version-based analysis quantifies
how library import patterns change across consecutive major and minor versions.

RQ1: Imported Code Recent research reveals that software projects increasingly
import third-party libraries, often through transitive dependencies [27, 155]. However, the
impact of this trend on the proportion of insourced and outsourced source code available
in projects is less known. To address RQ1, we estimate the size of client projects and third-
party libraries by counting the percentage of i) lines of code (LOC) and ii) the number of
functions of imported third-party code over the total size of the project. Using the example
in Figure 5.2, the LOC import ratio is 188 / 388 = 0.48, suggesting that about half the code
in Project comes from external libraries. On the other hand, the function import ratio is
4 /5 = 0.8, highlighting to a higher degree that reusable code stem from external libraries.

RQ2: Reused Code Importing a third-party library does not imply full reuse of the im-
ported code. To answer RQ2, we construct a call graph (see Section 5.2.3 for construction
details) of a project and its imported third-party libraries to approximate reuse. Using a
call graph, we perform reachability analysis: if functions in third-party libraries are reach-
able from functions in the analyzed project, this indicates reuse. We count the number of
both reused functions and their size.

Assuming we have a call graph of the project and its dependencies, we calculate the
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Table 5.1: Summary of packages and releases at each stage of the dataset processing.

Stage Packages Releases
Initial dataset (Maven-based projects) 334 27,210
Semver schema validation 307 6,113
Dependency tree pruning (invalid dependencies) 302 5,661
Selecting packages with dependencies 213 3,997
Call graph generation and LOC annotation 194 3,765
Final dataset (removing incomplete LOC info) 176 3,182

reused LOC ratio (RLR) as the sum of the LOC of all reachable dependency functions
divided by the sum of all LOC functions of all third-party libraries as the following:

R reachable_LOC(Project)
Zfil size(Lib,)

The function reachable_LOC computes the sum of LOC of all reachable external func-
tions. Using the example in Figure 5.2 we see that Project, explicitly calls 50 LOC in Lib A
and implicitly reuses 98 LOC in Lib B. Therefore, the reused LOC ratio is 148 / 188 = 0.78,
indicating that a large proportion of imported LOC is actively being reused by the project.
Similarly, we compute the ratio of reused functions (RFR) by substituting LOC with the
number of functions. Thus, for the same example, the function reuse ratio of Project is 3
/5 = 0.6. The ratio is comparable to the RLR.

5.2.2 Dataset Construction

We base our study on Linux Foundations’ Census-II dataset, which contains the most-used
third-party libraries in production applications according to comprehensive data provided
by several Software Composition Analysis (SCA) tools such as Snyk and FOSSA [162].
From the 348 Maven-based projects in the dataset, we can retrieve 27,789 releases from
the Maven Search APL. We exclude three invalid group ids and artifact ids unavailable
from Maven Central and org.scala-lang:scala-compiler as it is a non-Java project. Af-
ter removing all non-JAR releases, our initial dataset is 27,210 releases belonging to 334
projects.

Table 5.1 describes the results of the various processing steps we used to create our
dataset. Initially, and to answer the RQs, we need to find a way to order releases. Even
though Maven does specify a version ordering scheme, Raemaekers et. al.,, [172] found that
this is not followed in practice. Semantic Versioning (semver) is more widely accepted, but
there is no strict adherence. Nevertheless, we decided to follow semantic versioning as our
version ordering scheme. After validating releases according to semver, we filtered out 27
projects (21k releases). The significant reduction of releases is due to packages such as
aws-java-sdk and aws-java-sdk-kms, which release on Maven on every commit in their
repository.

We then built the dependency tree for each release and removed releases with invalid
dependencies on third-party libraries, such as non-existing names and constraints, result-
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ing in 302 projects with 5661 releases. Inspecting the remaining dependency trees re-
vealed that 119 packages and 952 releases do not have any dependencies. Moreover, some
packages and releases only declare test and non-production dependencies; thus, we se-
lected packages with compile, runtime, and provided dependencies on third-party libraries,
bringing the number down to 213 packages with 3997 releases.

Overall, we identified 17,775 unique third-party library releases from the resolved de-
pendency trees. We could not download a JAR for 11 third-party libraries; however, these
were test dependencies, and thus we did not reduce the dataset further.

5.2.3 Call graph construction and stitching

We used the OPAL call graph generator for the call graph construction as it has been shown
to handle most language features and call types [124]. We configure OPAL to perform
Rapid Type Analysis (RTA) [176] analysis in library mode. Effectively, this means that
OPAL treats all public functions in the analyzed library as entry points. The call graph
is constructed by following all calls from the entry points to all internal functions; if an
external (dependency) function is called, OPAL will create a placeholder. The call graph
is saved in an intermediate format that records internal and external types, the called
functions and call site information including dispatch type (static or virtual).

We built call graphs for 18,377 releases (all identified third-party libraries and the an-
alyzed client programs). OPAL could not process 368 JAR files, while for 264 JAR files
we could not extract line count information as this information could not be extracted
from their JAR files. Thus, we have annotated LOC information for 17,745 JAR files, corre-
sponding to 194 packages and 3765 releases. As some third-party libraries may need LOC
information, we must validate the dependency tree of releases and remove releases with
incomplete information. After removing releases with incomplete LOC information for
their dependency tree, our final dataset comprises 176 packages with 3182 releases.

Each analyzed release is treated as a data point in our analysis: we first resolve
all dependency versions and then we stitch the individual callgraphs into a global call-
graph to perform reachability analysis on. The stitching process is an industrial-grade
re-implementation of the process proposed by Keshani [164]. Effectively, stitching takes
a set of intermediate callgraphs and resolves (creates edges to) all external function refer-
ences to their concrete implementations in other callgraphs.

5.2.4 Treating Dynamic Dispatch & Reflection

A common issue when constructing (and stitching) callgraphs is the handling of virtual
dispatch call sites: given a method call on an interface (e.g., the Java standard interface
Iterator.next()), what is the actual implementation that will be called at runtime? The
most straightforward approach, called Call Hierarchy Analysis (CHA) [177], creates edges
toward all concrete implementations of the function in the object hierarchy delimited by
the type of the receiver object. However, this creates an overapproximation of the actual
code execution; in the case of popular interfaces (e.g.,the aforementioned Iterator), this
might lead to edge explosion situations where a method may be linked to 100s of functions
(and their calls, transitively).? In turn, this affects any reachability analysis significantly.

*Such call sites are refered as megamorphic in the static analysis literature.
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RTA, which both OPAL and the stitching code implement, attempts to limit the effect
of this overapproximation by tracking object allocations along call paths; in practice, we
noticed that their effect on precision is minimal when considering third-party libraries in
the analysis scope.

To deal with the issue of overapproximation, we decided to take a pragmatic approach:
treat the reachability results as an upper bound (i.e.,code reuse cannot exceed that calcu-
lated by the unmodified reachability analysis), but we also introduce a lower bound. The
lower bound is calculated by constructing callgraphs where virtual dispatch call sites are
not stitched if they resolve to more that n targets. We calculate n empirically by analyzing
the distribution of target numbers and taking the median (five in our dataset). The result-
ing lower bound callgraph is, by definition, unsound, but it gives a more realistic view of
the actual code reuse as it avoids megamorphic call sites by construction. A sensitivity
analysis for various values of n (three, five, seven, ten) indicated that the results did not
differ radically.

A further issue with static callgraph construction is using reflection to load and call
code. Static analysis cannot effectively deal with reflection. However, various popular
frameworks in Java (e.g.,Spring, Hibernate and Guice) make extensive use of reflection and
versions of those frameworks exist in our analysis set, thus making our results imprecise.
Both, Sui et. al, [178] and Liu et. al, [179] find that not all of Java’s reflection APIs equally
contribute as a source of unsoundness in analysis. Therefore, following the guidelines of
Landman et. al., [180], we aim to quantify which reflection APIs appear most frequently
as part of RQ2.

5.3 Results

The results of our analysis deviate from a normal distribution according to the Shapiro-
Wilk test (p < 0.01 < ). Consequently, we employ the non-parametric Spearman corre-
lation coefficient (p) for our correlation analysis. We follow Hopkins’s guidelines for in-
terpreting the correlation coefficient [82]: a value of 0 < |p| < 0.3 indicates no correlation,
0.3 < |p| < 0.5 suggests a weak correlation, 0.5 < |p| < 0.7 signifies a moderate correlation,
and 0.7 < |p| < 1 implies a strong correlation. Our results including analysis scripts are
available as a replication package [25].

5.3.1 RQ1: Import of Third-Party Libraries

Distribution Figure 5.3 illustrates the percentage of third-party code in the total code
available for all project releases, considering both external LOC and functions. The medi-
ans are similar: 84% for external LOC (mean: 71%) and 88% for external functions (mean:
71%). Although the distributions of reused LOC and functions in the codebase are com-
parable, we observe a marginally higher proportion of external functions in projects than
external LOC, particularly in the 90-100% range in the figure.

By dividing the data at the 50% threshold, we deduce that most releases (74% or 2359
out of 3182) contain more than 50% of external code. This underscores that a significant
part of modern software heavily depends on external components. However, one-fourth of
the releases consist of more internally developed code. Examples include joda-time: joda-
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Figure 5.3: Import Ratio of all project releases

time:2.9.9(2%), com.sun.xml.bind:jaxb-impl:2.2.3(15%), and org.ehcache:ehcache:3.6.1

(3.2%).

Evolution To understand the changes in external code import over time, we analyze
the latest version of each package at six-month intervals from 2005-11 to 2023-04 for both
the number of functions and LOC in Figure 5.4. Over a decade from 2012-11, the median
has steadily increased from 81% to 87%, indicating that projects are progressively import-
ing more external code. When comparing the median for the external code ratio between
the number of functions and LOC over time, we notice that the gap between them narrows.
From around 2013-05 onwards, the medians are comparable, indicating that median ratios
approximate each other.

The variability and spread of the boxes show a consistent contraction and upward shift,
signaling an increased reliance on external code. In recent years, we have observed that
releases consist of at least 20% or more external code (excluding outliers). This increase
could be attributed to the growing number of dependencies over time. Therefore, we
investigate the correlation between the total number of dependencies and the percentage
of third-party code over time, resulting in a moderate p = 0.67 correlation. This finding
suggests that the rise in external code is likely due to an increased dependence on declaring
or resolving more third-party libraries or third-party libraries expanding in size.

Version Diff When diffing the import of external code between consecutive minor
and major releases of packages, we find 8.36% (266/3182) of the releases to have a change
more significant than 1%, suggesting that there are generally no dramatic changes in the
import of external code between consecutive releases. Figure 5.5 depicts the percentage
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Figure 5.4: Evolution of Import Ratio between 2005-2023

diff for releases that have a delta greater than 1% of imported external LOC and number
of functions. Overall, we identify a bell-shaped distribution where most delta changes
range between -25% and +25% between consecutive versions. Furthermore, we also no-
tice more releases with more significant diffs for functions (362 cases) compared to LOC
(226 cases). Among the outliers, we find that org.ehcache:ehcache grew from version
3.7.0 to 3.8.0 with 52% as it started to depend on org.glassfish. jaxb: jaxb-runtime, and
org.mockito:mockito-core reduced from version 1.3.0 to 1.5.0° with 72% by removing
cglib:cglib-nodep. Overall, we find that between releases, there are no major changes
in the inclusion of external code in projects. The likely reason for release changes with a
high delta percentage is to include or remove a third-party library.

Findings from RQ1: The import of third-party code accounts for approximately 87% of
projects, driven likely by the growing number of external libraries imported in projects. Com-
paring versions, we observe minimal fluctuations in the inclusion or exclusion of third-party
library code. Overall, projects predominantly consist of external code.

5.3.2 RQ2: Reuse of Third-party Libraries

Use of Reflection APIs Third-party libraries often utilize reflection methods to enable
dynamic behavior, such as creating objects or calling methods at runtime [180], which
may impede our ability to find all instances of code reuse. Thus, to understand how the
presence of Java’s reflection API affects our analysis, we first identify the most frequently
invoked reflection APIs to determine potential sources of unsoundness and then exam-
ine the number of library dependencies that use reflection in projects. Table 5.2 presents
the most frequently invoked reflection APIs in our set of third-party libraries. Among

*there is no 1.4.0 for this particular project
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Figure 5.5: Percentage Diff between Major and Minor releases (excluding -1% to 1% changes)

Table 5.2: Most Frequent Reflection APIs

Reflection API Count
Method. invoke 5729
Class.getDeclaredMethods 5634
Class.forName(String) 5093
Class.getMethods 5052
Class.getMethod 4878
Constructor.newlInstance 4602
Class.newInstance 3741
Class.getConstructors 3394
Class.getConstructor 3284
Class.getDeclaredConstructors 3112
Class.forName(String,Boolean,Classloader) 2885
Class.getDeclaredMethod 2662
Class.getDeclaredConstructor 2178
Serviceloader. load 1463

them, all except Method. invoke, Constructor.newInstance, and Class.newInstance are
non-problematic, as they do not construct or invoke dynamically invoked methods nec-
essary to identify reuse. Using only the three shortlisted APIs, we find in Figure 5.6 that
most releases import a third party using these APIs. In fact, nearly half of all releases
depend on only library dependencies invoking the reflection API.
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Figure 5.7: Distribution of Reused Third-Party Functions and LOC

However, despite the high presence of reflection APIs in third-party libraries, accord-
ing to Sui et. al, [178], dynamic invocations are a minor source of unsoundness for the
three shortlisted APIs. By adding dynamic analysis, Liu et. al, [179] show that the average
increase of calls is 15 by recording calls of such APIs, which implies that the overall effect
on our analysis is limited.

Distribution Figure 5.10 depicts the reuse of third-party functions and LOC per di-
rect and transitive library dependencies. When comparing the plots between direct and
transitive dependencies, we find a generally higher percentage of reuse of directly declared
third-party libraries than transitively resolved ones. For example, looking at the histogram
for the portion of reused functions of transitive library dependencies, we find that very
few releases use 70-80% of their transitive dependencies. Soto-Valero et. al., [170], and
Hejderup et. al, [155] also observe low utilization of transitive library dependencies by
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Figure 5.8: Evolution Reused Functions and LOC of Third-Party Libraries

finding most transitively resolved library dependencies are mainly unused.

When comparing the two stitch modes, we see a right-skewed distribution (no meg-
amorphic call sites) and a largely multimodal distribution (full stitching). In other words,
the full stitch mode suggests reuse in terms of invoked functions or LOC is more evenly
spread, notably in the figure for direct reused LOC, whereas the no megamorphic call site
mode suggests that reuse is overall very low (between 0-20%). The contrast in the distri-
bution shape highlights the over-approximation of third-party function reuse due to in-
cluding all targets in interface calls. Particularly in the range between 30% to 60% reuse of
either direct or transitive dependencies, we find a substantial number of releases with this
amount of reuse in the full stitch mode. In contrast, in the no megamorphic call sites, we
find almost no or alimited amount of releases. One example is com. typesafe.netty:netty-
reactive-streams:2.0.6, which invokes 47% of all third-party (transitive) functions in the
full stitch mode and only 2.1% in the other case.

Evolution How projects reuse third-party libraries over time provides insights into
patterns and changes in how developers and organizations use imported third-party li-
brary code. Between 2005 to 2022, we identified an overall growing trend of increased
reuse over time, both in terms of function and LOC, in Figure 5.8. While the median re-
mains similar over time for the no megamorphic calls, we can observe an increase in the
variation over time. Notable are the whiskers and outliers in recent time points. For the
full stitching mode, we can see a significant increase over time in the median and spread
of the box plots; for instance, the median reuse from 2012-11 to 2022-11 grew from 22.7%
to 38%, an increase of nearly 25%. We can also see the gap expanding when comparing
the gap between the median of the two different stitch modes. Earlier time points are
more comparable to later ones, particularly the median and lower quartile. For example,
we find the median for the full stitching to be 20% and 13% for no megamorphic calls in
2009-11, and 38% and 12.2%, respectively, in the latest time point. Finally, when compar-
ing the function reuse with LOC reuse, we notice that the results complement each other.
The correlation between the two is strong per stitch mode, p = 0.93 for full stitch mode,
and p = 0.76 for no megamorphic calls. Suggesting that either using LOC or functions
approximate each other well when estimating the reuse in terms of size.

Version Diff Similar to Figure 5.5, we find that most releases do not have a more
significant delta increase or decrease than < 1%, suggesting that the reuse of third-party
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libraries remains broadly the same. Both Sawant et. al., [169] and Soto-Valero et. al., [170]
also observe that the use surface of third-party APIs in projects remains the same over
time with no significant changes. When narrowing down to releases outside the -1% and
1% range in Figure 5.9, we find a similar set of 266 releases in the full stitching mode and
a reduction to 233 in the other mode when reducing megamorphic call sites for reused
functions. For reused LOC, we found 319 releases, with a decrease to 286 releases when
removing megamorphic calls. We see a nearly matching bell-shaped distribution when
comparing the percentage diff between the actual reuse of third-party functions and LOC.
There is a slight deviation between the two; the reused LOC diff has releases with more
than 50% delta, which is not present in the reused function diff. When comparing the stitch
mode, we find that they largely follow the same distribution, unlike previous comparative
plots. The correlation after normalizing the data is p = 0.62 and p = 0.67, indicating a
moderate-strong correlation.

Looking at the two previous cases, org. ehcache:ehcache between version 3.7.0 to 3.8.0
had an increase in function reuse of 8.5% when looking at the full stitch mode. However,
it had a LOC reuse decrease of -0.4664% despite importing more LOC. Similarly, removing
megamorphic call sites suggests a more drastic reduction in reuse, namely around -20%
for both modes. While surprising at first, the significant drop in reuse is not a response
to drastic changes in how the project reuses third-party libraries; it is a result of adding
org.glassfish. jaxb: jaxb-runtime that brings in more external code (i.e., going from 405
to 8511 declared functions). The attributed increase in function reuse is likely due to new
interface implementations being made availalbe

For org.mockito:mockito-core between version 1.3.0 to 1.5.0, there is a -4.6% reduc-
tion in LOC reuse (function reuse: -8.5%) on the full-stitch mode, and in contrast, when
looking without megamorphic calls, we observe an increase of reuse, a 28% increase in
LOC reuse (function reuse: 11%). In the case of mockito, removing a library dependency
should generally bring up the reuse ratio, showing how not treating interface calls can
potentially bring misleading results.
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Figure 5.10: Third-Party Reuse per Project-Dependency Relationship (latest version)

Third-Party Reuse per Project-Dependency Relationship Figure 5.10 drills down
the reuse ratio for individually declared third-party libraries instead of looking at the entire
reuse of all third-party libraries. While we find similar patterns observed in Figure 5.7, we
can more clearly identify the contrasts between full stitch mode and no megamorphic
call sites; the full stitch mode identifies most declared third-party libraries to be reused
between 30% to 60%, whereas, the no megamorphic call sites mode finds the reuse ratio to
mainly vary between 0 to 20%. When comparing the median, we see the results competing:
the median for no megamorphic call sites is 5.4% (functions: 4.27%), and 42% (functions:
38%) for full stitching. For example, the commons-fileupload: commons-fileupload:1.5
reuse LOC ratio of commons-io:commons-i0:2.11.0 is 18% (2126/11653), and in the no
megamorphic case, it is 4.3% (503/11653).

Considering the low reuse rate observed in the no megamorphic call sites scenario,
developers should evaluate whether the operational benefits of third-party libraries jus-
tify the associated maintenance costs. As an illustrative example, eliminating commons-
io:commons-i0:2.11.0 could remove two out of the five of its imported library depen-
dencies, nearly half of the imported third-party libraries in commons-fileupload: commons-
fileupload: 1.5, potentially simplifying dependency management and reducing mainte-
nance overhead.

Findings from RQ2: Code reuse consistently lies within the 12-38% range. The handling
of interface calls significantly affects the results: the upper-bound suggests an increase in
reuse, while the lower-bound indicates minimal change. Between consecutive versions, reuse
remains mostly unchanged. Overall, we observe that third-party libraries are predominantly

underutilized.
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5.4 Discussion

Third-party libraries, specifically resolved through package managers, have helped devel-
opers and organizations effectively scale code reuse and reduce development time and
costs. A side-effect is that projects own less first-party code and primarily depend on a
large amount of third-party code; on average, our results suggest that projects consist
of 87% third-party code. In light of recent software supply chain risks and stricter regu-
lations around third-party libraries, there is an increased awareness to evaluate current
reuse practices and form more responsible policies. We estimate that packages reuse be-
tween 12.2%-38% of their imported third-party code, leaving a significant amount—more
than 50%—unused.

Low reuse of third-party libraries can be problematic as it increases the attack surface
for vulnerabilities and malicious intents from a security perspective. Similarly, it raises
questions about the cost of importing and using third-party libraries, including factors
such as deviating standards on testing, breaking changes in version updates, and social
factors such as abandonment of projects. Dealing with incidents related to third-party
libraries could be costly in the long term and potentially outweigh the cost of having
first-party code that serves the same functionality. For example, we identified one project
release, com.amazonaws:aws-java-sdk-s3 that inherits from its parent and depends on
org.apache.httpcomponents:httpclient that only uses 43 LOC. Here, the low amount of
reuse could motivate substituting third-party code with first-party code to avoid exposure
to external risks, as this library also depends on another set of third-party libraries. While
information such as the number of invoked external functions and LOC estimates the size
of reuse, we argue that developers and organizations should evaluate how they reuse third-
party libraries. Instances with very few lines or trivial dependence on third-party libraries
may warrant using first-party code. Incidents such as the left-pad [5] incident is a strong
reminder on how the impact of trivial third-party code could turn into a significant risk.

5.4.1 Reducing Unused Code In Third-Party Libraries

The unit of a package retrieved from package managers is a reusable library. As a signifi-
cant amount of library code remains unused in projects, there could be reasons to explore
mechanisms and best practices to organize and structure code in a way that optimizes
reuse and minimizes the import of unused third-party code. One such example is intro-
ducing the project Jigsaw* in Java 9, a standardized module system intending to break
down the Java Development Kit (JDK) and other large legacy libraries into reusable mod-
ules. As a result of modularizing the JDK, developers can create and distribute custom
Java Runtime Environments (JREs) with a small print, which was impractical previously.
GraalVM?® follows another approach to reduce the amount of unused third-party code in
production applications, including potential deserialization gadgets. It compiles ahead-of-
time to create native binaries that only contain used functionality and thus have a smaller
footprint. The use of reflection and other dynamic features, however, may require manual
configuration to guide the compilation process.® Although a modularized system provides
flexibility, creating a set of reusable modules from a library could be challenging. Thus,

*https://openjdk.org/projects/jigsaw/
*https://www.graalvm.org/
*https://www.graalvm.org/22.0/reference-manual/native-image/Reflection/
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data-driven approaches, such as understanding how project reuse library functions, can
aid in two ways: a) understanding usage patterns can drive how to organize the code and
creation of module boundaries, and b) removing and deprecating APIs. In the latter case,
providing data on code reuse to library maintainers could aid in removing largely unused
or under-utilized APIs to reduce the attack surface and software supply chain risks.

5.4.2 Using Static Analysis Data in Studies

The imprecise treatment of Java’s dynamic language features during call graph construc-
tion can impact the results of empirical studies. Since we rely on call graph algorithms
known to construct at the scope of a project and its third-party libraries, the inexact han-
dling of dynamically-dispatched calls (i.e., interface calls) can be a source of influence on
our results. By introducing a range with an upper-bound that includes all call targets and a
lower-bound that eliminates megamorphic call sites, we observe not only a generally broad
range between the two bounds, but also a notable difference in their appearance. Specif-
ically, in Figure 5.8, we find that the median reuse grows over time in the upper-bound
case, while in the lower-bound case, it remains essentially the same. As we observe this
increase in reuse over time, we also notice an extra drive in reuse driven by the availabil-
ity of new call targets, stemming from either the introduction of a new third-party library
implementing a used interface or new implementations in existing third-party libraries.
Therefore, when conducting studies involving call graph algorithms with inexact treat-
ment of interface calls, our results emphasize the importance of considering such features
in empirical studies and their potential influence on the outcomes. Our work provides a
guideline on how to compute a lower-bound that eliminates megamorphic call sites.

5.4.3 Threats to Validity

Internal validity

We use the Lines of Code (LOC) metric to gauge the size of third-party libraries and reuse.
However, this may not present a comprehensive view of libraries, as complexity changes
might not necessarily result in added lines of code. To mitigate this limitation, we also
count the number of public methods as a complementary metric for the size of import and
reuse.

The OPAL call graph generator can resolve function invocations that involve static
and dynamic dispatch and limited handling of calls that invoke the Reflection APL. While
recent studies [178, 179] suggest that this limitation does not significantly contribute to
unsoundness, we must recognize that we cannot make definitive claims about the com-
pleteness of the generated call graphs due to the lack of ground truth for the analyzed
projects together with their third-party libraries. Using additional analyses, such as dy-
namic analysis, to eliminate unlikely function targets as an alternative to imprecise han-
dling of dynamic dispatch can be error-prone. It may lead to unsound inferences, primarily
due to the need for more test coverage of projects and their library dependencies. As a
result, we choose to mitigate this issue by specifying a range representing a lower and
upper bound of our analysis.

Maven Central does not follow a strict versioning schema, unlike other package repos-
itories such as JavaScript’s npm or Rust’s Cargo. As a result, there are user-defined versions
for which we cannot determine any order, which is essential for identifying the differences
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in changes between consecutive versions of releases. To address this issue, we adopt the
approach proposed by Raemaekers et. al., [11], which focuses exclusively on selecting
packages and releases that adhere to the Semantic Versioning (SemVer) specification.

External validity

We recognize that the code reuse is not generalizable to other package repositories and
only explains the properties of the Census-II dataset. Instead of a comprehensive repos-
itory scale analysis, we have a more focused selection of third-party libraries known to
be widely used across enterprise applications. However, we expect that the patterns of
import and reuse would yield similar results across other ecosystems, as the number of
third-party libraries has generally grown for most language-based ecosystems [27]. Our
approach can be replicated for programming languages with a resolver for package depen-
dencies and a call graph generator.

5.5 Conclusion & Future Work

Our study examines how Java projects import and reuse third-party libraries over time.
We use projects from the Census-II dataset representing widely used libraries in produc-
tion applications. We construct call and dependency graphs for available project releases
and their library dependencies and measure usage in reused lines of code and the number
of externally invoked functions using reachability analysis. Dynamic dispatch calls com-
plicate how we approximate the reuse of third-party code; to mitigate the risk associated
with this, we compute an upper bound representing all interface calls and a lower bound
that excludes megamorphic call sites. The difference we observe in our study between the
approximation between the bounds highlights the importance of quantifying and treating
imprecision in static analysis and quantifying the effect in results.

We observe that over a 17 year span that the proportion of external code in projects
has historically remained high at around 75-80%, steadily growing to 87% in recent years,
confirming that majority of code that ships with projects originates from libraries. At the
same time, we find that projects reuse in the median range from 12.2% (lower-bound) to
38% (upper-bound) of available external code in recent years, with marginal growth in
reuse in the lower-bound case and significant growth in the upper-bound case. Drilling
down to the reuse of individual third-party libraries, we observe that the median project
reuse is 6% for the lower-bound and 42% for the upper-bound, suggesting that third-party
code remains largely unused. In line with previous work, we observe that a library’s used
features remain constant over time (a slight variation of +1%).

In light of increasing software supply chain risks, our results demonstrate that projects
have low reuse of third-party libraries, raising questions on the operational cost of using
third-party libraries versus maintaining those lines internally.
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Conclusion

This chapter summarizes the contributions of this thesis, revisits our original research
questions, and concluding remarks on applying static analysis to software supply chain
problems.

6.1 Contributions
The main contributions of the thesis can be summarized as follows:

+ A new technique—PrAzI—to construct code-based networks of package repositories
by augmenting build manifest data with call graphs. We provide a reference imple-
mentation for Rust’s CRATES.IO to evaluate the practicality of the technique, demon-
strating that our approach can compile and infer call graphs for most releases made
in CRATES.I0 and new applications in the form of API-based reachability analysis
such as tracking deprecation and bloat. PRAZI also addresses the temporal proper-
ties of package repositories (i.e., new releases trigger build systems to update the
dependency tree of packages automatically) for conducting evolutionary studies by
introducing time as a variable, enabling on-the-fly network generation and stitching
of call graphs for a timestamp t.

« A benchmark-inspired review protocol for evaluating how accurately dependency
networks infer package relationships of a repository. This protocol zeroes in on
package edges in the repository where network discrepancies occur, enabling a com-
parison of dependency networks. By manually reviewing these edges, we can estab-
lish a partial ground truth, which will help researchers and practitioners understand
the trade-offs and limitations of different networks, specifically, how the absence or
presence of language features in call graph generators affects the inference of pack-
age edges.

« Novel findings providing researchers and practitioners insights into practical trade-
offs when using code-based and metadata-based networks of package repositories
for reachability analysis. Package-based networks tend to overestimate package re-
lationships, including edges where no code reuse is evident. Conversely, call-based
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6 Conclusion

dependency networks effectively exclude such edges without code reuse. These call-
based networks can underestimate relationships, as call graph generators may only
accommodate some language features. Reachability analysis performed on code-
based or metadata-based networks yields similar results for tasks related to direct
package relationships. However, the same does not hold for transitive package rela-
tionships, where the reused functionality of a directly imported third-party library
influences the portion of reused functionality in transitively imported third-party
libraries.

An automated infrastructure that assesses how effectively project test suites can
identify semantically breaking changes during updates of third-party libraries. This
system creates artificial updates by mutating functionality in direct and transitively
imported third-party libraries, subsequently calculating a mutation score for these
libraries. In parallel with project test coverage, the infrastructure also determines
the test coverage of reused third-party functions. These calculated metrics provide
developers with crucial insight into the sufficiency of their test suites for automated
dependency updating tools and highlight any coverage gaps that may necessitate
additional tests.

A static technique that detects semantically breaking changes during updates of
third-party libraries. As project test suites may not fully cover or effectively test cer-
tain reused third-party functions, static call graphs can bridge these gaps, as they
estimate reuse based on the source code. By pinpointing the functions that have
changed between the old and the new version, we can utilize reachability analysis to
identify if a path from the altered function leading to the project exists. Practitioners,
particularly tool makers, can use our technique to build hybrid approaches incorpo-
rating dynamic and static analysis. Such strategies could enhance the robustness of
updating third-party libraries and diminish the likelihood of introducing regression
issues. The technique is implemented in an open-source tool, UPPDATERA, which
works for Java-based projects.

A baseline on code reuse of third-party libraries enabling practitioners and researchers
to evaluate and comprehend whether projects overuse or underuse third-party code.
Project maintainers can gain preliminary insights into the code reuse of specific
third-party libraries by indicating the amount of imported and reused lines of code
(LOC). Cases with low reuse could motivate its removal and insourcing might be
better to cut operational costs and risks.

6.2 Research Questions Revisited

In this section, we revisit and answer the research questions from Chapter 1.

RQ 1 How feasible is code-based reachability analysis in practice?

In Chapter 2, we demonstrate the capability to build call-based networks that are rep-

resentative of package repositories, proving that we can compile and generate a call graph
for 70% of all indexed releases—a figure that escalates to 90% in practical circumstances



6.2 Research Questions Revisited 105

due to some indexed releases having compilation errors resulting from coding mistakes.
Compiling and creating call graphs for CRATEs.1I0 spans ten days, a relatively insignifi-
cant one-time expenditure considering the low incremental cost and scalability associated
with adding new releases. This approach’s effectiveness and practicality are further exem-
plified in Chapter 4 with UPPDATERA, where compilation and call graph construction are
comparable with the execution times of test suites in DevOps settings.

By establishing a partial ground truth to compare metadata-based networks with call-
based networks, we ascertain that call-based networks can eliminate approximately 35% of
the false edges present in conventional metadata-based networks, primarily resulting from
unused or absent import statements. We also discover that the call graph generator’s level
of support for diverse language features significantly impacts the inferred inter-package
relationships. For instance, in use cases demanding uninstantiated constructs like generic
or conditionally compiled functions, the accuracy of package relationship inference may
suffer.

In our initial comparative study of reachability analysis involving five security vul-
nerabilities presented in Chapter 2, we find that code-based reachability analysis is three
times more precise than metadata-based analysis, albeit at the cost of lower recall. The
recall is based on all Rust language features and would noticeably improve when we dis-
regard language features such as generic or conditionally compiled functions. We extend
our initial reachability analysis evaluation to an empirical study in Chapter 3. This more
extensive study finds empirical evidence that code-based and metadata-based networks
are interchangeable for reachability analysis involving direct package relationships and
can serve as adequate approximations of each other. However, the networks display sub-
stantial differences when it comes to transitive package relationships. In February 2020,
the average number of transitive dependencies reported was 17 for metadata-based net-
works and only 6 for code-based networks. Upon manually examining this discrepancy,
we determine that metadata-based networks tend to overestimate transitive package rela-
tionships primarily because they miss to account for the context of how a package reuses
its third-party libraries.

Implications: Our findings shed light on several shortcomings of metadata-based
networks, commonly used by researchers and practitioners for studying software supply
chain problems ranging from package distributions to applications. They also highlight
scenarios where these networks can feasibly substitute code-based networks. For inferring
metadata-based networks of package distributions, we ascertain that simply validating
dependency descriptors is not sufficient; it is also essential to validate the source or binary
of packages. Package repositories like CRATES.10 or NPM do not validate the content of
packages as part of their publication process, which can lead to issues. We find that 20%
of CRrATES.I0 releases either fail to compile or include a failed release in their dependency
tree, posing a significant threat to the validity of existing empirical studies.

Although adopting static analysis for software supply chain-based analysis may not
always be feasible, there are instances where precision is not a critical factor. In such
cases, call-based and metadata-based networks yield similar results when analyzing direct
package relationships, suggesting that projects and packages are likely to reuse at least
one API of an imported third-party library in practice. However, this does not hold for
indirect package relationships; here, metadata-based networks predict poorly by adding
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edges to all transitive package relationships. Package repositories and applications are not
homogeneous collections of software—each application and project reuses a third-party
library differently, and what they reuse from a library determines whether that extends
to using a transitively imported library. For instance, if a third-party library uses another
library for JSON parsing functionality, but the application using this third-party library
does not use any JSON functionality, then the application would not use the transitively
imported library.

We also underline the influence of the soundness of a call graph generator on the
inferred call-based dependency network. Language features that call graph generators
typically overlook, such as uninstantiated generic and conditionally-compiled functions,
can be crucial in certain use cases, such as security. In such scenarios, metadata-based
networks offer a more sound alternative. However, given that metadata-based networks
may produce many false positives for transitive package relationships, combining both
networks can be beneficial in cases where soundness is critical. This approach can reduce
workload by offering specific source code paths simplifying the overall analysis.

RQ 2 How does code-based reachability analysis complement tests in third-party libraries?

Our prior research question evaluated code-based reachability analysis as a potential
replacement for metadata-based reachability analysis. In this research question, we shift
our focus to examining the application of dynamic analysis in software supply chain prob-
lems, specifically in upgrading a third-party library from one version to another without
introducing semantically breaking changes.

Our results in Chapter 4 reveal that Open Source Software (OSS) projects in Java typi-
cally exhibit a test coverage of 58% for the functionality they reuse from directly imported
third-party libraries and 20% for functionality from indirectly imported libraries. These
figures underscore the substantial gaps in test coverage of third-party libraries. Further-
more, by applying mutation analysis to simulate artificial third-party updates, we deter-
mined that project test suites detect, on average, 47% of artificially introduced regressions
in directly imported libraries and 35% in indirectly imported libraries. This indicates the
limited effectiveness of conventional test suites in mitigating regressions introduced by
third-party library updates.

However, we observed a noteworthy improvement when we implemented code-based
reachability analysis as an alternative to conventional test suites for third-party library up-
dates. We achieved a detection rate of 74% for regressions in directly imported third-party
libraries and 64% in transitively imported libraries. This detection rate is nearly double
that of traditional test suites, thus highlighting the potential of code-based reachability
analysis to provide more comprehensive coverage of reused third-party library function-
alities.

We applied code-based reachability analysis to 22 real-world dependency updates on
GitHub in a practical test. This experiment revealed that it generated false positives in
six instances due to dynamically dispatched calls and misclassifying refactorings. Despite
this, code-based reachability analysis proved its value by complementing areas where test
suites fell short. Specifically, it identified three updates containing semantic breaking
changes that went undetected by the tests.
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Implications: Similar to avoiding writing code using third-party libraries, we find
empirical evidence that this also extends to not writing tests for reused third-party func-
tionality. This lack of emphasis on third-party testing is not entirely surprising; most
literature [107, 128, 129] on testing primarily targets first-party code, often neglecting
the significance of third-party code. With the increasing use of third-party libraries in
software projects, there is a growing need to establish best practices and discuss the ne-
cessity of writing tests for such libraries. The log4shell [181] incident is a stark reminder
of this necessity: developers could not validate whether using the log4j logging library
exposed them to the risk of remote Java executable injection. Although this area war-
rants further research, we recommend that practitioners write tests for critical function-
ality reused from third-party libraries to defend against hidden malicious intent within
the software supply chain. Our evaluation technique, which employs mutation analysis,
can offer first-hand insights into the effectiveness of existing test suites in dealing with
third-party libraries and help determine where to focus testing efforts.

Mirhosseini et. al., [84] qualitatively discovered that developers regard automated
third-party library updates with suspicion, perceiving tests as unreliable. Our empirical
findings corroborate this, given the significant gaps we identified in test coverage. To en-
hance reliability for users of automated dependency updating tools, offering insights into
the test coverage of third-party library features could indicate whether functions changed
in a third-party library already have coverage. Our dynamic call graph generator and the
diffing component of UPPDATERA can generate such information. Increased transparency
and additional insights into pull requests could foster greater trust in the process.

When evaluating third-party libraries, our findings suggest that dynamic analysis by
running test suites is insufficient, similar to static analysis through change impact analysis.
Hence, software supply chain toolmakers should consider hybrid approaches, as static
analysis can complement test suites in areas they cannot reach within third-party libraries.
Static analysis can fill the gaps left by traditional testing approaches by approximating how
projects reuse third-party code.

RQ 3 How do software projects reuse imported third-party libraries?

In Chapter 5, we use reachability analysis to gauge how projects reuse third-party
libraries by calculating the ratio of reused lines of code to all external lines of code and the
count of externally invoked functions compared to all available external functions. When
we calculate the ratio of first-party to third-party code available to developers in OSS Java
projects, we find that an average of 87% of reusable code stems from third-party libraries.
The proportion of available third-party code has grown from 81% to 87% in ten years,
likely attributable to the increasing number of resolved transitive third-party libraries or
the expansion of library size. However, in our analysis of consecutive versions, we note
that projects typically remain stable, with minimal inclusion or exclusion of third-party
library code.

Upon identifying the percentage of third-party code available in Java projects, we es-
timate that projects reuse between 12.2% and 38% of their imported third-party code, leav-
ing a considerable amount—more than 50%—unused. In our examination of trends and
patterns of reuse over ten years, we notice that reuse largely stays consistent over time.
This pattern holds even when comparing consecutive versions. Hence, our findings align
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with prior research [42, 171] that examined API usage, indicating that reuse maintains a
steady trend over time.

Implications: Our findings provide a benchmark for organizations and developers
to evaluate their level of third-party library reuse. We observe an overall trend of in-
creasing third-party library functions, likely due to increasing transitively imported and
resolved third-party libraries in projects. However, projects tend to maintain a stable level
of third-party library reuse over time, meaning they do not necessarily utilize more exist-
ing libraries as they become available. As a result, over 50% of available third-party library
functionality is unused in projects, leading to questions about the efficacy of promoting
third-party library reuse through package managers as a form of effective software reuse.
Moreover, the abstraction of a library as a collection of classes and interfaces could, by de-
sign, contribute to code bloat and added maintenance overhead. As practitioners strive to
reuse code with maximal development benefits and minimal maintenance and operational
costs, researchers should investigate ways to minimize these costs, especially considering
that libraries remain largely unused.

Practitioners often need more awareness of how much they reuse from third-party
libraries. Therefore, our estimation technique and benchmark can assist them in evaluat-
ing the operational costs and risks associated with the placement of third-party code over
first-party code. The infamous left-pad incident [3] is a notable example of the risks of
using third-party libraries in projects. Importing a single library brings along a suite of
other libraries, each with its development standards and practices. Consequently, each
imported library requires monitoring to stay informed of security incidents and break-
ing changes. If an organization utilizes only a tiny fraction of a library (e.g., 50 lines of
code) that could be replaced with first-party code, transitioning to first-party code would
eliminate all associated operational costs and risks. Consequently, practitioners must con-
sistently and proactively conduct evaluations to ascertain the long-term justification for
each use of third-party libraries and consider actively swapping out existing third-party
library usage with first-party codes. This practice helps balance immediate development
cost savings and long-term operational costs.

6.3 Concluding Remarks

Revisiting our original objective:

This thesis applies code-based reachability analysis to address software supply chain
problems, focusing on enhancing the safety of third-party library updates and under-
standing code reuse of third-party libraries.

In this thesis, we have extensively investigated the application of code-based reach-
ability analysis to software supply chain problems. Our focus has been on inferring de-
pendency networks from source code, enhancing the safety of third-party library updates,
and understanding code reuse patterns, particularly in light of transitive dependencies.

Our research establishes the practicality and viability of code-based reachability anal-
ysis. We have demonstrated that constructing call-based networks to represent package
repositories is achievable and advantageous. Compared to their metadata-based counter-
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parts, call-based networks significantly enhance the precision of reachability analysis by
reducing false positives. However, we also found that the effectiveness of these networks
is highly dependent on the call graph generator’s characteristics and the specific require-
ments of each use case.

We further explored the role of code-based reachability analysis in testing third-party
libraries. Conventional test suites, we discovered, exhibit significant coverage gaps when
dealing with third-party library updates. Our research underlines the potential of a hybrid
approach, which combines dynamic and static analysis. This hybrid methodology consid-
erably increases fault detection rates, enhancing third-party library updates’ safety.

In conclusion, this thesis reveals the substantial potential of code-based reachability
analysis in addressing software supply chain problems. It demonstrates the practical im-
plications of applying static analysis from third-party library updates to empirical studies
of package distributions.
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